| Index: experimental/Intersection/LineQuadraticIntersection.cpp
|
| diff --git a/experimental/Intersection/LineQuadraticIntersection.cpp b/experimental/Intersection/LineQuadraticIntersection.cpp
|
| deleted file mode 100644
|
| index f855d97e4c4bca4a67a0905bc7fa373a2631ab67..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/LineQuadraticIntersection.cpp
|
| +++ /dev/null
|
| @@ -1,369 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "CurveIntersection.h"
|
| -#include "Intersections.h"
|
| -#include "LineUtilities.h"
|
| -#include "QuadraticUtilities.h"
|
| -
|
| -/*
|
| -Find the interection of a line and quadratic by solving for valid t values.
|
| -
|
| -From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
|
| -
|
| -"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
|
| -control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
|
| -A, B and C are points and t goes from zero to one.
|
| -
|
| -This will give you two equations:
|
| -
|
| - x = a(1 - t)^2 + b(1 - t)t + ct^2
|
| - y = d(1 - t)^2 + e(1 - t)t + ft^2
|
| -
|
| -If you add for instance the line equation (y = kx + m) to that, you'll end up
|
| -with three equations and three unknowns (x, y and t)."
|
| -
|
| -Similar to above, the quadratic is represented as
|
| - x = a(1-t)^2 + 2b(1-t)t + ct^2
|
| - y = d(1-t)^2 + 2e(1-t)t + ft^2
|
| -and the line as
|
| - y = g*x + h
|
| -
|
| -Using Mathematica, solve for the values of t where the quadratic intersects the
|
| -line:
|
| -
|
| - (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
|
| - d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x]
|
| - (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
|
| - g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
|
| - (in) Solve[t1 == 0, t]
|
| - (out) {
|
| - {t -> (-2 d + 2 e + 2 a g - 2 b g -
|
| - Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
|
| - 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
|
| - (2 (-d + 2 e - f + a g - 2 b g + c g))
|
| - },
|
| - {t -> (-2 d + 2 e + 2 a g - 2 b g +
|
| - Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
|
| - 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
|
| - (2 (-d + 2 e - f + a g - 2 b g + c g))
|
| - }
|
| - }
|
| -
|
| -Using the results above (when the line tends towards horizontal)
|
| - A = (-(d - 2*e + f) + g*(a - 2*b + c) )
|
| - B = 2*( (d - e ) - g*(a - b ) )
|
| - C = (-(d ) + g*(a ) + h )
|
| -
|
| -If g goes to infinity, we can rewrite the line in terms of x.
|
| - x = g'*y + h'
|
| -
|
| -And solve accordingly in Mathematica:
|
| -
|
| - (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
|
| - d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y]
|
| - (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
|
| - g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
|
| - (in) Solve[t2 == 0, t]
|
| - (out) {
|
| - {t -> (2 a - 2 b - 2 d g' + 2 e g' -
|
| - Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
|
| - 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
|
| - (2 (a - 2 b + c - d g' + 2 e g' - f g'))
|
| - },
|
| - {t -> (2 a - 2 b - 2 d g' + 2 e g' +
|
| - Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
|
| - 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
|
| - (2 (a - 2 b + c - d g' + 2 e g' - f g'))
|
| - }
|
| - }
|
| -
|
| -Thus, if the slope of the line tends towards vertical, we use:
|
| - A = ( (a - 2*b + c) - g'*(d - 2*e + f) )
|
| - B = 2*(-(a - b ) + g'*(d - e ) )
|
| - C = ( (a ) - g'*(d ) - h' )
|
| - */
|
| -
|
| -
|
| -class LineQuadraticIntersections {
|
| -public:
|
| -
|
| -LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i)
|
| - : quad(q)
|
| - , line(l)
|
| - , intersections(i) {
|
| -}
|
| -
|
| -int intersectRay(double roots[2]) {
|
| -/*
|
| - solve by rotating line+quad so line is horizontal, then finding the roots
|
| - set up matrix to rotate quad to x-axis
|
| - |cos(a) -sin(a)|
|
| - |sin(a) cos(a)|
|
| - note that cos(a) = A(djacent) / Hypoteneuse
|
| - sin(a) = O(pposite) / Hypoteneuse
|
| - since we are computing Ts, we can ignore hypoteneuse, the scale factor:
|
| - | A -O |
|
| - | O A |
|
| - A = line[1].x - line[0].x (adjacent side of the right triangle)
|
| - O = line[1].y - line[0].y (opposite side of the right triangle)
|
| - for each of the three points (e.g. n = 0 to 2)
|
| - quad[n].y' = (quad[n].y - line[0].y) * A - (quad[n].x - line[0].x) * O
|
| -*/
|
| - double adj = line[1].x - line[0].x;
|
| - double opp = line[1].y - line[0].y;
|
| - double r[3];
|
| - for (int n = 0; n < 3; ++n) {
|
| - r[n] = (quad[n].y - line[0].y) * adj - (quad[n].x - line[0].x) * opp;
|
| - }
|
| - double A = r[2];
|
| - double B = r[1];
|
| - double C = r[0];
|
| - A += C - 2 * B; // A = a - 2*b + c
|
| - B -= C; // B = -(b - c)
|
| - return quadraticRootsValidT(A, 2 * B, C, roots);
|
| -}
|
| -
|
| -int intersect() {
|
| - addEndPoints();
|
| - double rootVals[2];
|
| - int roots = intersectRay(rootVals);
|
| - for (int index = 0; index < roots; ++index) {
|
| - double quadT = rootVals[index];
|
| - double lineT = findLineT(quadT);
|
| - if (pinTs(quadT, lineT)) {
|
| - _Point pt;
|
| - xy_at_t(line, lineT, pt.x, pt.y);
|
| - intersections.insert(quadT, lineT, pt);
|
| - }
|
| - }
|
| - return intersections.fUsed;
|
| -}
|
| -
|
| -int horizontalIntersect(double axisIntercept, double roots[2]) {
|
| - double D = quad[2].y; // f
|
| - double E = quad[1].y; // e
|
| - double F = quad[0].y; // d
|
| - D += F - 2 * E; // D = d - 2*e + f
|
| - E -= F; // E = -(d - e)
|
| - F -= axisIntercept;
|
| - return quadraticRootsValidT(D, 2 * E, F, roots);
|
| -}
|
| -
|
| -int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
|
| - addHorizontalEndPoints(left, right, axisIntercept);
|
| - double rootVals[2];
|
| - int roots = horizontalIntersect(axisIntercept, rootVals);
|
| - for (int index = 0; index < roots; ++index) {
|
| - _Point pt;
|
| - double quadT = rootVals[index];
|
| - xy_at_t(quad, quadT, pt.x, pt.y);
|
| - double lineT = (pt.x - left) / (right - left);
|
| - if (pinTs(quadT, lineT)) {
|
| - intersections.insert(quadT, lineT, pt);
|
| - }
|
| - }
|
| - if (flipped) {
|
| - flip();
|
| - }
|
| - return intersections.fUsed;
|
| -}
|
| -
|
| -int verticalIntersect(double axisIntercept, double roots[2]) {
|
| - double D = quad[2].x; // f
|
| - double E = quad[1].x; // e
|
| - double F = quad[0].x; // d
|
| - D += F - 2 * E; // D = d - 2*e + f
|
| - E -= F; // E = -(d - e)
|
| - F -= axisIntercept;
|
| - return quadraticRootsValidT(D, 2 * E, F, roots);
|
| -}
|
| -
|
| -int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
|
| - addVerticalEndPoints(top, bottom, axisIntercept);
|
| - double rootVals[2];
|
| - int roots = verticalIntersect(axisIntercept, rootVals);
|
| - for (int index = 0; index < roots; ++index) {
|
| - _Point pt;
|
| - double quadT = rootVals[index];
|
| - xy_at_t(quad, quadT, pt.x, pt.y);
|
| - double lineT = (pt.y - top) / (bottom - top);
|
| - if (pinTs(quadT, lineT)) {
|
| - intersections.insert(quadT, lineT, pt);
|
| - }
|
| - }
|
| - if (flipped) {
|
| - flip();
|
| - }
|
| - return intersections.fUsed;
|
| -}
|
| -
|
| -protected:
|
| -
|
| -// add endpoints first to get zero and one t values exactly
|
| -void addEndPoints()
|
| -{
|
| - for (int qIndex = 0; qIndex < 3; qIndex += 2) {
|
| - for (int lIndex = 0; lIndex < 2; lIndex++) {
|
| - if (quad[qIndex] == line[lIndex]) {
|
| - intersections.insert(qIndex >> 1, lIndex, line[lIndex]);
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -void addHorizontalEndPoints(double left, double right, double y)
|
| -{
|
| - for (int qIndex = 0; qIndex < 3; qIndex += 2) {
|
| - if (quad[qIndex].y != y) {
|
| - continue;
|
| - }
|
| - if (quad[qIndex].x == left) {
|
| - intersections.insert(qIndex >> 1, 0, quad[qIndex]);
|
| - }
|
| - if (quad[qIndex].x == right) {
|
| - intersections.insert(qIndex >> 1, 1, quad[qIndex]);
|
| - }
|
| - }
|
| -}
|
| -
|
| -void addVerticalEndPoints(double top, double bottom, double x)
|
| -{
|
| - for (int qIndex = 0; qIndex < 3; qIndex += 2) {
|
| - if (quad[qIndex].x != x) {
|
| - continue;
|
| - }
|
| - if (quad[qIndex].y == top) {
|
| - intersections.insert(qIndex >> 1, 0, quad[qIndex]);
|
| - }
|
| - if (quad[qIndex].y == bottom) {
|
| - intersections.insert(qIndex >> 1, 1, quad[qIndex]);
|
| - }
|
| - }
|
| -}
|
| -
|
| -double findLineT(double t) {
|
| - double x, y;
|
| - xy_at_t(quad, t, x, y);
|
| - double dx = line[1].x - line[0].x;
|
| - double dy = line[1].y - line[0].y;
|
| - if (fabs(dx) > fabs(dy)) {
|
| - return (x - line[0].x) / dx;
|
| - }
|
| - return (y - line[0].y) / dy;
|
| -}
|
| -
|
| -void flip() {
|
| - // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
|
| - int roots = intersections.fUsed;
|
| - for (int index = 0; index < roots; ++index) {
|
| - intersections.fT[1][index] = 1 - intersections.fT[1][index];
|
| - }
|
| -}
|
| -
|
| -static bool pinTs(double& quadT, double& lineT) {
|
| - if (!approximately_one_or_less(lineT)) {
|
| - return false;
|
| - }
|
| - if (!approximately_zero_or_more(lineT)) {
|
| - return false;
|
| - }
|
| - if (precisely_less_than_zero(quadT)) {
|
| - quadT = 0;
|
| - } else if (precisely_greater_than_one(quadT)) {
|
| - quadT = 1;
|
| - }
|
| - if (precisely_less_than_zero(lineT)) {
|
| - lineT = 0;
|
| - } else if (precisely_greater_than_one(lineT)) {
|
| - lineT = 1;
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -private:
|
| -
|
| -const Quadratic& quad;
|
| -const _Line& line;
|
| -Intersections& intersections;
|
| -};
|
| -
|
| -// utility for pairs of coincident quads
|
| -static double horizontalIntersect(const Quadratic& quad, const _Point& pt) {
|
| - LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
|
| - double rootVals[2];
|
| - int roots = q.horizontalIntersect(pt.y, rootVals);
|
| - for (int index = 0; index < roots; ++index) {
|
| - double x;
|
| - double t = rootVals[index];
|
| - xy_at_t(quad, t, x, *(double*) 0);
|
| - if (AlmostEqualUlps(x, pt.x)) {
|
| - return t;
|
| - }
|
| - }
|
| - return -1;
|
| -}
|
| -
|
| -static double verticalIntersect(const Quadratic& quad, const _Point& pt) {
|
| - LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
|
| - double rootVals[2];
|
| - int roots = q.verticalIntersect(pt.x, rootVals);
|
| - for (int index = 0; index < roots; ++index) {
|
| - double y;
|
| - double t = rootVals[index];
|
| - xy_at_t(quad, t, *(double*) 0, y);
|
| - if (AlmostEqualUlps(y, pt.y)) {
|
| - return t;
|
| - }
|
| - }
|
| - return -1;
|
| -}
|
| -
|
| -double axialIntersect(const Quadratic& q1, const _Point& p, bool vertical) {
|
| - if (vertical) {
|
| - return verticalIntersect(q1, p);
|
| - }
|
| - return horizontalIntersect(q1, p);
|
| -}
|
| -
|
| -int horizontalIntersect(const Quadratic& quad, double left, double right,
|
| - double y, double tRange[2]) {
|
| - LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
|
| - double rootVals[2];
|
| - int result = q.horizontalIntersect(y, rootVals);
|
| - int tCount = 0;
|
| - for (int index = 0; index < result; ++index) {
|
| - double x, y;
|
| - xy_at_t(quad, rootVals[index], x, y);
|
| - if (x < left || x > right) {
|
| - continue;
|
| - }
|
| - tRange[tCount++] = rootVals[index];
|
| - }
|
| - return tCount;
|
| -}
|
| -
|
| -int horizontalIntersect(const Quadratic& quad, double left, double right, double y,
|
| - bool flipped, Intersections& intersections) {
|
| - LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
|
| - return q.horizontalIntersect(y, left, right, flipped);
|
| -}
|
| -
|
| -int verticalIntersect(const Quadratic& quad, double top, double bottom, double x,
|
| - bool flipped, Intersections& intersections) {
|
| - LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
|
| - return q.verticalIntersect(x, top, bottom, flipped);
|
| -}
|
| -
|
| -int intersect(const Quadratic& quad, const _Line& line, Intersections& i) {
|
| - LineQuadraticIntersections q(quad, line, i);
|
| - return q.intersect();
|
| -}
|
| -
|
| -int intersectRay(const Quadratic& quad, const _Line& line, Intersections& i) {
|
| - LineQuadraticIntersections q(quad, line, i);
|
| - return q.intersectRay(i.fT[0]);
|
| -}
|
|
|