| Index: test/cctest/compiler/test-typer.cc
|
| diff --git a/test/cctest/compiler/test-typer.cc b/test/cctest/compiler/test-typer.cc
|
| deleted file mode 100644
|
| index 039b5d9210f662f2c9ca8c157d623bfd9fc2252b..0000000000000000000000000000000000000000
|
| --- a/test/cctest/compiler/test-typer.cc
|
| +++ /dev/null
|
| @@ -1,377 +0,0 @@
|
| -// Copyright 2014 the V8 project authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include <functional>
|
| -
|
| -#include "src/codegen.h"
|
| -#include "src/compiler/js-operator.h"
|
| -#include "src/compiler/node-properties.h"
|
| -#include "src/compiler/typer.h"
|
| -#include "test/cctest/cctest.h"
|
| -#include "test/cctest/compiler/graph-builder-tester.h"
|
| -#include "test/cctest/types-fuzz.h"
|
| -
|
| -using namespace v8::internal;
|
| -using namespace v8::internal::compiler;
|
| -
|
| -
|
| -// TODO(titzer): generate a large set of deterministic inputs for these tests.
|
| -class TyperTester : public HandleAndZoneScope, public GraphAndBuilders {
|
| - public:
|
| - TyperTester()
|
| - : GraphAndBuilders(main_zone()),
|
| - types_(main_zone(), isolate()),
|
| - typer_(isolate(), graph(), MaybeHandle<Context>()),
|
| - javascript_(main_zone()) {
|
| - Node* s = graph()->NewNode(common()->Start(3));
|
| - graph()->SetStart(s);
|
| - context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start());
|
| - rng_ = isolate()->random_number_generator();
|
| -
|
| - integers.push_back(0);
|
| - integers.push_back(0);
|
| - integers.push_back(-1);
|
| - integers.push_back(+1);
|
| - integers.push_back(-V8_INFINITY);
|
| - integers.push_back(+V8_INFINITY);
|
| - for (int i = 0; i < 5; ++i) {
|
| - double x = rng_->NextInt();
|
| - integers.push_back(x);
|
| - x *= rng_->NextInt();
|
| - if (!IsMinusZero(x)) integers.push_back(x);
|
| - }
|
| -
|
| - int32s.push_back(0);
|
| - int32s.push_back(0);
|
| - int32s.push_back(-1);
|
| - int32s.push_back(+1);
|
| - int32s.push_back(kMinInt);
|
| - int32s.push_back(kMaxInt);
|
| - for (int i = 0; i < 10; ++i) {
|
| - int32s.push_back(rng_->NextInt());
|
| - }
|
| - }
|
| -
|
| - Types<Type, Type*, Zone> types_;
|
| - Typer typer_;
|
| - JSOperatorBuilder javascript_;
|
| - Node* context_node_;
|
| - v8::base::RandomNumberGenerator* rng_;
|
| - std::vector<double> integers;
|
| - std::vector<double> int32s;
|
| -
|
| - Isolate* isolate() { return main_isolate(); }
|
| - Graph* graph() { return main_graph_; }
|
| - CommonOperatorBuilder* common() { return &main_common_; }
|
| -
|
| - Node* Parameter(int index = 0) {
|
| - return graph()->NewNode(common()->Parameter(index), graph()->start());
|
| - }
|
| -
|
| - Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) {
|
| - Node* p0 = Parameter(0);
|
| - Node* p1 = Parameter(1);
|
| - NodeProperties::SetBounds(p0, Bounds(lhs));
|
| - NodeProperties::SetBounds(p1, Bounds(rhs));
|
| - Node* n = graph()->NewNode(
|
| - op, p0, p1, context_node_, graph()->start(), graph()->start());
|
| - return NodeProperties::GetBounds(n).upper;
|
| - }
|
| -
|
| - Type* RandomRange(bool int32 = false) {
|
| - std::vector<double>& numbers = int32 ? int32s : integers;
|
| - double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
|
| - double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))];
|
| - return NewRange(i, j);
|
| - }
|
| -
|
| - Type* NewRange(double i, double j) {
|
| - if (i > j) std::swap(i, j);
|
| - return Type::Range(i, j, main_zone());
|
| - }
|
| -
|
| - double RandomInt(double min, double max) {
|
| - switch (rng_->NextInt(4)) {
|
| - case 0: return min;
|
| - case 1: return max;
|
| - default: break;
|
| - }
|
| - if (min == +V8_INFINITY) return +V8_INFINITY;
|
| - if (max == -V8_INFINITY) return -V8_INFINITY;
|
| - if (min == -V8_INFINITY && max == +V8_INFINITY) {
|
| - return rng_->NextInt() * static_cast<double>(rng_->NextInt());
|
| - }
|
| - double result = nearbyint(min + (max - min) * rng_->NextDouble());
|
| - if (IsMinusZero(result)) return 0;
|
| - if (std::isnan(result)) return rng_->NextInt(2) ? min : max;
|
| - DCHECK(min <= result && result <= max);
|
| - return result;
|
| - }
|
| -
|
| - double RandomInt(Type::RangeType* range) {
|
| - return RandomInt(range->Min(), range->Max());
|
| - }
|
| -
|
| - // Careful, this function runs O(max_width^5) trials.
|
| - template <class BinaryFunction>
|
| - void TestBinaryArithOpCloseToZero(const Operator* op, BinaryFunction opfun,
|
| - int max_width) {
|
| - const int min_min = -2 - max_width / 2;
|
| - const int max_min = 2 + max_width / 2;
|
| - for (int width = 0; width < max_width; width++) {
|
| - for (int lmin = min_min; lmin <= max_min; lmin++) {
|
| - for (int rmin = min_min; rmin <= max_min; rmin++) {
|
| - Type* r1 = NewRange(lmin, lmin + width);
|
| - Type* r2 = NewRange(rmin, rmin + width);
|
| - Type* expected_type = TypeBinaryOp(op, r1, r2);
|
| -
|
| - for (int x1 = lmin; x1 < lmin + width; x1++) {
|
| - for (int x2 = rmin; x2 < rmin + width; x2++) {
|
| - double result_value = opfun(x1, x2);
|
| - Type* result_type = Type::Constant(
|
| - isolate()->factory()->NewNumber(result_value), main_zone());
|
| - CHECK(result_type->Is(expected_type));
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| -
|
| - template <class BinaryFunction>
|
| - void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) {
|
| - TestBinaryArithOpCloseToZero(op, opfun, 8);
|
| - for (int i = 0; i < 100; ++i) {
|
| - Type::RangeType* r1 = RandomRange()->AsRange();
|
| - Type::RangeType* r2 = RandomRange()->AsRange();
|
| - Type* expected_type = TypeBinaryOp(op, r1, r2);
|
| - for (int i = 0; i < 10; i++) {
|
| - double x1 = RandomInt(r1);
|
| - double x2 = RandomInt(r2);
|
| - double result_value = opfun(x1, x2);
|
| - Type* result_type = Type::Constant(
|
| - isolate()->factory()->NewNumber(result_value), main_zone());
|
| - CHECK(result_type->Is(expected_type));
|
| - }
|
| - }
|
| - }
|
| -
|
| - template <class BinaryFunction>
|
| - void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) {
|
| - for (int i = 0; i < 100; ++i) {
|
| - Type::RangeType* r1 = RandomRange()->AsRange();
|
| - Type::RangeType* r2 = RandomRange()->AsRange();
|
| - Type* expected_type = TypeBinaryOp(op, r1, r2);
|
| - for (int i = 0; i < 10; i++) {
|
| - double x1 = RandomInt(r1);
|
| - double x2 = RandomInt(r2);
|
| - bool result_value = opfun(x1, x2);
|
| - Type* result_type =
|
| - Type::Constant(result_value ? isolate()->factory()->true_value()
|
| - : isolate()->factory()->false_value(),
|
| - main_zone());
|
| - CHECK(result_type->Is(expected_type));
|
| - }
|
| - }
|
| - }
|
| -
|
| - template <class BinaryFunction>
|
| - void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) {
|
| - for (int i = 0; i < 100; ++i) {
|
| - Type::RangeType* r1 = RandomRange(true)->AsRange();
|
| - Type::RangeType* r2 = RandomRange(true)->AsRange();
|
| - Type* expected_type = TypeBinaryOp(op, r1, r2);
|
| - for (int i = 0; i < 10; i++) {
|
| - int32_t x1 = static_cast<int32_t>(RandomInt(r1));
|
| - int32_t x2 = static_cast<int32_t>(RandomInt(r2));
|
| - double result_value = opfun(x1, x2);
|
| - Type* result_type = Type::Constant(
|
| - isolate()->factory()->NewNumber(result_value), main_zone());
|
| - CHECK(result_type->Is(expected_type));
|
| - }
|
| - }
|
| - }
|
| -
|
| - Type* RandomSubtype(Type* type) {
|
| - Type* subtype;
|
| - do {
|
| - subtype = types_.Fuzz();
|
| - } while (!subtype->Is(type));
|
| - return subtype;
|
| - }
|
| -
|
| - void TestBinaryMonotonicity(const Operator* op) {
|
| - for (int i = 0; i < 50; ++i) {
|
| - Type* type1 = types_.Fuzz();
|
| - Type* type2 = types_.Fuzz();
|
| - Type* type = TypeBinaryOp(op, type1, type2);
|
| - Type* subtype1 = RandomSubtype(type1);;
|
| - Type* subtype2 = RandomSubtype(type2);;
|
| - Type* subtype = TypeBinaryOp(op, subtype1, subtype2);
|
| - CHECK(subtype->Is(type));
|
| - }
|
| - }
|
| -};
|
| -
|
| -
|
| -static int32_t shift_left(int32_t x, int32_t y) { return x << y; }
|
| -static int32_t shift_right(int32_t x, int32_t y) { return x >> y; }
|
| -static int32_t bit_or(int32_t x, int32_t y) { return x | y; }
|
| -static int32_t bit_and(int32_t x, int32_t y) { return x & y; }
|
| -static int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; }
|
| -
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Soundness
|
| -// For simplicity, we currently only test soundness on expression operators
|
| -// that have a direct equivalent in C++. Also, testing is currently limited
|
| -// to ranges as input types.
|
| -
|
| -
|
| -TEST(TypeJSAdd) {
|
| - TyperTester t;
|
| - t.TestBinaryArithOp(t.javascript_.Add(), std::plus<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSSubtract) {
|
| - TyperTester t;
|
| - t.TestBinaryArithOp(t.javascript_.Subtract(), std::minus<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSMultiply) {
|
| - TyperTester t;
|
| - t.TestBinaryArithOp(t.javascript_.Multiply(), std::multiplies<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSDivide) {
|
| - TyperTester t;
|
| - t.TestBinaryArithOp(t.javascript_.Divide(), std::divides<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSModulus) {
|
| - TyperTester t;
|
| - t.TestBinaryArithOp(t.javascript_.Modulus(), modulo);
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSBitwiseOr) {
|
| - TyperTester t;
|
| - t.TestBinaryBitOp(t.javascript_.BitwiseOr(), bit_or);
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSBitwiseAnd) {
|
| - TyperTester t;
|
| - t.TestBinaryBitOp(t.javascript_.BitwiseAnd(), bit_and);
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSBitwiseXor) {
|
| - TyperTester t;
|
| - t.TestBinaryBitOp(t.javascript_.BitwiseXor(), bit_xor);
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSShiftLeft) {
|
| - TyperTester t;
|
| - t.TestBinaryBitOp(t.javascript_.ShiftLeft(), shift_left);
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSShiftRight) {
|
| - TyperTester t;
|
| - t.TestBinaryBitOp(t.javascript_.ShiftRight(), shift_right);
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSLessThan) {
|
| - TyperTester t;
|
| - t.TestBinaryCompareOp(t.javascript_.LessThan(), std::less<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSLessThanOrEqual) {
|
| - TyperTester t;
|
| - t.TestBinaryCompareOp(
|
| - t.javascript_.LessThanOrEqual(), std::less_equal<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSGreaterThan) {
|
| - TyperTester t;
|
| - t.TestBinaryCompareOp(t.javascript_.GreaterThan(), std::greater<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSGreaterThanOrEqual) {
|
| - TyperTester t;
|
| - t.TestBinaryCompareOp(
|
| - t.javascript_.GreaterThanOrEqual(), std::greater_equal<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSEqual) {
|
| - TyperTester t;
|
| - t.TestBinaryCompareOp(t.javascript_.Equal(), std::equal_to<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSNotEqual) {
|
| - TyperTester t;
|
| - t.TestBinaryCompareOp(t.javascript_.NotEqual(), std::not_equal_to<double>());
|
| -}
|
| -
|
| -
|
| -// For numbers there's no difference between strict and non-strict equality.
|
| -TEST(TypeJSStrictEqual) {
|
| - TyperTester t;
|
| - t.TestBinaryCompareOp(t.javascript_.StrictEqual(), std::equal_to<double>());
|
| -}
|
| -
|
| -
|
| -TEST(TypeJSStrictNotEqual) {
|
| - TyperTester t;
|
| - t.TestBinaryCompareOp(
|
| - t.javascript_.StrictNotEqual(), std::not_equal_to<double>());
|
| -}
|
| -
|
| -
|
| -//------------------------------------------------------------------------------
|
| -// Monotonicity
|
| -
|
| -
|
| -// List should be in sync with JS_SIMPLE_BINOP_LIST.
|
| -#define JSBINOP_LIST(V) \
|
| - V(Equal) \
|
| - V(NotEqual) \
|
| - V(StrictEqual) \
|
| - V(StrictNotEqual) \
|
| - V(LessThan) \
|
| - V(GreaterThan) \
|
| - V(LessThanOrEqual) \
|
| - V(GreaterThanOrEqual) \
|
| - V(BitwiseOr) \
|
| - V(BitwiseXor) \
|
| - V(BitwiseAnd) \
|
| - V(ShiftLeft) \
|
| - V(ShiftRight) \
|
| - V(ShiftRightLogical) \
|
| - V(Add) \
|
| - V(Subtract) \
|
| - V(Multiply) \
|
| - V(Divide) \
|
| - V(Modulus)
|
| -
|
| -
|
| -#define TEST_FUNC(name) \
|
| - TEST(Monotonicity_##name) { \
|
| - TyperTester t; \
|
| - t.TestBinaryMonotonicity(t.javascript_.name()); \
|
| - }
|
| -JSBINOP_LIST(TEST_FUNC)
|
| -#undef TEST_FUNC
|
|
|