OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2003 September 6 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains code used for creating, destroying, and populating |
| 13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior |
| 14 ** to version 2.8.7, all this code was combined into the vdbe.c source file. |
| 15 ** But that file was getting too big so this subroutines were split out. |
| 16 */ |
| 17 #include "sqliteInt.h" |
| 18 #include "vdbeInt.h" |
| 19 |
| 20 |
| 21 |
| 22 /* |
| 23 ** When debugging the code generator in a symbolic debugger, one can |
| 24 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed |
| 25 ** as they are added to the instruction stream. |
| 26 */ |
| 27 #ifdef SQLITE_DEBUG |
| 28 int sqlite3VdbeAddopTrace = 0; |
| 29 #endif |
| 30 |
| 31 |
| 32 /* |
| 33 ** Create a new virtual database engine. |
| 34 */ |
| 35 Vdbe *sqlite3VdbeCreate(sqlite3 *db){ |
| 36 Vdbe *p; |
| 37 p = sqlite3DbMallocZero(db, sizeof(Vdbe) ); |
| 38 if( p==0 ) return 0; |
| 39 p->db = db; |
| 40 if( db->pVdbe ){ |
| 41 db->pVdbe->pPrev = p; |
| 42 } |
| 43 p->pNext = db->pVdbe; |
| 44 p->pPrev = 0; |
| 45 db->pVdbe = p; |
| 46 p->magic = VDBE_MAGIC_INIT; |
| 47 return p; |
| 48 } |
| 49 |
| 50 /* |
| 51 ** Remember the SQL string for a prepared statement. |
| 52 */ |
| 53 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){ |
| 54 assert( isPrepareV2==1 || isPrepareV2==0 ); |
| 55 if( p==0 ) return; |
| 56 #ifdef SQLITE_OMIT_TRACE |
| 57 if( !isPrepareV2 ) return; |
| 58 #endif |
| 59 assert( p->zSql==0 ); |
| 60 p->zSql = sqlite3DbStrNDup(p->db, z, n); |
| 61 p->isPrepareV2 = (u8)isPrepareV2; |
| 62 } |
| 63 |
| 64 /* |
| 65 ** Return the SQL associated with a prepared statement |
| 66 */ |
| 67 const char *sqlite3_sql(sqlite3_stmt *pStmt){ |
| 68 Vdbe *p = (Vdbe *)pStmt; |
| 69 return (p && p->isPrepareV2) ? p->zSql : 0; |
| 70 } |
| 71 |
| 72 /* |
| 73 ** Swap all content between two VDBE structures. |
| 74 */ |
| 75 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){ |
| 76 Vdbe tmp, *pTmp; |
| 77 char *zTmp; |
| 78 tmp = *pA; |
| 79 *pA = *pB; |
| 80 *pB = tmp; |
| 81 pTmp = pA->pNext; |
| 82 pA->pNext = pB->pNext; |
| 83 pB->pNext = pTmp; |
| 84 pTmp = pA->pPrev; |
| 85 pA->pPrev = pB->pPrev; |
| 86 pB->pPrev = pTmp; |
| 87 zTmp = pA->zSql; |
| 88 pA->zSql = pB->zSql; |
| 89 pB->zSql = zTmp; |
| 90 pB->isPrepareV2 = pA->isPrepareV2; |
| 91 } |
| 92 |
| 93 #ifdef SQLITE_DEBUG |
| 94 /* |
| 95 ** Turn tracing on or off |
| 96 */ |
| 97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){ |
| 98 p->trace = trace; |
| 99 } |
| 100 #endif |
| 101 |
| 102 /* |
| 103 ** Resize the Vdbe.aOp array so that it is at least one op larger than |
| 104 ** it was. |
| 105 ** |
| 106 ** If an out-of-memory error occurs while resizing the array, return |
| 107 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain |
| 108 ** unchanged (this is so that any opcodes already allocated can be |
| 109 ** correctly deallocated along with the rest of the Vdbe). |
| 110 */ |
| 111 static int growOpArray(Vdbe *p){ |
| 112 VdbeOp *pNew; |
| 113 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op))); |
| 114 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op)); |
| 115 if( pNew ){ |
| 116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op); |
| 117 p->aOp = pNew; |
| 118 } |
| 119 return (pNew ? SQLITE_OK : SQLITE_NOMEM); |
| 120 } |
| 121 |
| 122 /* |
| 123 ** Add a new instruction to the list of instructions current in the |
| 124 ** VDBE. Return the address of the new instruction. |
| 125 ** |
| 126 ** Parameters: |
| 127 ** |
| 128 ** p Pointer to the VDBE |
| 129 ** |
| 130 ** op The opcode for this instruction |
| 131 ** |
| 132 ** p1, p2, p3 Operands |
| 133 ** |
| 134 ** Use the sqlite3VdbeResolveLabel() function to fix an address and |
| 135 ** the sqlite3VdbeChangeP4() function to change the value of the P4 |
| 136 ** operand. |
| 137 */ |
| 138 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){ |
| 139 int i; |
| 140 VdbeOp *pOp; |
| 141 |
| 142 i = p->nOp; |
| 143 assert( p->magic==VDBE_MAGIC_INIT ); |
| 144 assert( op>0 && op<0xff ); |
| 145 if( p->nOpAlloc<=i ){ |
| 146 if( growOpArray(p) ){ |
| 147 return 1; |
| 148 } |
| 149 } |
| 150 p->nOp++; |
| 151 pOp = &p->aOp[i]; |
| 152 pOp->opcode = (u8)op; |
| 153 pOp->p5 = 0; |
| 154 pOp->p1 = p1; |
| 155 pOp->p2 = p2; |
| 156 pOp->p3 = p3; |
| 157 pOp->p4.p = 0; |
| 158 pOp->p4type = P4_NOTUSED; |
| 159 p->expired = 0; |
| 160 if( op==OP_ParseSchema ){ |
| 161 /* Any program that uses the OP_ParseSchema opcode needs to lock |
| 162 ** all btrees. */ |
| 163 int j; |
| 164 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j); |
| 165 } |
| 166 #ifdef SQLITE_DEBUG |
| 167 pOp->zComment = 0; |
| 168 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]); |
| 169 #endif |
| 170 #ifdef VDBE_PROFILE |
| 171 pOp->cycles = 0; |
| 172 pOp->cnt = 0; |
| 173 #endif |
| 174 return i; |
| 175 } |
| 176 int sqlite3VdbeAddOp0(Vdbe *p, int op){ |
| 177 return sqlite3VdbeAddOp3(p, op, 0, 0, 0); |
| 178 } |
| 179 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){ |
| 180 return sqlite3VdbeAddOp3(p, op, p1, 0, 0); |
| 181 } |
| 182 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){ |
| 183 return sqlite3VdbeAddOp3(p, op, p1, p2, 0); |
| 184 } |
| 185 |
| 186 |
| 187 /* |
| 188 ** Add an opcode that includes the p4 value as a pointer. |
| 189 */ |
| 190 int sqlite3VdbeAddOp4( |
| 191 Vdbe *p, /* Add the opcode to this VM */ |
| 192 int op, /* The new opcode */ |
| 193 int p1, /* The P1 operand */ |
| 194 int p2, /* The P2 operand */ |
| 195 int p3, /* The P3 operand */ |
| 196 const char *zP4, /* The P4 operand */ |
| 197 int p4type /* P4 operand type */ |
| 198 ){ |
| 199 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| 200 sqlite3VdbeChangeP4(p, addr, zP4, p4type); |
| 201 return addr; |
| 202 } |
| 203 |
| 204 /* |
| 205 ** Add an opcode that includes the p4 value as an integer. |
| 206 */ |
| 207 int sqlite3VdbeAddOp4Int( |
| 208 Vdbe *p, /* Add the opcode to this VM */ |
| 209 int op, /* The new opcode */ |
| 210 int p1, /* The P1 operand */ |
| 211 int p2, /* The P2 operand */ |
| 212 int p3, /* The P3 operand */ |
| 213 int p4 /* The P4 operand as an integer */ |
| 214 ){ |
| 215 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3); |
| 216 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32); |
| 217 return addr; |
| 218 } |
| 219 |
| 220 /* |
| 221 ** Create a new symbolic label for an instruction that has yet to be |
| 222 ** coded. The symbolic label is really just a negative number. The |
| 223 ** label can be used as the P2 value of an operation. Later, when |
| 224 ** the label is resolved to a specific address, the VDBE will scan |
| 225 ** through its operation list and change all values of P2 which match |
| 226 ** the label into the resolved address. |
| 227 ** |
| 228 ** The VDBE knows that a P2 value is a label because labels are |
| 229 ** always negative and P2 values are suppose to be non-negative. |
| 230 ** Hence, a negative P2 value is a label that has yet to be resolved. |
| 231 ** |
| 232 ** Zero is returned if a malloc() fails. |
| 233 */ |
| 234 int sqlite3VdbeMakeLabel(Vdbe *p){ |
| 235 int i; |
| 236 i = p->nLabel++; |
| 237 assert( p->magic==VDBE_MAGIC_INIT ); |
| 238 if( i>=p->nLabelAlloc ){ |
| 239 int n = p->nLabelAlloc*2 + 5; |
| 240 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel, |
| 241 n*sizeof(p->aLabel[0])); |
| 242 p->nLabelAlloc = sqlite3DbMallocSize(p->db, p->aLabel)/sizeof(p->aLabel[0]); |
| 243 } |
| 244 if( p->aLabel ){ |
| 245 p->aLabel[i] = -1; |
| 246 } |
| 247 return -1-i; |
| 248 } |
| 249 |
| 250 /* |
| 251 ** Resolve label "x" to be the address of the next instruction to |
| 252 ** be inserted. The parameter "x" must have been obtained from |
| 253 ** a prior call to sqlite3VdbeMakeLabel(). |
| 254 */ |
| 255 void sqlite3VdbeResolveLabel(Vdbe *p, int x){ |
| 256 int j = -1-x; |
| 257 assert( p->magic==VDBE_MAGIC_INIT ); |
| 258 assert( j>=0 && j<p->nLabel ); |
| 259 if( p->aLabel ){ |
| 260 p->aLabel[j] = p->nOp; |
| 261 } |
| 262 } |
| 263 |
| 264 /* |
| 265 ** Mark the VDBE as one that can only be run one time. |
| 266 */ |
| 267 void sqlite3VdbeRunOnlyOnce(Vdbe *p){ |
| 268 p->runOnlyOnce = 1; |
| 269 } |
| 270 |
| 271 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */ |
| 272 |
| 273 /* |
| 274 ** The following type and function are used to iterate through all opcodes |
| 275 ** in a Vdbe main program and each of the sub-programs (triggers) it may |
| 276 ** invoke directly or indirectly. It should be used as follows: |
| 277 ** |
| 278 ** Op *pOp; |
| 279 ** VdbeOpIter sIter; |
| 280 ** |
| 281 ** memset(&sIter, 0, sizeof(sIter)); |
| 282 ** sIter.v = v; // v is of type Vdbe* |
| 283 ** while( (pOp = opIterNext(&sIter)) ){ |
| 284 ** // Do something with pOp |
| 285 ** } |
| 286 ** sqlite3DbFree(v->db, sIter.apSub); |
| 287 ** |
| 288 */ |
| 289 typedef struct VdbeOpIter VdbeOpIter; |
| 290 struct VdbeOpIter { |
| 291 Vdbe *v; /* Vdbe to iterate through the opcodes of */ |
| 292 SubProgram **apSub; /* Array of subprograms */ |
| 293 int nSub; /* Number of entries in apSub */ |
| 294 int iAddr; /* Address of next instruction to return */ |
| 295 int iSub; /* 0 = main program, 1 = first sub-program etc. */ |
| 296 }; |
| 297 static Op *opIterNext(VdbeOpIter *p){ |
| 298 Vdbe *v = p->v; |
| 299 Op *pRet = 0; |
| 300 Op *aOp; |
| 301 int nOp; |
| 302 |
| 303 if( p->iSub<=p->nSub ){ |
| 304 |
| 305 if( p->iSub==0 ){ |
| 306 aOp = v->aOp; |
| 307 nOp = v->nOp; |
| 308 }else{ |
| 309 aOp = p->apSub[p->iSub-1]->aOp; |
| 310 nOp = p->apSub[p->iSub-1]->nOp; |
| 311 } |
| 312 assert( p->iAddr<nOp ); |
| 313 |
| 314 pRet = &aOp[p->iAddr]; |
| 315 p->iAddr++; |
| 316 if( p->iAddr==nOp ){ |
| 317 p->iSub++; |
| 318 p->iAddr = 0; |
| 319 } |
| 320 |
| 321 if( pRet->p4type==P4_SUBPROGRAM ){ |
| 322 int nByte = (p->nSub+1)*sizeof(SubProgram*); |
| 323 int j; |
| 324 for(j=0; j<p->nSub; j++){ |
| 325 if( p->apSub[j]==pRet->p4.pProgram ) break; |
| 326 } |
| 327 if( j==p->nSub ){ |
| 328 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte); |
| 329 if( !p->apSub ){ |
| 330 pRet = 0; |
| 331 }else{ |
| 332 p->apSub[p->nSub++] = pRet->p4.pProgram; |
| 333 } |
| 334 } |
| 335 } |
| 336 } |
| 337 |
| 338 return pRet; |
| 339 } |
| 340 |
| 341 /* |
| 342 ** Check if the program stored in the VM associated with pParse may |
| 343 ** throw an ABORT exception (causing the statement, but not entire transaction |
| 344 ** to be rolled back). This condition is true if the main program or any |
| 345 ** sub-programs contains any of the following: |
| 346 ** |
| 347 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
| 348 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort. |
| 349 ** * OP_Destroy |
| 350 ** * OP_VUpdate |
| 351 ** * OP_VRename |
| 352 ** * OP_FkCounter with P2==0 (immediate foreign key constraint) |
| 353 ** |
| 354 ** Then check that the value of Parse.mayAbort is true if an |
| 355 ** ABORT may be thrown, or false otherwise. Return true if it does |
| 356 ** match, or false otherwise. This function is intended to be used as |
| 357 ** part of an assert statement in the compiler. Similar to: |
| 358 ** |
| 359 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) ); |
| 360 */ |
| 361 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){ |
| 362 int hasAbort = 0; |
| 363 Op *pOp; |
| 364 VdbeOpIter sIter; |
| 365 memset(&sIter, 0, sizeof(sIter)); |
| 366 sIter.v = v; |
| 367 |
| 368 while( (pOp = opIterNext(&sIter))!=0 ){ |
| 369 int opcode = pOp->opcode; |
| 370 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename |
| 371 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 372 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1) |
| 373 #endif |
| 374 || ((opcode==OP_Halt || opcode==OP_HaltIfNull) |
| 375 && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort)) |
| 376 ){ |
| 377 hasAbort = 1; |
| 378 break; |
| 379 } |
| 380 } |
| 381 sqlite3DbFree(v->db, sIter.apSub); |
| 382 |
| 383 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured. |
| 384 ** If malloc failed, then the while() loop above may not have iterated |
| 385 ** through all opcodes and hasAbort may be set incorrectly. Return |
| 386 ** true for this case to prevent the assert() in the callers frame |
| 387 ** from failing. */ |
| 388 return ( v->db->mallocFailed || hasAbort==mayAbort ); |
| 389 } |
| 390 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */ |
| 391 |
| 392 /* |
| 393 ** Loop through the program looking for P2 values that are negative |
| 394 ** on jump instructions. Each such value is a label. Resolve the |
| 395 ** label by setting the P2 value to its correct non-zero value. |
| 396 ** |
| 397 ** This routine is called once after all opcodes have been inserted. |
| 398 ** |
| 399 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument |
| 400 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by |
| 401 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array. |
| 402 ** |
| 403 ** The Op.opflags field is set on all opcodes. |
| 404 */ |
| 405 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){ |
| 406 int i; |
| 407 int nMaxArgs = *pMaxFuncArgs; |
| 408 Op *pOp; |
| 409 int *aLabel = p->aLabel; |
| 410 p->readOnly = 1; |
| 411 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){ |
| 412 u8 opcode = pOp->opcode; |
| 413 |
| 414 pOp->opflags = sqlite3OpcodeProperty[opcode]; |
| 415 if( opcode==OP_Function || opcode==OP_AggStep ){ |
| 416 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5; |
| 417 }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){ |
| 418 p->readOnly = 0; |
| 419 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 420 }else if( opcode==OP_VUpdate ){ |
| 421 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2; |
| 422 }else if( opcode==OP_VFilter ){ |
| 423 int n; |
| 424 assert( p->nOp - i >= 3 ); |
| 425 assert( pOp[-1].opcode==OP_Integer ); |
| 426 n = pOp[-1].p1; |
| 427 if( n>nMaxArgs ) nMaxArgs = n; |
| 428 #endif |
| 429 } |
| 430 |
| 431 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){ |
| 432 assert( -1-pOp->p2<p->nLabel ); |
| 433 pOp->p2 = aLabel[-1-pOp->p2]; |
| 434 } |
| 435 } |
| 436 sqlite3DbFree(p->db, p->aLabel); |
| 437 p->aLabel = 0; |
| 438 |
| 439 *pMaxFuncArgs = nMaxArgs; |
| 440 } |
| 441 |
| 442 /* |
| 443 ** Return the address of the next instruction to be inserted. |
| 444 */ |
| 445 int sqlite3VdbeCurrentAddr(Vdbe *p){ |
| 446 assert( p->magic==VDBE_MAGIC_INIT ); |
| 447 return p->nOp; |
| 448 } |
| 449 |
| 450 /* |
| 451 ** This function returns a pointer to the array of opcodes associated with |
| 452 ** the Vdbe passed as the first argument. It is the callers responsibility |
| 453 ** to arrange for the returned array to be eventually freed using the |
| 454 ** vdbeFreeOpArray() function. |
| 455 ** |
| 456 ** Before returning, *pnOp is set to the number of entries in the returned |
| 457 ** array. Also, *pnMaxArg is set to the larger of its current value and |
| 458 ** the number of entries in the Vdbe.apArg[] array required to execute the |
| 459 ** returned program. |
| 460 */ |
| 461 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){ |
| 462 VdbeOp *aOp = p->aOp; |
| 463 assert( aOp && !p->db->mallocFailed ); |
| 464 |
| 465 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */ |
| 466 assert( p->btreeMask==0 ); |
| 467 |
| 468 resolveP2Values(p, pnMaxArg); |
| 469 *pnOp = p->nOp; |
| 470 p->aOp = 0; |
| 471 return aOp; |
| 472 } |
| 473 |
| 474 /* |
| 475 ** Add a whole list of operations to the operation stack. Return the |
| 476 ** address of the first operation added. |
| 477 */ |
| 478 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){ |
| 479 int addr; |
| 480 assert( p->magic==VDBE_MAGIC_INIT ); |
| 481 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){ |
| 482 return 0; |
| 483 } |
| 484 addr = p->nOp; |
| 485 if( ALWAYS(nOp>0) ){ |
| 486 int i; |
| 487 VdbeOpList const *pIn = aOp; |
| 488 for(i=0; i<nOp; i++, pIn++){ |
| 489 int p2 = pIn->p2; |
| 490 VdbeOp *pOut = &p->aOp[i+addr]; |
| 491 pOut->opcode = pIn->opcode; |
| 492 pOut->p1 = pIn->p1; |
| 493 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){ |
| 494 pOut->p2 = addr + ADDR(p2); |
| 495 }else{ |
| 496 pOut->p2 = p2; |
| 497 } |
| 498 pOut->p3 = pIn->p3; |
| 499 pOut->p4type = P4_NOTUSED; |
| 500 pOut->p4.p = 0; |
| 501 pOut->p5 = 0; |
| 502 #ifdef SQLITE_DEBUG |
| 503 pOut->zComment = 0; |
| 504 if( sqlite3VdbeAddopTrace ){ |
| 505 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]); |
| 506 } |
| 507 #endif |
| 508 } |
| 509 p->nOp += nOp; |
| 510 } |
| 511 return addr; |
| 512 } |
| 513 |
| 514 /* |
| 515 ** Change the value of the P1 operand for a specific instruction. |
| 516 ** This routine is useful when a large program is loaded from a |
| 517 ** static array using sqlite3VdbeAddOpList but we want to make a |
| 518 ** few minor changes to the program. |
| 519 */ |
| 520 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){ |
| 521 assert( p!=0 ); |
| 522 assert( addr>=0 ); |
| 523 if( p->nOp>addr ){ |
| 524 p->aOp[addr].p1 = val; |
| 525 } |
| 526 } |
| 527 |
| 528 /* |
| 529 ** Change the value of the P2 operand for a specific instruction. |
| 530 ** This routine is useful for setting a jump destination. |
| 531 */ |
| 532 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){ |
| 533 assert( p!=0 ); |
| 534 assert( addr>=0 ); |
| 535 if( p->nOp>addr ){ |
| 536 p->aOp[addr].p2 = val; |
| 537 } |
| 538 } |
| 539 |
| 540 /* |
| 541 ** Change the value of the P3 operand for a specific instruction. |
| 542 */ |
| 543 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){ |
| 544 assert( p!=0 ); |
| 545 assert( addr>=0 ); |
| 546 if( p->nOp>addr ){ |
| 547 p->aOp[addr].p3 = val; |
| 548 } |
| 549 } |
| 550 |
| 551 /* |
| 552 ** Change the value of the P5 operand for the most recently |
| 553 ** added operation. |
| 554 */ |
| 555 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){ |
| 556 assert( p!=0 ); |
| 557 if( p->aOp ){ |
| 558 assert( p->nOp>0 ); |
| 559 p->aOp[p->nOp-1].p5 = val; |
| 560 } |
| 561 } |
| 562 |
| 563 /* |
| 564 ** Change the P2 operand of instruction addr so that it points to |
| 565 ** the address of the next instruction to be coded. |
| 566 */ |
| 567 void sqlite3VdbeJumpHere(Vdbe *p, int addr){ |
| 568 assert( addr>=0 ); |
| 569 sqlite3VdbeChangeP2(p, addr, p->nOp); |
| 570 } |
| 571 |
| 572 |
| 573 /* |
| 574 ** If the input FuncDef structure is ephemeral, then free it. If |
| 575 ** the FuncDef is not ephermal, then do nothing. |
| 576 */ |
| 577 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){ |
| 578 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){ |
| 579 sqlite3DbFree(db, pDef); |
| 580 } |
| 581 } |
| 582 |
| 583 static void vdbeFreeOpArray(sqlite3 *, Op *, int); |
| 584 |
| 585 /* |
| 586 ** Delete a P4 value if necessary. |
| 587 */ |
| 588 static void freeP4(sqlite3 *db, int p4type, void *p4){ |
| 589 if( p4 ){ |
| 590 assert( db ); |
| 591 switch( p4type ){ |
| 592 case P4_REAL: |
| 593 case P4_INT64: |
| 594 case P4_DYNAMIC: |
| 595 case P4_KEYINFO: |
| 596 case P4_INTARRAY: |
| 597 case P4_KEYINFO_HANDOFF: { |
| 598 sqlite3DbFree(db, p4); |
| 599 break; |
| 600 } |
| 601 case P4_MPRINTF: { |
| 602 if( db->pnBytesFreed==0 ) sqlite3_free(p4); |
| 603 break; |
| 604 } |
| 605 case P4_VDBEFUNC: { |
| 606 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4; |
| 607 freeEphemeralFunction(db, pVdbeFunc->pFunc); |
| 608 if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0); |
| 609 sqlite3DbFree(db, pVdbeFunc); |
| 610 break; |
| 611 } |
| 612 case P4_FUNCDEF: { |
| 613 freeEphemeralFunction(db, (FuncDef*)p4); |
| 614 break; |
| 615 } |
| 616 case P4_MEM: { |
| 617 if( db->pnBytesFreed==0 ){ |
| 618 sqlite3ValueFree((sqlite3_value*)p4); |
| 619 }else{ |
| 620 Mem *p = (Mem*)p4; |
| 621 sqlite3DbFree(db, p->zMalloc); |
| 622 sqlite3DbFree(db, p); |
| 623 } |
| 624 break; |
| 625 } |
| 626 case P4_VTAB : { |
| 627 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4); |
| 628 break; |
| 629 } |
| 630 } |
| 631 } |
| 632 } |
| 633 |
| 634 /* |
| 635 ** Free the space allocated for aOp and any p4 values allocated for the |
| 636 ** opcodes contained within. If aOp is not NULL it is assumed to contain |
| 637 ** nOp entries. |
| 638 */ |
| 639 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){ |
| 640 if( aOp ){ |
| 641 Op *pOp; |
| 642 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){ |
| 643 freeP4(db, pOp->p4type, pOp->p4.p); |
| 644 #ifdef SQLITE_DEBUG |
| 645 sqlite3DbFree(db, pOp->zComment); |
| 646 #endif |
| 647 } |
| 648 } |
| 649 sqlite3DbFree(db, aOp); |
| 650 } |
| 651 |
| 652 /* |
| 653 ** Link the SubProgram object passed as the second argument into the linked |
| 654 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program |
| 655 ** objects when the VM is no longer required. |
| 656 */ |
| 657 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){ |
| 658 p->pNext = pVdbe->pProgram; |
| 659 pVdbe->pProgram = p; |
| 660 } |
| 661 |
| 662 /* |
| 663 ** Change N opcodes starting at addr to No-ops. |
| 664 */ |
| 665 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr, int N){ |
| 666 if( p->aOp ){ |
| 667 VdbeOp *pOp = &p->aOp[addr]; |
| 668 sqlite3 *db = p->db; |
| 669 while( N-- ){ |
| 670 freeP4(db, pOp->p4type, pOp->p4.p); |
| 671 memset(pOp, 0, sizeof(pOp[0])); |
| 672 pOp->opcode = OP_Noop; |
| 673 pOp++; |
| 674 } |
| 675 } |
| 676 } |
| 677 |
| 678 /* |
| 679 ** Change the value of the P4 operand for a specific instruction. |
| 680 ** This routine is useful when a large program is loaded from a |
| 681 ** static array using sqlite3VdbeAddOpList but we want to make a |
| 682 ** few minor changes to the program. |
| 683 ** |
| 684 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of |
| 685 ** the string is made into memory obtained from sqlite3_malloc(). |
| 686 ** A value of n==0 means copy bytes of zP4 up to and including the |
| 687 ** first null byte. If n>0 then copy n+1 bytes of zP4. |
| 688 ** |
| 689 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure. |
| 690 ** A copy is made of the KeyInfo structure into memory obtained from |
| 691 ** sqlite3_malloc, to be freed when the Vdbe is finalized. |
| 692 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure |
| 693 ** stored in memory that the caller has obtained from sqlite3_malloc. The |
| 694 ** caller should not free the allocation, it will be freed when the Vdbe is |
| 695 ** finalized. |
| 696 ** |
| 697 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points |
| 698 ** to a string or structure that is guaranteed to exist for the lifetime of |
| 699 ** the Vdbe. In these cases we can just copy the pointer. |
| 700 ** |
| 701 ** If addr<0 then change P4 on the most recently inserted instruction. |
| 702 */ |
| 703 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){ |
| 704 Op *pOp; |
| 705 sqlite3 *db; |
| 706 assert( p!=0 ); |
| 707 db = p->db; |
| 708 assert( p->magic==VDBE_MAGIC_INIT ); |
| 709 if( p->aOp==0 || db->mallocFailed ){ |
| 710 if ( n!=P4_KEYINFO && n!=P4_VTAB ) { |
| 711 freeP4(db, n, (void*)*(char**)&zP4); |
| 712 } |
| 713 return; |
| 714 } |
| 715 assert( p->nOp>0 ); |
| 716 assert( addr<p->nOp ); |
| 717 if( addr<0 ){ |
| 718 addr = p->nOp - 1; |
| 719 } |
| 720 pOp = &p->aOp[addr]; |
| 721 freeP4(db, pOp->p4type, pOp->p4.p); |
| 722 pOp->p4.p = 0; |
| 723 if( n==P4_INT32 ){ |
| 724 /* Note: this cast is safe, because the origin data point was an int |
| 725 ** that was cast to a (const char *). */ |
| 726 pOp->p4.i = SQLITE_PTR_TO_INT(zP4); |
| 727 pOp->p4type = P4_INT32; |
| 728 }else if( zP4==0 ){ |
| 729 pOp->p4.p = 0; |
| 730 pOp->p4type = P4_NOTUSED; |
| 731 }else if( n==P4_KEYINFO ){ |
| 732 KeyInfo *pKeyInfo; |
| 733 int nField, nByte; |
| 734 |
| 735 nField = ((KeyInfo*)zP4)->nField; |
| 736 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField; |
| 737 pKeyInfo = sqlite3DbMallocRaw(0, nByte); |
| 738 pOp->p4.pKeyInfo = pKeyInfo; |
| 739 if( pKeyInfo ){ |
| 740 u8 *aSortOrder; |
| 741 memcpy((char*)pKeyInfo, zP4, nByte - nField); |
| 742 aSortOrder = pKeyInfo->aSortOrder; |
| 743 if( aSortOrder ){ |
| 744 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField]; |
| 745 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField); |
| 746 } |
| 747 pOp->p4type = P4_KEYINFO; |
| 748 }else{ |
| 749 p->db->mallocFailed = 1; |
| 750 pOp->p4type = P4_NOTUSED; |
| 751 } |
| 752 }else if( n==P4_KEYINFO_HANDOFF ){ |
| 753 pOp->p4.p = (void*)zP4; |
| 754 pOp->p4type = P4_KEYINFO; |
| 755 }else if( n==P4_VTAB ){ |
| 756 pOp->p4.p = (void*)zP4; |
| 757 pOp->p4type = P4_VTAB; |
| 758 sqlite3VtabLock((VTable *)zP4); |
| 759 assert( ((VTable *)zP4)->db==p->db ); |
| 760 }else if( n<0 ){ |
| 761 pOp->p4.p = (void*)zP4; |
| 762 pOp->p4type = (signed char)n; |
| 763 }else{ |
| 764 if( n==0 ) n = sqlite3Strlen30(zP4); |
| 765 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n); |
| 766 pOp->p4type = P4_DYNAMIC; |
| 767 } |
| 768 } |
| 769 |
| 770 #ifndef NDEBUG |
| 771 /* |
| 772 ** Change the comment on the the most recently coded instruction. Or |
| 773 ** insert a No-op and add the comment to that new instruction. This |
| 774 ** makes the code easier to read during debugging. None of this happens |
| 775 ** in a production build. |
| 776 */ |
| 777 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){ |
| 778 va_list ap; |
| 779 if( !p ) return; |
| 780 assert( p->nOp>0 || p->aOp==0 ); |
| 781 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); |
| 782 if( p->nOp ){ |
| 783 char **pz = &p->aOp[p->nOp-1].zComment; |
| 784 va_start(ap, zFormat); |
| 785 sqlite3DbFree(p->db, *pz); |
| 786 *pz = sqlite3VMPrintf(p->db, zFormat, ap); |
| 787 va_end(ap); |
| 788 } |
| 789 } |
| 790 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){ |
| 791 va_list ap; |
| 792 if( !p ) return; |
| 793 sqlite3VdbeAddOp0(p, OP_Noop); |
| 794 assert( p->nOp>0 || p->aOp==0 ); |
| 795 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed ); |
| 796 if( p->nOp ){ |
| 797 char **pz = &p->aOp[p->nOp-1].zComment; |
| 798 va_start(ap, zFormat); |
| 799 sqlite3DbFree(p->db, *pz); |
| 800 *pz = sqlite3VMPrintf(p->db, zFormat, ap); |
| 801 va_end(ap); |
| 802 } |
| 803 } |
| 804 #endif /* NDEBUG */ |
| 805 |
| 806 /* |
| 807 ** Return the opcode for a given address. If the address is -1, then |
| 808 ** return the most recently inserted opcode. |
| 809 ** |
| 810 ** If a memory allocation error has occurred prior to the calling of this |
| 811 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode |
| 812 ** is readable but not writable, though it is cast to a writable value. |
| 813 ** The return of a dummy opcode allows the call to continue functioning |
| 814 ** after a OOM fault without having to check to see if the return from |
| 815 ** this routine is a valid pointer. But because the dummy.opcode is 0, |
| 816 ** dummy will never be written to. This is verified by code inspection and |
| 817 ** by running with Valgrind. |
| 818 ** |
| 819 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called |
| 820 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE, |
| 821 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as |
| 822 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without |
| 823 ** having to double-check to make sure that the result is non-negative. But |
| 824 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to |
| 825 ** check the value of p->nOp-1 before continuing. |
| 826 */ |
| 827 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){ |
| 828 /* C89 specifies that the constant "dummy" will be initialized to all |
| 829 ** zeros, which is correct. MSVC generates a warning, nevertheless. */ |
| 830 static const VdbeOp dummy; /* Ignore the MSVC warning about no initializer */ |
| 831 assert( p->magic==VDBE_MAGIC_INIT ); |
| 832 if( addr<0 ){ |
| 833 #ifdef SQLITE_OMIT_TRACE |
| 834 if( p->nOp==0 ) return (VdbeOp*)&dummy; |
| 835 #endif |
| 836 addr = p->nOp - 1; |
| 837 } |
| 838 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed ); |
| 839 if( p->db->mallocFailed ){ |
| 840 return (VdbeOp*)&dummy; |
| 841 }else{ |
| 842 return &p->aOp[addr]; |
| 843 } |
| 844 } |
| 845 |
| 846 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \ |
| 847 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
| 848 /* |
| 849 ** Compute a string that describes the P4 parameter for an opcode. |
| 850 ** Use zTemp for any required temporary buffer space. |
| 851 */ |
| 852 static char *displayP4(Op *pOp, char *zTemp, int nTemp){ |
| 853 char *zP4 = zTemp; |
| 854 assert( nTemp>=20 ); |
| 855 switch( pOp->p4type ){ |
| 856 case P4_KEYINFO_STATIC: |
| 857 case P4_KEYINFO: { |
| 858 int i, j; |
| 859 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo; |
| 860 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField); |
| 861 i = sqlite3Strlen30(zTemp); |
| 862 for(j=0; j<pKeyInfo->nField; j++){ |
| 863 CollSeq *pColl = pKeyInfo->aColl[j]; |
| 864 if( pColl ){ |
| 865 int n = sqlite3Strlen30(pColl->zName); |
| 866 if( i+n>nTemp-6 ){ |
| 867 memcpy(&zTemp[i],",...",4); |
| 868 break; |
| 869 } |
| 870 zTemp[i++] = ','; |
| 871 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){ |
| 872 zTemp[i++] = '-'; |
| 873 } |
| 874 memcpy(&zTemp[i], pColl->zName,n+1); |
| 875 i += n; |
| 876 }else if( i+4<nTemp-6 ){ |
| 877 memcpy(&zTemp[i],",nil",4); |
| 878 i += 4; |
| 879 } |
| 880 } |
| 881 zTemp[i++] = ')'; |
| 882 zTemp[i] = 0; |
| 883 assert( i<nTemp ); |
| 884 break; |
| 885 } |
| 886 case P4_COLLSEQ: { |
| 887 CollSeq *pColl = pOp->p4.pColl; |
| 888 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName); |
| 889 break; |
| 890 } |
| 891 case P4_FUNCDEF: { |
| 892 FuncDef *pDef = pOp->p4.pFunc; |
| 893 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg); |
| 894 break; |
| 895 } |
| 896 case P4_INT64: { |
| 897 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64); |
| 898 break; |
| 899 } |
| 900 case P4_INT32: { |
| 901 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i); |
| 902 break; |
| 903 } |
| 904 case P4_REAL: { |
| 905 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal); |
| 906 break; |
| 907 } |
| 908 case P4_MEM: { |
| 909 Mem *pMem = pOp->p4.pMem; |
| 910 assert( (pMem->flags & MEM_Null)==0 ); |
| 911 if( pMem->flags & MEM_Str ){ |
| 912 zP4 = pMem->z; |
| 913 }else if( pMem->flags & MEM_Int ){ |
| 914 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i); |
| 915 }else if( pMem->flags & MEM_Real ){ |
| 916 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r); |
| 917 }else{ |
| 918 assert( pMem->flags & MEM_Blob ); |
| 919 zP4 = "(blob)"; |
| 920 } |
| 921 break; |
| 922 } |
| 923 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 924 case P4_VTAB: { |
| 925 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab; |
| 926 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule); |
| 927 break; |
| 928 } |
| 929 #endif |
| 930 case P4_INTARRAY: { |
| 931 sqlite3_snprintf(nTemp, zTemp, "intarray"); |
| 932 break; |
| 933 } |
| 934 case P4_SUBPROGRAM: { |
| 935 sqlite3_snprintf(nTemp, zTemp, "program"); |
| 936 break; |
| 937 } |
| 938 default: { |
| 939 zP4 = pOp->p4.z; |
| 940 if( zP4==0 ){ |
| 941 zP4 = zTemp; |
| 942 zTemp[0] = 0; |
| 943 } |
| 944 } |
| 945 } |
| 946 assert( zP4!=0 ); |
| 947 return zP4; |
| 948 } |
| 949 #endif |
| 950 |
| 951 /* |
| 952 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used. |
| 953 ** |
| 954 ** The prepared statements need to know in advance the complete set of |
| 955 ** attached databases that they will be using. A mask of these databases |
| 956 ** is maintained in p->btreeMask and is used for locking and other purposes. |
| 957 */ |
| 958 void sqlite3VdbeUsesBtree(Vdbe *p, int i){ |
| 959 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 ); |
| 960 assert( i<(int)sizeof(p->btreeMask)*8 ); |
| 961 p->btreeMask |= ((yDbMask)1)<<i; |
| 962 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){ |
| 963 p->lockMask |= ((yDbMask)1)<<i; |
| 964 } |
| 965 } |
| 966 |
| 967 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
| 968 /* |
| 969 ** If SQLite is compiled to support shared-cache mode and to be threadsafe, |
| 970 ** this routine obtains the mutex associated with each BtShared structure |
| 971 ** that may be accessed by the VM passed as an argument. In doing so it also |
| 972 ** sets the BtShared.db member of each of the BtShared structures, ensuring |
| 973 ** that the correct busy-handler callback is invoked if required. |
| 974 ** |
| 975 ** If SQLite is not threadsafe but does support shared-cache mode, then |
| 976 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables |
| 977 ** of all of BtShared structures accessible via the database handle |
| 978 ** associated with the VM. |
| 979 ** |
| 980 ** If SQLite is not threadsafe and does not support shared-cache mode, this |
| 981 ** function is a no-op. |
| 982 ** |
| 983 ** The p->btreeMask field is a bitmask of all btrees that the prepared |
| 984 ** statement p will ever use. Let N be the number of bits in p->btreeMask |
| 985 ** corresponding to btrees that use shared cache. Then the runtime of |
| 986 ** this routine is N*N. But as N is rarely more than 1, this should not |
| 987 ** be a problem. |
| 988 */ |
| 989 void sqlite3VdbeEnter(Vdbe *p){ |
| 990 int i; |
| 991 yDbMask mask; |
| 992 sqlite3 *db; |
| 993 Db *aDb; |
| 994 int nDb; |
| 995 if( p->lockMask==0 ) return; /* The common case */ |
| 996 db = p->db; |
| 997 aDb = db->aDb; |
| 998 nDb = db->nDb; |
| 999 for(i=0, mask=1; i<nDb; i++, mask += mask){ |
| 1000 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ |
| 1001 sqlite3BtreeEnter(aDb[i].pBt); |
| 1002 } |
| 1003 } |
| 1004 } |
| 1005 #endif |
| 1006 |
| 1007 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0 |
| 1008 /* |
| 1009 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter(). |
| 1010 */ |
| 1011 void sqlite3VdbeLeave(Vdbe *p){ |
| 1012 int i; |
| 1013 yDbMask mask; |
| 1014 sqlite3 *db; |
| 1015 Db *aDb; |
| 1016 int nDb; |
| 1017 if( p->lockMask==0 ) return; /* The common case */ |
| 1018 db = p->db; |
| 1019 aDb = db->aDb; |
| 1020 nDb = db->nDb; |
| 1021 for(i=0, mask=1; i<nDb; i++, mask += mask){ |
| 1022 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){ |
| 1023 sqlite3BtreeLeave(aDb[i].pBt); |
| 1024 } |
| 1025 } |
| 1026 } |
| 1027 #endif |
| 1028 |
| 1029 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG) |
| 1030 /* |
| 1031 ** Print a single opcode. This routine is used for debugging only. |
| 1032 */ |
| 1033 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){ |
| 1034 char *zP4; |
| 1035 char zPtr[50]; |
| 1036 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n"; |
| 1037 if( pOut==0 ) pOut = stdout; |
| 1038 zP4 = displayP4(pOp, zPtr, sizeof(zPtr)); |
| 1039 fprintf(pOut, zFormat1, pc, |
| 1040 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5, |
| 1041 #ifdef SQLITE_DEBUG |
| 1042 pOp->zComment ? pOp->zComment : "" |
| 1043 #else |
| 1044 "" |
| 1045 #endif |
| 1046 ); |
| 1047 fflush(pOut); |
| 1048 } |
| 1049 #endif |
| 1050 |
| 1051 /* |
| 1052 ** Release an array of N Mem elements |
| 1053 */ |
| 1054 static void releaseMemArray(Mem *p, int N){ |
| 1055 if( p && N ){ |
| 1056 Mem *pEnd; |
| 1057 sqlite3 *db = p->db; |
| 1058 u8 malloc_failed = db->mallocFailed; |
| 1059 if( db->pnBytesFreed ){ |
| 1060 for(pEnd=&p[N]; p<pEnd; p++){ |
| 1061 sqlite3DbFree(db, p->zMalloc); |
| 1062 } |
| 1063 return; |
| 1064 } |
| 1065 for(pEnd=&p[N]; p<pEnd; p++){ |
| 1066 assert( (&p[1])==pEnd || p[0].db==p[1].db ); |
| 1067 |
| 1068 /* This block is really an inlined version of sqlite3VdbeMemRelease() |
| 1069 ** that takes advantage of the fact that the memory cell value is |
| 1070 ** being set to NULL after releasing any dynamic resources. |
| 1071 ** |
| 1072 ** The justification for duplicating code is that according to |
| 1073 ** callgrind, this causes a certain test case to hit the CPU 4.7 |
| 1074 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if |
| 1075 ** sqlite3MemRelease() were called from here. With -O2, this jumps |
| 1076 ** to 6.6 percent. The test case is inserting 1000 rows into a table |
| 1077 ** with no indexes using a single prepared INSERT statement, bind() |
| 1078 ** and reset(). Inserts are grouped into a transaction. |
| 1079 */ |
| 1080 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){ |
| 1081 sqlite3VdbeMemRelease(p); |
| 1082 }else if( p->zMalloc ){ |
| 1083 sqlite3DbFree(db, p->zMalloc); |
| 1084 p->zMalloc = 0; |
| 1085 } |
| 1086 |
| 1087 p->flags = MEM_Null; |
| 1088 } |
| 1089 db->mallocFailed = malloc_failed; |
| 1090 } |
| 1091 } |
| 1092 |
| 1093 /* |
| 1094 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are |
| 1095 ** allocated by the OP_Program opcode in sqlite3VdbeExec(). |
| 1096 */ |
| 1097 void sqlite3VdbeFrameDelete(VdbeFrame *p){ |
| 1098 int i; |
| 1099 Mem *aMem = VdbeFrameMem(p); |
| 1100 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem]; |
| 1101 for(i=0; i<p->nChildCsr; i++){ |
| 1102 sqlite3VdbeFreeCursor(p->v, apCsr[i]); |
| 1103 } |
| 1104 releaseMemArray(aMem, p->nChildMem); |
| 1105 sqlite3DbFree(p->v->db, p); |
| 1106 } |
| 1107 |
| 1108 #ifndef SQLITE_OMIT_EXPLAIN |
| 1109 /* |
| 1110 ** Give a listing of the program in the virtual machine. |
| 1111 ** |
| 1112 ** The interface is the same as sqlite3VdbeExec(). But instead of |
| 1113 ** running the code, it invokes the callback once for each instruction. |
| 1114 ** This feature is used to implement "EXPLAIN". |
| 1115 ** |
| 1116 ** When p->explain==1, each instruction is listed. When |
| 1117 ** p->explain==2, only OP_Explain instructions are listed and these |
| 1118 ** are shown in a different format. p->explain==2 is used to implement |
| 1119 ** EXPLAIN QUERY PLAN. |
| 1120 ** |
| 1121 ** When p->explain==1, first the main program is listed, then each of |
| 1122 ** the trigger subprograms are listed one by one. |
| 1123 */ |
| 1124 int sqlite3VdbeList( |
| 1125 Vdbe *p /* The VDBE */ |
| 1126 ){ |
| 1127 int nRow; /* Stop when row count reaches this */ |
| 1128 int nSub = 0; /* Number of sub-vdbes seen so far */ |
| 1129 SubProgram **apSub = 0; /* Array of sub-vdbes */ |
| 1130 Mem *pSub = 0; /* Memory cell hold array of subprogs */ |
| 1131 sqlite3 *db = p->db; /* The database connection */ |
| 1132 int i; /* Loop counter */ |
| 1133 int rc = SQLITE_OK; /* Return code */ |
| 1134 Mem *pMem = p->pResultSet = &p->aMem[1]; /* First Mem of result set */ |
| 1135 |
| 1136 assert( p->explain ); |
| 1137 assert( p->magic==VDBE_MAGIC_RUN ); |
| 1138 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM ); |
| 1139 |
| 1140 /* Even though this opcode does not use dynamic strings for |
| 1141 ** the result, result columns may become dynamic if the user calls |
| 1142 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding. |
| 1143 */ |
| 1144 releaseMemArray(pMem, 8); |
| 1145 |
| 1146 if( p->rc==SQLITE_NOMEM ){ |
| 1147 /* This happens if a malloc() inside a call to sqlite3_column_text() or |
| 1148 ** sqlite3_column_text16() failed. */ |
| 1149 db->mallocFailed = 1; |
| 1150 return SQLITE_ERROR; |
| 1151 } |
| 1152 |
| 1153 /* When the number of output rows reaches nRow, that means the |
| 1154 ** listing has finished and sqlite3_step() should return SQLITE_DONE. |
| 1155 ** nRow is the sum of the number of rows in the main program, plus |
| 1156 ** the sum of the number of rows in all trigger subprograms encountered |
| 1157 ** so far. The nRow value will increase as new trigger subprograms are |
| 1158 ** encountered, but p->pc will eventually catch up to nRow. |
| 1159 */ |
| 1160 nRow = p->nOp; |
| 1161 if( p->explain==1 ){ |
| 1162 /* The first 8 memory cells are used for the result set. So we will |
| 1163 ** commandeer the 9th cell to use as storage for an array of pointers |
| 1164 ** to trigger subprograms. The VDBE is guaranteed to have at least 9 |
| 1165 ** cells. */ |
| 1166 assert( p->nMem>9 ); |
| 1167 pSub = &p->aMem[9]; |
| 1168 if( pSub->flags&MEM_Blob ){ |
| 1169 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is |
| 1170 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */ |
| 1171 nSub = pSub->n/sizeof(Vdbe*); |
| 1172 apSub = (SubProgram **)pSub->z; |
| 1173 } |
| 1174 for(i=0; i<nSub; i++){ |
| 1175 nRow += apSub[i]->nOp; |
| 1176 } |
| 1177 } |
| 1178 |
| 1179 do{ |
| 1180 i = p->pc++; |
| 1181 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain ); |
| 1182 if( i>=nRow ){ |
| 1183 p->rc = SQLITE_OK; |
| 1184 rc = SQLITE_DONE; |
| 1185 }else if( db->u1.isInterrupted ){ |
| 1186 p->rc = SQLITE_INTERRUPT; |
| 1187 rc = SQLITE_ERROR; |
| 1188 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc)); |
| 1189 }else{ |
| 1190 char *z; |
| 1191 Op *pOp; |
| 1192 if( i<p->nOp ){ |
| 1193 /* The output line number is small enough that we are still in the |
| 1194 ** main program. */ |
| 1195 pOp = &p->aOp[i]; |
| 1196 }else{ |
| 1197 /* We are currently listing subprograms. Figure out which one and |
| 1198 ** pick up the appropriate opcode. */ |
| 1199 int j; |
| 1200 i -= p->nOp; |
| 1201 for(j=0; i>=apSub[j]->nOp; j++){ |
| 1202 i -= apSub[j]->nOp; |
| 1203 } |
| 1204 pOp = &apSub[j]->aOp[i]; |
| 1205 } |
| 1206 if( p->explain==1 ){ |
| 1207 pMem->flags = MEM_Int; |
| 1208 pMem->type = SQLITE_INTEGER; |
| 1209 pMem->u.i = i; /* Program counter */ |
| 1210 pMem++; |
| 1211 |
| 1212 pMem->flags = MEM_Static|MEM_Str|MEM_Term; |
| 1213 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */ |
| 1214 assert( pMem->z!=0 ); |
| 1215 pMem->n = sqlite3Strlen30(pMem->z); |
| 1216 pMem->type = SQLITE_TEXT; |
| 1217 pMem->enc = SQLITE_UTF8; |
| 1218 pMem++; |
| 1219 |
| 1220 /* When an OP_Program opcode is encounter (the only opcode that has |
| 1221 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms |
| 1222 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram |
| 1223 ** has not already been seen. |
| 1224 */ |
| 1225 if( pOp->p4type==P4_SUBPROGRAM ){ |
| 1226 int nByte = (nSub+1)*sizeof(SubProgram*); |
| 1227 int j; |
| 1228 for(j=0; j<nSub; j++){ |
| 1229 if( apSub[j]==pOp->p4.pProgram ) break; |
| 1230 } |
| 1231 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, 1) ){ |
| 1232 apSub = (SubProgram **)pSub->z; |
| 1233 apSub[nSub++] = pOp->p4.pProgram; |
| 1234 pSub->flags |= MEM_Blob; |
| 1235 pSub->n = nSub*sizeof(SubProgram*); |
| 1236 } |
| 1237 } |
| 1238 } |
| 1239 |
| 1240 pMem->flags = MEM_Int; |
| 1241 pMem->u.i = pOp->p1; /* P1 */ |
| 1242 pMem->type = SQLITE_INTEGER; |
| 1243 pMem++; |
| 1244 |
| 1245 pMem->flags = MEM_Int; |
| 1246 pMem->u.i = pOp->p2; /* P2 */ |
| 1247 pMem->type = SQLITE_INTEGER; |
| 1248 pMem++; |
| 1249 |
| 1250 pMem->flags = MEM_Int; |
| 1251 pMem->u.i = pOp->p3; /* P3 */ |
| 1252 pMem->type = SQLITE_INTEGER; |
| 1253 pMem++; |
| 1254 |
| 1255 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */ |
| 1256 assert( p->db->mallocFailed ); |
| 1257 return SQLITE_ERROR; |
| 1258 } |
| 1259 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; |
| 1260 z = displayP4(pOp, pMem->z, 32); |
| 1261 if( z!=pMem->z ){ |
| 1262 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0); |
| 1263 }else{ |
| 1264 assert( pMem->z!=0 ); |
| 1265 pMem->n = sqlite3Strlen30(pMem->z); |
| 1266 pMem->enc = SQLITE_UTF8; |
| 1267 } |
| 1268 pMem->type = SQLITE_TEXT; |
| 1269 pMem++; |
| 1270 |
| 1271 if( p->explain==1 ){ |
| 1272 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){ |
| 1273 assert( p->db->mallocFailed ); |
| 1274 return SQLITE_ERROR; |
| 1275 } |
| 1276 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term; |
| 1277 pMem->n = 2; |
| 1278 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */ |
| 1279 pMem->type = SQLITE_TEXT; |
| 1280 pMem->enc = SQLITE_UTF8; |
| 1281 pMem++; |
| 1282 |
| 1283 #ifdef SQLITE_DEBUG |
| 1284 if( pOp->zComment ){ |
| 1285 pMem->flags = MEM_Str|MEM_Term; |
| 1286 pMem->z = pOp->zComment; |
| 1287 pMem->n = sqlite3Strlen30(pMem->z); |
| 1288 pMem->enc = SQLITE_UTF8; |
| 1289 pMem->type = SQLITE_TEXT; |
| 1290 }else |
| 1291 #endif |
| 1292 { |
| 1293 pMem->flags = MEM_Null; /* Comment */ |
| 1294 pMem->type = SQLITE_NULL; |
| 1295 } |
| 1296 } |
| 1297 |
| 1298 p->nResColumn = 8 - 4*(p->explain-1); |
| 1299 p->rc = SQLITE_OK; |
| 1300 rc = SQLITE_ROW; |
| 1301 } |
| 1302 return rc; |
| 1303 } |
| 1304 #endif /* SQLITE_OMIT_EXPLAIN */ |
| 1305 |
| 1306 #ifdef SQLITE_DEBUG |
| 1307 /* |
| 1308 ** Print the SQL that was used to generate a VDBE program. |
| 1309 */ |
| 1310 void sqlite3VdbePrintSql(Vdbe *p){ |
| 1311 int nOp = p->nOp; |
| 1312 VdbeOp *pOp; |
| 1313 if( nOp<1 ) return; |
| 1314 pOp = &p->aOp[0]; |
| 1315 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ |
| 1316 const char *z = pOp->p4.z; |
| 1317 while( sqlite3Isspace(*z) ) z++; |
| 1318 printf("SQL: [%s]\n", z); |
| 1319 } |
| 1320 } |
| 1321 #endif |
| 1322 |
| 1323 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE) |
| 1324 /* |
| 1325 ** Print an IOTRACE message showing SQL content. |
| 1326 */ |
| 1327 void sqlite3VdbeIOTraceSql(Vdbe *p){ |
| 1328 int nOp = p->nOp; |
| 1329 VdbeOp *pOp; |
| 1330 if( sqlite3IoTrace==0 ) return; |
| 1331 if( nOp<1 ) return; |
| 1332 pOp = &p->aOp[0]; |
| 1333 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){ |
| 1334 int i, j; |
| 1335 char z[1000]; |
| 1336 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z); |
| 1337 for(i=0; sqlite3Isspace(z[i]); i++){} |
| 1338 for(j=0; z[i]; i++){ |
| 1339 if( sqlite3Isspace(z[i]) ){ |
| 1340 if( z[i-1]!=' ' ){ |
| 1341 z[j++] = ' '; |
| 1342 } |
| 1343 }else{ |
| 1344 z[j++] = z[i]; |
| 1345 } |
| 1346 } |
| 1347 z[j] = 0; |
| 1348 sqlite3IoTrace("SQL %s\n", z); |
| 1349 } |
| 1350 } |
| 1351 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */ |
| 1352 |
| 1353 /* |
| 1354 ** Allocate space from a fixed size buffer and return a pointer to |
| 1355 ** that space. If insufficient space is available, return NULL. |
| 1356 ** |
| 1357 ** The pBuf parameter is the initial value of a pointer which will |
| 1358 ** receive the new memory. pBuf is normally NULL. If pBuf is not |
| 1359 ** NULL, it means that memory space has already been allocated and that |
| 1360 ** this routine should not allocate any new memory. When pBuf is not |
| 1361 ** NULL simply return pBuf. Only allocate new memory space when pBuf |
| 1362 ** is NULL. |
| 1363 ** |
| 1364 ** nByte is the number of bytes of space needed. |
| 1365 ** |
| 1366 ** *ppFrom points to available space and pEnd points to the end of the |
| 1367 ** available space. When space is allocated, *ppFrom is advanced past |
| 1368 ** the end of the allocated space. |
| 1369 ** |
| 1370 ** *pnByte is a counter of the number of bytes of space that have failed |
| 1371 ** to allocate. If there is insufficient space in *ppFrom to satisfy the |
| 1372 ** request, then increment *pnByte by the amount of the request. |
| 1373 */ |
| 1374 static void *allocSpace( |
| 1375 void *pBuf, /* Where return pointer will be stored */ |
| 1376 int nByte, /* Number of bytes to allocate */ |
| 1377 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */ |
| 1378 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */ |
| 1379 int *pnByte /* If allocation cannot be made, increment *pnByte */ |
| 1380 ){ |
| 1381 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) ); |
| 1382 if( pBuf ) return pBuf; |
| 1383 nByte = ROUND8(nByte); |
| 1384 if( &(*ppFrom)[nByte] <= pEnd ){ |
| 1385 pBuf = (void*)*ppFrom; |
| 1386 *ppFrom += nByte; |
| 1387 }else{ |
| 1388 *pnByte += nByte; |
| 1389 } |
| 1390 return pBuf; |
| 1391 } |
| 1392 |
| 1393 /* |
| 1394 ** Prepare a virtual machine for execution. This involves things such |
| 1395 ** as allocating stack space and initializing the program counter. |
| 1396 ** After the VDBE has be prepped, it can be executed by one or more |
| 1397 ** calls to sqlite3VdbeExec(). |
| 1398 ** |
| 1399 ** This is the only way to move a VDBE from VDBE_MAGIC_INIT to |
| 1400 ** VDBE_MAGIC_RUN. |
| 1401 ** |
| 1402 ** This function may be called more than once on a single virtual machine. |
| 1403 ** The first call is made while compiling the SQL statement. Subsequent |
| 1404 ** calls are made as part of the process of resetting a statement to be |
| 1405 ** re-executed (from a call to sqlite3_reset()). The nVar, nMem, nCursor |
| 1406 ** and isExplain parameters are only passed correct values the first time |
| 1407 ** the function is called. On subsequent calls, from sqlite3_reset(), nVar |
| 1408 ** is passed -1 and nMem, nCursor and isExplain are all passed zero. |
| 1409 */ |
| 1410 void sqlite3VdbeMakeReady( |
| 1411 Vdbe *p, /* The VDBE */ |
| 1412 int nVar, /* Number of '?' see in the SQL statement */ |
| 1413 int nMem, /* Number of memory cells to allocate */ |
| 1414 int nCursor, /* Number of cursors to allocate */ |
| 1415 int nArg, /* Maximum number of args in SubPrograms */ |
| 1416 int isExplain, /* True if the EXPLAIN keywords is present */ |
| 1417 int usesStmtJournal /* True to set Vdbe.usesStmtJournal */ |
| 1418 ){ |
| 1419 int n; |
| 1420 sqlite3 *db = p->db; |
| 1421 |
| 1422 assert( p!=0 ); |
| 1423 assert( p->magic==VDBE_MAGIC_INIT ); |
| 1424 |
| 1425 /* There should be at least one opcode. |
| 1426 */ |
| 1427 assert( p->nOp>0 ); |
| 1428 |
| 1429 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */ |
| 1430 p->magic = VDBE_MAGIC_RUN; |
| 1431 |
| 1432 /* For each cursor required, also allocate a memory cell. Memory |
| 1433 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by |
| 1434 ** the vdbe program. Instead they are used to allocate space for |
| 1435 ** VdbeCursor/BtCursor structures. The blob of memory associated with |
| 1436 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1) |
| 1437 ** stores the blob of memory associated with cursor 1, etc. |
| 1438 ** |
| 1439 ** See also: allocateCursor(). |
| 1440 */ |
| 1441 nMem += nCursor; |
| 1442 |
| 1443 /* Allocate space for memory registers, SQL variables, VDBE cursors and |
| 1444 ** an array to marshal SQL function arguments in. This is only done the |
| 1445 ** first time this function is called for a given VDBE, not when it is |
| 1446 ** being called from sqlite3_reset() to reset the virtual machine. |
| 1447 */ |
| 1448 if( nVar>=0 && ALWAYS(db->mallocFailed==0) ){ |
| 1449 u8 *zCsr = (u8 *)&p->aOp[p->nOp]; /* Memory avaliable for alloation */ |
| 1450 u8 *zEnd = (u8 *)&p->aOp[p->nOpAlloc]; /* First byte past available mem */ |
| 1451 int nByte; /* How much extra memory needed */ |
| 1452 |
| 1453 resolveP2Values(p, &nArg); |
| 1454 p->usesStmtJournal = (u8)usesStmtJournal; |
| 1455 if( isExplain && nMem<10 ){ |
| 1456 nMem = 10; |
| 1457 } |
| 1458 memset(zCsr, 0, zEnd-zCsr); |
| 1459 zCsr += (zCsr - (u8*)0)&7; |
| 1460 assert( EIGHT_BYTE_ALIGNMENT(zCsr) ); |
| 1461 |
| 1462 /* Memory for registers, parameters, cursor, etc, is allocated in two |
| 1463 ** passes. On the first pass, we try to reuse unused space at the |
| 1464 ** end of the opcode array. If we are unable to satisfy all memory |
| 1465 ** requirements by reusing the opcode array tail, then the second |
| 1466 ** pass will fill in the rest using a fresh allocation. |
| 1467 ** |
| 1468 ** This two-pass approach that reuses as much memory as possible from |
| 1469 ** the leftover space at the end of the opcode array can significantly |
| 1470 ** reduce the amount of memory held by a prepared statement. |
| 1471 */ |
| 1472 do { |
| 1473 nByte = 0; |
| 1474 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte); |
| 1475 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte); |
| 1476 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte); |
| 1477 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte); |
| 1478 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*), |
| 1479 &zCsr, zEnd, &nByte); |
| 1480 if( nByte ){ |
| 1481 p->pFree = sqlite3DbMallocZero(db, nByte); |
| 1482 } |
| 1483 zCsr = p->pFree; |
| 1484 zEnd = &zCsr[nByte]; |
| 1485 }while( nByte && !db->mallocFailed ); |
| 1486 |
| 1487 p->nCursor = (u16)nCursor; |
| 1488 if( p->aVar ){ |
| 1489 p->nVar = (ynVar)nVar; |
| 1490 for(n=0; n<nVar; n++){ |
| 1491 p->aVar[n].flags = MEM_Null; |
| 1492 p->aVar[n].db = db; |
| 1493 } |
| 1494 } |
| 1495 if( p->aMem ){ |
| 1496 p->aMem--; /* aMem[] goes from 1..nMem */ |
| 1497 p->nMem = nMem; /* not from 0..nMem-1 */ |
| 1498 for(n=1; n<=nMem; n++){ |
| 1499 p->aMem[n].flags = MEM_Null; |
| 1500 p->aMem[n].db = db; |
| 1501 } |
| 1502 } |
| 1503 } |
| 1504 #ifdef SQLITE_DEBUG |
| 1505 for(n=1; n<p->nMem; n++){ |
| 1506 assert( p->aMem[n].db==db ); |
| 1507 } |
| 1508 #endif |
| 1509 |
| 1510 p->pc = -1; |
| 1511 p->rc = SQLITE_OK; |
| 1512 p->errorAction = OE_Abort; |
| 1513 p->explain |= isExplain; |
| 1514 p->magic = VDBE_MAGIC_RUN; |
| 1515 p->nChange = 0; |
| 1516 p->cacheCtr = 1; |
| 1517 p->minWriteFileFormat = 255; |
| 1518 p->iStatement = 0; |
| 1519 p->nFkConstraint = 0; |
| 1520 #ifdef VDBE_PROFILE |
| 1521 { |
| 1522 int i; |
| 1523 for(i=0; i<p->nOp; i++){ |
| 1524 p->aOp[i].cnt = 0; |
| 1525 p->aOp[i].cycles = 0; |
| 1526 } |
| 1527 } |
| 1528 #endif |
| 1529 } |
| 1530 |
| 1531 /* |
| 1532 ** Close a VDBE cursor and release all the resources that cursor |
| 1533 ** happens to hold. |
| 1534 */ |
| 1535 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){ |
| 1536 if( pCx==0 ){ |
| 1537 return; |
| 1538 } |
| 1539 if( pCx->pBt ){ |
| 1540 sqlite3BtreeClose(pCx->pBt); |
| 1541 /* The pCx->pCursor will be close automatically, if it exists, by |
| 1542 ** the call above. */ |
| 1543 }else if( pCx->pCursor ){ |
| 1544 sqlite3BtreeCloseCursor(pCx->pCursor); |
| 1545 } |
| 1546 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1547 if( pCx->pVtabCursor ){ |
| 1548 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor; |
| 1549 const sqlite3_module *pModule = pCx->pModule; |
| 1550 p->inVtabMethod = 1; |
| 1551 pModule->xClose(pVtabCursor); |
| 1552 p->inVtabMethod = 0; |
| 1553 } |
| 1554 #endif |
| 1555 } |
| 1556 |
| 1557 /* |
| 1558 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This |
| 1559 ** is used, for example, when a trigger sub-program is halted to restore |
| 1560 ** control to the main program. |
| 1561 */ |
| 1562 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){ |
| 1563 Vdbe *v = pFrame->v; |
| 1564 v->aOp = pFrame->aOp; |
| 1565 v->nOp = pFrame->nOp; |
| 1566 v->aMem = pFrame->aMem; |
| 1567 v->nMem = pFrame->nMem; |
| 1568 v->apCsr = pFrame->apCsr; |
| 1569 v->nCursor = pFrame->nCursor; |
| 1570 v->db->lastRowid = pFrame->lastRowid; |
| 1571 v->nChange = pFrame->nChange; |
| 1572 return pFrame->pc; |
| 1573 } |
| 1574 |
| 1575 /* |
| 1576 ** Close all cursors. |
| 1577 ** |
| 1578 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory |
| 1579 ** cell array. This is necessary as the memory cell array may contain |
| 1580 ** pointers to VdbeFrame objects, which may in turn contain pointers to |
| 1581 ** open cursors. |
| 1582 */ |
| 1583 static void closeAllCursors(Vdbe *p){ |
| 1584 if( p->pFrame ){ |
| 1585 VdbeFrame *pFrame; |
| 1586 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent); |
| 1587 sqlite3VdbeFrameRestore(pFrame); |
| 1588 } |
| 1589 p->pFrame = 0; |
| 1590 p->nFrame = 0; |
| 1591 |
| 1592 if( p->apCsr ){ |
| 1593 int i; |
| 1594 for(i=0; i<p->nCursor; i++){ |
| 1595 VdbeCursor *pC = p->apCsr[i]; |
| 1596 if( pC ){ |
| 1597 sqlite3VdbeFreeCursor(p, pC); |
| 1598 p->apCsr[i] = 0; |
| 1599 } |
| 1600 } |
| 1601 } |
| 1602 if( p->aMem ){ |
| 1603 releaseMemArray(&p->aMem[1], p->nMem); |
| 1604 } |
| 1605 while( p->pDelFrame ){ |
| 1606 VdbeFrame *pDel = p->pDelFrame; |
| 1607 p->pDelFrame = pDel->pParent; |
| 1608 sqlite3VdbeFrameDelete(pDel); |
| 1609 } |
| 1610 } |
| 1611 |
| 1612 /* |
| 1613 ** Clean up the VM after execution. |
| 1614 ** |
| 1615 ** This routine will automatically close any cursors, lists, and/or |
| 1616 ** sorters that were left open. It also deletes the values of |
| 1617 ** variables in the aVar[] array. |
| 1618 */ |
| 1619 static void Cleanup(Vdbe *p){ |
| 1620 sqlite3 *db = p->db; |
| 1621 |
| 1622 #ifdef SQLITE_DEBUG |
| 1623 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and |
| 1624 ** Vdbe.aMem[] arrays have already been cleaned up. */ |
| 1625 int i; |
| 1626 for(i=0; i<p->nCursor; i++) assert( p->apCsr==0 || p->apCsr[i]==0 ); |
| 1627 for(i=1; i<=p->nMem; i++) assert( p->aMem==0 || p->aMem[i].flags==MEM_Null ); |
| 1628 #endif |
| 1629 |
| 1630 sqlite3DbFree(db, p->zErrMsg); |
| 1631 p->zErrMsg = 0; |
| 1632 p->pResultSet = 0; |
| 1633 } |
| 1634 |
| 1635 /* |
| 1636 ** Set the number of result columns that will be returned by this SQL |
| 1637 ** statement. This is now set at compile time, rather than during |
| 1638 ** execution of the vdbe program so that sqlite3_column_count() can |
| 1639 ** be called on an SQL statement before sqlite3_step(). |
| 1640 */ |
| 1641 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){ |
| 1642 Mem *pColName; |
| 1643 int n; |
| 1644 sqlite3 *db = p->db; |
| 1645 |
| 1646 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| 1647 sqlite3DbFree(db, p->aColName); |
| 1648 n = nResColumn*COLNAME_N; |
| 1649 p->nResColumn = (u16)nResColumn; |
| 1650 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n ); |
| 1651 if( p->aColName==0 ) return; |
| 1652 while( n-- > 0 ){ |
| 1653 pColName->flags = MEM_Null; |
| 1654 pColName->db = p->db; |
| 1655 pColName++; |
| 1656 } |
| 1657 } |
| 1658 |
| 1659 /* |
| 1660 ** Set the name of the idx'th column to be returned by the SQL statement. |
| 1661 ** zName must be a pointer to a nul terminated string. |
| 1662 ** |
| 1663 ** This call must be made after a call to sqlite3VdbeSetNumCols(). |
| 1664 ** |
| 1665 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC |
| 1666 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed |
| 1667 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed. |
| 1668 */ |
| 1669 int sqlite3VdbeSetColName( |
| 1670 Vdbe *p, /* Vdbe being configured */ |
| 1671 int idx, /* Index of column zName applies to */ |
| 1672 int var, /* One of the COLNAME_* constants */ |
| 1673 const char *zName, /* Pointer to buffer containing name */ |
| 1674 void (*xDel)(void*) /* Memory management strategy for zName */ |
| 1675 ){ |
| 1676 int rc; |
| 1677 Mem *pColName; |
| 1678 assert( idx<p->nResColumn ); |
| 1679 assert( var<COLNAME_N ); |
| 1680 if( p->db->mallocFailed ){ |
| 1681 assert( !zName || xDel!=SQLITE_DYNAMIC ); |
| 1682 return SQLITE_NOMEM; |
| 1683 } |
| 1684 assert( p->aColName!=0 ); |
| 1685 pColName = &(p->aColName[idx+var*p->nResColumn]); |
| 1686 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel); |
| 1687 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 ); |
| 1688 return rc; |
| 1689 } |
| 1690 |
| 1691 /* |
| 1692 ** A read or write transaction may or may not be active on database handle |
| 1693 ** db. If a transaction is active, commit it. If there is a |
| 1694 ** write-transaction spanning more than one database file, this routine |
| 1695 ** takes care of the master journal trickery. |
| 1696 */ |
| 1697 static int vdbeCommit(sqlite3 *db, Vdbe *p){ |
| 1698 int i; |
| 1699 int nTrans = 0; /* Number of databases with an active write-transaction */ |
| 1700 int rc = SQLITE_OK; |
| 1701 int needXcommit = 0; |
| 1702 |
| 1703 #ifdef SQLITE_OMIT_VIRTUALTABLE |
| 1704 /* With this option, sqlite3VtabSync() is defined to be simply |
| 1705 ** SQLITE_OK so p is not used. |
| 1706 */ |
| 1707 UNUSED_PARAMETER(p); |
| 1708 #endif |
| 1709 |
| 1710 /* Before doing anything else, call the xSync() callback for any |
| 1711 ** virtual module tables written in this transaction. This has to |
| 1712 ** be done before determining whether a master journal file is |
| 1713 ** required, as an xSync() callback may add an attached database |
| 1714 ** to the transaction. |
| 1715 */ |
| 1716 rc = sqlite3VtabSync(db, &p->zErrMsg); |
| 1717 |
| 1718 /* This loop determines (a) if the commit hook should be invoked and |
| 1719 ** (b) how many database files have open write transactions, not |
| 1720 ** including the temp database. (b) is important because if more than |
| 1721 ** one database file has an open write transaction, a master journal |
| 1722 ** file is required for an atomic commit. |
| 1723 */ |
| 1724 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 1725 Btree *pBt = db->aDb[i].pBt; |
| 1726 if( sqlite3BtreeIsInTrans(pBt) ){ |
| 1727 needXcommit = 1; |
| 1728 if( i!=1 ) nTrans++; |
| 1729 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt)); |
| 1730 } |
| 1731 } |
| 1732 if( rc!=SQLITE_OK ){ |
| 1733 return rc; |
| 1734 } |
| 1735 |
| 1736 /* If there are any write-transactions at all, invoke the commit hook */ |
| 1737 if( needXcommit && db->xCommitCallback ){ |
| 1738 rc = db->xCommitCallback(db->pCommitArg); |
| 1739 if( rc ){ |
| 1740 return SQLITE_CONSTRAINT; |
| 1741 } |
| 1742 } |
| 1743 |
| 1744 /* The simple case - no more than one database file (not counting the |
| 1745 ** TEMP database) has a transaction active. There is no need for the |
| 1746 ** master-journal. |
| 1747 ** |
| 1748 ** If the return value of sqlite3BtreeGetFilename() is a zero length |
| 1749 ** string, it means the main database is :memory: or a temp file. In |
| 1750 ** that case we do not support atomic multi-file commits, so use the |
| 1751 ** simple case then too. |
| 1752 */ |
| 1753 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt)) |
| 1754 || nTrans<=1 |
| 1755 ){ |
| 1756 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 1757 Btree *pBt = db->aDb[i].pBt; |
| 1758 if( pBt ){ |
| 1759 rc = sqlite3BtreeCommitPhaseOne(pBt, 0); |
| 1760 } |
| 1761 } |
| 1762 |
| 1763 /* Do the commit only if all databases successfully complete phase 1. |
| 1764 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an |
| 1765 ** IO error while deleting or truncating a journal file. It is unlikely, |
| 1766 ** but could happen. In this case abandon processing and return the error. |
| 1767 */ |
| 1768 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 1769 Btree *pBt = db->aDb[i].pBt; |
| 1770 if( pBt ){ |
| 1771 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0); |
| 1772 } |
| 1773 } |
| 1774 if( rc==SQLITE_OK ){ |
| 1775 sqlite3VtabCommit(db); |
| 1776 } |
| 1777 } |
| 1778 |
| 1779 /* The complex case - There is a multi-file write-transaction active. |
| 1780 ** This requires a master journal file to ensure the transaction is |
| 1781 ** committed atomicly. |
| 1782 */ |
| 1783 #ifndef SQLITE_OMIT_DISKIO |
| 1784 else{ |
| 1785 sqlite3_vfs *pVfs = db->pVfs; |
| 1786 int needSync = 0; |
| 1787 char *zMaster = 0; /* File-name for the master journal */ |
| 1788 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt); |
| 1789 sqlite3_file *pMaster = 0; |
| 1790 i64 offset = 0; |
| 1791 int res; |
| 1792 |
| 1793 /* Select a master journal file name */ |
| 1794 do { |
| 1795 u32 iRandom; |
| 1796 sqlite3DbFree(db, zMaster); |
| 1797 sqlite3_randomness(sizeof(iRandom), &iRandom); |
| 1798 zMaster = sqlite3MPrintf(db, "%s-mj%08X", zMainFile, iRandom&0x7fffffff); |
| 1799 if( !zMaster ){ |
| 1800 return SQLITE_NOMEM; |
| 1801 } |
| 1802 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res); |
| 1803 }while( rc==SQLITE_OK && res ); |
| 1804 if( rc==SQLITE_OK ){ |
| 1805 /* Open the master journal. */ |
| 1806 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster, |
| 1807 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE| |
| 1808 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0 |
| 1809 ); |
| 1810 } |
| 1811 if( rc!=SQLITE_OK ){ |
| 1812 sqlite3DbFree(db, zMaster); |
| 1813 return rc; |
| 1814 } |
| 1815 |
| 1816 /* Write the name of each database file in the transaction into the new |
| 1817 ** master journal file. If an error occurs at this point close |
| 1818 ** and delete the master journal file. All the individual journal files |
| 1819 ** still have 'null' as the master journal pointer, so they will roll |
| 1820 ** back independently if a failure occurs. |
| 1821 */ |
| 1822 for(i=0; i<db->nDb; i++){ |
| 1823 Btree *pBt = db->aDb[i].pBt; |
| 1824 if( sqlite3BtreeIsInTrans(pBt) ){ |
| 1825 char const *zFile = sqlite3BtreeGetJournalname(pBt); |
| 1826 if( zFile==0 ){ |
| 1827 continue; /* Ignore TEMP and :memory: databases */ |
| 1828 } |
| 1829 assert( zFile[0]!=0 ); |
| 1830 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){ |
| 1831 needSync = 1; |
| 1832 } |
| 1833 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset); |
| 1834 offset += sqlite3Strlen30(zFile)+1; |
| 1835 if( rc!=SQLITE_OK ){ |
| 1836 sqlite3OsCloseFree(pMaster); |
| 1837 sqlite3OsDelete(pVfs, zMaster, 0); |
| 1838 sqlite3DbFree(db, zMaster); |
| 1839 return rc; |
| 1840 } |
| 1841 } |
| 1842 } |
| 1843 |
| 1844 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device |
| 1845 ** flag is set this is not required. |
| 1846 */ |
| 1847 if( needSync |
| 1848 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL) |
| 1849 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL)) |
| 1850 ){ |
| 1851 sqlite3OsCloseFree(pMaster); |
| 1852 sqlite3OsDelete(pVfs, zMaster, 0); |
| 1853 sqlite3DbFree(db, zMaster); |
| 1854 return rc; |
| 1855 } |
| 1856 |
| 1857 /* Sync all the db files involved in the transaction. The same call |
| 1858 ** sets the master journal pointer in each individual journal. If |
| 1859 ** an error occurs here, do not delete the master journal file. |
| 1860 ** |
| 1861 ** If the error occurs during the first call to |
| 1862 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the |
| 1863 ** master journal file will be orphaned. But we cannot delete it, |
| 1864 ** in case the master journal file name was written into the journal |
| 1865 ** file before the failure occurred. |
| 1866 */ |
| 1867 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){ |
| 1868 Btree *pBt = db->aDb[i].pBt; |
| 1869 if( pBt ){ |
| 1870 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster); |
| 1871 } |
| 1872 } |
| 1873 sqlite3OsCloseFree(pMaster); |
| 1874 assert( rc!=SQLITE_BUSY ); |
| 1875 if( rc!=SQLITE_OK ){ |
| 1876 sqlite3DbFree(db, zMaster); |
| 1877 return rc; |
| 1878 } |
| 1879 |
| 1880 /* Delete the master journal file. This commits the transaction. After |
| 1881 ** doing this the directory is synced again before any individual |
| 1882 ** transaction files are deleted. |
| 1883 */ |
| 1884 rc = sqlite3OsDelete(pVfs, zMaster, 1); |
| 1885 sqlite3DbFree(db, zMaster); |
| 1886 zMaster = 0; |
| 1887 if( rc ){ |
| 1888 return rc; |
| 1889 } |
| 1890 |
| 1891 /* All files and directories have already been synced, so the following |
| 1892 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and |
| 1893 ** deleting or truncating journals. If something goes wrong while |
| 1894 ** this is happening we don't really care. The integrity of the |
| 1895 ** transaction is already guaranteed, but some stray 'cold' journals |
| 1896 ** may be lying around. Returning an error code won't help matters. |
| 1897 */ |
| 1898 disable_simulated_io_errors(); |
| 1899 sqlite3BeginBenignMalloc(); |
| 1900 for(i=0; i<db->nDb; i++){ |
| 1901 Btree *pBt = db->aDb[i].pBt; |
| 1902 if( pBt ){ |
| 1903 sqlite3BtreeCommitPhaseTwo(pBt, 1); |
| 1904 } |
| 1905 } |
| 1906 sqlite3EndBenignMalloc(); |
| 1907 enable_simulated_io_errors(); |
| 1908 |
| 1909 sqlite3VtabCommit(db); |
| 1910 } |
| 1911 #endif |
| 1912 |
| 1913 return rc; |
| 1914 } |
| 1915 |
| 1916 /* |
| 1917 ** This routine checks that the sqlite3.activeVdbeCnt count variable |
| 1918 ** matches the number of vdbe's in the list sqlite3.pVdbe that are |
| 1919 ** currently active. An assertion fails if the two counts do not match. |
| 1920 ** This is an internal self-check only - it is not an essential processing |
| 1921 ** step. |
| 1922 ** |
| 1923 ** This is a no-op if NDEBUG is defined. |
| 1924 */ |
| 1925 #ifndef NDEBUG |
| 1926 static void checkActiveVdbeCnt(sqlite3 *db){ |
| 1927 Vdbe *p; |
| 1928 int cnt = 0; |
| 1929 int nWrite = 0; |
| 1930 p = db->pVdbe; |
| 1931 while( p ){ |
| 1932 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){ |
| 1933 cnt++; |
| 1934 if( p->readOnly==0 ) nWrite++; |
| 1935 } |
| 1936 p = p->pNext; |
| 1937 } |
| 1938 assert( cnt==db->activeVdbeCnt ); |
| 1939 assert( nWrite==db->writeVdbeCnt ); |
| 1940 } |
| 1941 #else |
| 1942 #define checkActiveVdbeCnt(x) |
| 1943 #endif |
| 1944 |
| 1945 /* |
| 1946 ** For every Btree that in database connection db which |
| 1947 ** has been modified, "trip" or invalidate each cursor in |
| 1948 ** that Btree might have been modified so that the cursor |
| 1949 ** can never be used again. This happens when a rollback |
| 1950 *** occurs. We have to trip all the other cursors, even |
| 1951 ** cursor from other VMs in different database connections, |
| 1952 ** so that none of them try to use the data at which they |
| 1953 ** were pointing and which now may have been changed due |
| 1954 ** to the rollback. |
| 1955 ** |
| 1956 ** Remember that a rollback can delete tables complete and |
| 1957 ** reorder rootpages. So it is not sufficient just to save |
| 1958 ** the state of the cursor. We have to invalidate the cursor |
| 1959 ** so that it is never used again. |
| 1960 */ |
| 1961 static void invalidateCursorsOnModifiedBtrees(sqlite3 *db){ |
| 1962 int i; |
| 1963 for(i=0; i<db->nDb; i++){ |
| 1964 Btree *p = db->aDb[i].pBt; |
| 1965 if( p && sqlite3BtreeIsInTrans(p) ){ |
| 1966 sqlite3BtreeTripAllCursors(p, SQLITE_ABORT); |
| 1967 } |
| 1968 } |
| 1969 } |
| 1970 |
| 1971 /* |
| 1972 ** If the Vdbe passed as the first argument opened a statement-transaction, |
| 1973 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or |
| 1974 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement |
| 1975 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the |
| 1976 ** statement transaction is commtted. |
| 1977 ** |
| 1978 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned. |
| 1979 ** Otherwise SQLITE_OK. |
| 1980 */ |
| 1981 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){ |
| 1982 sqlite3 *const db = p->db; |
| 1983 int rc = SQLITE_OK; |
| 1984 |
| 1985 /* If p->iStatement is greater than zero, then this Vdbe opened a |
| 1986 ** statement transaction that should be closed here. The only exception |
| 1987 ** is that an IO error may have occured, causing an emergency rollback. |
| 1988 ** In this case (db->nStatement==0), and there is nothing to do. |
| 1989 */ |
| 1990 if( db->nStatement && p->iStatement ){ |
| 1991 int i; |
| 1992 const int iSavepoint = p->iStatement-1; |
| 1993 |
| 1994 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE); |
| 1995 assert( db->nStatement>0 ); |
| 1996 assert( p->iStatement==(db->nStatement+db->nSavepoint) ); |
| 1997 |
| 1998 for(i=0; i<db->nDb; i++){ |
| 1999 int rc2 = SQLITE_OK; |
| 2000 Btree *pBt = db->aDb[i].pBt; |
| 2001 if( pBt ){ |
| 2002 if( eOp==SAVEPOINT_ROLLBACK ){ |
| 2003 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint); |
| 2004 } |
| 2005 if( rc2==SQLITE_OK ){ |
| 2006 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint); |
| 2007 } |
| 2008 if( rc==SQLITE_OK ){ |
| 2009 rc = rc2; |
| 2010 } |
| 2011 } |
| 2012 } |
| 2013 db->nStatement--; |
| 2014 p->iStatement = 0; |
| 2015 |
| 2016 /* If the statement transaction is being rolled back, also restore the |
| 2017 ** database handles deferred constraint counter to the value it had when |
| 2018 ** the statement transaction was opened. */ |
| 2019 if( eOp==SAVEPOINT_ROLLBACK ){ |
| 2020 db->nDeferredCons = p->nStmtDefCons; |
| 2021 } |
| 2022 } |
| 2023 return rc; |
| 2024 } |
| 2025 |
| 2026 /* |
| 2027 ** This function is called when a transaction opened by the database |
| 2028 ** handle associated with the VM passed as an argument is about to be |
| 2029 ** committed. If there are outstanding deferred foreign key constraint |
| 2030 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK. |
| 2031 ** |
| 2032 ** If there are outstanding FK violations and this function returns |
| 2033 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write |
| 2034 ** an error message to it. Then return SQLITE_ERROR. |
| 2035 */ |
| 2036 #ifndef SQLITE_OMIT_FOREIGN_KEY |
| 2037 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){ |
| 2038 sqlite3 *db = p->db; |
| 2039 if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){ |
| 2040 p->rc = SQLITE_CONSTRAINT; |
| 2041 p->errorAction = OE_Abort; |
| 2042 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed"); |
| 2043 return SQLITE_ERROR; |
| 2044 } |
| 2045 return SQLITE_OK; |
| 2046 } |
| 2047 #endif |
| 2048 |
| 2049 /* |
| 2050 ** This routine is called the when a VDBE tries to halt. If the VDBE |
| 2051 ** has made changes and is in autocommit mode, then commit those |
| 2052 ** changes. If a rollback is needed, then do the rollback. |
| 2053 ** |
| 2054 ** This routine is the only way to move the state of a VM from |
| 2055 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to |
| 2056 ** call this on a VM that is in the SQLITE_MAGIC_HALT state. |
| 2057 ** |
| 2058 ** Return an error code. If the commit could not complete because of |
| 2059 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it |
| 2060 ** means the close did not happen and needs to be repeated. |
| 2061 */ |
| 2062 int sqlite3VdbeHalt(Vdbe *p){ |
| 2063 int rc; /* Used to store transient return codes */ |
| 2064 sqlite3 *db = p->db; |
| 2065 |
| 2066 /* This function contains the logic that determines if a statement or |
| 2067 ** transaction will be committed or rolled back as a result of the |
| 2068 ** execution of this virtual machine. |
| 2069 ** |
| 2070 ** If any of the following errors occur: |
| 2071 ** |
| 2072 ** SQLITE_NOMEM |
| 2073 ** SQLITE_IOERR |
| 2074 ** SQLITE_FULL |
| 2075 ** SQLITE_INTERRUPT |
| 2076 ** |
| 2077 ** Then the internal cache might have been left in an inconsistent |
| 2078 ** state. We need to rollback the statement transaction, if there is |
| 2079 ** one, or the complete transaction if there is no statement transaction. |
| 2080 */ |
| 2081 |
| 2082 if( p->db->mallocFailed ){ |
| 2083 p->rc = SQLITE_NOMEM; |
| 2084 } |
| 2085 closeAllCursors(p); |
| 2086 if( p->magic!=VDBE_MAGIC_RUN ){ |
| 2087 return SQLITE_OK; |
| 2088 } |
| 2089 checkActiveVdbeCnt(db); |
| 2090 |
| 2091 /* No commit or rollback needed if the program never started */ |
| 2092 if( p->pc>=0 ){ |
| 2093 int mrc; /* Primary error code from p->rc */ |
| 2094 int eStatementOp = 0; |
| 2095 int isSpecialError; /* Set to true if a 'special' error */ |
| 2096 |
| 2097 /* Lock all btrees used by the statement */ |
| 2098 sqlite3VdbeEnter(p); |
| 2099 |
| 2100 /* Check for one of the special errors */ |
| 2101 mrc = p->rc & 0xff; |
| 2102 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */ |
| 2103 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR |
| 2104 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL; |
| 2105 if( isSpecialError ){ |
| 2106 /* If the query was read-only and the error code is SQLITE_INTERRUPT, |
| 2107 ** no rollback is necessary. Otherwise, at least a savepoint |
| 2108 ** transaction must be rolled back to restore the database to a |
| 2109 ** consistent state. |
| 2110 ** |
| 2111 ** Even if the statement is read-only, it is important to perform |
| 2112 ** a statement or transaction rollback operation. If the error |
| 2113 ** occured while writing to the journal, sub-journal or database |
| 2114 ** file as part of an effort to free up cache space (see function |
| 2115 ** pagerStress() in pager.c), the rollback is required to restore |
| 2116 ** the pager to a consistent state. |
| 2117 */ |
| 2118 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){ |
| 2119 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){ |
| 2120 eStatementOp = SAVEPOINT_ROLLBACK; |
| 2121 }else{ |
| 2122 /* We are forced to roll back the active transaction. Before doing |
| 2123 ** so, abort any other statements this handle currently has active. |
| 2124 */ |
| 2125 invalidateCursorsOnModifiedBtrees(db); |
| 2126 sqlite3RollbackAll(db); |
| 2127 sqlite3CloseSavepoints(db); |
| 2128 db->autoCommit = 1; |
| 2129 } |
| 2130 } |
| 2131 } |
| 2132 |
| 2133 /* Check for immediate foreign key violations. */ |
| 2134 if( p->rc==SQLITE_OK ){ |
| 2135 sqlite3VdbeCheckFk(p, 0); |
| 2136 } |
| 2137 |
| 2138 /* If the auto-commit flag is set and this is the only active writer |
| 2139 ** VM, then we do either a commit or rollback of the current transaction. |
| 2140 ** |
| 2141 ** Note: This block also runs if one of the special errors handled |
| 2142 ** above has occurred. |
| 2143 */ |
| 2144 if( !sqlite3VtabInSync(db) |
| 2145 && db->autoCommit |
| 2146 && db->writeVdbeCnt==(p->readOnly==0) |
| 2147 ){ |
| 2148 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){ |
| 2149 rc = sqlite3VdbeCheckFk(p, 1); |
| 2150 if( rc!=SQLITE_OK ){ |
| 2151 if( NEVER(p->readOnly) ){ |
| 2152 sqlite3VdbeLeave(p); |
| 2153 return SQLITE_ERROR; |
| 2154 } |
| 2155 rc = SQLITE_CONSTRAINT; |
| 2156 }else{ |
| 2157 /* The auto-commit flag is true, the vdbe program was successful |
| 2158 ** or hit an 'OR FAIL' constraint and there are no deferred foreign |
| 2159 ** key constraints to hold up the transaction. This means a commit |
| 2160 ** is required. */ |
| 2161 rc = vdbeCommit(db, p); |
| 2162 } |
| 2163 if( rc==SQLITE_BUSY && p->readOnly ){ |
| 2164 sqlite3VdbeLeave(p); |
| 2165 return SQLITE_BUSY; |
| 2166 }else if( rc!=SQLITE_OK ){ |
| 2167 p->rc = rc; |
| 2168 sqlite3RollbackAll(db); |
| 2169 }else{ |
| 2170 db->nDeferredCons = 0; |
| 2171 sqlite3CommitInternalChanges(db); |
| 2172 } |
| 2173 }else{ |
| 2174 sqlite3RollbackAll(db); |
| 2175 } |
| 2176 db->nStatement = 0; |
| 2177 }else if( eStatementOp==0 ){ |
| 2178 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){ |
| 2179 eStatementOp = SAVEPOINT_RELEASE; |
| 2180 }else if( p->errorAction==OE_Abort ){ |
| 2181 eStatementOp = SAVEPOINT_ROLLBACK; |
| 2182 }else{ |
| 2183 invalidateCursorsOnModifiedBtrees(db); |
| 2184 sqlite3RollbackAll(db); |
| 2185 sqlite3CloseSavepoints(db); |
| 2186 db->autoCommit = 1; |
| 2187 } |
| 2188 } |
| 2189 |
| 2190 /* If eStatementOp is non-zero, then a statement transaction needs to |
| 2191 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to |
| 2192 ** do so. If this operation returns an error, and the current statement |
| 2193 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the |
| 2194 ** current statement error code. |
| 2195 ** |
| 2196 ** Note that sqlite3VdbeCloseStatement() can only fail if eStatementOp |
| 2197 ** is SAVEPOINT_ROLLBACK. But if p->rc==SQLITE_OK then eStatementOp |
| 2198 ** must be SAVEPOINT_RELEASE. Hence the NEVER(p->rc==SQLITE_OK) in |
| 2199 ** the following code. |
| 2200 */ |
| 2201 if( eStatementOp ){ |
| 2202 rc = sqlite3VdbeCloseStatement(p, eStatementOp); |
| 2203 if( rc ){ |
| 2204 assert( eStatementOp==SAVEPOINT_ROLLBACK ); |
| 2205 if( NEVER(p->rc==SQLITE_OK) || p->rc==SQLITE_CONSTRAINT ){ |
| 2206 p->rc = rc; |
| 2207 sqlite3DbFree(db, p->zErrMsg); |
| 2208 p->zErrMsg = 0; |
| 2209 } |
| 2210 invalidateCursorsOnModifiedBtrees(db); |
| 2211 sqlite3RollbackAll(db); |
| 2212 sqlite3CloseSavepoints(db); |
| 2213 db->autoCommit = 1; |
| 2214 } |
| 2215 } |
| 2216 |
| 2217 /* If this was an INSERT, UPDATE or DELETE and no statement transaction |
| 2218 ** has been rolled back, update the database connection change-counter. |
| 2219 */ |
| 2220 if( p->changeCntOn ){ |
| 2221 if( eStatementOp!=SAVEPOINT_ROLLBACK ){ |
| 2222 sqlite3VdbeSetChanges(db, p->nChange); |
| 2223 }else{ |
| 2224 sqlite3VdbeSetChanges(db, 0); |
| 2225 } |
| 2226 p->nChange = 0; |
| 2227 } |
| 2228 |
| 2229 /* Rollback or commit any schema changes that occurred. */ |
| 2230 if( p->rc!=SQLITE_OK && db->flags&SQLITE_InternChanges ){ |
| 2231 sqlite3ResetInternalSchema(db, -1); |
| 2232 db->flags = (db->flags | SQLITE_InternChanges); |
| 2233 } |
| 2234 |
| 2235 /* Release the locks */ |
| 2236 sqlite3VdbeLeave(p); |
| 2237 } |
| 2238 |
| 2239 /* We have successfully halted and closed the VM. Record this fact. */ |
| 2240 if( p->pc>=0 ){ |
| 2241 db->activeVdbeCnt--; |
| 2242 if( !p->readOnly ){ |
| 2243 db->writeVdbeCnt--; |
| 2244 } |
| 2245 assert( db->activeVdbeCnt>=db->writeVdbeCnt ); |
| 2246 } |
| 2247 p->magic = VDBE_MAGIC_HALT; |
| 2248 checkActiveVdbeCnt(db); |
| 2249 if( p->db->mallocFailed ){ |
| 2250 p->rc = SQLITE_NOMEM; |
| 2251 } |
| 2252 |
| 2253 /* If the auto-commit flag is set to true, then any locks that were held |
| 2254 ** by connection db have now been released. Call sqlite3ConnectionUnlocked() |
| 2255 ** to invoke any required unlock-notify callbacks. |
| 2256 */ |
| 2257 if( db->autoCommit ){ |
| 2258 sqlite3ConnectionUnlocked(db); |
| 2259 } |
| 2260 |
| 2261 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 ); |
| 2262 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK); |
| 2263 } |
| 2264 |
| 2265 |
| 2266 /* |
| 2267 ** Each VDBE holds the result of the most recent sqlite3_step() call |
| 2268 ** in p->rc. This routine sets that result back to SQLITE_OK. |
| 2269 */ |
| 2270 void sqlite3VdbeResetStepResult(Vdbe *p){ |
| 2271 p->rc = SQLITE_OK; |
| 2272 } |
| 2273 |
| 2274 /* |
| 2275 ** Clean up a VDBE after execution but do not delete the VDBE just yet. |
| 2276 ** Write any error messages into *pzErrMsg. Return the result code. |
| 2277 ** |
| 2278 ** After this routine is run, the VDBE should be ready to be executed |
| 2279 ** again. |
| 2280 ** |
| 2281 ** To look at it another way, this routine resets the state of the |
| 2282 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to |
| 2283 ** VDBE_MAGIC_INIT. |
| 2284 */ |
| 2285 int sqlite3VdbeReset(Vdbe *p){ |
| 2286 sqlite3 *db; |
| 2287 db = p->db; |
| 2288 |
| 2289 /* If the VM did not run to completion or if it encountered an |
| 2290 ** error, then it might not have been halted properly. So halt |
| 2291 ** it now. |
| 2292 */ |
| 2293 sqlite3VdbeHalt(p); |
| 2294 |
| 2295 /* If the VDBE has be run even partially, then transfer the error code |
| 2296 ** and error message from the VDBE into the main database structure. But |
| 2297 ** if the VDBE has just been set to run but has not actually executed any |
| 2298 ** instructions yet, leave the main database error information unchanged. |
| 2299 */ |
| 2300 if( p->pc>=0 ){ |
| 2301 if( p->zErrMsg ){ |
| 2302 sqlite3BeginBenignMalloc(); |
| 2303 sqlite3ValueSetStr(db->pErr,-1,p->zErrMsg,SQLITE_UTF8,SQLITE_TRANSIENT); |
| 2304 sqlite3EndBenignMalloc(); |
| 2305 db->errCode = p->rc; |
| 2306 sqlite3DbFree(db, p->zErrMsg); |
| 2307 p->zErrMsg = 0; |
| 2308 }else if( p->rc ){ |
| 2309 sqlite3Error(db, p->rc, 0); |
| 2310 }else{ |
| 2311 sqlite3Error(db, SQLITE_OK, 0); |
| 2312 } |
| 2313 if( p->runOnlyOnce ) p->expired = 1; |
| 2314 }else if( p->rc && p->expired ){ |
| 2315 /* The expired flag was set on the VDBE before the first call |
| 2316 ** to sqlite3_step(). For consistency (since sqlite3_step() was |
| 2317 ** called), set the database error in this case as well. |
| 2318 */ |
| 2319 sqlite3Error(db, p->rc, 0); |
| 2320 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT); |
| 2321 sqlite3DbFree(db, p->zErrMsg); |
| 2322 p->zErrMsg = 0; |
| 2323 } |
| 2324 |
| 2325 /* Reclaim all memory used by the VDBE |
| 2326 */ |
| 2327 Cleanup(p); |
| 2328 |
| 2329 /* Save profiling information from this VDBE run. |
| 2330 */ |
| 2331 #ifdef VDBE_PROFILE |
| 2332 { |
| 2333 FILE *out = fopen("vdbe_profile.out", "a"); |
| 2334 if( out ){ |
| 2335 int i; |
| 2336 fprintf(out, "---- "); |
| 2337 for(i=0; i<p->nOp; i++){ |
| 2338 fprintf(out, "%02x", p->aOp[i].opcode); |
| 2339 } |
| 2340 fprintf(out, "\n"); |
| 2341 for(i=0; i<p->nOp; i++){ |
| 2342 fprintf(out, "%6d %10lld %8lld ", |
| 2343 p->aOp[i].cnt, |
| 2344 p->aOp[i].cycles, |
| 2345 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0 |
| 2346 ); |
| 2347 sqlite3VdbePrintOp(out, i, &p->aOp[i]); |
| 2348 } |
| 2349 fclose(out); |
| 2350 } |
| 2351 } |
| 2352 #endif |
| 2353 p->magic = VDBE_MAGIC_INIT; |
| 2354 return p->rc & db->errMask; |
| 2355 } |
| 2356 |
| 2357 /* |
| 2358 ** Clean up and delete a VDBE after execution. Return an integer which is |
| 2359 ** the result code. Write any error message text into *pzErrMsg. |
| 2360 */ |
| 2361 int sqlite3VdbeFinalize(Vdbe *p){ |
| 2362 int rc = SQLITE_OK; |
| 2363 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){ |
| 2364 rc = sqlite3VdbeReset(p); |
| 2365 assert( (rc & p->db->errMask)==rc ); |
| 2366 } |
| 2367 sqlite3VdbeDelete(p); |
| 2368 return rc; |
| 2369 } |
| 2370 |
| 2371 /* |
| 2372 ** Call the destructor for each auxdata entry in pVdbeFunc for which |
| 2373 ** the corresponding bit in mask is clear. Auxdata entries beyond 31 |
| 2374 ** are always destroyed. To destroy all auxdata entries, call this |
| 2375 ** routine with mask==0. |
| 2376 */ |
| 2377 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){ |
| 2378 int i; |
| 2379 for(i=0; i<pVdbeFunc->nAux; i++){ |
| 2380 struct AuxData *pAux = &pVdbeFunc->apAux[i]; |
| 2381 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){ |
| 2382 if( pAux->xDelete ){ |
| 2383 pAux->xDelete(pAux->pAux); |
| 2384 } |
| 2385 pAux->pAux = 0; |
| 2386 } |
| 2387 } |
| 2388 } |
| 2389 |
| 2390 /* |
| 2391 ** Free all memory associated with the Vdbe passed as the second argument. |
| 2392 ** The difference between this function and sqlite3VdbeDelete() is that |
| 2393 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with |
| 2394 ** the database connection. |
| 2395 */ |
| 2396 void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){ |
| 2397 SubProgram *pSub, *pNext; |
| 2398 assert( p->db==0 || p->db==db ); |
| 2399 releaseMemArray(p->aVar, p->nVar); |
| 2400 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N); |
| 2401 for(pSub=p->pProgram; pSub; pSub=pNext){ |
| 2402 pNext = pSub->pNext; |
| 2403 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp); |
| 2404 sqlite3DbFree(db, pSub); |
| 2405 } |
| 2406 vdbeFreeOpArray(db, p->aOp, p->nOp); |
| 2407 sqlite3DbFree(db, p->aLabel); |
| 2408 sqlite3DbFree(db, p->aColName); |
| 2409 sqlite3DbFree(db, p->zSql); |
| 2410 sqlite3DbFree(db, p->pFree); |
| 2411 sqlite3DbFree(db, p); |
| 2412 } |
| 2413 |
| 2414 /* |
| 2415 ** Delete an entire VDBE. |
| 2416 */ |
| 2417 void sqlite3VdbeDelete(Vdbe *p){ |
| 2418 sqlite3 *db; |
| 2419 |
| 2420 if( NEVER(p==0) ) return; |
| 2421 db = p->db; |
| 2422 if( p->pPrev ){ |
| 2423 p->pPrev->pNext = p->pNext; |
| 2424 }else{ |
| 2425 assert( db->pVdbe==p ); |
| 2426 db->pVdbe = p->pNext; |
| 2427 } |
| 2428 if( p->pNext ){ |
| 2429 p->pNext->pPrev = p->pPrev; |
| 2430 } |
| 2431 p->magic = VDBE_MAGIC_DEAD; |
| 2432 p->db = 0; |
| 2433 sqlite3VdbeDeleteObject(db, p); |
| 2434 } |
| 2435 |
| 2436 /* |
| 2437 ** Make sure the cursor p is ready to read or write the row to which it |
| 2438 ** was last positioned. Return an error code if an OOM fault or I/O error |
| 2439 ** prevents us from positioning the cursor to its correct position. |
| 2440 ** |
| 2441 ** If a MoveTo operation is pending on the given cursor, then do that |
| 2442 ** MoveTo now. If no move is pending, check to see if the row has been |
| 2443 ** deleted out from under the cursor and if it has, mark the row as |
| 2444 ** a NULL row. |
| 2445 ** |
| 2446 ** If the cursor is already pointing to the correct row and that row has |
| 2447 ** not been deleted out from under the cursor, then this routine is a no-op. |
| 2448 */ |
| 2449 int sqlite3VdbeCursorMoveto(VdbeCursor *p){ |
| 2450 if( p->deferredMoveto ){ |
| 2451 int res, rc; |
| 2452 #ifdef SQLITE_TEST |
| 2453 extern int sqlite3_search_count; |
| 2454 #endif |
| 2455 assert( p->isTable ); |
| 2456 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res); |
| 2457 if( rc ) return rc; |
| 2458 p->lastRowid = p->movetoTarget; |
| 2459 if( res!=0 ) return SQLITE_CORRUPT_BKPT; |
| 2460 p->rowidIsValid = 1; |
| 2461 #ifdef SQLITE_TEST |
| 2462 sqlite3_search_count++; |
| 2463 #endif |
| 2464 p->deferredMoveto = 0; |
| 2465 p->cacheStatus = CACHE_STALE; |
| 2466 }else if( ALWAYS(p->pCursor) ){ |
| 2467 int hasMoved; |
| 2468 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved); |
| 2469 if( rc ) return rc; |
| 2470 if( hasMoved ){ |
| 2471 p->cacheStatus = CACHE_STALE; |
| 2472 p->nullRow = 1; |
| 2473 } |
| 2474 } |
| 2475 return SQLITE_OK; |
| 2476 } |
| 2477 |
| 2478 /* |
| 2479 ** The following functions: |
| 2480 ** |
| 2481 ** sqlite3VdbeSerialType() |
| 2482 ** sqlite3VdbeSerialTypeLen() |
| 2483 ** sqlite3VdbeSerialLen() |
| 2484 ** sqlite3VdbeSerialPut() |
| 2485 ** sqlite3VdbeSerialGet() |
| 2486 ** |
| 2487 ** encapsulate the code that serializes values for storage in SQLite |
| 2488 ** data and index records. Each serialized value consists of a |
| 2489 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned |
| 2490 ** integer, stored as a varint. |
| 2491 ** |
| 2492 ** In an SQLite index record, the serial type is stored directly before |
| 2493 ** the blob of data that it corresponds to. In a table record, all serial |
| 2494 ** types are stored at the start of the record, and the blobs of data at |
| 2495 ** the end. Hence these functions allow the caller to handle the |
| 2496 ** serial-type and data blob seperately. |
| 2497 ** |
| 2498 ** The following table describes the various storage classes for data: |
| 2499 ** |
| 2500 ** serial type bytes of data type |
| 2501 ** -------------- --------------- --------------- |
| 2502 ** 0 0 NULL |
| 2503 ** 1 1 signed integer |
| 2504 ** 2 2 signed integer |
| 2505 ** 3 3 signed integer |
| 2506 ** 4 4 signed integer |
| 2507 ** 5 6 signed integer |
| 2508 ** 6 8 signed integer |
| 2509 ** 7 8 IEEE float |
| 2510 ** 8 0 Integer constant 0 |
| 2511 ** 9 0 Integer constant 1 |
| 2512 ** 10,11 reserved for expansion |
| 2513 ** N>=12 and even (N-12)/2 BLOB |
| 2514 ** N>=13 and odd (N-13)/2 text |
| 2515 ** |
| 2516 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions |
| 2517 ** of SQLite will not understand those serial types. |
| 2518 */ |
| 2519 |
| 2520 /* |
| 2521 ** Return the serial-type for the value stored in pMem. |
| 2522 */ |
| 2523 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){ |
| 2524 int flags = pMem->flags; |
| 2525 int n; |
| 2526 |
| 2527 if( flags&MEM_Null ){ |
| 2528 return 0; |
| 2529 } |
| 2530 if( flags&MEM_Int ){ |
| 2531 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */ |
| 2532 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1) |
| 2533 i64 i = pMem->u.i; |
| 2534 u64 u; |
| 2535 if( file_format>=4 && (i&1)==i ){ |
| 2536 return 8+(u32)i; |
| 2537 } |
| 2538 if( i<0 ){ |
| 2539 if( i<(-MAX_6BYTE) ) return 6; |
| 2540 /* Previous test prevents: u = -(-9223372036854775808) */ |
| 2541 u = -i; |
| 2542 }else{ |
| 2543 u = i; |
| 2544 } |
| 2545 if( u<=127 ) return 1; |
| 2546 if( u<=32767 ) return 2; |
| 2547 if( u<=8388607 ) return 3; |
| 2548 if( u<=2147483647 ) return 4; |
| 2549 if( u<=MAX_6BYTE ) return 5; |
| 2550 return 6; |
| 2551 } |
| 2552 if( flags&MEM_Real ){ |
| 2553 return 7; |
| 2554 } |
| 2555 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) ); |
| 2556 n = pMem->n; |
| 2557 if( flags & MEM_Zero ){ |
| 2558 n += pMem->u.nZero; |
| 2559 } |
| 2560 assert( n>=0 ); |
| 2561 return ((n*2) + 12 + ((flags&MEM_Str)!=0)); |
| 2562 } |
| 2563 |
| 2564 /* |
| 2565 ** Return the length of the data corresponding to the supplied serial-type. |
| 2566 */ |
| 2567 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){ |
| 2568 if( serial_type>=12 ){ |
| 2569 return (serial_type-12)/2; |
| 2570 }else{ |
| 2571 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 }; |
| 2572 return aSize[serial_type]; |
| 2573 } |
| 2574 } |
| 2575 |
| 2576 /* |
| 2577 ** If we are on an architecture with mixed-endian floating |
| 2578 ** points (ex: ARM7) then swap the lower 4 bytes with the |
| 2579 ** upper 4 bytes. Return the result. |
| 2580 ** |
| 2581 ** For most architectures, this is a no-op. |
| 2582 ** |
| 2583 ** (later): It is reported to me that the mixed-endian problem |
| 2584 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems |
| 2585 ** that early versions of GCC stored the two words of a 64-bit |
| 2586 ** float in the wrong order. And that error has been propagated |
| 2587 ** ever since. The blame is not necessarily with GCC, though. |
| 2588 ** GCC might have just copying the problem from a prior compiler. |
| 2589 ** I am also told that newer versions of GCC that follow a different |
| 2590 ** ABI get the byte order right. |
| 2591 ** |
| 2592 ** Developers using SQLite on an ARM7 should compile and run their |
| 2593 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG |
| 2594 ** enabled, some asserts below will ensure that the byte order of |
| 2595 ** floating point values is correct. |
| 2596 ** |
| 2597 ** (2007-08-30) Frank van Vugt has studied this problem closely |
| 2598 ** and has send his findings to the SQLite developers. Frank |
| 2599 ** writes that some Linux kernels offer floating point hardware |
| 2600 ** emulation that uses only 32-bit mantissas instead of a full |
| 2601 ** 48-bits as required by the IEEE standard. (This is the |
| 2602 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point |
| 2603 ** byte swapping becomes very complicated. To avoid problems, |
| 2604 ** the necessary byte swapping is carried out using a 64-bit integer |
| 2605 ** rather than a 64-bit float. Frank assures us that the code here |
| 2606 ** works for him. We, the developers, have no way to independently |
| 2607 ** verify this, but Frank seems to know what he is talking about |
| 2608 ** so we trust him. |
| 2609 */ |
| 2610 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT |
| 2611 static u64 floatSwap(u64 in){ |
| 2612 union { |
| 2613 u64 r; |
| 2614 u32 i[2]; |
| 2615 } u; |
| 2616 u32 t; |
| 2617 |
| 2618 u.r = in; |
| 2619 t = u.i[0]; |
| 2620 u.i[0] = u.i[1]; |
| 2621 u.i[1] = t; |
| 2622 return u.r; |
| 2623 } |
| 2624 # define swapMixedEndianFloat(X) X = floatSwap(X) |
| 2625 #else |
| 2626 # define swapMixedEndianFloat(X) |
| 2627 #endif |
| 2628 |
| 2629 /* |
| 2630 ** Write the serialized data blob for the value stored in pMem into |
| 2631 ** buf. It is assumed that the caller has allocated sufficient space. |
| 2632 ** Return the number of bytes written. |
| 2633 ** |
| 2634 ** nBuf is the amount of space left in buf[]. nBuf must always be |
| 2635 ** large enough to hold the entire field. Except, if the field is |
| 2636 ** a blob with a zero-filled tail, then buf[] might be just the right |
| 2637 ** size to hold everything except for the zero-filled tail. If buf[] |
| 2638 ** is only big enough to hold the non-zero prefix, then only write that |
| 2639 ** prefix into buf[]. But if buf[] is large enough to hold both the |
| 2640 ** prefix and the tail then write the prefix and set the tail to all |
| 2641 ** zeros. |
| 2642 ** |
| 2643 ** Return the number of bytes actually written into buf[]. The number |
| 2644 ** of bytes in the zero-filled tail is included in the return value only |
| 2645 ** if those bytes were zeroed in buf[]. |
| 2646 */ |
| 2647 u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){ |
| 2648 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format); |
| 2649 u32 len; |
| 2650 |
| 2651 /* Integer and Real */ |
| 2652 if( serial_type<=7 && serial_type>0 ){ |
| 2653 u64 v; |
| 2654 u32 i; |
| 2655 if( serial_type==7 ){ |
| 2656 assert( sizeof(v)==sizeof(pMem->r) ); |
| 2657 memcpy(&v, &pMem->r, sizeof(v)); |
| 2658 swapMixedEndianFloat(v); |
| 2659 }else{ |
| 2660 v = pMem->u.i; |
| 2661 } |
| 2662 len = i = sqlite3VdbeSerialTypeLen(serial_type); |
| 2663 assert( len<=(u32)nBuf ); |
| 2664 while( i-- ){ |
| 2665 buf[i] = (u8)(v&0xFF); |
| 2666 v >>= 8; |
| 2667 } |
| 2668 return len; |
| 2669 } |
| 2670 |
| 2671 /* String or blob */ |
| 2672 if( serial_type>=12 ){ |
| 2673 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0) |
| 2674 == (int)sqlite3VdbeSerialTypeLen(serial_type) ); |
| 2675 assert( pMem->n<=nBuf ); |
| 2676 len = pMem->n; |
| 2677 memcpy(buf, pMem->z, len); |
| 2678 if( pMem->flags & MEM_Zero ){ |
| 2679 len += pMem->u.nZero; |
| 2680 assert( nBuf>=0 ); |
| 2681 if( len > (u32)nBuf ){ |
| 2682 len = (u32)nBuf; |
| 2683 } |
| 2684 memset(&buf[pMem->n], 0, len-pMem->n); |
| 2685 } |
| 2686 return len; |
| 2687 } |
| 2688 |
| 2689 /* NULL or constants 0 or 1 */ |
| 2690 return 0; |
| 2691 } |
| 2692 |
| 2693 /* |
| 2694 ** Deserialize the data blob pointed to by buf as serial type serial_type |
| 2695 ** and store the result in pMem. Return the number of bytes read. |
| 2696 */ |
| 2697 u32 sqlite3VdbeSerialGet( |
| 2698 const unsigned char *buf, /* Buffer to deserialize from */ |
| 2699 u32 serial_type, /* Serial type to deserialize */ |
| 2700 Mem *pMem /* Memory cell to write value into */ |
| 2701 ){ |
| 2702 switch( serial_type ){ |
| 2703 case 10: /* Reserved for future use */ |
| 2704 case 11: /* Reserved for future use */ |
| 2705 case 0: { /* NULL */ |
| 2706 pMem->flags = MEM_Null; |
| 2707 break; |
| 2708 } |
| 2709 case 1: { /* 1-byte signed integer */ |
| 2710 pMem->u.i = (signed char)buf[0]; |
| 2711 pMem->flags = MEM_Int; |
| 2712 return 1; |
| 2713 } |
| 2714 case 2: { /* 2-byte signed integer */ |
| 2715 pMem->u.i = (((signed char)buf[0])<<8) | buf[1]; |
| 2716 pMem->flags = MEM_Int; |
| 2717 return 2; |
| 2718 } |
| 2719 case 3: { /* 3-byte signed integer */ |
| 2720 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2]; |
| 2721 pMem->flags = MEM_Int; |
| 2722 return 3; |
| 2723 } |
| 2724 case 4: { /* 4-byte signed integer */ |
| 2725 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; |
| 2726 pMem->flags = MEM_Int; |
| 2727 return 4; |
| 2728 } |
| 2729 case 5: { /* 6-byte signed integer */ |
| 2730 u64 x = (((signed char)buf[0])<<8) | buf[1]; |
| 2731 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5]; |
| 2732 x = (x<<32) | y; |
| 2733 pMem->u.i = *(i64*)&x; |
| 2734 pMem->flags = MEM_Int; |
| 2735 return 6; |
| 2736 } |
| 2737 case 6: /* 8-byte signed integer */ |
| 2738 case 7: { /* IEEE floating point */ |
| 2739 u64 x; |
| 2740 u32 y; |
| 2741 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT) |
| 2742 /* Verify that integers and floating point values use the same |
| 2743 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is |
| 2744 ** defined that 64-bit floating point values really are mixed |
| 2745 ** endian. |
| 2746 */ |
| 2747 static const u64 t1 = ((u64)0x3ff00000)<<32; |
| 2748 static const double r1 = 1.0; |
| 2749 u64 t2 = t1; |
| 2750 swapMixedEndianFloat(t2); |
| 2751 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 ); |
| 2752 #endif |
| 2753 |
| 2754 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3]; |
| 2755 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7]; |
| 2756 x = (x<<32) | y; |
| 2757 if( serial_type==6 ){ |
| 2758 pMem->u.i = *(i64*)&x; |
| 2759 pMem->flags = MEM_Int; |
| 2760 }else{ |
| 2761 assert( sizeof(x)==8 && sizeof(pMem->r)==8 ); |
| 2762 swapMixedEndianFloat(x); |
| 2763 memcpy(&pMem->r, &x, sizeof(x)); |
| 2764 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real; |
| 2765 } |
| 2766 return 8; |
| 2767 } |
| 2768 case 8: /* Integer 0 */ |
| 2769 case 9: { /* Integer 1 */ |
| 2770 pMem->u.i = serial_type-8; |
| 2771 pMem->flags = MEM_Int; |
| 2772 return 0; |
| 2773 } |
| 2774 default: { |
| 2775 u32 len = (serial_type-12)/2; |
| 2776 pMem->z = (char *)buf; |
| 2777 pMem->n = len; |
| 2778 pMem->xDel = 0; |
| 2779 if( serial_type&0x01 ){ |
| 2780 pMem->flags = MEM_Str | MEM_Ephem; |
| 2781 }else{ |
| 2782 pMem->flags = MEM_Blob | MEM_Ephem; |
| 2783 } |
| 2784 return len; |
| 2785 } |
| 2786 } |
| 2787 return 0; |
| 2788 } |
| 2789 |
| 2790 |
| 2791 /* |
| 2792 ** Given the nKey-byte encoding of a record in pKey[], parse the |
| 2793 ** record into a UnpackedRecord structure. Return a pointer to |
| 2794 ** that structure. |
| 2795 ** |
| 2796 ** The calling function might provide szSpace bytes of memory |
| 2797 ** space at pSpace. This space can be used to hold the returned |
| 2798 ** VDbeParsedRecord structure if it is large enough. If it is |
| 2799 ** not big enough, space is obtained from sqlite3_malloc(). |
| 2800 ** |
| 2801 ** The returned structure should be closed by a call to |
| 2802 ** sqlite3VdbeDeleteUnpackedRecord(). |
| 2803 */ |
| 2804 UnpackedRecord *sqlite3VdbeRecordUnpack( |
| 2805 KeyInfo *pKeyInfo, /* Information about the record format */ |
| 2806 int nKey, /* Size of the binary record */ |
| 2807 const void *pKey, /* The binary record */ |
| 2808 char *pSpace, /* Unaligned space available to hold the object */ |
| 2809 int szSpace /* Size of pSpace[] in bytes */ |
| 2810 ){ |
| 2811 const unsigned char *aKey = (const unsigned char *)pKey; |
| 2812 UnpackedRecord *p; /* The unpacked record that we will return */ |
| 2813 int nByte; /* Memory space needed to hold p, in bytes */ |
| 2814 int d; |
| 2815 u32 idx; |
| 2816 u16 u; /* Unsigned loop counter */ |
| 2817 u32 szHdr; |
| 2818 Mem *pMem; |
| 2819 int nOff; /* Increase pSpace by this much to 8-byte align it */ |
| 2820 |
| 2821 /* |
| 2822 ** We want to shift the pointer pSpace up such that it is 8-byte aligned. |
| 2823 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift |
| 2824 ** it by. If pSpace is already 8-byte aligned, nOff should be zero. |
| 2825 */ |
| 2826 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7; |
| 2827 pSpace += nOff; |
| 2828 szSpace -= nOff; |
| 2829 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1); |
| 2830 if( nByte>szSpace ){ |
| 2831 p = sqlite3DbMallocRaw(pKeyInfo->db, nByte); |
| 2832 if( p==0 ) return 0; |
| 2833 p->flags = UNPACKED_NEED_FREE | UNPACKED_NEED_DESTROY; |
| 2834 }else{ |
| 2835 p = (UnpackedRecord*)pSpace; |
| 2836 p->flags = UNPACKED_NEED_DESTROY; |
| 2837 } |
| 2838 p->pKeyInfo = pKeyInfo; |
| 2839 p->nField = pKeyInfo->nField + 1; |
| 2840 p->aMem = pMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))]; |
| 2841 assert( EIGHT_BYTE_ALIGNMENT(pMem) ); |
| 2842 idx = getVarint32(aKey, szHdr); |
| 2843 d = szHdr; |
| 2844 u = 0; |
| 2845 while( idx<szHdr && u<p->nField && d<=nKey ){ |
| 2846 u32 serial_type; |
| 2847 |
| 2848 idx += getVarint32(&aKey[idx], serial_type); |
| 2849 pMem->enc = pKeyInfo->enc; |
| 2850 pMem->db = pKeyInfo->db; |
| 2851 pMem->flags = 0; |
| 2852 pMem->zMalloc = 0; |
| 2853 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem); |
| 2854 pMem++; |
| 2855 u++; |
| 2856 } |
| 2857 assert( u<=pKeyInfo->nField + 1 ); |
| 2858 p->nField = u; |
| 2859 return (void*)p; |
| 2860 } |
| 2861 |
| 2862 /* |
| 2863 ** This routine destroys a UnpackedRecord object. |
| 2864 */ |
| 2865 void sqlite3VdbeDeleteUnpackedRecord(UnpackedRecord *p){ |
| 2866 int i; |
| 2867 Mem *pMem; |
| 2868 |
| 2869 assert( p!=0 ); |
| 2870 assert( p->flags & UNPACKED_NEED_DESTROY ); |
| 2871 for(i=0, pMem=p->aMem; i<p->nField; i++, pMem++){ |
| 2872 /* The unpacked record is always constructed by the |
| 2873 ** sqlite3VdbeUnpackRecord() function above, which makes all |
| 2874 ** strings and blobs static. And none of the elements are |
| 2875 ** ever transformed, so there is never anything to delete. |
| 2876 */ |
| 2877 if( NEVER(pMem->zMalloc) ) sqlite3VdbeMemRelease(pMem); |
| 2878 } |
| 2879 if( p->flags & UNPACKED_NEED_FREE ){ |
| 2880 sqlite3DbFree(p->pKeyInfo->db, p); |
| 2881 } |
| 2882 } |
| 2883 |
| 2884 /* |
| 2885 ** This function compares the two table rows or index records |
| 2886 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero |
| 2887 ** or positive integer if key1 is less than, equal to or |
| 2888 ** greater than key2. The {nKey1, pKey1} key must be a blob |
| 2889 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2 |
| 2890 ** key must be a parsed key such as obtained from |
| 2891 ** sqlite3VdbeParseRecord. |
| 2892 ** |
| 2893 ** Key1 and Key2 do not have to contain the same number of fields. |
| 2894 ** The key with fewer fields is usually compares less than the |
| 2895 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set |
| 2896 ** and the common prefixes are equal, then key1 is less than key2. |
| 2897 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are |
| 2898 ** equal, then the keys are considered to be equal and |
| 2899 ** the parts beyond the common prefix are ignored. |
| 2900 ** |
| 2901 ** If the UNPACKED_IGNORE_ROWID flag is set, then the last byte of |
| 2902 ** the header of pKey1 is ignored. It is assumed that pKey1 is |
| 2903 ** an index key, and thus ends with a rowid value. The last byte |
| 2904 ** of the header will therefore be the serial type of the rowid: |
| 2905 ** one of 1, 2, 3, 4, 5, 6, 8, or 9 - the integer serial types. |
| 2906 ** The serial type of the final rowid will always be a single byte. |
| 2907 ** By ignoring this last byte of the header, we force the comparison |
| 2908 ** to ignore the rowid at the end of key1. |
| 2909 */ |
| 2910 int sqlite3VdbeRecordCompare( |
| 2911 int nKey1, const void *pKey1, /* Left key */ |
| 2912 UnpackedRecord *pPKey2 /* Right key */ |
| 2913 ){ |
| 2914 int d1; /* Offset into aKey[] of next data element */ |
| 2915 u32 idx1; /* Offset into aKey[] of next header element */ |
| 2916 u32 szHdr1; /* Number of bytes in header */ |
| 2917 int i = 0; |
| 2918 int nField; |
| 2919 int rc = 0; |
| 2920 const unsigned char *aKey1 = (const unsigned char *)pKey1; |
| 2921 KeyInfo *pKeyInfo; |
| 2922 Mem mem1; |
| 2923 |
| 2924 pKeyInfo = pPKey2->pKeyInfo; |
| 2925 mem1.enc = pKeyInfo->enc; |
| 2926 mem1.db = pKeyInfo->db; |
| 2927 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */ |
| 2928 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */ |
| 2929 |
| 2930 /* Compilers may complain that mem1.u.i is potentially uninitialized. |
| 2931 ** We could initialize it, as shown here, to silence those complaints. |
| 2932 ** But in fact, mem1.u.i will never actually be used initialized, and doing |
| 2933 ** the unnecessary initialization has a measurable negative performance |
| 2934 ** impact, since this routine is a very high runner. And so, we choose |
| 2935 ** to ignore the compiler warnings and leave this variable uninitialized. |
| 2936 */ |
| 2937 /* mem1.u.i = 0; // not needed, here to silence compiler warning */ |
| 2938 |
| 2939 idx1 = getVarint32(aKey1, szHdr1); |
| 2940 d1 = szHdr1; |
| 2941 if( pPKey2->flags & UNPACKED_IGNORE_ROWID ){ |
| 2942 szHdr1--; |
| 2943 } |
| 2944 nField = pKeyInfo->nField; |
| 2945 while( idx1<szHdr1 && i<pPKey2->nField ){ |
| 2946 u32 serial_type1; |
| 2947 |
| 2948 /* Read the serial types for the next element in each key. */ |
| 2949 idx1 += getVarint32( aKey1+idx1, serial_type1 ); |
| 2950 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break; |
| 2951 |
| 2952 /* Extract the values to be compared. |
| 2953 */ |
| 2954 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1); |
| 2955 |
| 2956 /* Do the comparison |
| 2957 */ |
| 2958 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i], |
| 2959 i<nField ? pKeyInfo->aColl[i] : 0); |
| 2960 if( rc!=0 ){ |
| 2961 assert( mem1.zMalloc==0 ); /* See comment below */ |
| 2962 |
| 2963 /* Invert the result if we are using DESC sort order. */ |
| 2964 if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){ |
| 2965 rc = -rc; |
| 2966 } |
| 2967 |
| 2968 /* If the PREFIX_SEARCH flag is set and all fields except the final |
| 2969 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set |
| 2970 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1). |
| 2971 ** This is used by the OP_IsUnique opcode. |
| 2972 */ |
| 2973 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){ |
| 2974 assert( idx1==szHdr1 && rc ); |
| 2975 assert( mem1.flags & MEM_Int ); |
| 2976 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH; |
| 2977 pPKey2->rowid = mem1.u.i; |
| 2978 } |
| 2979 |
| 2980 return rc; |
| 2981 } |
| 2982 i++; |
| 2983 } |
| 2984 |
| 2985 /* No memory allocation is ever used on mem1. Prove this using |
| 2986 ** the following assert(). If the assert() fails, it indicates a |
| 2987 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). |
| 2988 */ |
| 2989 assert( mem1.zMalloc==0 ); |
| 2990 |
| 2991 /* rc==0 here means that one of the keys ran out of fields and |
| 2992 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY |
| 2993 ** flag is set, then break the tie by treating key2 as larger. |
| 2994 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes |
| 2995 ** are considered to be equal. Otherwise, the longer key is the |
| 2996 ** larger. As it happens, the pPKey2 will always be the longer |
| 2997 ** if there is a difference. |
| 2998 */ |
| 2999 assert( rc==0 ); |
| 3000 if( pPKey2->flags & UNPACKED_INCRKEY ){ |
| 3001 rc = -1; |
| 3002 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){ |
| 3003 /* Leave rc==0 */ |
| 3004 }else if( idx1<szHdr1 ){ |
| 3005 rc = 1; |
| 3006 } |
| 3007 return rc; |
| 3008 } |
| 3009 |
| 3010 |
| 3011 /* |
| 3012 ** pCur points at an index entry created using the OP_MakeRecord opcode. |
| 3013 ** Read the rowid (the last field in the record) and store it in *rowid. |
| 3014 ** Return SQLITE_OK if everything works, or an error code otherwise. |
| 3015 ** |
| 3016 ** pCur might be pointing to text obtained from a corrupt database file. |
| 3017 ** So the content cannot be trusted. Do appropriate checks on the content. |
| 3018 */ |
| 3019 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){ |
| 3020 i64 nCellKey = 0; |
| 3021 int rc; |
| 3022 u32 szHdr; /* Size of the header */ |
| 3023 u32 typeRowid; /* Serial type of the rowid */ |
| 3024 u32 lenRowid; /* Size of the rowid */ |
| 3025 Mem m, v; |
| 3026 |
| 3027 UNUSED_PARAMETER(db); |
| 3028 |
| 3029 /* Get the size of the index entry. Only indices entries of less |
| 3030 ** than 2GiB are support - anything large must be database corruption. |
| 3031 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so |
| 3032 ** this code can safely assume that nCellKey is 32-bits |
| 3033 */ |
| 3034 assert( sqlite3BtreeCursorIsValid(pCur) ); |
| 3035 rc = sqlite3BtreeKeySize(pCur, &nCellKey); |
| 3036 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ |
| 3037 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey ); |
| 3038 |
| 3039 /* Read in the complete content of the index entry */ |
| 3040 memset(&m, 0, sizeof(m)); |
| 3041 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m); |
| 3042 if( rc ){ |
| 3043 return rc; |
| 3044 } |
| 3045 |
| 3046 /* The index entry must begin with a header size */ |
| 3047 (void)getVarint32((u8*)m.z, szHdr); |
| 3048 testcase( szHdr==3 ); |
| 3049 testcase( szHdr==m.n ); |
| 3050 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){ |
| 3051 goto idx_rowid_corruption; |
| 3052 } |
| 3053 |
| 3054 /* The last field of the index should be an integer - the ROWID. |
| 3055 ** Verify that the last entry really is an integer. */ |
| 3056 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid); |
| 3057 testcase( typeRowid==1 ); |
| 3058 testcase( typeRowid==2 ); |
| 3059 testcase( typeRowid==3 ); |
| 3060 testcase( typeRowid==4 ); |
| 3061 testcase( typeRowid==5 ); |
| 3062 testcase( typeRowid==6 ); |
| 3063 testcase( typeRowid==8 ); |
| 3064 testcase( typeRowid==9 ); |
| 3065 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){ |
| 3066 goto idx_rowid_corruption; |
| 3067 } |
| 3068 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid); |
| 3069 testcase( (u32)m.n==szHdr+lenRowid ); |
| 3070 if( unlikely((u32)m.n<szHdr+lenRowid) ){ |
| 3071 goto idx_rowid_corruption; |
| 3072 } |
| 3073 |
| 3074 /* Fetch the integer off the end of the index record */ |
| 3075 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v); |
| 3076 *rowid = v.u.i; |
| 3077 sqlite3VdbeMemRelease(&m); |
| 3078 return SQLITE_OK; |
| 3079 |
| 3080 /* Jump here if database corruption is detected after m has been |
| 3081 ** allocated. Free the m object and return SQLITE_CORRUPT. */ |
| 3082 idx_rowid_corruption: |
| 3083 testcase( m.zMalloc!=0 ); |
| 3084 sqlite3VdbeMemRelease(&m); |
| 3085 return SQLITE_CORRUPT_BKPT; |
| 3086 } |
| 3087 |
| 3088 /* |
| 3089 ** Compare the key of the index entry that cursor pC is pointing to against |
| 3090 ** the key string in pUnpacked. Write into *pRes a number |
| 3091 ** that is negative, zero, or positive if pC is less than, equal to, |
| 3092 ** or greater than pUnpacked. Return SQLITE_OK on success. |
| 3093 ** |
| 3094 ** pUnpacked is either created without a rowid or is truncated so that it |
| 3095 ** omits the rowid at the end. The rowid at the end of the index entry |
| 3096 ** is ignored as well. Hence, this routine only compares the prefixes |
| 3097 ** of the keys prior to the final rowid, not the entire key. |
| 3098 */ |
| 3099 int sqlite3VdbeIdxKeyCompare( |
| 3100 VdbeCursor *pC, /* The cursor to compare against */ |
| 3101 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */ |
| 3102 int *res /* Write the comparison result here */ |
| 3103 ){ |
| 3104 i64 nCellKey = 0; |
| 3105 int rc; |
| 3106 BtCursor *pCur = pC->pCursor; |
| 3107 Mem m; |
| 3108 |
| 3109 assert( sqlite3BtreeCursorIsValid(pCur) ); |
| 3110 rc = sqlite3BtreeKeySize(pCur, &nCellKey); |
| 3111 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */ |
| 3112 /* nCellKey will always be between 0 and 0xffffffff because of the say |
| 3113 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */ |
| 3114 if( nCellKey<=0 || nCellKey>0x7fffffff ){ |
| 3115 *res = 0; |
| 3116 return SQLITE_CORRUPT_BKPT; |
| 3117 } |
| 3118 memset(&m, 0, sizeof(m)); |
| 3119 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m); |
| 3120 if( rc ){ |
| 3121 return rc; |
| 3122 } |
| 3123 assert( pUnpacked->flags & UNPACKED_IGNORE_ROWID ); |
| 3124 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked); |
| 3125 sqlite3VdbeMemRelease(&m); |
| 3126 return SQLITE_OK; |
| 3127 } |
| 3128 |
| 3129 /* |
| 3130 ** This routine sets the value to be returned by subsequent calls to |
| 3131 ** sqlite3_changes() on the database handle 'db'. |
| 3132 */ |
| 3133 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){ |
| 3134 assert( sqlite3_mutex_held(db->mutex) ); |
| 3135 db->nChange = nChange; |
| 3136 db->nTotalChange += nChange; |
| 3137 } |
| 3138 |
| 3139 /* |
| 3140 ** Set a flag in the vdbe to update the change counter when it is finalised |
| 3141 ** or reset. |
| 3142 */ |
| 3143 void sqlite3VdbeCountChanges(Vdbe *v){ |
| 3144 v->changeCntOn = 1; |
| 3145 } |
| 3146 |
| 3147 /* |
| 3148 ** Mark every prepared statement associated with a database connection |
| 3149 ** as expired. |
| 3150 ** |
| 3151 ** An expired statement means that recompilation of the statement is |
| 3152 ** recommend. Statements expire when things happen that make their |
| 3153 ** programs obsolete. Removing user-defined functions or collating |
| 3154 ** sequences, or changing an authorization function are the types of |
| 3155 ** things that make prepared statements obsolete. |
| 3156 */ |
| 3157 void sqlite3ExpirePreparedStatements(sqlite3 *db){ |
| 3158 Vdbe *p; |
| 3159 for(p = db->pVdbe; p; p=p->pNext){ |
| 3160 p->expired = 1; |
| 3161 } |
| 3162 } |
| 3163 |
| 3164 /* |
| 3165 ** Return the database associated with the Vdbe. |
| 3166 */ |
| 3167 sqlite3 *sqlite3VdbeDb(Vdbe *v){ |
| 3168 return v->db; |
| 3169 } |
| 3170 |
| 3171 /* |
| 3172 ** Return a pointer to an sqlite3_value structure containing the value bound |
| 3173 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return |
| 3174 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_* |
| 3175 ** constants) to the value before returning it. |
| 3176 ** |
| 3177 ** The returned value must be freed by the caller using sqlite3ValueFree(). |
| 3178 */ |
| 3179 sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){ |
| 3180 assert( iVar>0 ); |
| 3181 if( v ){ |
| 3182 Mem *pMem = &v->aVar[iVar-1]; |
| 3183 if( 0==(pMem->flags & MEM_Null) ){ |
| 3184 sqlite3_value *pRet = sqlite3ValueNew(v->db); |
| 3185 if( pRet ){ |
| 3186 sqlite3VdbeMemCopy((Mem *)pRet, pMem); |
| 3187 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8); |
| 3188 sqlite3VdbeMemStoreType((Mem *)pRet); |
| 3189 } |
| 3190 return pRet; |
| 3191 } |
| 3192 } |
| 3193 return 0; |
| 3194 } |
| 3195 |
| 3196 /* |
| 3197 ** Configure SQL variable iVar so that binding a new value to it signals |
| 3198 ** to sqlite3_reoptimize() that re-preparing the statement may result |
| 3199 ** in a better query plan. |
| 3200 */ |
| 3201 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){ |
| 3202 assert( iVar>0 ); |
| 3203 if( iVar>32 ){ |
| 3204 v->expmask = 0xffffffff; |
| 3205 }else{ |
| 3206 v->expmask |= ((u32)1 << (iVar-1)); |
| 3207 } |
| 3208 } |
OLD | NEW |