| OLD | NEW |
| (Empty) |
| 1 // Copyright 2014 the V8 project authors. All rights reserved. | |
| 2 // Use of this source code is governed by a BSD-style license that can be | |
| 3 // found in the LICENSE file. | |
| 4 | |
| 5 #include <functional> | |
| 6 | |
| 7 #include "src/codegen.h" | |
| 8 #include "src/compiler/js-operator.h" | |
| 9 #include "src/compiler/node-properties.h" | |
| 10 #include "src/compiler/typer.h" | |
| 11 #include "test/cctest/cctest.h" | |
| 12 #include "test/cctest/compiler/graph-builder-tester.h" | |
| 13 #include "test/cctest/types-fuzz.h" | |
| 14 | |
| 15 using namespace v8::internal; | |
| 16 using namespace v8::internal::compiler; | |
| 17 | |
| 18 | |
| 19 // TODO(titzer): generate a large set of deterministic inputs for these tests. | |
| 20 class TyperTester : public HandleAndZoneScope, public GraphAndBuilders { | |
| 21 public: | |
| 22 TyperTester() | |
| 23 : GraphAndBuilders(main_zone()), | |
| 24 types_(main_zone(), isolate()), | |
| 25 typer_(isolate(), graph(), MaybeHandle<Context>()), | |
| 26 javascript_(main_zone()) { | |
| 27 Node* s = graph()->NewNode(common()->Start(3)); | |
| 28 graph()->SetStart(s); | |
| 29 context_node_ = graph()->NewNode(common()->Parameter(2), graph()->start()); | |
| 30 rng_ = isolate()->random_number_generator(); | |
| 31 | |
| 32 integers.push_back(0); | |
| 33 integers.push_back(0); | |
| 34 integers.push_back(-1); | |
| 35 integers.push_back(+1); | |
| 36 integers.push_back(-V8_INFINITY); | |
| 37 integers.push_back(+V8_INFINITY); | |
| 38 for (int i = 0; i < 5; ++i) { | |
| 39 double x = rng_->NextInt(); | |
| 40 integers.push_back(x); | |
| 41 x *= rng_->NextInt(); | |
| 42 if (!IsMinusZero(x)) integers.push_back(x); | |
| 43 } | |
| 44 | |
| 45 int32s.push_back(0); | |
| 46 int32s.push_back(0); | |
| 47 int32s.push_back(-1); | |
| 48 int32s.push_back(+1); | |
| 49 int32s.push_back(kMinInt); | |
| 50 int32s.push_back(kMaxInt); | |
| 51 for (int i = 0; i < 10; ++i) { | |
| 52 int32s.push_back(rng_->NextInt()); | |
| 53 } | |
| 54 } | |
| 55 | |
| 56 Types<Type, Type*, Zone> types_; | |
| 57 Typer typer_; | |
| 58 JSOperatorBuilder javascript_; | |
| 59 Node* context_node_; | |
| 60 v8::base::RandomNumberGenerator* rng_; | |
| 61 std::vector<double> integers; | |
| 62 std::vector<double> int32s; | |
| 63 | |
| 64 Isolate* isolate() { return main_isolate(); } | |
| 65 Graph* graph() { return main_graph_; } | |
| 66 CommonOperatorBuilder* common() { return &main_common_; } | |
| 67 | |
| 68 Node* Parameter(int index = 0) { | |
| 69 return graph()->NewNode(common()->Parameter(index), graph()->start()); | |
| 70 } | |
| 71 | |
| 72 Type* TypeBinaryOp(const Operator* op, Type* lhs, Type* rhs) { | |
| 73 Node* p0 = Parameter(0); | |
| 74 Node* p1 = Parameter(1); | |
| 75 NodeProperties::SetBounds(p0, Bounds(lhs)); | |
| 76 NodeProperties::SetBounds(p1, Bounds(rhs)); | |
| 77 Node* n = graph()->NewNode( | |
| 78 op, p0, p1, context_node_, graph()->start(), graph()->start()); | |
| 79 return NodeProperties::GetBounds(n).upper; | |
| 80 } | |
| 81 | |
| 82 Type* RandomRange(bool int32 = false) { | |
| 83 std::vector<double>& numbers = int32 ? int32s : integers; | |
| 84 double i = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; | |
| 85 double j = numbers[rng_->NextInt(static_cast<int>(numbers.size()))]; | |
| 86 return NewRange(i, j); | |
| 87 } | |
| 88 | |
| 89 Type* NewRange(double i, double j) { | |
| 90 if (i > j) std::swap(i, j); | |
| 91 return Type::Range(i, j, main_zone()); | |
| 92 } | |
| 93 | |
| 94 double RandomInt(double min, double max) { | |
| 95 switch (rng_->NextInt(4)) { | |
| 96 case 0: return min; | |
| 97 case 1: return max; | |
| 98 default: break; | |
| 99 } | |
| 100 if (min == +V8_INFINITY) return +V8_INFINITY; | |
| 101 if (max == -V8_INFINITY) return -V8_INFINITY; | |
| 102 if (min == -V8_INFINITY && max == +V8_INFINITY) { | |
| 103 return rng_->NextInt() * static_cast<double>(rng_->NextInt()); | |
| 104 } | |
| 105 double result = nearbyint(min + (max - min) * rng_->NextDouble()); | |
| 106 if (IsMinusZero(result)) return 0; | |
| 107 if (std::isnan(result)) return rng_->NextInt(2) ? min : max; | |
| 108 DCHECK(min <= result && result <= max); | |
| 109 return result; | |
| 110 } | |
| 111 | |
| 112 double RandomInt(Type::RangeType* range) { | |
| 113 return RandomInt(range->Min(), range->Max()); | |
| 114 } | |
| 115 | |
| 116 // Careful, this function runs O(max_width^5) trials. | |
| 117 template <class BinaryFunction> | |
| 118 void TestBinaryArithOpCloseToZero(const Operator* op, BinaryFunction opfun, | |
| 119 int max_width) { | |
| 120 const int min_min = -2 - max_width / 2; | |
| 121 const int max_min = 2 + max_width / 2; | |
| 122 for (int width = 0; width < max_width; width++) { | |
| 123 for (int lmin = min_min; lmin <= max_min; lmin++) { | |
| 124 for (int rmin = min_min; rmin <= max_min; rmin++) { | |
| 125 Type* r1 = NewRange(lmin, lmin + width); | |
| 126 Type* r2 = NewRange(rmin, rmin + width); | |
| 127 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
| 128 | |
| 129 for (int x1 = lmin; x1 < lmin + width; x1++) { | |
| 130 for (int x2 = rmin; x2 < rmin + width; x2++) { | |
| 131 double result_value = opfun(x1, x2); | |
| 132 Type* result_type = Type::Constant( | |
| 133 isolate()->factory()->NewNumber(result_value), main_zone()); | |
| 134 CHECK(result_type->Is(expected_type)); | |
| 135 } | |
| 136 } | |
| 137 } | |
| 138 } | |
| 139 } | |
| 140 } | |
| 141 | |
| 142 template <class BinaryFunction> | |
| 143 void TestBinaryArithOp(const Operator* op, BinaryFunction opfun) { | |
| 144 TestBinaryArithOpCloseToZero(op, opfun, 8); | |
| 145 for (int i = 0; i < 100; ++i) { | |
| 146 Type::RangeType* r1 = RandomRange()->AsRange(); | |
| 147 Type::RangeType* r2 = RandomRange()->AsRange(); | |
| 148 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
| 149 for (int i = 0; i < 10; i++) { | |
| 150 double x1 = RandomInt(r1); | |
| 151 double x2 = RandomInt(r2); | |
| 152 double result_value = opfun(x1, x2); | |
| 153 Type* result_type = Type::Constant( | |
| 154 isolate()->factory()->NewNumber(result_value), main_zone()); | |
| 155 CHECK(result_type->Is(expected_type)); | |
| 156 } | |
| 157 } | |
| 158 } | |
| 159 | |
| 160 template <class BinaryFunction> | |
| 161 void TestBinaryCompareOp(const Operator* op, BinaryFunction opfun) { | |
| 162 for (int i = 0; i < 100; ++i) { | |
| 163 Type::RangeType* r1 = RandomRange()->AsRange(); | |
| 164 Type::RangeType* r2 = RandomRange()->AsRange(); | |
| 165 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
| 166 for (int i = 0; i < 10; i++) { | |
| 167 double x1 = RandomInt(r1); | |
| 168 double x2 = RandomInt(r2); | |
| 169 bool result_value = opfun(x1, x2); | |
| 170 Type* result_type = | |
| 171 Type::Constant(result_value ? isolate()->factory()->true_value() | |
| 172 : isolate()->factory()->false_value(), | |
| 173 main_zone()); | |
| 174 CHECK(result_type->Is(expected_type)); | |
| 175 } | |
| 176 } | |
| 177 } | |
| 178 | |
| 179 template <class BinaryFunction> | |
| 180 void TestBinaryBitOp(const Operator* op, BinaryFunction opfun) { | |
| 181 for (int i = 0; i < 100; ++i) { | |
| 182 Type::RangeType* r1 = RandomRange(true)->AsRange(); | |
| 183 Type::RangeType* r2 = RandomRange(true)->AsRange(); | |
| 184 Type* expected_type = TypeBinaryOp(op, r1, r2); | |
| 185 for (int i = 0; i < 10; i++) { | |
| 186 int32_t x1 = static_cast<int32_t>(RandomInt(r1)); | |
| 187 int32_t x2 = static_cast<int32_t>(RandomInt(r2)); | |
| 188 double result_value = opfun(x1, x2); | |
| 189 Type* result_type = Type::Constant( | |
| 190 isolate()->factory()->NewNumber(result_value), main_zone()); | |
| 191 CHECK(result_type->Is(expected_type)); | |
| 192 } | |
| 193 } | |
| 194 } | |
| 195 | |
| 196 Type* RandomSubtype(Type* type) { | |
| 197 Type* subtype; | |
| 198 do { | |
| 199 subtype = types_.Fuzz(); | |
| 200 } while (!subtype->Is(type)); | |
| 201 return subtype; | |
| 202 } | |
| 203 | |
| 204 void TestBinaryMonotonicity(const Operator* op) { | |
| 205 for (int i = 0; i < 50; ++i) { | |
| 206 Type* type1 = types_.Fuzz(); | |
| 207 Type* type2 = types_.Fuzz(); | |
| 208 Type* type = TypeBinaryOp(op, type1, type2); | |
| 209 Type* subtype1 = RandomSubtype(type1);; | |
| 210 Type* subtype2 = RandomSubtype(type2);; | |
| 211 Type* subtype = TypeBinaryOp(op, subtype1, subtype2); | |
| 212 CHECK(subtype->Is(type)); | |
| 213 } | |
| 214 } | |
| 215 }; | |
| 216 | |
| 217 | |
| 218 static int32_t shift_left(int32_t x, int32_t y) { return x << y; } | |
| 219 static int32_t shift_right(int32_t x, int32_t y) { return x >> y; } | |
| 220 static int32_t bit_or(int32_t x, int32_t y) { return x | y; } | |
| 221 static int32_t bit_and(int32_t x, int32_t y) { return x & y; } | |
| 222 static int32_t bit_xor(int32_t x, int32_t y) { return x ^ y; } | |
| 223 | |
| 224 | |
| 225 //------------------------------------------------------------------------------ | |
| 226 // Soundness | |
| 227 // For simplicity, we currently only test soundness on expression operators | |
| 228 // that have a direct equivalent in C++. Also, testing is currently limited | |
| 229 // to ranges as input types. | |
| 230 | |
| 231 | |
| 232 TEST(TypeJSAdd) { | |
| 233 TyperTester t; | |
| 234 t.TestBinaryArithOp(t.javascript_.Add(), std::plus<double>()); | |
| 235 } | |
| 236 | |
| 237 | |
| 238 TEST(TypeJSSubtract) { | |
| 239 TyperTester t; | |
| 240 t.TestBinaryArithOp(t.javascript_.Subtract(), std::minus<double>()); | |
| 241 } | |
| 242 | |
| 243 | |
| 244 TEST(TypeJSMultiply) { | |
| 245 TyperTester t; | |
| 246 t.TestBinaryArithOp(t.javascript_.Multiply(), std::multiplies<double>()); | |
| 247 } | |
| 248 | |
| 249 | |
| 250 TEST(TypeJSDivide) { | |
| 251 TyperTester t; | |
| 252 t.TestBinaryArithOp(t.javascript_.Divide(), std::divides<double>()); | |
| 253 } | |
| 254 | |
| 255 | |
| 256 TEST(TypeJSModulus) { | |
| 257 TyperTester t; | |
| 258 t.TestBinaryArithOp(t.javascript_.Modulus(), modulo); | |
| 259 } | |
| 260 | |
| 261 | |
| 262 TEST(TypeJSBitwiseOr) { | |
| 263 TyperTester t; | |
| 264 t.TestBinaryBitOp(t.javascript_.BitwiseOr(), bit_or); | |
| 265 } | |
| 266 | |
| 267 | |
| 268 TEST(TypeJSBitwiseAnd) { | |
| 269 TyperTester t; | |
| 270 t.TestBinaryBitOp(t.javascript_.BitwiseAnd(), bit_and); | |
| 271 } | |
| 272 | |
| 273 | |
| 274 TEST(TypeJSBitwiseXor) { | |
| 275 TyperTester t; | |
| 276 t.TestBinaryBitOp(t.javascript_.BitwiseXor(), bit_xor); | |
| 277 } | |
| 278 | |
| 279 | |
| 280 TEST(TypeJSShiftLeft) { | |
| 281 TyperTester t; | |
| 282 t.TestBinaryBitOp(t.javascript_.ShiftLeft(), shift_left); | |
| 283 } | |
| 284 | |
| 285 | |
| 286 TEST(TypeJSShiftRight) { | |
| 287 TyperTester t; | |
| 288 t.TestBinaryBitOp(t.javascript_.ShiftRight(), shift_right); | |
| 289 } | |
| 290 | |
| 291 | |
| 292 TEST(TypeJSLessThan) { | |
| 293 TyperTester t; | |
| 294 t.TestBinaryCompareOp(t.javascript_.LessThan(), std::less<double>()); | |
| 295 } | |
| 296 | |
| 297 | |
| 298 TEST(TypeJSLessThanOrEqual) { | |
| 299 TyperTester t; | |
| 300 t.TestBinaryCompareOp( | |
| 301 t.javascript_.LessThanOrEqual(), std::less_equal<double>()); | |
| 302 } | |
| 303 | |
| 304 | |
| 305 TEST(TypeJSGreaterThan) { | |
| 306 TyperTester t; | |
| 307 t.TestBinaryCompareOp(t.javascript_.GreaterThan(), std::greater<double>()); | |
| 308 } | |
| 309 | |
| 310 | |
| 311 TEST(TypeJSGreaterThanOrEqual) { | |
| 312 TyperTester t; | |
| 313 t.TestBinaryCompareOp( | |
| 314 t.javascript_.GreaterThanOrEqual(), std::greater_equal<double>()); | |
| 315 } | |
| 316 | |
| 317 | |
| 318 TEST(TypeJSEqual) { | |
| 319 TyperTester t; | |
| 320 t.TestBinaryCompareOp(t.javascript_.Equal(), std::equal_to<double>()); | |
| 321 } | |
| 322 | |
| 323 | |
| 324 TEST(TypeJSNotEqual) { | |
| 325 TyperTester t; | |
| 326 t.TestBinaryCompareOp(t.javascript_.NotEqual(), std::not_equal_to<double>()); | |
| 327 } | |
| 328 | |
| 329 | |
| 330 // For numbers there's no difference between strict and non-strict equality. | |
| 331 TEST(TypeJSStrictEqual) { | |
| 332 TyperTester t; | |
| 333 t.TestBinaryCompareOp(t.javascript_.StrictEqual(), std::equal_to<double>()); | |
| 334 } | |
| 335 | |
| 336 | |
| 337 TEST(TypeJSStrictNotEqual) { | |
| 338 TyperTester t; | |
| 339 t.TestBinaryCompareOp( | |
| 340 t.javascript_.StrictNotEqual(), std::not_equal_to<double>()); | |
| 341 } | |
| 342 | |
| 343 | |
| 344 //------------------------------------------------------------------------------ | |
| 345 // Monotonicity | |
| 346 | |
| 347 | |
| 348 // List should be in sync with JS_SIMPLE_BINOP_LIST. | |
| 349 #define JSBINOP_LIST(V) \ | |
| 350 V(Equal) \ | |
| 351 V(NotEqual) \ | |
| 352 V(StrictEqual) \ | |
| 353 V(StrictNotEqual) \ | |
| 354 V(LessThan) \ | |
| 355 V(GreaterThan) \ | |
| 356 V(LessThanOrEqual) \ | |
| 357 V(GreaterThanOrEqual) \ | |
| 358 V(BitwiseOr) \ | |
| 359 V(BitwiseXor) \ | |
| 360 V(BitwiseAnd) \ | |
| 361 V(ShiftLeft) \ | |
| 362 V(ShiftRight) \ | |
| 363 V(ShiftRightLogical) \ | |
| 364 V(Add) \ | |
| 365 V(Subtract) \ | |
| 366 V(Multiply) \ | |
| 367 V(Divide) \ | |
| 368 V(Modulus) | |
| 369 | |
| 370 | |
| 371 #define TEST_FUNC(name) \ | |
| 372 TEST(Monotonicity_##name) { \ | |
| 373 TyperTester t; \ | |
| 374 t.TestBinaryMonotonicity(t.javascript_.name()); \ | |
| 375 } | |
| 376 JSBINOP_LIST(TEST_FUNC) | |
| 377 #undef TEST_FUNC | |
| OLD | NEW |