Index: experimental/Intersection/LineQuadraticIntersection.cpp |
diff --git a/experimental/Intersection/LineQuadraticIntersection.cpp b/experimental/Intersection/LineQuadraticIntersection.cpp |
deleted file mode 100644 |
index f855d97e4c4bca4a67a0905bc7fa373a2631ab67..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/LineQuadraticIntersection.cpp |
+++ /dev/null |
@@ -1,369 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "CurveIntersection.h" |
-#include "Intersections.h" |
-#include "LineUtilities.h" |
-#include "QuadraticUtilities.h" |
- |
-/* |
-Find the interection of a line and quadratic by solving for valid t values. |
- |
-From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve |
- |
-"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three |
-control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where |
-A, B and C are points and t goes from zero to one. |
- |
-This will give you two equations: |
- |
- x = a(1 - t)^2 + b(1 - t)t + ct^2 |
- y = d(1 - t)^2 + e(1 - t)t + ft^2 |
- |
-If you add for instance the line equation (y = kx + m) to that, you'll end up |
-with three equations and three unknowns (x, y and t)." |
- |
-Similar to above, the quadratic is represented as |
- x = a(1-t)^2 + 2b(1-t)t + ct^2 |
- y = d(1-t)^2 + 2e(1-t)t + ft^2 |
-and the line as |
- y = g*x + h |
- |
-Using Mathematica, solve for the values of t where the quadratic intersects the |
-line: |
- |
- (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, |
- d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] |
- (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + |
- g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) |
- (in) Solve[t1 == 0, t] |
- (out) { |
- {t -> (-2 d + 2 e + 2 a g - 2 b g - |
- Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
- 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
- (2 (-d + 2 e - f + a g - 2 b g + c g)) |
- }, |
- {t -> (-2 d + 2 e + 2 a g - 2 b g + |
- Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - |
- 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / |
- (2 (-d + 2 e - f + a g - 2 b g + c g)) |
- } |
- } |
- |
-Using the results above (when the line tends towards horizontal) |
- A = (-(d - 2*e + f) + g*(a - 2*b + c) ) |
- B = 2*( (d - e ) - g*(a - b ) ) |
- C = (-(d ) + g*(a ) + h ) |
- |
-If g goes to infinity, we can rewrite the line in terms of x. |
- x = g'*y + h' |
- |
-And solve accordingly in Mathematica: |
- |
- (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', |
- d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] |
- (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - |
- g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) |
- (in) Solve[t2 == 0, t] |
- (out) { |
- {t -> (2 a - 2 b - 2 d g' + 2 e g' - |
- Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
- 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / |
- (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
- }, |
- {t -> (2 a - 2 b - 2 d g' + 2 e g' + |
- Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - |
- 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ |
- (2 (a - 2 b + c - d g' + 2 e g' - f g')) |
- } |
- } |
- |
-Thus, if the slope of the line tends towards vertical, we use: |
- A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) |
- B = 2*(-(a - b ) + g'*(d - e ) ) |
- C = ( (a ) - g'*(d ) - h' ) |
- */ |
- |
- |
-class LineQuadraticIntersections { |
-public: |
- |
-LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i) |
- : quad(q) |
- , line(l) |
- , intersections(i) { |
-} |
- |
-int intersectRay(double roots[2]) { |
-/* |
- solve by rotating line+quad so line is horizontal, then finding the roots |
- set up matrix to rotate quad to x-axis |
- |cos(a) -sin(a)| |
- |sin(a) cos(a)| |
- note that cos(a) = A(djacent) / Hypoteneuse |
- sin(a) = O(pposite) / Hypoteneuse |
- since we are computing Ts, we can ignore hypoteneuse, the scale factor: |
- | A -O | |
- | O A | |
- A = line[1].x - line[0].x (adjacent side of the right triangle) |
- O = line[1].y - line[0].y (opposite side of the right triangle) |
- for each of the three points (e.g. n = 0 to 2) |
- quad[n].y' = (quad[n].y - line[0].y) * A - (quad[n].x - line[0].x) * O |
-*/ |
- double adj = line[1].x - line[0].x; |
- double opp = line[1].y - line[0].y; |
- double r[3]; |
- for (int n = 0; n < 3; ++n) { |
- r[n] = (quad[n].y - line[0].y) * adj - (quad[n].x - line[0].x) * opp; |
- } |
- double A = r[2]; |
- double B = r[1]; |
- double C = r[0]; |
- A += C - 2 * B; // A = a - 2*b + c |
- B -= C; // B = -(b - c) |
- return quadraticRootsValidT(A, 2 * B, C, roots); |
-} |
- |
-int intersect() { |
- addEndPoints(); |
- double rootVals[2]; |
- int roots = intersectRay(rootVals); |
- for (int index = 0; index < roots; ++index) { |
- double quadT = rootVals[index]; |
- double lineT = findLineT(quadT); |
- if (pinTs(quadT, lineT)) { |
- _Point pt; |
- xy_at_t(line, lineT, pt.x, pt.y); |
- intersections.insert(quadT, lineT, pt); |
- } |
- } |
- return intersections.fUsed; |
-} |
- |
-int horizontalIntersect(double axisIntercept, double roots[2]) { |
- double D = quad[2].y; // f |
- double E = quad[1].y; // e |
- double F = quad[0].y; // d |
- D += F - 2 * E; // D = d - 2*e + f |
- E -= F; // E = -(d - e) |
- F -= axisIntercept; |
- return quadraticRootsValidT(D, 2 * E, F, roots); |
-} |
- |
-int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) { |
- addHorizontalEndPoints(left, right, axisIntercept); |
- double rootVals[2]; |
- int roots = horizontalIntersect(axisIntercept, rootVals); |
- for (int index = 0; index < roots; ++index) { |
- _Point pt; |
- double quadT = rootVals[index]; |
- xy_at_t(quad, quadT, pt.x, pt.y); |
- double lineT = (pt.x - left) / (right - left); |
- if (pinTs(quadT, lineT)) { |
- intersections.insert(quadT, lineT, pt); |
- } |
- } |
- if (flipped) { |
- flip(); |
- } |
- return intersections.fUsed; |
-} |
- |
-int verticalIntersect(double axisIntercept, double roots[2]) { |
- double D = quad[2].x; // f |
- double E = quad[1].x; // e |
- double F = quad[0].x; // d |
- D += F - 2 * E; // D = d - 2*e + f |
- E -= F; // E = -(d - e) |
- F -= axisIntercept; |
- return quadraticRootsValidT(D, 2 * E, F, roots); |
-} |
- |
-int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) { |
- addVerticalEndPoints(top, bottom, axisIntercept); |
- double rootVals[2]; |
- int roots = verticalIntersect(axisIntercept, rootVals); |
- for (int index = 0; index < roots; ++index) { |
- _Point pt; |
- double quadT = rootVals[index]; |
- xy_at_t(quad, quadT, pt.x, pt.y); |
- double lineT = (pt.y - top) / (bottom - top); |
- if (pinTs(quadT, lineT)) { |
- intersections.insert(quadT, lineT, pt); |
- } |
- } |
- if (flipped) { |
- flip(); |
- } |
- return intersections.fUsed; |
-} |
- |
-protected: |
- |
-// add endpoints first to get zero and one t values exactly |
-void addEndPoints() |
-{ |
- for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
- for (int lIndex = 0; lIndex < 2; lIndex++) { |
- if (quad[qIndex] == line[lIndex]) { |
- intersections.insert(qIndex >> 1, lIndex, line[lIndex]); |
- } |
- } |
- } |
-} |
- |
-void addHorizontalEndPoints(double left, double right, double y) |
-{ |
- for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
- if (quad[qIndex].y != y) { |
- continue; |
- } |
- if (quad[qIndex].x == left) { |
- intersections.insert(qIndex >> 1, 0, quad[qIndex]); |
- } |
- if (quad[qIndex].x == right) { |
- intersections.insert(qIndex >> 1, 1, quad[qIndex]); |
- } |
- } |
-} |
- |
-void addVerticalEndPoints(double top, double bottom, double x) |
-{ |
- for (int qIndex = 0; qIndex < 3; qIndex += 2) { |
- if (quad[qIndex].x != x) { |
- continue; |
- } |
- if (quad[qIndex].y == top) { |
- intersections.insert(qIndex >> 1, 0, quad[qIndex]); |
- } |
- if (quad[qIndex].y == bottom) { |
- intersections.insert(qIndex >> 1, 1, quad[qIndex]); |
- } |
- } |
-} |
- |
-double findLineT(double t) { |
- double x, y; |
- xy_at_t(quad, t, x, y); |
- double dx = line[1].x - line[0].x; |
- double dy = line[1].y - line[0].y; |
- if (fabs(dx) > fabs(dy)) { |
- return (x - line[0].x) / dx; |
- } |
- return (y - line[0].y) / dy; |
-} |
- |
-void flip() { |
- // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y |
- int roots = intersections.fUsed; |
- for (int index = 0; index < roots; ++index) { |
- intersections.fT[1][index] = 1 - intersections.fT[1][index]; |
- } |
-} |
- |
-static bool pinTs(double& quadT, double& lineT) { |
- if (!approximately_one_or_less(lineT)) { |
- return false; |
- } |
- if (!approximately_zero_or_more(lineT)) { |
- return false; |
- } |
- if (precisely_less_than_zero(quadT)) { |
- quadT = 0; |
- } else if (precisely_greater_than_one(quadT)) { |
- quadT = 1; |
- } |
- if (precisely_less_than_zero(lineT)) { |
- lineT = 0; |
- } else if (precisely_greater_than_one(lineT)) { |
- lineT = 1; |
- } |
- return true; |
-} |
- |
-private: |
- |
-const Quadratic& quad; |
-const _Line& line; |
-Intersections& intersections; |
-}; |
- |
-// utility for pairs of coincident quads |
-static double horizontalIntersect(const Quadratic& quad, const _Point& pt) { |
- LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); |
- double rootVals[2]; |
- int roots = q.horizontalIntersect(pt.y, rootVals); |
- for (int index = 0; index < roots; ++index) { |
- double x; |
- double t = rootVals[index]; |
- xy_at_t(quad, t, x, *(double*) 0); |
- if (AlmostEqualUlps(x, pt.x)) { |
- return t; |
- } |
- } |
- return -1; |
-} |
- |
-static double verticalIntersect(const Quadratic& quad, const _Point& pt) { |
- LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); |
- double rootVals[2]; |
- int roots = q.verticalIntersect(pt.x, rootVals); |
- for (int index = 0; index < roots; ++index) { |
- double y; |
- double t = rootVals[index]; |
- xy_at_t(quad, t, *(double*) 0, y); |
- if (AlmostEqualUlps(y, pt.y)) { |
- return t; |
- } |
- } |
- return -1; |
-} |
- |
-double axialIntersect(const Quadratic& q1, const _Point& p, bool vertical) { |
- if (vertical) { |
- return verticalIntersect(q1, p); |
- } |
- return horizontalIntersect(q1, p); |
-} |
- |
-int horizontalIntersect(const Quadratic& quad, double left, double right, |
- double y, double tRange[2]) { |
- LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); |
- double rootVals[2]; |
- int result = q.horizontalIntersect(y, rootVals); |
- int tCount = 0; |
- for (int index = 0; index < result; ++index) { |
- double x, y; |
- xy_at_t(quad, rootVals[index], x, y); |
- if (x < left || x > right) { |
- continue; |
- } |
- tRange[tCount++] = rootVals[index]; |
- } |
- return tCount; |
-} |
- |
-int horizontalIntersect(const Quadratic& quad, double left, double right, double y, |
- bool flipped, Intersections& intersections) { |
- LineQuadraticIntersections q(quad, *((_Line*) 0), intersections); |
- return q.horizontalIntersect(y, left, right, flipped); |
-} |
- |
-int verticalIntersect(const Quadratic& quad, double top, double bottom, double x, |
- bool flipped, Intersections& intersections) { |
- LineQuadraticIntersections q(quad, *((_Line*) 0), intersections); |
- return q.verticalIntersect(x, top, bottom, flipped); |
-} |
- |
-int intersect(const Quadratic& quad, const _Line& line, Intersections& i) { |
- LineQuadraticIntersections q(quad, line, i); |
- return q.intersect(); |
-} |
- |
-int intersectRay(const Quadratic& quad, const _Line& line, Intersections& i) { |
- LineQuadraticIntersections q(quad, line, i); |
- return q.intersectRay(i.fT[0]); |
-} |