OLD | NEW |
| (Empty) |
1 // Copyright 2014 the V8 project authors. All rights reserved. | |
2 // Use of this source code is governed by a BSD-style license that can be | |
3 // found in the LICENSE file. | |
4 | |
5 #include <functional> | |
6 | |
7 #include "src/codegen.h" | |
8 #include "src/compiler/js-operator.h" | |
9 #include "src/compiler/node-properties.h" | |
10 #include "src/compiler/typer.h" | |
11 #include "test/cctest/cctest.h" | |
12 #include "test/cctest/compiler/graph-builder-tester.h" | |
13 #include "test/cctest/types-fuzz.h" | |
14 | |
15 using namespace v8::internal; | |
16 using namespace v8::internal::compiler; | |
17 | |
18 | |
19 // TODO(titzer): generate a large set of deterministic inputs for these tests. | |
20 class TyperTester : public HandleAndZoneScope, public GraphAndBuilders { | |
21 public: | |
22 TyperTester() | |
23 : GraphAndBuilders(main_zone()), | |
24 types_(main_zone(), isolate()), | |
25 typer_(isolate(), graph(), MaybeHandle<Context>()), | |
26 javascript_(main_zone()) { | |
27 Node* s = graph()->NewNode(common()->Start(3)); | |
28 graph()->SetStart(s); | |
29 context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start()); | |
30 rng_ = isolate()->random_number_generator(); | |
31 | |
32 integers.push_back(0); | |
33 integers.push_back(0); | |
34 integers.push_back(-1); | |
35 integers.push_back(+1); | |
36 integers.push_back(-V8_INFINITY); | |
37 integers.push_back(+V8_INFINITY); | |
38 for (int i = 0; i < 5; ++i) { | |
39 double x = rng_->NextInt(); | |
40 integers.push_back(x); | |
41 x *= rng_->NextInt(); | |
42 if (!IsMinusZero(x)) integers.push_back(x); | |
43 } | |
44 | |
45 int32s.push_back(0); | |
46 int32s.push_back(0); | |
47 int32s.push_back(-1); | |
48 int32s.push_back(+1); | |
49 int32s.push_back(kMinInt); | |
50 int32s.push_back(kMaxInt); | |
51 for (int i = 0; i < 10; ++i) { | |
52 int32s.push_back(rng_->NextInt()); | |
53 } | |
54 } | |
55 | |
56 Types<Type, Type*, Zone> types_; | |
57 Typer typer_; | |
58 JSOperatorBuilder javascript_; | |
59 Node* context_node_; | |
60 v8::base::RandomNumberGenerator* rng_; | |
61 std::vector<double> integers; | |
62 std::vector<double> int32s; | |
63 | |
64 Isolate* isolate() { return main_isolate(); } | |
65 Graph* graph() { return main_graph_; } | |
66 CommonOperatorBuilder* common() { return &main_common_; } | |
67 | |
68 Node* Parameter(int index = 0) { | |
69 return graph()->NewNode(common()->Parameter(index), graph()->start()); | |
70 } | |
71 | |
72 Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) { | |
73 Node* p0 = Parameter(0); | |
74 Node* p1 = Parameter(1); | |
75 NodeProperties::SetBounds(p0, Bounds(lhs)); | |
76 NodeProperties::SetBounds(p1, Bounds(rhs)); | |
77 Node* n = graph()->NewNode( | |
78 op, p0, p1, context_node_, graph()->start(), graph()->start()); | |
79 return NodeProperties::GetBounds(n).upper; | |
80 } | |
81 | |
82 Type* RandomRange(bool int32 = false) { | |
83 std::vector<double>& numbers = int32 ? int32s : integers; | |
84 double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; | |
85 double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; | |
86 return NewRange(i, j); | |
87 } | |
88 | |
89 Type* NewRange(double i, double j) { | |
90 if (i > j) std::swap(i, j); | |
91 return Type::Range(i, j, main_zone()); | |
92 } | |
93 | |
94 double RandomInt(double min, double max) { | |
95 switch (rng_->NextInt(4)) { | |
96 case 0: return min; | |
97 case 1: return max; | |
98 default: break; | |
99 } | |
100 if (min == +V8_INFINITY) return +V8_INFINITY; | |
101 if (max == -V8_INFINITY) return -V8_INFINITY; | |
102 if (min == -V8_INFINITY && max == +V8_INFINITY) { | |
103 return rng_->NextInt() * static_cast<double>(rng_->NextInt()); | |
104 } | |
105 double result = nearbyint(min + (max - min) * rng_->NextDouble()); | |
106 if (IsMinusZero(result)) return 0; | |
107 if (std::isnan(result)) return rng_->NextInt(2) ? min : max; | |
108 DCHECK(min <= result && result <= max); | |
109 return result; | |
110 } | |
111 | |
112 double RandomInt(Type::RangeType* range) { | |
113 return RandomInt(range->Min(), range->Max()); | |
114 } | |
115 | |
116 // Careful, this function runs O(max_width^5) trials. | |
117 template <class BinaryFunction> | |
118 void TestBinaryArithOpCloseToZero(const Operator* op, BinaryFunction opfun, | |
119 int max_width) { | |
120 const int min_min = -2 - max_width / 2; | |
121 const int max_min = 2 + max_width / 2; | |
122 for (int width = 0; width < max_width; width++) { | |
123 for (int lmin = min_min; lmin <= max_min; lmin++) { | |
124 for (int rmin = min_min; rmin <= max_min; rmin++) { | |
125 Type* r1 = NewRange(lmin, lmin + width); | |
126 Type* r2 = NewRange(rmin, rmin + width); | |
127 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
128 | |
129 for (int x1 = lmin; x1 < lmin + width; x1++) { | |
130 for (int x2 = rmin; x2 < rmin + width; x2++) { | |
131 double result_value = opfun(x1, x2); | |
132 Type* result_type = Type::Constant( | |
133 isolate()->factory()->NewNumber(result_value), main_zone()); | |
134 CHECK(result_type->Is(expected_type)); | |
135 } | |
136 } | |
137 } | |
138 } | |
139 } | |
140 } | |
141 | |
142 template <class BinaryFunction> | |
143 void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) { | |
144 TestBinaryArithOpCloseToZero(op, opfun, 8); | |
145 for (int i = 0; i < 100; ++i) { | |
146 Type::RangeType* r1 = RandomRange()->AsRange(); | |
147 Type::RangeType* r2 = RandomRange()->AsRange(); | |
148 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
149 for (int i = 0; i < 10; i++) { | |
150 double x1 = RandomInt(r1); | |
151 double x2 = RandomInt(r2); | |
152 double result_value = opfun(x1, x2); | |
153 Type* result_type = Type::Constant( | |
154 isolate()->factory()->NewNumber(result_value), main_zone()); | |
155 CHECK(result_type->Is(expected_type)); | |
156 } | |
157 } | |
158 } | |
159 | |
160 template <class BinaryFunction> | |
161 void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) { | |
162 for (int i = 0; i < 100; ++i) { | |
163 Type::RangeType* r1 = RandomRange()->AsRange(); | |
164 Type::RangeType* r2 = RandomRange()->AsRange(); | |
165 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
166 for (int i = 0; i < 10; i++) { | |
167 double x1 = RandomInt(r1); | |
168 double x2 = RandomInt(r2); | |
169 bool result_value = opfun(x1, x2); | |
170 Type* result_type = | |
171 Type::Constant(result_value ? isolate()->factory()->true_value() | |
172 : isolate()->factory()->false_value(), | |
173 main_zone()); | |
174 CHECK(result_type->Is(expected_type)); | |
175 } | |
176 } | |
177 } | |
178 | |
179 template <class BinaryFunction> | |
180 void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) { | |
181 for (int i = 0; i < 100; ++i) { | |
182 Type::RangeType* r1 = RandomRange(true)->AsRange(); | |
183 Type::RangeType* r2 = RandomRange(true)->AsRange(); | |
184 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
185 for (int i = 0; i < 10; i++) { | |
186 int32_t x1 = static_cast<int32_t>(RandomInt(r1)); | |
187 int32_t x2 = static_cast<int32_t>(RandomInt(r2)); | |
188 double result_value = opfun(x1, x2); | |
189 Type* result_type = Type::Constant( | |
190 isolate()->factory()->NewNumber(result_value), main_zone()); | |
191 CHECK(result_type->Is(expected_type)); | |
192 } | |
193 } | |
194 } | |
195 | |
196 Type* RandomSubtype(Type* type) { | |
197 Type* subtype; | |
198 do { | |
199 subtype = types_.Fuzz(); | |
200 } while (!subtype->Is(type)); | |
201 return subtype; | |
202 } | |
203 | |
204 void TestBinaryMonotonicity(const Operator* op) { | |
205 for (int i = 0; i < 50; ++i) { | |
206 Type* type1 = types_.Fuzz(); | |
207 Type* type2 = types_.Fuzz(); | |
208 Type* type = TypeBinaryOp(op, type1, type2); | |
209 Type* subtype1 = RandomSubtype(type1);; | |
210 Type* subtype2 = RandomSubtype(type2);; | |
211 Type* subtype = TypeBinaryOp(op, subtype1, subtype2); | |
212 CHECK(subtype->Is(type)); | |
213 } | |
214 } | |
215 }; | |
216 | |
217 | |
218 static int32_t shift_left(int32_t x, int32_t y) { return x << y; } | |
219 static int32_t shift_right(int32_t x, int32_t y) { return x >> y; } | |
220 static int32_t bit_or(int32_t x, int32_t y) { return x | y; } | |
221 static int32_t bit_and(int32_t x, int32_t y) { return x & y; } | |
222 static int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; } | |
223 | |
224 | |
225 //------------------------------------------------------------------------------ | |
226 // Soundness | |
227 // For simplicity, we currently only test soundness on expression operators | |
228 // that have a direct equivalent in C++. Also, testing is currently limited | |
229 // to ranges as input types. | |
230 | |
231 | |
232 TEST(TypeJSAdd) { | |
233 TyperTester t; | |
234 t.TestBinaryArithOp(t.javascript_.Add(), std::plus<double>()); | |
235 } | |
236 | |
237 | |
238 TEST(TypeJSSubtract) { | |
239 TyperTester t; | |
240 t.TestBinaryArithOp(t.javascript_.Subtract(), std::minus<double>()); | |
241 } | |
242 | |
243 | |
244 TEST(TypeJSMultiply) { | |
245 TyperTester t; | |
246 t.TestBinaryArithOp(t.javascript_.Multiply(), std::multiplies<double>()); | |
247 } | |
248 | |
249 | |
250 TEST(TypeJSDivide) { | |
251 TyperTester t; | |
252 t.TestBinaryArithOp(t.javascript_.Divide(), std::divides<double>()); | |
253 } | |
254 | |
255 | |
256 TEST(TypeJSModulus) { | |
257 TyperTester t; | |
258 t.TestBinaryArithOp(t.javascript_.Modulus(), modulo); | |
259 } | |
260 | |
261 | |
262 TEST(TypeJSBitwiseOr) { | |
263 TyperTester t; | |
264 t.TestBinaryBitOp(t.javascript_.BitwiseOr(), bit_or); | |
265 } | |
266 | |
267 | |
268 TEST(TypeJSBitwiseAnd) { | |
269 TyperTester t; | |
270 t.TestBinaryBitOp(t.javascript_.BitwiseAnd(), bit_and); | |
271 } | |
272 | |
273 | |
274 TEST(TypeJSBitwiseXor) { | |
275 TyperTester t; | |
276 t.TestBinaryBitOp(t.javascript_.BitwiseXor(), bit_xor); | |
277 } | |
278 | |
279 | |
280 TEST(TypeJSShiftLeft) { | |
281 TyperTester t; | |
282 t.TestBinaryBitOp(t.javascript_.ShiftLeft(), shift_left); | |
283 } | |
284 | |
285 | |
286 TEST(TypeJSShiftRight) { | |
287 TyperTester t; | |
288 t.TestBinaryBitOp(t.javascript_.ShiftRight(), shift_right); | |
289 } | |
290 | |
291 | |
292 TEST(TypeJSLessThan) { | |
293 TyperTester t; | |
294 t.TestBinaryCompareOp(t.javascript_.LessThan(), std::less<double>()); | |
295 } | |
296 | |
297 | |
298 TEST(TypeJSLessThanOrEqual) { | |
299 TyperTester t; | |
300 t.TestBinaryCompareOp( | |
301 t.javascript_.LessThanOrEqual(), std::less_equal<double>()); | |
302 } | |
303 | |
304 | |
305 TEST(TypeJSGreaterThan) { | |
306 TyperTester t; | |
307 t.TestBinaryCompareOp(t.javascript_.GreaterThan(), std::greater<double>()); | |
308 } | |
309 | |
310 | |
311 TEST(TypeJSGreaterThanOrEqual) { | |
312 TyperTester t; | |
313 t.TestBinaryCompareOp( | |
314 t.javascript_.GreaterThanOrEqual(), std::greater_equal<double>()); | |
315 } | |
316 | |
317 | |
318 TEST(TypeJSEqual) { | |
319 TyperTester t; | |
320 t.TestBinaryCompareOp(t.javascript_.Equal(), std::equal_to<double>()); | |
321 } | |
322 | |
323 | |
324 TEST(TypeJSNotEqual) { | |
325 TyperTester t; | |
326 t.TestBinaryCompareOp(t.javascript_.NotEqual(), std::not_equal_to<double>()); | |
327 } | |
328 | |
329 | |
330 // For numbers there's no difference between strict and non-strict equality. | |
331 TEST(TypeJSStrictEqual) { | |
332 TyperTester t; | |
333 t.TestBinaryCompareOp(t.javascript_.StrictEqual(), std::equal_to<double>()); | |
334 } | |
335 | |
336 | |
337 TEST(TypeJSStrictNotEqual) { | |
338 TyperTester t; | |
339 t.TestBinaryCompareOp( | |
340 t.javascript_.StrictNotEqual(), std::not_equal_to<double>()); | |
341 } | |
342 | |
343 | |
344 //------------------------------------------------------------------------------ | |
345 // Monotonicity | |
346 | |
347 | |
348 // List should be in sync with JS_SIMPLE_BINOP_LIST. | |
349 #define JSBINOP_LIST(V) \ | |
350 V(Equal) \ | |
351 V(NotEqual) \ | |
352 V(StrictEqual) \ | |
353 V(StrictNotEqual) \ | |
354 V(LessThan) \ | |
355 V(GreaterThan) \ | |
356 V(LessThanOrEqual) \ | |
357 V(GreaterThanOrEqual) \ | |
358 V(BitwiseOr) \ | |
359 V(BitwiseXor) \ | |
360 V(BitwiseAnd) \ | |
361 V(ShiftLeft) \ | |
362 V(ShiftRight) \ | |
363 V(ShiftRightLogical) \ | |
364 V(Add) \ | |
365 V(Subtract) \ | |
366 V(Multiply) \ | |
367 V(Divide) \ | |
368 V(Modulus) | |
369 | |
370 | |
371 #define TEST_FUNC(name) \ | |
372 TEST(Monotonicity_##name) { \ | |
373 TyperTester t; \ | |
374 t.TestBinaryMonotonicity(t.javascript_.name()); \ | |
375 } | |
376 JSBINOP_LIST(TEST_FUNC) | |
377 #undef TEST_FUNC | |
OLD | NEW |