| Index: third_party/sqlite/sqlite-src-3070603/src/utf.c
|
| diff --git a/third_party/sqlite/sqlite-src-3070603/src/utf.c b/third_party/sqlite/sqlite-src-3070603/src/utf.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..95182694d39d46a37f57e5ba2e9730240194d49e
|
| --- /dev/null
|
| +++ b/third_party/sqlite/sqlite-src-3070603/src/utf.c
|
| @@ -0,0 +1,560 @@
|
| +/*
|
| +** 2004 April 13
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This file contains routines used to translate between UTF-8,
|
| +** UTF-16, UTF-16BE, and UTF-16LE.
|
| +**
|
| +** Notes on UTF-8:
|
| +**
|
| +** Byte-0 Byte-1 Byte-2 Byte-3 Value
|
| +** 0xxxxxxx 00000000 00000000 0xxxxxxx
|
| +** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx
|
| +** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx
|
| +** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
| +**
|
| +**
|
| +** Notes on UTF-16: (with wwww+1==uuuuu)
|
| +**
|
| +** Word-0 Word-1 Value
|
| +** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx
|
| +** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx
|
| +**
|
| +**
|
| +** BOM or Byte Order Mark:
|
| +** 0xff 0xfe little-endian utf-16 follows
|
| +** 0xfe 0xff big-endian utf-16 follows
|
| +**
|
| +*/
|
| +#include "sqliteInt.h"
|
| +#include <assert.h>
|
| +#include "vdbeInt.h"
|
| +
|
| +#ifndef SQLITE_AMALGAMATION
|
| +/*
|
| +** The following constant value is used by the SQLITE_BIGENDIAN and
|
| +** SQLITE_LITTLEENDIAN macros.
|
| +*/
|
| +const int sqlite3one = 1;
|
| +#endif /* SQLITE_AMALGAMATION */
|
| +
|
| +/*
|
| +** This lookup table is used to help decode the first byte of
|
| +** a multi-byte UTF8 character.
|
| +*/
|
| +static const unsigned char sqlite3Utf8Trans1[] = {
|
| + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
| + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
| + 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
|
| + 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
|
| + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
| + 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
|
| + 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
|
| + 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00,
|
| +};
|
| +
|
| +
|
| +#define WRITE_UTF8(zOut, c) { \
|
| + if( c<0x00080 ){ \
|
| + *zOut++ = (u8)(c&0xFF); \
|
| + } \
|
| + else if( c<0x00800 ){ \
|
| + *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \
|
| + *zOut++ = 0x80 + (u8)(c & 0x3F); \
|
| + } \
|
| + else if( c<0x10000 ){ \
|
| + *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \
|
| + *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
|
| + *zOut++ = 0x80 + (u8)(c & 0x3F); \
|
| + }else{ \
|
| + *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \
|
| + *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \
|
| + *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \
|
| + *zOut++ = 0x80 + (u8)(c & 0x3F); \
|
| + } \
|
| +}
|
| +
|
| +#define WRITE_UTF16LE(zOut, c) { \
|
| + if( c<=0xFFFF ){ \
|
| + *zOut++ = (u8)(c&0x00FF); \
|
| + *zOut++ = (u8)((c>>8)&0x00FF); \
|
| + }else{ \
|
| + *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
| + *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
| + *zOut++ = (u8)(c&0x00FF); \
|
| + *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
|
| + } \
|
| +}
|
| +
|
| +#define WRITE_UTF16BE(zOut, c) { \
|
| + if( c<=0xFFFF ){ \
|
| + *zOut++ = (u8)((c>>8)&0x00FF); \
|
| + *zOut++ = (u8)(c&0x00FF); \
|
| + }else{ \
|
| + *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \
|
| + *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \
|
| + *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \
|
| + *zOut++ = (u8)(c&0x00FF); \
|
| + } \
|
| +}
|
| +
|
| +#define READ_UTF16LE(zIn, TERM, c){ \
|
| + c = (*zIn++); \
|
| + c += ((*zIn++)<<8); \
|
| + if( c>=0xD800 && c<0xE000 && TERM ){ \
|
| + int c2 = (*zIn++); \
|
| + c2 += ((*zIn++)<<8); \
|
| + c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
| + } \
|
| +}
|
| +
|
| +#define READ_UTF16BE(zIn, TERM, c){ \
|
| + c = ((*zIn++)<<8); \
|
| + c += (*zIn++); \
|
| + if( c>=0xD800 && c<0xE000 && TERM ){ \
|
| + int c2 = ((*zIn++)<<8); \
|
| + c2 += (*zIn++); \
|
| + c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \
|
| + } \
|
| +}
|
| +
|
| +/*
|
| +** Translate a single UTF-8 character. Return the unicode value.
|
| +**
|
| +** During translation, assume that the byte that zTerm points
|
| +** is a 0x00.
|
| +**
|
| +** Write a pointer to the next unread byte back into *pzNext.
|
| +**
|
| +** Notes On Invalid UTF-8:
|
| +**
|
| +** * This routine never allows a 7-bit character (0x00 through 0x7f) to
|
| +** be encoded as a multi-byte character. Any multi-byte character that
|
| +** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd.
|
| +**
|
| +** * This routine never allows a UTF16 surrogate value to be encoded.
|
| +** If a multi-byte character attempts to encode a value between
|
| +** 0xd800 and 0xe000 then it is rendered as 0xfffd.
|
| +**
|
| +** * Bytes in the range of 0x80 through 0xbf which occur as the first
|
| +** byte of a character are interpreted as single-byte characters
|
| +** and rendered as themselves even though they are technically
|
| +** invalid characters.
|
| +**
|
| +** * This routine accepts an infinite number of different UTF8 encodings
|
| +** for unicode values 0x80 and greater. It do not change over-length
|
| +** encodings to 0xfffd as some systems recommend.
|
| +*/
|
| +#define READ_UTF8(zIn, zTerm, c) \
|
| + c = *(zIn++); \
|
| + if( c>=0xc0 ){ \
|
| + c = sqlite3Utf8Trans1[c-0xc0]; \
|
| + while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \
|
| + c = (c<<6) + (0x3f & *(zIn++)); \
|
| + } \
|
| + if( c<0x80 \
|
| + || (c&0xFFFFF800)==0xD800 \
|
| + || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \
|
| + }
|
| +int sqlite3Utf8Read(
|
| + const unsigned char *zIn, /* First byte of UTF-8 character */
|
| + const unsigned char **pzNext /* Write first byte past UTF-8 char here */
|
| +){
|
| + unsigned int c;
|
| +
|
| + /* Same as READ_UTF8() above but without the zTerm parameter.
|
| + ** For this routine, we assume the UTF8 string is always zero-terminated.
|
| + */
|
| + c = *(zIn++);
|
| + if( c>=0xc0 ){
|
| + c = sqlite3Utf8Trans1[c-0xc0];
|
| + while( (*zIn & 0xc0)==0x80 ){
|
| + c = (c<<6) + (0x3f & *(zIn++));
|
| + }
|
| + if( c<0x80
|
| + || (c&0xFFFFF800)==0xD800
|
| + || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; }
|
| + }
|
| + *pzNext = zIn;
|
| + return c;
|
| +}
|
| +
|
| +
|
| +
|
| +
|
| +/*
|
| +** If the TRANSLATE_TRACE macro is defined, the value of each Mem is
|
| +** printed on stderr on the way into and out of sqlite3VdbeMemTranslate().
|
| +*/
|
| +/* #define TRANSLATE_TRACE 1 */
|
| +
|
| +#ifndef SQLITE_OMIT_UTF16
|
| +/*
|
| +** This routine transforms the internal text encoding used by pMem to
|
| +** desiredEnc. It is an error if the string is already of the desired
|
| +** encoding, or if *pMem does not contain a string value.
|
| +*/
|
| +int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){
|
| + int len; /* Maximum length of output string in bytes */
|
| + unsigned char *zOut; /* Output buffer */
|
| + unsigned char *zIn; /* Input iterator */
|
| + unsigned char *zTerm; /* End of input */
|
| + unsigned char *z; /* Output iterator */
|
| + unsigned int c;
|
| +
|
| + assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
|
| + assert( pMem->flags&MEM_Str );
|
| + assert( pMem->enc!=desiredEnc );
|
| + assert( pMem->enc!=0 );
|
| + assert( pMem->n>=0 );
|
| +
|
| +#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
| + {
|
| + char zBuf[100];
|
| + sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
| + fprintf(stderr, "INPUT: %s\n", zBuf);
|
| + }
|
| +#endif
|
| +
|
| + /* If the translation is between UTF-16 little and big endian, then
|
| + ** all that is required is to swap the byte order. This case is handled
|
| + ** differently from the others.
|
| + */
|
| + if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){
|
| + u8 temp;
|
| + int rc;
|
| + rc = sqlite3VdbeMemMakeWriteable(pMem);
|
| + if( rc!=SQLITE_OK ){
|
| + assert( rc==SQLITE_NOMEM );
|
| + return SQLITE_NOMEM;
|
| + }
|
| + zIn = (u8*)pMem->z;
|
| + zTerm = &zIn[pMem->n&~1];
|
| + while( zIn<zTerm ){
|
| + temp = *zIn;
|
| + *zIn = *(zIn+1);
|
| + zIn++;
|
| + *zIn++ = temp;
|
| + }
|
| + pMem->enc = desiredEnc;
|
| + goto translate_out;
|
| + }
|
| +
|
| + /* Set len to the maximum number of bytes required in the output buffer. */
|
| + if( desiredEnc==SQLITE_UTF8 ){
|
| + /* When converting from UTF-16, the maximum growth results from
|
| + ** translating a 2-byte character to a 4-byte UTF-8 character.
|
| + ** A single byte is required for the output string
|
| + ** nul-terminator.
|
| + */
|
| + pMem->n &= ~1;
|
| + len = pMem->n * 2 + 1;
|
| + }else{
|
| + /* When converting from UTF-8 to UTF-16 the maximum growth is caused
|
| + ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16
|
| + ** character. Two bytes are required in the output buffer for the
|
| + ** nul-terminator.
|
| + */
|
| + len = pMem->n * 2 + 2;
|
| + }
|
| +
|
| + /* Set zIn to point at the start of the input buffer and zTerm to point 1
|
| + ** byte past the end.
|
| + **
|
| + ** Variable zOut is set to point at the output buffer, space obtained
|
| + ** from sqlite3_malloc().
|
| + */
|
| + zIn = (u8*)pMem->z;
|
| + zTerm = &zIn[pMem->n];
|
| + zOut = sqlite3DbMallocRaw(pMem->db, len);
|
| + if( !zOut ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + z = zOut;
|
| +
|
| + if( pMem->enc==SQLITE_UTF8 ){
|
| + if( desiredEnc==SQLITE_UTF16LE ){
|
| + /* UTF-8 -> UTF-16 Little-endian */
|
| + while( zIn<zTerm ){
|
| + /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
|
| + READ_UTF8(zIn, zTerm, c);
|
| + WRITE_UTF16LE(z, c);
|
| + }
|
| + }else{
|
| + assert( desiredEnc==SQLITE_UTF16BE );
|
| + /* UTF-8 -> UTF-16 Big-endian */
|
| + while( zIn<zTerm ){
|
| + /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */
|
| + READ_UTF8(zIn, zTerm, c);
|
| + WRITE_UTF16BE(z, c);
|
| + }
|
| + }
|
| + pMem->n = (int)(z - zOut);
|
| + *z++ = 0;
|
| + }else{
|
| + assert( desiredEnc==SQLITE_UTF8 );
|
| + if( pMem->enc==SQLITE_UTF16LE ){
|
| + /* UTF-16 Little-endian -> UTF-8 */
|
| + while( zIn<zTerm ){
|
| + READ_UTF16LE(zIn, zIn<zTerm, c);
|
| + WRITE_UTF8(z, c);
|
| + }
|
| + }else{
|
| + /* UTF-16 Big-endian -> UTF-8 */
|
| + while( zIn<zTerm ){
|
| + READ_UTF16BE(zIn, zIn<zTerm, c);
|
| + WRITE_UTF8(z, c);
|
| + }
|
| + }
|
| + pMem->n = (int)(z - zOut);
|
| + }
|
| + *z = 0;
|
| + assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len );
|
| +
|
| + sqlite3VdbeMemRelease(pMem);
|
| + pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem);
|
| + pMem->enc = desiredEnc;
|
| + pMem->flags |= (MEM_Term|MEM_Dyn);
|
| + pMem->z = (char*)zOut;
|
| + pMem->zMalloc = pMem->z;
|
| +
|
| +translate_out:
|
| +#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG)
|
| + {
|
| + char zBuf[100];
|
| + sqlite3VdbeMemPrettyPrint(pMem, zBuf);
|
| + fprintf(stderr, "OUTPUT: %s\n", zBuf);
|
| + }
|
| +#endif
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** This routine checks for a byte-order mark at the beginning of the
|
| +** UTF-16 string stored in *pMem. If one is present, it is removed and
|
| +** the encoding of the Mem adjusted. This routine does not do any
|
| +** byte-swapping, it just sets Mem.enc appropriately.
|
| +**
|
| +** The allocation (static, dynamic etc.) and encoding of the Mem may be
|
| +** changed by this function.
|
| +*/
|
| +int sqlite3VdbeMemHandleBom(Mem *pMem){
|
| + int rc = SQLITE_OK;
|
| + u8 bom = 0;
|
| +
|
| + assert( pMem->n>=0 );
|
| + if( pMem->n>1 ){
|
| + u8 b1 = *(u8 *)pMem->z;
|
| + u8 b2 = *(((u8 *)pMem->z) + 1);
|
| + if( b1==0xFE && b2==0xFF ){
|
| + bom = SQLITE_UTF16BE;
|
| + }
|
| + if( b1==0xFF && b2==0xFE ){
|
| + bom = SQLITE_UTF16LE;
|
| + }
|
| + }
|
| +
|
| + if( bom ){
|
| + rc = sqlite3VdbeMemMakeWriteable(pMem);
|
| + if( rc==SQLITE_OK ){
|
| + pMem->n -= 2;
|
| + memmove(pMem->z, &pMem->z[2], pMem->n);
|
| + pMem->z[pMem->n] = '\0';
|
| + pMem->z[pMem->n+1] = '\0';
|
| + pMem->flags |= MEM_Term;
|
| + pMem->enc = bom;
|
| + }
|
| + }
|
| + return rc;
|
| +}
|
| +#endif /* SQLITE_OMIT_UTF16 */
|
| +
|
| +/*
|
| +** pZ is a UTF-8 encoded unicode string. If nByte is less than zero,
|
| +** return the number of unicode characters in pZ up to (but not including)
|
| +** the first 0x00 byte. If nByte is not less than zero, return the
|
| +** number of unicode characters in the first nByte of pZ (or up to
|
| +** the first 0x00, whichever comes first).
|
| +*/
|
| +int sqlite3Utf8CharLen(const char *zIn, int nByte){
|
| + int r = 0;
|
| + const u8 *z = (const u8*)zIn;
|
| + const u8 *zTerm;
|
| + if( nByte>=0 ){
|
| + zTerm = &z[nByte];
|
| + }else{
|
| + zTerm = (const u8*)(-1);
|
| + }
|
| + assert( z<=zTerm );
|
| + while( *z!=0 && z<zTerm ){
|
| + SQLITE_SKIP_UTF8(z);
|
| + r++;
|
| + }
|
| + return r;
|
| +}
|
| +
|
| +/* This test function is not currently used by the automated test-suite.
|
| +** Hence it is only available in debug builds.
|
| +*/
|
| +#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
|
| +/*
|
| +** Translate UTF-8 to UTF-8.
|
| +**
|
| +** This has the effect of making sure that the string is well-formed
|
| +** UTF-8. Miscoded characters are removed.
|
| +**
|
| +** The translation is done in-place and aborted if the output
|
| +** overruns the input.
|
| +*/
|
| +int sqlite3Utf8To8(unsigned char *zIn){
|
| + unsigned char *zOut = zIn;
|
| + unsigned char *zStart = zIn;
|
| + u32 c;
|
| +
|
| + while( zIn[0] && zOut<=zIn ){
|
| + c = sqlite3Utf8Read(zIn, (const u8**)&zIn);
|
| + if( c!=0xfffd ){
|
| + WRITE_UTF8(zOut, c);
|
| + }
|
| + }
|
| + *zOut = 0;
|
| + return (int)(zOut - zStart);
|
| +}
|
| +#endif
|
| +
|
| +#ifndef SQLITE_OMIT_UTF16
|
| +/*
|
| +** Convert a UTF-16 string in the native encoding into a UTF-8 string.
|
| +** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must
|
| +** be freed by the calling function.
|
| +**
|
| +** NULL is returned if there is an allocation error.
|
| +*/
|
| +char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){
|
| + Mem m;
|
| + memset(&m, 0, sizeof(m));
|
| + m.db = db;
|
| + sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC);
|
| + sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8);
|
| + if( db->mallocFailed ){
|
| + sqlite3VdbeMemRelease(&m);
|
| + m.z = 0;
|
| + }
|
| + assert( (m.flags & MEM_Term)!=0 || db->mallocFailed );
|
| + assert( (m.flags & MEM_Str)!=0 || db->mallocFailed );
|
| + assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed );
|
| + assert( m.z || db->mallocFailed );
|
| + return m.z;
|
| +}
|
| +
|
| +/*
|
| +** Convert a UTF-8 string to the UTF-16 encoding specified by parameter
|
| +** enc. A pointer to the new string is returned, and the value of *pnOut
|
| +** is set to the length of the returned string in bytes. The call should
|
| +** arrange to call sqlite3DbFree() on the returned pointer when it is
|
| +** no longer required.
|
| +**
|
| +** If a malloc failure occurs, NULL is returned and the db.mallocFailed
|
| +** flag set.
|
| +*/
|
| +#ifdef SQLITE_ENABLE_STAT2
|
| +char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){
|
| + Mem m;
|
| + memset(&m, 0, sizeof(m));
|
| + m.db = db;
|
| + sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC);
|
| + if( sqlite3VdbeMemTranslate(&m, enc) ){
|
| + assert( db->mallocFailed );
|
| + return 0;
|
| + }
|
| + assert( m.z==m.zMalloc );
|
| + *pnOut = m.n;
|
| + return m.z;
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** zIn is a UTF-16 encoded unicode string at least nChar characters long.
|
| +** Return the number of bytes in the first nChar unicode characters
|
| +** in pZ. nChar must be non-negative.
|
| +*/
|
| +int sqlite3Utf16ByteLen(const void *zIn, int nChar){
|
| + int c;
|
| + unsigned char const *z = zIn;
|
| + int n = 0;
|
| +
|
| + if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){
|
| + while( n<nChar ){
|
| + READ_UTF16BE(z, 1, c);
|
| + n++;
|
| + }
|
| + }else{
|
| + while( n<nChar ){
|
| + READ_UTF16LE(z, 1, c);
|
| + n++;
|
| + }
|
| + }
|
| + return (int)(z-(unsigned char const *)zIn);
|
| +}
|
| +
|
| +#if defined(SQLITE_TEST)
|
| +/*
|
| +** This routine is called from the TCL test function "translate_selftest".
|
| +** It checks that the primitives for serializing and deserializing
|
| +** characters in each encoding are inverses of each other.
|
| +*/
|
| +void sqlite3UtfSelfTest(void){
|
| + unsigned int i, t;
|
| + unsigned char zBuf[20];
|
| + unsigned char *z;
|
| + int n;
|
| + unsigned int c;
|
| +
|
| + for(i=0; i<0x00110000; i++){
|
| + z = zBuf;
|
| + WRITE_UTF8(z, i);
|
| + n = (int)(z-zBuf);
|
| + assert( n>0 && n<=4 );
|
| + z[0] = 0;
|
| + z = zBuf;
|
| + c = sqlite3Utf8Read(z, (const u8**)&z);
|
| + t = i;
|
| + if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD;
|
| + if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD;
|
| + assert( c==t );
|
| + assert( (z-zBuf)==n );
|
| + }
|
| + for(i=0; i<0x00110000; i++){
|
| + if( i>=0xD800 && i<0xE000 ) continue;
|
| + z = zBuf;
|
| + WRITE_UTF16LE(z, i);
|
| + n = (int)(z-zBuf);
|
| + assert( n>0 && n<=4 );
|
| + z[0] = 0;
|
| + z = zBuf;
|
| + READ_UTF16LE(z, 1, c);
|
| + assert( c==i );
|
| + assert( (z-zBuf)==n );
|
| + }
|
| + for(i=0; i<0x00110000; i++){
|
| + if( i>=0xD800 && i<0xE000 ) continue;
|
| + z = zBuf;
|
| + WRITE_UTF16BE(z, i);
|
| + n = (int)(z-zBuf);
|
| + assert( n>0 && n<=4 );
|
| + z[0] = 0;
|
| + z = zBuf;
|
| + READ_UTF16BE(z, 1, c);
|
| + assert( c==i );
|
| + assert( (z-zBuf)==n );
|
| + }
|
| +}
|
| +#endif /* SQLITE_TEST */
|
| +#endif /* SQLITE_OMIT_UTF16 */
|
|
|