OLD | NEW |
1 /* | 1 /* |
2 ** 2011 March 24 | 2 ** 2011 March 24 |
3 ** | 3 ** |
4 ** The author disclaims copyright to this source code. In place of | 4 ** The author disclaims copyright to this source code. In place of |
5 ** a legal notice, here is a blessing: | 5 ** a legal notice, here is a blessing: |
6 ** | 6 ** |
7 ** May you do good and not evil. | 7 ** May you do good and not evil. |
8 ** May you find forgiveness for yourself and forgive others. | 8 ** May you find forgiveness for yourself and forgive others. |
9 ** May you share freely, never taking more than you give. | 9 ** May you share freely, never taking more than you give. |
10 ** | 10 ** |
11 ************************************************************************* | 11 ************************************************************************* |
12 ** | 12 ** |
13 ** Code for demonstartion virtual table that generates variations | 13 ** Code for a demonstration virtual table that generates variations |
14 ** on an input word at increasing edit distances from the original. | 14 ** on an input word at increasing edit distances from the original. |
15 ** | 15 ** |
16 ** A fuzzer virtual table is created like this: | 16 ** A fuzzer virtual table is created like this: |
17 ** | 17 ** |
18 ** CREATE VIRTUAL TABLE temp.f USING fuzzer; | 18 ** CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>); |
19 ** | 19 ** |
20 ** The name of the new virtual table in the example above is "f". | 20 ** When it is created, the new fuzzer table must be supplied with the |
21 ** Note that all fuzzer virtual tables must be TEMP tables. The | 21 ** name of a "fuzzer data table", which must reside in the same database |
22 ** "temp." prefix in front of the table name is required when the | 22 ** file as the new fuzzer table. The fuzzer data table contains the various |
23 ** table is being created. The "temp." prefix can be omitted when | 23 ** transformations and their costs that the fuzzer logic uses to generate |
24 ** using the table as long as the name is unambiguous. | 24 ** variations. |
25 ** | 25 ** |
26 ** Before being used, the fuzzer needs to be programmed by giving it | 26 ** The fuzzer data table must contain exactly four columns (more precisely, |
27 ** character transformations and a cost associated with each transformation. | 27 ** the statement "SELECT * FROM <fuzzer_data_table>" must return records |
28 ** Examples: | 28 ** that consist of four columns). It does not matter what the columns are |
| 29 ** named. |
29 ** | 30 ** |
30 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('','a',100); | 31 ** Each row in the fuzzer data table represents a single character |
| 32 ** transformation. The left most column of the row (column 0) contains an |
| 33 ** integer value - the identifier of the ruleset to which the transformation |
| 34 ** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the |
| 35 ** row (column 0) contains the input character or characters. The third |
| 36 ** column contains the output character or characters. And the fourth column |
| 37 ** contains the integer cost of making the transformation. For example: |
31 ** | 38 ** |
32 ** The above statement says that the cost of inserting a letter 'a' is | 39 ** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost); |
33 ** 100. (All costs are integers. We recommend that costs be scaled so | 40 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100); |
34 ** that the average cost is around 100.) | 41 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87); |
| 42 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38); |
| 43 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40); |
35 ** | 44 ** |
36 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('b','',87); | 45 ** The first row inserted into the fuzzer data table by the SQL script |
37 ** | 46 ** above indicates that the cost of inserting a letter 'a' is 100. (All |
38 ** The above statement says that the cost of deleting a single letter | 47 ** costs are integers. We recommend that costs be scaled so that the |
39 ** 'b' is 87. | 48 ** average cost is around 100.) The second INSERT statement creates a rule |
40 ** | 49 ** saying that the cost of deleting a single letter 'b' is 87. The third |
41 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('o','oe',38); | 50 ** and fourth INSERT statements mean that the cost of transforming a |
42 ** INSERT INTO f(cFrom,cTo,Cost) VALUES('oe','o',40); | 51 ** single letter "o" into the two-letter sequence "oe" is 38 and that the |
43 ** | |
44 ** This third example says that the cost of transforming the single | |
45 ** letter "o" into the two-letter sequence "oe" is 38 and that the | |
46 ** cost of transforming "oe" back into "o" is 40. | 52 ** cost of transforming "oe" back into "o" is 40. |
47 ** | 53 ** |
48 ** After all the transformation costs have been set, the fuzzer table | 54 ** The contents of the fuzzer data table are loaded into main memory when |
49 ** can be queried as follows: | 55 ** a fuzzer table is first created, and may be internally reloaded by the |
| 56 ** system at any subsequent time. Therefore, the fuzzer data table should be |
| 57 ** populated before the fuzzer table is created and not modified thereafter. |
| 58 ** If you do need to modify the contents of the fuzzer data table, it is |
| 59 ** recommended that the associated fuzzer table be dropped, the fuzzer data |
| 60 ** table edited, and the fuzzer table recreated within a single transaction. |
| 61 ** Alternatively, the fuzzer data table can be edited then the database |
| 62 ** connection can be closed and reopened. |
| 63 ** |
| 64 ** Once it has been created, the fuzzer table can be queried as follows: |
50 ** | 65 ** |
51 ** SELECT word, distance FROM f | 66 ** SELECT word, distance FROM f |
52 ** WHERE word MATCH 'abcdefg' | 67 ** WHERE word MATCH 'abcdefg' |
53 ** AND distance<200; | 68 ** AND distance<200; |
54 ** | 69 ** |
55 ** This first query outputs the string "abcdefg" and all strings that | 70 ** This first query outputs the string "abcdefg" and all strings that |
56 ** can be derived from that string by appling the specified transformations. | 71 ** can be derived from that string by appling the specified transformations. |
57 ** The strings are output together with their total transformation cost | 72 ** The strings are output together with their total transformation cost |
58 ** (called "distance") and appear in order of increasing cost. No string | 73 ** (called "distance") and appear in order of increasing cost. No string |
59 ** is output more than once. If there are multiple ways to transform the | 74 ** is output more than once. If there are multiple ways to transform the |
60 ** target string into the output string then the lowest cost transform is | 75 ** target string into the output string then the lowest cost transform is |
61 ** the one that is returned. In the example, the search is limited to | 76 ** the one that is returned. In the example, the search is limited to |
62 ** strings with a total distance of less than 200. | 77 ** strings with a total distance of less than 200. |
63 ** | 78 ** |
| 79 ** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or |
| 80 ** UPDATE on a fuzzer table will throw an error. |
| 81 ** |
64 ** It is important to put some kind of a limit on the fuzzer output. This | 82 ** It is important to put some kind of a limit on the fuzzer output. This |
65 ** can be either in the form of a LIMIT clause at the end of the query, | 83 ** can be either in the form of a LIMIT clause at the end of the query, |
66 ** or better, a "distance<NNN" constraint where NNN is some number. The | 84 ** or better, a "distance<NNN" constraint where NNN is some number. The |
67 ** running time and memory requirement is exponential in the value of NNN | 85 ** running time and memory requirement is exponential in the value of NNN |
68 ** so you want to make sure that NNN is not too big. A value of NNN that | 86 ** so you want to make sure that NNN is not too big. A value of NNN that |
69 ** is about twice the average transformation cost seems to give good results. | 87 ** is about twice the average transformation cost seems to give good results. |
70 ** | 88 ** |
71 ** The fuzzer table can be useful for tasks such as spelling correction. | 89 ** The fuzzer table can be useful for tasks such as spelling correction. |
72 ** Suppose there is a second table vocabulary(w) where the w column contains | 90 ** Suppose there is a second table vocabulary(w) where the w column contains |
73 ** all correctly spelled words. Let $word be a word you want to look up. | 91 ** all correctly spelled words. Let $word be a word you want to look up. |
(...skipping 12 matching lines...) Expand all Loading... |
86 ** begin with some prefix $prefix: | 104 ** begin with some prefix $prefix: |
87 ** | 105 ** |
88 ** SELECT vocabulary.w FROM f, vocabulary | 106 ** SELECT vocabulary.w FROM f, vocabulary |
89 ** WHERE f.word MATCH $prefix | 107 ** WHERE f.word MATCH $prefix |
90 ** AND f.distance<=200 | 108 ** AND f.distance<=200 |
91 ** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') | 109 ** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') |
92 ** LIMIT 50 | 110 ** LIMIT 50 |
93 ** | 111 ** |
94 ** This last query will show up to 50 words out of the vocabulary that | 112 ** This last query will show up to 50 words out of the vocabulary that |
95 ** match or nearly match the $prefix. | 113 ** match or nearly match the $prefix. |
| 114 ** |
| 115 ** MULTIPLE RULE SETS |
| 116 ** |
| 117 ** Normally, the "ruleset" value associated with all character transformations |
| 118 ** in the fuzzer data table is zero. However, if required, the fuzzer table |
| 119 ** allows multiple rulesets to be defined. Each query uses only a single |
| 120 ** ruleset. This allows, for example, a single fuzzer table to support |
| 121 ** multiple languages. |
| 122 ** |
| 123 ** By default, only the rules from ruleset 0 are used. To specify an |
| 124 ** alternative ruleset, a "ruleset = ?" expression must be added to the |
| 125 ** WHERE clause of a SELECT, where ? is the identifier of the desired |
| 126 ** ruleset. For example: |
| 127 ** |
| 128 ** SELECT vocabulary.w FROM f, vocabulary |
| 129 ** WHERE f.word MATCH $word |
| 130 ** AND f.distance<=200 |
| 131 ** AND f.word=vocabulary.w |
| 132 ** AND f.ruleset=1 -- Specify the ruleset to use here |
| 133 ** LIMIT 20 |
| 134 ** |
| 135 ** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset |
| 136 ** 0 is used. |
| 137 ** |
| 138 ** LIMITS |
| 139 ** |
| 140 ** The maximum ruleset number is 2147483647. The maximum length of either |
| 141 ** of the strings in the second or third column of the fuzzer data table |
| 142 ** is 50 bytes. The maximum cost on a rule is 1000. |
96 */ | 143 */ |
97 #include "sqlite3.h" | 144 #include "sqlite3ext.h" |
| 145 SQLITE_EXTENSION_INIT1 |
| 146 |
| 147 /* If SQLITE_DEBUG is not defined, disable assert statements. */ |
| 148 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) |
| 149 # define NDEBUG |
| 150 #endif |
| 151 |
98 #include <stdlib.h> | 152 #include <stdlib.h> |
99 #include <string.h> | 153 #include <string.h> |
100 #include <assert.h> | 154 #include <assert.h> |
101 #include <stdio.h> | 155 #include <stdio.h> |
102 | 156 |
103 #ifndef SQLITE_OMIT_VIRTUALTABLE | 157 #ifndef SQLITE_OMIT_VIRTUALTABLE |
104 | 158 |
105 /* | 159 /* |
106 ** Forward declaration of objects used by this implementation | 160 ** Forward declaration of objects used by this implementation |
107 */ | 161 */ |
108 typedef struct fuzzer_vtab fuzzer_vtab; | 162 typedef struct fuzzer_vtab fuzzer_vtab; |
109 typedef struct fuzzer_cursor fuzzer_cursor; | 163 typedef struct fuzzer_cursor fuzzer_cursor; |
110 typedef struct fuzzer_rule fuzzer_rule; | 164 typedef struct fuzzer_rule fuzzer_rule; |
111 typedef struct fuzzer_seen fuzzer_seen; | 165 typedef struct fuzzer_seen fuzzer_seen; |
112 typedef struct fuzzer_stem fuzzer_stem; | 166 typedef struct fuzzer_stem fuzzer_stem; |
113 | 167 |
114 /* | 168 /* |
115 ** Type of the "cost" of an edit operation. Might be changed to | 169 ** Various types. |
116 ** "float" or "double" or "sqlite3_int64" in the future. | 170 ** |
| 171 ** fuzzer_cost is the "cost" of an edit operation. |
| 172 ** |
| 173 ** fuzzer_len is the length of a matching string. |
| 174 ** |
| 175 ** fuzzer_ruleid is an ruleset identifier. |
117 */ | 176 */ |
118 typedef int fuzzer_cost; | 177 typedef int fuzzer_cost; |
| 178 typedef signed char fuzzer_len; |
| 179 typedef int fuzzer_ruleid; |
| 180 |
| 181 /* |
| 182 ** Limits |
| 183 */ |
| 184 #define FUZZER_MX_LENGTH 50 /* Maximum length of a rule string */ |
| 185 #define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */ |
| 186 #define FUZZER_MX_COST 1000 /* Maximum single-rule cost */ |
| 187 #define FUZZER_MX_OUTPUT_LENGTH 100 /* Maximum length of an output string */ |
119 | 188 |
120 | 189 |
121 /* | 190 /* |
122 ** Each transformation rule is stored as an instance of this object. | 191 ** Each transformation rule is stored as an instance of this object. |
123 ** All rules are kept on a linked list sorted by rCost. | 192 ** All rules are kept on a linked list sorted by rCost. |
124 */ | 193 */ |
125 struct fuzzer_rule { | 194 struct fuzzer_rule { |
126 fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ | 195 fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ |
127 fuzzer_cost rCost; /* Cost of this transformation */ | 196 char *zFrom; /* Transform from */ |
128 int nFrom, nTo; /* Length of the zFrom and zTo strings */ | 197 fuzzer_cost rCost; /* Cost of this transformation */ |
129 char *zFrom; /* Transform from */ | 198 fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */ |
130 char zTo[4]; /* Transform to (extra space appended) */ | 199 fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */ |
| 200 char zTo[4]; /* Transform to (extra space appended) */ |
131 }; | 201 }; |
132 | 202 |
133 /* | 203 /* |
134 ** A stem object is used to generate variants. It is also used to record | 204 ** A stem object is used to generate variants. It is also used to record |
135 ** previously generated outputs. | 205 ** previously generated outputs. |
136 ** | 206 ** |
137 ** Every stem is added to a hash table as it is output. Generation of | 207 ** Every stem is added to a hash table as it is output. Generation of |
138 ** duplicate stems is suppressed. | 208 ** duplicate stems is suppressed. |
139 ** | 209 ** |
140 ** Active stems (those that might generate new outputs) are kepts on a linked | 210 ** Active stems (those that might generate new outputs) are kepts on a linked |
141 ** list sorted by increasing cost. The cost is the sum of rBaseCost and | 211 ** list sorted by increasing cost. The cost is the sum of rBaseCost and |
142 ** pRule->rCost. | 212 ** pRule->rCost. |
143 */ | 213 */ |
144 struct fuzzer_stem { | 214 struct fuzzer_stem { |
145 char *zBasis; /* Word being fuzzed */ | 215 char *zBasis; /* Word being fuzzed */ |
146 int nBasis; /* Length of the zBasis string */ | |
147 const fuzzer_rule *pRule; /* Current rule to apply */ | 216 const fuzzer_rule *pRule; /* Current rule to apply */ |
148 int n; /* Apply pRule at this character offset */ | 217 fuzzer_stem *pNext; /* Next stem in rCost order */ |
| 218 fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ |
149 fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ | 219 fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ |
150 fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ | 220 fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ |
151 fuzzer_stem *pNext; /* Next stem in rCost order */ | 221 fuzzer_len nBasis; /* Length of the zBasis string */ |
152 fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ | 222 fuzzer_len n; /* Apply pRule at this character offset */ |
153 }; | 223 }; |
154 | 224 |
155 /* | 225 /* |
156 ** A fuzzer virtual-table object | 226 ** A fuzzer virtual-table object |
157 */ | 227 */ |
158 struct fuzzer_vtab { | 228 struct fuzzer_vtab { |
159 sqlite3_vtab base; /* Base class - must be first */ | 229 sqlite3_vtab base; /* Base class - must be first */ |
160 char *zClassName; /* Name of this class. Default: "fuzzer" */ | 230 char *zClassName; /* Name of this class. Default: "fuzzer" */ |
161 fuzzer_rule *pRule; /* All active rules in this fuzzer */ | 231 fuzzer_rule *pRule; /* All active rules in this fuzzer */ |
162 fuzzer_rule *pNewRule; /* New rules to add when last cursor expires */ | |
163 int nCursor; /* Number of active cursors */ | 232 int nCursor; /* Number of active cursors */ |
164 }; | 233 }; |
165 | 234 |
166 #define FUZZER_HASH 4001 /* Hash table size */ | 235 #define FUZZER_HASH 4001 /* Hash table size */ |
167 #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ | 236 #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ |
168 | 237 |
169 /* A fuzzer cursor object */ | 238 /* A fuzzer cursor object */ |
170 struct fuzzer_cursor { | 239 struct fuzzer_cursor { |
171 sqlite3_vtab_cursor base; /* Base class - must be first */ | 240 sqlite3_vtab_cursor base; /* Base class - must be first */ |
172 sqlite3_int64 iRowid; /* The rowid of the current word */ | 241 sqlite3_int64 iRowid; /* The rowid of the current word */ |
173 fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ | 242 fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ |
174 fuzzer_cost rLimit; /* Maximum cost of any term */ | 243 fuzzer_cost rLimit; /* Maximum cost of any term */ |
175 fuzzer_stem *pStem; /* Stem with smallest rCostX */ | 244 fuzzer_stem *pStem; /* Stem with smallest rCostX */ |
176 fuzzer_stem *pDone; /* Stems already processed to completion */ | 245 fuzzer_stem *pDone; /* Stems already processed to completion */ |
177 fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ | 246 fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ |
178 int mxQueue; /* Largest used index in aQueue[] */ | 247 int mxQueue; /* Largest used index in aQueue[] */ |
179 char *zBuf; /* Temporary use buffer */ | 248 char *zBuf; /* Temporary use buffer */ |
180 int nBuf; /* Bytes allocated for zBuf */ | 249 int nBuf; /* Bytes allocated for zBuf */ |
181 int nStem; /* Number of stems allocated */ | 250 int nStem; /* Number of stems allocated */ |
| 251 int iRuleset; /* Only process rules from this ruleset */ |
182 fuzzer_rule nullRule; /* Null rule used first */ | 252 fuzzer_rule nullRule; /* Null rule used first */ |
183 fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ | 253 fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ |
184 }; | 254 }; |
185 | 255 |
186 /* Methods for the fuzzer module */ | |
187 static int fuzzerConnect( | |
188 sqlite3 *db, | |
189 void *pAux, | |
190 int argc, const char *const*argv, | |
191 sqlite3_vtab **ppVtab, | |
192 char **pzErr | |
193 ){ | |
194 fuzzer_vtab *pNew; | |
195 int n; | |
196 if( strcmp(argv[1],"temp")!=0 ){ | |
197 *pzErr = sqlite3_mprintf("%s virtual tables must be TEMP", argv[0]); | |
198 return SQLITE_ERROR; | |
199 } | |
200 n = strlen(argv[0]) + 1; | |
201 pNew = sqlite3_malloc( sizeof(*pNew) + n ); | |
202 if( pNew==0 ) return SQLITE_NOMEM; | |
203 pNew->zClassName = (char*)&pNew[1]; | |
204 memcpy(pNew->zClassName, argv[0], n); | |
205 sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,cFrom,cTo,cost)"); | |
206 memset(pNew, 0, sizeof(*pNew)); | |
207 *ppVtab = &pNew->base; | |
208 return SQLITE_OK; | |
209 } | |
210 /* Note that for this virtual table, the xCreate and xConnect | |
211 ** methods are identical. */ | |
212 | |
213 static int fuzzerDisconnect(sqlite3_vtab *pVtab){ | |
214 fuzzer_vtab *p = (fuzzer_vtab*)pVtab; | |
215 assert( p->nCursor==0 ); | |
216 do{ | |
217 while( p->pRule ){ | |
218 fuzzer_rule *pRule = p->pRule; | |
219 p->pRule = pRule->pNext; | |
220 sqlite3_free(pRule); | |
221 } | |
222 p->pRule = p->pNewRule; | |
223 p->pNewRule = 0; | |
224 }while( p->pRule ); | |
225 sqlite3_free(p); | |
226 return SQLITE_OK; | |
227 } | |
228 /* The xDisconnect and xDestroy methods are also the same */ | |
229 | |
230 /* | 256 /* |
231 ** The two input rule lists are both sorted in order of increasing | 257 ** The two input rule lists are both sorted in order of increasing |
232 ** cost. Merge them together into a single list, sorted by cost, and | 258 ** cost. Merge them together into a single list, sorted by cost, and |
233 ** return a pointer to the head of that list. | 259 ** return a pointer to the head of that list. |
234 */ | 260 */ |
235 static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ | 261 static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ |
236 fuzzer_rule head; | 262 fuzzer_rule head; |
237 fuzzer_rule *pTail; | 263 fuzzer_rule *pTail; |
238 | 264 |
239 pTail = &head; | 265 pTail = &head; |
240 while( pA && pB ){ | 266 while( pA && pB ){ |
241 if( pA->rCost<=pB->rCost ){ | 267 if( pA->rCost<=pB->rCost ){ |
242 pTail->pNext = pA; | 268 pTail->pNext = pA; |
243 pTail = pA; | 269 pTail = pA; |
244 pA = pA->pNext; | 270 pA = pA->pNext; |
245 }else{ | 271 }else{ |
246 pTail->pNext = pB; | 272 pTail->pNext = pB; |
247 pTail = pB; | 273 pTail = pB; |
248 pB = pB->pNext; | 274 pB = pB->pNext; |
249 } | 275 } |
250 } | 276 } |
251 if( pA==0 ){ | 277 if( pA==0 ){ |
252 pTail->pNext = pB; | 278 pTail->pNext = pB; |
253 }else{ | 279 }else{ |
254 pTail->pNext = pA; | 280 pTail->pNext = pA; |
255 } | 281 } |
256 return head.pNext; | 282 return head.pNext; |
257 } | 283 } |
258 | 284 |
| 285 /* |
| 286 ** Statement pStmt currently points to a row in the fuzzer data table. This |
| 287 ** function allocates and populates a fuzzer_rule structure according to |
| 288 ** the content of the row. |
| 289 ** |
| 290 ** If successful, *ppRule is set to point to the new object and SQLITE_OK |
| 291 ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point |
| 292 ** to an error message and an SQLite error code returned. |
| 293 */ |
| 294 static int fuzzerLoadOneRule( |
| 295 fuzzer_vtab *p, /* Fuzzer virtual table handle */ |
| 296 sqlite3_stmt *pStmt, /* Base rule on statements current row */ |
| 297 fuzzer_rule **ppRule, /* OUT: New rule object */ |
| 298 char **pzErr /* OUT: Error message */ |
| 299 ){ |
| 300 sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0); |
| 301 const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1); |
| 302 const char *zTo = (const char *)sqlite3_column_text(pStmt, 2); |
| 303 int nCost = sqlite3_column_int(pStmt, 3); |
| 304 |
| 305 int rc = SQLITE_OK; /* Return code */ |
| 306 int nFrom; /* Size of string zFrom, in bytes */ |
| 307 int nTo; /* Size of string zTo, in bytes */ |
| 308 fuzzer_rule *pRule = 0; /* New rule object to return */ |
| 309 |
| 310 if( zFrom==0 ) zFrom = ""; |
| 311 if( zTo==0 ) zTo = ""; |
| 312 nFrom = (int)strlen(zFrom); |
| 313 nTo = (int)strlen(zTo); |
| 314 |
| 315 /* Silently ignore null transformations */ |
| 316 if( strcmp(zFrom, zTo)==0 ){ |
| 317 *ppRule = 0; |
| 318 return SQLITE_OK; |
| 319 } |
| 320 |
| 321 if( nCost<=0 || nCost>FUZZER_MX_COST ){ |
| 322 *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d", |
| 323 p->zClassName, FUZZER_MX_COST |
| 324 ); |
| 325 rc = SQLITE_ERROR; |
| 326 }else |
| 327 if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){ |
| 328 *pzErr = sqlite3_mprintf("%s: maximum string length is %d", |
| 329 p->zClassName, FUZZER_MX_LENGTH |
| 330 ); |
| 331 rc = SQLITE_ERROR; |
| 332 }else |
| 333 if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){ |
| 334 *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d", |
| 335 p->zClassName, FUZZER_MX_RULEID |
| 336 ); |
| 337 rc = SQLITE_ERROR; |
| 338 }else{ |
| 339 |
| 340 pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); |
| 341 if( pRule==0 ){ |
| 342 rc = SQLITE_NOMEM; |
| 343 }else{ |
| 344 memset(pRule, 0, sizeof(*pRule)); |
| 345 pRule->zFrom = &pRule->zTo[nTo+1]; |
| 346 pRule->nFrom = nFrom; |
| 347 memcpy(pRule->zFrom, zFrom, nFrom+1); |
| 348 memcpy(pRule->zTo, zTo, nTo+1); |
| 349 pRule->nTo = nTo; |
| 350 pRule->rCost = nCost; |
| 351 pRule->iRuleset = (int)iRuleset; |
| 352 } |
| 353 } |
| 354 |
| 355 *ppRule = pRule; |
| 356 return rc; |
| 357 } |
259 | 358 |
260 /* | 359 /* |
261 ** Open a new fuzzer cursor. | 360 ** Load the content of the fuzzer data table into memory. |
262 */ | 361 */ |
263 static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ | 362 static int fuzzerLoadRules( |
264 fuzzer_vtab *p = (fuzzer_vtab*)pVTab; | 363 sqlite3 *db, /* Database handle */ |
265 fuzzer_cursor *pCur; | 364 fuzzer_vtab *p, /* Virtual fuzzer table to configure */ |
266 pCur = sqlite3_malloc( sizeof(*pCur) ); | 365 const char *zDb, /* Database containing rules data */ |
267 if( pCur==0 ) return SQLITE_NOMEM; | 366 const char *zData, /* Table containing rules data */ |
268 memset(pCur, 0, sizeof(*pCur)); | 367 char **pzErr /* OUT: Error message */ |
269 pCur->pVtab = p; | 368 ){ |
270 *ppCursor = &pCur->base; | 369 int rc = SQLITE_OK; /* Return code */ |
271 if( p->nCursor==0 && p->pNewRule ){ | 370 char *zSql; /* SELECT used to read from rules table */ |
| 371 fuzzer_rule *pHead = 0; |
| 372 |
| 373 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData); |
| 374 if( zSql==0 ){ |
| 375 rc = SQLITE_NOMEM; |
| 376 }else{ |
| 377 int rc2; /* finalize() return code */ |
| 378 sqlite3_stmt *pStmt = 0; |
| 379 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
| 380 if( rc!=SQLITE_OK ){ |
| 381 *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db)); |
| 382 }else if( sqlite3_column_count(pStmt)!=4 ){ |
| 383 *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4", |
| 384 p->zClassName, zData, sqlite3_column_count(pStmt) |
| 385 ); |
| 386 rc = SQLITE_ERROR; |
| 387 }else{ |
| 388 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 389 fuzzer_rule *pRule = 0; |
| 390 rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr); |
| 391 if( pRule ){ |
| 392 pRule->pNext = pHead; |
| 393 pHead = pRule; |
| 394 } |
| 395 } |
| 396 } |
| 397 rc2 = sqlite3_finalize(pStmt); |
| 398 if( rc==SQLITE_OK ) rc = rc2; |
| 399 } |
| 400 sqlite3_free(zSql); |
| 401 |
| 402 /* All rules are now in a singly linked list starting at pHead. This |
| 403 ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to |
| 404 ** point to the head of the sorted list. |
| 405 */ |
| 406 if( rc==SQLITE_OK ){ |
272 unsigned int i; | 407 unsigned int i; |
273 fuzzer_rule *pX; | 408 fuzzer_rule *pX; |
274 fuzzer_rule *a[15]; | 409 fuzzer_rule *a[15]; |
275 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; | 410 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; |
276 while( (pX = p->pNewRule)!=0 ){ | 411 while( (pX = pHead)!=0 ){ |
277 p->pNewRule = pX->pNext; | 412 pHead = pX->pNext; |
278 pX->pNext = 0; | 413 pX->pNext = 0; |
279 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ | 414 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ |
280 pX = fuzzerMergeRules(a[i], pX); | 415 pX = fuzzerMergeRules(a[i], pX); |
281 a[i] = 0; | 416 a[i] = 0; |
282 } | 417 } |
283 a[i] = fuzzerMergeRules(a[i], pX); | 418 a[i] = fuzzerMergeRules(a[i], pX); |
284 } | 419 } |
285 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ | 420 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ |
286 pX = fuzzerMergeRules(a[i], pX); | 421 pX = fuzzerMergeRules(a[i], pX); |
287 } | 422 } |
288 p->pRule = fuzzerMergeRules(p->pRule, pX); | 423 p->pRule = fuzzerMergeRules(p->pRule, pX); |
| 424 }else{ |
| 425 /* An error has occurred. Setting p->pRule to point to the head of the |
| 426 ** allocated list ensures that the list will be cleaned up in this case. |
| 427 */ |
| 428 assert( p->pRule==0 ); |
| 429 p->pRule = pHead; |
289 } | 430 } |
| 431 |
| 432 return rc; |
| 433 } |
| 434 |
| 435 /* |
| 436 ** This function converts an SQL quoted string into an unquoted string |
| 437 ** and returns a pointer to a buffer allocated using sqlite3_malloc() |
| 438 ** containing the result. The caller should eventually free this buffer |
| 439 ** using sqlite3_free. |
| 440 ** |
| 441 ** Examples: |
| 442 ** |
| 443 ** "abc" becomes abc |
| 444 ** 'xyz' becomes xyz |
| 445 ** [pqr] becomes pqr |
| 446 ** `mno` becomes mno |
| 447 */ |
| 448 static char *fuzzerDequote(const char *zIn){ |
| 449 int nIn; /* Size of input string, in bytes */ |
| 450 char *zOut; /* Output (dequoted) string */ |
| 451 |
| 452 nIn = (int)strlen(zIn); |
| 453 zOut = sqlite3_malloc(nIn+1); |
| 454 if( zOut ){ |
| 455 char q = zIn[0]; /* Quote character (if any ) */ |
| 456 |
| 457 if( q!='[' && q!= '\'' && q!='"' && q!='`' ){ |
| 458 memcpy(zOut, zIn, nIn+1); |
| 459 }else{ |
| 460 int iOut = 0; /* Index of next byte to write to output */ |
| 461 int iIn; /* Index of next byte to read from input */ |
| 462 |
| 463 if( q=='[' ) q = ']'; |
| 464 for(iIn=1; iIn<nIn; iIn++){ |
| 465 if( zIn[iIn]==q ) iIn++; |
| 466 zOut[iOut++] = zIn[iIn]; |
| 467 } |
| 468 } |
| 469 assert( (int)strlen(zOut)<=nIn ); |
| 470 } |
| 471 return zOut; |
| 472 } |
| 473 |
| 474 /* |
| 475 ** xDisconnect/xDestroy method for the fuzzer module. |
| 476 */ |
| 477 static int fuzzerDisconnect(sqlite3_vtab *pVtab){ |
| 478 fuzzer_vtab *p = (fuzzer_vtab*)pVtab; |
| 479 assert( p->nCursor==0 ); |
| 480 while( p->pRule ){ |
| 481 fuzzer_rule *pRule = p->pRule; |
| 482 p->pRule = pRule->pNext; |
| 483 sqlite3_free(pRule); |
| 484 } |
| 485 sqlite3_free(p); |
| 486 return SQLITE_OK; |
| 487 } |
| 488 |
| 489 /* |
| 490 ** xConnect/xCreate method for the fuzzer module. Arguments are: |
| 491 ** |
| 492 ** argv[0] -> module name ("fuzzer") |
| 493 ** argv[1] -> database name |
| 494 ** argv[2] -> table name |
| 495 ** argv[3] -> fuzzer rule table name |
| 496 */ |
| 497 static int fuzzerConnect( |
| 498 sqlite3 *db, |
| 499 void *pAux, |
| 500 int argc, const char *const*argv, |
| 501 sqlite3_vtab **ppVtab, |
| 502 char **pzErr |
| 503 ){ |
| 504 int rc = SQLITE_OK; /* Return code */ |
| 505 fuzzer_vtab *pNew = 0; /* New virtual table */ |
| 506 const char *zModule = argv[0]; |
| 507 const char *zDb = argv[1]; |
| 508 |
| 509 if( argc!=4 ){ |
| 510 *pzErr = sqlite3_mprintf( |
| 511 "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule |
| 512 ); |
| 513 rc = SQLITE_ERROR; |
| 514 }else{ |
| 515 int nModule; /* Length of zModule, in bytes */ |
| 516 |
| 517 nModule = (int)strlen(zModule); |
| 518 pNew = sqlite3_malloc( sizeof(*pNew) + nModule + 1); |
| 519 if( pNew==0 ){ |
| 520 rc = SQLITE_NOMEM; |
| 521 }else{ |
| 522 char *zTab; /* Dequoted name of fuzzer data table */ |
| 523 |
| 524 memset(pNew, 0, sizeof(*pNew)); |
| 525 pNew->zClassName = (char*)&pNew[1]; |
| 526 memcpy(pNew->zClassName, zModule, nModule+1); |
| 527 |
| 528 zTab = fuzzerDequote(argv[3]); |
| 529 if( zTab==0 ){ |
| 530 rc = SQLITE_NOMEM; |
| 531 }else{ |
| 532 rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr); |
| 533 sqlite3_free(zTab); |
| 534 } |
| 535 |
| 536 if( rc==SQLITE_OK ){ |
| 537 rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)"); |
| 538 } |
| 539 if( rc!=SQLITE_OK ){ |
| 540 fuzzerDisconnect((sqlite3_vtab *)pNew); |
| 541 pNew = 0; |
| 542 } |
| 543 } |
| 544 } |
| 545 |
| 546 *ppVtab = (sqlite3_vtab *)pNew; |
| 547 return rc; |
| 548 } |
| 549 |
| 550 /* |
| 551 ** Open a new fuzzer cursor. |
| 552 */ |
| 553 static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| 554 fuzzer_vtab *p = (fuzzer_vtab*)pVTab; |
| 555 fuzzer_cursor *pCur; |
| 556 pCur = sqlite3_malloc( sizeof(*pCur) ); |
| 557 if( pCur==0 ) return SQLITE_NOMEM; |
| 558 memset(pCur, 0, sizeof(*pCur)); |
| 559 pCur->pVtab = p; |
| 560 *ppCursor = &pCur->base; |
290 p->nCursor++; | 561 p->nCursor++; |
291 return SQLITE_OK; | 562 return SQLITE_OK; |
292 } | 563 } |
293 | 564 |
294 /* | 565 /* |
295 ** Free all stems in a list. | 566 ** Free all stems in a list. |
296 */ | 567 */ |
297 static void fuzzerClearStemList(fuzzer_stem *pStem){ | 568 static void fuzzerClearStemList(fuzzer_stem *pStem){ |
298 while( pStem ){ | 569 while( pStem ){ |
299 fuzzer_stem *pNext = pStem->pNext; | 570 fuzzer_stem *pNext = pStem->pNext; |
(...skipping 36 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
336 | 607 |
337 /* | 608 /* |
338 ** Compute the current output term for a fuzzer_stem. | 609 ** Compute the current output term for a fuzzer_stem. |
339 */ | 610 */ |
340 static int fuzzerRender( | 611 static int fuzzerRender( |
341 fuzzer_stem *pStem, /* The stem to be rendered */ | 612 fuzzer_stem *pStem, /* The stem to be rendered */ |
342 char **pzBuf, /* Write results into this buffer. realloc if needed */ | 613 char **pzBuf, /* Write results into this buffer. realloc if needed */ |
343 int *pnBuf /* Size of the buffer */ | 614 int *pnBuf /* Size of the buffer */ |
344 ){ | 615 ){ |
345 const fuzzer_rule *pRule = pStem->pRule; | 616 const fuzzer_rule *pRule = pStem->pRule; |
346 int n; | 617 int n; /* Size of output term without nul-term */ |
347 char *z; | 618 char *z; /* Buffer to assemble output term in */ |
348 | 619 |
349 n = pStem->nBasis + pRule->nTo - pRule->nFrom; | 620 n = pStem->nBasis + pRule->nTo - pRule->nFrom; |
350 if( (*pnBuf)<n+1 ){ | 621 if( (*pnBuf)<n+1 ){ |
351 (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); | 622 (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); |
352 if( (*pzBuf)==0 ) return SQLITE_NOMEM; | 623 if( (*pzBuf)==0 ) return SQLITE_NOMEM; |
353 (*pnBuf) = n+100; | 624 (*pnBuf) = n+100; |
354 } | 625 } |
355 n = pStem->n; | 626 n = pStem->n; |
356 z = *pzBuf; | 627 z = *pzBuf; |
357 if( n<0 ){ | 628 if( n<0 ){ |
358 memcpy(z, pStem->zBasis, pStem->nBasis+1); | 629 memcpy(z, pStem->zBasis, pStem->nBasis+1); |
359 }else{ | 630 }else{ |
360 memcpy(z, pStem->zBasis, n); | 631 memcpy(z, pStem->zBasis, n); |
361 memcpy(&z[n], pRule->zTo, pRule->nTo); | 632 memcpy(&z[n], pRule->zTo, pRule->nTo); |
362 memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], | 633 memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], |
363 pStem->nBasis-n-pRule->nFrom+1); | 634 pStem->nBasis-n-pRule->nFrom+1); |
364 } | 635 } |
| 636 |
| 637 assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 ); |
365 return SQLITE_OK; | 638 return SQLITE_OK; |
366 } | 639 } |
367 | 640 |
368 /* | 641 /* |
369 ** Compute a hash on zBasis. | 642 ** Compute a hash on zBasis. |
370 */ | 643 */ |
371 static unsigned int fuzzerHash(const char *z){ | 644 static unsigned int fuzzerHash(const char *z){ |
372 unsigned int h = 0; | 645 unsigned int h = 0; |
373 while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } | 646 while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } |
374 return h % FUZZER_HASH; | 647 return h % FUZZER_HASH; |
(...skipping 42 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
417 */ | 690 */ |
418 static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ | 691 static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
419 unsigned int h; | 692 unsigned int h; |
420 fuzzer_stem *pLookup; | 693 fuzzer_stem *pLookup; |
421 | 694 |
422 if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ | 695 if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ |
423 return -1; | 696 return -1; |
424 } | 697 } |
425 h = fuzzerHash(pCur->zBuf); | 698 h = fuzzerHash(pCur->zBuf); |
426 pLookup = pCur->apHash[h]; | 699 pLookup = pCur->apHash[h]; |
427 while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ | 700 while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ |
428 pLookup = pLookup->pHash; | 701 pLookup = pLookup->pHash; |
429 } | 702 } |
430 return pLookup!=0; | 703 return pLookup!=0; |
431 } | 704 } |
432 | 705 |
433 /* | 706 /* |
| 707 ** If argument pRule is NULL, this function returns false. |
| 708 ** |
| 709 ** Otherwise, it returns true if rule pRule should be skipped. A rule |
| 710 ** should be skipped if it does not belong to rule-set iRuleset, or if |
| 711 ** applying it to stem pStem would create a string longer than |
| 712 ** FUZZER_MX_OUTPUT_LENGTH bytes. |
| 713 */ |
| 714 static int fuzzerSkipRule( |
| 715 const fuzzer_rule *pRule, /* Determine whether or not to skip this */ |
| 716 fuzzer_stem *pStem, /* Stem rule may be applied to */ |
| 717 int iRuleset /* Rule-set used by the current query */ |
| 718 ){ |
| 719 return pRule && ( |
| 720 (pRule->iRuleset!=iRuleset) |
| 721 || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH |
| 722 ); |
| 723 } |
| 724 |
| 725 /* |
434 ** Advance a fuzzer_stem to its next value. Return 0 if there are | 726 ** Advance a fuzzer_stem to its next value. Return 0 if there are |
435 ** no more values that can be generated by this fuzzer_stem. Return | 727 ** no more values that can be generated by this fuzzer_stem. Return |
436 ** -1 on a memory allocation failure. | 728 ** -1 on a memory allocation failure. |
437 */ | 729 */ |
438 static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ | 730 static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ |
439 const fuzzer_rule *pRule; | 731 const fuzzer_rule *pRule; |
440 while( (pRule = pStem->pRule)!=0 ){ | 732 while( (pRule = pStem->pRule)!=0 ){ |
| 733 assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset ); |
441 while( pStem->n < pStem->nBasis - pRule->nFrom ){ | 734 while( pStem->n < pStem->nBasis - pRule->nFrom ){ |
442 pStem->n++; | 735 pStem->n++; |
443 if( pRule->nFrom==0 | 736 if( pRule->nFrom==0 |
444 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 | 737 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 |
445 ){ | 738 ){ |
446 /* Found a rewrite case. Make sure it is not a duplicate */ | 739 /* Found a rewrite case. Make sure it is not a duplicate */ |
447 int rc = fuzzerSeen(pCur, pStem); | 740 int rc = fuzzerSeen(pCur, pStem); |
448 if( rc<0 ) return -1; | 741 if( rc<0 ) return -1; |
449 if( rc==0 ){ | 742 if( rc==0 ){ |
450 fuzzerCost(pStem); | 743 fuzzerCost(pStem); |
451 return 1; | 744 return 1; |
452 } | 745 } |
453 } | 746 } |
454 } | 747 } |
455 pStem->n = -1; | 748 pStem->n = -1; |
456 pStem->pRule = pRule->pNext; | 749 do{ |
457 if( pStem->pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; | 750 pRule = pRule->pNext; |
| 751 }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) ); |
| 752 pStem->pRule = pRule; |
| 753 if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; |
458 } | 754 } |
459 return 0; | 755 return 0; |
460 } | 756 } |
461 | 757 |
462 /* | 758 /* |
463 ** The two input stem lists are both sorted in order of increasing | 759 ** The two input stem lists are both sorted in order of increasing |
464 ** rCostX. Merge them together into a single list, sorted by rCostX, and | 760 ** rCostX. Merge them together into a single list, sorted by rCostX, and |
465 ** return a pointer to the head of that new list. | 761 ** return a pointer to the head of that new list. |
466 */ | 762 */ |
467 static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ | 763 static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ |
(...skipping 97 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
565 /* | 861 /* |
566 ** Allocate a new fuzzer_stem. Add it to the hash table but do not | 862 ** Allocate a new fuzzer_stem. Add it to the hash table but do not |
567 ** link it into either the pCur->pStem or pCur->pDone lists. | 863 ** link it into either the pCur->pStem or pCur->pDone lists. |
568 */ | 864 */ |
569 static fuzzer_stem *fuzzerNewStem( | 865 static fuzzer_stem *fuzzerNewStem( |
570 fuzzer_cursor *pCur, | 866 fuzzer_cursor *pCur, |
571 const char *zWord, | 867 const char *zWord, |
572 fuzzer_cost rBaseCost | 868 fuzzer_cost rBaseCost |
573 ){ | 869 ){ |
574 fuzzer_stem *pNew; | 870 fuzzer_stem *pNew; |
| 871 fuzzer_rule *pRule; |
575 unsigned int h; | 872 unsigned int h; |
576 | 873 |
577 pNew = sqlite3_malloc( sizeof(*pNew) + strlen(zWord) + 1 ); | 874 pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 ); |
578 if( pNew==0 ) return 0; | 875 if( pNew==0 ) return 0; |
579 memset(pNew, 0, sizeof(*pNew)); | 876 memset(pNew, 0, sizeof(*pNew)); |
580 pNew->zBasis = (char*)&pNew[1]; | 877 pNew->zBasis = (char*)&pNew[1]; |
581 pNew->nBasis = strlen(zWord); | 878 pNew->nBasis = (int)strlen(zWord); |
582 memcpy(pNew->zBasis, zWord, pNew->nBasis+1); | 879 memcpy(pNew->zBasis, zWord, pNew->nBasis+1); |
583 pNew->pRule = pCur->pVtab->pRule; | 880 pRule = pCur->pVtab->pRule; |
| 881 while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){ |
| 882 pRule = pRule->pNext; |
| 883 } |
| 884 pNew->pRule = pRule; |
584 pNew->n = -1; | 885 pNew->n = -1; |
585 pNew->rBaseCost = pNew->rCostX = rBaseCost; | 886 pNew->rBaseCost = pNew->rCostX = rBaseCost; |
586 h = fuzzerHash(pNew->zBasis); | 887 h = fuzzerHash(pNew->zBasis); |
587 pNew->pHash = pCur->apHash[h]; | 888 pNew->pHash = pCur->apHash[h]; |
588 pCur->apHash[h] = pNew; | 889 pCur->apHash[h] = pNew; |
589 pCur->nStem++; | 890 pCur->nStem++; |
590 return pNew; | 891 return pNew; |
591 } | 892 } |
592 | 893 |
593 | 894 |
(...skipping 26 matching lines...) Expand all Loading... |
620 } | 921 } |
621 }else{ | 922 }else{ |
622 return SQLITE_NOMEM; | 923 return SQLITE_NOMEM; |
623 } | 924 } |
624 } | 925 } |
625 | 926 |
626 /* Adjust the priority queue so that the first element of the | 927 /* Adjust the priority queue so that the first element of the |
627 ** stem list is the next lowest cost word. | 928 ** stem list is the next lowest cost word. |
628 */ | 929 */ |
629 while( (pStem = pCur->pStem)!=0 ){ | 930 while( (pStem = pCur->pStem)!=0 ){ |
630 if( fuzzerAdvance(pCur, pStem) ){ | 931 int res = fuzzerAdvance(pCur, pStem); |
| 932 if( res<0 ){ |
| 933 return SQLITE_NOMEM; |
| 934 }else if( res>0 ){ |
631 pCur->pStem = 0; | 935 pCur->pStem = 0; |
632 pStem = fuzzerInsert(pCur, pStem); | 936 pStem = fuzzerInsert(pCur, pStem); |
633 if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ | 937 if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ |
634 if( rc<0 ) return SQLITE_NOMEM; | 938 if( rc<0 ) return SQLITE_NOMEM; |
635 continue; | 939 continue; |
636 } | 940 } |
637 return SQLITE_OK; /* New word found */ | 941 return SQLITE_OK; /* New word found */ |
638 } | 942 } |
639 pCur->pStem = 0; | 943 pCur->pStem = 0; |
640 pStem->pNext = pCur->pDone; | 944 pStem->pNext = pCur->pDone; |
(...skipping 17 matching lines...) Expand all Loading... |
658 ** Called to "rewind" a cursor back to the beginning so that | 962 ** Called to "rewind" a cursor back to the beginning so that |
659 ** it starts its output over again. Always called at least once | 963 ** it starts its output over again. Always called at least once |
660 ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. | 964 ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. |
661 */ | 965 */ |
662 static int fuzzerFilter( | 966 static int fuzzerFilter( |
663 sqlite3_vtab_cursor *pVtabCursor, | 967 sqlite3_vtab_cursor *pVtabCursor, |
664 int idxNum, const char *idxStr, | 968 int idxNum, const char *idxStr, |
665 int argc, sqlite3_value **argv | 969 int argc, sqlite3_value **argv |
666 ){ | 970 ){ |
667 fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; | 971 fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; |
668 const char *zWord = 0; | 972 const char *zWord = ""; |
669 fuzzer_stem *pStem; | 973 fuzzer_stem *pStem; |
| 974 int idx; |
670 | 975 |
671 fuzzerClearCursor(pCur, 1); | 976 fuzzerClearCursor(pCur, 1); |
672 pCur->rLimit = 2147483647; | 977 pCur->rLimit = 2147483647; |
673 if( idxNum==1 ){ | 978 idx = 0; |
| 979 if( idxNum & 1 ){ |
674 zWord = (const char*)sqlite3_value_text(argv[0]); | 980 zWord = (const char*)sqlite3_value_text(argv[0]); |
675 }else if( idxNum==2 ){ | 981 idx++; |
676 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[0]); | |
677 }else if( idxNum==3 ){ | |
678 zWord = (const char*)sqlite3_value_text(argv[0]); | |
679 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[1]); | |
680 } | 982 } |
681 if( zWord==0 ) zWord = ""; | 983 if( idxNum & 2 ){ |
682 pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); | 984 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]); |
683 if( pStem==0 ) return SQLITE_NOMEM; | 985 idx++; |
| 986 } |
| 987 if( idxNum & 4 ){ |
| 988 pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]); |
| 989 idx++; |
| 990 } |
684 pCur->nullRule.pNext = pCur->pVtab->pRule; | 991 pCur->nullRule.pNext = pCur->pVtab->pRule; |
685 pCur->nullRule.rCost = 0; | 992 pCur->nullRule.rCost = 0; |
686 pCur->nullRule.nFrom = 0; | 993 pCur->nullRule.nFrom = 0; |
687 pCur->nullRule.nTo = 0; | 994 pCur->nullRule.nTo = 0; |
688 pCur->nullRule.zFrom = ""; | 995 pCur->nullRule.zFrom = ""; |
689 pStem->pRule = &pCur->nullRule; | |
690 pStem->n = pStem->nBasis; | |
691 pCur->iRowid = 1; | 996 pCur->iRowid = 1; |
| 997 assert( pCur->pStem==0 ); |
| 998 |
| 999 /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this |
| 1000 ** query will return zero rows. */ |
| 1001 if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){ |
| 1002 pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); |
| 1003 if( pStem==0 ) return SQLITE_NOMEM; |
| 1004 pStem->pRule = &pCur->nullRule; |
| 1005 pStem->n = pStem->nBasis; |
| 1006 }else{ |
| 1007 pCur->rLimit = 0; |
| 1008 } |
| 1009 |
692 return SQLITE_OK; | 1010 return SQLITE_OK; |
693 } | 1011 } |
694 | 1012 |
695 /* | 1013 /* |
696 ** Only the word and distance columns have values. All other columns | 1014 ** Only the word and distance columns have values. All other columns |
697 ** return NULL | 1015 ** return NULL |
698 */ | 1016 */ |
699 static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ | 1017 static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
700 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | 1018 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
701 if( i==0 ){ | 1019 if( i==0 ){ |
(...skipping 26 matching lines...) Expand all Loading... |
728 ** that the cursor has nothing more to output. | 1046 ** that the cursor has nothing more to output. |
729 */ | 1047 */ |
730 static int fuzzerEof(sqlite3_vtab_cursor *cur){ | 1048 static int fuzzerEof(sqlite3_vtab_cursor *cur){ |
731 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | 1049 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; |
732 return pCur->rLimit<=(fuzzer_cost)0; | 1050 return pCur->rLimit<=(fuzzer_cost)0; |
733 } | 1051 } |
734 | 1052 |
735 /* | 1053 /* |
736 ** Search for terms of these forms: | 1054 ** Search for terms of these forms: |
737 ** | 1055 ** |
738 ** word MATCH $str | 1056 ** (A) word MATCH $str |
739 ** distance < $value | 1057 ** (B1) distance < $value |
740 ** distance <= $value | 1058 ** (B2) distance <= $value |
| 1059 ** (C) ruleid == $ruleid |
741 ** | 1060 ** |
742 ** The distance< and distance<= are both treated as distance<=. | 1061 ** The distance< and distance<= are both treated as distance<=. |
743 ** The query plan number is as follows: | 1062 ** The query plan number is a bit vector: |
744 ** | 1063 ** |
745 ** 0: None of the terms above are found | 1064 ** bit 1: Term of the form (A) found |
746 ** 1: There is a "word MATCH" term with $str in filter.argv[0]. | 1065 ** bit 2: Term like (B1) or (B2) found |
747 ** 2: There is a "distance<" term with $value in filter.argv[0]. | 1066 ** bit 3: Term like (C) found |
748 ** 3: Both "word MATCH" and "distance<" with $str in argv[0] and | 1067 ** |
749 ** $value in argv[1]. | 1068 ** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set |
| 1069 ** then $value is in filter.argv[0] if bit-1 is clear and is in |
| 1070 ** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is |
| 1071 ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in |
| 1072 ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in |
| 1073 ** filter.argv[2] if both bit-1 and bit-2 are set. |
750 */ | 1074 */ |
751 static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ | 1075 static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
752 int iPlan = 0; | 1076 int iPlan = 0; |
753 int iDistTerm = -1; | 1077 int iDistTerm = -1; |
| 1078 int iRulesetTerm = -1; |
754 int i; | 1079 int i; |
| 1080 int seenMatch = 0; |
755 const struct sqlite3_index_constraint *pConstraint; | 1081 const struct sqlite3_index_constraint *pConstraint; |
| 1082 double rCost = 1e12; |
| 1083 |
756 pConstraint = pIdxInfo->aConstraint; | 1084 pConstraint = pIdxInfo->aConstraint; |
757 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ | 1085 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ |
| 1086 if( pConstraint->iColumn==0 |
| 1087 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ |
| 1088 seenMatch = 1; |
| 1089 } |
758 if( pConstraint->usable==0 ) continue; | 1090 if( pConstraint->usable==0 ) continue; |
759 if( (iPlan & 1)==0 | 1091 if( (iPlan & 1)==0 |
760 && pConstraint->iColumn==0 | 1092 && pConstraint->iColumn==0 |
761 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH | 1093 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH |
762 ){ | 1094 ){ |
763 iPlan |= 1; | 1095 iPlan |= 1; |
764 pIdxInfo->aConstraintUsage[i].argvIndex = 1; | 1096 pIdxInfo->aConstraintUsage[i].argvIndex = 1; |
765 pIdxInfo->aConstraintUsage[i].omit = 1; | 1097 pIdxInfo->aConstraintUsage[i].omit = 1; |
| 1098 rCost /= 1e6; |
766 } | 1099 } |
767 if( (iPlan & 2)==0 | 1100 if( (iPlan & 2)==0 |
768 && pConstraint->iColumn==1 | 1101 && pConstraint->iColumn==1 |
769 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT | 1102 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT |
770 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) | 1103 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) |
771 ){ | 1104 ){ |
772 iPlan |= 2; | 1105 iPlan |= 2; |
773 iDistTerm = i; | 1106 iDistTerm = i; |
| 1107 rCost /= 10.0; |
| 1108 } |
| 1109 if( (iPlan & 4)==0 |
| 1110 && pConstraint->iColumn==2 |
| 1111 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ |
| 1112 ){ |
| 1113 iPlan |= 4; |
| 1114 pIdxInfo->aConstraintUsage[i].omit = 1; |
| 1115 iRulesetTerm = i; |
| 1116 rCost /= 10.0; |
774 } | 1117 } |
775 } | 1118 } |
776 if( iPlan==2 ){ | 1119 if( iPlan & 2 ){ |
777 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1; | 1120 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0); |
778 }else if( iPlan==3 ){ | 1121 } |
779 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 2; | 1122 if( iPlan & 4 ){ |
| 1123 int idx = 1; |
| 1124 if( iPlan & 1 ) idx++; |
| 1125 if( iPlan & 2 ) idx++; |
| 1126 pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx; |
780 } | 1127 } |
781 pIdxInfo->idxNum = iPlan; | 1128 pIdxInfo->idxNum = iPlan; |
782 if( pIdxInfo->nOrderBy==1 | 1129 if( pIdxInfo->nOrderBy==1 |
783 && pIdxInfo->aOrderBy[0].iColumn==1 | 1130 && pIdxInfo->aOrderBy[0].iColumn==1 |
784 && pIdxInfo->aOrderBy[0].desc==0 | 1131 && pIdxInfo->aOrderBy[0].desc==0 |
785 ){ | 1132 ){ |
786 pIdxInfo->orderByConsumed = 1; | 1133 pIdxInfo->orderByConsumed = 1; |
787 } | 1134 } |
788 pIdxInfo->estimatedCost = (double)10000; | 1135 if( seenMatch && (iPlan&1)==0 ) rCost = 1e99; |
| 1136 pIdxInfo->estimatedCost = rCost; |
789 | 1137 |
790 return SQLITE_OK; | 1138 return SQLITE_OK; |
791 } | 1139 } |
792 | 1140 |
793 /* | 1141 /* |
794 ** Disallow all attempts to DELETE or UPDATE. Only INSERTs are allowed. | 1142 ** A virtual table module that implements the "fuzzer". |
795 ** | |
796 ** On an insert, the cFrom, cTo, and cost columns are used to construct | |
797 ** a new rule. All other columns are ignored. The rule is ignored | |
798 ** if cFrom and cTo are identical. A NULL value for cFrom or cTo is | |
799 ** interpreted as an empty string. The cost must be positive. | |
800 */ | |
801 static int fuzzerUpdate( | |
802 sqlite3_vtab *pVTab, | |
803 int argc, | |
804 sqlite3_value **argv, | |
805 sqlite_int64 *pRowid | |
806 ){ | |
807 fuzzer_vtab *p = (fuzzer_vtab*)pVTab; | |
808 fuzzer_rule *pRule; | |
809 const char *zFrom; | |
810 int nFrom; | |
811 const char *zTo; | |
812 int nTo; | |
813 fuzzer_cost rCost; | |
814 if( argc!=7 ){ | |
815 sqlite3_free(pVTab->zErrMsg); | |
816 pVTab->zErrMsg = sqlite3_mprintf("cannot delete from a %s virtual table", | |
817 p->zClassName); | |
818 return SQLITE_CONSTRAINT; | |
819 } | |
820 if( sqlite3_value_type(argv[0])!=SQLITE_NULL ){ | |
821 sqlite3_free(pVTab->zErrMsg); | |
822 pVTab->zErrMsg = sqlite3_mprintf("cannot update a %s virtual table", | |
823 p->zClassName); | |
824 return SQLITE_CONSTRAINT; | |
825 } | |
826 zFrom = (char*)sqlite3_value_text(argv[4]); | |
827 if( zFrom==0 ) zFrom = ""; | |
828 zTo = (char*)sqlite3_value_text(argv[5]); | |
829 if( zTo==0 ) zTo = ""; | |
830 if( strcmp(zFrom,zTo)==0 ){ | |
831 /* Silently ignore null transformations */ | |
832 return SQLITE_OK; | |
833 } | |
834 rCost = sqlite3_value_int(argv[6]); | |
835 if( rCost<=0 ){ | |
836 sqlite3_free(pVTab->zErrMsg); | |
837 pVTab->zErrMsg = sqlite3_mprintf("cost must be positive"); | |
838 return SQLITE_CONSTRAINT; | |
839 } | |
840 nFrom = strlen(zFrom); | |
841 nTo = strlen(zTo); | |
842 pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); | |
843 if( pRule==0 ){ | |
844 return SQLITE_NOMEM; | |
845 } | |
846 pRule->zFrom = &pRule->zTo[nTo+1]; | |
847 pRule->nFrom = nFrom; | |
848 memcpy(pRule->zFrom, zFrom, nFrom+1); | |
849 memcpy(pRule->zTo, zTo, nTo+1); | |
850 pRule->nTo = nTo; | |
851 pRule->rCost = rCost; | |
852 pRule->pNext = p->pNewRule; | |
853 p->pNewRule = pRule; | |
854 return SQLITE_OK; | |
855 } | |
856 | |
857 /* | |
858 ** A virtual table module that provides read-only access to a | |
859 ** Tcl global variable namespace. | |
860 */ | 1143 */ |
861 static sqlite3_module fuzzerModule = { | 1144 static sqlite3_module fuzzerModule = { |
862 0, /* iVersion */ | 1145 0, /* iVersion */ |
863 fuzzerConnect, | 1146 fuzzerConnect, |
864 fuzzerConnect, | 1147 fuzzerConnect, |
865 fuzzerBestIndex, | 1148 fuzzerBestIndex, |
866 fuzzerDisconnect, | 1149 fuzzerDisconnect, |
867 fuzzerDisconnect, | 1150 fuzzerDisconnect, |
868 fuzzerOpen, /* xOpen - open a cursor */ | 1151 fuzzerOpen, /* xOpen - open a cursor */ |
869 fuzzerClose, /* xClose - close a cursor */ | 1152 fuzzerClose, /* xClose - close a cursor */ |
870 fuzzerFilter, /* xFilter - configure scan constraints */ | 1153 fuzzerFilter, /* xFilter - configure scan constraints */ |
871 fuzzerNext, /* xNext - advance a cursor */ | 1154 fuzzerNext, /* xNext - advance a cursor */ |
872 fuzzerEof, /* xEof - check for end of scan */ | 1155 fuzzerEof, /* xEof - check for end of scan */ |
873 fuzzerColumn, /* xColumn - read data */ | 1156 fuzzerColumn, /* xColumn - read data */ |
874 fuzzerRowid, /* xRowid - read data */ | 1157 fuzzerRowid, /* xRowid - read data */ |
875 fuzzerUpdate, /* xUpdate - INSERT */ | 1158 0, /* xUpdate */ |
876 0, /* xBegin */ | 1159 0, /* xBegin */ |
877 0, /* xSync */ | 1160 0, /* xSync */ |
878 0, /* xCommit */ | 1161 0, /* xCommit */ |
879 0, /* xRollback */ | 1162 0, /* xRollback */ |
880 0, /* xFindMethod */ | 1163 0, /* xFindMethod */ |
881 0, /* xRename */ | 1164 0, /* xRename */ |
882 }; | 1165 }; |
883 | 1166 |
884 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | 1167 #endif /* SQLITE_OMIT_VIRTUALTABLE */ |
885 | 1168 |
886 | 1169 |
887 /* | 1170 #ifdef _WIN32 |
888 ** Register the fuzzer virtual table | 1171 __declspec(dllexport) |
889 */ | 1172 #endif |
890 int fuzzer_register(sqlite3 *db){ | 1173 int sqlite3_fuzzer_init( |
| 1174 sqlite3 *db, |
| 1175 char **pzErrMsg, |
| 1176 const sqlite3_api_routines *pApi |
| 1177 ){ |
891 int rc = SQLITE_OK; | 1178 int rc = SQLITE_OK; |
| 1179 SQLITE_EXTENSION_INIT2(pApi); |
892 #ifndef SQLITE_OMIT_VIRTUALTABLE | 1180 #ifndef SQLITE_OMIT_VIRTUALTABLE |
893 rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); | 1181 rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); |
894 #endif | 1182 #endif |
895 return rc; | 1183 return rc; |
896 } | 1184 } |
897 | |
898 #ifdef SQLITE_TEST | |
899 #include <tcl.h> | |
900 /* | |
901 ** Decode a pointer to an sqlite3 object. | |
902 */ | |
903 extern int getDbPointer(Tcl_Interp *interp, const char *zA, sqlite3 **ppDb); | |
904 | |
905 /* | |
906 ** Register the echo virtual table module. | |
907 */ | |
908 static int register_fuzzer_module( | |
909 ClientData clientData, /* Pointer to sqlite3_enable_XXX function */ | |
910 Tcl_Interp *interp, /* The TCL interpreter that invoked this command */ | |
911 int objc, /* Number of arguments */ | |
912 Tcl_Obj *CONST objv[] /* Command arguments */ | |
913 ){ | |
914 sqlite3 *db; | |
915 if( objc!=2 ){ | |
916 Tcl_WrongNumArgs(interp, 1, objv, "DB"); | |
917 return TCL_ERROR; | |
918 } | |
919 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; | |
920 fuzzer_register(db); | |
921 return TCL_OK; | |
922 } | |
923 | |
924 | |
925 /* | |
926 ** Register commands with the TCL interpreter. | |
927 */ | |
928 int Sqlitetestfuzzer_Init(Tcl_Interp *interp){ | |
929 static struct { | |
930 char *zName; | |
931 Tcl_ObjCmdProc *xProc; | |
932 void *clientData; | |
933 } aObjCmd[] = { | |
934 { "register_fuzzer_module", register_fuzzer_module, 0 }, | |
935 }; | |
936 int i; | |
937 for(i=0; i<sizeof(aObjCmd)/sizeof(aObjCmd[0]); i++){ | |
938 Tcl_CreateObjCommand(interp, aObjCmd[i].zName, | |
939 aObjCmd[i].xProc, aObjCmd[i].clientData, 0); | |
940 } | |
941 return TCL_OK; | |
942 } | |
943 | |
944 #endif /* SQLITE_TEST */ | |
OLD | NEW |