Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2189)

Side by Side Diff: third_party/sqlite/sqlite-src-3070603/ext/fts3/fts3.c

Issue 949043002: Add //third_party/sqlite to dirs_to_snapshot, remove net_sql.patch (Closed) Base URL: git@github.com:domokit/mojo.git@master
Patch Set: Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2006 Oct 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This is an SQLite module implementing full-text search.
14 */
15
16 /*
17 ** The code in this file is only compiled if:
18 **
19 ** * The FTS3 module is being built as an extension
20 ** (in which case SQLITE_CORE is not defined), or
21 **
22 ** * The FTS3 module is being built into the core of
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined).
24 */
25
26 /* The full-text index is stored in a series of b+tree (-like)
27 ** structures called segments which map terms to doclists. The
28 ** structures are like b+trees in layout, but are constructed from the
29 ** bottom up in optimal fashion and are not updatable. Since trees
30 ** are built from the bottom up, things will be described from the
31 ** bottom up.
32 **
33 **
34 **** Varints ****
35 ** The basic unit of encoding is a variable-length integer called a
36 ** varint. We encode variable-length integers in little-endian order
37 ** using seven bits * per byte as follows:
38 **
39 ** KEY:
40 ** A = 0xxxxxxx 7 bits of data and one flag bit
41 ** B = 1xxxxxxx 7 bits of data and one flag bit
42 **
43 ** 7 bits - A
44 ** 14 bits - BA
45 ** 21 bits - BBA
46 ** and so on.
47 **
48 ** This is similar in concept to how sqlite encodes "varints" but
49 ** the encoding is not the same. SQLite varints are big-endian
50 ** are are limited to 9 bytes in length whereas FTS3 varints are
51 ** little-endian and can be up to 10 bytes in length (in theory).
52 **
53 ** Example encodings:
54 **
55 ** 1: 0x01
56 ** 127: 0x7f
57 ** 128: 0x81 0x00
58 **
59 **
60 **** Document lists ****
61 ** A doclist (document list) holds a docid-sorted list of hits for a
62 ** given term. Doclists hold docids and associated token positions.
63 ** A docid is the unique integer identifier for a single document.
64 ** A position is the index of a word within the document. The first
65 ** word of the document has a position of 0.
66 **
67 ** FTS3 used to optionally store character offsets using a compile-time
68 ** option. But that functionality is no longer supported.
69 **
70 ** A doclist is stored like this:
71 **
72 ** array {
73 ** varint docid;
74 ** array { (position list for column 0)
75 ** varint position; (2 more than the delta from previous position)
76 ** }
77 ** array {
78 ** varint POS_COLUMN; (marks start of position list for new column)
79 ** varint column; (index of new column)
80 ** array {
81 ** varint position; (2 more than the delta from previous position)
82 ** }
83 ** }
84 ** varint POS_END; (marks end of positions for this document.
85 ** }
86 **
87 ** Here, array { X } means zero or more occurrences of X, adjacent in
88 ** memory. A "position" is an index of a token in the token stream
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur
90 ** in the same logical place as the position element, and act as sentinals
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1.
92 ** The positions numbers are not stored literally but rather as two more
93 ** than the difference from the prior position, or the just the position plus
94 ** 2 for the first position. Example:
95 **
96 ** label: A B C D E F G H I J K
97 ** value: 123 5 9 1 1 14 35 0 234 72 0
98 **
99 ** The 123 value is the first docid. For column zero in this document
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1
101 ** at D signals the start of a new column; the 1 at E indicates that the
102 ** new column is column number 1. There are two positions at 12 and 45
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The
104 ** 234 at I is the next docid. It has one position 72 (72-2) and then
105 ** terminates with the 0 at K.
106 **
107 ** A "position-list" is the list of positions for multiple columns for
108 ** a single docid. A "column-list" is the set of positions for a single
109 ** column. Hence, a position-list consists of one or more column-lists,
110 ** a document record consists of a docid followed by a position-list and
111 ** a doclist consists of one or more document records.
112 **
113 ** A bare doclist omits the position information, becoming an
114 ** array of varint-encoded docids.
115 **
116 **** Segment leaf nodes ****
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf
118 ** nodes are written using LeafWriter, and read using LeafReader (to
119 ** iterate through a single leaf node's data) and LeavesReader (to
120 ** iterate through a segment's entire leaf layer). Leaf nodes have
121 ** the format:
122 **
123 ** varint iHeight; (height from leaf level, always 0)
124 ** varint nTerm; (length of first term)
125 ** char pTerm[nTerm]; (content of first term)
126 ** varint nDoclist; (length of term's associated doclist)
127 ** char pDoclist[nDoclist]; (content of doclist)
128 ** array {
129 ** (further terms are delta-encoded)
130 ** varint nPrefix; (length of prefix shared with previous term)
131 ** varint nSuffix; (length of unshared suffix)
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term)
133 ** varint nDoclist; (length of term's associated doclist)
134 ** char pDoclist[nDoclist]; (content of doclist)
135 ** }
136 **
137 ** Here, array { X } means zero or more occurrences of X, adjacent in
138 ** memory.
139 **
140 ** Leaf nodes are broken into blocks which are stored contiguously in
141 ** the %_segments table in sorted order. This means that when the end
142 ** of a node is reached, the next term is in the node with the next
143 ** greater node id.
144 **
145 ** New data is spilled to a new leaf node when the current node
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone
148 ** node (a leaf node with a single term and doclist). The goal of
149 ** these settings is to pack together groups of small doclists while
150 ** making it efficient to directly access large doclists. The
151 ** assumption is that large doclists represent terms which are more
152 ** likely to be query targets.
153 **
154 ** TODO(shess) It may be useful for blocking decisions to be more
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf
156 ** node rather than splitting into 2k and .5k nodes. My intuition is
157 ** that this might extend through 2x or 4x the pagesize.
158 **
159 **
160 **** Segment interior nodes ****
161 ** Segment interior nodes store blockids for subtree nodes and terms
162 ** to describe what data is stored by the each subtree. Interior
163 ** nodes are written using InteriorWriter, and read using
164 ** InteriorReader. InteriorWriters are created as needed when
165 ** SegmentWriter creates new leaf nodes, or when an interior node
166 ** itself grows too big and must be split. The format of interior
167 ** nodes:
168 **
169 ** varint iHeight; (height from leaf level, always >0)
170 ** varint iBlockid; (block id of node's leftmost subtree)
171 ** optional {
172 ** varint nTerm; (length of first term)
173 ** char pTerm[nTerm]; (content of first term)
174 ** array {
175 ** (further terms are delta-encoded)
176 ** varint nPrefix; (length of shared prefix with previous term)
177 ** varint nSuffix; (length of unshared suffix)
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term)
179 ** }
180 ** }
181 **
182 ** Here, optional { X } means an optional element, while array { X }
183 ** means zero or more occurrences of X, adjacent in memory.
184 **
185 ** An interior node encodes n terms separating n+1 subtrees. The
186 ** subtree blocks are contiguous, so only the first subtree's blockid
187 ** is encoded. The subtree at iBlockid will contain all terms less
188 ** than the first term encoded (or all terms if no term is encoded).
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less
190 ** than pTerm[i+1], the subtree for that term will be rooted at
191 ** iBlockid+i. Interior nodes only store enough term data to
192 ** distinguish adjacent children (if the rightmost term of the left
193 ** child is "something", and the leftmost term of the right child is
194 ** "wicked", only "w" is stored).
195 **
196 ** New data is spilled to a new interior node at the same height when
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048).
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing
199 ** interior nodes and making the tree too skinny. The interior nodes
200 ** at a given height are naturally tracked by interior nodes at
201 ** height+1, and so on.
202 **
203 **
204 **** Segment directory ****
205 ** The segment directory in table %_segdir stores meta-information for
206 ** merging and deleting segments, and also the root node of the
207 ** segment's tree.
208 **
209 ** The root node is the top node of the segment's tree after encoding
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024).
211 ** This could be either a leaf node or an interior node. If the top
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments
213 ** and a new root interior node is generated (which should always fit
214 ** within ROOT_MAX because it only needs space for 2 varints, the
215 ** height and the blockid of the previous root).
216 **
217 ** The meta-information in the segment directory is:
218 ** level - segment level (see below)
219 ** idx - index within level
220 ** - (level,idx uniquely identify a segment)
221 ** start_block - first leaf node
222 ** leaves_end_block - last leaf node
223 ** end_block - last block (including interior nodes)
224 ** root - contents of root node
225 **
226 ** If the root node is a leaf node, then start_block,
227 ** leaves_end_block, and end_block are all 0.
228 **
229 **
230 **** Segment merging ****
231 ** To amortize update costs, segments are grouped into levels and
232 ** merged in batches. Each increase in level represents exponentially
233 ** more documents.
234 **
235 ** New documents (actually, document updates) are tokenized and
236 ** written individually (using LeafWriter) to a level 0 segment, with
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all
238 ** level 0 segments are merged into a single level 1 segment. Level 1
239 ** is populated like level 0, and eventually MERGE_COUNT level 1
240 ** segments are merged to a single level 2 segment (representing
241 ** MERGE_COUNT^2 updates), and so on.
242 **
243 ** A segment merge traverses all segments at a given level in
244 ** parallel, performing a straightforward sorted merge. Since segment
245 ** leaf nodes are written in to the %_segments table in order, this
246 ** merge traverses the underlying sqlite disk structures efficiently.
247 ** After the merge, all segment blocks from the merged level are
248 ** deleted.
249 **
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show
252 ** very similar performance numbers to 16 on insertion, though they're
253 ** a tiny bit slower (perhaps due to more overhead in merge-time
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than
255 ** 16, 2 about 66% slower than 16.
256 **
257 ** At query time, high MERGE_COUNT increases the number of segments
258 ** which need to be scanned and merged. For instance, with 100k docs
259 ** inserted:
260 **
261 ** MERGE_COUNT segments
262 ** 16 25
263 ** 8 12
264 ** 4 10
265 ** 2 6
266 **
267 ** This appears to have only a moderate impact on queries for very
268 ** frequent terms (which are somewhat dominated by segment merge
269 ** costs), and infrequent and non-existent terms still seem to be fast
270 ** even with many segments.
271 **
272 ** TODO(shess) That said, it would be nice to have a better query-side
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that
274 ** optimizations to things like doclist merging will swing the sweet
275 ** spot around.
276 **
277 **
278 **
279 **** Handling of deletions and updates ****
280 ** Since we're using a segmented structure, with no docid-oriented
281 ** index into the term index, we clearly cannot simply update the term
282 ** index when a document is deleted or updated. For deletions, we
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates
284 ** we simply write the new doclist. Segment merges overwrite older
285 ** data for a particular docid with newer data, so deletes or updates
286 ** will eventually overtake the earlier data and knock it out. The
287 ** query logic likewise merges doclists so that newer data knocks out
288 ** older data.
289 **
290 ** TODO(shess) Provide a VACUUM type operation to clear out all
291 ** deletions and duplications. This would basically be a forced merge
292 ** into a single segment.
293 */
294
295 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
296
297 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE)
298 # define SQLITE_CORE 1
299 #endif
300
301 #include "fts3Int.h"
302
303 #include <assert.h>
304 #include <stdlib.h>
305 #include <stddef.h>
306 #include <stdio.h>
307 #include <string.h>
308 #include <stdarg.h>
309
310 #include "fts3.h"
311 #ifndef SQLITE_CORE
312 # include "sqlite3ext.h"
313 SQLITE_EXTENSION_INIT1
314 #endif
315
316 /*
317 ** Write a 64-bit variable-length integer to memory starting at p[0].
318 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes.
319 ** The number of bytes written is returned.
320 */
321 int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){
322 unsigned char *q = (unsigned char *) p;
323 sqlite_uint64 vu = v;
324 do{
325 *q++ = (unsigned char) ((vu & 0x7f) | 0x80);
326 vu >>= 7;
327 }while( vu!=0 );
328 q[-1] &= 0x7f; /* turn off high bit in final byte */
329 assert( q - (unsigned char *)p <= FTS3_VARINT_MAX );
330 return (int) (q - (unsigned char *)p);
331 }
332
333 /*
334 ** Read a 64-bit variable-length integer from memory starting at p[0].
335 ** Return the number of bytes read, or 0 on error.
336 ** The value is stored in *v.
337 */
338 int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){
339 const unsigned char *q = (const unsigned char *) p;
340 sqlite_uint64 x = 0, y = 1;
341 while( (*q&0x80)==0x80 && q-(unsigned char *)p<FTS3_VARINT_MAX ){
342 x += y * (*q++ & 0x7f);
343 y <<= 7;
344 }
345 x += y * (*q++);
346 *v = (sqlite_int64) x;
347 return (int) (q - (unsigned char *)p);
348 }
349
350 /*
351 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a
352 ** 32-bit integer before it is returned.
353 */
354 int sqlite3Fts3GetVarint32(const char *p, int *pi){
355 sqlite_int64 i;
356 int ret = sqlite3Fts3GetVarint(p, &i);
357 *pi = (int) i;
358 return ret;
359 }
360
361 /*
362 ** Return the number of bytes required to encode v as a varint
363 */
364 int sqlite3Fts3VarintLen(sqlite3_uint64 v){
365 int i = 0;
366 do{
367 i++;
368 v >>= 7;
369 }while( v!=0 );
370 return i;
371 }
372
373 /*
374 ** Convert an SQL-style quoted string into a normal string by removing
375 ** the quote characters. The conversion is done in-place. If the
376 ** input does not begin with a quote character, then this routine
377 ** is a no-op.
378 **
379 ** Examples:
380 **
381 ** "abc" becomes abc
382 ** 'xyz' becomes xyz
383 ** [pqr] becomes pqr
384 ** `mno` becomes mno
385 **
386 */
387 void sqlite3Fts3Dequote(char *z){
388 char quote; /* Quote character (if any ) */
389
390 quote = z[0];
391 if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){
392 int iIn = 1; /* Index of next byte to read from input */
393 int iOut = 0; /* Index of next byte to write to output */
394
395 /* If the first byte was a '[', then the close-quote character is a ']' */
396 if( quote=='[' ) quote = ']';
397
398 while( ALWAYS(z[iIn]) ){
399 if( z[iIn]==quote ){
400 if( z[iIn+1]!=quote ) break;
401 z[iOut++] = quote;
402 iIn += 2;
403 }else{
404 z[iOut++] = z[iIn++];
405 }
406 }
407 z[iOut] = '\0';
408 }
409 }
410
411 /*
412 ** Read a single varint from the doclist at *pp and advance *pp to point
413 ** to the first byte past the end of the varint. Add the value of the varint
414 ** to *pVal.
415 */
416 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){
417 sqlite3_int64 iVal;
418 *pp += sqlite3Fts3GetVarint(*pp, &iVal);
419 *pVal += iVal;
420 }
421
422 /*
423 ** As long as *pp has not reached its end (pEnd), then do the same
424 ** as fts3GetDeltaVarint(): read a single varint and add it to *pVal.
425 ** But if we have reached the end of the varint, just set *pp=0 and
426 ** leave *pVal unchanged.
427 */
428 static void fts3GetDeltaVarint2(char **pp, char *pEnd, sqlite3_int64 *pVal){
429 if( *pp>=pEnd ){
430 *pp = 0;
431 }else{
432 fts3GetDeltaVarint(pp, pVal);
433 }
434 }
435
436 /*
437 ** The xDisconnect() virtual table method.
438 */
439 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){
440 Fts3Table *p = (Fts3Table *)pVtab;
441 int i;
442
443 assert( p->nPendingData==0 );
444 assert( p->pSegments==0 );
445
446 /* Free any prepared statements held */
447 for(i=0; i<SizeofArray(p->aStmt); i++){
448 sqlite3_finalize(p->aStmt[i]);
449 }
450 sqlite3_free(p->zSegmentsTbl);
451 sqlite3_free(p->zReadExprlist);
452 sqlite3_free(p->zWriteExprlist);
453
454 /* Invoke the tokenizer destructor to free the tokenizer. */
455 p->pTokenizer->pModule->xDestroy(p->pTokenizer);
456
457 sqlite3_free(p);
458 return SQLITE_OK;
459 }
460
461 /*
462 ** Construct one or more SQL statements from the format string given
463 ** and then evaluate those statements. The success code is written
464 ** into *pRc.
465 **
466 ** If *pRc is initially non-zero then this routine is a no-op.
467 */
468 static void fts3DbExec(
469 int *pRc, /* Success code */
470 sqlite3 *db, /* Database in which to run SQL */
471 const char *zFormat, /* Format string for SQL */
472 ... /* Arguments to the format string */
473 ){
474 va_list ap;
475 char *zSql;
476 if( *pRc ) return;
477 va_start(ap, zFormat);
478 zSql = sqlite3_vmprintf(zFormat, ap);
479 va_end(ap);
480 if( zSql==0 ){
481 *pRc = SQLITE_NOMEM;
482 }else{
483 *pRc = sqlite3_exec(db, zSql, 0, 0, 0);
484 sqlite3_free(zSql);
485 }
486 }
487
488 /*
489 ** The xDestroy() virtual table method.
490 */
491 static int fts3DestroyMethod(sqlite3_vtab *pVtab){
492 int rc = SQLITE_OK; /* Return code */
493 Fts3Table *p = (Fts3Table *)pVtab;
494 sqlite3 *db = p->db;
495
496 /* Drop the shadow tables */
497 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", p->zDb, p->zName);
498 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", p->zDb,p->zName);
499 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", p->zDb, p->zName);
500 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", p->zDb, p->zName);
501 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", p->zDb, p->zName);
502
503 /* If everything has worked, invoke fts3DisconnectMethod() to free the
504 ** memory associated with the Fts3Table structure and return SQLITE_OK.
505 ** Otherwise, return an SQLite error code.
506 */
507 return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc);
508 }
509
510
511 /*
512 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table
513 ** passed as the first argument. This is done as part of the xConnect()
514 ** and xCreate() methods.
515 **
516 ** If *pRc is non-zero when this function is called, it is a no-op.
517 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
518 ** before returning.
519 */
520 static void fts3DeclareVtab(int *pRc, Fts3Table *p){
521 if( *pRc==SQLITE_OK ){
522 int i; /* Iterator variable */
523 int rc; /* Return code */
524 char *zSql; /* SQL statement passed to declare_vtab() */
525 char *zCols; /* List of user defined columns */
526
527 /* Create a list of user columns for the virtual table */
528 zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]);
529 for(i=1; zCols && i<p->nColumn; i++){
530 zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]);
531 }
532
533 /* Create the whole "CREATE TABLE" statement to pass to SQLite */
534 zSql = sqlite3_mprintf(
535 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN)", zCols, p->zName
536 );
537 if( !zCols || !zSql ){
538 rc = SQLITE_NOMEM;
539 }else{
540 rc = sqlite3_declare_vtab(p->db, zSql);
541 }
542
543 sqlite3_free(zSql);
544 sqlite3_free(zCols);
545 *pRc = rc;
546 }
547 }
548
549 /*
550 ** Create the backing store tables (%_content, %_segments and %_segdir)
551 ** required by the FTS3 table passed as the only argument. This is done
552 ** as part of the vtab xCreate() method.
553 **
554 ** If the p->bHasDocsize boolean is true (indicating that this is an
555 ** FTS4 table, not an FTS3 table) then also create the %_docsize and
556 ** %_stat tables required by FTS4.
557 */
558 static int fts3CreateTables(Fts3Table *p){
559 int rc = SQLITE_OK; /* Return code */
560 int i; /* Iterator variable */
561 char *zContentCols; /* Columns of %_content table */
562 sqlite3 *db = p->db; /* The database connection */
563
564 /* Create a list of user columns for the content table */
565 zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY");
566 for(i=0; zContentCols && i<p->nColumn; i++){
567 char *z = p->azColumn[i];
568 zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z);
569 }
570 if( zContentCols==0 ) rc = SQLITE_NOMEM;
571
572 /* Create the content table */
573 fts3DbExec(&rc, db,
574 "CREATE TABLE %Q.'%q_content'(%s)",
575 p->zDb, p->zName, zContentCols
576 );
577 sqlite3_free(zContentCols);
578 /* Create other tables */
579 fts3DbExec(&rc, db,
580 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);",
581 p->zDb, p->zName
582 );
583 fts3DbExec(&rc, db,
584 "CREATE TABLE %Q.'%q_segdir'("
585 "level INTEGER,"
586 "idx INTEGER,"
587 "start_block INTEGER,"
588 "leaves_end_block INTEGER,"
589 "end_block INTEGER,"
590 "root BLOB,"
591 "PRIMARY KEY(level, idx)"
592 ");",
593 p->zDb, p->zName
594 );
595 if( p->bHasDocsize ){
596 fts3DbExec(&rc, db,
597 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);",
598 p->zDb, p->zName
599 );
600 }
601 if( p->bHasStat ){
602 fts3DbExec(&rc, db,
603 "CREATE TABLE %Q.'%q_stat'(id INTEGER PRIMARY KEY, value BLOB);",
604 p->zDb, p->zName
605 );
606 }
607 return rc;
608 }
609
610 /*
611 ** Store the current database page-size in bytes in p->nPgsz.
612 **
613 ** If *pRc is non-zero when this function is called, it is a no-op.
614 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc
615 ** before returning.
616 */
617 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){
618 if( *pRc==SQLITE_OK ){
619 int rc; /* Return code */
620 char *zSql; /* SQL text "PRAGMA %Q.page_size" */
621 sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */
622
623 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb);
624 if( !zSql ){
625 rc = SQLITE_NOMEM;
626 }else{
627 rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0);
628 if( rc==SQLITE_OK ){
629 sqlite3_step(pStmt);
630 p->nPgsz = sqlite3_column_int(pStmt, 0);
631 rc = sqlite3_finalize(pStmt);
632 }
633 }
634 assert( p->nPgsz>0 || rc!=SQLITE_OK );
635 sqlite3_free(zSql);
636 *pRc = rc;
637 }
638 }
639
640 /*
641 ** "Special" FTS4 arguments are column specifications of the following form:
642 **
643 ** <key> = <value>
644 **
645 ** There may not be whitespace surrounding the "=" character. The <value>
646 ** term may be quoted, but the <key> may not.
647 */
648 static int fts3IsSpecialColumn(
649 const char *z,
650 int *pnKey,
651 char **pzValue
652 ){
653 char *zValue;
654 const char *zCsr = z;
655
656 while( *zCsr!='=' ){
657 if( *zCsr=='\0' ) return 0;
658 zCsr++;
659 }
660
661 *pnKey = (int)(zCsr-z);
662 zValue = sqlite3_mprintf("%s", &zCsr[1]);
663 if( zValue ){
664 sqlite3Fts3Dequote(zValue);
665 }
666 *pzValue = zValue;
667 return 1;
668 }
669
670 /*
671 ** Append the output of a printf() style formatting to an existing string.
672 */
673 static void fts3Appendf(
674 int *pRc, /* IN/OUT: Error code */
675 char **pz, /* IN/OUT: Pointer to string buffer */
676 const char *zFormat, /* Printf format string to append */
677 ... /* Arguments for printf format string */
678 ){
679 if( *pRc==SQLITE_OK ){
680 va_list ap;
681 char *z;
682 va_start(ap, zFormat);
683 z = sqlite3_vmprintf(zFormat, ap);
684 if( z && *pz ){
685 char *z2 = sqlite3_mprintf("%s%s", *pz, z);
686 sqlite3_free(z);
687 z = z2;
688 }
689 if( z==0 ) *pRc = SQLITE_NOMEM;
690 sqlite3_free(*pz);
691 *pz = z;
692 }
693 }
694
695 /*
696 ** Return a copy of input string zInput enclosed in double-quotes (") and
697 ** with all double quote characters escaped. For example:
698 **
699 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\""
700 **
701 ** The pointer returned points to memory obtained from sqlite3_malloc(). It
702 ** is the callers responsibility to call sqlite3_free() to release this
703 ** memory.
704 */
705 static char *fts3QuoteId(char const *zInput){
706 int nRet;
707 char *zRet;
708 nRet = 2 + strlen(zInput)*2 + 1;
709 zRet = sqlite3_malloc(nRet);
710 if( zRet ){
711 int i;
712 char *z = zRet;
713 *(z++) = '"';
714 for(i=0; zInput[i]; i++){
715 if( zInput[i]=='"' ) *(z++) = '"';
716 *(z++) = zInput[i];
717 }
718 *(z++) = '"';
719 *(z++) = '\0';
720 }
721 return zRet;
722 }
723
724 /*
725 ** Return a list of comma separated SQL expressions that could be used
726 ** in a SELECT statement such as the following:
727 **
728 ** SELECT <list of expressions> FROM %_content AS x ...
729 **
730 ** to return the docid, followed by each column of text data in order
731 ** from left to write. If parameter zFunc is not NULL, then instead of
732 ** being returned directly each column of text data is passed to an SQL
733 ** function named zFunc first. For example, if zFunc is "unzip" and the
734 ** table has the three user-defined columns "a", "b", and "c", the following
735 ** string is returned:
736 **
737 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c')"
738 **
739 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
740 ** is the responsibility of the caller to eventually free it.
741 **
742 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
743 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
744 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
745 ** no error occurs, *pRc is left unmodified.
746 */
747 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){
748 char *zRet = 0;
749 char *zFree = 0;
750 char *zFunction;
751 int i;
752
753 if( !zFunc ){
754 zFunction = "";
755 }else{
756 zFree = zFunction = fts3QuoteId(zFunc);
757 }
758 fts3Appendf(pRc, &zRet, "docid");
759 for(i=0; i<p->nColumn; i++){
760 fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]);
761 }
762 sqlite3_free(zFree);
763 return zRet;
764 }
765
766 /*
767 ** Return a list of N comma separated question marks, where N is the number
768 ** of columns in the %_content table (one for the docid plus one for each
769 ** user-defined text column).
770 **
771 ** If argument zFunc is not NULL, then all but the first question mark
772 ** is preceded by zFunc and an open bracket, and followed by a closed
773 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three
774 ** user-defined text columns, the following string is returned:
775 **
776 ** "?, zip(?), zip(?), zip(?)"
777 **
778 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It
779 ** is the responsibility of the caller to eventually free it.
780 **
781 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and
782 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered
783 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If
784 ** no error occurs, *pRc is left unmodified.
785 */
786 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){
787 char *zRet = 0;
788 char *zFree = 0;
789 char *zFunction;
790 int i;
791
792 if( !zFunc ){
793 zFunction = "";
794 }else{
795 zFree = zFunction = fts3QuoteId(zFunc);
796 }
797 fts3Appendf(pRc, &zRet, "?");
798 for(i=0; i<p->nColumn; i++){
799 fts3Appendf(pRc, &zRet, ",%s(?)", zFunction);
800 }
801 sqlite3_free(zFree);
802 return zRet;
803 }
804
805 /*
806 ** This function is the implementation of both the xConnect and xCreate
807 ** methods of the FTS3 virtual table.
808 **
809 ** The argv[] array contains the following:
810 **
811 ** argv[0] -> module name ("fts3" or "fts4")
812 ** argv[1] -> database name
813 ** argv[2] -> table name
814 ** argv[...] -> "column name" and other module argument fields.
815 */
816 static int fts3InitVtab(
817 int isCreate, /* True for xCreate, false for xConnect */
818 sqlite3 *db, /* The SQLite database connection */
819 void *pAux, /* Hash table containing tokenizers */
820 int argc, /* Number of elements in argv array */
821 const char * const *argv, /* xCreate/xConnect argument array */
822 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */
823 char **pzErr /* Write any error message here */
824 ){
825 Fts3Hash *pHash = (Fts3Hash *)pAux;
826 Fts3Table *p = 0; /* Pointer to allocated vtab */
827 int rc = SQLITE_OK; /* Return code */
828 int i; /* Iterator variable */
829 int nByte; /* Size of allocation used for *p */
830 int iCol; /* Column index */
831 int nString = 0; /* Bytes required to hold all column names */
832 int nCol = 0; /* Number of columns in the FTS table */
833 char *zCsr; /* Space for holding column names */
834 int nDb; /* Bytes required to hold database name */
835 int nName; /* Bytes required to hold table name */
836 int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */
837 int bNoDocsize = 0; /* True to omit %_docsize table */
838 const char **aCol; /* Array of column names */
839 sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */
840
841 char *zCompress = 0;
842 char *zUncompress = 0;
843
844 assert( strlen(argv[0])==4 );
845 assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4)
846 || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4)
847 );
848
849 nDb = (int)strlen(argv[1]) + 1;
850 nName = (int)strlen(argv[2]) + 1;
851
852 aCol = (const char **)sqlite3_malloc(sizeof(const char *) * (argc-2) );
853 if( !aCol ) return SQLITE_NOMEM;
854 memset((void *)aCol, 0, sizeof(const char *) * (argc-2));
855
856 /* Loop through all of the arguments passed by the user to the FTS3/4
857 ** module (i.e. all the column names and special arguments). This loop
858 ** does the following:
859 **
860 ** + Figures out the number of columns the FTSX table will have, and
861 ** the number of bytes of space that must be allocated to store copies
862 ** of the column names.
863 **
864 ** + If there is a tokenizer specification included in the arguments,
865 ** initializes the tokenizer pTokenizer.
866 */
867 for(i=3; rc==SQLITE_OK && i<argc; i++){
868 char const *z = argv[i];
869 int nKey;
870 char *zVal;
871
872 /* Check if this is a tokenizer specification */
873 if( !pTokenizer
874 && strlen(z)>8
875 && 0==sqlite3_strnicmp(z, "tokenize", 8)
876 && 0==sqlite3Fts3IsIdChar(z[8])
877 ){
878 rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr);
879 }
880
881 /* Check if it is an FTS4 special argument. */
882 else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){
883 if( !zVal ){
884 rc = SQLITE_NOMEM;
885 goto fts3_init_out;
886 }
887 if( nKey==9 && 0==sqlite3_strnicmp(z, "matchinfo", 9) ){
888 if( strlen(zVal)==4 && 0==sqlite3_strnicmp(zVal, "fts3", 4) ){
889 bNoDocsize = 1;
890 }else{
891 *pzErr = sqlite3_mprintf("unrecognized matchinfo: %s", zVal);
892 rc = SQLITE_ERROR;
893 }
894 }else if( nKey==8 && 0==sqlite3_strnicmp(z, "compress", 8) ){
895 zCompress = zVal;
896 zVal = 0;
897 }else if( nKey==10 && 0==sqlite3_strnicmp(z, "uncompress", 10) ){
898 zUncompress = zVal;
899 zVal = 0;
900 }else{
901 *pzErr = sqlite3_mprintf("unrecognized parameter: %s", z);
902 rc = SQLITE_ERROR;
903 }
904 sqlite3_free(zVal);
905 }
906
907 /* Otherwise, the argument is a column name. */
908 else {
909 nString += (int)(strlen(z) + 1);
910 aCol[nCol++] = z;
911 }
912 }
913 if( rc!=SQLITE_OK ) goto fts3_init_out;
914
915 if( nCol==0 ){
916 assert( nString==0 );
917 aCol[0] = "content";
918 nString = 8;
919 nCol = 1;
920 }
921
922 if( pTokenizer==0 ){
923 rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr);
924 if( rc!=SQLITE_OK ) goto fts3_init_out;
925 }
926 assert( pTokenizer );
927
928
929 /* Allocate and populate the Fts3Table structure. */
930 nByte = sizeof(Fts3Table) + /* Fts3Table */
931 nCol * sizeof(char *) + /* azColumn */
932 nName + /* zName */
933 nDb + /* zDb */
934 nString; /* Space for azColumn strings */
935 p = (Fts3Table*)sqlite3_malloc(nByte);
936 if( p==0 ){
937 rc = SQLITE_NOMEM;
938 goto fts3_init_out;
939 }
940 memset(p, 0, nByte);
941 p->db = db;
942 p->nColumn = nCol;
943 p->nPendingData = 0;
944 p->azColumn = (char **)&p[1];
945 p->pTokenizer = pTokenizer;
946 p->nNodeSize = 1000;
947 p->nMaxPendingData = FTS3_MAX_PENDING_DATA;
948 p->bHasDocsize = (isFts4 && bNoDocsize==0);
949 p->bHasStat = isFts4;
950 fts3HashInit(&p->pendingTerms, FTS3_HASH_STRING, 1);
951
952 /* Fill in the zName and zDb fields of the vtab structure. */
953 zCsr = (char *)&p->azColumn[nCol];
954 p->zName = zCsr;
955 memcpy(zCsr, argv[2], nName);
956 zCsr += nName;
957 p->zDb = zCsr;
958 memcpy(zCsr, argv[1], nDb);
959 zCsr += nDb;
960
961 /* Fill in the azColumn array */
962 for(iCol=0; iCol<nCol; iCol++){
963 char *z;
964 int n;
965 z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n);
966 memcpy(zCsr, z, n);
967 zCsr[n] = '\0';
968 sqlite3Fts3Dequote(zCsr);
969 p->azColumn[iCol] = zCsr;
970 zCsr += n+1;
971 assert( zCsr <= &((char *)p)[nByte] );
972 }
973
974 if( (zCompress==0)!=(zUncompress==0) ){
975 char const *zMiss = (zCompress==0 ? "compress" : "uncompress");
976 rc = SQLITE_ERROR;
977 *pzErr = sqlite3_mprintf("missing %s parameter in fts4 constructor", zMiss);
978 }
979 p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc);
980 p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc);
981 if( rc!=SQLITE_OK ) goto fts3_init_out;
982
983 /* If this is an xCreate call, create the underlying tables in the
984 ** database. TODO: For xConnect(), it could verify that said tables exist.
985 */
986 if( isCreate ){
987 rc = fts3CreateTables(p);
988 }
989
990 /* Figure out the page-size for the database. This is required in order to
991 ** estimate the cost of loading large doclists from the database (see
992 ** function sqlite3Fts3SegReaderCost() for details).
993 */
994 fts3DatabasePageSize(&rc, p);
995
996 /* Declare the table schema to SQLite. */
997 fts3DeclareVtab(&rc, p);
998
999 fts3_init_out:
1000 sqlite3_free(zCompress);
1001 sqlite3_free(zUncompress);
1002 sqlite3_free((void *)aCol);
1003 if( rc!=SQLITE_OK ){
1004 if( p ){
1005 fts3DisconnectMethod((sqlite3_vtab *)p);
1006 }else if( pTokenizer ){
1007 pTokenizer->pModule->xDestroy(pTokenizer);
1008 }
1009 }else{
1010 *ppVTab = &p->base;
1011 }
1012 return rc;
1013 }
1014
1015 /*
1016 ** The xConnect() and xCreate() methods for the virtual table. All the
1017 ** work is done in function fts3InitVtab().
1018 */
1019 static int fts3ConnectMethod(
1020 sqlite3 *db, /* Database connection */
1021 void *pAux, /* Pointer to tokenizer hash table */
1022 int argc, /* Number of elements in argv array */
1023 const char * const *argv, /* xCreate/xConnect argument array */
1024 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1025 char **pzErr /* OUT: sqlite3_malloc'd error message */
1026 ){
1027 return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr);
1028 }
1029 static int fts3CreateMethod(
1030 sqlite3 *db, /* Database connection */
1031 void *pAux, /* Pointer to tokenizer hash table */
1032 int argc, /* Number of elements in argv array */
1033 const char * const *argv, /* xCreate/xConnect argument array */
1034 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */
1035 char **pzErr /* OUT: sqlite3_malloc'd error message */
1036 ){
1037 return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr);
1038 }
1039
1040 /*
1041 ** Implementation of the xBestIndex method for FTS3 tables. There
1042 ** are three possible strategies, in order of preference:
1043 **
1044 ** 1. Direct lookup by rowid or docid.
1045 ** 2. Full-text search using a MATCH operator on a non-docid column.
1046 ** 3. Linear scan of %_content table.
1047 */
1048 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){
1049 Fts3Table *p = (Fts3Table *)pVTab;
1050 int i; /* Iterator variable */
1051 int iCons = -1; /* Index of constraint to use */
1052
1053 /* By default use a full table scan. This is an expensive option,
1054 ** so search through the constraints to see if a more efficient
1055 ** strategy is possible.
1056 */
1057 pInfo->idxNum = FTS3_FULLSCAN_SEARCH;
1058 pInfo->estimatedCost = 500000;
1059 for(i=0; i<pInfo->nConstraint; i++){
1060 struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i];
1061 if( pCons->usable==0 ) continue;
1062
1063 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */
1064 if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ
1065 && (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1 )
1066 ){
1067 pInfo->idxNum = FTS3_DOCID_SEARCH;
1068 pInfo->estimatedCost = 1.0;
1069 iCons = i;
1070 }
1071
1072 /* A MATCH constraint. Use a full-text search.
1073 **
1074 ** If there is more than one MATCH constraint available, use the first
1075 ** one encountered. If there is both a MATCH constraint and a direct
1076 ** rowid/docid lookup, prefer the MATCH strategy. This is done even
1077 ** though the rowid/docid lookup is faster than a MATCH query, selecting
1078 ** it would lead to an "unable to use function MATCH in the requested
1079 ** context" error.
1080 */
1081 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH
1082 && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn
1083 ){
1084 pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn;
1085 pInfo->estimatedCost = 2.0;
1086 iCons = i;
1087 break;
1088 }
1089 }
1090
1091 if( iCons>=0 ){
1092 pInfo->aConstraintUsage[iCons].argvIndex = 1;
1093 pInfo->aConstraintUsage[iCons].omit = 1;
1094 }
1095 return SQLITE_OK;
1096 }
1097
1098 /*
1099 ** Implementation of xOpen method.
1100 */
1101 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){
1102 sqlite3_vtab_cursor *pCsr; /* Allocated cursor */
1103
1104 UNUSED_PARAMETER(pVTab);
1105
1106 /* Allocate a buffer large enough for an Fts3Cursor structure. If the
1107 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise,
1108 ** if the allocation fails, return SQLITE_NOMEM.
1109 */
1110 *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor));
1111 if( !pCsr ){
1112 return SQLITE_NOMEM;
1113 }
1114 memset(pCsr, 0, sizeof(Fts3Cursor));
1115 return SQLITE_OK;
1116 }
1117
1118 /*
1119 ** Close the cursor. For additional information see the documentation
1120 ** on the xClose method of the virtual table interface.
1121 */
1122 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){
1123 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
1124 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 );
1125 sqlite3_finalize(pCsr->pStmt);
1126 sqlite3Fts3ExprFree(pCsr->pExpr);
1127 sqlite3Fts3FreeDeferredTokens(pCsr);
1128 sqlite3_free(pCsr->aDoclist);
1129 sqlite3_free(pCsr->aMatchinfo);
1130 sqlite3_free(pCsr);
1131 return SQLITE_OK;
1132 }
1133
1134 /*
1135 ** Position the pCsr->pStmt statement so that it is on the row
1136 ** of the %_content table that contains the last match. Return
1137 ** SQLITE_OK on success.
1138 */
1139 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){
1140 if( pCsr->isRequireSeek ){
1141 pCsr->isRequireSeek = 0;
1142 sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId);
1143 if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){
1144 return SQLITE_OK;
1145 }else{
1146 int rc = sqlite3_reset(pCsr->pStmt);
1147 if( rc==SQLITE_OK ){
1148 /* If no row was found and no error has occured, then the %_content
1149 ** table is missing a row that is present in the full-text index.
1150 ** The data structures are corrupt.
1151 */
1152 rc = SQLITE_CORRUPT;
1153 }
1154 pCsr->isEof = 1;
1155 if( pContext ){
1156 sqlite3_result_error_code(pContext, rc);
1157 }
1158 return rc;
1159 }
1160 }else{
1161 return SQLITE_OK;
1162 }
1163 }
1164
1165 /*
1166 ** This function is used to process a single interior node when searching
1167 ** a b-tree for a term or term prefix. The node data is passed to this
1168 ** function via the zNode/nNode parameters. The term to search for is
1169 ** passed in zTerm/nTerm.
1170 **
1171 ** If piFirst is not NULL, then this function sets *piFirst to the blockid
1172 ** of the child node that heads the sub-tree that may contain the term.
1173 **
1174 ** If piLast is not NULL, then *piLast is set to the right-most child node
1175 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is
1176 ** a prefix.
1177 **
1178 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK.
1179 */
1180 static int fts3ScanInteriorNode(
1181 const char *zTerm, /* Term to select leaves for */
1182 int nTerm, /* Size of term zTerm in bytes */
1183 const char *zNode, /* Buffer containing segment interior node */
1184 int nNode, /* Size of buffer at zNode */
1185 sqlite3_int64 *piFirst, /* OUT: Selected child node */
1186 sqlite3_int64 *piLast /* OUT: Selected child node */
1187 ){
1188 int rc = SQLITE_OK; /* Return code */
1189 const char *zCsr = zNode; /* Cursor to iterate through node */
1190 const char *zEnd = &zCsr[nNode];/* End of interior node buffer */
1191 char *zBuffer = 0; /* Buffer to load terms into */
1192 int nAlloc = 0; /* Size of allocated buffer */
1193 int isFirstTerm = 1; /* True when processing first term on page */
1194 sqlite3_int64 iChild; /* Block id of child node to descend to */
1195
1196 /* Skip over the 'height' varint that occurs at the start of every
1197 ** interior node. Then load the blockid of the left-child of the b-tree
1198 ** node into variable iChild.
1199 **
1200 ** Even if the data structure on disk is corrupted, this (reading two
1201 ** varints from the buffer) does not risk an overread. If zNode is a
1202 ** root node, then the buffer comes from a SELECT statement. SQLite does
1203 ** not make this guarantee explicitly, but in practice there are always
1204 ** either more than 20 bytes of allocated space following the nNode bytes of
1205 ** contents, or two zero bytes. Or, if the node is read from the %_segments
1206 ** table, then there are always 20 bytes of zeroed padding following the
1207 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details).
1208 */
1209 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1210 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild);
1211 if( zCsr>zEnd ){
1212 return SQLITE_CORRUPT;
1213 }
1214
1215 while( zCsr<zEnd && (piFirst || piLast) ){
1216 int cmp; /* memcmp() result */
1217 int nSuffix; /* Size of term suffix */
1218 int nPrefix = 0; /* Size of term prefix */
1219 int nBuffer; /* Total term size */
1220
1221 /* Load the next term on the node into zBuffer. Use realloc() to expand
1222 ** the size of zBuffer if required. */
1223 if( !isFirstTerm ){
1224 zCsr += sqlite3Fts3GetVarint32(zCsr, &nPrefix);
1225 }
1226 isFirstTerm = 0;
1227 zCsr += sqlite3Fts3GetVarint32(zCsr, &nSuffix);
1228
1229 if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){
1230 rc = SQLITE_CORRUPT;
1231 goto finish_scan;
1232 }
1233 if( nPrefix+nSuffix>nAlloc ){
1234 char *zNew;
1235 nAlloc = (nPrefix+nSuffix) * 2;
1236 zNew = (char *)sqlite3_realloc(zBuffer, nAlloc);
1237 if( !zNew ){
1238 rc = SQLITE_NOMEM;
1239 goto finish_scan;
1240 }
1241 zBuffer = zNew;
1242 }
1243 memcpy(&zBuffer[nPrefix], zCsr, nSuffix);
1244 nBuffer = nPrefix + nSuffix;
1245 zCsr += nSuffix;
1246
1247 /* Compare the term we are searching for with the term just loaded from
1248 ** the interior node. If the specified term is greater than or equal
1249 ** to the term from the interior node, then all terms on the sub-tree
1250 ** headed by node iChild are smaller than zTerm. No need to search
1251 ** iChild.
1252 **
1253 ** If the interior node term is larger than the specified term, then
1254 ** the tree headed by iChild may contain the specified term.
1255 */
1256 cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer));
1257 if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){
1258 *piFirst = iChild;
1259 piFirst = 0;
1260 }
1261
1262 if( piLast && cmp<0 ){
1263 *piLast = iChild;
1264 piLast = 0;
1265 }
1266
1267 iChild++;
1268 };
1269
1270 if( piFirst ) *piFirst = iChild;
1271 if( piLast ) *piLast = iChild;
1272
1273 finish_scan:
1274 sqlite3_free(zBuffer);
1275 return rc;
1276 }
1277
1278
1279 /*
1280 ** The buffer pointed to by argument zNode (size nNode bytes) contains an
1281 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes)
1282 ** contains a term. This function searches the sub-tree headed by the zNode
1283 ** node for the range of leaf nodes that may contain the specified term
1284 ** or terms for which the specified term is a prefix.
1285 **
1286 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the
1287 ** left-most leaf node in the tree that may contain the specified term.
1288 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the
1289 ** right-most leaf node that may contain a term for which the specified
1290 ** term is a prefix.
1291 **
1292 ** It is possible that the range of returned leaf nodes does not contain
1293 ** the specified term or any terms for which it is a prefix. However, if the
1294 ** segment does contain any such terms, they are stored within the identified
1295 ** range. Because this function only inspects interior segment nodes (and
1296 ** never loads leaf nodes into memory), it is not possible to be sure.
1297 **
1298 ** If an error occurs, an error code other than SQLITE_OK is returned.
1299 */
1300 static int fts3SelectLeaf(
1301 Fts3Table *p, /* Virtual table handle */
1302 const char *zTerm, /* Term to select leaves for */
1303 int nTerm, /* Size of term zTerm in bytes */
1304 const char *zNode, /* Buffer containing segment interior node */
1305 int nNode, /* Size of buffer at zNode */
1306 sqlite3_int64 *piLeaf, /* Selected leaf node */
1307 sqlite3_int64 *piLeaf2 /* Selected leaf node */
1308 ){
1309 int rc; /* Return code */
1310 int iHeight; /* Height of this node in tree */
1311
1312 assert( piLeaf || piLeaf2 );
1313
1314 sqlite3Fts3GetVarint32(zNode, &iHeight);
1315 rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2);
1316 assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) );
1317
1318 if( rc==SQLITE_OK && iHeight>1 ){
1319 char *zBlob = 0; /* Blob read from %_segments table */
1320 int nBlob; /* Size of zBlob in bytes */
1321
1322 if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){
1323 rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob);
1324 if( rc==SQLITE_OK ){
1325 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0);
1326 }
1327 sqlite3_free(zBlob);
1328 piLeaf = 0;
1329 zBlob = 0;
1330 }
1331
1332 if( rc==SQLITE_OK ){
1333 rc = sqlite3Fts3ReadBlock(p, piLeaf ? *piLeaf : *piLeaf2, &zBlob, &nBlob);
1334 }
1335 if( rc==SQLITE_OK ){
1336 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2);
1337 }
1338 sqlite3_free(zBlob);
1339 }
1340
1341 return rc;
1342 }
1343
1344 /*
1345 ** This function is used to create delta-encoded serialized lists of FTS3
1346 ** varints. Each call to this function appends a single varint to a list.
1347 */
1348 static void fts3PutDeltaVarint(
1349 char **pp, /* IN/OUT: Output pointer */
1350 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */
1351 sqlite3_int64 iVal /* Write this value to the list */
1352 ){
1353 assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) );
1354 *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev);
1355 *piPrev = iVal;
1356 }
1357
1358 /*
1359 ** When this function is called, *ppPoslist is assumed to point to the
1360 ** start of a position-list. After it returns, *ppPoslist points to the
1361 ** first byte after the position-list.
1362 **
1363 ** A position list is list of positions (delta encoded) and columns for
1364 ** a single document record of a doclist. So, in other words, this
1365 ** routine advances *ppPoslist so that it points to the next docid in
1366 ** the doclist, or to the first byte past the end of the doclist.
1367 **
1368 ** If pp is not NULL, then the contents of the position list are copied
1369 ** to *pp. *pp is set to point to the first byte past the last byte copied
1370 ** before this function returns.
1371 */
1372 static void fts3PoslistCopy(char **pp, char **ppPoslist){
1373 char *pEnd = *ppPoslist;
1374 char c = 0;
1375
1376 /* The end of a position list is marked by a zero encoded as an FTS3
1377 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by
1378 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail
1379 ** of some other, multi-byte, value.
1380 **
1381 ** The following while-loop moves pEnd to point to the first byte that is not
1382 ** immediately preceded by a byte with the 0x80 bit set. Then increments
1383 ** pEnd once more so that it points to the byte immediately following the
1384 ** last byte in the position-list.
1385 */
1386 while( *pEnd | c ){
1387 c = *pEnd++ & 0x80;
1388 testcase( c!=0 && (*pEnd)==0 );
1389 }
1390 pEnd++; /* Advance past the POS_END terminator byte */
1391
1392 if( pp ){
1393 int n = (int)(pEnd - *ppPoslist);
1394 char *p = *pp;
1395 memcpy(p, *ppPoslist, n);
1396 p += n;
1397 *pp = p;
1398 }
1399 *ppPoslist = pEnd;
1400 }
1401
1402 /*
1403 ** When this function is called, *ppPoslist is assumed to point to the
1404 ** start of a column-list. After it returns, *ppPoslist points to the
1405 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list.
1406 **
1407 ** A column-list is list of delta-encoded positions for a single column
1408 ** within a single document within a doclist.
1409 **
1410 ** The column-list is terminated either by a POS_COLUMN varint (1) or
1411 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to
1412 ** the POS_COLUMN or POS_END that terminates the column-list.
1413 **
1414 ** If pp is not NULL, then the contents of the column-list are copied
1415 ** to *pp. *pp is set to point to the first byte past the last byte copied
1416 ** before this function returns. The POS_COLUMN or POS_END terminator
1417 ** is not copied into *pp.
1418 */
1419 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){
1420 char *pEnd = *ppPoslist;
1421 char c = 0;
1422
1423 /* A column-list is terminated by either a 0x01 or 0x00 byte that is
1424 ** not part of a multi-byte varint.
1425 */
1426 while( 0xFE & (*pEnd | c) ){
1427 c = *pEnd++ & 0x80;
1428 testcase( c!=0 && ((*pEnd)&0xfe)==0 );
1429 }
1430 if( pp ){
1431 int n = (int)(pEnd - *ppPoslist);
1432 char *p = *pp;
1433 memcpy(p, *ppPoslist, n);
1434 p += n;
1435 *pp = p;
1436 }
1437 *ppPoslist = pEnd;
1438 }
1439
1440 /*
1441 ** Value used to signify the end of an position-list. This is safe because
1442 ** it is not possible to have a document with 2^31 terms.
1443 */
1444 #define POSITION_LIST_END 0x7fffffff
1445
1446 /*
1447 ** This function is used to help parse position-lists. When this function is
1448 ** called, *pp may point to the start of the next varint in the position-list
1449 ** being parsed, or it may point to 1 byte past the end of the position-list
1450 ** (in which case **pp will be a terminator bytes POS_END (0) or
1451 ** (1)).
1452 **
1453 ** If *pp points past the end of the current position-list, set *pi to
1454 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp,
1455 ** increment the current value of *pi by the value read, and set *pp to
1456 ** point to the next value before returning.
1457 **
1458 ** Before calling this routine *pi must be initialized to the value of
1459 ** the previous position, or zero if we are reading the first position
1460 ** in the position-list. Because positions are delta-encoded, the value
1461 ** of the previous position is needed in order to compute the value of
1462 ** the next position.
1463 */
1464 static void fts3ReadNextPos(
1465 char **pp, /* IN/OUT: Pointer into position-list buffer */
1466 sqlite3_int64 *pi /* IN/OUT: Value read from position-list */
1467 ){
1468 if( (**pp)&0xFE ){
1469 fts3GetDeltaVarint(pp, pi);
1470 *pi -= 2;
1471 }else{
1472 *pi = POSITION_LIST_END;
1473 }
1474 }
1475
1476 /*
1477 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by
1478 ** the value of iCol encoded as a varint to *pp. This will start a new
1479 ** column list.
1480 **
1481 ** Set *pp to point to the byte just after the last byte written before
1482 ** returning (do not modify it if iCol==0). Return the total number of bytes
1483 ** written (0 if iCol==0).
1484 */
1485 static int fts3PutColNumber(char **pp, int iCol){
1486 int n = 0; /* Number of bytes written */
1487 if( iCol ){
1488 char *p = *pp; /* Output pointer */
1489 n = 1 + sqlite3Fts3PutVarint(&p[1], iCol);
1490 *p = 0x01;
1491 *pp = &p[n];
1492 }
1493 return n;
1494 }
1495
1496 /*
1497 ** Compute the union of two position lists. The output written
1498 ** into *pp contains all positions of both *pp1 and *pp2 in sorted
1499 ** order and with any duplicates removed. All pointers are
1500 ** updated appropriately. The caller is responsible for insuring
1501 ** that there is enough space in *pp to hold the complete output.
1502 */
1503 static void fts3PoslistMerge(
1504 char **pp, /* Output buffer */
1505 char **pp1, /* Left input list */
1506 char **pp2 /* Right input list */
1507 ){
1508 char *p = *pp;
1509 char *p1 = *pp1;
1510 char *p2 = *pp2;
1511
1512 while( *p1 || *p2 ){
1513 int iCol1; /* The current column index in pp1 */
1514 int iCol2; /* The current column index in pp2 */
1515
1516 if( *p1==POS_COLUMN ) sqlite3Fts3GetVarint32(&p1[1], &iCol1);
1517 else if( *p1==POS_END ) iCol1 = POSITION_LIST_END;
1518 else iCol1 = 0;
1519
1520 if( *p2==POS_COLUMN ) sqlite3Fts3GetVarint32(&p2[1], &iCol2);
1521 else if( *p2==POS_END ) iCol2 = POSITION_LIST_END;
1522 else iCol2 = 0;
1523
1524 if( iCol1==iCol2 ){
1525 sqlite3_int64 i1 = 0; /* Last position from pp1 */
1526 sqlite3_int64 i2 = 0; /* Last position from pp2 */
1527 sqlite3_int64 iPrev = 0;
1528 int n = fts3PutColNumber(&p, iCol1);
1529 p1 += n;
1530 p2 += n;
1531
1532 /* At this point, both p1 and p2 point to the start of column-lists
1533 ** for the same column (the column with index iCol1 and iCol2).
1534 ** A column-list is a list of non-negative delta-encoded varints, each
1535 ** incremented by 2 before being stored. Each list is terminated by a
1536 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists
1537 ** and writes the results to buffer p. p is left pointing to the byte
1538 ** after the list written. No terminator (POS_END or POS_COLUMN) is
1539 ** written to the output.
1540 */
1541 fts3GetDeltaVarint(&p1, &i1);
1542 fts3GetDeltaVarint(&p2, &i2);
1543 do {
1544 fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2);
1545 iPrev -= 2;
1546 if( i1==i2 ){
1547 fts3ReadNextPos(&p1, &i1);
1548 fts3ReadNextPos(&p2, &i2);
1549 }else if( i1<i2 ){
1550 fts3ReadNextPos(&p1, &i1);
1551 }else{
1552 fts3ReadNextPos(&p2, &i2);
1553 }
1554 }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END );
1555 }else if( iCol1<iCol2 ){
1556 p1 += fts3PutColNumber(&p, iCol1);
1557 fts3ColumnlistCopy(&p, &p1);
1558 }else{
1559 p2 += fts3PutColNumber(&p, iCol2);
1560 fts3ColumnlistCopy(&p, &p2);
1561 }
1562 }
1563
1564 *p++ = POS_END;
1565 *pp = p;
1566 *pp1 = p1 + 1;
1567 *pp2 = p2 + 1;
1568 }
1569
1570 /*
1571 ** nToken==1 searches for adjacent positions.
1572 **
1573 ** This function is used to merge two position lists into one. When it is
1574 ** called, *pp1 and *pp2 must both point to position lists. A position-list is
1575 ** the part of a doclist that follows each document id. For example, if a row
1576 ** contains:
1577 **
1578 ** 'a b c'|'x y z'|'a b b a'
1579 **
1580 ** Then the position list for this row for token 'b' would consist of:
1581 **
1582 ** 0x02 0x01 0x02 0x03 0x03 0x00
1583 **
1584 ** When this function returns, both *pp1 and *pp2 are left pointing to the
1585 ** byte following the 0x00 terminator of their respective position lists.
1586 **
1587 ** If isSaveLeft is 0, an entry is added to the output position list for
1588 ** each position in *pp2 for which there exists one or more positions in
1589 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e.
1590 ** when the *pp1 token appears before the *pp2 token, but not more than nToken
1591 ** slots before it.
1592 */
1593 static int fts3PoslistPhraseMerge(
1594 char **pp, /* IN/OUT: Preallocated output buffer */
1595 int nToken, /* Maximum difference in token positions */
1596 int isSaveLeft, /* Save the left position */
1597 int isExact, /* If *pp1 is exactly nTokens before *pp2 */
1598 char **pp1, /* IN/OUT: Left input list */
1599 char **pp2 /* IN/OUT: Right input list */
1600 ){
1601 char *p = (pp ? *pp : 0);
1602 char *p1 = *pp1;
1603 char *p2 = *pp2;
1604 int iCol1 = 0;
1605 int iCol2 = 0;
1606
1607 /* Never set both isSaveLeft and isExact for the same invocation. */
1608 assert( isSaveLeft==0 || isExact==0 );
1609
1610 assert( *p1!=0 && *p2!=0 );
1611 if( *p1==POS_COLUMN ){
1612 p1++;
1613 p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
1614 }
1615 if( *p2==POS_COLUMN ){
1616 p2++;
1617 p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
1618 }
1619
1620 while( 1 ){
1621 if( iCol1==iCol2 ){
1622 char *pSave = p;
1623 sqlite3_int64 iPrev = 0;
1624 sqlite3_int64 iPos1 = 0;
1625 sqlite3_int64 iPos2 = 0;
1626
1627 if( pp && iCol1 ){
1628 *p++ = POS_COLUMN;
1629 p += sqlite3Fts3PutVarint(p, iCol1);
1630 }
1631
1632 assert( *p1!=POS_END && *p1!=POS_COLUMN );
1633 assert( *p2!=POS_END && *p2!=POS_COLUMN );
1634 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
1635 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
1636
1637 while( 1 ){
1638 if( iPos2==iPos1+nToken
1639 || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken)
1640 ){
1641 sqlite3_int64 iSave;
1642 if( !pp ){
1643 fts3PoslistCopy(0, &p2);
1644 fts3PoslistCopy(0, &p1);
1645 *pp1 = p1;
1646 *pp2 = p2;
1647 return 1;
1648 }
1649 iSave = isSaveLeft ? iPos1 : iPos2;
1650 fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2;
1651 pSave = 0;
1652 }
1653 if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){
1654 if( (*p2&0xFE)==0 ) break;
1655 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2;
1656 }else{
1657 if( (*p1&0xFE)==0 ) break;
1658 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2;
1659 }
1660 }
1661
1662 if( pSave ){
1663 assert( pp && p );
1664 p = pSave;
1665 }
1666
1667 fts3ColumnlistCopy(0, &p1);
1668 fts3ColumnlistCopy(0, &p2);
1669 assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 );
1670 if( 0==*p1 || 0==*p2 ) break;
1671
1672 p1++;
1673 p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
1674 p2++;
1675 p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
1676 }
1677
1678 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of
1679 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the
1680 ** end of the position list, or the 0x01 that precedes the next
1681 ** column-number in the position list.
1682 */
1683 else if( iCol1<iCol2 ){
1684 fts3ColumnlistCopy(0, &p1);
1685 if( 0==*p1 ) break;
1686 p1++;
1687 p1 += sqlite3Fts3GetVarint32(p1, &iCol1);
1688 }else{
1689 fts3ColumnlistCopy(0, &p2);
1690 if( 0==*p2 ) break;
1691 p2++;
1692 p2 += sqlite3Fts3GetVarint32(p2, &iCol2);
1693 }
1694 }
1695
1696 fts3PoslistCopy(0, &p2);
1697 fts3PoslistCopy(0, &p1);
1698 *pp1 = p1;
1699 *pp2 = p2;
1700 if( !pp || *pp==p ){
1701 return 0;
1702 }
1703 *p++ = 0x00;
1704 *pp = p;
1705 return 1;
1706 }
1707
1708 /*
1709 ** Merge two position-lists as required by the NEAR operator.
1710 */
1711 static int fts3PoslistNearMerge(
1712 char **pp, /* Output buffer */
1713 char *aTmp, /* Temporary buffer space */
1714 int nRight, /* Maximum difference in token positions */
1715 int nLeft, /* Maximum difference in token positions */
1716 char **pp1, /* IN/OUT: Left input list */
1717 char **pp2 /* IN/OUT: Right input list */
1718 ){
1719 char *p1 = *pp1;
1720 char *p2 = *pp2;
1721
1722 if( !pp ){
1723 if( fts3PoslistPhraseMerge(0, nRight, 0, 0, pp1, pp2) ) return 1;
1724 *pp1 = p1;
1725 *pp2 = p2;
1726 return fts3PoslistPhraseMerge(0, nLeft, 0, 0, pp2, pp1);
1727 }else{
1728 char *pTmp1 = aTmp;
1729 char *pTmp2;
1730 char *aTmp2;
1731 int res = 1;
1732
1733 fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2);
1734 aTmp2 = pTmp2 = pTmp1;
1735 *pp1 = p1;
1736 *pp2 = p2;
1737 fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1);
1738 if( pTmp1!=aTmp && pTmp2!=aTmp2 ){
1739 fts3PoslistMerge(pp, &aTmp, &aTmp2);
1740 }else if( pTmp1!=aTmp ){
1741 fts3PoslistCopy(pp, &aTmp);
1742 }else if( pTmp2!=aTmp2 ){
1743 fts3PoslistCopy(pp, &aTmp2);
1744 }else{
1745 res = 0;
1746 }
1747
1748 return res;
1749 }
1750 }
1751
1752 /*
1753 ** Values that may be used as the first parameter to fts3DoclistMerge().
1754 */
1755 #define MERGE_NOT 2 /* D + D -> D */
1756 #define MERGE_AND 3 /* D + D -> D */
1757 #define MERGE_OR 4 /* D + D -> D */
1758 #define MERGE_POS_OR 5 /* P + P -> P */
1759 #define MERGE_PHRASE 6 /* P + P -> D */
1760 #define MERGE_POS_PHRASE 7 /* P + P -> P */
1761 #define MERGE_NEAR 8 /* P + P -> D */
1762 #define MERGE_POS_NEAR 9 /* P + P -> P */
1763
1764 /*
1765 ** Merge the two doclists passed in buffer a1 (size n1 bytes) and a2
1766 ** (size n2 bytes). The output is written to pre-allocated buffer aBuffer,
1767 ** which is guaranteed to be large enough to hold the results. The number
1768 ** of bytes written to aBuffer is stored in *pnBuffer before returning.
1769 **
1770 ** If successful, SQLITE_OK is returned. Otherwise, if a malloc error
1771 ** occurs while allocating a temporary buffer as part of the merge operation,
1772 ** SQLITE_NOMEM is returned.
1773 */
1774 static int fts3DoclistMerge(
1775 int mergetype, /* One of the MERGE_XXX constants */
1776 int nParam1, /* Used by MERGE_NEAR and MERGE_POS_NEAR */
1777 int nParam2, /* Used by MERGE_NEAR and MERGE_POS_NEAR */
1778 char *aBuffer, /* Pre-allocated output buffer */
1779 int *pnBuffer, /* OUT: Bytes written to aBuffer */
1780 char *a1, /* Buffer containing first doclist */
1781 int n1, /* Size of buffer a1 */
1782 char *a2, /* Buffer containing second doclist */
1783 int n2, /* Size of buffer a2 */
1784 int *pnDoc /* OUT: Number of docids in output */
1785 ){
1786 sqlite3_int64 i1 = 0;
1787 sqlite3_int64 i2 = 0;
1788 sqlite3_int64 iPrev = 0;
1789
1790 char *p = aBuffer;
1791 char *p1 = a1;
1792 char *p2 = a2;
1793 char *pEnd1 = &a1[n1];
1794 char *pEnd2 = &a2[n2];
1795 int nDoc = 0;
1796
1797 assert( mergetype==MERGE_OR || mergetype==MERGE_POS_OR
1798 || mergetype==MERGE_AND || mergetype==MERGE_NOT
1799 || mergetype==MERGE_PHRASE || mergetype==MERGE_POS_PHRASE
1800 || mergetype==MERGE_NEAR || mergetype==MERGE_POS_NEAR
1801 );
1802
1803 if( !aBuffer ){
1804 *pnBuffer = 0;
1805 return SQLITE_NOMEM;
1806 }
1807
1808 /* Read the first docid from each doclist */
1809 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1810 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1811
1812 switch( mergetype ){
1813 case MERGE_OR:
1814 case MERGE_POS_OR:
1815 while( p1 || p2 ){
1816 if( p2 && p1 && i1==i2 ){
1817 fts3PutDeltaVarint(&p, &iPrev, i1);
1818 if( mergetype==MERGE_POS_OR ) fts3PoslistMerge(&p, &p1, &p2);
1819 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1820 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1821 }else if( !p2 || (p1 && i1<i2) ){
1822 fts3PutDeltaVarint(&p, &iPrev, i1);
1823 if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p1);
1824 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1825 }else{
1826 fts3PutDeltaVarint(&p, &iPrev, i2);
1827 if( mergetype==MERGE_POS_OR ) fts3PoslistCopy(&p, &p2);
1828 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1829 }
1830 }
1831 break;
1832
1833 case MERGE_AND:
1834 while( p1 && p2 ){
1835 if( i1==i2 ){
1836 fts3PutDeltaVarint(&p, &iPrev, i1);
1837 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1838 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1839 nDoc++;
1840 }else if( i1<i2 ){
1841 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1842 }else{
1843 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1844 }
1845 }
1846 break;
1847
1848 case MERGE_NOT:
1849 while( p1 ){
1850 if( p2 && i1==i2 ){
1851 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1852 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1853 }else if( !p2 || i1<i2 ){
1854 fts3PutDeltaVarint(&p, &iPrev, i1);
1855 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1856 }else{
1857 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1858 }
1859 }
1860 break;
1861
1862 case MERGE_POS_PHRASE:
1863 case MERGE_PHRASE: {
1864 char **ppPos = (mergetype==MERGE_PHRASE ? 0 : &p);
1865 while( p1 && p2 ){
1866 if( i1==i2 ){
1867 char *pSave = p;
1868 sqlite3_int64 iPrevSave = iPrev;
1869 fts3PutDeltaVarint(&p, &iPrev, i1);
1870 if( 0==fts3PoslistPhraseMerge(ppPos, nParam1, 0, 1, &p1, &p2) ){
1871 p = pSave;
1872 iPrev = iPrevSave;
1873 }else{
1874 nDoc++;
1875 }
1876 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1877 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1878 }else if( i1<i2 ){
1879 fts3PoslistCopy(0, &p1);
1880 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1881 }else{
1882 fts3PoslistCopy(0, &p2);
1883 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1884 }
1885 }
1886 break;
1887 }
1888
1889 default: assert( mergetype==MERGE_POS_NEAR || mergetype==MERGE_NEAR ); {
1890 char *aTmp = 0;
1891 char **ppPos = 0;
1892
1893 if( mergetype==MERGE_POS_NEAR ){
1894 ppPos = &p;
1895 aTmp = sqlite3_malloc(2*(n1+n2+1));
1896 if( !aTmp ){
1897 return SQLITE_NOMEM;
1898 }
1899 }
1900
1901 while( p1 && p2 ){
1902 if( i1==i2 ){
1903 char *pSave = p;
1904 sqlite3_int64 iPrevSave = iPrev;
1905 fts3PutDeltaVarint(&p, &iPrev, i1);
1906
1907 if( !fts3PoslistNearMerge(ppPos, aTmp, nParam1, nParam2, &p1, &p2) ){
1908 iPrev = iPrevSave;
1909 p = pSave;
1910 }
1911
1912 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1913 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1914 }else if( i1<i2 ){
1915 fts3PoslistCopy(0, &p1);
1916 fts3GetDeltaVarint2(&p1, pEnd1, &i1);
1917 }else{
1918 fts3PoslistCopy(0, &p2);
1919 fts3GetDeltaVarint2(&p2, pEnd2, &i2);
1920 }
1921 }
1922 sqlite3_free(aTmp);
1923 break;
1924 }
1925 }
1926
1927 if( pnDoc ) *pnDoc = nDoc;
1928 *pnBuffer = (int)(p-aBuffer);
1929 return SQLITE_OK;
1930 }
1931
1932 /*
1933 ** A pointer to an instance of this structure is used as the context
1934 ** argument to sqlite3Fts3SegReaderIterate()
1935 */
1936 typedef struct TermSelect TermSelect;
1937 struct TermSelect {
1938 int isReqPos;
1939 char *aaOutput[16]; /* Malloc'd output buffer */
1940 int anOutput[16]; /* Size of output in bytes */
1941 };
1942
1943 /*
1944 ** Merge all doclists in the TermSelect.aaOutput[] array into a single
1945 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all
1946 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK.
1947 **
1948 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is
1949 ** the responsibility of the caller to free any doclists left in the
1950 ** TermSelect.aaOutput[] array.
1951 */
1952 static int fts3TermSelectMerge(TermSelect *pTS){
1953 int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
1954 char *aOut = 0;
1955 int nOut = 0;
1956 int i;
1957
1958 /* Loop through the doclists in the aaOutput[] array. Merge them all
1959 ** into a single doclist.
1960 */
1961 for(i=0; i<SizeofArray(pTS->aaOutput); i++){
1962 if( pTS->aaOutput[i] ){
1963 if( !aOut ){
1964 aOut = pTS->aaOutput[i];
1965 nOut = pTS->anOutput[i];
1966 pTS->aaOutput[i] = 0;
1967 }else{
1968 int nNew = nOut + pTS->anOutput[i];
1969 char *aNew = sqlite3_malloc(nNew);
1970 if( !aNew ){
1971 sqlite3_free(aOut);
1972 return SQLITE_NOMEM;
1973 }
1974 fts3DoclistMerge(mergetype, 0, 0,
1975 aNew, &nNew, pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, 0
1976 );
1977 sqlite3_free(pTS->aaOutput[i]);
1978 sqlite3_free(aOut);
1979 pTS->aaOutput[i] = 0;
1980 aOut = aNew;
1981 nOut = nNew;
1982 }
1983 }
1984 }
1985
1986 pTS->aaOutput[0] = aOut;
1987 pTS->anOutput[0] = nOut;
1988 return SQLITE_OK;
1989 }
1990
1991 /*
1992 ** This function is used as the sqlite3Fts3SegReaderIterate() callback when
1993 ** querying the full-text index for a doclist associated with a term or
1994 ** term-prefix.
1995 */
1996 static int fts3TermSelectCb(
1997 Fts3Table *p, /* Virtual table object */
1998 void *pContext, /* Pointer to TermSelect structure */
1999 char *zTerm,
2000 int nTerm,
2001 char *aDoclist,
2002 int nDoclist
2003 ){
2004 TermSelect *pTS = (TermSelect *)pContext;
2005
2006 UNUSED_PARAMETER(p);
2007 UNUSED_PARAMETER(zTerm);
2008 UNUSED_PARAMETER(nTerm);
2009
2010 if( pTS->aaOutput[0]==0 ){
2011 /* If this is the first term selected, copy the doclist to the output
2012 ** buffer using memcpy(). TODO: Add a way to transfer control of the
2013 ** aDoclist buffer from the caller so as to avoid the memcpy().
2014 */
2015 pTS->aaOutput[0] = sqlite3_malloc(nDoclist);
2016 pTS->anOutput[0] = nDoclist;
2017 if( pTS->aaOutput[0] ){
2018 memcpy(pTS->aaOutput[0], aDoclist, nDoclist);
2019 }else{
2020 return SQLITE_NOMEM;
2021 }
2022 }else{
2023 int mergetype = (pTS->isReqPos ? MERGE_POS_OR : MERGE_OR);
2024 char *aMerge = aDoclist;
2025 int nMerge = nDoclist;
2026 int iOut;
2027
2028 for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){
2029 char *aNew;
2030 int nNew;
2031 if( pTS->aaOutput[iOut]==0 ){
2032 assert( iOut>0 );
2033 pTS->aaOutput[iOut] = aMerge;
2034 pTS->anOutput[iOut] = nMerge;
2035 break;
2036 }
2037
2038 nNew = nMerge + pTS->anOutput[iOut];
2039 aNew = sqlite3_malloc(nNew);
2040 if( !aNew ){
2041 if( aMerge!=aDoclist ){
2042 sqlite3_free(aMerge);
2043 }
2044 return SQLITE_NOMEM;
2045 }
2046 fts3DoclistMerge(mergetype, 0, 0, aNew, &nNew,
2047 pTS->aaOutput[iOut], pTS->anOutput[iOut], aMerge, nMerge, 0
2048 );
2049
2050 if( iOut>0 ) sqlite3_free(aMerge);
2051 sqlite3_free(pTS->aaOutput[iOut]);
2052 pTS->aaOutput[iOut] = 0;
2053
2054 aMerge = aNew;
2055 nMerge = nNew;
2056 if( (iOut+1)==SizeofArray(pTS->aaOutput) ){
2057 pTS->aaOutput[iOut] = aMerge;
2058 pTS->anOutput[iOut] = nMerge;
2059 }
2060 }
2061 }
2062 return SQLITE_OK;
2063 }
2064
2065 static int fts3DeferredTermSelect(
2066 Fts3DeferredToken *pToken, /* Phrase token */
2067 int isTermPos, /* True to include positions */
2068 int *pnOut, /* OUT: Size of list */
2069 char **ppOut /* OUT: Body of list */
2070 ){
2071 char *aSource;
2072 int nSource;
2073
2074 aSource = sqlite3Fts3DeferredDoclist(pToken, &nSource);
2075 if( !aSource ){
2076 *pnOut = 0;
2077 *ppOut = 0;
2078 }else if( isTermPos ){
2079 *ppOut = sqlite3_malloc(nSource);
2080 if( !*ppOut ) return SQLITE_NOMEM;
2081 memcpy(*ppOut, aSource, nSource);
2082 *pnOut = nSource;
2083 }else{
2084 sqlite3_int64 docid;
2085 *pnOut = sqlite3Fts3GetVarint(aSource, &docid);
2086 *ppOut = sqlite3_malloc(*pnOut);
2087 if( !*ppOut ) return SQLITE_NOMEM;
2088 sqlite3Fts3PutVarint(*ppOut, docid);
2089 }
2090
2091 return SQLITE_OK;
2092 }
2093
2094 int sqlite3Fts3SegReaderCursor(
2095 Fts3Table *p, /* FTS3 table handle */
2096 int iLevel, /* Level of segments to scan */
2097 const char *zTerm, /* Term to query for */
2098 int nTerm, /* Size of zTerm in bytes */
2099 int isPrefix, /* True for a prefix search */
2100 int isScan, /* True to scan from zTerm to EOF */
2101 Fts3SegReaderCursor *pCsr /* Cursor object to populate */
2102 ){
2103 int rc = SQLITE_OK;
2104 int rc2;
2105 int iAge = 0;
2106 sqlite3_stmt *pStmt = 0;
2107 Fts3SegReader *pPending = 0;
2108
2109 assert( iLevel==FTS3_SEGCURSOR_ALL
2110 || iLevel==FTS3_SEGCURSOR_PENDING
2111 || iLevel>=0
2112 );
2113 assert( FTS3_SEGCURSOR_PENDING<0 );
2114 assert( FTS3_SEGCURSOR_ALL<0 );
2115 assert( iLevel==FTS3_SEGCURSOR_ALL || (zTerm==0 && isPrefix==1) );
2116 assert( isPrefix==0 || isScan==0 );
2117
2118
2119 memset(pCsr, 0, sizeof(Fts3SegReaderCursor));
2120
2121 /* If iLevel is less than 0, include a seg-reader for the pending-terms. */
2122 assert( isScan==0 || fts3HashCount(&p->pendingTerms)==0 );
2123 if( iLevel<0 && isScan==0 ){
2124 rc = sqlite3Fts3SegReaderPending(p, zTerm, nTerm, isPrefix, &pPending);
2125 if( rc==SQLITE_OK && pPending ){
2126 int nByte = (sizeof(Fts3SegReader *) * 16);
2127 pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
2128 if( pCsr->apSegment==0 ){
2129 rc = SQLITE_NOMEM;
2130 }else{
2131 pCsr->apSegment[0] = pPending;
2132 pCsr->nSegment = 1;
2133 pPending = 0;
2134 }
2135 }
2136 }
2137
2138 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
2139 if( rc==SQLITE_OK ){
2140 rc = sqlite3Fts3AllSegdirs(p, iLevel, &pStmt);
2141 }
2142 while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){
2143
2144 /* Read the values returned by the SELECT into local variables. */
2145 sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1);
2146 sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2);
2147 sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3);
2148 int nRoot = sqlite3_column_bytes(pStmt, 4);
2149 char const *zRoot = sqlite3_column_blob(pStmt, 4);
2150
2151 /* If nSegment is a multiple of 16 the array needs to be extended. */
2152 if( (pCsr->nSegment%16)==0 ){
2153 Fts3SegReader **apNew;
2154 int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*);
2155 apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte);
2156 if( !apNew ){
2157 rc = SQLITE_NOMEM;
2158 goto finished;
2159 }
2160 pCsr->apSegment = apNew;
2161 }
2162
2163 /* If zTerm is not NULL, and this segment is not stored entirely on its
2164 ** root node, the range of leaves scanned can be reduced. Do this. */
2165 if( iStartBlock && zTerm ){
2166 sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0);
2167 rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi);
2168 if( rc!=SQLITE_OK ) goto finished;
2169 if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock;
2170 }
2171
2172 rc = sqlite3Fts3SegReaderNew(iAge, iStartBlock, iLeavesEndBlock,
2173 iEndBlock, zRoot, nRoot, &pCsr->apSegment[pCsr->nSegment]
2174 );
2175 if( rc!=SQLITE_OK ) goto finished;
2176 pCsr->nSegment++;
2177 iAge++;
2178 }
2179 }
2180
2181 finished:
2182 rc2 = sqlite3_reset(pStmt);
2183 if( rc==SQLITE_DONE ) rc = rc2;
2184 sqlite3Fts3SegReaderFree(pPending);
2185
2186 return rc;
2187 }
2188
2189
2190 static int fts3TermSegReaderCursor(
2191 Fts3Cursor *pCsr, /* Virtual table cursor handle */
2192 const char *zTerm, /* Term to query for */
2193 int nTerm, /* Size of zTerm in bytes */
2194 int isPrefix, /* True for a prefix search */
2195 Fts3SegReaderCursor **ppSegcsr /* OUT: Allocated seg-reader cursor */
2196 ){
2197 Fts3SegReaderCursor *pSegcsr; /* Object to allocate and return */
2198 int rc = SQLITE_NOMEM; /* Return code */
2199
2200 pSegcsr = sqlite3_malloc(sizeof(Fts3SegReaderCursor));
2201 if( pSegcsr ){
2202 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
2203 int i;
2204 int nCost = 0;
2205 rc = sqlite3Fts3SegReaderCursor(
2206 p, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr);
2207
2208 for(i=0; rc==SQLITE_OK && i<pSegcsr->nSegment; i++){
2209 rc = sqlite3Fts3SegReaderCost(pCsr, pSegcsr->apSegment[i], &nCost);
2210 }
2211 pSegcsr->nCost = nCost;
2212 }
2213
2214 *ppSegcsr = pSegcsr;
2215 return rc;
2216 }
2217
2218 static void fts3SegReaderCursorFree(Fts3SegReaderCursor *pSegcsr){
2219 sqlite3Fts3SegReaderFinish(pSegcsr);
2220 sqlite3_free(pSegcsr);
2221 }
2222
2223 /*
2224 ** This function retreives the doclist for the specified term (or term
2225 ** prefix) from the database.
2226 **
2227 ** The returned doclist may be in one of two formats, depending on the
2228 ** value of parameter isReqPos. If isReqPos is zero, then the doclist is
2229 ** a sorted list of delta-compressed docids (a bare doclist). If isReqPos
2230 ** is non-zero, then the returned list is in the same format as is stored
2231 ** in the database without the found length specifier at the start of on-disk
2232 ** doclists.
2233 */
2234 static int fts3TermSelect(
2235 Fts3Table *p, /* Virtual table handle */
2236 Fts3PhraseToken *pTok, /* Token to query for */
2237 int iColumn, /* Column to query (or -ve for all columns) */
2238 int isReqPos, /* True to include position lists in output */
2239 int *pnOut, /* OUT: Size of buffer at *ppOut */
2240 char **ppOut /* OUT: Malloced result buffer */
2241 ){
2242 int rc; /* Return code */
2243 Fts3SegReaderCursor *pSegcsr; /* Seg-reader cursor for this term */
2244 TermSelect tsc; /* Context object for fts3TermSelectCb() */
2245 Fts3SegFilter filter; /* Segment term filter configuration */
2246
2247 pSegcsr = pTok->pSegcsr;
2248 memset(&tsc, 0, sizeof(TermSelect));
2249 tsc.isReqPos = isReqPos;
2250
2251 filter.flags = FTS3_SEGMENT_IGNORE_EMPTY
2252 | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0)
2253 | (isReqPos ? FTS3_SEGMENT_REQUIRE_POS : 0)
2254 | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0);
2255 filter.iCol = iColumn;
2256 filter.zTerm = pTok->z;
2257 filter.nTerm = pTok->n;
2258
2259 rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter);
2260 while( SQLITE_OK==rc
2261 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr))
2262 ){
2263 rc = fts3TermSelectCb(p, (void *)&tsc,
2264 pSegcsr->zTerm, pSegcsr->nTerm, pSegcsr->aDoclist, pSegcsr->nDoclist
2265 );
2266 }
2267
2268 if( rc==SQLITE_OK ){
2269 rc = fts3TermSelectMerge(&tsc);
2270 }
2271 if( rc==SQLITE_OK ){
2272 *ppOut = tsc.aaOutput[0];
2273 *pnOut = tsc.anOutput[0];
2274 }else{
2275 int i;
2276 for(i=0; i<SizeofArray(tsc.aaOutput); i++){
2277 sqlite3_free(tsc.aaOutput[i]);
2278 }
2279 }
2280
2281 fts3SegReaderCursorFree(pSegcsr);
2282 pTok->pSegcsr = 0;
2283 return rc;
2284 }
2285
2286 /*
2287 ** This function counts the total number of docids in the doclist stored
2288 ** in buffer aList[], size nList bytes.
2289 **
2290 ** If the isPoslist argument is true, then it is assumed that the doclist
2291 ** contains a position-list following each docid. Otherwise, it is assumed
2292 ** that the doclist is simply a list of docids stored as delta encoded
2293 ** varints.
2294 */
2295 static int fts3DoclistCountDocids(int isPoslist, char *aList, int nList){
2296 int nDoc = 0; /* Return value */
2297 if( aList ){
2298 char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */
2299 char *p = aList; /* Cursor */
2300 if( !isPoslist ){
2301 /* The number of docids in the list is the same as the number of
2302 ** varints. In FTS3 a varint consists of a single byte with the 0x80
2303 ** bit cleared and zero or more bytes with the 0x80 bit set. So to
2304 ** count the varints in the buffer, just count the number of bytes
2305 ** with the 0x80 bit clear. */
2306 while( p<aEnd ) nDoc += (((*p++)&0x80)==0);
2307 }else{
2308 while( p<aEnd ){
2309 nDoc++;
2310 while( (*p++)&0x80 ); /* Skip docid varint */
2311 fts3PoslistCopy(0, &p); /* Skip over position list */
2312 }
2313 }
2314 }
2315
2316 return nDoc;
2317 }
2318
2319 /*
2320 ** Call sqlite3Fts3DeferToken() for each token in the expression pExpr.
2321 */
2322 static int fts3DeferExpression(Fts3Cursor *pCsr, Fts3Expr *pExpr){
2323 int rc = SQLITE_OK;
2324 if( pExpr ){
2325 rc = fts3DeferExpression(pCsr, pExpr->pLeft);
2326 if( rc==SQLITE_OK ){
2327 rc = fts3DeferExpression(pCsr, pExpr->pRight);
2328 }
2329 if( pExpr->eType==FTSQUERY_PHRASE ){
2330 int iCol = pExpr->pPhrase->iColumn;
2331 int i;
2332 for(i=0; rc==SQLITE_OK && i<pExpr->pPhrase->nToken; i++){
2333 Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i];
2334 if( pToken->pDeferred==0 ){
2335 rc = sqlite3Fts3DeferToken(pCsr, pToken, iCol);
2336 }
2337 }
2338 }
2339 }
2340 return rc;
2341 }
2342
2343 /*
2344 ** This function removes the position information from a doclist. When
2345 ** called, buffer aList (size *pnList bytes) contains a doclist that includes
2346 ** position information. This function removes the position information so
2347 ** that aList contains only docids, and adjusts *pnList to reflect the new
2348 ** (possibly reduced) size of the doclist.
2349 */
2350 static void fts3DoclistStripPositions(
2351 char *aList, /* IN/OUT: Buffer containing doclist */
2352 int *pnList /* IN/OUT: Size of doclist in bytes */
2353 ){
2354 if( aList ){
2355 char *aEnd = &aList[*pnList]; /* Pointer to one byte after EOF */
2356 char *p = aList; /* Input cursor */
2357 char *pOut = aList; /* Output cursor */
2358
2359 while( p<aEnd ){
2360 sqlite3_int64 delta;
2361 p += sqlite3Fts3GetVarint(p, &delta);
2362 fts3PoslistCopy(0, &p);
2363 pOut += sqlite3Fts3PutVarint(pOut, delta);
2364 }
2365
2366 *pnList = (int)(pOut - aList);
2367 }
2368 }
2369
2370 /*
2371 ** Return a DocList corresponding to the phrase *pPhrase.
2372 **
2373 ** If this function returns SQLITE_OK, but *pnOut is set to a negative value,
2374 ** then no tokens in the phrase were looked up in the full-text index. This
2375 ** is only possible when this function is called from within xFilter(). The
2376 ** caller should assume that all documents match the phrase. The actual
2377 ** filtering will take place in xNext().
2378 */
2379 static int fts3PhraseSelect(
2380 Fts3Cursor *pCsr, /* Virtual table cursor handle */
2381 Fts3Phrase *pPhrase, /* Phrase to return a doclist for */
2382 int isReqPos, /* True if output should contain positions */
2383 char **paOut, /* OUT: Pointer to malloc'd result buffer */
2384 int *pnOut /* OUT: Size of buffer at *paOut */
2385 ){
2386 char *pOut = 0;
2387 int nOut = 0;
2388 int rc = SQLITE_OK;
2389 int ii;
2390 int iCol = pPhrase->iColumn;
2391 int isTermPos = (pPhrase->nToken>1 || isReqPos);
2392 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
2393 int isFirst = 1;
2394
2395 int iPrevTok = 0;
2396 int nDoc = 0;
2397
2398 /* If this is an xFilter() evaluation, create a segment-reader for each
2399 ** phrase token. Or, if this is an xNext() or snippet/offsets/matchinfo
2400 ** evaluation, only create segment-readers if there are no Fts3DeferredToken
2401 ** objects attached to the phrase-tokens.
2402 */
2403 for(ii=0; ii<pPhrase->nToken; ii++){
2404 Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
2405 if( pTok->pSegcsr==0 ){
2406 if( (pCsr->eEvalmode==FTS3_EVAL_FILTER)
2407 || (pCsr->eEvalmode==FTS3_EVAL_NEXT && pCsr->pDeferred==0)
2408 || (pCsr->eEvalmode==FTS3_EVAL_MATCHINFO && pTok->bFulltext)
2409 ){
2410 rc = fts3TermSegReaderCursor(
2411 pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
2412 );
2413 if( rc!=SQLITE_OK ) return rc;
2414 }
2415 }
2416 }
2417
2418 for(ii=0; ii<pPhrase->nToken; ii++){
2419 Fts3PhraseToken *pTok; /* Token to find doclist for */
2420 int iTok = 0; /* The token being queried this iteration */
2421 char *pList = 0; /* Pointer to token doclist */
2422 int nList = 0; /* Size of buffer at pList */
2423
2424 /* Select a token to process. If this is an xFilter() call, then tokens
2425 ** are processed in order from least to most costly. Otherwise, tokens
2426 ** are processed in the order in which they occur in the phrase.
2427 */
2428 if( pCsr->eEvalmode==FTS3_EVAL_MATCHINFO ){
2429 assert( isReqPos );
2430 iTok = ii;
2431 pTok = &pPhrase->aToken[iTok];
2432 if( pTok->bFulltext==0 ) continue;
2433 }else if( pCsr->eEvalmode==FTS3_EVAL_NEXT || isReqPos ){
2434 iTok = ii;
2435 pTok = &pPhrase->aToken[iTok];
2436 }else{
2437 int nMinCost = 0x7FFFFFFF;
2438 int jj;
2439
2440 /* Find the remaining token with the lowest cost. */
2441 for(jj=0; jj<pPhrase->nToken; jj++){
2442 Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[jj].pSegcsr;
2443 if( pSegcsr && pSegcsr->nCost<nMinCost ){
2444 iTok = jj;
2445 nMinCost = pSegcsr->nCost;
2446 }
2447 }
2448 pTok = &pPhrase->aToken[iTok];
2449
2450 /* This branch is taken if it is determined that loading the doclist
2451 ** for the next token would require more IO than loading all documents
2452 ** currently identified by doclist pOut/nOut. No further doclists will
2453 ** be loaded from the full-text index for this phrase.
2454 */
2455 if( nMinCost>nDoc && ii>0 ){
2456 rc = fts3DeferExpression(pCsr, pCsr->pExpr);
2457 break;
2458 }
2459 }
2460
2461 if( pCsr->eEvalmode==FTS3_EVAL_NEXT && pTok->pDeferred ){
2462 rc = fts3DeferredTermSelect(pTok->pDeferred, isTermPos, &nList, &pList);
2463 }else{
2464 if( pTok->pSegcsr ){
2465 rc = fts3TermSelect(p, pTok, iCol, isTermPos, &nList, &pList);
2466 }
2467 pTok->bFulltext = 1;
2468 }
2469 assert( rc!=SQLITE_OK || pCsr->eEvalmode || pTok->pSegcsr==0 );
2470 if( rc!=SQLITE_OK ) break;
2471
2472 if( isFirst ){
2473 pOut = pList;
2474 nOut = nList;
2475 if( pCsr->eEvalmode==FTS3_EVAL_FILTER && pPhrase->nToken>1 ){
2476 nDoc = fts3DoclistCountDocids(1, pOut, nOut);
2477 }
2478 isFirst = 0;
2479 iPrevTok = iTok;
2480 }else{
2481 /* Merge the new term list and the current output. */
2482 char *aLeft, *aRight;
2483 int nLeft, nRight;
2484 int nDist;
2485 int mt;
2486
2487 /* If this is the final token of the phrase, and positions were not
2488 ** requested by the caller, use MERGE_PHRASE instead of POS_PHRASE.
2489 ** This drops the position information from the output list.
2490 */
2491 mt = MERGE_POS_PHRASE;
2492 if( ii==pPhrase->nToken-1 && !isReqPos ) mt = MERGE_PHRASE;
2493
2494 assert( iPrevTok!=iTok );
2495 if( iPrevTok<iTok ){
2496 aLeft = pOut;
2497 nLeft = nOut;
2498 aRight = pList;
2499 nRight = nList;
2500 nDist = iTok-iPrevTok;
2501 iPrevTok = iTok;
2502 }else{
2503 aRight = pOut;
2504 nRight = nOut;
2505 aLeft = pList;
2506 nLeft = nList;
2507 nDist = iPrevTok-iTok;
2508 }
2509 pOut = aRight;
2510 fts3DoclistMerge(
2511 mt, nDist, 0, pOut, &nOut, aLeft, nLeft, aRight, nRight, &nDoc
2512 );
2513 sqlite3_free(aLeft);
2514 }
2515 assert( nOut==0 || pOut!=0 );
2516 }
2517
2518 if( rc==SQLITE_OK ){
2519 if( ii!=pPhrase->nToken ){
2520 assert( pCsr->eEvalmode==FTS3_EVAL_FILTER && isReqPos==0 );
2521 fts3DoclistStripPositions(pOut, &nOut);
2522 }
2523 *paOut = pOut;
2524 *pnOut = nOut;
2525 }else{
2526 sqlite3_free(pOut);
2527 }
2528 return rc;
2529 }
2530
2531 /*
2532 ** This function merges two doclists according to the requirements of a
2533 ** NEAR operator.
2534 **
2535 ** Both input doclists must include position information. The output doclist
2536 ** includes position information if the first argument to this function
2537 ** is MERGE_POS_NEAR, or does not if it is MERGE_NEAR.
2538 */
2539 static int fts3NearMerge(
2540 int mergetype, /* MERGE_POS_NEAR or MERGE_NEAR */
2541 int nNear, /* Parameter to NEAR operator */
2542 int nTokenLeft, /* Number of tokens in LHS phrase arg */
2543 char *aLeft, /* Doclist for LHS (incl. positions) */
2544 int nLeft, /* Size of LHS doclist in bytes */
2545 int nTokenRight, /* As nTokenLeft */
2546 char *aRight, /* As aLeft */
2547 int nRight, /* As nRight */
2548 char **paOut, /* OUT: Results of merge (malloced) */
2549 int *pnOut /* OUT: Sized of output buffer */
2550 ){
2551 char *aOut; /* Buffer to write output doclist to */
2552 int rc; /* Return code */
2553
2554 assert( mergetype==MERGE_POS_NEAR || MERGE_NEAR );
2555
2556 aOut = sqlite3_malloc(nLeft+nRight+1);
2557 if( aOut==0 ){
2558 rc = SQLITE_NOMEM;
2559 }else{
2560 rc = fts3DoclistMerge(mergetype, nNear+nTokenRight, nNear+nTokenLeft,
2561 aOut, pnOut, aLeft, nLeft, aRight, nRight, 0
2562 );
2563 if( rc!=SQLITE_OK ){
2564 sqlite3_free(aOut);
2565 aOut = 0;
2566 }
2567 }
2568
2569 *paOut = aOut;
2570 return rc;
2571 }
2572
2573 /*
2574 ** This function is used as part of the processing for the snippet() and
2575 ** offsets() functions.
2576 **
2577 ** Both pLeft and pRight are expression nodes of type FTSQUERY_PHRASE. Both
2578 ** have their respective doclists (including position information) loaded
2579 ** in Fts3Expr.aDoclist/nDoclist. This function removes all entries from
2580 ** each doclist that are not within nNear tokens of a corresponding entry
2581 ** in the other doclist.
2582 */
2583 int sqlite3Fts3ExprNearTrim(Fts3Expr *pLeft, Fts3Expr *pRight, int nNear){
2584 int rc; /* Return code */
2585
2586 assert( pLeft->eType==FTSQUERY_PHRASE );
2587 assert( pRight->eType==FTSQUERY_PHRASE );
2588 assert( pLeft->isLoaded && pRight->isLoaded );
2589
2590 if( pLeft->aDoclist==0 || pRight->aDoclist==0 ){
2591 sqlite3_free(pLeft->aDoclist);
2592 sqlite3_free(pRight->aDoclist);
2593 pRight->aDoclist = 0;
2594 pLeft->aDoclist = 0;
2595 rc = SQLITE_OK;
2596 }else{
2597 char *aOut; /* Buffer in which to assemble new doclist */
2598 int nOut; /* Size of buffer aOut in bytes */
2599
2600 rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
2601 pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
2602 pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
2603 &aOut, &nOut
2604 );
2605 if( rc!=SQLITE_OK ) return rc;
2606 sqlite3_free(pRight->aDoclist);
2607 pRight->aDoclist = aOut;
2608 pRight->nDoclist = nOut;
2609
2610 rc = fts3NearMerge(MERGE_POS_NEAR, nNear,
2611 pRight->pPhrase->nToken, pRight->aDoclist, pRight->nDoclist,
2612 pLeft->pPhrase->nToken, pLeft->aDoclist, pLeft->nDoclist,
2613 &aOut, &nOut
2614 );
2615 sqlite3_free(pLeft->aDoclist);
2616 pLeft->aDoclist = aOut;
2617 pLeft->nDoclist = nOut;
2618 }
2619 return rc;
2620 }
2621
2622
2623 /*
2624 ** Allocate an Fts3SegReaderArray for each token in the expression pExpr.
2625 ** The allocated objects are stored in the Fts3PhraseToken.pArray member
2626 ** variables of each token structure.
2627 */
2628 static int fts3ExprAllocateSegReaders(
2629 Fts3Cursor *pCsr, /* FTS3 table */
2630 Fts3Expr *pExpr, /* Expression to create seg-readers for */
2631 int *pnExpr /* OUT: Number of AND'd expressions */
2632 ){
2633 int rc = SQLITE_OK; /* Return code */
2634
2635 assert( pCsr->eEvalmode==FTS3_EVAL_FILTER );
2636 if( pnExpr && pExpr->eType!=FTSQUERY_AND ){
2637 (*pnExpr)++;
2638 pnExpr = 0;
2639 }
2640
2641 if( pExpr->eType==FTSQUERY_PHRASE ){
2642 Fts3Phrase *pPhrase = pExpr->pPhrase;
2643 int ii;
2644
2645 for(ii=0; rc==SQLITE_OK && ii<pPhrase->nToken; ii++){
2646 Fts3PhraseToken *pTok = &pPhrase->aToken[ii];
2647 if( pTok->pSegcsr==0 ){
2648 rc = fts3TermSegReaderCursor(
2649 pCsr, pTok->z, pTok->n, pTok->isPrefix, &pTok->pSegcsr
2650 );
2651 }
2652 }
2653 }else{
2654 rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pLeft, pnExpr);
2655 if( rc==SQLITE_OK ){
2656 rc = fts3ExprAllocateSegReaders(pCsr, pExpr->pRight, pnExpr);
2657 }
2658 }
2659 return rc;
2660 }
2661
2662 /*
2663 ** Free the Fts3SegReaderArray objects associated with each token in the
2664 ** expression pExpr. In other words, this function frees the resources
2665 ** allocated by fts3ExprAllocateSegReaders().
2666 */
2667 static void fts3ExprFreeSegReaders(Fts3Expr *pExpr){
2668 if( pExpr ){
2669 Fts3Phrase *pPhrase = pExpr->pPhrase;
2670 if( pPhrase ){
2671 int kk;
2672 for(kk=0; kk<pPhrase->nToken; kk++){
2673 fts3SegReaderCursorFree(pPhrase->aToken[kk].pSegcsr);
2674 pPhrase->aToken[kk].pSegcsr = 0;
2675 }
2676 }
2677 fts3ExprFreeSegReaders(pExpr->pLeft);
2678 fts3ExprFreeSegReaders(pExpr->pRight);
2679 }
2680 }
2681
2682 /*
2683 ** Return the sum of the costs of all tokens in the expression pExpr. This
2684 ** function must be called after Fts3SegReaderArrays have been allocated
2685 ** for all tokens using fts3ExprAllocateSegReaders().
2686 */
2687 static int fts3ExprCost(Fts3Expr *pExpr){
2688 int nCost; /* Return value */
2689 if( pExpr->eType==FTSQUERY_PHRASE ){
2690 Fts3Phrase *pPhrase = pExpr->pPhrase;
2691 int ii;
2692 nCost = 0;
2693 for(ii=0; ii<pPhrase->nToken; ii++){
2694 Fts3SegReaderCursor *pSegcsr = pPhrase->aToken[ii].pSegcsr;
2695 if( pSegcsr ) nCost += pSegcsr->nCost;
2696 }
2697 }else{
2698 nCost = fts3ExprCost(pExpr->pLeft) + fts3ExprCost(pExpr->pRight);
2699 }
2700 return nCost;
2701 }
2702
2703 /*
2704 ** The following is a helper function (and type) for fts3EvalExpr(). It
2705 ** must be called after Fts3SegReaders have been allocated for every token
2706 ** in the expression. See the context it is called from in fts3EvalExpr()
2707 ** for further explanation.
2708 */
2709 typedef struct ExprAndCost ExprAndCost;
2710 struct ExprAndCost {
2711 Fts3Expr *pExpr;
2712 int nCost;
2713 };
2714 static void fts3ExprAssignCosts(
2715 Fts3Expr *pExpr, /* Expression to create seg-readers for */
2716 ExprAndCost **ppExprCost /* OUT: Write to *ppExprCost */
2717 ){
2718 if( pExpr->eType==FTSQUERY_AND ){
2719 fts3ExprAssignCosts(pExpr->pLeft, ppExprCost);
2720 fts3ExprAssignCosts(pExpr->pRight, ppExprCost);
2721 }else{
2722 (*ppExprCost)->pExpr = pExpr;
2723 (*ppExprCost)->nCost = fts3ExprCost(pExpr);
2724 (*ppExprCost)++;
2725 }
2726 }
2727
2728 /*
2729 ** Evaluate the full-text expression pExpr against FTS3 table pTab. Store
2730 ** the resulting doclist in *paOut and *pnOut. This routine mallocs for
2731 ** the space needed to store the output. The caller is responsible for
2732 ** freeing the space when it has finished.
2733 **
2734 ** This function is called in two distinct contexts:
2735 **
2736 ** * From within the virtual table xFilter() method. In this case, the
2737 ** output doclist contains entries for all rows in the table, based on
2738 ** data read from the full-text index.
2739 **
2740 ** In this case, if the query expression contains one or more tokens that
2741 ** are very common, then the returned doclist may contain a superset of
2742 ** the documents that actually match the expression.
2743 **
2744 ** * From within the virtual table xNext() method. This call is only made
2745 ** if the call from within xFilter() found that there were very common
2746 ** tokens in the query expression and did return a superset of the
2747 ** matching documents. In this case the returned doclist contains only
2748 ** entries that correspond to the current row of the table. Instead of
2749 ** reading the data for each token from the full-text index, the data is
2750 ** already available in-memory in the Fts3PhraseToken.pDeferred structures.
2751 ** See fts3EvalDeferred() for how it gets there.
2752 **
2753 ** In the first case above, Fts3Cursor.doDeferred==0. In the second (if it is
2754 ** required) Fts3Cursor.doDeferred==1.
2755 **
2756 ** If the SQLite invokes the snippet(), offsets() or matchinfo() function
2757 ** as part of a SELECT on an FTS3 table, this function is called on each
2758 ** individual phrase expression in the query. If there were very common tokens
2759 ** found in the xFilter() call, then this function is called once for phrase
2760 ** for each row visited, and the returned doclist contains entries for the
2761 ** current row only. Otherwise, if there were no very common tokens, then this
2762 ** function is called once only for each phrase in the query and the returned
2763 ** doclist contains entries for all rows of the table.
2764 **
2765 ** Fts3Cursor.doDeferred==1 when this function is called on phrases as a
2766 ** result of a snippet(), offsets() or matchinfo() invocation.
2767 */
2768 static int fts3EvalExpr(
2769 Fts3Cursor *p, /* Virtual table cursor handle */
2770 Fts3Expr *pExpr, /* Parsed fts3 expression */
2771 char **paOut, /* OUT: Pointer to malloc'd result buffer */
2772 int *pnOut, /* OUT: Size of buffer at *paOut */
2773 int isReqPos /* Require positions in output buffer */
2774 ){
2775 int rc = SQLITE_OK; /* Return code */
2776
2777 /* Zero the output parameters. */
2778 *paOut = 0;
2779 *pnOut = 0;
2780
2781 if( pExpr ){
2782 assert( pExpr->eType==FTSQUERY_NEAR || pExpr->eType==FTSQUERY_OR
2783 || pExpr->eType==FTSQUERY_AND || pExpr->eType==FTSQUERY_NOT
2784 || pExpr->eType==FTSQUERY_PHRASE
2785 );
2786 assert( pExpr->eType==FTSQUERY_PHRASE || isReqPos==0 );
2787
2788 if( pExpr->eType==FTSQUERY_PHRASE ){
2789 rc = fts3PhraseSelect(p, pExpr->pPhrase,
2790 isReqPos || (pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR),
2791 paOut, pnOut
2792 );
2793 fts3ExprFreeSegReaders(pExpr);
2794 }else if( p->eEvalmode==FTS3_EVAL_FILTER && pExpr->eType==FTSQUERY_AND ){
2795 ExprAndCost *aExpr = 0; /* Array of AND'd expressions and costs */
2796 int nExpr = 0; /* Size of aExpr[] */
2797 char *aRet = 0; /* Doclist to return to caller */
2798 int nRet = 0; /* Length of aRet[] in bytes */
2799 int nDoc = 0x7FFFFFFF;
2800
2801 assert( !isReqPos );
2802
2803 rc = fts3ExprAllocateSegReaders(p, pExpr, &nExpr);
2804 if( rc==SQLITE_OK ){
2805 assert( nExpr>1 );
2806 aExpr = sqlite3_malloc(sizeof(ExprAndCost) * nExpr);
2807 if( !aExpr ) rc = SQLITE_NOMEM;
2808 }
2809 if( rc==SQLITE_OK ){
2810 int ii; /* Used to iterate through expressions */
2811
2812 fts3ExprAssignCosts(pExpr, &aExpr);
2813 aExpr -= nExpr;
2814 for(ii=0; ii<nExpr; ii++){
2815 char *aNew;
2816 int nNew;
2817 int jj;
2818 ExprAndCost *pBest = 0;
2819
2820 for(jj=0; jj<nExpr; jj++){
2821 ExprAndCost *pCand = &aExpr[jj];
2822 if( pCand->pExpr && (pBest==0 || pCand->nCost<pBest->nCost) ){
2823 pBest = pCand;
2824 }
2825 }
2826
2827 if( pBest->nCost>nDoc ){
2828 rc = fts3DeferExpression(p, p->pExpr);
2829 break;
2830 }else{
2831 rc = fts3EvalExpr(p, pBest->pExpr, &aNew, &nNew, 0);
2832 if( rc!=SQLITE_OK ) break;
2833 pBest->pExpr = 0;
2834 if( ii==0 ){
2835 aRet = aNew;
2836 nRet = nNew;
2837 nDoc = fts3DoclistCountDocids(0, aRet, nRet);
2838 }else{
2839 fts3DoclistMerge(
2840 MERGE_AND, 0, 0, aRet, &nRet, aRet, nRet, aNew, nNew, &nDoc
2841 );
2842 sqlite3_free(aNew);
2843 }
2844 }
2845 }
2846 }
2847
2848 if( rc==SQLITE_OK ){
2849 *paOut = aRet;
2850 *pnOut = nRet;
2851 }else{
2852 assert( *paOut==0 );
2853 sqlite3_free(aRet);
2854 }
2855 sqlite3_free(aExpr);
2856 fts3ExprFreeSegReaders(pExpr);
2857
2858 }else{
2859 char *aLeft;
2860 char *aRight;
2861 int nLeft;
2862 int nRight;
2863
2864 assert( pExpr->eType==FTSQUERY_NEAR
2865 || pExpr->eType==FTSQUERY_OR
2866 || pExpr->eType==FTSQUERY_NOT
2867 || (pExpr->eType==FTSQUERY_AND && p->eEvalmode==FTS3_EVAL_NEXT)
2868 );
2869
2870 if( 0==(rc = fts3EvalExpr(p, pExpr->pRight, &aRight, &nRight, isReqPos))
2871 && 0==(rc = fts3EvalExpr(p, pExpr->pLeft, &aLeft, &nLeft, isReqPos))
2872 ){
2873 switch( pExpr->eType ){
2874 case FTSQUERY_NEAR: {
2875 Fts3Expr *pLeft;
2876 Fts3Expr *pRight;
2877 int mergetype = MERGE_NEAR;
2878 if( pExpr->pParent && pExpr->pParent->eType==FTSQUERY_NEAR ){
2879 mergetype = MERGE_POS_NEAR;
2880 }
2881 pLeft = pExpr->pLeft;
2882 while( pLeft->eType==FTSQUERY_NEAR ){
2883 pLeft=pLeft->pRight;
2884 }
2885 pRight = pExpr->pRight;
2886 assert( pRight->eType==FTSQUERY_PHRASE );
2887 assert( pLeft->eType==FTSQUERY_PHRASE );
2888
2889 rc = fts3NearMerge(mergetype, pExpr->nNear,
2890 pLeft->pPhrase->nToken, aLeft, nLeft,
2891 pRight->pPhrase->nToken, aRight, nRight,
2892 paOut, pnOut
2893 );
2894 sqlite3_free(aLeft);
2895 break;
2896 }
2897
2898 case FTSQUERY_OR: {
2899 /* Allocate a buffer for the output. The maximum size is the
2900 ** sum of the sizes of the two input buffers. The +1 term is
2901 ** so that a buffer of zero bytes is never allocated - this can
2902 ** cause fts3DoclistMerge() to incorrectly return SQLITE_NOMEM.
2903 */
2904 char *aBuffer = sqlite3_malloc(nRight+nLeft+1);
2905 rc = fts3DoclistMerge(MERGE_OR, 0, 0, aBuffer, pnOut,
2906 aLeft, nLeft, aRight, nRight, 0
2907 );
2908 *paOut = aBuffer;
2909 sqlite3_free(aLeft);
2910 break;
2911 }
2912
2913 default: {
2914 assert( FTSQUERY_NOT==MERGE_NOT && FTSQUERY_AND==MERGE_AND );
2915 fts3DoclistMerge(pExpr->eType, 0, 0, aLeft, pnOut,
2916 aLeft, nLeft, aRight, nRight, 0
2917 );
2918 *paOut = aLeft;
2919 break;
2920 }
2921 }
2922 }
2923 sqlite3_free(aRight);
2924 }
2925 }
2926
2927 assert( rc==SQLITE_OK || *paOut==0 );
2928 return rc;
2929 }
2930
2931 /*
2932 ** This function is called from within xNext() for each row visited by
2933 ** an FTS3 query. If evaluating the FTS3 query expression within xFilter()
2934 ** was able to determine the exact set of matching rows, this function sets
2935 ** *pbRes to true and returns SQLITE_IO immediately.
2936 **
2937 ** Otherwise, if evaluating the query expression within xFilter() returned a
2938 ** superset of the matching documents instead of an exact set (this happens
2939 ** when the query includes very common tokens and it is deemed too expensive to
2940 ** load their doclists from disk), this function tests if the current row
2941 ** really does match the FTS3 query.
2942 **
2943 ** If an error occurs, an SQLite error code is returned. Otherwise, SQLITE_OK
2944 ** is returned and *pbRes is set to true if the current row matches the
2945 ** FTS3 query (and should be included in the results returned to SQLite), or
2946 ** false otherwise.
2947 */
2948 static int fts3EvalDeferred(
2949 Fts3Cursor *pCsr, /* FTS3 cursor pointing at row to test */
2950 int *pbRes /* OUT: Set to true if row is a match */
2951 ){
2952 int rc = SQLITE_OK;
2953 if( pCsr->pDeferred==0 ){
2954 *pbRes = 1;
2955 }else{
2956 rc = fts3CursorSeek(0, pCsr);
2957 if( rc==SQLITE_OK ){
2958 sqlite3Fts3FreeDeferredDoclists(pCsr);
2959 rc = sqlite3Fts3CacheDeferredDoclists(pCsr);
2960 }
2961 if( rc==SQLITE_OK ){
2962 char *a = 0;
2963 int n = 0;
2964 rc = fts3EvalExpr(pCsr, pCsr->pExpr, &a, &n, 0);
2965 assert( n>=0 );
2966 *pbRes = (n>0);
2967 sqlite3_free(a);
2968 }
2969 }
2970 return rc;
2971 }
2972
2973 /*
2974 ** Advance the cursor to the next row in the %_content table that
2975 ** matches the search criteria. For a MATCH search, this will be
2976 ** the next row that matches. For a full-table scan, this will be
2977 ** simply the next row in the %_content table. For a docid lookup,
2978 ** this routine simply sets the EOF flag.
2979 **
2980 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned
2981 ** even if we reach end-of-file. The fts3EofMethod() will be called
2982 ** subsequently to determine whether or not an EOF was hit.
2983 */
2984 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){
2985 int res;
2986 int rc = SQLITE_OK; /* Return code */
2987 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
2988
2989 pCsr->eEvalmode = FTS3_EVAL_NEXT;
2990 do {
2991 if( pCsr->aDoclist==0 ){
2992 if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){
2993 pCsr->isEof = 1;
2994 rc = sqlite3_reset(pCsr->pStmt);
2995 break;
2996 }
2997 pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0);
2998 }else{
2999 if( pCsr->pNextId>=&pCsr->aDoclist[pCsr->nDoclist] ){
3000 pCsr->isEof = 1;
3001 break;
3002 }
3003 sqlite3_reset(pCsr->pStmt);
3004 fts3GetDeltaVarint(&pCsr->pNextId, &pCsr->iPrevId);
3005 pCsr->isRequireSeek = 1;
3006 pCsr->isMatchinfoNeeded = 1;
3007 }
3008 }while( SQLITE_OK==(rc = fts3EvalDeferred(pCsr, &res)) && res==0 );
3009
3010 return rc;
3011 }
3012
3013 /*
3014 ** This is the xFilter interface for the virtual table. See
3015 ** the virtual table xFilter method documentation for additional
3016 ** information.
3017 **
3018 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against
3019 ** the %_content table.
3020 **
3021 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry
3022 ** in the %_content table.
3023 **
3024 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The
3025 ** column on the left-hand side of the MATCH operator is column
3026 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand
3027 ** side of the MATCH operator.
3028 */
3029 static int fts3FilterMethod(
3030 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */
3031 int idxNum, /* Strategy index */
3032 const char *idxStr, /* Unused */
3033 int nVal, /* Number of elements in apVal */
3034 sqlite3_value **apVal /* Arguments for the indexing scheme */
3035 ){
3036 const char *azSql[] = {
3037 "SELECT %s FROM %Q.'%q_content' AS x WHERE docid = ?", /* non-full-scan */
3038 "SELECT %s FROM %Q.'%q_content' AS x ", /* full-scan */
3039 };
3040 int rc; /* Return code */
3041 char *zSql; /* SQL statement used to access %_content */
3042 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3043 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor;
3044
3045 UNUSED_PARAMETER(idxStr);
3046 UNUSED_PARAMETER(nVal);
3047
3048 assert( idxNum>=0 && idxNum<=(FTS3_FULLTEXT_SEARCH+p->nColumn) );
3049 assert( nVal==0 || nVal==1 );
3050 assert( (nVal==0)==(idxNum==FTS3_FULLSCAN_SEARCH) );
3051 assert( p->pSegments==0 );
3052
3053 /* In case the cursor has been used before, clear it now. */
3054 sqlite3_finalize(pCsr->pStmt);
3055 sqlite3_free(pCsr->aDoclist);
3056 sqlite3Fts3ExprFree(pCsr->pExpr);
3057 memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor));
3058
3059 if( idxNum!=FTS3_DOCID_SEARCH && idxNum!=FTS3_FULLSCAN_SEARCH ){
3060 int iCol = idxNum-FTS3_FULLTEXT_SEARCH;
3061 const char *zQuery = (const char *)sqlite3_value_text(apVal[0]);
3062
3063 if( zQuery==0 && sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
3064 return SQLITE_NOMEM;
3065 }
3066
3067 rc = sqlite3Fts3ExprParse(p->pTokenizer, p->azColumn, p->nColumn,
3068 iCol, zQuery, -1, &pCsr->pExpr
3069 );
3070 if( rc!=SQLITE_OK ){
3071 if( rc==SQLITE_ERROR ){
3072 p->base.zErrMsg = sqlite3_mprintf("malformed MATCH expression: [%s]",
3073 zQuery);
3074 }
3075 return rc;
3076 }
3077
3078 rc = sqlite3Fts3ReadLock(p);
3079 if( rc!=SQLITE_OK ) return rc;
3080
3081 rc = fts3EvalExpr(pCsr, pCsr->pExpr, &pCsr->aDoclist, &pCsr->nDoclist, 0);
3082 sqlite3Fts3SegmentsClose(p);
3083 if( rc!=SQLITE_OK ) return rc;
3084 pCsr->pNextId = pCsr->aDoclist;
3085 pCsr->iPrevId = 0;
3086 }
3087
3088 /* Compile a SELECT statement for this cursor. For a full-table-scan, the
3089 ** statement loops through all rows of the %_content table. For a
3090 ** full-text query or docid lookup, the statement retrieves a single
3091 ** row by docid.
3092 */
3093 zSql = (char *)azSql[idxNum==FTS3_FULLSCAN_SEARCH];
3094 zSql = sqlite3_mprintf(zSql, p->zReadExprlist, p->zDb, p->zName);
3095 if( !zSql ){
3096 rc = SQLITE_NOMEM;
3097 }else{
3098 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0);
3099 sqlite3_free(zSql);
3100 }
3101 if( rc==SQLITE_OK && idxNum==FTS3_DOCID_SEARCH ){
3102 rc = sqlite3_bind_value(pCsr->pStmt, 1, apVal[0]);
3103 }
3104 pCsr->eSearch = (i16)idxNum;
3105
3106 if( rc!=SQLITE_OK ) return rc;
3107 return fts3NextMethod(pCursor);
3108 }
3109
3110 /*
3111 ** This is the xEof method of the virtual table. SQLite calls this
3112 ** routine to find out if it has reached the end of a result set.
3113 */
3114 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){
3115 return ((Fts3Cursor *)pCursor)->isEof;
3116 }
3117
3118 /*
3119 ** This is the xRowid method. The SQLite core calls this routine to
3120 ** retrieve the rowid for the current row of the result set. fts3
3121 ** exposes %_content.docid as the rowid for the virtual table. The
3122 ** rowid should be written to *pRowid.
3123 */
3124 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){
3125 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3126 if( pCsr->aDoclist ){
3127 *pRowid = pCsr->iPrevId;
3128 }else{
3129 /* This branch runs if the query is implemented using a full-table scan
3130 ** (not using the full-text index). In this case grab the rowid from the
3131 ** SELECT statement.
3132 */
3133 assert( pCsr->isRequireSeek==0 );
3134 *pRowid = sqlite3_column_int64(pCsr->pStmt, 0);
3135 }
3136 return SQLITE_OK;
3137 }
3138
3139 /*
3140 ** This is the xColumn method, called by SQLite to request a value from
3141 ** the row that the supplied cursor currently points to.
3142 */
3143 static int fts3ColumnMethod(
3144 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */
3145 sqlite3_context *pContext, /* Context for sqlite3_result_xxx() calls */
3146 int iCol /* Index of column to read value from */
3147 ){
3148 int rc; /* Return Code */
3149 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor;
3150 Fts3Table *p = (Fts3Table *)pCursor->pVtab;
3151
3152 /* The column value supplied by SQLite must be in range. */
3153 assert( iCol>=0 && iCol<=p->nColumn+1 );
3154
3155 if( iCol==p->nColumn+1 ){
3156 /* This call is a request for the "docid" column. Since "docid" is an
3157 ** alias for "rowid", use the xRowid() method to obtain the value.
3158 */
3159 sqlite3_int64 iRowid;
3160 rc = fts3RowidMethod(pCursor, &iRowid);
3161 sqlite3_result_int64(pContext, iRowid);
3162 }else if( iCol==p->nColumn ){
3163 /* The extra column whose name is the same as the table.
3164 ** Return a blob which is a pointer to the cursor.
3165 */
3166 sqlite3_result_blob(pContext, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT);
3167 rc = SQLITE_OK;
3168 }else{
3169 rc = fts3CursorSeek(0, pCsr);
3170 if( rc==SQLITE_OK ){
3171 sqlite3_result_value(pContext, sqlite3_column_value(pCsr->pStmt, iCol+1));
3172 }
3173 }
3174 return rc;
3175 }
3176
3177 /*
3178 ** This function is the implementation of the xUpdate callback used by
3179 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be
3180 ** inserted, updated or deleted.
3181 */
3182 static int fts3UpdateMethod(
3183 sqlite3_vtab *pVtab, /* Virtual table handle */
3184 int nArg, /* Size of argument array */
3185 sqlite3_value **apVal, /* Array of arguments */
3186 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
3187 ){
3188 return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid);
3189 }
3190
3191 /*
3192 ** Implementation of xSync() method. Flush the contents of the pending-terms
3193 ** hash-table to the database.
3194 */
3195 static int fts3SyncMethod(sqlite3_vtab *pVtab){
3196 int rc = sqlite3Fts3PendingTermsFlush((Fts3Table *)pVtab);
3197 sqlite3Fts3SegmentsClose((Fts3Table *)pVtab);
3198 return rc;
3199 }
3200
3201 /*
3202 ** Implementation of xBegin() method. This is a no-op.
3203 */
3204 static int fts3BeginMethod(sqlite3_vtab *pVtab){
3205 UNUSED_PARAMETER(pVtab);
3206 assert( ((Fts3Table *)pVtab)->nPendingData==0 );
3207 return SQLITE_OK;
3208 }
3209
3210 /*
3211 ** Implementation of xCommit() method. This is a no-op. The contents of
3212 ** the pending-terms hash-table have already been flushed into the database
3213 ** by fts3SyncMethod().
3214 */
3215 static int fts3CommitMethod(sqlite3_vtab *pVtab){
3216 UNUSED_PARAMETER(pVtab);
3217 assert( ((Fts3Table *)pVtab)->nPendingData==0 );
3218 return SQLITE_OK;
3219 }
3220
3221 /*
3222 ** Implementation of xRollback(). Discard the contents of the pending-terms
3223 ** hash-table. Any changes made to the database are reverted by SQLite.
3224 */
3225 static int fts3RollbackMethod(sqlite3_vtab *pVtab){
3226 sqlite3Fts3PendingTermsClear((Fts3Table *)pVtab);
3227 return SQLITE_OK;
3228 }
3229
3230 /*
3231 ** Load the doclist associated with expression pExpr to pExpr->aDoclist.
3232 ** The loaded doclist contains positions as well as the document ids.
3233 ** This is used by the matchinfo(), snippet() and offsets() auxillary
3234 ** functions.
3235 */
3236 int sqlite3Fts3ExprLoadDoclist(Fts3Cursor *pCsr, Fts3Expr *pExpr){
3237 int rc;
3238 assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
3239 assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
3240 rc = fts3EvalExpr(pCsr, pExpr, &pExpr->aDoclist, &pExpr->nDoclist, 1);
3241 return rc;
3242 }
3243
3244 int sqlite3Fts3ExprLoadFtDoclist(
3245 Fts3Cursor *pCsr,
3246 Fts3Expr *pExpr,
3247 char **paDoclist,
3248 int *pnDoclist
3249 ){
3250 int rc;
3251 assert( pCsr->eEvalmode==FTS3_EVAL_NEXT );
3252 assert( pExpr->eType==FTSQUERY_PHRASE && pExpr->pPhrase );
3253 pCsr->eEvalmode = FTS3_EVAL_MATCHINFO;
3254 rc = fts3EvalExpr(pCsr, pExpr, paDoclist, pnDoclist, 1);
3255 pCsr->eEvalmode = FTS3_EVAL_NEXT;
3256 return rc;
3257 }
3258
3259 /*
3260 ** After ExprLoadDoclist() (see above) has been called, this function is
3261 ** used to iterate/search through the position lists that make up the doclist
3262 ** stored in pExpr->aDoclist.
3263 */
3264 char *sqlite3Fts3FindPositions(
3265 Fts3Expr *pExpr, /* Access this expressions doclist */
3266 sqlite3_int64 iDocid, /* Docid associated with requested pos-list */
3267 int iCol /* Column of requested pos-list */
3268 ){
3269 assert( pExpr->isLoaded );
3270 if( pExpr->aDoclist ){
3271 char *pEnd = &pExpr->aDoclist[pExpr->nDoclist];
3272 char *pCsr;
3273
3274 if( pExpr->pCurrent==0 ){
3275 pExpr->pCurrent = pExpr->aDoclist;
3276 pExpr->iCurrent = 0;
3277 pExpr->pCurrent += sqlite3Fts3GetVarint(pExpr->pCurrent,&pExpr->iCurrent);
3278 }
3279 pCsr = pExpr->pCurrent;
3280 assert( pCsr );
3281
3282 while( pCsr<pEnd ){
3283 if( pExpr->iCurrent<iDocid ){
3284 fts3PoslistCopy(0, &pCsr);
3285 if( pCsr<pEnd ){
3286 fts3GetDeltaVarint(&pCsr, &pExpr->iCurrent);
3287 }
3288 pExpr->pCurrent = pCsr;
3289 }else{
3290 if( pExpr->iCurrent==iDocid ){
3291 int iThis = 0;
3292 if( iCol<0 ){
3293 /* If iCol is negative, return a pointer to the start of the
3294 ** position-list (instead of a pointer to the start of a list
3295 ** of offsets associated with a specific column).
3296 */
3297 return pCsr;
3298 }
3299 while( iThis<iCol ){
3300 fts3ColumnlistCopy(0, &pCsr);
3301 if( *pCsr==0x00 ) return 0;
3302 pCsr++;
3303 pCsr += sqlite3Fts3GetVarint32(pCsr, &iThis);
3304 }
3305 if( iCol==iThis && (*pCsr&0xFE) ) return pCsr;
3306 }
3307 return 0;
3308 }
3309 }
3310 }
3311
3312 return 0;
3313 }
3314
3315 /*
3316 ** Helper function used by the implementation of the overloaded snippet(),
3317 ** offsets() and optimize() SQL functions.
3318 **
3319 ** If the value passed as the third argument is a blob of size
3320 ** sizeof(Fts3Cursor*), then the blob contents are copied to the
3321 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error
3322 ** message is written to context pContext and SQLITE_ERROR returned. The
3323 ** string passed via zFunc is used as part of the error message.
3324 */
3325 static int fts3FunctionArg(
3326 sqlite3_context *pContext, /* SQL function call context */
3327 const char *zFunc, /* Function name */
3328 sqlite3_value *pVal, /* argv[0] passed to function */
3329 Fts3Cursor **ppCsr /* OUT: Store cursor handle here */
3330 ){
3331 Fts3Cursor *pRet;
3332 if( sqlite3_value_type(pVal)!=SQLITE_BLOB
3333 || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *)
3334 ){
3335 char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc);
3336 sqlite3_result_error(pContext, zErr, -1);
3337 sqlite3_free(zErr);
3338 return SQLITE_ERROR;
3339 }
3340 memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *));
3341 *ppCsr = pRet;
3342 return SQLITE_OK;
3343 }
3344
3345 /*
3346 ** Implementation of the snippet() function for FTS3
3347 */
3348 static void fts3SnippetFunc(
3349 sqlite3_context *pContext, /* SQLite function call context */
3350 int nVal, /* Size of apVal[] array */
3351 sqlite3_value **apVal /* Array of arguments */
3352 ){
3353 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3354 const char *zStart = "<b>";
3355 const char *zEnd = "</b>";
3356 const char *zEllipsis = "<b>...</b>";
3357 int iCol = -1;
3358 int nToken = 15; /* Default number of tokens in snippet */
3359
3360 /* There must be at least one argument passed to this function (otherwise
3361 ** the non-overloaded version would have been called instead of this one).
3362 */
3363 assert( nVal>=1 );
3364
3365 if( nVal>6 ){
3366 sqlite3_result_error(pContext,
3367 "wrong number of arguments to function snippet()", -1);
3368 return;
3369 }
3370 if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return;
3371
3372 switch( nVal ){
3373 case 6: nToken = sqlite3_value_int(apVal[5]);
3374 case 5: iCol = sqlite3_value_int(apVal[4]);
3375 case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]);
3376 case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]);
3377 case 2: zStart = (const char*)sqlite3_value_text(apVal[1]);
3378 }
3379 if( !zEllipsis || !zEnd || !zStart ){
3380 sqlite3_result_error_nomem(pContext);
3381 }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3382 sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken);
3383 }
3384 }
3385
3386 /*
3387 ** Implementation of the offsets() function for FTS3
3388 */
3389 static void fts3OffsetsFunc(
3390 sqlite3_context *pContext, /* SQLite function call context */
3391 int nVal, /* Size of argument array */
3392 sqlite3_value **apVal /* Array of arguments */
3393 ){
3394 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3395
3396 UNUSED_PARAMETER(nVal);
3397
3398 assert( nVal==1 );
3399 if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return;
3400 assert( pCsr );
3401 if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){
3402 sqlite3Fts3Offsets(pContext, pCsr);
3403 }
3404 }
3405
3406 /*
3407 ** Implementation of the special optimize() function for FTS3. This
3408 ** function merges all segments in the database to a single segment.
3409 ** Example usage is:
3410 **
3411 ** SELECT optimize(t) FROM t LIMIT 1;
3412 **
3413 ** where 't' is the name of an FTS3 table.
3414 */
3415 static void fts3OptimizeFunc(
3416 sqlite3_context *pContext, /* SQLite function call context */
3417 int nVal, /* Size of argument array */
3418 sqlite3_value **apVal /* Array of arguments */
3419 ){
3420 int rc; /* Return code */
3421 Fts3Table *p; /* Virtual table handle */
3422 Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */
3423
3424 UNUSED_PARAMETER(nVal);
3425
3426 assert( nVal==1 );
3427 if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return;
3428 p = (Fts3Table *)pCursor->base.pVtab;
3429 assert( p );
3430
3431 rc = sqlite3Fts3Optimize(p);
3432
3433 switch( rc ){
3434 case SQLITE_OK:
3435 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC);
3436 break;
3437 case SQLITE_DONE:
3438 sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC);
3439 break;
3440 default:
3441 sqlite3_result_error_code(pContext, rc);
3442 break;
3443 }
3444 }
3445
3446 /*
3447 ** Implementation of the matchinfo() function for FTS3
3448 */
3449 static void fts3MatchinfoFunc(
3450 sqlite3_context *pContext, /* SQLite function call context */
3451 int nVal, /* Size of argument array */
3452 sqlite3_value **apVal /* Array of arguments */
3453 ){
3454 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */
3455 assert( nVal==1 || nVal==2 );
3456 if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){
3457 const char *zArg = 0;
3458 if( nVal>1 ){
3459 zArg = (const char *)sqlite3_value_text(apVal[1]);
3460 }
3461 sqlite3Fts3Matchinfo(pContext, pCsr, zArg);
3462 }
3463 }
3464
3465 /*
3466 ** This routine implements the xFindFunction method for the FTS3
3467 ** virtual table.
3468 */
3469 static int fts3FindFunctionMethod(
3470 sqlite3_vtab *pVtab, /* Virtual table handle */
3471 int nArg, /* Number of SQL function arguments */
3472 const char *zName, /* Name of SQL function */
3473 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */
3474 void **ppArg /* Unused */
3475 ){
3476 struct Overloaded {
3477 const char *zName;
3478 void (*xFunc)(sqlite3_context*,int,sqlite3_value**);
3479 } aOverload[] = {
3480 { "snippet", fts3SnippetFunc },
3481 { "offsets", fts3OffsetsFunc },
3482 { "optimize", fts3OptimizeFunc },
3483 { "matchinfo", fts3MatchinfoFunc },
3484 };
3485 int i; /* Iterator variable */
3486
3487 UNUSED_PARAMETER(pVtab);
3488 UNUSED_PARAMETER(nArg);
3489 UNUSED_PARAMETER(ppArg);
3490
3491 for(i=0; i<SizeofArray(aOverload); i++){
3492 if( strcmp(zName, aOverload[i].zName)==0 ){
3493 *pxFunc = aOverload[i].xFunc;
3494 return 1;
3495 }
3496 }
3497
3498 /* No function of the specified name was found. Return 0. */
3499 return 0;
3500 }
3501
3502 /*
3503 ** Implementation of FTS3 xRename method. Rename an fts3 table.
3504 */
3505 static int fts3RenameMethod(
3506 sqlite3_vtab *pVtab, /* Virtual table handle */
3507 const char *zName /* New name of table */
3508 ){
3509 Fts3Table *p = (Fts3Table *)pVtab;
3510 sqlite3 *db = p->db; /* Database connection */
3511 int rc; /* Return Code */
3512
3513 rc = sqlite3Fts3PendingTermsFlush(p);
3514 if( rc!=SQLITE_OK ){
3515 return rc;
3516 }
3517
3518 fts3DbExec(&rc, db,
3519 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';",
3520 p->zDb, p->zName, zName
3521 );
3522 if( p->bHasDocsize ){
3523 fts3DbExec(&rc, db,
3524 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';",
3525 p->zDb, p->zName, zName
3526 );
3527 }
3528 if( p->bHasStat ){
3529 fts3DbExec(&rc, db,
3530 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';",
3531 p->zDb, p->zName, zName
3532 );
3533 }
3534 fts3DbExec(&rc, db,
3535 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';",
3536 p->zDb, p->zName, zName
3537 );
3538 fts3DbExec(&rc, db,
3539 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';",
3540 p->zDb, p->zName, zName
3541 );
3542 return rc;
3543 }
3544
3545 static const sqlite3_module fts3Module = {
3546 /* iVersion */ 0,
3547 /* xCreate */ fts3CreateMethod,
3548 /* xConnect */ fts3ConnectMethod,
3549 /* xBestIndex */ fts3BestIndexMethod,
3550 /* xDisconnect */ fts3DisconnectMethod,
3551 /* xDestroy */ fts3DestroyMethod,
3552 /* xOpen */ fts3OpenMethod,
3553 /* xClose */ fts3CloseMethod,
3554 /* xFilter */ fts3FilterMethod,
3555 /* xNext */ fts3NextMethod,
3556 /* xEof */ fts3EofMethod,
3557 /* xColumn */ fts3ColumnMethod,
3558 /* xRowid */ fts3RowidMethod,
3559 /* xUpdate */ fts3UpdateMethod,
3560 /* xBegin */ fts3BeginMethod,
3561 /* xSync */ fts3SyncMethod,
3562 /* xCommit */ fts3CommitMethod,
3563 /* xRollback */ fts3RollbackMethod,
3564 /* xFindFunction */ fts3FindFunctionMethod,
3565 /* xRename */ fts3RenameMethod,
3566 };
3567
3568 /*
3569 ** This function is registered as the module destructor (called when an
3570 ** FTS3 enabled database connection is closed). It frees the memory
3571 ** allocated for the tokenizer hash table.
3572 */
3573 static void hashDestroy(void *p){
3574 Fts3Hash *pHash = (Fts3Hash *)p;
3575 sqlite3Fts3HashClear(pHash);
3576 sqlite3_free(pHash);
3577 }
3578
3579 /*
3580 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are
3581 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c
3582 ** respectively. The following three forward declarations are for functions
3583 ** declared in these files used to retrieve the respective implementations.
3584 **
3585 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed
3586 ** to by the argument to point to the "simple" tokenizer implementation.
3587 ** And so on.
3588 */
3589 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3590 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3591 #ifdef SQLITE_ENABLE_ICU
3592 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule);
3593 #endif
3594
3595 /*
3596 ** Initialise the fts3 extension. If this extension is built as part
3597 ** of the sqlite library, then this function is called directly by
3598 ** SQLite. If fts3 is built as a dynamically loadable extension, this
3599 ** function is called by the sqlite3_extension_init() entry point.
3600 */
3601 int sqlite3Fts3Init(sqlite3 *db){
3602 int rc = SQLITE_OK;
3603 Fts3Hash *pHash = 0;
3604 const sqlite3_tokenizer_module *pSimple = 0;
3605 const sqlite3_tokenizer_module *pPorter = 0;
3606
3607 #ifdef SQLITE_ENABLE_ICU
3608 const sqlite3_tokenizer_module *pIcu = 0;
3609 sqlite3Fts3IcuTokenizerModule(&pIcu);
3610 #endif
3611
3612 rc = sqlite3Fts3InitAux(db);
3613 if( rc!=SQLITE_OK ) return rc;
3614
3615 sqlite3Fts3SimpleTokenizerModule(&pSimple);
3616 sqlite3Fts3PorterTokenizerModule(&pPorter);
3617
3618 /* Allocate and initialise the hash-table used to store tokenizers. */
3619 pHash = sqlite3_malloc(sizeof(Fts3Hash));
3620 if( !pHash ){
3621 rc = SQLITE_NOMEM;
3622 }else{
3623 sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1);
3624 }
3625
3626 /* Load the built-in tokenizers into the hash table */
3627 if( rc==SQLITE_OK ){
3628 if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple)
3629 || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter)
3630 #ifdef SQLITE_ENABLE_ICU
3631 || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu))
3632 #endif
3633 ){
3634 rc = SQLITE_NOMEM;
3635 }
3636 }
3637
3638 #ifdef SQLITE_TEST
3639 if( rc==SQLITE_OK ){
3640 rc = sqlite3Fts3ExprInitTestInterface(db);
3641 }
3642 #endif
3643
3644 /* Create the virtual table wrapper around the hash-table and overload
3645 ** the two scalar functions. If this is successful, register the
3646 ** module with sqlite.
3647 */
3648 if( SQLITE_OK==rc
3649 && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer"))
3650 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1))
3651 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1))
3652 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1))
3653 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2))
3654 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1))
3655 ){
3656 rc = sqlite3_create_module_v2(
3657 db, "fts3", &fts3Module, (void *)pHash, hashDestroy
3658 );
3659 if( rc==SQLITE_OK ){
3660 rc = sqlite3_create_module_v2(
3661 db, "fts4", &fts3Module, (void *)pHash, 0
3662 );
3663 }
3664 return rc;
3665 }
3666
3667 /* An error has occurred. Delete the hash table and return the error code. */
3668 assert( rc!=SQLITE_OK );
3669 if( pHash ){
3670 sqlite3Fts3HashClear(pHash);
3671 sqlite3_free(pHash);
3672 }
3673 return rc;
3674 }
3675
3676 #if !SQLITE_CORE
3677 int sqlite3_extension_init(
3678 sqlite3 *db,
3679 char **pzErrMsg,
3680 const sqlite3_api_routines *pApi
3681 ){
3682 SQLITE_EXTENSION_INIT2(pApi)
3683 return sqlite3Fts3Init(db);
3684 }
3685 #endif
3686
3687 #endif
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3070603/ext/fts3/fts3.h ('k') | third_party/sqlite/sqlite-src-3070603/ext/fts3/fts3Int.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698