Index: third_party/sqlite/sqlite-src-3070603/src/utf.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/src/utf.c b/third_party/sqlite/sqlite-src-3070603/src/utf.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..95182694d39d46a37f57e5ba2e9730240194d49e |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/src/utf.c |
@@ -0,0 +1,560 @@ |
+/* |
+** 2004 April 13 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+************************************************************************* |
+** This file contains routines used to translate between UTF-8, |
+** UTF-16, UTF-16BE, and UTF-16LE. |
+** |
+** Notes on UTF-8: |
+** |
+** Byte-0 Byte-1 Byte-2 Byte-3 Value |
+** 0xxxxxxx 00000000 00000000 0xxxxxxx |
+** 110yyyyy 10xxxxxx 00000000 00000yyy yyxxxxxx |
+** 1110zzzz 10yyyyyy 10xxxxxx 00000000 zzzzyyyy yyxxxxxx |
+** 11110uuu 10uuzzzz 10yyyyyy 10xxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
+** |
+** |
+** Notes on UTF-16: (with wwww+1==uuuuu) |
+** |
+** Word-0 Word-1 Value |
+** 110110ww wwzzzzyy 110111yy yyxxxxxx 000uuuuu zzzzyyyy yyxxxxxx |
+** zzzzyyyy yyxxxxxx 00000000 zzzzyyyy yyxxxxxx |
+** |
+** |
+** BOM or Byte Order Mark: |
+** 0xff 0xfe little-endian utf-16 follows |
+** 0xfe 0xff big-endian utf-16 follows |
+** |
+*/ |
+#include "sqliteInt.h" |
+#include <assert.h> |
+#include "vdbeInt.h" |
+ |
+#ifndef SQLITE_AMALGAMATION |
+/* |
+** The following constant value is used by the SQLITE_BIGENDIAN and |
+** SQLITE_LITTLEENDIAN macros. |
+*/ |
+const int sqlite3one = 1; |
+#endif /* SQLITE_AMALGAMATION */ |
+ |
+/* |
+** This lookup table is used to help decode the first byte of |
+** a multi-byte UTF8 character. |
+*/ |
+static const unsigned char sqlite3Utf8Trans1[] = { |
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
+ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, |
+ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, |
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
+ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, |
+ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, |
+ 0x00, 0x01, 0x02, 0x03, 0x00, 0x01, 0x00, 0x00, |
+}; |
+ |
+ |
+#define WRITE_UTF8(zOut, c) { \ |
+ if( c<0x00080 ){ \ |
+ *zOut++ = (u8)(c&0xFF); \ |
+ } \ |
+ else if( c<0x00800 ){ \ |
+ *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); \ |
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \ |
+ } \ |
+ else if( c<0x10000 ){ \ |
+ *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); \ |
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ |
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \ |
+ }else{ \ |
+ *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); \ |
+ *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); \ |
+ *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); \ |
+ *zOut++ = 0x80 + (u8)(c & 0x3F); \ |
+ } \ |
+} |
+ |
+#define WRITE_UTF16LE(zOut, c) { \ |
+ if( c<=0xFFFF ){ \ |
+ *zOut++ = (u8)(c&0x00FF); \ |
+ *zOut++ = (u8)((c>>8)&0x00FF); \ |
+ }else{ \ |
+ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
+ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
+ *zOut++ = (u8)(c&0x00FF); \ |
+ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ |
+ } \ |
+} |
+ |
+#define WRITE_UTF16BE(zOut, c) { \ |
+ if( c<=0xFFFF ){ \ |
+ *zOut++ = (u8)((c>>8)&0x00FF); \ |
+ *zOut++ = (u8)(c&0x00FF); \ |
+ }else{ \ |
+ *zOut++ = (u8)(0x00D8 + (((c-0x10000)>>18)&0x03)); \ |
+ *zOut++ = (u8)(((c>>10)&0x003F) + (((c-0x10000)>>10)&0x00C0)); \ |
+ *zOut++ = (u8)(0x00DC + ((c>>8)&0x03)); \ |
+ *zOut++ = (u8)(c&0x00FF); \ |
+ } \ |
+} |
+ |
+#define READ_UTF16LE(zIn, TERM, c){ \ |
+ c = (*zIn++); \ |
+ c += ((*zIn++)<<8); \ |
+ if( c>=0xD800 && c<0xE000 && TERM ){ \ |
+ int c2 = (*zIn++); \ |
+ c2 += ((*zIn++)<<8); \ |
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
+ } \ |
+} |
+ |
+#define READ_UTF16BE(zIn, TERM, c){ \ |
+ c = ((*zIn++)<<8); \ |
+ c += (*zIn++); \ |
+ if( c>=0xD800 && c<0xE000 && TERM ){ \ |
+ int c2 = ((*zIn++)<<8); \ |
+ c2 += (*zIn++); \ |
+ c = (c2&0x03FF) + ((c&0x003F)<<10) + (((c&0x03C0)+0x0040)<<10); \ |
+ } \ |
+} |
+ |
+/* |
+** Translate a single UTF-8 character. Return the unicode value. |
+** |
+** During translation, assume that the byte that zTerm points |
+** is a 0x00. |
+** |
+** Write a pointer to the next unread byte back into *pzNext. |
+** |
+** Notes On Invalid UTF-8: |
+** |
+** * This routine never allows a 7-bit character (0x00 through 0x7f) to |
+** be encoded as a multi-byte character. Any multi-byte character that |
+** attempts to encode a value between 0x00 and 0x7f is rendered as 0xfffd. |
+** |
+** * This routine never allows a UTF16 surrogate value to be encoded. |
+** If a multi-byte character attempts to encode a value between |
+** 0xd800 and 0xe000 then it is rendered as 0xfffd. |
+** |
+** * Bytes in the range of 0x80 through 0xbf which occur as the first |
+** byte of a character are interpreted as single-byte characters |
+** and rendered as themselves even though they are technically |
+** invalid characters. |
+** |
+** * This routine accepts an infinite number of different UTF8 encodings |
+** for unicode values 0x80 and greater. It do not change over-length |
+** encodings to 0xfffd as some systems recommend. |
+*/ |
+#define READ_UTF8(zIn, zTerm, c) \ |
+ c = *(zIn++); \ |
+ if( c>=0xc0 ){ \ |
+ c = sqlite3Utf8Trans1[c-0xc0]; \ |
+ while( zIn!=zTerm && (*zIn & 0xc0)==0x80 ){ \ |
+ c = (c<<6) + (0x3f & *(zIn++)); \ |
+ } \ |
+ if( c<0x80 \ |
+ || (c&0xFFFFF800)==0xD800 \ |
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } \ |
+ } |
+int sqlite3Utf8Read( |
+ const unsigned char *zIn, /* First byte of UTF-8 character */ |
+ const unsigned char **pzNext /* Write first byte past UTF-8 char here */ |
+){ |
+ unsigned int c; |
+ |
+ /* Same as READ_UTF8() above but without the zTerm parameter. |
+ ** For this routine, we assume the UTF8 string is always zero-terminated. |
+ */ |
+ c = *(zIn++); |
+ if( c>=0xc0 ){ |
+ c = sqlite3Utf8Trans1[c-0xc0]; |
+ while( (*zIn & 0xc0)==0x80 ){ |
+ c = (c<<6) + (0x3f & *(zIn++)); |
+ } |
+ if( c<0x80 |
+ || (c&0xFFFFF800)==0xD800 |
+ || (c&0xFFFFFFFE)==0xFFFE ){ c = 0xFFFD; } |
+ } |
+ *pzNext = zIn; |
+ return c; |
+} |
+ |
+ |
+ |
+ |
+/* |
+** If the TRANSLATE_TRACE macro is defined, the value of each Mem is |
+** printed on stderr on the way into and out of sqlite3VdbeMemTranslate(). |
+*/ |
+/* #define TRANSLATE_TRACE 1 */ |
+ |
+#ifndef SQLITE_OMIT_UTF16 |
+/* |
+** This routine transforms the internal text encoding used by pMem to |
+** desiredEnc. It is an error if the string is already of the desired |
+** encoding, or if *pMem does not contain a string value. |
+*/ |
+int sqlite3VdbeMemTranslate(Mem *pMem, u8 desiredEnc){ |
+ int len; /* Maximum length of output string in bytes */ |
+ unsigned char *zOut; /* Output buffer */ |
+ unsigned char *zIn; /* Input iterator */ |
+ unsigned char *zTerm; /* End of input */ |
+ unsigned char *z; /* Output iterator */ |
+ unsigned int c; |
+ |
+ assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) ); |
+ assert( pMem->flags&MEM_Str ); |
+ assert( pMem->enc!=desiredEnc ); |
+ assert( pMem->enc!=0 ); |
+ assert( pMem->n>=0 ); |
+ |
+#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
+ { |
+ char zBuf[100]; |
+ sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
+ fprintf(stderr, "INPUT: %s\n", zBuf); |
+ } |
+#endif |
+ |
+ /* If the translation is between UTF-16 little and big endian, then |
+ ** all that is required is to swap the byte order. This case is handled |
+ ** differently from the others. |
+ */ |
+ if( pMem->enc!=SQLITE_UTF8 && desiredEnc!=SQLITE_UTF8 ){ |
+ u8 temp; |
+ int rc; |
+ rc = sqlite3VdbeMemMakeWriteable(pMem); |
+ if( rc!=SQLITE_OK ){ |
+ assert( rc==SQLITE_NOMEM ); |
+ return SQLITE_NOMEM; |
+ } |
+ zIn = (u8*)pMem->z; |
+ zTerm = &zIn[pMem->n&~1]; |
+ while( zIn<zTerm ){ |
+ temp = *zIn; |
+ *zIn = *(zIn+1); |
+ zIn++; |
+ *zIn++ = temp; |
+ } |
+ pMem->enc = desiredEnc; |
+ goto translate_out; |
+ } |
+ |
+ /* Set len to the maximum number of bytes required in the output buffer. */ |
+ if( desiredEnc==SQLITE_UTF8 ){ |
+ /* When converting from UTF-16, the maximum growth results from |
+ ** translating a 2-byte character to a 4-byte UTF-8 character. |
+ ** A single byte is required for the output string |
+ ** nul-terminator. |
+ */ |
+ pMem->n &= ~1; |
+ len = pMem->n * 2 + 1; |
+ }else{ |
+ /* When converting from UTF-8 to UTF-16 the maximum growth is caused |
+ ** when a 1-byte UTF-8 character is translated into a 2-byte UTF-16 |
+ ** character. Two bytes are required in the output buffer for the |
+ ** nul-terminator. |
+ */ |
+ len = pMem->n * 2 + 2; |
+ } |
+ |
+ /* Set zIn to point at the start of the input buffer and zTerm to point 1 |
+ ** byte past the end. |
+ ** |
+ ** Variable zOut is set to point at the output buffer, space obtained |
+ ** from sqlite3_malloc(). |
+ */ |
+ zIn = (u8*)pMem->z; |
+ zTerm = &zIn[pMem->n]; |
+ zOut = sqlite3DbMallocRaw(pMem->db, len); |
+ if( !zOut ){ |
+ return SQLITE_NOMEM; |
+ } |
+ z = zOut; |
+ |
+ if( pMem->enc==SQLITE_UTF8 ){ |
+ if( desiredEnc==SQLITE_UTF16LE ){ |
+ /* UTF-8 -> UTF-16 Little-endian */ |
+ while( zIn<zTerm ){ |
+ /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */ |
+ READ_UTF8(zIn, zTerm, c); |
+ WRITE_UTF16LE(z, c); |
+ } |
+ }else{ |
+ assert( desiredEnc==SQLITE_UTF16BE ); |
+ /* UTF-8 -> UTF-16 Big-endian */ |
+ while( zIn<zTerm ){ |
+ /* c = sqlite3Utf8Read(zIn, zTerm, (const u8**)&zIn); */ |
+ READ_UTF8(zIn, zTerm, c); |
+ WRITE_UTF16BE(z, c); |
+ } |
+ } |
+ pMem->n = (int)(z - zOut); |
+ *z++ = 0; |
+ }else{ |
+ assert( desiredEnc==SQLITE_UTF8 ); |
+ if( pMem->enc==SQLITE_UTF16LE ){ |
+ /* UTF-16 Little-endian -> UTF-8 */ |
+ while( zIn<zTerm ){ |
+ READ_UTF16LE(zIn, zIn<zTerm, c); |
+ WRITE_UTF8(z, c); |
+ } |
+ }else{ |
+ /* UTF-16 Big-endian -> UTF-8 */ |
+ while( zIn<zTerm ){ |
+ READ_UTF16BE(zIn, zIn<zTerm, c); |
+ WRITE_UTF8(z, c); |
+ } |
+ } |
+ pMem->n = (int)(z - zOut); |
+ } |
+ *z = 0; |
+ assert( (pMem->n+(desiredEnc==SQLITE_UTF8?1:2))<=len ); |
+ |
+ sqlite3VdbeMemRelease(pMem); |
+ pMem->flags &= ~(MEM_Static|MEM_Dyn|MEM_Ephem); |
+ pMem->enc = desiredEnc; |
+ pMem->flags |= (MEM_Term|MEM_Dyn); |
+ pMem->z = (char*)zOut; |
+ pMem->zMalloc = pMem->z; |
+ |
+translate_out: |
+#if defined(TRANSLATE_TRACE) && defined(SQLITE_DEBUG) |
+ { |
+ char zBuf[100]; |
+ sqlite3VdbeMemPrettyPrint(pMem, zBuf); |
+ fprintf(stderr, "OUTPUT: %s\n", zBuf); |
+ } |
+#endif |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This routine checks for a byte-order mark at the beginning of the |
+** UTF-16 string stored in *pMem. If one is present, it is removed and |
+** the encoding of the Mem adjusted. This routine does not do any |
+** byte-swapping, it just sets Mem.enc appropriately. |
+** |
+** The allocation (static, dynamic etc.) and encoding of the Mem may be |
+** changed by this function. |
+*/ |
+int sqlite3VdbeMemHandleBom(Mem *pMem){ |
+ int rc = SQLITE_OK; |
+ u8 bom = 0; |
+ |
+ assert( pMem->n>=0 ); |
+ if( pMem->n>1 ){ |
+ u8 b1 = *(u8 *)pMem->z; |
+ u8 b2 = *(((u8 *)pMem->z) + 1); |
+ if( b1==0xFE && b2==0xFF ){ |
+ bom = SQLITE_UTF16BE; |
+ } |
+ if( b1==0xFF && b2==0xFE ){ |
+ bom = SQLITE_UTF16LE; |
+ } |
+ } |
+ |
+ if( bom ){ |
+ rc = sqlite3VdbeMemMakeWriteable(pMem); |
+ if( rc==SQLITE_OK ){ |
+ pMem->n -= 2; |
+ memmove(pMem->z, &pMem->z[2], pMem->n); |
+ pMem->z[pMem->n] = '\0'; |
+ pMem->z[pMem->n+1] = '\0'; |
+ pMem->flags |= MEM_Term; |
+ pMem->enc = bom; |
+ } |
+ } |
+ return rc; |
+} |
+#endif /* SQLITE_OMIT_UTF16 */ |
+ |
+/* |
+** pZ is a UTF-8 encoded unicode string. If nByte is less than zero, |
+** return the number of unicode characters in pZ up to (but not including) |
+** the first 0x00 byte. If nByte is not less than zero, return the |
+** number of unicode characters in the first nByte of pZ (or up to |
+** the first 0x00, whichever comes first). |
+*/ |
+int sqlite3Utf8CharLen(const char *zIn, int nByte){ |
+ int r = 0; |
+ const u8 *z = (const u8*)zIn; |
+ const u8 *zTerm; |
+ if( nByte>=0 ){ |
+ zTerm = &z[nByte]; |
+ }else{ |
+ zTerm = (const u8*)(-1); |
+ } |
+ assert( z<=zTerm ); |
+ while( *z!=0 && z<zTerm ){ |
+ SQLITE_SKIP_UTF8(z); |
+ r++; |
+ } |
+ return r; |
+} |
+ |
+/* This test function is not currently used by the automated test-suite. |
+** Hence it is only available in debug builds. |
+*/ |
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) |
+/* |
+** Translate UTF-8 to UTF-8. |
+** |
+** This has the effect of making sure that the string is well-formed |
+** UTF-8. Miscoded characters are removed. |
+** |
+** The translation is done in-place and aborted if the output |
+** overruns the input. |
+*/ |
+int sqlite3Utf8To8(unsigned char *zIn){ |
+ unsigned char *zOut = zIn; |
+ unsigned char *zStart = zIn; |
+ u32 c; |
+ |
+ while( zIn[0] && zOut<=zIn ){ |
+ c = sqlite3Utf8Read(zIn, (const u8**)&zIn); |
+ if( c!=0xfffd ){ |
+ WRITE_UTF8(zOut, c); |
+ } |
+ } |
+ *zOut = 0; |
+ return (int)(zOut - zStart); |
+} |
+#endif |
+ |
+#ifndef SQLITE_OMIT_UTF16 |
+/* |
+** Convert a UTF-16 string in the native encoding into a UTF-8 string. |
+** Memory to hold the UTF-8 string is obtained from sqlite3_malloc and must |
+** be freed by the calling function. |
+** |
+** NULL is returned if there is an allocation error. |
+*/ |
+char *sqlite3Utf16to8(sqlite3 *db, const void *z, int nByte, u8 enc){ |
+ Mem m; |
+ memset(&m, 0, sizeof(m)); |
+ m.db = db; |
+ sqlite3VdbeMemSetStr(&m, z, nByte, enc, SQLITE_STATIC); |
+ sqlite3VdbeChangeEncoding(&m, SQLITE_UTF8); |
+ if( db->mallocFailed ){ |
+ sqlite3VdbeMemRelease(&m); |
+ m.z = 0; |
+ } |
+ assert( (m.flags & MEM_Term)!=0 || db->mallocFailed ); |
+ assert( (m.flags & MEM_Str)!=0 || db->mallocFailed ); |
+ assert( (m.flags & MEM_Dyn)!=0 || db->mallocFailed ); |
+ assert( m.z || db->mallocFailed ); |
+ return m.z; |
+} |
+ |
+/* |
+** Convert a UTF-8 string to the UTF-16 encoding specified by parameter |
+** enc. A pointer to the new string is returned, and the value of *pnOut |
+** is set to the length of the returned string in bytes. The call should |
+** arrange to call sqlite3DbFree() on the returned pointer when it is |
+** no longer required. |
+** |
+** If a malloc failure occurs, NULL is returned and the db.mallocFailed |
+** flag set. |
+*/ |
+#ifdef SQLITE_ENABLE_STAT2 |
+char *sqlite3Utf8to16(sqlite3 *db, u8 enc, char *z, int n, int *pnOut){ |
+ Mem m; |
+ memset(&m, 0, sizeof(m)); |
+ m.db = db; |
+ sqlite3VdbeMemSetStr(&m, z, n, SQLITE_UTF8, SQLITE_STATIC); |
+ if( sqlite3VdbeMemTranslate(&m, enc) ){ |
+ assert( db->mallocFailed ); |
+ return 0; |
+ } |
+ assert( m.z==m.zMalloc ); |
+ *pnOut = m.n; |
+ return m.z; |
+} |
+#endif |
+ |
+/* |
+** zIn is a UTF-16 encoded unicode string at least nChar characters long. |
+** Return the number of bytes in the first nChar unicode characters |
+** in pZ. nChar must be non-negative. |
+*/ |
+int sqlite3Utf16ByteLen(const void *zIn, int nChar){ |
+ int c; |
+ unsigned char const *z = zIn; |
+ int n = 0; |
+ |
+ if( SQLITE_UTF16NATIVE==SQLITE_UTF16BE ){ |
+ while( n<nChar ){ |
+ READ_UTF16BE(z, 1, c); |
+ n++; |
+ } |
+ }else{ |
+ while( n<nChar ){ |
+ READ_UTF16LE(z, 1, c); |
+ n++; |
+ } |
+ } |
+ return (int)(z-(unsigned char const *)zIn); |
+} |
+ |
+#if defined(SQLITE_TEST) |
+/* |
+** This routine is called from the TCL test function "translate_selftest". |
+** It checks that the primitives for serializing and deserializing |
+** characters in each encoding are inverses of each other. |
+*/ |
+void sqlite3UtfSelfTest(void){ |
+ unsigned int i, t; |
+ unsigned char zBuf[20]; |
+ unsigned char *z; |
+ int n; |
+ unsigned int c; |
+ |
+ for(i=0; i<0x00110000; i++){ |
+ z = zBuf; |
+ WRITE_UTF8(z, i); |
+ n = (int)(z-zBuf); |
+ assert( n>0 && n<=4 ); |
+ z[0] = 0; |
+ z = zBuf; |
+ c = sqlite3Utf8Read(z, (const u8**)&z); |
+ t = i; |
+ if( i>=0xD800 && i<=0xDFFF ) t = 0xFFFD; |
+ if( (i&0xFFFFFFFE)==0xFFFE ) t = 0xFFFD; |
+ assert( c==t ); |
+ assert( (z-zBuf)==n ); |
+ } |
+ for(i=0; i<0x00110000; i++){ |
+ if( i>=0xD800 && i<0xE000 ) continue; |
+ z = zBuf; |
+ WRITE_UTF16LE(z, i); |
+ n = (int)(z-zBuf); |
+ assert( n>0 && n<=4 ); |
+ z[0] = 0; |
+ z = zBuf; |
+ READ_UTF16LE(z, 1, c); |
+ assert( c==i ); |
+ assert( (z-zBuf)==n ); |
+ } |
+ for(i=0; i<0x00110000; i++){ |
+ if( i>=0xD800 && i<0xE000 ) continue; |
+ z = zBuf; |
+ WRITE_UTF16BE(z, i); |
+ n = (int)(z-zBuf); |
+ assert( n>0 && n<=4 ); |
+ z[0] = 0; |
+ z = zBuf; |
+ READ_UTF16BE(z, 1, c); |
+ assert( c==i ); |
+ assert( (z-zBuf)==n ); |
+ } |
+} |
+#endif /* SQLITE_TEST */ |
+#endif /* SQLITE_OMIT_UTF16 */ |