Index: third_party/sqlite/sqlite-src-3070603/ext/fts3/fts3.c |
diff --git a/third_party/sqlite/sqlite-src-3070603/ext/fts3/fts3.c b/third_party/sqlite/sqlite-src-3070603/ext/fts3/fts3.c |
new file mode 100644 |
index 0000000000000000000000000000000000000000..20da05164d2a6cbffb0c2859e4859dadcc75606c |
--- /dev/null |
+++ b/third_party/sqlite/sqlite-src-3070603/ext/fts3/fts3.c |
@@ -0,0 +1,3687 @@ |
+/* |
+** 2006 Oct 10 |
+** |
+** The author disclaims copyright to this source code. In place of |
+** a legal notice, here is a blessing: |
+** |
+** May you do good and not evil. |
+** May you find forgiveness for yourself and forgive others. |
+** May you share freely, never taking more than you give. |
+** |
+****************************************************************************** |
+** |
+** This is an SQLite module implementing full-text search. |
+*/ |
+ |
+/* |
+** The code in this file is only compiled if: |
+** |
+** * The FTS3 module is being built as an extension |
+** (in which case SQLITE_CORE is not defined), or |
+** |
+** * The FTS3 module is being built into the core of |
+** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). |
+*/ |
+ |
+/* The full-text index is stored in a series of b+tree (-like) |
+** structures called segments which map terms to doclists. The |
+** structures are like b+trees in layout, but are constructed from the |
+** bottom up in optimal fashion and are not updatable. Since trees |
+** are built from the bottom up, things will be described from the |
+** bottom up. |
+** |
+** |
+**** Varints **** |
+** The basic unit of encoding is a variable-length integer called a |
+** varint. We encode variable-length integers in little-endian order |
+** using seven bits * per byte as follows: |
+** |
+** KEY: |
+** A = 0xxxxxxx 7 bits of data and one flag bit |
+** B = 1xxxxxxx 7 bits of data and one flag bit |
+** |
+** 7 bits - A |
+** 14 bits - BA |
+** 21 bits - BBA |
+** and so on. |
+** |
+** This is similar in concept to how sqlite encodes "varints" but |
+** the encoding is not the same. SQLite varints are big-endian |
+** are are limited to 9 bytes in length whereas FTS3 varints are |
+** little-endian and can be up to 10 bytes in length (in theory). |
+** |
+** Example encodings: |
+** |
+** 1: 0x01 |
+** 127: 0x7f |
+** 128: 0x81 0x00 |
+** |
+** |
+**** Document lists **** |
+** A doclist (document list) holds a docid-sorted list of hits for a |
+** given term. Doclists hold docids and associated token positions. |
+** A docid is the unique integer identifier for a single document. |
+** A position is the index of a word within the document. The first |
+** word of the document has a position of 0. |
+** |
+** FTS3 used to optionally store character offsets using a compile-time |
+** option. But that functionality is no longer supported. |
+** |
+** A doclist is stored like this: |
+** |
+** array { |
+** varint docid; |
+** array { (position list for column 0) |
+** varint position; (2 more than the delta from previous position) |
+** } |
+** array { |
+** varint POS_COLUMN; (marks start of position list for new column) |
+** varint column; (index of new column) |
+** array { |
+** varint position; (2 more than the delta from previous position) |
+** } |
+** } |
+** varint POS_END; (marks end of positions for this document. |
+** } |
+** |
+** Here, array { X } means zero or more occurrences of X, adjacent in |
+** memory. A "position" is an index of a token in the token stream |
+** generated by the tokenizer. Note that POS_END and POS_COLUMN occur |
+** in the same logical place as the position element, and act as sentinals |
+** ending a position list array. POS_END is 0. POS_COLUMN is 1. |
+** The positions numbers are not stored literally but rather as two more |
+** than the difference from the prior position, or the just the position plus |
+** 2 for the first position. Example: |
+** |
+** label: A B C D E F G H I J K |
+** value: 123 5 9 1 1 14 35 0 234 72 0 |
+** |
+** The 123 value is the first docid. For column zero in this document |
+** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1 |
+** at D signals the start of a new column; the 1 at E indicates that the |
+** new column is column number 1. There are two positions at 12 and 45 |
+** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The |
+** 234 at I is the next docid. It has one position 72 (72-2) and then |
+** terminates with the 0 at K. |
+** |
+** A "position-list" is the list of positions for multiple columns for |
+** a single docid. A "column-list" is the set of positions for a single |
+** column. Hence, a position-list consists of one or more column-lists, |
+** a document record consists of a docid followed by a position-list and |
+** a doclist consists of one or more document records. |
+** |
+** A bare doclist omits the position information, becoming an |
+** array of varint-encoded docids. |
+** |
+**** Segment leaf nodes **** |
+** Segment leaf nodes store terms and doclists, ordered by term. Leaf |
+** nodes are written using LeafWriter, and read using LeafReader (to |
+** iterate through a single leaf node's data) and LeavesReader (to |
+** iterate through a segment's entire leaf layer). Leaf nodes have |
+** the format: |
+** |
+** varint iHeight; (height from leaf level, always 0) |
+** varint nTerm; (length of first term) |
+** char pTerm[nTerm]; (content of first term) |
+** varint nDoclist; (length of term's associated doclist) |
+** char pDoclist[nDoclist]; (content of doclist) |
+** array { |
+** (further terms are delta-encoded) |
+** varint nPrefix; (length of prefix shared with previous term) |
+** varint nSuffix; (length of unshared suffix) |
+** char pTermSuffix[nSuffix];(unshared suffix of next term) |
+** varint nDoclist; (length of term's associated doclist) |
+** char pDoclist[nDoclist]; (content of doclist) |
+** } |
+** |
+** Here, array { X } means zero or more occurrences of X, adjacent in |
+** memory. |
+** |
+** Leaf nodes are broken into blocks which are stored contiguously in |
+** the %_segments table in sorted order. This means that when the end |
+** of a node is reached, the next term is in the node with the next |
+** greater node id. |
+** |
+** New data is spilled to a new leaf node when the current node |
+** exceeds LEAF_MAX bytes (default 2048). New data which itself is |
+** larger than STANDALONE_MIN (default 1024) is placed in a standalone |
+** node (a leaf node with a single term and doclist). The goal of |
+** these settings is to pack together groups of small doclists while |
+** making it efficient to directly access large doclists. The |
+** assumption is that large doclists represent terms which are more |
+** likely to be query targets. |
+** |
+** TODO(shess) It may be useful for blocking decisions to be more |
+** dynamic. For instance, it may make more sense to have a 2.5k leaf |
+** node rather than splitting into 2k and .5k nodes. My intuition is |
+** that this might extend through 2x or 4x the pagesize. |
+** |
+** |
+**** Segment interior nodes **** |
+** Segment interior nodes store blockids for subtree nodes and terms |
+** to describe what data is stored by the each subtree. Interior |
+** nodes are written using InteriorWriter, and read using |
+** InteriorReader. InteriorWriters are created as needed when |
+** SegmentWriter creates new leaf nodes, or when an interior node |
+** itself grows too big and must be split. The format of interior |
+** nodes: |
+** |
+** varint iHeight; (height from leaf level, always >0) |
+** varint iBlockid; (block id of node's leftmost subtree) |
+** optional { |
+** varint nTerm; (length of first term) |
+** char pTerm[nTerm]; (content of first term) |
+** array { |
+** (further terms are delta-encoded) |
+** varint nPrefix; (length of shared prefix with previous term) |
+** varint nSuffix; (length of unshared suffix) |
+** char pTermSuffix[nSuffix]; (unshared suffix of next term) |
+** } |
+** } |
+** |
+** Here, optional { X } means an optional element, while array { X } |
+** means zero or more occurrences of X, adjacent in memory. |
+** |
+** An interior node encodes n terms separating n+1 subtrees. The |
+** subtree blocks are contiguous, so only the first subtree's blockid |
+** is encoded. The subtree at iBlockid will contain all terms less |
+** than the first term encoded (or all terms if no term is encoded). |
+** Otherwise, for terms greater than or equal to pTerm[i] but less |
+** than pTerm[i+1], the subtree for that term will be rooted at |
+** iBlockid+i. Interior nodes only store enough term data to |
+** distinguish adjacent children (if the rightmost term of the left |
+** child is "something", and the leftmost term of the right child is |
+** "wicked", only "w" is stored). |
+** |
+** New data is spilled to a new interior node at the same height when |
+** the current node exceeds INTERIOR_MAX bytes (default 2048). |
+** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing |
+** interior nodes and making the tree too skinny. The interior nodes |
+** at a given height are naturally tracked by interior nodes at |
+** height+1, and so on. |
+** |
+** |
+**** Segment directory **** |
+** The segment directory in table %_segdir stores meta-information for |
+** merging and deleting segments, and also the root node of the |
+** segment's tree. |
+** |
+** The root node is the top node of the segment's tree after encoding |
+** the entire segment, restricted to ROOT_MAX bytes (default 1024). |
+** This could be either a leaf node or an interior node. If the top |
+** node requires more than ROOT_MAX bytes, it is flushed to %_segments |
+** and a new root interior node is generated (which should always fit |
+** within ROOT_MAX because it only needs space for 2 varints, the |
+** height and the blockid of the previous root). |
+** |
+** The meta-information in the segment directory is: |
+** level - segment level (see below) |
+** idx - index within level |
+** - (level,idx uniquely identify a segment) |
+** start_block - first leaf node |
+** leaves_end_block - last leaf node |
+** end_block - last block (including interior nodes) |
+** root - contents of root node |
+** |
+** If the root node is a leaf node, then start_block, |
+** leaves_end_block, and end_block are all 0. |
+** |
+** |
+**** Segment merging **** |
+** To amortize update costs, segments are grouped into levels and |
+** merged in batches. Each increase in level represents exponentially |
+** more documents. |
+** |
+** New documents (actually, document updates) are tokenized and |
+** written individually (using LeafWriter) to a level 0 segment, with |
+** incrementing idx. When idx reaches MERGE_COUNT (default 16), all |
+** level 0 segments are merged into a single level 1 segment. Level 1 |
+** is populated like level 0, and eventually MERGE_COUNT level 1 |
+** segments are merged to a single level 2 segment (representing |
+** MERGE_COUNT^2 updates), and so on. |
+** |
+** A segment merge traverses all segments at a given level in |
+** parallel, performing a straightforward sorted merge. Since segment |
+** leaf nodes are written in to the %_segments table in order, this |
+** merge traverses the underlying sqlite disk structures efficiently. |
+** After the merge, all segment blocks from the merged level are |
+** deleted. |
+** |
+** MERGE_COUNT controls how often we merge segments. 16 seems to be |
+** somewhat of a sweet spot for insertion performance. 32 and 64 show |
+** very similar performance numbers to 16 on insertion, though they're |
+** a tiny bit slower (perhaps due to more overhead in merge-time |
+** sorting). 8 is about 20% slower than 16, 4 about 50% slower than |
+** 16, 2 about 66% slower than 16. |
+** |
+** At query time, high MERGE_COUNT increases the number of segments |
+** which need to be scanned and merged. For instance, with 100k docs |
+** inserted: |
+** |
+** MERGE_COUNT segments |
+** 16 25 |
+** 8 12 |
+** 4 10 |
+** 2 6 |
+** |
+** This appears to have only a moderate impact on queries for very |
+** frequent terms (which are somewhat dominated by segment merge |
+** costs), and infrequent and non-existent terms still seem to be fast |
+** even with many segments. |
+** |
+** TODO(shess) That said, it would be nice to have a better query-side |
+** argument for MERGE_COUNT of 16. Also, it is possible/likely that |
+** optimizations to things like doclist merging will swing the sweet |
+** spot around. |
+** |
+** |
+** |
+**** Handling of deletions and updates **** |
+** Since we're using a segmented structure, with no docid-oriented |
+** index into the term index, we clearly cannot simply update the term |
+** index when a document is deleted or updated. For deletions, we |
+** write an empty doclist (varint(docid) varint(POS_END)), for updates |
+** we simply write the new doclist. Segment merges overwrite older |
+** data for a particular docid with newer data, so deletes or updates |
+** will eventually overtake the earlier data and knock it out. The |
+** query logic likewise merges doclists so that newer data knocks out |
+** older data. |
+** |
+** TODO(shess) Provide a VACUUM type operation to clear out all |
+** deletions and duplications. This would basically be a forced merge |
+** into a single segment. |
+*/ |
+ |
+#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) |
+ |
+#if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) |
+# define SQLITE_CORE 1 |
+#endif |
+ |
+#include "fts3Int.h" |
+ |
+#include <assert.h> |
+#include <stdlib.h> |
+#include <stddef.h> |
+#include <stdio.h> |
+#include <string.h> |
+#include <stdarg.h> |
+ |
+#include "fts3.h" |
+#ifndef SQLITE_CORE |
+# include "sqlite3ext.h" |
+ SQLITE_EXTENSION_INIT1 |
+#endif |
+ |
+/* |
+** Write a 64-bit variable-length integer to memory starting at p[0]. |
+** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. |
+** The number of bytes written is returned. |
+*/ |
+int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ |
+ unsigned char *q = (unsigned char *) p; |
+ sqlite_uint64 vu = v; |
+ do{ |
+ *q++ = (unsigned char) ((vu & 0x7f) | 0x80); |
+ vu >>= 7; |
+ }while( vu!=0 ); |
+ q[-1] &= 0x7f; /* turn off high bit in final byte */ |
+ assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); |
+ return (int) (q - (unsigned char *)p); |
+} |
+ |
+/* |
+** Read a 64-bit variable-length integer from memory starting at p[0]. |
+** Return the number of bytes read, or 0 on error. |
+** The value is stored in *v. |
+*/ |
+int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){ |
+ const unsigned char *q = (const unsigned char *) p; |
+ sqlite_uint64 x = 0, y = 1; |
+ while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){ |
+ x += y * (*q++ & 0x7f); |
+ y <<= 7; |
+ } |
+ x += y * (*q++); |
+ *v = (sqlite_int64) x; |
+ return (int) (q - (unsigned char *)p); |
+} |
+ |
+/* |
+** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a |
+** 32-bit integer before it is returned. |
+*/ |
+int sqlite3Fts3GetVarint32(const char *p, int *pi){ |
+ sqlite_int64 i; |
+ int ret = sqlite3Fts3GetVarint(p, &i); |
+ *pi = (int) i; |
+ return ret; |
+} |
+ |
+/* |
+** Return the number of bytes required to encode v as a varint |
+*/ |
+int sqlite3Fts3VarintLen(sqlite3_uint64 v){ |
+ int i = 0; |
+ do{ |
+ i++; |
+ v >>= 7; |
+ }while( v!=0 ); |
+ return i; |
+} |
+ |
+/* |
+** Convert an SQL-style quoted string into a normal string by removing |
+** the quote characters. The conversion is done in-place. If the |
+** input does not begin with a quote character, then this routine |
+** is a no-op. |
+** |
+** Examples: |
+** |
+** "abc" becomes abc |
+** 'xyz' becomes xyz |
+** [pqr] becomes pqr |
+** `mno` becomes mno |
+** |
+*/ |
+void sqlite3Fts3Dequote(char *z){ |
+ char quote; /* Quote character (if any ) */ |
+ |
+ quote = z[0]; |
+ if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ |
+ int iIn = 1; /* Index of next byte to read from input */ |
+ int iOut = 0; /* Index of next byte to write to output */ |
+ |
+ /* If the first byte was a '[', then the close-quote character is a ']' */ |
+ if( quote=='[' ) quote = ']'; |
+ |
+ while( ALWAYS(z[iIn]) ){ |
+ if( z[iIn]==quote ){ |
+ if( z[iIn+1]!=quote ) break; |
+ z[iOut++] = quote; |
+ iIn += 2; |
+ }else{ |
+ z[iOut++] = z[iIn++]; |
+ } |
+ } |
+ z[iOut] = '\0'; |
+ } |
+} |
+ |
+/* |
+** Read a single varint from the doclist at *pp and advance *pp to point |
+** to the first byte past the end of the varint. Add the value of the varint |
+** to *pVal. |
+*/ |
+static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ |
+ sqlite3_int64 iVal; |
+ *pp += sqlite3Fts3GetVarint(*pp, &iVal); |
+ *pVal += iVal; |
+} |
+ |
+/* |
+** As long as *pp has not reached its end (pEnd), then do the same |
+** as fts3GetDeltaVarint(): read a single varint and add it to *pVal. |
+** But if we have reached the end of the varint, just set *pp=0 and |
+** leave *pVal unchanged. |
+*/ |
+static void fts3GetDeltaVarint2(char **pp, char *pEnd, sqlite3_int64 *pVal){ |
+ if( *pp>=pEnd ){ |
+ *pp = 0; |
+ }else{ |
+ fts3GetDeltaVarint(pp, pVal); |
+ } |
+} |
+ |
+/* |
+** The xDisconnect() virtual table method. |
+*/ |
+static int fts3DisconnectMethod(sqlite3_vtab *pVtab){ |
+ Fts3Table *p = (Fts3Table *)pVtab; |
+ int i; |
+ |
+ assert( p->nPendingData==0 ); |
+ assert( p->pSegments==0 ); |
+ |
+ /* Free any prepared statements held */ |
+ for(i=0; i<SizeofArray(p->aStmt); i++){ |
+ sqlite3_finalize(p->aStmt[i]); |
+ } |
+ sqlite3_free(p->zSegmentsTbl); |
+ sqlite3_free(p->zReadExprlist); |
+ sqlite3_free(p->zWriteExprlist); |
+ |
+ /* Invoke the tokenizer destructor to free the tokenizer. */ |
+ p->pTokenizer->pModule->xDestroy(p->pTokenizer); |
+ |
+ sqlite3_free(p); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Construct one or more SQL statements from the format string given |
+** and then evaluate those statements. The success code is written |
+** into *pRc. |
+** |
+** If *pRc is initially non-zero then this routine is a no-op. |
+*/ |
+static void fts3DbExec( |
+ int *pRc, /* Success code */ |
+ sqlite3 *db, /* Database in which to run SQL */ |
+ const char *zFormat, /* Format string for SQL */ |
+ ... /* Arguments to the format string */ |
+){ |
+ va_list ap; |
+ char *zSql; |
+ if( *pRc ) return; |
+ va_start(ap, zFormat); |
+ zSql = sqlite3_vmprintf(zFormat, ap); |
+ va_end(ap); |
+ if( zSql==0 ){ |
+ *pRc = SQLITE_NOMEM; |
+ }else{ |
+ *pRc = sqlite3_exec(db, zSql, 0, 0, 0); |
+ sqlite3_free(zSql); |
+ } |
+} |
+ |
+/* |
+** The xDestroy() virtual table method. |
+*/ |
+static int fts3DestroyMethod(sqlite3_vtab *pVtab){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ Fts3Table *p = (Fts3Table *)pVtab; |
+ sqlite3 *db = p->db; |
+ |
+ /* Drop the shadow tables */ |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", p->zDb, p->zName); |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", p->zDb,p->zName); |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", p->zDb, p->zName); |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", p->zDb, p->zName); |
+ fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", p->zDb, p->zName); |
+ |
+ /* If everything has worked, invoke fts3DisconnectMethod() to free the |
+ ** memory associated with the Fts3Table structure and return SQLITE_OK. |
+ ** Otherwise, return an SQLite error code. |
+ */ |
+ return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc); |
+} |
+ |
+ |
+/* |
+** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table |
+** passed as the first argument. This is done as part of the xConnect() |
+** and xCreate() methods. |
+** |
+** If *pRc is non-zero when this function is called, it is a no-op. |
+** Otherwise, if an error occurs, an SQLite error code is stored in *pRc |
+** before returning. |
+*/ |
+static void fts3DeclareVtab(int *pRc, Fts3Table *p){ |
+ if( *pRc==SQLITE_OK ){ |
+ int i; /* Iterator variable */ |
+ int rc; /* Return code */ |
+ char *zSql; /* SQL statement passed to declare_vtab() */ |
+ char *zCols; /* List of user defined columns */ |
+ |
+ /* Create a list of user columns for the virtual table */ |
+ zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); |
+ for(i=1; zCols && i<p->nColumn; i++){ |
+ zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); |
+ } |
+ |
+ /* Create the whole "CREATE TABLE" statement to pass to SQLite */ |
+ zSql = sqlite3_mprintf( |
+ "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN)", zCols, p->zName |
+ ); |
+ if( !zCols || !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_declare_vtab(p->db, zSql); |
+ } |
+ |
+ sqlite3_free(zSql); |
+ sqlite3_free(zCols); |
+ *pRc = rc; |
+ } |
+} |
+ |
+/* |
+** Create the backing store tables (%_content, %_segments and %_segdir) |
+** required by the FTS3 table passed as the only argument. This is done |
+** as part of the vtab xCreate() method. |
+** |
+** If the p->bHasDocsize boolean is true (indicating that this is an |
+** FTS4 table, not an FTS3 table) then also create the %_docsize and |
+** %_stat tables required by FTS4. |
+*/ |
+static int fts3CreateTables(Fts3Table *p){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int i; /* Iterator variable */ |
+ char *zContentCols; /* Columns of %_content table */ |
+ sqlite3 *db = p->db; /* The database connection */ |
+ |
+ /* Create a list of user columns for the content table */ |
+ zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY"); |
+ for(i=0; zContentCols && i<p->nColumn; i++){ |
+ char *z = p->azColumn[i]; |
+ zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z); |
+ } |
+ if( zContentCols==0 ) rc = SQLITE_NOMEM; |
+ |
+ /* Create the content table */ |
+ fts3DbExec(&rc, db, |
+ "CREATE TABLE %Q.'%q_content'(%s)", |
+ p->zDb, p->zName, zContentCols |
+ ); |
+ sqlite3_free(zContentCols); |
+ /* Create other tables */ |
+ fts3DbExec(&rc, db, |
+ "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);", |
+ p->zDb, p->zName |
+ ); |
+ fts3DbExec(&rc, db, |
+ "CREATE TABLE %Q.'%q_segdir'(" |
+ "level INTEGER," |
+ "idx INTEGER," |
+ "start_block INTEGER," |
+ "leaves_end_block INTEGER," |
+ "end_block INTEGER," |
+ "root BLOB," |
+ "PRIMARY KEY(level, idx)" |
+ ");", |
+ p->zDb, p->zName |
+ ); |
+ if( p->bHasDocsize ){ |
+ fts3DbExec(&rc, db, |
+ "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);", |
+ p->zDb, p->zName |
+ ); |
+ } |
+ if( p->bHasStat ){ |
+ fts3DbExec(&rc, db, |
+ "CREATE TABLE %Q.'%q_stat'(id INTEGER PRIMARY KEY, value BLOB);", |
+ p->zDb, p->zName |
+ ); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Store the current database page-size in bytes in p->nPgsz. |
+** |
+** If *pRc is non-zero when this function is called, it is a no-op. |
+** Otherwise, if an error occurs, an SQLite error code is stored in *pRc |
+** before returning. |
+*/ |
+static void fts3DatabasePageSize(int *pRc, Fts3Table *p){ |
+ if( *pRc==SQLITE_OK ){ |
+ int rc; /* Return code */ |
+ char *zSql; /* SQL text "PRAGMA %Q.page_size" */ |
+ sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */ |
+ |
+ zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb); |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_step(pStmt); |
+ p->nPgsz = sqlite3_column_int(pStmt, 0); |
+ rc = sqlite3_finalize(pStmt); |
+ } |
+ } |
+ assert( p->nPgsz>0 || rc!=SQLITE_OK ); |
+ sqlite3_free(zSql); |
+ *pRc = rc; |
+ } |
+} |
+ |
+/* |
+** "Special" FTS4 arguments are column specifications of the following form: |
+** |
+** <key> = <value> |
+** |
+** There may not be whitespace surrounding the "=" character. The <value> |
+** term may be quoted, but the <key> may not. |
+*/ |
+static int fts3IsSpecialColumn( |
+ const char *z, |
+ int *pnKey, |
+ char **pzValue |
+){ |
+ char *zValue; |
+ const char *zCsr = z; |
+ |
+ while( *zCsr!='=' ){ |
+ if( *zCsr=='\0' ) return 0; |
+ zCsr++; |
+ } |
+ |
+ *pnKey = (int)(zCsr-z); |
+ zValue = sqlite3_mprintf("%s", &zCsr[1]); |
+ if( zValue ){ |
+ sqlite3Fts3Dequote(zValue); |
+ } |
+ *pzValue = zValue; |
+ return 1; |
+} |
+ |
+/* |
+** Append the output of a printf() style formatting to an existing string. |
+*/ |
+static void fts3Appendf( |
+ int *pRc, /* IN/OUT: Error code */ |
+ char **pz, /* IN/OUT: Pointer to string buffer */ |
+ const char *zFormat, /* Printf format string to append */ |
+ ... /* Arguments for printf format string */ |
+){ |
+ if( *pRc==SQLITE_OK ){ |
+ va_list ap; |
+ char *z; |
+ va_start(ap, zFormat); |
+ z = sqlite3_vmprintf(zFormat, ap); |
+ if( z && *pz ){ |
+ char *z2 = sqlite3_mprintf("%s%s", *pz, z); |
+ sqlite3_free(z); |
+ z = z2; |
+ } |
+ if( z==0 ) *pRc = SQLITE_NOMEM; |
+ sqlite3_free(*pz); |
+ *pz = z; |
+ } |
+} |
+ |
+/* |
+** Return a copy of input string zInput enclosed in double-quotes (") and |
+** with all double quote characters escaped. For example: |
+** |
+** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\"" |
+** |
+** The pointer returned points to memory obtained from sqlite3_malloc(). It |
+** is the callers responsibility to call sqlite3_free() to release this |
+** memory. |
+*/ |
+static char *fts3QuoteId(char const *zInput){ |
+ int nRet; |
+ char *zRet; |
+ nRet = 2 + strlen(zInput)*2 + 1; |
+ zRet = sqlite3_malloc(nRet); |
+ if( zRet ){ |
+ int i; |
+ char *z = zRet; |
+ *(z++) = '"'; |
+ for(i=0; zInput[i]; i++){ |
+ if( zInput[i]=='"' ) *(z++) = '"'; |
+ *(z++) = zInput[i]; |
+ } |
+ *(z++) = '"'; |
+ *(z++) = '\0'; |
+ } |
+ return zRet; |
+} |
+ |
+/* |
+** Return a list of comma separated SQL expressions that could be used |
+** in a SELECT statement such as the following: |
+** |
+** SELECT <list of expressions> FROM %_content AS x ... |
+** |
+** to return the docid, followed by each column of text data in order |
+** from left to write. If parameter zFunc is not NULL, then instead of |
+** being returned directly each column of text data is passed to an SQL |
+** function named zFunc first. For example, if zFunc is "unzip" and the |
+** table has the three user-defined columns "a", "b", and "c", the following |
+** string is returned: |
+** |
+** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c')" |
+** |
+** The pointer returned points to a buffer allocated by sqlite3_malloc(). It |
+** is the responsibility of the caller to eventually free it. |
+** |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and |
+** a NULL pointer is returned). Otherwise, if an OOM error is encountered |
+** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If |
+** no error occurs, *pRc is left unmodified. |
+*/ |
+static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){ |
+ char *zRet = 0; |
+ char *zFree = 0; |
+ char *zFunction; |
+ int i; |
+ |
+ if( !zFunc ){ |
+ zFunction = ""; |
+ }else{ |
+ zFree = zFunction = fts3QuoteId(zFunc); |
+ } |
+ fts3Appendf(pRc, &zRet, "docid"); |
+ for(i=0; i<p->nColumn; i++){ |
+ fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]); |
+ } |
+ sqlite3_free(zFree); |
+ return zRet; |
+} |
+ |
+/* |
+** Return a list of N comma separated question marks, where N is the number |
+** of columns in the %_content table (one for the docid plus one for each |
+** user-defined text column). |
+** |
+** If argument zFunc is not NULL, then all but the first question mark |
+** is preceded by zFunc and an open bracket, and followed by a closed |
+** bracket. For example, if zFunc is "zip" and the FTS3 table has three |
+** user-defined text columns, the following string is returned: |
+** |
+** "?, zip(?), zip(?), zip(?)" |
+** |
+** The pointer returned points to a buffer allocated by sqlite3_malloc(). It |
+** is the responsibility of the caller to eventually free it. |
+** |
+** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and |
+** a NULL pointer is returned). Otherwise, if an OOM error is encountered |
+** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If |
+** no error occurs, *pRc is left unmodified. |
+*/ |
+static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){ |
+ char *zRet = 0; |
+ char *zFree = 0; |
+ char *zFunction; |
+ int i; |
+ |
+ if( !zFunc ){ |
+ zFunction = ""; |
+ }else{ |
+ zFree = zFunction = fts3QuoteId(zFunc); |
+ } |
+ fts3Appendf(pRc, &zRet, "?"); |
+ for(i=0; i<p->nColumn; i++){ |
+ fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); |
+ } |
+ sqlite3_free(zFree); |
+ return zRet; |
+} |
+ |
+/* |
+** This function is the implementation of both the xConnect and xCreate |
+** methods of the FTS3 virtual table. |
+** |
+** The argv[] array contains the following: |
+** |
+** argv[0] -> module name ("fts3" or "fts4") |
+** argv[1] -> database name |
+** argv[2] -> table name |
+** argv[...] -> "column name" and other module argument fields. |
+*/ |
+static int fts3InitVtab( |
+ int isCreate, /* True for xCreate, false for xConnect */ |
+ sqlite3 *db, /* The SQLite database connection */ |
+ void *pAux, /* Hash table containing tokenizers */ |
+ int argc, /* Number of elements in argv array */ |
+ const char * const *argv, /* xCreate/xConnect argument array */ |
+ sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ |
+ char **pzErr /* Write any error message here */ |
+){ |
+ Fts3Hash *pHash = (Fts3Hash *)pAux; |
+ Fts3Table *p = 0; /* Pointer to allocated vtab */ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int i; /* Iterator variable */ |
+ int nByte; /* Size of allocation used for *p */ |
+ int iCol; /* Column index */ |
+ int nString = 0; /* Bytes required to hold all column names */ |
+ int nCol = 0; /* Number of columns in the FTS table */ |
+ char *zCsr; /* Space for holding column names */ |
+ int nDb; /* Bytes required to hold database name */ |
+ int nName; /* Bytes required to hold table name */ |
+ int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ |
+ int bNoDocsize = 0; /* True to omit %_docsize table */ |
+ const char **aCol; /* Array of column names */ |
+ sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ |
+ |
+ char *zCompress = 0; |
+ char *zUncompress = 0; |
+ |
+ assert( strlen(argv[0])==4 ); |
+ assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) |
+ || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) |
+ ); |
+ |
+ nDb = (int)strlen(argv[1]) + 1; |
+ nName = (int)strlen(argv[2]) + 1; |
+ |
+ aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) ); |
+ if( !aCol ) return SQLITE_NOMEM; |
+ memset((void *)aCol, 0, sizeof(const char *) * (argc-2)); |
+ |
+ /* Loop through all of the arguments passed by the user to the FTS3/4 |
+ ** module (i.e. all the column names and special arguments). This loop |
+ ** does the following: |
+ ** |
+ ** + Figures out the number of columns the FTSX table will have, and |
+ ** the number of bytes of space that must be allocated to store copies |
+ ** of the column names. |
+ ** |
+ ** + If there is a tokenizer specification included in the arguments, |
+ ** initializes the tokenizer pTokenizer. |
+ */ |
+ for(i=3; rc==SQLITE_OK && i<argc; i++){ |
+ char const *z = argv[i]; |
+ int nKey; |
+ char *zVal; |
+ |
+ /* Check if this is a tokenizer specification */ |
+ if( !pTokenizer |
+ && strlen(z)>8 |
+ && 0==sqlite3_strnicmp(z, "tokenize", 8) |
+ && 0==sqlite3Fts3IsIdChar(z[8]) |
+ ){ |
+ rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr); |
+ } |
+ |
+ /* Check if it is an FTS4 special argument. */ |
+ else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){ |
+ if( !zVal ){ |
+ rc = SQLITE_NOMEM; |
+ goto fts3_init_out; |
+ } |
+ if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){ |
+ if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){ |
+ bNoDocsize = 1; |
+ }else{ |
+ *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal); |
+ rc = SQLITE_ERROR; |
+ } |
+ }else if( nKey==8 && 0==sqlite3_strnicmp(z, "compress", 8) ){ |
+ zCompress = zVal; |
+ zVal = 0; |
+ }else if( nKey==10 && 0==sqlite3_strnicmp(z, "uncompress", 10) ){ |
+ zUncompress = zVal; |
+ zVal = 0; |
+ }else{ |
+ *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z); |
+ rc = SQLITE_ERROR; |
+ } |
+ sqlite3_free(zVal); |
+ } |
+ |
+ /* Otherwise, the argument is a column name. */ |
+ else { |
+ nString += (int)(strlen(z) + 1); |
+ aCol[nCol++] = z; |
+ } |
+ } |
+ if( rc!=SQLITE_OK ) goto fts3_init_out; |
+ |
+ if( nCol==0 ){ |
+ assert( nString==0 ); |
+ aCol[0] = "content"; |
+ nString = 8; |
+ nCol = 1; |
+ } |
+ |
+ if( pTokenizer==0 ){ |
+ rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr); |
+ if( rc!=SQLITE_OK ) goto fts3_init_out; |
+ } |
+ assert( pTokenizer ); |
+ |
+ |
+ /* Allocate and populate the Fts3Table structure. */ |
+ nByte = sizeof(Fts3Table) + /* Fts3Table */ |
+ nCol * sizeof(char *) + /* azColumn */ |
+ nName + /* zName */ |
+ nDb + /* zDb */ |
+ nString; /* Space for azColumn strings */ |
+ p = (Fts3Table*)sqlite3_malloc(nByte); |
+ if( p==0 ){ |
+ rc = SQLITE_NOMEM; |
+ goto fts3_init_out; |
+ } |
+ memset(p, 0, nByte); |
+ p->db = db; |
+ p->nColumn = nCol; |
+ p->nPendingData = 0; |
+ p->azColumn = (char **)&p[1]; |
+ p->pTokenizer = pTokenizer; |
+ p->nNodeSize = 1000; |
+ p->nMaxPendingData = FTS3_MAX_PENDING_DATA; |
+ p->bHasDocsize = (isFts4 && bNoDocsize==0); |
+ p->bHasStat = isFts4; |
+ fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1); |
+ |
+ /* Fill in the zName and zDb fields of the vtab structure. */ |
+ zCsr = (char *)&p->azColumn[nCol]; |
+ p->zName = zCsr; |
+ memcpy(zCsr, argv[2], nName); |
+ zCsr += nName; |
+ p->zDb = zCsr; |
+ memcpy(zCsr, argv[1], nDb); |
+ zCsr += nDb; |
+ |
+ /* Fill in the azColumn array */ |
+ for(iCol=0; iCol<nCol; iCol++){ |
+ char *z; |
+ int n; |
+ z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n); |
+ memcpy(zCsr, z, n); |
+ zCsr[n] = '\0'; |
+ sqlite3Fts3Dequote(zCsr); |
+ p->azColumn[iCol] = zCsr; |
+ zCsr += n+1; |
+ assert( zCsr <= &((char *)p)[nByte] ); |
+ } |
+ |
+ if( (zCompress==0)!=(zUncompress==0) ){ |
+ char const *zMiss = (zCompress==0 ? "compress" : "uncompress"); |
+ rc = SQLITE_ERROR; |
+ *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss); |
+ } |
+ p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc); |
+ p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); |
+ if( rc!=SQLITE_OK ) goto fts3_init_out; |
+ |
+ /* If this is an xCreate call, create the underlying tables in the |
+ ** database. TODO: For xConnect(), it could verify that said tables exist. |
+ */ |
+ if( isCreate ){ |
+ rc = fts3CreateTables(p); |
+ } |
+ |
+ /* Figure out the page-size for the database. This is required in order to |
+ ** estimate the cost of loading large doclists from the database (see |
+ ** function sqlite3Fts3SegReaderCost() for details). |
+ */ |
+ fts3DatabasePageSize(&rc, p); |
+ |
+ /* Declare the table schema to SQLite. */ |
+ fts3DeclareVtab(&rc, p); |
+ |
+fts3_init_out: |
+ sqlite3_free(zCompress); |
+ sqlite3_free(zUncompress); |
+ sqlite3_free((void *)aCol); |
+ if( rc!=SQLITE_OK ){ |
+ if( p ){ |
+ fts3DisconnectMethod((sqlite3_vtab *)p); |
+ }else if( pTokenizer ){ |
+ pTokenizer->pModule->xDestroy(pTokenizer); |
+ } |
+ }else{ |
+ *ppVTab = &p->base; |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** The xConnect() and xCreate() methods for the virtual table. All the |
+** work is done in function fts3InitVtab(). |
+*/ |
+static int fts3ConnectMethod( |
+ sqlite3 *db, /* Database connection */ |
+ void *pAux, /* Pointer to tokenizer hash table */ |
+ int argc, /* Number of elements in argv array */ |
+ const char * const *argv, /* xCreate/xConnect argument array */ |
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ |
+ char **pzErr /* OUT: sqlite3_malloc'd error message */ |
+){ |
+ return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr); |
+} |
+static int fts3CreateMethod( |
+ sqlite3 *db, /* Database connection */ |
+ void *pAux, /* Pointer to tokenizer hash table */ |
+ int argc, /* Number of elements in argv array */ |
+ const char * const *argv, /* xCreate/xConnect argument array */ |
+ sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ |
+ char **pzErr /* OUT: sqlite3_malloc'd error message */ |
+){ |
+ return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr); |
+} |
+ |
+/* |
+** Implementation of the xBestIndex method for FTS3 tables. There |
+** are three possible strategies, in order of preference: |
+** |
+** 1. Direct lookup by rowid or docid. |
+** 2. Full-text search using a MATCH operator on a non-docid column. |
+** 3. Linear scan of %_content table. |
+*/ |
+static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ |
+ Fts3Table *p = (Fts3Table *)pVTab; |
+ int i; /* Iterator variable */ |
+ int iCons = -1; /* Index of constraint to use */ |
+ |
+ /* By default use a full table scan. This is an expensive option, |
+ ** so search through the constraints to see if a more efficient |
+ ** strategy is possible. |
+ */ |
+ pInfo->idxNum = FTS3_FULLSCAN_SEARCH; |
+ pInfo->estimatedCost = 500000; |
+ for(i=0; i<pInfo->nConstraint; i++){ |
+ struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i]; |
+ if( pCons->usable==0 ) continue; |
+ |
+ /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */ |
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ |
+ && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 ) |
+ ){ |
+ pInfo->idxNum = FTS3_DOCID_SEARCH; |
+ pInfo->estimatedCost = 1.0; |
+ iCons = i; |
+ } |
+ |
+ /* A MATCH constraint. Use a full-text search. |
+ ** |
+ ** If there is more than one MATCH constraint available, use the first |
+ ** one encountered. If there is both a MATCH constraint and a direct |
+ ** rowid/docid lookup, prefer the MATCH strategy. This is done even |
+ ** though the rowid/docid lookup is faster than a MATCH query, selecting |
+ ** it would lead to an "unable to use function MATCH in the requested |
+ ** context" error. |
+ */ |
+ if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH |
+ && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn |
+ ){ |
+ pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn; |
+ pInfo->estimatedCost = 2.0; |
+ iCons = i; |
+ break; |
+ } |
+ } |
+ |
+ if( iCons>=0 ){ |
+ pInfo->aConstraintUsage[iCons].argvIndex = 1; |
+ pInfo->aConstraintUsage[iCons].omit = 1; |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of xOpen method. |
+*/ |
+static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ |
+ sqlite3_vtab_cursor *pCsr; /* Allocated cursor */ |
+ |
+ UNUSED_PARAMETER(pVTab); |
+ |
+ /* Allocate a buffer large enough for an Fts3Cursor structure. If the |
+ ** allocation succeeds, zero it and return SQLITE_OK. Otherwise, |
+ ** if the allocation fails, return SQLITE_NOMEM. |
+ */ |
+ *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor)); |
+ if( !pCsr ){ |
+ return SQLITE_NOMEM; |
+ } |
+ memset(pCsr, 0, sizeof(Fts3Cursor)); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Close the cursor. For additional information see the documentation |
+** on the xClose method of the virtual table interface. |
+*/ |
+static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){ |
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; |
+ assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); |
+ sqlite3_finalize(pCsr->pStmt); |
+ sqlite3Fts3ExprFree(pCsr->pExpr); |
+ sqlite3Fts3FreeDeferredTokens(pCsr); |
+ sqlite3_free(pCsr->aDoclist); |
+ sqlite3_free(pCsr->aMatchinfo); |
+ sqlite3_free(pCsr); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Position the pCsr->pStmt statement so that it is on the row |
+** of the %_content table that contains the last match. Return |
+** SQLITE_OK on success. |
+*/ |
+static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ |
+ if( pCsr->isRequireSeek ){ |
+ pCsr->isRequireSeek = 0; |
+ sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId); |
+ if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){ |
+ return SQLITE_OK; |
+ }else{ |
+ int rc = sqlite3_reset(pCsr->pStmt); |
+ if( rc==SQLITE_OK ){ |
+ /* If no row was found and no error has occured, then the %_content |
+ ** table is missing a row that is present in the full-text index. |
+ ** The data structures are corrupt. |
+ */ |
+ rc = SQLITE_CORRUPT; |
+ } |
+ pCsr->isEof = 1; |
+ if( pContext ){ |
+ sqlite3_result_error_code(pContext, rc); |
+ } |
+ return rc; |
+ } |
+ }else{ |
+ return SQLITE_OK; |
+ } |
+} |
+ |
+/* |
+** This function is used to process a single interior node when searching |
+** a b-tree for a term or term prefix. The node data is passed to this |
+** function via the zNode/nNode parameters. The term to search for is |
+** passed in zTerm/nTerm. |
+** |
+** If piFirst is not NULL, then this function sets *piFirst to the blockid |
+** of the child node that heads the sub-tree that may contain the term. |
+** |
+** If piLast is not NULL, then *piLast is set to the right-most child node |
+** that heads a sub-tree that may contain a term for which zTerm/nTerm is |
+** a prefix. |
+** |
+** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK. |
+*/ |
+static int fts3ScanInteriorNode( |
+ const char *zTerm, /* Term to select leaves for */ |
+ int nTerm, /* Size of term zTerm in bytes */ |
+ const char *zNode, /* Buffer containing segment interior node */ |
+ int nNode, /* Size of buffer at zNode */ |
+ sqlite3_int64 *piFirst, /* OUT: Selected child node */ |
+ sqlite3_int64 *piLast /* OUT: Selected child node */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ const char *zCsr = zNode; /* Cursor to iterate through node */ |
+ const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ |
+ char *zBuffer = 0; /* Buffer to load terms into */ |
+ int nAlloc = 0; /* Size of allocated buffer */ |
+ int isFirstTerm = 1; /* True when processing first term on page */ |
+ sqlite3_int64 iChild; /* Block id of child node to descend to */ |
+ |
+ /* Skip over the 'height' varint that occurs at the start of every |
+ ** interior node. Then load the blockid of the left-child of the b-tree |
+ ** node into variable iChild. |
+ ** |
+ ** Even if the data structure on disk is corrupted, this (reading two |
+ ** varints from the buffer) does not risk an overread. If zNode is a |
+ ** root node, then the buffer comes from a SELECT statement. SQLite does |
+ ** not make this guarantee explicitly, but in practice there are always |
+ ** either more than 20 bytes of allocated space following the nNode bytes of |
+ ** contents, or two zero bytes. Or, if the node is read from the %_segments |
+ ** table, then there are always 20 bytes of zeroed padding following the |
+ ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details). |
+ */ |
+ zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); |
+ zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); |
+ if( zCsr>zEnd ){ |
+ return SQLITE_CORRUPT; |
+ } |
+ |
+ while( zCsr<zEnd && (piFirst || piLast) ){ |
+ int cmp; /* memcmp() result */ |
+ int nSuffix; /* Size of term suffix */ |
+ int nPrefix = 0; /* Size of term prefix */ |
+ int nBuffer; /* Total term size */ |
+ |
+ /* Load the next term on the node into zBuffer. Use realloc() to expand |
+ ** the size of zBuffer if required. */ |
+ if( !isFirstTerm ){ |
+ zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix); |
+ } |
+ isFirstTerm = 0; |
+ zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix); |
+ |
+ if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){ |
+ rc = SQLITE_CORRUPT; |
+ goto finish_scan; |
+ } |
+ if( nPrefix+nSuffix>nAlloc ){ |
+ char *zNew; |
+ nAlloc = (nPrefix+nSuffix) * 2; |
+ zNew = (char *)sqlite3_realloc(zBuffer, nAlloc); |
+ if( !zNew ){ |
+ rc = SQLITE_NOMEM; |
+ goto finish_scan; |
+ } |
+ zBuffer = zNew; |
+ } |
+ memcpy(&zBuffer[nPrefix], zCsr, nSuffix); |
+ nBuffer = nPrefix + nSuffix; |
+ zCsr += nSuffix; |
+ |
+ /* Compare the term we are searching for with the term just loaded from |
+ ** the interior node. If the specified term is greater than or equal |
+ ** to the term from the interior node, then all terms on the sub-tree |
+ ** headed by node iChild are smaller than zTerm. No need to search |
+ ** iChild. |
+ ** |
+ ** If the interior node term is larger than the specified term, then |
+ ** the tree headed by iChild may contain the specified term. |
+ */ |
+ cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer)); |
+ if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){ |
+ *piFirst = iChild; |
+ piFirst = 0; |
+ } |
+ |
+ if( piLast && cmp<0 ){ |
+ *piLast = iChild; |
+ piLast = 0; |
+ } |
+ |
+ iChild++; |
+ }; |
+ |
+ if( piFirst ) *piFirst = iChild; |
+ if( piLast ) *piLast = iChild; |
+ |
+ finish_scan: |
+ sqlite3_free(zBuffer); |
+ return rc; |
+} |
+ |
+ |
+/* |
+** The buffer pointed to by argument zNode (size nNode bytes) contains an |
+** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes) |
+** contains a term. This function searches the sub-tree headed by the zNode |
+** node for the range of leaf nodes that may contain the specified term |
+** or terms for which the specified term is a prefix. |
+** |
+** If piLeaf is not NULL, then *piLeaf is set to the blockid of the |
+** left-most leaf node in the tree that may contain the specified term. |
+** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the |
+** right-most leaf node that may contain a term for which the specified |
+** term is a prefix. |
+** |
+** It is possible that the range of returned leaf nodes does not contain |
+** the specified term or any terms for which it is a prefix. However, if the |
+** segment does contain any such terms, they are stored within the identified |
+** range. Because this function only inspects interior segment nodes (and |
+** never loads leaf nodes into memory), it is not possible to be sure. |
+** |
+** If an error occurs, an error code other than SQLITE_OK is returned. |
+*/ |
+static int fts3SelectLeaf( |
+ Fts3Table *p, /* Virtual table handle */ |
+ const char *zTerm, /* Term to select leaves for */ |
+ int nTerm, /* Size of term zTerm in bytes */ |
+ const char *zNode, /* Buffer containing segment interior node */ |
+ int nNode, /* Size of buffer at zNode */ |
+ sqlite3_int64 *piLeaf, /* Selected leaf node */ |
+ sqlite3_int64 *piLeaf2 /* Selected leaf node */ |
+){ |
+ int rc; /* Return code */ |
+ int iHeight; /* Height of this node in tree */ |
+ |
+ assert( piLeaf || piLeaf2 ); |
+ |
+ sqlite3Fts3GetVarint32(zNode, &iHeight); |
+ rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2); |
+ assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) ); |
+ |
+ if( rc==SQLITE_OK && iHeight>1 ){ |
+ char *zBlob = 0; /* Blob read from %_segments table */ |
+ int nBlob; /* Size of zBlob in bytes */ |
+ |
+ if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){ |
+ rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0); |
+ } |
+ sqlite3_free(zBlob); |
+ piLeaf = 0; |
+ zBlob = 0; |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2); |
+ } |
+ sqlite3_free(zBlob); |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function is used to create delta-encoded serialized lists of FTS3 |
+** varints. Each call to this function appends a single varint to a list. |
+*/ |
+static void fts3PutDeltaVarint( |
+ char **pp, /* IN/OUT: Output pointer */ |
+ sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ |
+ sqlite3_int64 iVal /* Write this value to the list */ |
+){ |
+ assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); |
+ *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); |
+ *piPrev = iVal; |
+} |
+ |
+/* |
+** When this function is called, *ppPoslist is assumed to point to the |
+** start of a position-list. After it returns, *ppPoslist points to the |
+** first byte after the position-list. |
+** |
+** A position list is list of positions (delta encoded) and columns for |
+** a single document record of a doclist. So, in other words, this |
+** routine advances *ppPoslist so that it points to the next docid in |
+** the doclist, or to the first byte past the end of the doclist. |
+** |
+** If pp is not NULL, then the contents of the position list are copied |
+** to *pp. *pp is set to point to the first byte past the last byte copied |
+** before this function returns. |
+*/ |
+static void fts3PoslistCopy(char **pp, char **ppPoslist){ |
+ char *pEnd = *ppPoslist; |
+ char c = 0; |
+ |
+ /* The end of a position list is marked by a zero encoded as an FTS3 |
+ ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by |
+ ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail |
+ ** of some other, multi-byte, value. |
+ ** |
+ ** The following while-loop moves pEnd to point to the first byte that is not |
+ ** immediately preceded by a byte with the 0x80 bit set. Then increments |
+ ** pEnd once more so that it points to the byte immediately following the |
+ ** last byte in the position-list. |
+ */ |
+ while( *pEnd | c ){ |
+ c = *pEnd++ & 0x80; |
+ testcase( c!=0 && (*pEnd)==0 ); |
+ } |
+ pEnd++; /* Advance past the POS_END terminator byte */ |
+ |
+ if( pp ){ |
+ int n = (int)(pEnd - *ppPoslist); |
+ char *p = *pp; |
+ memcpy(p, *ppPoslist, n); |
+ p += n; |
+ *pp = p; |
+ } |
+ *ppPoslist = pEnd; |
+} |
+ |
+/* |
+** When this function is called, *ppPoslist is assumed to point to the |
+** start of a column-list. After it returns, *ppPoslist points to the |
+** to the terminator (POS_COLUMN or POS_END) byte of the column-list. |
+** |
+** A column-list is list of delta-encoded positions for a single column |
+** within a single document within a doclist. |
+** |
+** The column-list is terminated either by a POS_COLUMN varint (1) or |
+** a POS_END varint (0). This routine leaves *ppPoslist pointing to |
+** the POS_COLUMN or POS_END that terminates the column-list. |
+** |
+** If pp is not NULL, then the contents of the column-list are copied |
+** to *pp. *pp is set to point to the first byte past the last byte copied |
+** before this function returns. The POS_COLUMN or POS_END terminator |
+** is not copied into *pp. |
+*/ |
+static void fts3ColumnlistCopy(char **pp, char **ppPoslist){ |
+ char *pEnd = *ppPoslist; |
+ char c = 0; |
+ |
+ /* A column-list is terminated by either a 0x01 or 0x00 byte that is |
+ ** not part of a multi-byte varint. |
+ */ |
+ while( 0xFE & (*pEnd | c) ){ |
+ c = *pEnd++ & 0x80; |
+ testcase( c!=0 && ((*pEnd)&0xfe)==0 ); |
+ } |
+ if( pp ){ |
+ int n = (int)(pEnd - *ppPoslist); |
+ char *p = *pp; |
+ memcpy(p, *ppPoslist, n); |
+ p += n; |
+ *pp = p; |
+ } |
+ *ppPoslist = pEnd; |
+} |
+ |
+/* |
+** Value used to signify the end of an position-list. This is safe because |
+** it is not possible to have a document with 2^31 terms. |
+*/ |
+#define POSITION_LIST_END 0x7fffffff |
+ |
+/* |
+** This function is used to help parse position-lists. When this function is |
+** called, *pp may point to the start of the next varint in the position-list |
+** being parsed, or it may point to 1 byte past the end of the position-list |
+** (in which case **pp will be a terminator bytes POS_END (0) or |
+** (1)). |
+** |
+** If *pp points past the end of the current position-list, set *pi to |
+** POSITION_LIST_END and return. Otherwise, read the next varint from *pp, |
+** increment the current value of *pi by the value read, and set *pp to |
+** point to the next value before returning. |
+** |
+** Before calling this routine *pi must be initialized to the value of |
+** the previous position, or zero if we are reading the first position |
+** in the position-list. Because positions are delta-encoded, the value |
+** of the previous position is needed in order to compute the value of |
+** the next position. |
+*/ |
+static void fts3ReadNextPos( |
+ char **pp, /* IN/OUT: Pointer into position-list buffer */ |
+ sqlite3_int64 *pi /* IN/OUT: Value read from position-list */ |
+){ |
+ if( (**pp)&0xFE ){ |
+ fts3GetDeltaVarint(pp, pi); |
+ *pi -= 2; |
+ }else{ |
+ *pi = POSITION_LIST_END; |
+ } |
+} |
+ |
+/* |
+** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by |
+** the value of iCol encoded as a varint to *pp. This will start a new |
+** column list. |
+** |
+** Set *pp to point to the byte just after the last byte written before |
+** returning (do not modify it if iCol==0). Return the total number of bytes |
+** written (0 if iCol==0). |
+*/ |
+static int fts3PutColNumber(char **pp, int iCol){ |
+ int n = 0; /* Number of bytes written */ |
+ if( iCol ){ |
+ char *p = *pp; /* Output pointer */ |
+ n = 1 + sqlite3Fts3PutVarint(&p[1], iCol); |
+ *p = 0x01; |
+ *pp = &p[n]; |
+ } |
+ return n; |
+} |
+ |
+/* |
+** Compute the union of two position lists. The output written |
+** into *pp contains all positions of both *pp1 and *pp2 in sorted |
+** order and with any duplicates removed. All pointers are |
+** updated appropriately. The caller is responsible for insuring |
+** that there is enough space in *pp to hold the complete output. |
+*/ |
+static void fts3PoslistMerge( |
+ char **pp, /* Output buffer */ |
+ char **pp1, /* Left input list */ |
+ char **pp2 /* Right input list */ |
+){ |
+ char *p = *pp; |
+ char *p1 = *pp1; |
+ char *p2 = *pp2; |
+ |
+ while( *p1 || *p2 ){ |
+ int iCol1; /* The current column index in pp1 */ |
+ int iCol2; /* The current column index in pp2 */ |
+ |
+ if( *p1==POS_COLUMN ) sqlite3Fts3GetVarint32(&p1[1], &iCol1); |
+ else if( *p1==POS_END ) iCol1 = POSITION_LIST_END; |
+ else iCol1 = 0; |
+ |
+ if( *p2==POS_COLUMN ) sqlite3Fts3GetVarint32(&p2[1], &iCol2); |
+ else if( *p2==POS_END ) iCol2 = POSITION_LIST_END; |
+ else iCol2 = 0; |
+ |
+ if( iCol1==iCol2 ){ |
+ sqlite3_int64 i1 = 0; /* Last position from pp1 */ |
+ sqlite3_int64 i2 = 0; /* Last position from pp2 */ |
+ sqlite3_int64 iPrev = 0; |
+ int n = fts3PutColNumber(&p, iCol1); |
+ p1 += n; |
+ p2 += n; |
+ |
+ /* At this point, both p1 and p2 point to the start of column-lists |
+ ** for the same column (the column with index iCol1 and iCol2). |
+ ** A column-list is a list of non-negative delta-encoded varints, each |
+ ** incremented by 2 before being stored. Each list is terminated by a |
+ ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists |
+ ** and writes the results to buffer p. p is left pointing to the byte |
+ ** after the list written. No terminator (POS_END or POS_COLUMN) is |
+ ** written to the output. |
+ */ |
+ fts3GetDeltaVarint(&p1, &i1); |
+ fts3GetDeltaVarint(&p2, &i2); |
+ do { |
+ fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2); |
+ iPrev -= 2; |
+ if( i1==i2 ){ |
+ fts3ReadNextPos(&p1, &i1); |
+ fts3ReadNextPos(&p2, &i2); |
+ }else if( i1<i2 ){ |
+ fts3ReadNextPos(&p1, &i1); |
+ }else{ |
+ fts3ReadNextPos(&p2, &i2); |
+ } |
+ }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END ); |
+ }else if( iCol1<iCol2 ){ |
+ p1 += fts3PutColNumber(&p, iCol1); |
+ fts3ColumnlistCopy(&p, &p1); |
+ }else{ |
+ p2 += fts3PutColNumber(&p, iCol2); |
+ fts3ColumnlistCopy(&p, &p2); |
+ } |
+ } |
+ |
+ *p++ = POS_END; |
+ *pp = p; |
+ *pp1 = p1 + 1; |
+ *pp2 = p2 + 1; |
+} |
+ |
+/* |
+** nToken==1 searches for adjacent positions. |
+** |
+** This function is used to merge two position lists into one. When it is |
+** called, *pp1 and *pp2 must both point to position lists. A position-list is |
+** the part of a doclist that follows each document id. For example, if a row |
+** contains: |
+** |
+** 'a b c'|'x y z'|'a b b a' |
+** |
+** Then the position list for this row for token 'b' would consist of: |
+** |
+** 0x02 0x01 0x02 0x03 0x03 0x00 |
+** |
+** When this function returns, both *pp1 and *pp2 are left pointing to the |
+** byte following the 0x00 terminator of their respective position lists. |
+** |
+** If isSaveLeft is 0, an entry is added to the output position list for |
+** each position in *pp2 for which there exists one or more positions in |
+** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e. |
+** when the *pp1 token appears before the *pp2 token, but not more than nToken |
+** slots before it. |
+*/ |
+static int fts3PoslistPhraseMerge( |
+ char **pp, /* IN/OUT: Preallocated output buffer */ |
+ int nToken, /* Maximum difference in token positions */ |
+ int isSaveLeft, /* Save the left position */ |
+ int isExact, /* If *pp1 is exactly nTokens before *pp2 */ |
+ char **pp1, /* IN/OUT: Left input list */ |
+ char **pp2 /* IN/OUT: Right input list */ |
+){ |
+ char *p = (pp ? *pp : 0); |
+ char *p1 = *pp1; |
+ char *p2 = *pp2; |
+ int iCol1 = 0; |
+ int iCol2 = 0; |
+ |
+ /* Never set both isSaveLeft and isExact for the same invocation. */ |
+ assert( isSaveLeft==0 || isExact==0 ); |
+ |
+ assert( *p1!=0 && *p2!=0 ); |
+ if( *p1==POS_COLUMN ){ |
+ p1++; |
+ p1 += sqlite3Fts3GetVarint32(p1, &iCol1); |
+ } |
+ if( *p2==POS_COLUMN ){ |
+ p2++; |
+ p2 += sqlite3Fts3GetVarint32(p2, &iCol2); |
+ } |
+ |
+ while( 1 ){ |
+ if( iCol1==iCol2 ){ |
+ char *pSave = p; |
+ sqlite3_int64 iPrev = 0; |
+ sqlite3_int64 iPos1 = 0; |
+ sqlite3_int64 iPos2 = 0; |
+ |
+ if( pp && iCol1 ){ |
+ *p++ = POS_COLUMN; |
+ p += sqlite3Fts3PutVarint(p, iCol1); |
+ } |
+ |
+ assert( *p1!=POS_END && *p1!=POS_COLUMN ); |
+ assert( *p2!=POS_END && *p2!=POS_COLUMN ); |
+ fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; |
+ fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; |
+ |
+ while( 1 ){ |
+ if( iPos2==iPos1+nToken |
+ || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken) |
+ ){ |
+ sqlite3_int64 iSave; |
+ if( !pp ){ |
+ fts3PoslistCopy(0, &p2); |
+ fts3PoslistCopy(0, &p1); |
+ *pp1 = p1; |
+ *pp2 = p2; |
+ return 1; |
+ } |
+ iSave = isSaveLeft ? iPos1 : iPos2; |
+ fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2; |
+ pSave = 0; |
+ } |
+ if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){ |
+ if( (*p2&0xFE)==0 ) break; |
+ fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; |
+ }else{ |
+ if( (*p1&0xFE)==0 ) break; |
+ fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; |
+ } |
+ } |
+ |
+ if( pSave ){ |
+ assert( pp && p ); |
+ p = pSave; |
+ } |
+ |
+ fts3ColumnlistCopy(0, &p1); |
+ fts3ColumnlistCopy(0, &p2); |
+ assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 ); |
+ if( 0==*p1 || 0==*p2 ) break; |
+ |
+ p1++; |
+ p1 += sqlite3Fts3GetVarint32(p1, &iCol1); |
+ p2++; |
+ p2 += sqlite3Fts3GetVarint32(p2, &iCol2); |
+ } |
+ |
+ /* Advance pointer p1 or p2 (whichever corresponds to the smaller of |
+ ** iCol1 and iCol2) so that it points to either the 0x00 that marks the |
+ ** end of the position list, or the 0x01 that precedes the next |
+ ** column-number in the position list. |
+ */ |
+ else if( iCol1<iCol2 ){ |
+ fts3ColumnlistCopy(0, &p1); |
+ if( 0==*p1 ) break; |
+ p1++; |
+ p1 += sqlite3Fts3GetVarint32(p1, &iCol1); |
+ }else{ |
+ fts3ColumnlistCopy(0, &p2); |
+ if( 0==*p2 ) break; |
+ p2++; |
+ p2 += sqlite3Fts3GetVarint32(p2, &iCol2); |
+ } |
+ } |
+ |
+ fts3PoslistCopy(0, &p2); |
+ fts3PoslistCopy(0, &p1); |
+ *pp1 = p1; |
+ *pp2 = p2; |
+ if( !pp || *pp==p ){ |
+ return 0; |
+ } |
+ *p++ = 0x00; |
+ *pp = p; |
+ return 1; |
+} |
+ |
+/* |
+** Merge two position-lists as required by the NEAR operator. |
+*/ |
+static int fts3PoslistNearMerge( |
+ char **pp, /* Output buffer */ |
+ char *aTmp, /* Temporary buffer space */ |
+ int nRight, /* Maximum difference in token positions */ |
+ int nLeft, /* Maximum difference in token positions */ |
+ char **pp1, /* IN/OUT: Left input list */ |
+ char **pp2 /* IN/OUT: Right input list */ |
+){ |
+ char *p1 = *pp1; |
+ char *p2 = *pp2; |
+ |
+ if( !pp ){ |
+ if( fts3PoslistPhraseMerge(0, nRight, 0, 0, pp1, pp2) ) return 1; |
+ *pp1 = p1; |
+ *pp2 = p2; |
+ return fts3PoslistPhraseMerge(0, nLeft, 0, 0, pp2, pp1); |
+ }else{ |
+ char *pTmp1 = aTmp; |
+ char *pTmp2; |
+ char *aTmp2; |
+ int res = 1; |
+ |
+ fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2); |
+ aTmp2 = pTmp2 = pTmp1; |
+ *pp1 = p1; |
+ *pp2 = p2; |
+ fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1); |
+ if( pTmp1!=aTmp && pTmp2!=aTmp2 ){ |
+ fts3PoslistMerge(pp, &aTmp, &aTmp2); |
+ }else if( pTmp1!=aTmp ){ |
+ fts3PoslistCopy(pp, &aTmp); |
+ }else if( pTmp2!=aTmp2 ){ |
+ fts3PoslistCopy(pp, &aTmp2); |
+ }else{ |
+ res = 0; |
+ } |
+ |
+ return res; |
+ } |
+} |
+ |
+/* |
+** Values that may be used as the first parameter to fts3DoclistMerge(). |
+*/ |
+#define MERGE_NOT 2 /* D + D -> D */ |
+#define MERGE_AND 3 /* D + D -> D */ |
+#define MERGE_OR 4 /* D + D -> D */ |
+#define MERGE_POS_OR 5 /* P + P -> P */ |
+#define MERGE_PHRASE 6 /* P + P -> D */ |
+#define MERGE_POS_PHRASE 7 /* P + P -> P */ |
+#define MERGE_NEAR 8 /* P + P -> D */ |
+#define MERGE_POS_NEAR 9 /* P + P -> P */ |
+ |
+/* |
+** Merge the two doclists passed in buffer a1 (size n1 bytes) and a2 |
+** (size n2 bytes). The output is written to pre-allocated buffer aBuffer, |
+** which is guaranteed to be large enough to hold the results. The number |
+** of bytes written to aBuffer is stored in *pnBuffer before returning. |
+** |
+** If successful, SQLITE_OK is returned. Otherwise, if a malloc error |
+** occurs while allocating a temporary buffer as part of the merge operation, |
+** SQLITE_NOMEM is returned. |
+*/ |
+static int fts3DoclistMerge( |
+ int mergetype, /* One of the MERGE_XXX constants */ |
+ int nParam1, /* Used by MERGE_NEAR and MERGE_POS_NEAR */ |
+ int nParam2, /* Used by MERGE_NEAR and MERGE_POS_NEAR */ |
+ char *aBuffer, /* Pre-allocated output buffer */ |
+ int *pnBuffer, /* OUT: Bytes written to aBuffer */ |
+ char *a1, /* Buffer containing first doclist */ |
+ int n1, /* Size of buffer a1 */ |
+ char *a2, /* Buffer containing second doclist */ |
+ int n2, /* Size of buffer a2 */ |
+ int *pnDoc /* OUT: Number of docids in output */ |
+){ |
+ sqlite3_int64 i1 = 0; |
+ sqlite3_int64 i2 = 0; |
+ sqlite3_int64 iPrev = 0; |
+ |
+ char *p = aBuffer; |
+ char *p1 = a1; |
+ char *p2 = a2; |
+ char *pEnd1 = &a1[n1]; |
+ char *pEnd2 = &a2[n2]; |
+ int nDoc = 0; |
+ |
+ assert( mergetype==MERGE_OR || mergetype==MERGE_POS_OR |
+ || mergetype==MERGE_AND || mergetype==MERGE_NOT |
+ || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE |
+ || mergetype==MERGE_NEAR || mergetype==MERGE_POS_NEAR |
+ ); |
+ |
+ if( !aBuffer ){ |
+ *pnBuffer = 0; |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ /* Read the first docid from each doclist */ |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ |
+ switch( mergetype ){ |
+ case MERGE_OR: |
+ case MERGE_POS_OR: |
+ while( p1 || p2 ){ |
+ if( p2 && p1 && i1==i2 ){ |
+ fts3PutDeltaVarint(&p, &iPrev, i1); |
+ if( mergetype==MERGE_POS_OR ) fts3PoslistMerge(&p, &p1, &p2); |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ }else if( !p2 || (p1 && i1<i2) ){ |
+ fts3PutDeltaVarint(&p, &iPrev, i1); |
+ if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p1); |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ }else{ |
+ fts3PutDeltaVarint(&p, &iPrev, i2); |
+ if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p2); |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ } |
+ } |
+ break; |
+ |
+ case MERGE_AND: |
+ while( p1 && p2 ){ |
+ if( i1==i2 ){ |
+ fts3PutDeltaVarint(&p, &iPrev, i1); |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ nDoc++; |
+ }else if( i1<i2 ){ |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ }else{ |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ } |
+ } |
+ break; |
+ |
+ case MERGE_NOT: |
+ while( p1 ){ |
+ if( p2 && i1==i2 ){ |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ }else if( !p2 || i1<i2 ){ |
+ fts3PutDeltaVarint(&p, &iPrev, i1); |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ }else{ |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ } |
+ } |
+ break; |
+ |
+ case MERGE_POS_PHRASE: |
+ case MERGE_PHRASE: { |
+ char **ppPos = (mergetype==MERGE_PHRASE ? 0 : &p); |
+ while( p1 && p2 ){ |
+ if( i1==i2 ){ |
+ char *pSave = p; |
+ sqlite3_int64 iPrevSave = iPrev; |
+ fts3PutDeltaVarint(&p, &iPrev, i1); |
+ if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){ |
+ p = pSave; |
+ iPrev = iPrevSave; |
+ }else{ |
+ nDoc++; |
+ } |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ }else if( i1<i2 ){ |
+ fts3PoslistCopy(0, &p1); |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ }else{ |
+ fts3PoslistCopy(0, &p2); |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ } |
+ } |
+ break; |
+ } |
+ |
+ default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); { |
+ char *aTmp = 0; |
+ char **ppPos = 0; |
+ |
+ if( mergetype==MERGE_POS_NEAR ){ |
+ ppPos = &p; |
+ aTmp = sqlite3_malloc(2*(n1+n2+1)); |
+ if( !aTmp ){ |
+ return SQLITE_NOMEM; |
+ } |
+ } |
+ |
+ while( p1 && p2 ){ |
+ if( i1==i2 ){ |
+ char *pSave = p; |
+ sqlite3_int64 iPrevSave = iPrev; |
+ fts3PutDeltaVarint(&p, &iPrev, i1); |
+ |
+ if( !fts3PoslistNearMerge(ppPos, aTmp, nParam1, nParam2, &p1, &p2) ){ |
+ iPrev = iPrevSave; |
+ p = pSave; |
+ } |
+ |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ }else if( i1<i2 ){ |
+ fts3PoslistCopy(0, &p1); |
+ fts3GetDeltaVarint2(&p1, pEnd1, &i1); |
+ }else{ |
+ fts3PoslistCopy(0, &p2); |
+ fts3GetDeltaVarint2(&p2, pEnd2, &i2); |
+ } |
+ } |
+ sqlite3_free(aTmp); |
+ break; |
+ } |
+ } |
+ |
+ if( pnDoc ) *pnDoc = nDoc; |
+ *pnBuffer = (int)(p-aBuffer); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** A pointer to an instance of this structure is used as the context |
+** argument to sqlite3Fts3SegReaderIterate() |
+*/ |
+typedef struct TermSelect TermSelect; |
+struct TermSelect { |
+ int isReqPos; |
+ char *aaOutput[16]; /* Malloc'd output buffer */ |
+ int anOutput[16]; /* Size of output in bytes */ |
+}; |
+ |
+/* |
+** Merge all doclists in the TermSelect.aaOutput[] array into a single |
+** doclist stored in TermSelect.aaOutput[0]. If successful, delete all |
+** other doclists (except the aaOutput[0] one) and return SQLITE_OK. |
+** |
+** If an OOM error occurs, return SQLITE_NOMEM. In this case it is |
+** the responsibility of the caller to free any doclists left in the |
+** TermSelect.aaOutput[] array. |
+*/ |
+static int fts3TermSelectMerge(TermSelect *pTS){ |
+ int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR); |
+ char *aOut = 0; |
+ int nOut = 0; |
+ int i; |
+ |
+ /* Loop through the doclists in the aaOutput[] array. Merge them all |
+ ** into a single doclist. |
+ */ |
+ for(i=0; i<SizeofArray(pTS->aaOutput); i++){ |
+ if( pTS->aaOutput[i] ){ |
+ if( !aOut ){ |
+ aOut = pTS->aaOutput[i]; |
+ nOut = pTS->anOutput[i]; |
+ pTS->aaOutput[i] = 0; |
+ }else{ |
+ int nNew = nOut + pTS->anOutput[i]; |
+ char *aNew = sqlite3_malloc(nNew); |
+ if( !aNew ){ |
+ sqlite3_free(aOut); |
+ return SQLITE_NOMEM; |
+ } |
+ fts3DoclistMerge(mergetype, 0, 0, |
+ aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0 |
+ ); |
+ sqlite3_free(pTS->aaOutput[i]); |
+ sqlite3_free(aOut); |
+ pTS->aaOutput[i] = 0; |
+ aOut = aNew; |
+ nOut = nNew; |
+ } |
+ } |
+ } |
+ |
+ pTS->aaOutput[0] = aOut; |
+ pTS->anOutput[0] = nOut; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This function is used as the sqlite3Fts3SegReaderIterate() callback when |
+** querying the full-text index for a doclist associated with a term or |
+** term-prefix. |
+*/ |
+static int fts3TermSelectCb( |
+ Fts3Table *p, /* Virtual table object */ |
+ void *pContext, /* Pointer to TermSelect structure */ |
+ char *zTerm, |
+ int nTerm, |
+ char *aDoclist, |
+ int nDoclist |
+){ |
+ TermSelect *pTS = (TermSelect *)pContext; |
+ |
+ UNUSED_PARAMETER(p); |
+ UNUSED_PARAMETER(zTerm); |
+ UNUSED_PARAMETER(nTerm); |
+ |
+ if( pTS->aaOutput[0]==0 ){ |
+ /* If this is the first term selected, copy the doclist to the output |
+ ** buffer using memcpy(). TODO: Add a way to transfer control of the |
+ ** aDoclist buffer from the caller so as to avoid the memcpy(). |
+ */ |
+ pTS->aaOutput[0] = sqlite3_malloc(nDoclist); |
+ pTS->anOutput[0] = nDoclist; |
+ if( pTS->aaOutput[0] ){ |
+ memcpy(pTS->aaOutput[0], aDoclist, nDoclist); |
+ }else{ |
+ return SQLITE_NOMEM; |
+ } |
+ }else{ |
+ int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR); |
+ char *aMerge = aDoclist; |
+ int nMerge = nDoclist; |
+ int iOut; |
+ |
+ for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){ |
+ char *aNew; |
+ int nNew; |
+ if( pTS->aaOutput[iOut]==0 ){ |
+ assert( iOut>0 ); |
+ pTS->aaOutput[iOut] = aMerge; |
+ pTS->anOutput[iOut] = nMerge; |
+ break; |
+ } |
+ |
+ nNew = nMerge + pTS->anOutput[iOut]; |
+ aNew = sqlite3_malloc(nNew); |
+ if( !aNew ){ |
+ if( aMerge!=aDoclist ){ |
+ sqlite3_free(aMerge); |
+ } |
+ return SQLITE_NOMEM; |
+ } |
+ fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew, |
+ pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0 |
+ ); |
+ |
+ if( iOut>0 ) sqlite3_free(aMerge); |
+ sqlite3_free(pTS->aaOutput[iOut]); |
+ pTS->aaOutput[iOut] = 0; |
+ |
+ aMerge = aNew; |
+ nMerge = nNew; |
+ if( (iOut+1)==SizeofArray(pTS->aaOutput) ){ |
+ pTS->aaOutput[iOut] = aMerge; |
+ pTS->anOutput[iOut] = nMerge; |
+ } |
+ } |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+static int fts3DeferredTermSelect( |
+ Fts3DeferredToken *pToken, /* Phrase token */ |
+ int isTermPos, /* True to include positions */ |
+ int *pnOut, /* OUT: Size of list */ |
+ char **ppOut /* OUT: Body of list */ |
+){ |
+ char *aSource; |
+ int nSource; |
+ |
+ aSource = sqlite3Fts3DeferredDoclist(pToken, &nSource); |
+ if( !aSource ){ |
+ *pnOut = 0; |
+ *ppOut = 0; |
+ }else if( isTermPos ){ |
+ *ppOut = sqlite3_malloc(nSource); |
+ if( !*ppOut ) return SQLITE_NOMEM; |
+ memcpy(*ppOut, aSource, nSource); |
+ *pnOut = nSource; |
+ }else{ |
+ sqlite3_int64 docid; |
+ *pnOut = sqlite3Fts3GetVarint(aSource, &docid); |
+ *ppOut = sqlite3_malloc(*pnOut); |
+ if( !*ppOut ) return SQLITE_NOMEM; |
+ sqlite3Fts3PutVarint(*ppOut, docid); |
+ } |
+ |
+ return SQLITE_OK; |
+} |
+ |
+int sqlite3Fts3SegReaderCursor( |
+ Fts3Table *p, /* FTS3 table handle */ |
+ int iLevel, /* Level of segments to scan */ |
+ const char *zTerm, /* Term to query for */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ int isPrefix, /* True for a prefix search */ |
+ int isScan, /* True to scan from zTerm to EOF */ |
+ Fts3SegReaderCursor *pCsr /* Cursor object to populate */ |
+){ |
+ int rc = SQLITE_OK; |
+ int rc2; |
+ int iAge = 0; |
+ sqlite3_stmt *pStmt = 0; |
+ Fts3SegReader *pPending = 0; |
+ |
+ assert( iLevel==FTS3_SEGCURSOR_ALL |
+ || iLevel==FTS3_SEGCURSOR_PENDING |
+ || iLevel>=0 |
+ ); |
+ assert( FTS3_SEGCURSOR_PENDING<0 ); |
+ assert( FTS3_SEGCURSOR_ALL<0 ); |
+ assert( iLevel==FTS3_SEGCURSOR_ALL || (zTerm==0 && isPrefix==1) ); |
+ assert( isPrefix==0 || isScan==0 ); |
+ |
+ |
+ memset(pCsr, 0, sizeof(Fts3SegReaderCursor)); |
+ |
+ /* If iLevel is less than 0, include a seg-reader for the pending-terms. */ |
+ assert( isScan==0 || fts3HashCount(&p->pendingTerms)==0 ); |
+ if( iLevel<0 && isScan==0 ){ |
+ rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &pPending); |
+ if( rc==SQLITE_OK && pPending ){ |
+ int nByte = (sizeof(Fts3SegReader *) * 16); |
+ pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte); |
+ if( pCsr->apSegment==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ pCsr->apSegment[0] = pPending; |
+ pCsr->nSegment = 1; |
+ pPending = 0; |
+ } |
+ } |
+ } |
+ |
+ if( iLevel!=FTS3_SEGCURSOR_PENDING ){ |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3AllSegdirs(p, iLevel, &pStmt); |
+ } |
+ while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ |
+ |
+ /* Read the values returned by the SELECT into local variables. */ |
+ sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1); |
+ sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2); |
+ sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3); |
+ int nRoot = sqlite3_column_bytes(pStmt, 4); |
+ char const *zRoot = sqlite3_column_blob(pStmt, 4); |
+ |
+ /* If nSegment is a multiple of 16 the array needs to be extended. */ |
+ if( (pCsr->nSegment%16)==0 ){ |
+ Fts3SegReader **apNew; |
+ int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*); |
+ apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte); |
+ if( !apNew ){ |
+ rc = SQLITE_NOMEM; |
+ goto finished; |
+ } |
+ pCsr->apSegment = apNew; |
+ } |
+ |
+ /* If zTerm is not NULL, and this segment is not stored entirely on its |
+ ** root node, the range of leaves scanned can be reduced. Do this. */ |
+ if( iStartBlock && zTerm ){ |
+ sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0); |
+ rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi); |
+ if( rc!=SQLITE_OK ) goto finished; |
+ if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock; |
+ } |
+ |
+ rc = sqlite3Fts3SegReaderNew(iAge, iStartBlock, iLeavesEndBlock, |
+ iEndBlock, zRoot, nRoot, &pCsr->apSegment[pCsr->nSegment] |
+ ); |
+ if( rc!=SQLITE_OK ) goto finished; |
+ pCsr->nSegment++; |
+ iAge++; |
+ } |
+ } |
+ |
+ finished: |
+ rc2 = sqlite3_reset(pStmt); |
+ if( rc==SQLITE_DONE ) rc = rc2; |
+ sqlite3Fts3SegReaderFree(pPending); |
+ |
+ return rc; |
+} |
+ |
+ |
+static int fts3TermSegReaderCursor( |
+ Fts3Cursor *pCsr, /* Virtual table cursor handle */ |
+ const char *zTerm, /* Term to query for */ |
+ int nTerm, /* Size of zTerm in bytes */ |
+ int isPrefix, /* True for a prefix search */ |
+ Fts3SegReaderCursor **ppSegcsr /* OUT: Allocated seg-reader cursor */ |
+){ |
+ Fts3SegReaderCursor *pSegcsr; /* Object to allocate and return */ |
+ int rc = SQLITE_NOMEM; /* Return code */ |
+ |
+ pSegcsr = sqlite3_malloc(sizeof(Fts3SegReaderCursor)); |
+ if( pSegcsr ){ |
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; |
+ int i; |
+ int nCost = 0; |
+ rc = sqlite3Fts3SegReaderCursor( |
+ p, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr); |
+ |
+ for(i=0; rc==SQLITE_OK && i<pSegcsr->nSegment; i++){ |
+ rc = sqlite3Fts3SegReaderCost(pCsr, pSegcsr->apSegment[i], &nCost); |
+ } |
+ pSegcsr->nCost = nCost; |
+ } |
+ |
+ *ppSegcsr = pSegcsr; |
+ return rc; |
+} |
+ |
+static void fts3SegReaderCursorFree(Fts3SegReaderCursor *pSegcsr){ |
+ sqlite3Fts3SegReaderFinish(pSegcsr); |
+ sqlite3_free(pSegcsr); |
+} |
+ |
+/* |
+** This function retreives the doclist for the specified term (or term |
+** prefix) from the database. |
+** |
+** The returned doclist may be in one of two formats, depending on the |
+** value of parameter isReqPos. If isReqPos is zero, then the doclist is |
+** a sorted list of delta-compressed docids (a bare doclist). If isReqPos |
+** is non-zero, then the returned list is in the same format as is stored |
+** in the database without the found length specifier at the start of on-disk |
+** doclists. |
+*/ |
+static int fts3TermSelect( |
+ Fts3Table *p, /* Virtual table handle */ |
+ Fts3PhraseToken *pTok, /* Token to query for */ |
+ int iColumn, /* Column to query (or -ve for all columns) */ |
+ int isReqPos, /* True to include position lists in output */ |
+ int *pnOut, /* OUT: Size of buffer at *ppOut */ |
+ char **ppOut /* OUT: Malloced result buffer */ |
+){ |
+ int rc; /* Return code */ |
+ Fts3SegReaderCursor *pSegcsr; /* Seg-reader cursor for this term */ |
+ TermSelect tsc; /* Context object for fts3TermSelectCb() */ |
+ Fts3SegFilter filter; /* Segment term filter configuration */ |
+ |
+ pSegcsr = pTok->pSegcsr; |
+ memset(&tsc, 0, sizeof(TermSelect)); |
+ tsc.isReqPos = isReqPos; |
+ |
+ filter.flags = FTS3_SEGMENT_IGNORE_EMPTY |
+ | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) |
+ | (isReqPos ? FTS3_SEGMENT_REQUIRE_POS : 0) |
+ | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); |
+ filter.iCol = iColumn; |
+ filter.zTerm = pTok->z; |
+ filter.nTerm = pTok->n; |
+ |
+ rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); |
+ while( SQLITE_OK==rc |
+ && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) |
+ ){ |
+ rc = fts3TermSelectCb(p, (void *)&tsc, |
+ pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist |
+ ); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3TermSelectMerge(&tsc); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ *ppOut = tsc.aaOutput[0]; |
+ *pnOut = tsc.anOutput[0]; |
+ }else{ |
+ int i; |
+ for(i=0; i<SizeofArray(tsc.aaOutput); i++){ |
+ sqlite3_free(tsc.aaOutput[i]); |
+ } |
+ } |
+ |
+ fts3SegReaderCursorFree(pSegcsr); |
+ pTok->pSegcsr = 0; |
+ return rc; |
+} |
+ |
+/* |
+** This function counts the total number of docids in the doclist stored |
+** in buffer aList[], size nList bytes. |
+** |
+** If the isPoslist argument is true, then it is assumed that the doclist |
+** contains a position-list following each docid. Otherwise, it is assumed |
+** that the doclist is simply a list of docids stored as delta encoded |
+** varints. |
+*/ |
+static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){ |
+ int nDoc = 0; /* Return value */ |
+ if( aList ){ |
+ char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ |
+ char *p = aList; /* Cursor */ |
+ if( !isPoslist ){ |
+ /* The number of docids in the list is the same as the number of |
+ ** varints. In FTS3 a varint consists of a single byte with the 0x80 |
+ ** bit cleared and zero or more bytes with the 0x80 bit set. So to |
+ ** count the varints in the buffer, just count the number of bytes |
+ ** with the 0x80 bit clear. */ |
+ while( p<aEnd ) nDoc += (((*p++)&0x80)==0); |
+ }else{ |
+ while( p<aEnd ){ |
+ nDoc++; |
+ while( (*p++)&0x80 ); /* Skip docid varint */ |
+ fts3PoslistCopy(0, &p); /* Skip over position list */ |
+ } |
+ } |
+ } |
+ |
+ return nDoc; |
+} |
+ |
+/* |
+** Call sqlite3Fts3DeferToken() for each token in the expression pExpr. |
+*/ |
+static int fts3DeferExpression(Fts3Cursor *pCsr, Fts3Expr *pExpr){ |
+ int rc = SQLITE_OK; |
+ if( pExpr ){ |
+ rc = fts3DeferExpression(pCsr, pExpr->pLeft); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3DeferExpression(pCsr, pExpr->pRight); |
+ } |
+ if( pExpr->eType==FTSQUERY_PHRASE ){ |
+ int iCol = pExpr->pPhrase->iColumn; |
+ int i; |
+ for(i=0; rc==SQLITE_OK && i<pExpr->pPhrase->nToken; i++){ |
+ Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i]; |
+ if( pToken->pDeferred==0 ){ |
+ rc = sqlite3Fts3DeferToken(pCsr, pToken, iCol); |
+ } |
+ } |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function removes the position information from a doclist. When |
+** called, buffer aList (size *pnList bytes) contains a doclist that includes |
+** position information. This function removes the position information so |
+** that aList contains only docids, and adjusts *pnList to reflect the new |
+** (possibly reduced) size of the doclist. |
+*/ |
+static void fts3DoclistStripPositions( |
+ char *aList, /* IN/OUT: Buffer containing doclist */ |
+ int *pnList /* IN/OUT: Size of doclist in bytes */ |
+){ |
+ if( aList ){ |
+ char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */ |
+ char *p = aList; /* Input cursor */ |
+ char *pOut = aList; /* Output cursor */ |
+ |
+ while( p<aEnd ){ |
+ sqlite3_int64 delta; |
+ p += sqlite3Fts3GetVarint(p, &delta); |
+ fts3PoslistCopy(0, &p); |
+ pOut += sqlite3Fts3PutVarint(pOut, delta); |
+ } |
+ |
+ *pnList = (int)(pOut - aList); |
+ } |
+} |
+ |
+/* |
+** Return a DocList corresponding to the phrase *pPhrase. |
+** |
+** If this function returns SQLITE_OK, but *pnOut is set to a negative value, |
+** then no tokens in the phrase were looked up in the full-text index. This |
+** is only possible when this function is called from within xFilter(). The |
+** caller should assume that all documents match the phrase. The actual |
+** filtering will take place in xNext(). |
+*/ |
+static int fts3PhraseSelect( |
+ Fts3Cursor *pCsr, /* Virtual table cursor handle */ |
+ Fts3Phrase *pPhrase, /* Phrase to return a doclist for */ |
+ int isReqPos, /* True if output should contain positions */ |
+ char **paOut, /* OUT: Pointer to malloc'd result buffer */ |
+ int *pnOut /* OUT: Size of buffer at *paOut */ |
+){ |
+ char *pOut = 0; |
+ int nOut = 0; |
+ int rc = SQLITE_OK; |
+ int ii; |
+ int iCol = pPhrase->iColumn; |
+ int isTermPos = (pPhrase->nToken>1 || isReqPos); |
+ Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; |
+ int isFirst = 1; |
+ |
+ int iPrevTok = 0; |
+ int nDoc = 0; |
+ |
+ /* If this is an xFilter() evaluation, create a segment-reader for each |
+ ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo |
+ ** evaluation, only create segment-readers if there are no Fts3DeferredToken |
+ ** objects attached to the phrase-tokens. |
+ */ |
+ for(ii=0; ii<pPhrase->nToken; ii++){ |
+ Fts3PhraseToken *pTok = &pPhrase->aToken[ii]; |
+ if( pTok->pSegcsr==0 ){ |
+ if( (pCsr->eEvalmode==FTS3_EVAL_FILTER) |
+ || (pCsr->eEvalmode==FTS3_EVAL_NEXT && pCsr->pDeferred==0) |
+ || (pCsr->eEvalmode==FTS3_EVAL_MATCHINFO && pTok->bFulltext) |
+ ){ |
+ rc = fts3TermSegReaderCursor( |
+ pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr |
+ ); |
+ if( rc!=SQLITE_OK ) return rc; |
+ } |
+ } |
+ } |
+ |
+ for(ii=0; ii<pPhrase->nToken; ii++){ |
+ Fts3PhraseToken *pTok; /* Token to find doclist for */ |
+ int iTok = 0; /* The token being queried this iteration */ |
+ char *pList = 0; /* Pointer to token doclist */ |
+ int nList = 0; /* Size of buffer at pList */ |
+ |
+ /* Select a token to process. If this is an xFilter() call, then tokens |
+ ** are processed in order from least to most costly. Otherwise, tokens |
+ ** are processed in the order in which they occur in the phrase. |
+ */ |
+ if( pCsr->eEvalmode==FTS3_EVAL_MATCHINFO ){ |
+ assert( isReqPos ); |
+ iTok = ii; |
+ pTok = &pPhrase->aToken[iTok]; |
+ if( pTok->bFulltext==0 ) continue; |
+ }else if( pCsr->eEvalmode==FTS3_EVAL_NEXT || isReqPos ){ |
+ iTok = ii; |
+ pTok = &pPhrase->aToken[iTok]; |
+ }else{ |
+ int nMinCost = 0x7FFFFFFF; |
+ int jj; |
+ |
+ /* Find the remaining token with the lowest cost. */ |
+ for(jj=0; jj<pPhrase->nToken; jj++){ |
+ Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[jj].pSegcsr; |
+ if( pSegcsr && pSegcsr->nCost<nMinCost ){ |
+ iTok = jj; |
+ nMinCost = pSegcsr->nCost; |
+ } |
+ } |
+ pTok = &pPhrase->aToken[iTok]; |
+ |
+ /* This branch is taken if it is determined that loading the doclist |
+ ** for the next token would require more IO than loading all documents |
+ ** currently identified by doclist pOut/nOut. No further doclists will |
+ ** be loaded from the full-text index for this phrase. |
+ */ |
+ if( nMinCost>nDoc && ii>0 ){ |
+ rc = fts3DeferExpression(pCsr, pCsr->pExpr); |
+ break; |
+ } |
+ } |
+ |
+ if( pCsr->eEvalmode==FTS3_EVAL_NEXT && pTok->pDeferred ){ |
+ rc = fts3DeferredTermSelect(pTok->pDeferred, isTermPos, &nList, &pList); |
+ }else{ |
+ if( pTok->pSegcsr ){ |
+ rc = fts3TermSelect(p, pTok, iCol, isTermPos, &nList, &pList); |
+ } |
+ pTok->bFulltext = 1; |
+ } |
+ assert( rc!=SQLITE_OK || pCsr->eEvalmode || pTok->pSegcsr==0 ); |
+ if( rc!=SQLITE_OK ) break; |
+ |
+ if( isFirst ){ |
+ pOut = pList; |
+ nOut = nList; |
+ if( pCsr->eEvalmode==FTS3_EVAL_FILTER && pPhrase->nToken>1 ){ |
+ nDoc = fts3DoclistCountDocids(1, pOut, nOut); |
+ } |
+ isFirst = 0; |
+ iPrevTok = iTok; |
+ }else{ |
+ /* Merge the new term list and the current output. */ |
+ char *aLeft, *aRight; |
+ int nLeft, nRight; |
+ int nDist; |
+ int mt; |
+ |
+ /* If this is the final token of the phrase, and positions were not |
+ ** requested by the caller, use MERGE_PHRASE instead of POS_PHRASE. |
+ ** This drops the position information from the output list. |
+ */ |
+ mt = MERGE_POS_PHRASE; |
+ if( ii==pPhrase->nToken-1 && !isReqPos ) mt = MERGE_PHRASE; |
+ |
+ assert( iPrevTok!=iTok ); |
+ if( iPrevTok<iTok ){ |
+ aLeft = pOut; |
+ nLeft = nOut; |
+ aRight = pList; |
+ nRight = nList; |
+ nDist = iTok-iPrevTok; |
+ iPrevTok = iTok; |
+ }else{ |
+ aRight = pOut; |
+ nRight = nOut; |
+ aLeft = pList; |
+ nLeft = nList; |
+ nDist = iPrevTok-iTok; |
+ } |
+ pOut = aRight; |
+ fts3DoclistMerge( |
+ mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc |
+ ); |
+ sqlite3_free(aLeft); |
+ } |
+ assert( nOut==0 || pOut!=0 ); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ if( ii!=pPhrase->nToken ){ |
+ assert( pCsr->eEvalmode==FTS3_EVAL_FILTER && isReqPos==0 ); |
+ fts3DoclistStripPositions(pOut, &nOut); |
+ } |
+ *paOut = pOut; |
+ *pnOut = nOut; |
+ }else{ |
+ sqlite3_free(pOut); |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function merges two doclists according to the requirements of a |
+** NEAR operator. |
+** |
+** Both input doclists must include position information. The output doclist |
+** includes position information if the first argument to this function |
+** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR. |
+*/ |
+static int fts3NearMerge( |
+ int mergetype, /* MERGE_POS_NEAR or MERGE_NEAR */ |
+ int nNear, /* Parameter to NEAR operator */ |
+ int nTokenLeft, /* Number of tokens in LHS phrase arg */ |
+ char *aLeft, /* Doclist for LHS (incl. positions) */ |
+ int nLeft, /* Size of LHS doclist in bytes */ |
+ int nTokenRight, /* As nTokenLeft */ |
+ char *aRight, /* As aLeft */ |
+ int nRight, /* As nRight */ |
+ char **paOut, /* OUT: Results of merge (malloced) */ |
+ int *pnOut /* OUT: Sized of output buffer */ |
+){ |
+ char *aOut; /* Buffer to write output doclist to */ |
+ int rc; /* Return code */ |
+ |
+ assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR ); |
+ |
+ aOut = sqlite3_malloc(nLeft+nRight+1); |
+ if( aOut==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft, |
+ aOut, pnOut, aLeft, nLeft, aRight, nRight, 0 |
+ ); |
+ if( rc!=SQLITE_OK ){ |
+ sqlite3_free(aOut); |
+ aOut = 0; |
+ } |
+ } |
+ |
+ *paOut = aOut; |
+ return rc; |
+} |
+ |
+/* |
+** This function is used as part of the processing for the snippet() and |
+** offsets() functions. |
+** |
+** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both |
+** have their respective doclists (including position information) loaded |
+** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from |
+** each doclist that are not within nNear tokens of a corresponding entry |
+** in the other doclist. |
+*/ |
+int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){ |
+ int rc; /* Return code */ |
+ |
+ assert( pLeft->eType==FTSQUERY_PHRASE ); |
+ assert( pRight->eType==FTSQUERY_PHRASE ); |
+ assert( pLeft->isLoaded && pRight->isLoaded ); |
+ |
+ if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){ |
+ sqlite3_free(pLeft->aDoclist); |
+ sqlite3_free(pRight->aDoclist); |
+ pRight->aDoclist = 0; |
+ pLeft->aDoclist = 0; |
+ rc = SQLITE_OK; |
+ }else{ |
+ char *aOut; /* Buffer in which to assemble new doclist */ |
+ int nOut; /* Size of buffer aOut in bytes */ |
+ |
+ rc = fts3NearMerge(MERGE_POS_NEAR, nNear, |
+ pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist, |
+ pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist, |
+ &aOut, &nOut |
+ ); |
+ if( rc!=SQLITE_OK ) return rc; |
+ sqlite3_free(pRight->aDoclist); |
+ pRight->aDoclist = aOut; |
+ pRight->nDoclist = nOut; |
+ |
+ rc = fts3NearMerge(MERGE_POS_NEAR, nNear, |
+ pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist, |
+ pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist, |
+ &aOut, &nOut |
+ ); |
+ sqlite3_free(pLeft->aDoclist); |
+ pLeft->aDoclist = aOut; |
+ pLeft->nDoclist = nOut; |
+ } |
+ return rc; |
+} |
+ |
+ |
+/* |
+** Allocate an Fts3SegReaderArray for each token in the expression pExpr. |
+** The allocated objects are stored in the Fts3PhraseToken.pArray member |
+** variables of each token structure. |
+*/ |
+static int fts3ExprAllocateSegReaders( |
+ Fts3Cursor *pCsr, /* FTS3 table */ |
+ Fts3Expr *pExpr, /* Expression to create seg-readers for */ |
+ int *pnExpr /* OUT: Number of AND'd expressions */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ assert( pCsr->eEvalmode==FTS3_EVAL_FILTER ); |
+ if( pnExpr && pExpr->eType!=FTSQUERY_AND ){ |
+ (*pnExpr)++; |
+ pnExpr = 0; |
+ } |
+ |
+ if( pExpr->eType==FTSQUERY_PHRASE ){ |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ int ii; |
+ |
+ for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){ |
+ Fts3PhraseToken *pTok = &pPhrase->aToken[ii]; |
+ if( pTok->pSegcsr==0 ){ |
+ rc = fts3TermSegReaderCursor( |
+ pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr |
+ ); |
+ } |
+ } |
+ }else{ |
+ rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr); |
+ if( rc==SQLITE_OK ){ |
+ rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Free the Fts3SegReaderArray objects associated with each token in the |
+** expression pExpr. In other words, this function frees the resources |
+** allocated by fts3ExprAllocateSegReaders(). |
+*/ |
+static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){ |
+ if( pExpr ){ |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ if( pPhrase ){ |
+ int kk; |
+ for(kk=0; kk<pPhrase->nToken; kk++){ |
+ fts3SegReaderCursorFree(pPhrase->aToken[kk].pSegcsr); |
+ pPhrase->aToken[kk].pSegcsr = 0; |
+ } |
+ } |
+ fts3ExprFreeSegReaders(pExpr->pLeft); |
+ fts3ExprFreeSegReaders(pExpr->pRight); |
+ } |
+} |
+ |
+/* |
+** Return the sum of the costs of all tokens in the expression pExpr. This |
+** function must be called after Fts3SegReaderArrays have been allocated |
+** for all tokens using fts3ExprAllocateSegReaders(). |
+*/ |
+static int fts3ExprCost(Fts3Expr *pExpr){ |
+ int nCost; /* Return value */ |
+ if( pExpr->eType==FTSQUERY_PHRASE ){ |
+ Fts3Phrase *pPhrase = pExpr->pPhrase; |
+ int ii; |
+ nCost = 0; |
+ for(ii=0; ii<pPhrase->nToken; ii++){ |
+ Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[ii].pSegcsr; |
+ if( pSegcsr ) nCost += pSegcsr->nCost; |
+ } |
+ }else{ |
+ nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight); |
+ } |
+ return nCost; |
+} |
+ |
+/* |
+** The following is a helper function (and type) for fts3EvalExpr(). It |
+** must be called after Fts3SegReaders have been allocated for every token |
+** in the expression. See the context it is called from in fts3EvalExpr() |
+** for further explanation. |
+*/ |
+typedef struct ExprAndCost ExprAndCost; |
+struct ExprAndCost { |
+ Fts3Expr *pExpr; |
+ int nCost; |
+}; |
+static void fts3ExprAssignCosts( |
+ Fts3Expr *pExpr, /* Expression to create seg-readers for */ |
+ ExprAndCost **ppExprCost /* OUT: Write to *ppExprCost */ |
+){ |
+ if( pExpr->eType==FTSQUERY_AND ){ |
+ fts3ExprAssignCosts(pExpr->pLeft, ppExprCost); |
+ fts3ExprAssignCosts(pExpr->pRight, ppExprCost); |
+ }else{ |
+ (*ppExprCost)->pExpr = pExpr; |
+ (*ppExprCost)->nCost = fts3ExprCost(pExpr); |
+ (*ppExprCost)++; |
+ } |
+} |
+ |
+/* |
+** Evaluate the full-text expression pExpr against FTS3 table pTab. Store |
+** the resulting doclist in *paOut and *pnOut. This routine mallocs for |
+** the space needed to store the output. The caller is responsible for |
+** freeing the space when it has finished. |
+** |
+** This function is called in two distinct contexts: |
+** |
+** * From within the virtual table xFilter() method. In this case, the |
+** output doclist contains entries for all rows in the table, based on |
+** data read from the full-text index. |
+** |
+** In this case, if the query expression contains one or more tokens that |
+** are very common, then the returned doclist may contain a superset of |
+** the documents that actually match the expression. |
+** |
+** * From within the virtual table xNext() method. This call is only made |
+** if the call from within xFilter() found that there were very common |
+** tokens in the query expression and did return a superset of the |
+** matching documents. In this case the returned doclist contains only |
+** entries that correspond to the current row of the table. Instead of |
+** reading the data for each token from the full-text index, the data is |
+** already available in-memory in the Fts3PhraseToken.pDeferred structures. |
+** See fts3EvalDeferred() for how it gets there. |
+** |
+** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is |
+** required) Fts3Cursor.doDeferred==1. |
+** |
+** If the SQLite invokes the snippet(), offsets() or matchinfo() function |
+** as part of a SELECT on an FTS3 table, this function is called on each |
+** individual phrase expression in the query. If there were very common tokens |
+** found in the xFilter() call, then this function is called once for phrase |
+** for each row visited, and the returned doclist contains entries for the |
+** current row only. Otherwise, if there were no very common tokens, then this |
+** function is called once only for each phrase in the query and the returned |
+** doclist contains entries for all rows of the table. |
+** |
+** Fts3Cursor.doDeferred==1 when this function is called on phrases as a |
+** result of a snippet(), offsets() or matchinfo() invocation. |
+*/ |
+static int fts3EvalExpr( |
+ Fts3Cursor *p, /* Virtual table cursor handle */ |
+ Fts3Expr *pExpr, /* Parsed fts3 expression */ |
+ char **paOut, /* OUT: Pointer to malloc'd result buffer */ |
+ int *pnOut, /* OUT: Size of buffer at *paOut */ |
+ int isReqPos /* Require positions in output buffer */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ |
+ /* Zero the output parameters. */ |
+ *paOut = 0; |
+ *pnOut = 0; |
+ |
+ if( pExpr ){ |
+ assert( pExpr->eType==FTSQUERY_NEAR || pExpr->eType==FTSQUERY_OR |
+ || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NOT |
+ || pExpr->eType==FTSQUERY_PHRASE |
+ ); |
+ assert( pExpr->eType==FTSQUERY_PHRASE || isReqPos==0 ); |
+ |
+ if( pExpr->eType==FTSQUERY_PHRASE ){ |
+ rc = fts3PhraseSelect(p, pExpr->pPhrase, |
+ isReqPos || (pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR), |
+ paOut, pnOut |
+ ); |
+ fts3ExprFreeSegReaders(pExpr); |
+ }else if( p->eEvalmode==FTS3_EVAL_FILTER && pExpr->eType==FTSQUERY_AND ){ |
+ ExprAndCost *aExpr = 0; /* Array of AND'd expressions and costs */ |
+ int nExpr = 0; /* Size of aExpr[] */ |
+ char *aRet = 0; /* Doclist to return to caller */ |
+ int nRet = 0; /* Length of aRet[] in bytes */ |
+ int nDoc = 0x7FFFFFFF; |
+ |
+ assert( !isReqPos ); |
+ |
+ rc = fts3ExprAllocateSegReaders(p, pExpr, &nExpr); |
+ if( rc==SQLITE_OK ){ |
+ assert( nExpr>1 ); |
+ aExpr = sqlite3_malloc(sizeof(ExprAndCost) * nExpr); |
+ if( !aExpr ) rc = SQLITE_NOMEM; |
+ } |
+ if( rc==SQLITE_OK ){ |
+ int ii; /* Used to iterate through expressions */ |
+ |
+ fts3ExprAssignCosts(pExpr, &aExpr); |
+ aExpr -= nExpr; |
+ for(ii=0; ii<nExpr; ii++){ |
+ char *aNew; |
+ int nNew; |
+ int jj; |
+ ExprAndCost *pBest = 0; |
+ |
+ for(jj=0; jj<nExpr; jj++){ |
+ ExprAndCost *pCand = &aExpr[jj]; |
+ if( pCand->pExpr && (pBest==0 || pCand->nCost<pBest->nCost) ){ |
+ pBest = pCand; |
+ } |
+ } |
+ |
+ if( pBest->nCost>nDoc ){ |
+ rc = fts3DeferExpression(p, p->pExpr); |
+ break; |
+ }else{ |
+ rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0); |
+ if( rc!=SQLITE_OK ) break; |
+ pBest->pExpr = 0; |
+ if( ii==0 ){ |
+ aRet = aNew; |
+ nRet = nNew; |
+ nDoc = fts3DoclistCountDocids(0, aRet, nRet); |
+ }else{ |
+ fts3DoclistMerge( |
+ MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc |
+ ); |
+ sqlite3_free(aNew); |
+ } |
+ } |
+ } |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ *paOut = aRet; |
+ *pnOut = nRet; |
+ }else{ |
+ assert( *paOut==0 ); |
+ sqlite3_free(aRet); |
+ } |
+ sqlite3_free(aExpr); |
+ fts3ExprFreeSegReaders(pExpr); |
+ |
+ }else{ |
+ char *aLeft; |
+ char *aRight; |
+ int nLeft; |
+ int nRight; |
+ |
+ assert( pExpr->eType==FTSQUERY_NEAR |
+ || pExpr->eType==FTSQUERY_OR |
+ || pExpr->eType==FTSQUERY_NOT |
+ || (pExpr->eType==FTSQUERY_AND && p->eEvalmode==FTS3_EVAL_NEXT) |
+ ); |
+ |
+ if( 0==(rc = fts3EvalExpr(p, pExpr->pRight, &aRight, &nRight, isReqPos)) |
+ && 0==(rc = fts3EvalExpr(p, pExpr->pLeft, &aLeft, &nLeft, isReqPos)) |
+ ){ |
+ switch( pExpr->eType ){ |
+ case FTSQUERY_NEAR: { |
+ Fts3Expr *pLeft; |
+ Fts3Expr *pRight; |
+ int mergetype = MERGE_NEAR; |
+ if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){ |
+ mergetype = MERGE_POS_NEAR; |
+ } |
+ pLeft = pExpr->pLeft; |
+ while( pLeft->eType==FTSQUERY_NEAR ){ |
+ pLeft=pLeft->pRight; |
+ } |
+ pRight = pExpr->pRight; |
+ assert( pRight->eType==FTSQUERY_PHRASE ); |
+ assert( pLeft->eType==FTSQUERY_PHRASE ); |
+ |
+ rc = fts3NearMerge(mergetype, pExpr->nNear, |
+ pLeft->pPhrase->nToken, aLeft, nLeft, |
+ pRight->pPhrase->nToken, aRight, nRight, |
+ paOut, pnOut |
+ ); |
+ sqlite3_free(aLeft); |
+ break; |
+ } |
+ |
+ case FTSQUERY_OR: { |
+ /* Allocate a buffer for the output. The maximum size is the |
+ ** sum of the sizes of the two input buffers. The +1 term is |
+ ** so that a buffer of zero bytes is never allocated - this can |
+ ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM. |
+ */ |
+ char *aBuffer = sqlite3_malloc(nRight+nLeft+1); |
+ rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut, |
+ aLeft, nLeft, aRight, nRight, 0 |
+ ); |
+ *paOut = aBuffer; |
+ sqlite3_free(aLeft); |
+ break; |
+ } |
+ |
+ default: { |
+ assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND ); |
+ fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut, |
+ aLeft, nLeft, aRight, nRight, 0 |
+ ); |
+ *paOut = aLeft; |
+ break; |
+ } |
+ } |
+ } |
+ sqlite3_free(aRight); |
+ } |
+ } |
+ |
+ assert( rc==SQLITE_OK || *paOut==0 ); |
+ return rc; |
+} |
+ |
+/* |
+** This function is called from within xNext() for each row visited by |
+** an FTS3 query. If evaluating the FTS3 query expression within xFilter() |
+** was able to determine the exact set of matching rows, this function sets |
+** *pbRes to true and returns SQLITE_IO immediately. |
+** |
+** Otherwise, if evaluating the query expression within xFilter() returned a |
+** superset of the matching documents instead of an exact set (this happens |
+** when the query includes very common tokens and it is deemed too expensive to |
+** load their doclists from disk), this function tests if the current row |
+** really does match the FTS3 query. |
+** |
+** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK |
+** is returned and *pbRes is set to true if the current row matches the |
+** FTS3 query (and should be included in the results returned to SQLite), or |
+** false otherwise. |
+*/ |
+static int fts3EvalDeferred( |
+ Fts3Cursor *pCsr, /* FTS3 cursor pointing at row to test */ |
+ int *pbRes /* OUT: Set to true if row is a match */ |
+){ |
+ int rc = SQLITE_OK; |
+ if( pCsr->pDeferred==0 ){ |
+ *pbRes = 1; |
+ }else{ |
+ rc = fts3CursorSeek(0, pCsr); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3Fts3FreeDeferredDoclists(pCsr); |
+ rc = sqlite3Fts3CacheDeferredDoclists(pCsr); |
+ } |
+ if( rc==SQLITE_OK ){ |
+ char *a = 0; |
+ int n = 0; |
+ rc = fts3EvalExpr(pCsr, pCsr->pExpr, &a, &n, 0); |
+ assert( n>=0 ); |
+ *pbRes = (n>0); |
+ sqlite3_free(a); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** Advance the cursor to the next row in the %_content table that |
+** matches the search criteria. For a MATCH search, this will be |
+** the next row that matches. For a full-table scan, this will be |
+** simply the next row in the %_content table. For a docid lookup, |
+** this routine simply sets the EOF flag. |
+** |
+** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned |
+** even if we reach end-of-file. The fts3EofMethod() will be called |
+** subsequently to determine whether or not an EOF was hit. |
+*/ |
+static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){ |
+ int res; |
+ int rc = SQLITE_OK; /* Return code */ |
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; |
+ |
+ pCsr->eEvalmode = FTS3_EVAL_NEXT; |
+ do { |
+ if( pCsr->aDoclist==0 ){ |
+ if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ |
+ pCsr->isEof = 1; |
+ rc = sqlite3_reset(pCsr->pStmt); |
+ break; |
+ } |
+ pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); |
+ }else{ |
+ if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){ |
+ pCsr->isEof = 1; |
+ break; |
+ } |
+ sqlite3_reset(pCsr->pStmt); |
+ fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId); |
+ pCsr->isRequireSeek = 1; |
+ pCsr->isMatchinfoNeeded = 1; |
+ } |
+ }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 ); |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This is the xFilter interface for the virtual table. See |
+** the virtual table xFilter method documentation for additional |
+** information. |
+** |
+** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against |
+** the %_content table. |
+** |
+** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry |
+** in the %_content table. |
+** |
+** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The |
+** column on the left-hand side of the MATCH operator is column |
+** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand |
+** side of the MATCH operator. |
+*/ |
+static int fts3FilterMethod( |
+ sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ |
+ int idxNum, /* Strategy index */ |
+ const char *idxStr, /* Unused */ |
+ int nVal, /* Number of elements in apVal */ |
+ sqlite3_value **apVal /* Arguments for the indexing scheme */ |
+){ |
+ const char *azSql[] = { |
+ "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */ |
+ "SELECT %s FROM %Q.'%q_content' AS x ", /* full-scan */ |
+ }; |
+ int rc; /* Return code */ |
+ char *zSql; /* SQL statement used to access %_content */ |
+ Fts3Table *p = (Fts3Table *)pCursor->pVtab; |
+ Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; |
+ |
+ UNUSED_PARAMETER(idxStr); |
+ UNUSED_PARAMETER(nVal); |
+ |
+ assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); |
+ assert( nVal==0 || nVal==1 ); |
+ assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) ); |
+ assert( p->pSegments==0 ); |
+ |
+ /* In case the cursor has been used before, clear it now. */ |
+ sqlite3_finalize(pCsr->pStmt); |
+ sqlite3_free(pCsr->aDoclist); |
+ sqlite3Fts3ExprFree(pCsr->pExpr); |
+ memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); |
+ |
+ if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){ |
+ int iCol = idxNum-FTS3_FULLTEXT_SEARCH; |
+ const char *zQuery = (const char *)sqlite3_value_text(apVal[0]); |
+ |
+ if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ |
+ return SQLITE_NOMEM; |
+ } |
+ |
+ rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn, |
+ iCol, zQuery, -1, &pCsr->pExpr |
+ ); |
+ if( rc!=SQLITE_OK ){ |
+ if( rc==SQLITE_ERROR ){ |
+ p->base.zErrMsg = sqlite3_mprintf("malformed MATCH expression: [%s]", |
+ zQuery); |
+ } |
+ return rc; |
+ } |
+ |
+ rc = sqlite3Fts3ReadLock(p); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0); |
+ sqlite3Fts3SegmentsClose(p); |
+ if( rc!=SQLITE_OK ) return rc; |
+ pCsr->pNextId = pCsr->aDoclist; |
+ pCsr->iPrevId = 0; |
+ } |
+ |
+ /* Compile a SELECT statement for this cursor. For a full-table-scan, the |
+ ** statement loops through all rows of the %_content table. For a |
+ ** full-text query or docid lookup, the statement retrieves a single |
+ ** row by docid. |
+ */ |
+ zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH]; |
+ zSql = sqlite3_mprintf(zSql, p->zReadExprlist, p->zDb, p->zName); |
+ if( !zSql ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0); |
+ sqlite3_free(zSql); |
+ } |
+ if( rc==SQLITE_OK && idxNum==FTS3_DOCID_SEARCH ){ |
+ rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]); |
+ } |
+ pCsr->eSearch = (i16)idxNum; |
+ |
+ if( rc!=SQLITE_OK ) return rc; |
+ return fts3NextMethod(pCursor); |
+} |
+ |
+/* |
+** This is the xEof method of the virtual table. SQLite calls this |
+** routine to find out if it has reached the end of a result set. |
+*/ |
+static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){ |
+ return ((Fts3Cursor *)pCursor)->isEof; |
+} |
+ |
+/* |
+** This is the xRowid method. The SQLite core calls this routine to |
+** retrieve the rowid for the current row of the result set. fts3 |
+** exposes %_content.docid as the rowid for the virtual table. The |
+** rowid should be written to *pRowid. |
+*/ |
+static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ |
+ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; |
+ if( pCsr->aDoclist ){ |
+ *pRowid = pCsr->iPrevId; |
+ }else{ |
+ /* This branch runs if the query is implemented using a full-table scan |
+ ** (not using the full-text index). In this case grab the rowid from the |
+ ** SELECT statement. |
+ */ |
+ assert( pCsr->isRequireSeek==0 ); |
+ *pRowid = sqlite3_column_int64(pCsr->pStmt, 0); |
+ } |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** This is the xColumn method, called by SQLite to request a value from |
+** the row that the supplied cursor currently points to. |
+*/ |
+static int fts3ColumnMethod( |
+ sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ |
+ sqlite3_context *pContext, /* Context for sqlite3_result_xxx() calls */ |
+ int iCol /* Index of column to read value from */ |
+){ |
+ int rc; /* Return Code */ |
+ Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; |
+ Fts3Table *p = (Fts3Table *)pCursor->pVtab; |
+ |
+ /* The column value supplied by SQLite must be in range. */ |
+ assert( iCol>=0 && iCol<=p->nColumn+1 ); |
+ |
+ if( iCol==p->nColumn+1 ){ |
+ /* This call is a request for the "docid" column. Since "docid" is an |
+ ** alias for "rowid", use the xRowid() method to obtain the value. |
+ */ |
+ sqlite3_int64 iRowid; |
+ rc = fts3RowidMethod(pCursor, &iRowid); |
+ sqlite3_result_int64(pContext, iRowid); |
+ }else if( iCol==p->nColumn ){ |
+ /* The extra column whose name is the same as the table. |
+ ** Return a blob which is a pointer to the cursor. |
+ */ |
+ sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT); |
+ rc = SQLITE_OK; |
+ }else{ |
+ rc = fts3CursorSeek(0, pCsr); |
+ if( rc==SQLITE_OK ){ |
+ sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1)); |
+ } |
+ } |
+ return rc; |
+} |
+ |
+/* |
+** This function is the implementation of the xUpdate callback used by |
+** FTS3 virtual tables. It is invoked by SQLite each time a row is to be |
+** inserted, updated or deleted. |
+*/ |
+static int fts3UpdateMethod( |
+ sqlite3_vtab *pVtab, /* Virtual table handle */ |
+ int nArg, /* Size of argument array */ |
+ sqlite3_value **apVal, /* Array of arguments */ |
+ sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ |
+){ |
+ return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid); |
+} |
+ |
+/* |
+** Implementation of xSync() method. Flush the contents of the pending-terms |
+** hash-table to the database. |
+*/ |
+static int fts3SyncMethod(sqlite3_vtab *pVtab){ |
+ int rc = sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab); |
+ sqlite3Fts3SegmentsClose((Fts3Table *)pVtab); |
+ return rc; |
+} |
+ |
+/* |
+** Implementation of xBegin() method. This is a no-op. |
+*/ |
+static int fts3BeginMethod(sqlite3_vtab *pVtab){ |
+ UNUSED_PARAMETER(pVtab); |
+ assert( ((Fts3Table *)pVtab)->nPendingData==0 ); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of xCommit() method. This is a no-op. The contents of |
+** the pending-terms hash-table have already been flushed into the database |
+** by fts3SyncMethod(). |
+*/ |
+static int fts3CommitMethod(sqlite3_vtab *pVtab){ |
+ UNUSED_PARAMETER(pVtab); |
+ assert( ((Fts3Table *)pVtab)->nPendingData==0 ); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of xRollback(). Discard the contents of the pending-terms |
+** hash-table. Any changes made to the database are reverted by SQLite. |
+*/ |
+static int fts3RollbackMethod(sqlite3_vtab *pVtab){ |
+ sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Load the doclist associated with expression pExpr to pExpr->aDoclist. |
+** The loaded doclist contains positions as well as the document ids. |
+** This is used by the matchinfo(), snippet() and offsets() auxillary |
+** functions. |
+*/ |
+int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *pCsr, Fts3Expr *pExpr){ |
+ int rc; |
+ assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase ); |
+ assert( pCsr->eEvalmode==FTS3_EVAL_NEXT ); |
+ rc = fts3EvalExpr(pCsr, pExpr, &pExpr->aDoclist, &pExpr->nDoclist, 1); |
+ return rc; |
+} |
+ |
+int sqlite3Fts3ExprLoadFtDoclist( |
+ Fts3Cursor *pCsr, |
+ Fts3Expr *pExpr, |
+ char **paDoclist, |
+ int *pnDoclist |
+){ |
+ int rc; |
+ assert( pCsr->eEvalmode==FTS3_EVAL_NEXT ); |
+ assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase ); |
+ pCsr->eEvalmode = FTS3_EVAL_MATCHINFO; |
+ rc = fts3EvalExpr(pCsr, pExpr, paDoclist, pnDoclist, 1); |
+ pCsr->eEvalmode = FTS3_EVAL_NEXT; |
+ return rc; |
+} |
+ |
+/* |
+** After ExprLoadDoclist() (see above) has been called, this function is |
+** used to iterate/search through the position lists that make up the doclist |
+** stored in pExpr->aDoclist. |
+*/ |
+char *sqlite3Fts3FindPositions( |
+ Fts3Expr *pExpr, /* Access this expressions doclist */ |
+ sqlite3_int64 iDocid, /* Docid associated with requested pos-list */ |
+ int iCol /* Column of requested pos-list */ |
+){ |
+ assert( pExpr->isLoaded ); |
+ if( pExpr->aDoclist ){ |
+ char *pEnd = &pExpr->aDoclist[pExpr->nDoclist]; |
+ char *pCsr; |
+ |
+ if( pExpr->pCurrent==0 ){ |
+ pExpr->pCurrent = pExpr->aDoclist; |
+ pExpr->iCurrent = 0; |
+ pExpr->pCurrent += sqlite3Fts3GetVarint(pExpr->pCurrent,&pExpr->iCurrent); |
+ } |
+ pCsr = pExpr->pCurrent; |
+ assert( pCsr ); |
+ |
+ while( pCsr<pEnd ){ |
+ if( pExpr->iCurrent<iDocid ){ |
+ fts3PoslistCopy(0, &pCsr); |
+ if( pCsr<pEnd ){ |
+ fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent); |
+ } |
+ pExpr->pCurrent = pCsr; |
+ }else{ |
+ if( pExpr->iCurrent==iDocid ){ |
+ int iThis = 0; |
+ if( iCol<0 ){ |
+ /* If iCol is negative, return a pointer to the start of the |
+ ** position-list (instead of a pointer to the start of a list |
+ ** of offsets associated with a specific column). |
+ */ |
+ return pCsr; |
+ } |
+ while( iThis<iCol ){ |
+ fts3ColumnlistCopy(0, &pCsr); |
+ if( *pCsr==0x00 ) return 0; |
+ pCsr++; |
+ pCsr += sqlite3Fts3GetVarint32(pCsr, &iThis); |
+ } |
+ if( iCol==iThis && (*pCsr&0xFE) ) return pCsr; |
+ } |
+ return 0; |
+ } |
+ } |
+ } |
+ |
+ return 0; |
+} |
+ |
+/* |
+** Helper function used by the implementation of the overloaded snippet(), |
+** offsets() and optimize() SQL functions. |
+** |
+** If the value passed as the third argument is a blob of size |
+** sizeof(Fts3Cursor*), then the blob contents are copied to the |
+** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error |
+** message is written to context pContext and SQLITE_ERROR returned. The |
+** string passed via zFunc is used as part of the error message. |
+*/ |
+static int fts3FunctionArg( |
+ sqlite3_context *pContext, /* SQL function call context */ |
+ const char *zFunc, /* Function name */ |
+ sqlite3_value *pVal, /* argv[0] passed to function */ |
+ Fts3Cursor **ppCsr /* OUT: Store cursor handle here */ |
+){ |
+ Fts3Cursor *pRet; |
+ if( sqlite3_value_type(pVal)!=SQLITE_BLOB |
+ || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *) |
+ ){ |
+ char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc); |
+ sqlite3_result_error(pContext, zErr, -1); |
+ sqlite3_free(zErr); |
+ return SQLITE_ERROR; |
+ } |
+ memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *)); |
+ *ppCsr = pRet; |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** Implementation of the snippet() function for FTS3 |
+*/ |
+static void fts3SnippetFunc( |
+ sqlite3_context *pContext, /* SQLite function call context */ |
+ int nVal, /* Size of apVal[] array */ |
+ sqlite3_value **apVal /* Array of arguments */ |
+){ |
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ |
+ const char *zStart = "<b>"; |
+ const char *zEnd = "</b>"; |
+ const char *zEllipsis = "<b>...</b>"; |
+ int iCol = -1; |
+ int nToken = 15; /* Default number of tokens in snippet */ |
+ |
+ /* There must be at least one argument passed to this function (otherwise |
+ ** the non-overloaded version would have been called instead of this one). |
+ */ |
+ assert( nVal>=1 ); |
+ |
+ if( nVal>6 ){ |
+ sqlite3_result_error(pContext, |
+ "wrong number of arguments to function snippet()", -1); |
+ return; |
+ } |
+ if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return; |
+ |
+ switch( nVal ){ |
+ case 6: nToken = sqlite3_value_int(apVal[5]); |
+ case 5: iCol = sqlite3_value_int(apVal[4]); |
+ case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); |
+ case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); |
+ case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); |
+ } |
+ if( !zEllipsis || !zEnd || !zStart ){ |
+ sqlite3_result_error_nomem(pContext); |
+ }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ |
+ sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); |
+ } |
+} |
+ |
+/* |
+** Implementation of the offsets() function for FTS3 |
+*/ |
+static void fts3OffsetsFunc( |
+ sqlite3_context *pContext, /* SQLite function call context */ |
+ int nVal, /* Size of argument array */ |
+ sqlite3_value **apVal /* Array of arguments */ |
+){ |
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ |
+ |
+ UNUSED_PARAMETER(nVal); |
+ |
+ assert( nVal==1 ); |
+ if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return; |
+ assert( pCsr ); |
+ if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ |
+ sqlite3Fts3Offsets(pContext, pCsr); |
+ } |
+} |
+ |
+/* |
+** Implementation of the special optimize() function for FTS3. This |
+** function merges all segments in the database to a single segment. |
+** Example usage is: |
+** |
+** SELECT optimize(t) FROM t LIMIT 1; |
+** |
+** where 't' is the name of an FTS3 table. |
+*/ |
+static void fts3OptimizeFunc( |
+ sqlite3_context *pContext, /* SQLite function call context */ |
+ int nVal, /* Size of argument array */ |
+ sqlite3_value **apVal /* Array of arguments */ |
+){ |
+ int rc; /* Return code */ |
+ Fts3Table *p; /* Virtual table handle */ |
+ Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */ |
+ |
+ UNUSED_PARAMETER(nVal); |
+ |
+ assert( nVal==1 ); |
+ if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return; |
+ p = (Fts3Table *)pCursor->base.pVtab; |
+ assert( p ); |
+ |
+ rc = sqlite3Fts3Optimize(p); |
+ |
+ switch( rc ){ |
+ case SQLITE_OK: |
+ sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); |
+ break; |
+ case SQLITE_DONE: |
+ sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC); |
+ break; |
+ default: |
+ sqlite3_result_error_code(pContext, rc); |
+ break; |
+ } |
+} |
+ |
+/* |
+** Implementation of the matchinfo() function for FTS3 |
+*/ |
+static void fts3MatchinfoFunc( |
+ sqlite3_context *pContext, /* SQLite function call context */ |
+ int nVal, /* Size of argument array */ |
+ sqlite3_value **apVal /* Array of arguments */ |
+){ |
+ Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ |
+ assert( nVal==1 || nVal==2 ); |
+ if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){ |
+ const char *zArg = 0; |
+ if( nVal>1 ){ |
+ zArg = (const char *)sqlite3_value_text(apVal[1]); |
+ } |
+ sqlite3Fts3Matchinfo(pContext, pCsr, zArg); |
+ } |
+} |
+ |
+/* |
+** This routine implements the xFindFunction method for the FTS3 |
+** virtual table. |
+*/ |
+static int fts3FindFunctionMethod( |
+ sqlite3_vtab *pVtab, /* Virtual table handle */ |
+ int nArg, /* Number of SQL function arguments */ |
+ const char *zName, /* Name of SQL function */ |
+ void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ |
+ void **ppArg /* Unused */ |
+){ |
+ struct Overloaded { |
+ const char *zName; |
+ void (*xFunc)(sqlite3_context*,int,sqlite3_value**); |
+ } aOverload[] = { |
+ { "snippet", fts3SnippetFunc }, |
+ { "offsets", fts3OffsetsFunc }, |
+ { "optimize", fts3OptimizeFunc }, |
+ { "matchinfo", fts3MatchinfoFunc }, |
+ }; |
+ int i; /* Iterator variable */ |
+ |
+ UNUSED_PARAMETER(pVtab); |
+ UNUSED_PARAMETER(nArg); |
+ UNUSED_PARAMETER(ppArg); |
+ |
+ for(i=0; i<SizeofArray(aOverload); i++){ |
+ if( strcmp(zName, aOverload[i].zName)==0 ){ |
+ *pxFunc = aOverload[i].xFunc; |
+ return 1; |
+ } |
+ } |
+ |
+ /* No function of the specified name was found. Return 0. */ |
+ return 0; |
+} |
+ |
+/* |
+** Implementation of FTS3 xRename method. Rename an fts3 table. |
+*/ |
+static int fts3RenameMethod( |
+ sqlite3_vtab *pVtab, /* Virtual table handle */ |
+ const char *zName /* New name of table */ |
+){ |
+ Fts3Table *p = (Fts3Table *)pVtab; |
+ sqlite3 *db = p->db; /* Database connection */ |
+ int rc; /* Return Code */ |
+ |
+ rc = sqlite3Fts3PendingTermsFlush(p); |
+ if( rc!=SQLITE_OK ){ |
+ return rc; |
+ } |
+ |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';", |
+ p->zDb, p->zName, zName |
+ ); |
+ if( p->bHasDocsize ){ |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';", |
+ p->zDb, p->zName, zName |
+ ); |
+ } |
+ if( p->bHasStat ){ |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';", |
+ p->zDb, p->zName, zName |
+ ); |
+ } |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';", |
+ p->zDb, p->zName, zName |
+ ); |
+ fts3DbExec(&rc, db, |
+ "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", |
+ p->zDb, p->zName, zName |
+ ); |
+ return rc; |
+} |
+ |
+static const sqlite3_module fts3Module = { |
+ /* iVersion */ 0, |
+ /* xCreate */ fts3CreateMethod, |
+ /* xConnect */ fts3ConnectMethod, |
+ /* xBestIndex */ fts3BestIndexMethod, |
+ /* xDisconnect */ fts3DisconnectMethod, |
+ /* xDestroy */ fts3DestroyMethod, |
+ /* xOpen */ fts3OpenMethod, |
+ /* xClose */ fts3CloseMethod, |
+ /* xFilter */ fts3FilterMethod, |
+ /* xNext */ fts3NextMethod, |
+ /* xEof */ fts3EofMethod, |
+ /* xColumn */ fts3ColumnMethod, |
+ /* xRowid */ fts3RowidMethod, |
+ /* xUpdate */ fts3UpdateMethod, |
+ /* xBegin */ fts3BeginMethod, |
+ /* xSync */ fts3SyncMethod, |
+ /* xCommit */ fts3CommitMethod, |
+ /* xRollback */ fts3RollbackMethod, |
+ /* xFindFunction */ fts3FindFunctionMethod, |
+ /* xRename */ fts3RenameMethod, |
+}; |
+ |
+/* |
+** This function is registered as the module destructor (called when an |
+** FTS3 enabled database connection is closed). It frees the memory |
+** allocated for the tokenizer hash table. |
+*/ |
+static void hashDestroy(void *p){ |
+ Fts3Hash *pHash = (Fts3Hash *)p; |
+ sqlite3Fts3HashClear(pHash); |
+ sqlite3_free(pHash); |
+} |
+ |
+/* |
+** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are |
+** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c |
+** respectively. The following three forward declarations are for functions |
+** declared in these files used to retrieve the respective implementations. |
+** |
+** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed |
+** to by the argument to point to the "simple" tokenizer implementation. |
+** And so on. |
+*/ |
+void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
+void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
+#ifdef SQLITE_ENABLE_ICU |
+void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); |
+#endif |
+ |
+/* |
+** Initialise the fts3 extension. If this extension is built as part |
+** of the sqlite library, then this function is called directly by |
+** SQLite. If fts3 is built as a dynamically loadable extension, this |
+** function is called by the sqlite3_extension_init() entry point. |
+*/ |
+int sqlite3Fts3Init(sqlite3 *db){ |
+ int rc = SQLITE_OK; |
+ Fts3Hash *pHash = 0; |
+ const sqlite3_tokenizer_module *pSimple = 0; |
+ const sqlite3_tokenizer_module *pPorter = 0; |
+ |
+#ifdef SQLITE_ENABLE_ICU |
+ const sqlite3_tokenizer_module *pIcu = 0; |
+ sqlite3Fts3IcuTokenizerModule(&pIcu); |
+#endif |
+ |
+ rc = sqlite3Fts3InitAux(db); |
+ if( rc!=SQLITE_OK ) return rc; |
+ |
+ sqlite3Fts3SimpleTokenizerModule(&pSimple); |
+ sqlite3Fts3PorterTokenizerModule(&pPorter); |
+ |
+ /* Allocate and initialise the hash-table used to store tokenizers. */ |
+ pHash = sqlite3_malloc(sizeof(Fts3Hash)); |
+ if( !pHash ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); |
+ } |
+ |
+ /* Load the built-in tokenizers into the hash table */ |
+ if( rc==SQLITE_OK ){ |
+ if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple) |
+ || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) |
+#ifdef SQLITE_ENABLE_ICU |
+ || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu)) |
+#endif |
+ ){ |
+ rc = SQLITE_NOMEM; |
+ } |
+ } |
+ |
+#ifdef SQLITE_TEST |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3Fts3ExprInitTestInterface(db); |
+ } |
+#endif |
+ |
+ /* Create the virtual table wrapper around the hash-table and overload |
+ ** the two scalar functions. If this is successful, register the |
+ ** module with sqlite. |
+ */ |
+ if( SQLITE_OK==rc |
+ && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1)) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2)) |
+ && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1)) |
+ ){ |
+ rc = sqlite3_create_module_v2( |
+ db, "fts3", &fts3Module, (void *)pHash, hashDestroy |
+ ); |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_create_module_v2( |
+ db, "fts4", &fts3Module, (void *)pHash, 0 |
+ ); |
+ } |
+ return rc; |
+ } |
+ |
+ /* An error has occurred. Delete the hash table and return the error code. */ |
+ assert( rc!=SQLITE_OK ); |
+ if( pHash ){ |
+ sqlite3Fts3HashClear(pHash); |
+ sqlite3_free(pHash); |
+ } |
+ return rc; |
+} |
+ |
+#if !SQLITE_CORE |
+int sqlite3_extension_init( |
+ sqlite3 *db, |
+ char **pzErrMsg, |
+ const sqlite3_api_routines *pApi |
+){ |
+ SQLITE_EXTENSION_INIT2(pApi) |
+ return sqlite3Fts3Init(db); |
+} |
+#endif |
+ |
+#endif |