Index: third_party/sqlite/sqlite-src-3070603/src/util.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/util.c b/third_party/sqlite/sqlite-src-3070603/src/util.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..1c9b401f898a9a671f55f8b75be199720d68a27d |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/util.c |
@@ -0,0 +1,1150 @@ |
+/* |
+** 2001 September 15 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** Utility functions used throughout sqlite. |
+** |
+** This file contains functions for allocating memory, comparing |
+** strings, and stuff like that. |
+** |
+*/ |
+#include "sqliteInt.h" |
+#include <stdarg.h> |
+#ifdef SQLITE_HAVE_ISNAN |
+# include <math.h> |
+#endif |
+ |
+/* |
+** Routine needed to support the testcase() macro. |
+*/ |
+#ifdef SQLITE_COVERAGE_TEST |
+void sqlite3Coverage(int x){ |
+ static unsigned dummy = 0; |
+ dummy += (unsigned)x; |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+/* |
+** Return true if the floating point value is Not a Number (NaN). |
+** |
+** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN. |
+** Otherwise, we have our own implementation that works on most systems. |
+*/ |
+int sqlite3IsNaN(double x){ |
+ int rc; /* The value return */ |
+#if !defined(SQLITE_HAVE_ISNAN) |
+ /* |
+ ** Systems that support the isnan() library function should probably |
+ ** make use of it by compiling with -DSQLITE_HAVE_ISNAN. But we have |
+ ** found that many systems do not have a working isnan() function so |
+ ** this implementation is provided as an alternative. |
+ ** |
+ ** This NaN test sometimes fails if compiled on GCC with -ffast-math. |
+ ** On the other hand, the use of -ffast-math comes with the following |
+ ** warning: |
+ ** |
+ ** This option [-ffast-math] should never be turned on by any |
+ ** -O option since it can result in incorrect output for programs |
+ ** which depend on an exact implementation of IEEE or ISO |
+ ** rules/specifications for math functions. |
+ ** |
+ ** Under MSVC, this NaN test may fail if compiled with a floating- |
+ ** point precision mode other than /fp:precise. From the MSDN |
+ ** documentation: |
+ ** |
+ ** The compiler [with /fp:precise] will properly handle comparisons |
+ ** involving NaN. For example, x != x evaluates to true if x is NaN |
+ ** ... |
+ */ |
+#ifdef __FAST_MATH__ |
+# error SQLite will not work correctly with the -ffast-math option of GCC. |
+#endif |
+ volatile double y = x; |
+ volatile double z = y; |
+ rc = (y!=z); |
+#else /* if defined(SQLITE_HAVE_ISNAN) */ |
+ rc = isnan(x); |
+#endif /* SQLITE_HAVE_ISNAN */ |
+ testcase( rc ); |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_FLOATING_POINT */ |
+ |
+/* |
+** Compute a string length that is limited to what can be stored in |
+** lower 30 bits of a 32-bit signed integer. |
+** |
+** The value returned will never be negative. Nor will it ever be greater |
+** than the actual length of the string. For very long strings (greater |
+** than 1GiB) the value returned might be less than the true string length. |
+*/ |
+int sqlite3Strlen30(const char *z){ |
+ const char *z2 = z; |
+ if( z==0 ) return 0; |
+ while( *z2 ){ z2++; } |
+ return 0x3fffffff & (int)(z2 - z); |
+} |
+ |
+/* |
+** Set the most recent error code and error string for the sqlite |
+** handle "db". The error code is set to "err_code". |
+** |
+** If it is not NULL, string zFormat specifies the format of the |
+** error string in the style of the printf functions: The following |
+** format characters are allowed: |
+** |
+** %s Insert a string |
+** %z A string that should be freed after use |
+** %d Insert an integer |
+** %T Insert a token |
+** %S Insert the first element of a SrcList |
+** |
+** zFormat and any string tokens that follow it are assumed to be |
+** encoded in UTF-8. |
+** |
+** To clear the most recent error for sqlite handle "db", sqlite3Error |
+** should be called with err_code set to SQLITE_OK and zFormat set |
+** to NULL. |
+*/ |
+void sqlite3Error(sqlite3 *db, int err_code, const char *zFormat, ...){ |
+ if( db && (db->pErr || (db->pErr = sqlite3ValueNew(db))!=0) ){ |
+ db->errCode = err_code; |
+ if( zFormat ){ |
+ char *z; |
+ va_list ap; |
+ va_start(ap, zFormat); |
+ z = sqlite3VMPrintf(db, zFormat, ap); |
+ va_end(ap); |
+ sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC); |
+ }else{ |
+ sqlite3ValueSetStr(db->pErr, 0, 0, SQLITE_UTF8, SQLITE_STATIC); |
+ } |
+ } |
+} |
+ |
+/* |
+** Add an error message to pParse->zErrMsg and increment pParse->nErr. |
+** The following formatting characters are allowed: |
+** |
+** %s Insert a string |
+** %z A string that should be freed after use |
+** %d Insert an integer |
+** %T Insert a token |
+** %S Insert the first element of a SrcList |
+** |
+** This function should be used to report any error that occurs whilst |
+** compiling an SQL statement (i.e. within sqlite3_prepare()). The |
+** last thing the sqlite3_prepare() function does is copy the error |
+** stored by this function into the database handle using sqlite3Error(). |
+** Function sqlite3Error() should be used during statement execution |
+** (sqlite3_step() etc.). |
+*/ |
+void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){ |
+ char *zMsg; |
+ va_list ap; |
+ sqlite3 *db = pParse->db; |
+ va_start(ap, zFormat); |
+ zMsg = sqlite3VMPrintf(db, zFormat, ap); |
+ va_end(ap); |
+ if( db->suppressErr ){ |
+ sqlite3DbFree(db, zMsg); |
+ }else{ |
+ pParse->nErr++; |
+ sqlite3DbFree(db, pParse->zErrMsg); |
+ pParse->zErrMsg = zMsg; |
+ pParse->rc = SQLITE_ERROR; |
+ } |
+} |
+ |
+/* |
+** Convert an SQL-style quoted string into a normal string by removing |
+** the quote characters. The conversion is done in-place. If the |
+** input does not begin with a quote character, then this routine |
+** is a no-op. |
+** |
+** The input string must be zero-terminated. A new zero-terminator |
+** is added to the dequoted string. |
+** |
+** The return value is -1 if no dequoting occurs or the length of the |
+** dequoted string, exclusive of the zero terminator, if dequoting does |
+** occur. |
+** |
+** 2002-Feb-14: This routine is extended to remove MS-Access style |
+** brackets from around identifers. For example: "[a-b-c]" becomes |
+** "a-b-c". |
+*/ |
+int sqlite3Dequote(char *z){ |
+ char quote; |
+ int i, j; |
+ if( z==0 ) return -1; |
+ quote = z[0]; |
+ switch( quote ){ |
+ case '\'': break; |
+ case '"': break; |
+ case '`': break; /* For MySQL compatibility */ |
+ case '[': quote = ']'; break; /* For MS SqlServer compatibility */ |
+ default: return -1; |
+ } |
+ for(i=1, j=0; ALWAYS(z[i]); i++){ |
+ if( z[i]==quote ){ |
+ if( z[i+1]==quote ){ |
+ z[j++] = quote; |
+ i++; |
+ }else{ |
+ break; |
+ } |
+ }else{ |
+ z[j++] = z[i]; |
+ } |
+ } |
+ z[j] = 0; |
+ return j; |
+} |
+ |
+/* Convenient short-hand */ |
+#define UpperToLower sqlite3UpperToLower |
+ |
+/* |
+** Some systems have stricmp(). Others have strcasecmp(). Because |
+** there is no consistency, we will define our own. |
+** |
+** IMPLEMENTATION-OF: R-20522-24639 The sqlite3_strnicmp() API allows |
+** applications and extensions to compare the contents of two buffers |
+** containing UTF-8 strings in a case-independent fashion, using the same |
+** definition of case independence that SQLite uses internally when |
+** comparing identifiers. |
+*/ |
+int sqlite3StrICmp(const char *zLeft, const char *zRight){ |
+ register unsigned char *a, *b; |
+ a = (unsigned char *)zLeft; |
+ b = (unsigned char *)zRight; |
+ while( *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
+ return UpperToLower[*a] - UpperToLower[*b]; |
+} |
+int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){ |
+ register unsigned char *a, *b; |
+ a = (unsigned char *)zLeft; |
+ b = (unsigned char *)zRight; |
+ while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; } |
+ return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b]; |
+} |
+ |
+/* |
+** The string z[] is an text representation of a real number. |
+** Convert this string to a double and write it into *pResult. |
+** |
+** The string z[] is length bytes in length (bytes, not characters) and |
+** uses the encoding enc. The string is not necessarily zero-terminated. |
+** |
+** Return TRUE if the result is a valid real number (or integer) and FALSE |
+** if the string is empty or contains extraneous text. Valid numbers |
+** are in one of these formats: |
+** |
+** [+-]digits[E[+-]digits] |
+** [+-]digits.[digits][E[+-]digits] |
+** [+-].digits[E[+-]digits] |
+** |
+** Leading and trailing whitespace is ignored for the purpose of determining |
+** validity. |
+** |
+** If some prefix of the input string is a valid number, this routine |
+** returns FALSE but it still converts the prefix and writes the result |
+** into *pResult. |
+*/ |
+int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){ |
+#ifndef SQLITE_OMIT_FLOATING_POINT |
+ int incr = (enc==SQLITE_UTF8?1:2); |
+ const char *zEnd = z + length; |
+ /* sign * significand * (10 ^ (esign * exponent)) */ |
+ int sign = 1; /* sign of significand */ |
+ i64 s = 0; /* significand */ |
+ int d = 0; /* adjust exponent for shifting decimal point */ |
+ int esign = 1; /* sign of exponent */ |
+ int e = 0; /* exponent */ |
+ int eValid = 1; /* True exponent is either not used or is well-formed */ |
+ double result; |
+ int nDigits = 0; |
+ |
+ *pResult = 0.0; /* Default return value, in case of an error */ |
+ |
+ if( enc==SQLITE_UTF16BE ) z++; |
+ |
+ /* skip leading spaces */ |
+ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; |
+ if( z>=zEnd ) return 0; |
+ |
+ /* get sign of significand */ |
+ if( *z=='-' ){ |
+ sign = -1; |
+ z+=incr; |
+ }else if( *z=='+' ){ |
+ z+=incr; |
+ } |
+ |
+ /* skip leading zeroes */ |
+ while( z<zEnd && z[0]=='0' ) z+=incr, nDigits++; |
+ |
+ /* copy max significant digits to significand */ |
+ while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
+ s = s*10 + (*z - '0'); |
+ z+=incr, nDigits++; |
+ } |
+ |
+ /* skip non-significant significand digits |
+ ** (increase exponent by d to shift decimal left) */ |
+ while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++, d++; |
+ if( z>=zEnd ) goto do_atof_calc; |
+ |
+ /* if decimal point is present */ |
+ if( *z=='.' ){ |
+ z+=incr; |
+ /* copy digits from after decimal to significand |
+ ** (decrease exponent by d to shift decimal right) */ |
+ while( z<zEnd && sqlite3Isdigit(*z) && s<((LARGEST_INT64-9)/10) ){ |
+ s = s*10 + (*z - '0'); |
+ z+=incr, nDigits++, d--; |
+ } |
+ /* skip non-significant digits */ |
+ while( z<zEnd && sqlite3Isdigit(*z) ) z+=incr, nDigits++; |
+ } |
+ if( z>=zEnd ) goto do_atof_calc; |
+ |
+ /* if exponent is present */ |
+ if( *z=='e' || *z=='E' ){ |
+ z+=incr; |
+ eValid = 0; |
+ if( z>=zEnd ) goto do_atof_calc; |
+ /* get sign of exponent */ |
+ if( *z=='-' ){ |
+ esign = -1; |
+ z+=incr; |
+ }else if( *z=='+' ){ |
+ z+=incr; |
+ } |
+ /* copy digits to exponent */ |
+ while( z<zEnd && sqlite3Isdigit(*z) ){ |
+ e = e*10 + (*z - '0'); |
+ z+=incr; |
+ eValid = 1; |
+ } |
+ } |
+ |
+ /* skip trailing spaces */ |
+ if( nDigits && eValid ){ |
+ while( z<zEnd && sqlite3Isspace(*z) ) z+=incr; |
+ } |
+ |
+do_atof_calc: |
+ /* adjust exponent by d, and update sign */ |
+ e = (e*esign) + d; |
+ if( e<0 ) { |
+ esign = -1; |
+ e *= -1; |
+ } else { |
+ esign = 1; |
+ } |
+ |
+ /* if 0 significand */ |
+ if( !s ) { |
+ /* In the IEEE 754 standard, zero is signed. |
+ ** Add the sign if we've seen at least one digit */ |
+ result = (sign<0 && nDigits) ? -(double)0 : (double)0; |
+ } else { |
+ /* attempt to reduce exponent */ |
+ if( esign>0 ){ |
+ while( s<(LARGEST_INT64/10) && e>0 ) e--,s*=10; |
+ }else{ |
+ while( !(s%10) && e>0 ) e--,s/=10; |
+ } |
+ |
+ /* adjust the sign of significand */ |
+ s = sign<0 ? -s : s; |
+ |
+ /* if exponent, scale significand as appropriate |
+ ** and store in result. */ |
+ if( e ){ |
+ double scale = 1.0; |
+ /* attempt to handle extremely small/large numbers better */ |
+ if( e>307 && e<342 ){ |
+ while( e%308 ) { scale *= 1.0e+1; e -= 1; } |
+ if( esign<0 ){ |
+ result = s / scale; |
+ result /= 1.0e+308; |
+ }else{ |
+ result = s * scale; |
+ result *= 1.0e+308; |
+ } |
+ }else{ |
+ /* 1.0e+22 is the largest power of 10 than can be |
+ ** represented exactly. */ |
+ while( e%22 ) { scale *= 1.0e+1; e -= 1; } |
+ while( e>0 ) { scale *= 1.0e+22; e -= 22; } |
+ if( esign<0 ){ |
+ result = s / scale; |
+ }else{ |
+ result = s * scale; |
+ } |
+ } |
+ } else { |
+ result = (double)s; |
+ } |
+ } |
+ |
+ /* store the result */ |
+ *pResult = result; |
+ |
+ /* return true if number and no extra non-whitespace chracters after */ |
+ return z>=zEnd && nDigits>0 && eValid; |
+#else |
+ return !sqlite3Atoi64(z, pResult, length, enc); |
+#endif /* SQLITE_OMIT_FLOATING_POINT */ |
+} |
+ |
+/* |
+** Compare the 19-character string zNum against the text representation |
+** value 2^63: 9223372036854775808. Return negative, zero, or positive |
+** if zNum is less than, equal to, or greater than the string. |
+** Note that zNum must contain exactly 19 characters. |
+** |
+** Unlike memcmp() this routine is guaranteed to return the difference |
+** in the values of the last digit if the only difference is in the |
+** last digit. So, for example, |
+** |
+** compare2pow63("9223372036854775800", 1) |
+** |
+** will return -8. |
+*/ |
+static int compare2pow63(const char *zNum, int incr){ |
+ int c = 0; |
+ int i; |
+ /* 012345678901234567 */ |
+ const char *pow63 = "922337203685477580"; |
+ for(i=0; c==0 && i<18; i++){ |
+ c = (zNum[i*incr]-pow63[i])*10; |
+ } |
+ if( c==0 ){ |
+ c = zNum[18*incr] - '8'; |
+ testcase( c==(-1) ); |
+ testcase( c==0 ); |
+ testcase( c==(+1) ); |
+ } |
+ return c; |
+} |
+ |
+ |
+/* |
+** Convert zNum to a 64-bit signed integer. |
+** |
+** If the zNum value is representable as a 64-bit twos-complement |
+** integer, then write that value into *pNum and return 0. |
+** |
+** If zNum is exactly 9223372036854665808, return 2. This special |
+** case is broken out because while 9223372036854665808 cannot be a |
+** signed 64-bit integer, its negative -9223372036854665808 can be. |
+** |
+** If zNum is too big for a 64-bit integer and is not |
+** 9223372036854665808 then return 1. |
+** |
+** length is the number of bytes in the string (bytes, not characters). |
+** The string is not necessarily zero-terminated. The encoding is |
+** given by enc. |
+*/ |
+int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){ |
+ int incr = (enc==SQLITE_UTF8?1:2); |
+ u64 u = 0; |
+ int neg = 0; /* assume positive */ |
+ int i; |
+ int c = 0; |
+ const char *zStart; |
+ const char *zEnd = zNum + length; |
+ if( enc==SQLITE_UTF16BE ) zNum++; |
+ while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr; |
+ if( zNum<zEnd ){ |
+ if( *zNum=='-' ){ |
+ neg = 1; |
+ zNum+=incr; |
+ }else if( *zNum=='+' ){ |
+ zNum+=incr; |
+ } |
+ } |
+ zStart = zNum; |
+ while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */ |
+ for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){ |
+ u = u*10 + c - '0'; |
+ } |
+ if( u>LARGEST_INT64 ){ |
+ *pNum = SMALLEST_INT64; |
+ }else if( neg ){ |
+ *pNum = -(i64)u; |
+ }else{ |
+ *pNum = (i64)u; |
+ } |
+ testcase( i==18 ); |
+ testcase( i==19 ); |
+ testcase( i==20 ); |
+ if( (c!=0 && &zNum[i]<zEnd) || (i==0 && zStart==zNum) || i>19*incr ){ |
+ /* zNum is empty or contains non-numeric text or is longer |
+ ** than 19 digits (thus guaranteeing that it is too large) */ |
+ return 1; |
+ }else if( i<19*incr ){ |
+ /* Less than 19 digits, so we know that it fits in 64 bits */ |
+ assert( u<=LARGEST_INT64 ); |
+ return 0; |
+ }else{ |
+ /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */ |
+ c = compare2pow63(zNum, incr); |
+ if( c<0 ){ |
+ /* zNum is less than 9223372036854775808 so it fits */ |
+ assert( u<=LARGEST_INT64 ); |
+ return 0; |
+ }else if( c>0 ){ |
+ /* zNum is greater than 9223372036854775808 so it overflows */ |
+ return 1; |
+ }else{ |
+ /* zNum is exactly 9223372036854775808. Fits if negative. The |
+ ** special case 2 overflow if positive */ |
+ assert( u-1==LARGEST_INT64 ); |
+ assert( (*pNum)==SMALLEST_INT64 ); |
+ return neg ? 0 : 2; |
+ } |
+ } |
+} |
+ |
+/* |
+** If zNum represents an integer that will fit in 32-bits, then set |
+** *pValue to that integer and return true. Otherwise return false. |
+** |
+** Any non-numeric characters that following zNum are ignored. |
+** This is different from sqlite3Atoi64() which requires the |
+** input number to be zero-terminated. |
+*/ |
+int sqlite3GetInt32(const char *zNum, int *pValue){ |
+ sqlite_int64 v = 0; |
+ int i, c; |
+ int neg = 0; |
+ if( zNum[0]=='-' ){ |
+ neg = 1; |
+ zNum++; |
+ }else if( zNum[0]=='+' ){ |
+ zNum++; |
+ } |
+ while( zNum[0]=='0' ) zNum++; |
+ for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){ |
+ v = v*10 + c; |
+ } |
+ |
+ /* The longest decimal representation of a 32 bit integer is 10 digits: |
+ ** |
+ ** 1234567890 |
+ ** 2^31 -> 2147483648 |
+ */ |
+ testcase( i==10 ); |
+ if( i>10 ){ |
+ return 0; |
+ } |
+ testcase( v-neg==2147483647 ); |
+ if( v-neg>2147483647 ){ |
+ return 0; |
+ } |
+ if( neg ){ |
+ v = -v; |
+ } |
+ *pValue = (int)v; |
+ return 1; |
+} |
+ |
+/* |
+** Return a 32-bit integer value extracted from a string. If the |
+** string is not an integer, just return 0. |
+*/ |
+int sqlite3Atoi(const char *z){ |
+ int x = 0; |
+ if( z ) sqlite3GetInt32(z, &x); |
+ return x; |
+} |
+ |
+/* |
+** The variable-length integer encoding is as follows: |
+** |
+** KEY: |
+** A = 0xxxxxxx 7 bits of data and one flag bit |
+** B = 1xxxxxxx 7 bits of data and one flag bit |
+** C = xxxxxxxx 8 bits of data |
+** |
+** 7 bits - A |
+** 14 bits - BA |
+** 21 bits - BBA |
+** 28 bits - BBBA |
+** 35 bits - BBBBA |
+** 42 bits - BBBBBA |
+** 49 bits - BBBBBBA |
+** 56 bits - BBBBBBBA |
+** 64 bits - BBBBBBBBC |
+*/ |
+ |
+/* |
+** Write a 64-bit variable-length integer to memory starting at p[0]. |
+** The length of data write will be between 1 and 9 bytes. The number |
+** of bytes written is returned. |
+** |
+** A variable-length integer consists of the lower 7 bits of each byte |
+** for all bytes that have the 8th bit set and one byte with the 8th |
+** bit clear. Except, if we get to the 9th byte, it stores the full |
+** 8 bits and is the last byte. |
+*/ |
+int sqlite3PutVarint(unsigned char *p, u64 v){ |
+ int i, j, n; |
+ u8 buf[10]; |
+ if( v & (((u64)0xff000000)<<32) ){ |
+ p[8] = (u8)v; |
+ v >>= 8; |
+ for(i=7; i>=0; i--){ |
+ p[i] = (u8)((v & 0x7f) | 0x80); |
+ v >>= 7; |
+ } |
+ return 9; |
+ } |
+ n = 0; |
+ do{ |
+ buf[n++] = (u8)((v & 0x7f) | 0x80); |
+ v >>= 7; |
+ }while( v!=0 ); |
+ buf[0] &= 0x7f; |
+ assert( n<=9 ); |
+ for(i=0, j=n-1; j>=0; j--, i++){ |
+ p[i] = buf[j]; |
+ } |
+ return n; |
+} |
+ |
+/* |
+** This routine is a faster version of sqlite3PutVarint() that only |
+** works for 32-bit positive integers and which is optimized for |
+** the common case of small integers. A MACRO version, putVarint32, |
+** is provided which inlines the single-byte case. All code should use |
+** the MACRO version as this function assumes the single-byte case has |
+** already been handled. |
+*/ |
+int sqlite3PutVarint32(unsigned char *p, u32 v){ |
+#ifndef putVarint32 |
+ if( (v & ~0x7f)==0 ){ |
+ p[0] = v; |
+ return 1; |
+ } |
+#endif |
+ if( (v & ~0x3fff)==0 ){ |
+ p[0] = (u8)((v>>7) | 0x80); |
+ p[1] = (u8)(v & 0x7f); |
+ return 2; |
+ } |
+ return sqlite3PutVarint(p, v); |
+} |
+ |
+/* |
+** Bitmasks used by sqlite3GetVarint(). These precomputed constants |
+** are defined here rather than simply putting the constant expressions |
+** inline in order to work around bugs in the RVT compiler. |
+** |
+** SLOT_2_0 A mask for (0x7f<<14) | 0x7f |
+** |
+** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0 |
+*/ |
+#define SLOT_2_0 0x001fc07f |
+#define SLOT_4_2_0 0xf01fc07f |
+ |
+ |
+/* |
+** Read a 64-bit variable-length integer from memory starting at p[0]. |
+** Return the number of bytes read. The value is stored in *v. |
+*/ |
+u8 sqlite3GetVarint(const unsigned char *p, u64 *v){ |
+ u32 a,b,s; |
+ |
+ a = *p; |
+ /* a: p0 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ *v = a; |
+ return 1; |
+ } |
+ |
+ p++; |
+ b = *p; |
+ /* b: p1 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ a &= 0x7f; |
+ a = a<<7; |
+ a |= b; |
+ *v = a; |
+ return 2; |
+ } |
+ |
+ /* Verify that constants are precomputed correctly */ |
+ assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) ); |
+ assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) ); |
+ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p0<<14 | p2 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ a &= SLOT_2_0; |
+ b &= 0x7f; |
+ b = b<<7; |
+ a |= b; |
+ *v = a; |
+ return 3; |
+ } |
+ |
+ /* CSE1 from below */ |
+ a &= SLOT_2_0; |
+ p++; |
+ b = b<<14; |
+ b |= *p; |
+ /* b: p1<<14 | p3 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ b &= SLOT_2_0; |
+ /* moved CSE1 up */ |
+ /* a &= (0x7f<<14)|(0x7f); */ |
+ a = a<<7; |
+ a |= b; |
+ *v = a; |
+ return 4; |
+ } |
+ |
+ /* a: p0<<14 | p2 (masked) */ |
+ /* b: p1<<14 | p3 (unmasked) */ |
+ /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
+ /* moved CSE1 up */ |
+ /* a &= (0x7f<<14)|(0x7f); */ |
+ b &= SLOT_2_0; |
+ s = a; |
+ /* s: p0<<14 | p2 (masked) */ |
+ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ /* we can skip these cause they were (effectively) done above in calc'ing s */ |
+ /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
+ /* b &= (0x7f<<14)|(0x7f); */ |
+ b = b<<7; |
+ a |= b; |
+ s = s>>18; |
+ *v = ((u64)s)<<32 | a; |
+ return 5; |
+ } |
+ |
+ /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
+ s = s<<7; |
+ s |= b; |
+ /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */ |
+ |
+ p++; |
+ b = b<<14; |
+ b |= *p; |
+ /* b: p1<<28 | p3<<14 | p5 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ /* we can skip this cause it was (effectively) done above in calc'ing s */ |
+ /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */ |
+ a &= SLOT_2_0; |
+ a = a<<7; |
+ a |= b; |
+ s = s>>18; |
+ *v = ((u64)s)<<32 | a; |
+ return 6; |
+ } |
+ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p2<<28 | p4<<14 | p6 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ a &= SLOT_4_2_0; |
+ b &= SLOT_2_0; |
+ b = b<<7; |
+ a |= b; |
+ s = s>>11; |
+ *v = ((u64)s)<<32 | a; |
+ return 7; |
+ } |
+ |
+ /* CSE2 from below */ |
+ a &= SLOT_2_0; |
+ p++; |
+ b = b<<14; |
+ b |= *p; |
+ /* b: p3<<28 | p5<<14 | p7 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ b &= SLOT_4_2_0; |
+ /* moved CSE2 up */ |
+ /* a &= (0x7f<<14)|(0x7f); */ |
+ a = a<<7; |
+ a |= b; |
+ s = s>>4; |
+ *v = ((u64)s)<<32 | a; |
+ return 8; |
+ } |
+ |
+ p++; |
+ a = a<<15; |
+ a |= *p; |
+ /* a: p4<<29 | p6<<15 | p8 (unmasked) */ |
+ |
+ /* moved CSE2 up */ |
+ /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */ |
+ b &= SLOT_2_0; |
+ b = b<<8; |
+ a |= b; |
+ |
+ s = s<<4; |
+ b = p[-4]; |
+ b &= 0x7f; |
+ b = b>>3; |
+ s |= b; |
+ |
+ *v = ((u64)s)<<32 | a; |
+ |
+ return 9; |
+} |
+ |
+/* |
+** Read a 32-bit variable-length integer from memory starting at p[0]. |
+** Return the number of bytes read. The value is stored in *v. |
+** |
+** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned |
+** integer, then set *v to 0xffffffff. |
+** |
+** A MACRO version, getVarint32, is provided which inlines the |
+** single-byte case. All code should use the MACRO version as |
+** this function assumes the single-byte case has already been handled. |
+*/ |
+u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){ |
+ u32 a,b; |
+ |
+ /* The 1-byte case. Overwhelmingly the most common. Handled inline |
+ ** by the getVarin32() macro */ |
+ a = *p; |
+ /* a: p0 (unmasked) */ |
+#ifndef getVarint32 |
+ if (!(a&0x80)) |
+ { |
+ /* Values between 0 and 127 */ |
+ *v = a; |
+ return 1; |
+ } |
+#endif |
+ |
+ /* The 2-byte case */ |
+ p++; |
+ b = *p; |
+ /* b: p1 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ /* Values between 128 and 16383 */ |
+ a &= 0x7f; |
+ a = a<<7; |
+ *v = a | b; |
+ return 2; |
+ } |
+ |
+ /* The 3-byte case */ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p0<<14 | p2 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ /* Values between 16384 and 2097151 */ |
+ a &= (0x7f<<14)|(0x7f); |
+ b &= 0x7f; |
+ b = b<<7; |
+ *v = a | b; |
+ return 3; |
+ } |
+ |
+ /* A 32-bit varint is used to store size information in btrees. |
+ ** Objects are rarely larger than 2MiB limit of a 3-byte varint. |
+ ** A 3-byte varint is sufficient, for example, to record the size |
+ ** of a 1048569-byte BLOB or string. |
+ ** |
+ ** We only unroll the first 1-, 2-, and 3- byte cases. The very |
+ ** rare larger cases can be handled by the slower 64-bit varint |
+ ** routine. |
+ */ |
+#if 1 |
+ { |
+ u64 v64; |
+ u8 n; |
+ |
+ p -= 2; |
+ n = sqlite3GetVarint(p, &v64); |
+ assert( n>3 && n<=9 ); |
+ if( (v64 & SQLITE_MAX_U32)!=v64 ){ |
+ *v = 0xffffffff; |
+ }else{ |
+ *v = (u32)v64; |
+ } |
+ return n; |
+ } |
+ |
+#else |
+ /* For following code (kept for historical record only) shows an |
+ ** unrolling for the 3- and 4-byte varint cases. This code is |
+ ** slightly faster, but it is also larger and much harder to test. |
+ */ |
+ p++; |
+ b = b<<14; |
+ b |= *p; |
+ /* b: p1<<14 | p3 (unmasked) */ |
+ if (!(b&0x80)) |
+ { |
+ /* Values between 2097152 and 268435455 */ |
+ b &= (0x7f<<14)|(0x7f); |
+ a &= (0x7f<<14)|(0x7f); |
+ a = a<<7; |
+ *v = a | b; |
+ return 4; |
+ } |
+ |
+ p++; |
+ a = a<<14; |
+ a |= *p; |
+ /* a: p0<<28 | p2<<14 | p4 (unmasked) */ |
+ if (!(a&0x80)) |
+ { |
+ /* Values between 268435456 and 34359738367 */ |
+ a &= SLOT_4_2_0; |
+ b &= SLOT_4_2_0; |
+ b = b<<7; |
+ *v = a | b; |
+ return 5; |
+ } |
+ |
+ /* We can only reach this point when reading a corrupt database |
+ ** file. In that case we are not in any hurry. Use the (relatively |
+ ** slow) general-purpose sqlite3GetVarint() routine to extract the |
+ ** value. */ |
+ { |
+ u64 v64; |
+ u8 n; |
+ |
+ p -= 4; |
+ n = sqlite3GetVarint(p, &v64); |
+ assert( n>5 && n<=9 ); |
+ *v = (u32)v64; |
+ return n; |
+ } |
+#endif |
+} |
+ |
+/* |
+** Return the number of bytes that will be needed to store the given |
+** 64-bit integer. |
+*/ |
+int sqlite3VarintLen(u64 v){ |
+ int i = 0; |
+ do{ |
+ i++; |
+ v >>= 7; |
+ }while( v!=0 && ALWAYS(i<9) ); |
+ return i; |
+} |
+ |
+ |
+/* |
+** Read or write a four-byte big-endian integer value. |
+*/ |
+u32 sqlite3Get4byte(const u8 *p){ |
+ return (p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3]; |
+} |
+void sqlite3Put4byte(unsigned char *p, u32 v){ |
+ p[0] = (u8)(v>>24); |
+ p[1] = (u8)(v>>16); |
+ p[2] = (u8)(v>>8); |
+ p[3] = (u8)v; |
+} |
+ |
+ |
+ |
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
+/* |
+** Translate a single byte of Hex into an integer. |
+** This routine only works if h really is a valid hexadecimal |
+** character: 0..9a..fA..F |
+*/ |
+static u8 hexToInt(int h){ |
+ assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') ); |
+#ifdef SQLITE_ASCII |
+ h += 9*(1&(h>>6)); |
+#endif |
+#ifdef SQLITE_EBCDIC |
+ h += 9*(1&~(h>>4)); |
+#endif |
+ return (u8)(h & 0xf); |
+} |
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
+ |
+#if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC) |
+/* |
+** Convert a BLOB literal of the form "x'hhhhhh'" into its binary |
+** value. Return a pointer to its binary value. Space to hold the |
+** binary value has been obtained from malloc and must be freed by |
+** the calling routine. |
+*/ |
+void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){ |
+ char *zBlob; |
+ int i; |
+ |
+ zBlob = (char *)sqlite3DbMallocRaw(db, n/2 + 1); |
+ n--; |
+ if( zBlob ){ |
+ for(i=0; i<n; i+=2){ |
+ zBlob[i/2] = (hexToInt(z[i])<<4) | hexToInt(z[i+1]); |
+ } |
+ zBlob[i/2] = 0; |
+ } |
+ return zBlob; |
+} |
+#endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */ |
+ |
+/* |
+** Log an error that is an API call on a connection pointer that should |
+** not have been used. The "type" of connection pointer is given as the |
+** argument. The zType is a word like "NULL" or "closed" or "invalid". |
+*/ |
+static void logBadConnection(const char *zType){ |
+ sqlite3_log(SQLITE_MISUSE, |
+ "API call with %s database connection pointer", |
+ zType |
+ ); |
+} |
+ |
+/* |
+** Check to make sure we have a valid db pointer. This test is not |
+** foolproof but it does provide some measure of protection against |
+** misuse of the interface such as passing in db pointers that are |
+** NULL or which have been previously closed. If this routine returns |
+** 1 it means that the db pointer is valid and 0 if it should not be |
+** dereferenced for any reason. The calling function should invoke |
+** SQLITE_MISUSE immediately. |
+** |
+** sqlite3SafetyCheckOk() requires that the db pointer be valid for |
+** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to |
+** open properly and is not fit for general use but which can be |
+** used as an argument to sqlite3_errmsg() or sqlite3_close(). |
+*/ |
+int sqlite3SafetyCheckOk(sqlite3 *db){ |
+ u32 magic; |
+ if( db==0 ){ |
+ logBadConnection("NULL"); |
+ return 0; |
+ } |
+ magic = db->magic; |
+ if( magic!=SQLITE_MAGIC_OPEN ){ |
+ if( sqlite3SafetyCheckSickOrOk(db) ){ |
+ testcase( sqlite3GlobalConfig.xLog!=0 ); |
+ logBadConnection("unopened"); |
+ } |
+ return 0; |
+ }else{ |
+ return 1; |
+ } |
+} |
+int sqlite3SafetyCheckSickOrOk(sqlite3 *db){ |
+ u32 magic; |
+ magic = db->magic; |
+ if( magic!=SQLITE_MAGIC_SICK && |
+ magic!=SQLITE_MAGIC_OPEN && |
+ magic!=SQLITE_MAGIC_BUSY ){ |
+ testcase( sqlite3GlobalConfig.xLog!=0 ); |
+ logBadConnection("invalid"); |
+ return 0; |
+ }else{ |
+ return 1; |
+ } |
+} |
+ |
+/* |
+** Attempt to add, substract, or multiply the 64-bit signed value iB against |
+** the other 64-bit signed integer at *pA and store the result in *pA. |
+** Return 0 on success. Or if the operation would have resulted in an |
+** overflow, leave *pA unchanged and return 1. |
+*/ |
+int sqlite3AddInt64(i64 *pA, i64 iB){ |
+ i64 iA = *pA; |
+ testcase( iA==0 ); testcase( iA==1 ); |
+ testcase( iB==-1 ); testcase( iB==0 ); |
+ if( iB>=0 ){ |
+ testcase( iA>0 && LARGEST_INT64 - iA == iB ); |
+ testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 ); |
+ if( iA>0 && LARGEST_INT64 - iA < iB ) return 1; |
+ *pA += iB; |
+ }else{ |
+ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 ); |
+ testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 ); |
+ if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1; |
+ *pA += iB; |
+ } |
+ return 0; |
+} |
+int sqlite3SubInt64(i64 *pA, i64 iB){ |
+ testcase( iB==SMALLEST_INT64+1 ); |
+ if( iB==SMALLEST_INT64 ){ |
+ testcase( (*pA)==(-1) ); testcase( (*pA)==0 ); |
+ if( (*pA)>=0 ) return 1; |
+ *pA -= iB; |
+ return 0; |
+ }else{ |
+ return sqlite3AddInt64(pA, -iB); |
+ } |
+} |
+#define TWOPOWER32 (((i64)1)<<32) |
+#define TWOPOWER31 (((i64)1)<<31) |
+int sqlite3MulInt64(i64 *pA, i64 iB){ |
+ i64 iA = *pA; |
+ i64 iA1, iA0, iB1, iB0, r; |
+ |
+ iA1 = iA/TWOPOWER32; |
+ iA0 = iA % TWOPOWER32; |
+ iB1 = iB/TWOPOWER32; |
+ iB0 = iB % TWOPOWER32; |
+ if( iA1*iB1 != 0 ) return 1; |
+ assert( iA1*iB0==0 || iA0*iB1==0 ); |
+ r = iA1*iB0 + iA0*iB1; |
+ testcase( r==(-TWOPOWER31)-1 ); |
+ testcase( r==(-TWOPOWER31) ); |
+ testcase( r==TWOPOWER31 ); |
+ testcase( r==TWOPOWER31-1 ); |
+ if( r<(-TWOPOWER31) || r>=TWOPOWER31 ) return 1; |
+ r *= TWOPOWER32; |
+ if( sqlite3AddInt64(&r, iA0*iB0) ) return 1; |
+ *pA = r; |
+ return 0; |
+} |
+ |
+/* |
+** Compute the absolute value of a 32-bit signed integer, of possible. Or |
+** if the integer has a value of -2147483648, return +2147483647 |
+*/ |
+int sqlite3AbsInt32(int x){ |
+ if( x>=0 ) return x; |
+ if( x==(int)0x80000000 ) return 0x7fffffff; |
+ return -x; |
+} |