Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(546)

Unified Diff: experimental/Intersection/LineQuadraticIntersection.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
Index: experimental/Intersection/LineQuadraticIntersection.cpp
diff --git a/experimental/Intersection/LineQuadraticIntersection.cpp b/experimental/Intersection/LineQuadraticIntersection.cpp
deleted file mode 100644
index f855d97e4c4bca4a67a0905bc7fa373a2631ab67..0000000000000000000000000000000000000000
--- a/experimental/Intersection/LineQuadraticIntersection.cpp
+++ /dev/null
@@ -1,369 +0,0 @@
-/*
- * Copyright 2012 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-#include "CurveIntersection.h"
-#include "Intersections.h"
-#include "LineUtilities.h"
-#include "QuadraticUtilities.h"
-
-/*
-Find the interection of a line and quadratic by solving for valid t values.
-
-From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-function-defining-a-bezier-curve
-
-"A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
-control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
-A, B and C are points and t goes from zero to one.
-
-This will give you two equations:
-
- x = a(1 - t)^2 + b(1 - t)t + ct^2
- y = d(1 - t)^2 + e(1 - t)t + ft^2
-
-If you add for instance the line equation (y = kx + m) to that, you'll end up
-with three equations and three unknowns (x, y and t)."
-
-Similar to above, the quadratic is represented as
- x = a(1-t)^2 + 2b(1-t)t + ct^2
- y = d(1-t)^2 + 2e(1-t)t + ft^2
-and the line as
- y = g*x + h
-
-Using Mathematica, solve for the values of t where the quadratic intersects the
-line:
-
- (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
- d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x]
- (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
- g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
- (in) Solve[t1 == 0, t]
- (out) {
- {t -> (-2 d + 2 e + 2 a g - 2 b g -
- Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
- 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
- (2 (-d + 2 e - f + a g - 2 b g + c g))
- },
- {t -> (-2 d + 2 e + 2 a g - 2 b g +
- Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
- 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
- (2 (-d + 2 e - f + a g - 2 b g + c g))
- }
- }
-
-Using the results above (when the line tends towards horizontal)
- A = (-(d - 2*e + f) + g*(a - 2*b + c) )
- B = 2*( (d - e ) - g*(a - b ) )
- C = (-(d ) + g*(a ) + h )
-
-If g goes to infinity, we can rewrite the line in terms of x.
- x = g'*y + h'
-
-And solve accordingly in Mathematica:
-
- (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
- d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y]
- (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
- g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
- (in) Solve[t2 == 0, t]
- (out) {
- {t -> (2 a - 2 b - 2 d g' + 2 e g' -
- Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
- 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
- (2 (a - 2 b + c - d g' + 2 e g' - f g'))
- },
- {t -> (2 a - 2 b - 2 d g' + 2 e g' +
- Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
- 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
- (2 (a - 2 b + c - d g' + 2 e g' - f g'))
- }
- }
-
-Thus, if the slope of the line tends towards vertical, we use:
- A = ( (a - 2*b + c) - g'*(d - 2*e + f) )
- B = 2*(-(a - b ) + g'*(d - e ) )
- C = ( (a ) - g'*(d ) - h' )
- */
-
-
-class LineQuadraticIntersections {
-public:
-
-LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i)
- : quad(q)
- , line(l)
- , intersections(i) {
-}
-
-int intersectRay(double roots[2]) {
-/*
- solve by rotating line+quad so line is horizontal, then finding the roots
- set up matrix to rotate quad to x-axis
- |cos(a) -sin(a)|
- |sin(a) cos(a)|
- note that cos(a) = A(djacent) / Hypoteneuse
- sin(a) = O(pposite) / Hypoteneuse
- since we are computing Ts, we can ignore hypoteneuse, the scale factor:
- | A -O |
- | O A |
- A = line[1].x - line[0].x (adjacent side of the right triangle)
- O = line[1].y - line[0].y (opposite side of the right triangle)
- for each of the three points (e.g. n = 0 to 2)
- quad[n].y' = (quad[n].y - line[0].y) * A - (quad[n].x - line[0].x) * O
-*/
- double adj = line[1].x - line[0].x;
- double opp = line[1].y - line[0].y;
- double r[3];
- for (int n = 0; n < 3; ++n) {
- r[n] = (quad[n].y - line[0].y) * adj - (quad[n].x - line[0].x) * opp;
- }
- double A = r[2];
- double B = r[1];
- double C = r[0];
- A += C - 2 * B; // A = a - 2*b + c
- B -= C; // B = -(b - c)
- return quadraticRootsValidT(A, 2 * B, C, roots);
-}
-
-int intersect() {
- addEndPoints();
- double rootVals[2];
- int roots = intersectRay(rootVals);
- for (int index = 0; index < roots; ++index) {
- double quadT = rootVals[index];
- double lineT = findLineT(quadT);
- if (pinTs(quadT, lineT)) {
- _Point pt;
- xy_at_t(line, lineT, pt.x, pt.y);
- intersections.insert(quadT, lineT, pt);
- }
- }
- return intersections.fUsed;
-}
-
-int horizontalIntersect(double axisIntercept, double roots[2]) {
- double D = quad[2].y; // f
- double E = quad[1].y; // e
- double F = quad[0].y; // d
- D += F - 2 * E; // D = d - 2*e + f
- E -= F; // E = -(d - e)
- F -= axisIntercept;
- return quadraticRootsValidT(D, 2 * E, F, roots);
-}
-
-int horizontalIntersect(double axisIntercept, double left, double right, bool flipped) {
- addHorizontalEndPoints(left, right, axisIntercept);
- double rootVals[2];
- int roots = horizontalIntersect(axisIntercept, rootVals);
- for (int index = 0; index < roots; ++index) {
- _Point pt;
- double quadT = rootVals[index];
- xy_at_t(quad, quadT, pt.x, pt.y);
- double lineT = (pt.x - left) / (right - left);
- if (pinTs(quadT, lineT)) {
- intersections.insert(quadT, lineT, pt);
- }
- }
- if (flipped) {
- flip();
- }
- return intersections.fUsed;
-}
-
-int verticalIntersect(double axisIntercept, double roots[2]) {
- double D = quad[2].x; // f
- double E = quad[1].x; // e
- double F = quad[0].x; // d
- D += F - 2 * E; // D = d - 2*e + f
- E -= F; // E = -(d - e)
- F -= axisIntercept;
- return quadraticRootsValidT(D, 2 * E, F, roots);
-}
-
-int verticalIntersect(double axisIntercept, double top, double bottom, bool flipped) {
- addVerticalEndPoints(top, bottom, axisIntercept);
- double rootVals[2];
- int roots = verticalIntersect(axisIntercept, rootVals);
- for (int index = 0; index < roots; ++index) {
- _Point pt;
- double quadT = rootVals[index];
- xy_at_t(quad, quadT, pt.x, pt.y);
- double lineT = (pt.y - top) / (bottom - top);
- if (pinTs(quadT, lineT)) {
- intersections.insert(quadT, lineT, pt);
- }
- }
- if (flipped) {
- flip();
- }
- return intersections.fUsed;
-}
-
-protected:
-
-// add endpoints first to get zero and one t values exactly
-void addEndPoints()
-{
- for (int qIndex = 0; qIndex < 3; qIndex += 2) {
- for (int lIndex = 0; lIndex < 2; lIndex++) {
- if (quad[qIndex] == line[lIndex]) {
- intersections.insert(qIndex >> 1, lIndex, line[lIndex]);
- }
- }
- }
-}
-
-void addHorizontalEndPoints(double left, double right, double y)
-{
- for (int qIndex = 0; qIndex < 3; qIndex += 2) {
- if (quad[qIndex].y != y) {
- continue;
- }
- if (quad[qIndex].x == left) {
- intersections.insert(qIndex >> 1, 0, quad[qIndex]);
- }
- if (quad[qIndex].x == right) {
- intersections.insert(qIndex >> 1, 1, quad[qIndex]);
- }
- }
-}
-
-void addVerticalEndPoints(double top, double bottom, double x)
-{
- for (int qIndex = 0; qIndex < 3; qIndex += 2) {
- if (quad[qIndex].x != x) {
- continue;
- }
- if (quad[qIndex].y == top) {
- intersections.insert(qIndex >> 1, 0, quad[qIndex]);
- }
- if (quad[qIndex].y == bottom) {
- intersections.insert(qIndex >> 1, 1, quad[qIndex]);
- }
- }
-}
-
-double findLineT(double t) {
- double x, y;
- xy_at_t(quad, t, x, y);
- double dx = line[1].x - line[0].x;
- double dy = line[1].y - line[0].y;
- if (fabs(dx) > fabs(dy)) {
- return (x - line[0].x) / dx;
- }
- return (y - line[0].y) / dy;
-}
-
-void flip() {
- // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
- int roots = intersections.fUsed;
- for (int index = 0; index < roots; ++index) {
- intersections.fT[1][index] = 1 - intersections.fT[1][index];
- }
-}
-
-static bool pinTs(double& quadT, double& lineT) {
- if (!approximately_one_or_less(lineT)) {
- return false;
- }
- if (!approximately_zero_or_more(lineT)) {
- return false;
- }
- if (precisely_less_than_zero(quadT)) {
- quadT = 0;
- } else if (precisely_greater_than_one(quadT)) {
- quadT = 1;
- }
- if (precisely_less_than_zero(lineT)) {
- lineT = 0;
- } else if (precisely_greater_than_one(lineT)) {
- lineT = 1;
- }
- return true;
-}
-
-private:
-
-const Quadratic& quad;
-const _Line& line;
-Intersections& intersections;
-};
-
-// utility for pairs of coincident quads
-static double horizontalIntersect(const Quadratic& quad, const _Point& pt) {
- LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
- double rootVals[2];
- int roots = q.horizontalIntersect(pt.y, rootVals);
- for (int index = 0; index < roots; ++index) {
- double x;
- double t = rootVals[index];
- xy_at_t(quad, t, x, *(double*) 0);
- if (AlmostEqualUlps(x, pt.x)) {
- return t;
- }
- }
- return -1;
-}
-
-static double verticalIntersect(const Quadratic& quad, const _Point& pt) {
- LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
- double rootVals[2];
- int roots = q.verticalIntersect(pt.x, rootVals);
- for (int index = 0; index < roots; ++index) {
- double y;
- double t = rootVals[index];
- xy_at_t(quad, t, *(double*) 0, y);
- if (AlmostEqualUlps(y, pt.y)) {
- return t;
- }
- }
- return -1;
-}
-
-double axialIntersect(const Quadratic& q1, const _Point& p, bool vertical) {
- if (vertical) {
- return verticalIntersect(q1, p);
- }
- return horizontalIntersect(q1, p);
-}
-
-int horizontalIntersect(const Quadratic& quad, double left, double right,
- double y, double tRange[2]) {
- LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
- double rootVals[2];
- int result = q.horizontalIntersect(y, rootVals);
- int tCount = 0;
- for (int index = 0; index < result; ++index) {
- double x, y;
- xy_at_t(quad, rootVals[index], x, y);
- if (x < left || x > right) {
- continue;
- }
- tRange[tCount++] = rootVals[index];
- }
- return tCount;
-}
-
-int horizontalIntersect(const Quadratic& quad, double left, double right, double y,
- bool flipped, Intersections& intersections) {
- LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
- return q.horizontalIntersect(y, left, right, flipped);
-}
-
-int verticalIntersect(const Quadratic& quad, double top, double bottom, double x,
- bool flipped, Intersections& intersections) {
- LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
- return q.verticalIntersect(x, top, bottom, flipped);
-}
-
-int intersect(const Quadratic& quad, const _Line& line, Intersections& i) {
- LineQuadraticIntersections q(quad, line, i);
- return q.intersect();
-}
-
-int intersectRay(const Quadratic& quad, const _Line& line, Intersections& i) {
- LineQuadraticIntersections q(quad, line, i);
- return q.intersectRay(i.fT[0]);
-}
« no previous file with comments | « experimental/Intersection/LineParameteters_Test.cpp ('k') | experimental/Intersection/LineQuadraticIntersection_Test.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698