Index: third_party/sqlite/sqlite-src-3080704/ext/misc/fuzzer.c |
diff --git a/third_party/sqlite/src/src/test_fuzzer.c b/third_party/sqlite/sqlite-src-3080704/ext/misc/fuzzer.c |
similarity index 54% |
copy from third_party/sqlite/src/src/test_fuzzer.c |
copy to third_party/sqlite/sqlite-src-3080704/ext/misc/fuzzer.c |
index cf59257175a32bfaa2b9d69eb859a0824fb6194d..fe41cda8c24ae3dfcd58b01f46fe075fbbcd00f9 100644 |
--- a/third_party/sqlite/src/src/test_fuzzer.c |
+++ b/third_party/sqlite/sqlite-src-3080704/ext/misc/fuzzer.c |
@@ -10,43 +10,58 @@ |
** |
************************************************************************* |
** |
-** Code for demonstartion virtual table that generates variations |
+** Code for a demonstration virtual table that generates variations |
** on an input word at increasing edit distances from the original. |
** |
** A fuzzer virtual table is created like this: |
** |
-** CREATE VIRTUAL TABLE temp.f USING fuzzer; |
+** CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>); |
** |
-** The name of the new virtual table in the example above is "f". |
-** Note that all fuzzer virtual tables must be TEMP tables. The |
-** "temp." prefix in front of the table name is required when the |
-** table is being created. The "temp." prefix can be omitted when |
-** using the table as long as the name is unambiguous. |
+** When it is created, the new fuzzer table must be supplied with the |
+** name of a "fuzzer data table", which must reside in the same database |
+** file as the new fuzzer table. The fuzzer data table contains the various |
+** transformations and their costs that the fuzzer logic uses to generate |
+** variations. |
** |
-** Before being used, the fuzzer needs to be programmed by giving it |
-** character transformations and a cost associated with each transformation. |
-** Examples: |
-** |
-** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100); |
-** |
-** The above statement says that the cost of inserting a letter 'a' is |
-** 100. (All costs are integers. We recommend that costs be scaled so |
-** that the average cost is around 100.) |
-** |
-** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87); |
+** The fuzzer data table must contain exactly four columns (more precisely, |
+** the statement "SELECT * FROM <fuzzer_data_table>" must return records |
+** that consist of four columns). It does not matter what the columns are |
+** named. |
** |
-** The above statement says that the cost of deleting a single letter |
-** 'b' is 87. |
+** Each row in the fuzzer data table represents a single character |
+** transformation. The left most column of the row (column 0) contains an |
+** integer value - the identifier of the ruleset to which the transformation |
+** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the |
+** row (column 0) contains the input character or characters. The third |
+** column contains the output character or characters. And the fourth column |
+** contains the integer cost of making the transformation. For example: |
** |
-** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38); |
-** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40); |
+** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost); |
+** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100); |
+** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87); |
+** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38); |
+** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40); |
** |
-** This third example says that the cost of transforming the single |
-** letter "o" into the two-letter sequence "oe" is 38 and that the |
+** The first row inserted into the fuzzer data table by the SQL script |
+** above indicates that the cost of inserting a letter 'a' is 100. (All |
+** costs are integers. We recommend that costs be scaled so that the |
+** average cost is around 100.) The second INSERT statement creates a rule |
+** saying that the cost of deleting a single letter 'b' is 87. The third |
+** and fourth INSERT statements mean that the cost of transforming a |
+** single letter "o" into the two-letter sequence "oe" is 38 and that the |
** cost of transforming "oe" back into "o" is 40. |
** |
-** After all the transformation costs have been set, the fuzzer table |
-** can be queried as follows: |
+** The contents of the fuzzer data table are loaded into main memory when |
+** a fuzzer table is first created, and may be internally reloaded by the |
+** system at any subsequent time. Therefore, the fuzzer data table should be |
+** populated before the fuzzer table is created and not modified thereafter. |
+** If you do need to modify the contents of the fuzzer data table, it is |
+** recommended that the associated fuzzer table be dropped, the fuzzer data |
+** table edited, and the fuzzer table recreated within a single transaction. |
+** Alternatively, the fuzzer data table can be edited then the database |
+** connection can be closed and reopened. |
+** |
+** Once it has been created, the fuzzer table can be queried as follows: |
** |
** SELECT word, distance FROM f |
** WHERE word MATCH 'abcdefg' |
@@ -61,6 +76,9 @@ |
** the one that is returned. In the example, the search is limited to |
** strings with a total distance of less than 200. |
** |
+** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or |
+** UPDATE on a fuzzer table will throw an error. |
+** |
** It is important to put some kind of a limit on the fuzzer output. This |
** can be either in the form of a LIMIT clause at the end of the query, |
** or better, a "distance<NNN" constraint where NNN is some number. The |
@@ -93,8 +111,44 @@ |
** |
** This last query will show up to 50 words out of the vocabulary that |
** match or nearly match the $prefix. |
+** |
+** MULTIPLE RULE SETS |
+** |
+** Normally, the "ruleset" value associated with all character transformations |
+** in the fuzzer data table is zero. However, if required, the fuzzer table |
+** allows multiple rulesets to be defined. Each query uses only a single |
+** ruleset. This allows, for example, a single fuzzer table to support |
+** multiple languages. |
+** |
+** By default, only the rules from ruleset 0 are used. To specify an |
+** alternative ruleset, a "ruleset = ?" expression must be added to the |
+** WHERE clause of a SELECT, where ? is the identifier of the desired |
+** ruleset. For example: |
+** |
+** SELECT vocabulary.w FROM f, vocabulary |
+** WHERE f.word MATCH $word |
+** AND f.distance<=200 |
+** AND f.word=vocabulary.w |
+** AND f.ruleset=1 -- Specify the ruleset to use here |
+** LIMIT 20 |
+** |
+** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset |
+** 0 is used. |
+** |
+** LIMITS |
+** |
+** The maximum ruleset number is 2147483647. The maximum length of either |
+** of the strings in the second or third column of the fuzzer data table |
+** is 50 bytes. The maximum cost on a rule is 1000. |
*/ |
-#include "sqlite3.h" |
+#include "sqlite3ext.h" |
+SQLITE_EXTENSION_INIT1 |
+ |
+/* If SQLITE_DEBUG is not defined, disable assert statements. */ |
+#if !defined(NDEBUG) && !defined(SQLITE_DEBUG) |
+# define NDEBUG |
+#endif |
+ |
#include <stdlib.h> |
#include <string.h> |
#include <assert.h> |
@@ -112,10 +166,25 @@ typedef struct fuzzer_seen fuzzer_seen; |
typedef struct fuzzer_stem fuzzer_stem; |
/* |
-** Type of the "cost" of an edit operation. Might be changed to |
-** "float" or "double" or "sqlite3_int64" in the future. |
+** Various types. |
+** |
+** fuzzer_cost is the "cost" of an edit operation. |
+** |
+** fuzzer_len is the length of a matching string. |
+** |
+** fuzzer_ruleid is an ruleset identifier. |
*/ |
typedef int fuzzer_cost; |
+typedef signed char fuzzer_len; |
+typedef int fuzzer_ruleid; |
+ |
+/* |
+** Limits |
+*/ |
+#define FUZZER_MX_LENGTH 50 /* Maximum length of a rule string */ |
+#define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */ |
+#define FUZZER_MX_COST 1000 /* Maximum single-rule cost */ |
+#define FUZZER_MX_OUTPUT_LENGTH 100 /* Maximum length of an output string */ |
/* |
@@ -123,11 +192,12 @@ typedef int fuzzer_cost; |
** All rules are kept on a linked list sorted by rCost. |
*/ |
struct fuzzer_rule { |
- fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ |
- fuzzer_cost rCost; /* Cost of this transformation */ |
- int nFrom, nTo; /* Length of the zFrom and zTo strings */ |
- char *zFrom; /* Transform from */ |
- char zTo[4]; /* Transform to (extra space appended) */ |
+ fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ |
+ char *zFrom; /* Transform from */ |
+ fuzzer_cost rCost; /* Cost of this transformation */ |
+ fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */ |
+ fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */ |
+ char zTo[4]; /* Transform to (extra space appended) */ |
}; |
/* |
@@ -143,13 +213,13 @@ struct fuzzer_rule { |
*/ |
struct fuzzer_stem { |
char *zBasis; /* Word being fuzzed */ |
- int nBasis; /* Length of the zBasis string */ |
const fuzzer_rule *pRule; /* Current rule to apply */ |
- int n; /* Apply pRule at this character offset */ |
- fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ |
- fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ |
fuzzer_stem *pNext; /* Next stem in rCost order */ |
fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ |
+ fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ |
+ fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ |
+ fuzzer_len nBasis; /* Length of the zBasis string */ |
+ fuzzer_len n; /* Apply pRule at this character offset */ |
}; |
/* |
@@ -159,7 +229,6 @@ struct fuzzer_vtab { |
sqlite3_vtab base; /* Base class - must be first */ |
char *zClassName; /* Name of this class. Default: "fuzzer" */ |
fuzzer_rule *pRule; /* All active rules in this fuzzer */ |
- fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */ |
int nCursor; /* Number of active cursors */ |
}; |
@@ -179,54 +248,11 @@ struct fuzzer_cursor { |
char *zBuf; /* Temporary use buffer */ |
int nBuf; /* Bytes allocated for zBuf */ |
int nStem; /* Number of stems allocated */ |
+ int iRuleset; /* Only process rules from this ruleset */ |
fuzzer_rule nullRule; /* Null rule used first */ |
fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ |
}; |
-/* Methods for the fuzzer module */ |
-static int fuzzerConnect( |
- sqlite3 *db, |
- void *pAux, |
- int argc, const char *const*argv, |
- sqlite3_vtab **ppVtab, |
- char **pzErr |
-){ |
- fuzzer_vtab *pNew; |
- int n; |
- if( strcmp(argv[1],"temp")!=0 ){ |
- *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]); |
- return SQLITE_ERROR; |
- } |
- n = strlen(argv[0]) + 1; |
- pNew = sqlite3_malloc( sizeof(*pNew) + n ); |
- if( pNew==0 ) return SQLITE_NOMEM; |
- pNew->zClassName = (char*)&pNew[1]; |
- memcpy(pNew->zClassName, argv[0], n); |
- sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)"); |
- memset(pNew, 0, sizeof(*pNew)); |
- *ppVtab = &pNew->base; |
- return SQLITE_OK; |
-} |
-/* Note that for this virtual table, the xCreate and xConnect |
-** methods are identical. */ |
- |
-static int fuzzerDisconnect(sqlite3_vtab *pVtab){ |
- fuzzer_vtab *p = (fuzzer_vtab*)pVtab; |
- assert( p->nCursor==0 ); |
- do{ |
- while( p->pRule ){ |
- fuzzer_rule *pRule = p->pRule; |
- p->pRule = pRule->pNext; |
- sqlite3_free(pRule); |
- } |
- p->pRule = p->pNewRule; |
- p->pNewRule = 0; |
- }while( p->pRule ); |
- sqlite3_free(p); |
- return SQLITE_OK; |
-} |
-/* The xDisconnect and xDestroy methods are also the same */ |
- |
/* |
** The two input rule lists are both sorted in order of increasing |
** cost. Merge them together into a single list, sorted by cost, and |
@@ -256,25 +282,134 @@ static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ |
return head.pNext; |
} |
+/* |
+** Statement pStmt currently points to a row in the fuzzer data table. This |
+** function allocates and populates a fuzzer_rule structure according to |
+** the content of the row. |
+** |
+** If successful, *ppRule is set to point to the new object and SQLITE_OK |
+** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point |
+** to an error message and an SQLite error code returned. |
+*/ |
+static int fuzzerLoadOneRule( |
+ fuzzer_vtab *p, /* Fuzzer virtual table handle */ |
+ sqlite3_stmt *pStmt, /* Base rule on statements current row */ |
+ fuzzer_rule **ppRule, /* OUT: New rule object */ |
+ char **pzErr /* OUT: Error message */ |
+){ |
+ sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0); |
+ const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1); |
+ const char *zTo = (const char *)sqlite3_column_text(pStmt, 2); |
+ int nCost = sqlite3_column_int(pStmt, 3); |
+ |
+ int rc = SQLITE_OK; /* Return code */ |
+ int nFrom; /* Size of string zFrom, in bytes */ |
+ int nTo; /* Size of string zTo, in bytes */ |
+ fuzzer_rule *pRule = 0; /* New rule object to return */ |
+ |
+ if( zFrom==0 ) zFrom = ""; |
+ if( zTo==0 ) zTo = ""; |
+ nFrom = (int)strlen(zFrom); |
+ nTo = (int)strlen(zTo); |
+ |
+ /* Silently ignore null transformations */ |
+ if( strcmp(zFrom, zTo)==0 ){ |
+ *ppRule = 0; |
+ return SQLITE_OK; |
+ } |
+ |
+ if( nCost<=0 || nCost>FUZZER_MX_COST ){ |
+ *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d", |
+ p->zClassName, FUZZER_MX_COST |
+ ); |
+ rc = SQLITE_ERROR; |
+ }else |
+ if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){ |
+ *pzErr = sqlite3_mprintf("%s: maximum string length is %d", |
+ p->zClassName, FUZZER_MX_LENGTH |
+ ); |
+ rc = SQLITE_ERROR; |
+ }else |
+ if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){ |
+ *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d", |
+ p->zClassName, FUZZER_MX_RULEID |
+ ); |
+ rc = SQLITE_ERROR; |
+ }else{ |
+ |
+ pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); |
+ if( pRule==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ memset(pRule, 0, sizeof(*pRule)); |
+ pRule->zFrom = &pRule->zTo[nTo+1]; |
+ pRule->nFrom = nFrom; |
+ memcpy(pRule->zFrom, zFrom, nFrom+1); |
+ memcpy(pRule->zTo, zTo, nTo+1); |
+ pRule->nTo = nTo; |
+ pRule->rCost = nCost; |
+ pRule->iRuleset = (int)iRuleset; |
+ } |
+ } |
+ |
+ *ppRule = pRule; |
+ return rc; |
+} |
/* |
-** Open a new fuzzer cursor. |
+** Load the content of the fuzzer data table into memory. |
*/ |
-static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
- fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
- fuzzer_cursor *pCur; |
- pCur = sqlite3_malloc( sizeof(*pCur) ); |
- if( pCur==0 ) return SQLITE_NOMEM; |
- memset(pCur, 0, sizeof(*pCur)); |
- pCur->pVtab = p; |
- *ppCursor = &pCur->base; |
- if( p->nCursor==0 && p->pNewRule ){ |
+static int fuzzerLoadRules( |
+ sqlite3 *db, /* Database handle */ |
+ fuzzer_vtab *p, /* Virtual fuzzer table to configure */ |
+ const char *zDb, /* Database containing rules data */ |
+ const char *zData, /* Table containing rules data */ |
+ char **pzErr /* OUT: Error message */ |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ char *zSql; /* SELECT used to read from rules table */ |
+ fuzzer_rule *pHead = 0; |
+ |
+ zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData); |
+ if( zSql==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ int rc2; /* finalize() return code */ |
+ sqlite3_stmt *pStmt = 0; |
+ rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
+ if( rc!=SQLITE_OK ){ |
+ *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db)); |
+ }else if( sqlite3_column_count(pStmt)!=4 ){ |
+ *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4", |
+ p->zClassName, zData, sqlite3_column_count(pStmt) |
+ ); |
+ rc = SQLITE_ERROR; |
+ }else{ |
+ while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ |
+ fuzzer_rule *pRule = 0; |
+ rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr); |
+ if( pRule ){ |
+ pRule->pNext = pHead; |
+ pHead = pRule; |
+ } |
+ } |
+ } |
+ rc2 = sqlite3_finalize(pStmt); |
+ if( rc==SQLITE_OK ) rc = rc2; |
+ } |
+ sqlite3_free(zSql); |
+ |
+ /* All rules are now in a singly linked list starting at pHead. This |
+ ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to |
+ ** point to the head of the sorted list. |
+ */ |
+ if( rc==SQLITE_OK ){ |
unsigned int i; |
fuzzer_rule *pX; |
fuzzer_rule *a[15]; |
for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; |
- while( (pX = p->pNewRule)!=0 ){ |
- p->pNewRule = pX->pNext; |
+ while( (pX = pHead)!=0 ){ |
+ pHead = pX->pNext; |
pX->pNext = 0; |
for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ |
pX = fuzzerMergeRules(a[i], pX); |
@@ -286,7 +421,143 @@ static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
pX = fuzzerMergeRules(a[i], pX); |
} |
p->pRule = fuzzerMergeRules(p->pRule, pX); |
+ }else{ |
+ /* An error has occurred. Setting p->pRule to point to the head of the |
+ ** allocated list ensures that the list will be cleaned up in this case. |
+ */ |
+ assert( p->pRule==0 ); |
+ p->pRule = pHead; |
+ } |
+ |
+ return rc; |
+} |
+ |
+/* |
+** This function converts an SQL quoted string into an unquoted string |
+** and returns a pointer to a buffer allocated using sqlite3_malloc() |
+** containing the result. The caller should eventually free this buffer |
+** using sqlite3_free. |
+** |
+** Examples: |
+** |
+** "abc" becomes abc |
+** 'xyz' becomes xyz |
+** [pqr] becomes pqr |
+** `mno` becomes mno |
+*/ |
+static char *fuzzerDequote(const char *zIn){ |
+ int nIn; /* Size of input string, in bytes */ |
+ char *zOut; /* Output (dequoted) string */ |
+ |
+ nIn = (int)strlen(zIn); |
+ zOut = sqlite3_malloc(nIn+1); |
+ if( zOut ){ |
+ char q = zIn[0]; /* Quote character (if any ) */ |
+ |
+ if( q!='[' && q!= '\'' && q!='"' && q!='`' ){ |
+ memcpy(zOut, zIn, nIn+1); |
+ }else{ |
+ int iOut = 0; /* Index of next byte to write to output */ |
+ int iIn; /* Index of next byte to read from input */ |
+ |
+ if( q=='[' ) q = ']'; |
+ for(iIn=1; iIn<nIn; iIn++){ |
+ if( zIn[iIn]==q ) iIn++; |
+ zOut[iOut++] = zIn[iIn]; |
+ } |
+ } |
+ assert( (int)strlen(zOut)<=nIn ); |
} |
+ return zOut; |
+} |
+ |
+/* |
+** xDisconnect/xDestroy method for the fuzzer module. |
+*/ |
+static int fuzzerDisconnect(sqlite3_vtab *pVtab){ |
+ fuzzer_vtab *p = (fuzzer_vtab*)pVtab; |
+ assert( p->nCursor==0 ); |
+ while( p->pRule ){ |
+ fuzzer_rule *pRule = p->pRule; |
+ p->pRule = pRule->pNext; |
+ sqlite3_free(pRule); |
+ } |
+ sqlite3_free(p); |
+ return SQLITE_OK; |
+} |
+ |
+/* |
+** xConnect/xCreate method for the fuzzer module. Arguments are: |
+** |
+** argv[0] -> module name ("fuzzer") |
+** argv[1] -> database name |
+** argv[2] -> table name |
+** argv[3] -> fuzzer rule table name |
+*/ |
+static int fuzzerConnect( |
+ sqlite3 *db, |
+ void *pAux, |
+ int argc, const char *const*argv, |
+ sqlite3_vtab **ppVtab, |
+ char **pzErr |
+){ |
+ int rc = SQLITE_OK; /* Return code */ |
+ fuzzer_vtab *pNew = 0; /* New virtual table */ |
+ const char *zModule = argv[0]; |
+ const char *zDb = argv[1]; |
+ |
+ if( argc!=4 ){ |
+ *pzErr = sqlite3_mprintf( |
+ "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule |
+ ); |
+ rc = SQLITE_ERROR; |
+ }else{ |
+ int nModule; /* Length of zModule, in bytes */ |
+ |
+ nModule = (int)strlen(zModule); |
+ pNew = sqlite3_malloc( sizeof(*pNew) + nModule + 1); |
+ if( pNew==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ char *zTab; /* Dequoted name of fuzzer data table */ |
+ |
+ memset(pNew, 0, sizeof(*pNew)); |
+ pNew->zClassName = (char*)&pNew[1]; |
+ memcpy(pNew->zClassName, zModule, nModule+1); |
+ |
+ zTab = fuzzerDequote(argv[3]); |
+ if( zTab==0 ){ |
+ rc = SQLITE_NOMEM; |
+ }else{ |
+ rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr); |
+ sqlite3_free(zTab); |
+ } |
+ |
+ if( rc==SQLITE_OK ){ |
+ rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)"); |
+ } |
+ if( rc!=SQLITE_OK ){ |
+ fuzzerDisconnect((sqlite3_vtab *)pNew); |
+ pNew = 0; |
+ } |
+ } |
+ } |
+ |
+ *ppVtab = (sqlite3_vtab *)pNew; |
+ return rc; |
+} |
+ |
+/* |
+** Open a new fuzzer cursor. |
+*/ |
+static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
+ fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
+ fuzzer_cursor *pCur; |
+ pCur = sqlite3_malloc( sizeof(*pCur) ); |
+ if( pCur==0 ) return SQLITE_NOMEM; |
+ memset(pCur, 0, sizeof(*pCur)); |
+ pCur->pVtab = p; |
+ *ppCursor = &pCur->base; |
p->nCursor++; |
return SQLITE_OK; |
} |
@@ -343,8 +614,8 @@ static int fuzzerRender( |
int *pnBuf /* Size of the buffer */ |
){ |
const fuzzer_rule *pRule = pStem->pRule; |
- int n; |
- char *z; |
+ int n; /* Size of output term without nul-term */ |
+ char *z; /* Buffer to assemble output term in */ |
n = pStem->nBasis + pRule->nTo - pRule->nFrom; |
if( (*pnBuf)<n+1 ){ |
@@ -362,6 +633,8 @@ static int fuzzerRender( |
memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], |
pStem->nBasis-n-pRule->nFrom+1); |
} |
+ |
+ assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 ); |
return SQLITE_OK; |
} |
@@ -424,13 +697,32 @@ static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
} |
h = fuzzerHash(pCur->zBuf); |
pLookup = pCur->apHash[h]; |
- while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ |
+ while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ |
pLookup = pLookup->pHash; |
} |
return pLookup!=0; |
} |
/* |
+** If argument pRule is NULL, this function returns false. |
+** |
+** Otherwise, it returns true if rule pRule should be skipped. A rule |
+** should be skipped if it does not belong to rule-set iRuleset, or if |
+** applying it to stem pStem would create a string longer than |
+** FUZZER_MX_OUTPUT_LENGTH bytes. |
+*/ |
+static int fuzzerSkipRule( |
+ const fuzzer_rule *pRule, /* Determine whether or not to skip this */ |
+ fuzzer_stem *pStem, /* Stem rule may be applied to */ |
+ int iRuleset /* Rule-set used by the current query */ |
+){ |
+ return pRule && ( |
+ (pRule->iRuleset!=iRuleset) |
+ || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH |
+ ); |
+} |
+ |
+/* |
** Advance a fuzzer_stem to its next value. Return 0 if there are |
** no more values that can be generated by this fuzzer_stem. Return |
** -1 on a memory allocation failure. |
@@ -438,6 +730,7 @@ static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
const fuzzer_rule *pRule; |
while( (pRule = pStem->pRule)!=0 ){ |
+ assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset ); |
while( pStem->n < pStem->nBasis - pRule->nFrom ){ |
pStem->n++; |
if( pRule->nFrom==0 |
@@ -453,8 +746,11 @@ static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
} |
} |
pStem->n = -1; |
- pStem->pRule = pRule->pNext; |
- if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; |
+ do{ |
+ pRule = pRule->pNext; |
+ }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) ); |
+ pStem->pRule = pRule; |
+ if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; |
} |
return 0; |
} |
@@ -572,15 +868,20 @@ static fuzzer_stem *fuzzerNewStem( |
fuzzer_cost rBaseCost |
){ |
fuzzer_stem *pNew; |
+ fuzzer_rule *pRule; |
unsigned int h; |
- pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 ); |
+ pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 ); |
if( pNew==0 ) return 0; |
memset(pNew, 0, sizeof(*pNew)); |
pNew->zBasis = (char*)&pNew[1]; |
- pNew->nBasis = strlen(zWord); |
+ pNew->nBasis = (int)strlen(zWord); |
memcpy(pNew->zBasis, zWord, pNew->nBasis+1); |
- pNew->pRule = pCur->pVtab->pRule; |
+ pRule = pCur->pVtab->pRule; |
+ while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){ |
+ pRule = pRule->pNext; |
+ } |
+ pNew->pRule = pRule; |
pNew->n = -1; |
pNew->rBaseCost = pNew->rCostX = rBaseCost; |
h = fuzzerHash(pNew->zBasis); |
@@ -627,7 +928,10 @@ static int fuzzerNext(sqlite3_vtab_cursor *cur){ |
** stem list is the next lowest cost word. |
*/ |
while( (pStem = pCur->pStem)!=0 ){ |
- if( fuzzerAdvance(pCur, pStem) ){ |
+ int res = fuzzerAdvance(pCur, pStem); |
+ if( res<0 ){ |
+ return SQLITE_NOMEM; |
+ }else if( res>0 ){ |
pCur->pStem = 0; |
pStem = fuzzerInsert(pCur, pStem); |
if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ |
@@ -665,30 +969,44 @@ static int fuzzerFilter( |
int argc, sqlite3_value **argv |
){ |
fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; |
- const char *zWord = 0; |
+ const char *zWord = ""; |
fuzzer_stem *pStem; |
+ int idx; |
fuzzerClearCursor(pCur, 1); |
pCur->rLimit = 2147483647; |
- if( idxNum==1 ){ |
+ idx = 0; |
+ if( idxNum & 1 ){ |
zWord = (const char*)sqlite3_value_text(argv[0]); |
- }else if( idxNum==2 ){ |
- pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]); |
- }else if( idxNum==3 ){ |
- zWord = (const char*)sqlite3_value_text(argv[0]); |
- pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]); |
+ idx++; |
+ } |
+ if( idxNum & 2 ){ |
+ pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]); |
+ idx++; |
+ } |
+ if( idxNum & 4 ){ |
+ pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]); |
+ idx++; |
} |
- if( zWord==0 ) zWord = ""; |
- pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); |
- if( pStem==0 ) return SQLITE_NOMEM; |
pCur->nullRule.pNext = pCur->pVtab->pRule; |
pCur->nullRule.rCost = 0; |
pCur->nullRule.nFrom = 0; |
pCur->nullRule.nTo = 0; |
pCur->nullRule.zFrom = ""; |
- pStem->pRule = &pCur->nullRule; |
- pStem->n = pStem->nBasis; |
pCur->iRowid = 1; |
+ assert( pCur->pStem==0 ); |
+ |
+ /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this |
+ ** query will return zero rows. */ |
+ if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){ |
+ pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); |
+ if( pStem==0 ) return SQLITE_NOMEM; |
+ pStem->pRule = &pCur->nullRule; |
+ pStem->n = pStem->nBasis; |
+ }else{ |
+ pCur->rLimit = 0; |
+ } |
+ |
return SQLITE_OK; |
} |
@@ -735,26 +1053,40 @@ static int fuzzerEof(sqlite3_vtab_cursor *cur){ |
/* |
** Search for terms of these forms: |
** |
-** word MATCH $str |
-** distance < $value |
-** distance <= $value |
+** (A) word MATCH $str |
+** (B1) distance < $value |
+** (B2) distance <= $value |
+** (C) ruleid == $ruleid |
** |
** The distance< and distance<= are both treated as distance<=. |
-** The query plan number is as follows: |
+** The query plan number is a bit vector: |
** |
-** 0: None of the terms above are found |
-** 1: There is a "word MATCH" term with $str in filter.argv[0]. |
-** 2: There is a "distance<" term with $value in filter.argv[0]. |
-** 3: Both "word MATCH" and "distance<" with $str in argv[0] and |
-** $value in argv[1]. |
+** bit 1: Term of the form (A) found |
+** bit 2: Term like (B1) or (B2) found |
+** bit 3: Term like (C) found |
+** |
+** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set |
+** then $value is in filter.argv[0] if bit-1 is clear and is in |
+** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is |
+** in filter.argv[0] if bit-1 and bit-2 are both zero, is in |
+** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in |
+** filter.argv[2] if both bit-1 and bit-2 are set. |
*/ |
static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
int iPlan = 0; |
int iDistTerm = -1; |
+ int iRulesetTerm = -1; |
int i; |
+ int seenMatch = 0; |
const struct sqlite3_index_constraint *pConstraint; |
+ double rCost = 1e12; |
+ |
pConstraint = pIdxInfo->aConstraint; |
for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
+ if( pConstraint->iColumn==0 |
+ && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
+ seenMatch = 1; |
+ } |
if( pConstraint->usable==0 ) continue; |
if( (iPlan & 1)==0 |
&& pConstraint->iColumn==0 |
@@ -763,6 +1095,7 @@ static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
iPlan |= 1; |
pIdxInfo->aConstraintUsage[i].argvIndex = 1; |
pIdxInfo->aConstraintUsage[i].omit = 1; |
+ rCost /= 1e6; |
} |
if( (iPlan & 2)==0 |
&& pConstraint->iColumn==1 |
@@ -771,12 +1104,26 @@ static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
){ |
iPlan |= 2; |
iDistTerm = i; |
+ rCost /= 10.0; |
} |
+ if( (iPlan & 4)==0 |
+ && pConstraint->iColumn==2 |
+ && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ |
+ ){ |
+ iPlan |= 4; |
+ pIdxInfo->aConstraintUsage[i].omit = 1; |
+ iRulesetTerm = i; |
+ rCost /= 10.0; |
+ } |
+ } |
+ if( iPlan & 2 ){ |
+ pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0); |
} |
- if( iPlan==2 ){ |
- pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1; |
- }else if( iPlan==3 ){ |
- pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2; |
+ if( iPlan & 4 ){ |
+ int idx = 1; |
+ if( iPlan & 1 ) idx++; |
+ if( iPlan & 2 ) idx++; |
+ pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx; |
} |
pIdxInfo->idxNum = iPlan; |
if( pIdxInfo->nOrderBy==1 |
@@ -785,78 +1132,14 @@ static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
){ |
pIdxInfo->orderByConsumed = 1; |
} |
- pIdxInfo->estimatedCost = (double)10000; |
+ if( seenMatch && (iPlan&1)==0 ) rCost = 1e99; |
+ pIdxInfo->estimatedCost = rCost; |
return SQLITE_OK; |
} |
/* |
-** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed. |
-** |
-** On an insert, the cFrom, cTo, and cost columns are used to construct |
-** a new rule. All other columns are ignored. The rule is ignored |
-** if cFrom and cTo are identical. A NULL value for cFrom or cTo is |
-** interpreted as an empty string. The cost must be positive. |
-*/ |
-static int fuzzerUpdate( |
- sqlite3_vtab *pVTab, |
- int argc, |
- sqlite3_value **argv, |
- sqlite_int64 *pRowid |
-){ |
- fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
- fuzzer_rule *pRule; |
- const char *zFrom; |
- int nFrom; |
- const char *zTo; |
- int nTo; |
- fuzzer_cost rCost; |
- if( argc!=7 ){ |
- sqlite3_free(pVTab->zErrMsg); |
- pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table", |
- p->zClassName); |
- return SQLITE_CONSTRAINT; |
- } |
- if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){ |
- sqlite3_free(pVTab->zErrMsg); |
- pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table", |
- p->zClassName); |
- return SQLITE_CONSTRAINT; |
- } |
- zFrom = (char*)sqlite3_value_text(argv[4]); |
- if( zFrom==0 ) zFrom = ""; |
- zTo = (char*)sqlite3_value_text(argv[5]); |
- if( zTo==0 ) zTo = ""; |
- if( strcmp(zFrom,zTo)==0 ){ |
- /* Silently ignore null transformations */ |
- return SQLITE_OK; |
- } |
- rCost = sqlite3_value_int(argv[6]); |
- if( rCost<=0 ){ |
- sqlite3_free(pVTab->zErrMsg); |
- pVTab->zErrMsg = sqlite3_mprintf("cost must be positive"); |
- return SQLITE_CONSTRAINT; |
- } |
- nFrom = strlen(zFrom); |
- nTo = strlen(zTo); |
- pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); |
- if( pRule==0 ){ |
- return SQLITE_NOMEM; |
- } |
- pRule->zFrom = &pRule->zTo[nTo+1]; |
- pRule->nFrom = nFrom; |
- memcpy(pRule->zFrom, zFrom, nFrom+1); |
- memcpy(pRule->zTo, zTo, nTo+1); |
- pRule->nTo = nTo; |
- pRule->rCost = rCost; |
- pRule->pNext = p->pNewRule; |
- p->pNewRule = pRule; |
- return SQLITE_OK; |
-} |
- |
-/* |
-** A virtual table module that provides read-only access to a |
-** Tcl global variable namespace. |
+** A virtual table module that implements the "fuzzer". |
*/ |
static sqlite3_module fuzzerModule = { |
0, /* iVersion */ |
@@ -872,7 +1155,7 @@ static sqlite3_module fuzzerModule = { |
fuzzerEof, /* xEof - check for end of scan */ |
fuzzerColumn, /* xColumn - read data */ |
fuzzerRowid, /* xRowid - read data */ |
- fuzzerUpdate, /* xUpdate - INSERT */ |
+ 0, /* xUpdate */ |
0, /* xBegin */ |
0, /* xSync */ |
0, /* xCommit */ |
@@ -884,61 +1167,18 @@ static sqlite3_module fuzzerModule = { |
#endif /* SQLITE_OMIT_VIRTUALTABLE */ |
-/* |
-** Register the fuzzer virtual table |
-*/ |
-int fuzzer_register(sqlite3 *db){ |
+#ifdef _WIN32 |
+__declspec(dllexport) |
+#endif |
+int sqlite3_fuzzer_init( |
+ sqlite3 *db, |
+ char **pzErrMsg, |
+ const sqlite3_api_routines *pApi |
+){ |
int rc = SQLITE_OK; |
+ SQLITE_EXTENSION_INIT2(pApi); |
#ifndef SQLITE_OMIT_VIRTUALTABLE |
rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); |
#endif |
return rc; |
} |
- |
-#ifdef SQLITE_TEST |
-#include <tcl.h> |
-/* |
-** Decode a pointer to an sqlite3 object. |
-*/ |
-extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); |
- |
-/* |
-** Register the echo virtual table module. |
-*/ |
-static int register_fuzzer_module( |
- ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ |
- Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ |
- int objc, /* Number of arguments */ |
- Tcl_Obj *CONST objv[] /* Command arguments */ |
-){ |
- sqlite3 *db; |
- if( objc!=2 ){ |
- Tcl_WrongNumArgs(interp, 1, objv, "DB"); |
- return TCL_ERROR; |
- } |
- if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; |
- fuzzer_register(db); |
- return TCL_OK; |
-} |
- |
- |
-/* |
-** Register commands with the TCL interpreter. |
-*/ |
-int Sqlitetestfuzzer_Init(Tcl_Interp *interp){ |
- static struct { |
- char *zName; |
- Tcl_ObjCmdProc *xProc; |
- void *clientData; |
- } aObjCmd[] = { |
- { "register_fuzzer_module", register_fuzzer_module, 0 }, |
- }; |
- int i; |
- for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ |
- Tcl_CreateObjCommand(interp, aObjCmd[i].zName, |
- aObjCmd[i].xProc, aObjCmd[i].clientData, 0); |
- } |
- return TCL_OK; |
-} |
- |
-#endif /* SQLITE_TEST */ |