Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(51)

Side by Side Diff: experimental/Intersection/LineQuadraticIntersection.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 10 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 * Copyright 2012 Google Inc.
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7 #include "CurveIntersection.h"
8 #include "Intersections.h"
9 #include "LineUtilities.h"
10 #include "QuadraticUtilities.h"
11
12 /*
13 Find the interection of a line and quadratic by solving for valid t values.
14
15 From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-fun ction-defining-a-bezier-curve
16
17 "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three
18 control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where
19 A, B and C are points and t goes from zero to one.
20
21 This will give you two equations:
22
23 x = a(1 - t)^2 + b(1 - t)t + ct^2
24 y = d(1 - t)^2 + e(1 - t)t + ft^2
25
26 If you add for instance the line equation (y = kx + m) to that, you'll end up
27 with three equations and three unknowns (x, y and t)."
28
29 Similar to above, the quadratic is represented as
30 x = a(1-t)^2 + 2b(1-t)t + ct^2
31 y = d(1-t)^2 + 2e(1-t)t + ft^2
32 and the line as
33 y = g*x + h
34
35 Using Mathematica, solve for the values of t where the quadratic intersects the
36 line:
37
38 (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x,
39 d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x]
40 (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 +
41 g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2)
42 (in) Solve[t1 == 0, t]
43 (out) {
44 {t -> (-2 d + 2 e + 2 a g - 2 b g -
45 Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
46 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
47 (2 (-d + 2 e - f + a g - 2 b g + c g))
48 },
49 {t -> (-2 d + 2 e + 2 a g - 2 b g +
50 Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 -
51 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) /
52 (2 (-d + 2 e - f + a g - 2 b g + c g))
53 }
54 }
55
56 Using the results above (when the line tends towards horizontal)
57 A = (-(d - 2*e + f) + g*(a - 2*b + c) )
58 B = 2*( (d - e ) - g*(a - b ) )
59 C = (-(d ) + g*(a ) + h )
60
61 If g goes to infinity, we can rewrite the line in terms of x.
62 x = g'*y + h'
63
64 And solve accordingly in Mathematica:
65
66 (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h',
67 d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y]
68 (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 -
69 g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2)
70 (in) Solve[t2 == 0, t]
71 (out) {
72 {t -> (2 a - 2 b - 2 d g' + 2 e g' -
73 Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
74 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) /
75 (2 (a - 2 b + c - d g' + 2 e g' - f g'))
76 },
77 {t -> (2 a - 2 b - 2 d g' + 2 e g' +
78 Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 -
79 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/
80 (2 (a - 2 b + c - d g' + 2 e g' - f g'))
81 }
82 }
83
84 Thus, if the slope of the line tends towards vertical, we use:
85 A = ( (a - 2*b + c) - g'*(d - 2*e + f) )
86 B = 2*(-(a - b ) + g'*(d - e ) )
87 C = ( (a ) - g'*(d ) - h' )
88 */
89
90
91 class LineQuadraticIntersections {
92 public:
93
94 LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i)
95 : quad(q)
96 , line(l)
97 , intersections(i) {
98 }
99
100 int intersectRay(double roots[2]) {
101 /*
102 solve by rotating line+quad so line is horizontal, then finding the roots
103 set up matrix to rotate quad to x-axis
104 |cos(a) -sin(a)|
105 |sin(a) cos(a)|
106 note that cos(a) = A(djacent) / Hypoteneuse
107 sin(a) = O(pposite) / Hypoteneuse
108 since we are computing Ts, we can ignore hypoteneuse, the scale factor:
109 | A -O |
110 | O A |
111 A = line[1].x - line[0].x (adjacent side of the right triangle)
112 O = line[1].y - line[0].y (opposite side of the right triangle)
113 for each of the three points (e.g. n = 0 to 2)
114 quad[n].y' = (quad[n].y - line[0].y) * A - (quad[n].x - line[0].x) * O
115 */
116 double adj = line[1].x - line[0].x;
117 double opp = line[1].y - line[0].y;
118 double r[3];
119 for (int n = 0; n < 3; ++n) {
120 r[n] = (quad[n].y - line[0].y) * adj - (quad[n].x - line[0].x) * opp;
121 }
122 double A = r[2];
123 double B = r[1];
124 double C = r[0];
125 A += C - 2 * B; // A = a - 2*b + c
126 B -= C; // B = -(b - c)
127 return quadraticRootsValidT(A, 2 * B, C, roots);
128 }
129
130 int intersect() {
131 addEndPoints();
132 double rootVals[2];
133 int roots = intersectRay(rootVals);
134 for (int index = 0; index < roots; ++index) {
135 double quadT = rootVals[index];
136 double lineT = findLineT(quadT);
137 if (pinTs(quadT, lineT)) {
138 _Point pt;
139 xy_at_t(line, lineT, pt.x, pt.y);
140 intersections.insert(quadT, lineT, pt);
141 }
142 }
143 return intersections.fUsed;
144 }
145
146 int horizontalIntersect(double axisIntercept, double roots[2]) {
147 double D = quad[2].y; // f
148 double E = quad[1].y; // e
149 double F = quad[0].y; // d
150 D += F - 2 * E; // D = d - 2*e + f
151 E -= F; // E = -(d - e)
152 F -= axisIntercept;
153 return quadraticRootsValidT(D, 2 * E, F, roots);
154 }
155
156 int horizontalIntersect(double axisIntercept, double left, double right, bool fl ipped) {
157 addHorizontalEndPoints(left, right, axisIntercept);
158 double rootVals[2];
159 int roots = horizontalIntersect(axisIntercept, rootVals);
160 for (int index = 0; index < roots; ++index) {
161 _Point pt;
162 double quadT = rootVals[index];
163 xy_at_t(quad, quadT, pt.x, pt.y);
164 double lineT = (pt.x - left) / (right - left);
165 if (pinTs(quadT, lineT)) {
166 intersections.insert(quadT, lineT, pt);
167 }
168 }
169 if (flipped) {
170 flip();
171 }
172 return intersections.fUsed;
173 }
174
175 int verticalIntersect(double axisIntercept, double roots[2]) {
176 double D = quad[2].x; // f
177 double E = quad[1].x; // e
178 double F = quad[0].x; // d
179 D += F - 2 * E; // D = d - 2*e + f
180 E -= F; // E = -(d - e)
181 F -= axisIntercept;
182 return quadraticRootsValidT(D, 2 * E, F, roots);
183 }
184
185 int verticalIntersect(double axisIntercept, double top, double bottom, bool flip ped) {
186 addVerticalEndPoints(top, bottom, axisIntercept);
187 double rootVals[2];
188 int roots = verticalIntersect(axisIntercept, rootVals);
189 for (int index = 0; index < roots; ++index) {
190 _Point pt;
191 double quadT = rootVals[index];
192 xy_at_t(quad, quadT, pt.x, pt.y);
193 double lineT = (pt.y - top) / (bottom - top);
194 if (pinTs(quadT, lineT)) {
195 intersections.insert(quadT, lineT, pt);
196 }
197 }
198 if (flipped) {
199 flip();
200 }
201 return intersections.fUsed;
202 }
203
204 protected:
205
206 // add endpoints first to get zero and one t values exactly
207 void addEndPoints()
208 {
209 for (int qIndex = 0; qIndex < 3; qIndex += 2) {
210 for (int lIndex = 0; lIndex < 2; lIndex++) {
211 if (quad[qIndex] == line[lIndex]) {
212 intersections.insert(qIndex >> 1, lIndex, line[lIndex]);
213 }
214 }
215 }
216 }
217
218 void addHorizontalEndPoints(double left, double right, double y)
219 {
220 for (int qIndex = 0; qIndex < 3; qIndex += 2) {
221 if (quad[qIndex].y != y) {
222 continue;
223 }
224 if (quad[qIndex].x == left) {
225 intersections.insert(qIndex >> 1, 0, quad[qIndex]);
226 }
227 if (quad[qIndex].x == right) {
228 intersections.insert(qIndex >> 1, 1, quad[qIndex]);
229 }
230 }
231 }
232
233 void addVerticalEndPoints(double top, double bottom, double x)
234 {
235 for (int qIndex = 0; qIndex < 3; qIndex += 2) {
236 if (quad[qIndex].x != x) {
237 continue;
238 }
239 if (quad[qIndex].y == top) {
240 intersections.insert(qIndex >> 1, 0, quad[qIndex]);
241 }
242 if (quad[qIndex].y == bottom) {
243 intersections.insert(qIndex >> 1, 1, quad[qIndex]);
244 }
245 }
246 }
247
248 double findLineT(double t) {
249 double x, y;
250 xy_at_t(quad, t, x, y);
251 double dx = line[1].x - line[0].x;
252 double dy = line[1].y - line[0].y;
253 if (fabs(dx) > fabs(dy)) {
254 return (x - line[0].x) / dx;
255 }
256 return (y - line[0].y) / dy;
257 }
258
259 void flip() {
260 // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y
261 int roots = intersections.fUsed;
262 for (int index = 0; index < roots; ++index) {
263 intersections.fT[1][index] = 1 - intersections.fT[1][index];
264 }
265 }
266
267 static bool pinTs(double& quadT, double& lineT) {
268 if (!approximately_one_or_less(lineT)) {
269 return false;
270 }
271 if (!approximately_zero_or_more(lineT)) {
272 return false;
273 }
274 if (precisely_less_than_zero(quadT)) {
275 quadT = 0;
276 } else if (precisely_greater_than_one(quadT)) {
277 quadT = 1;
278 }
279 if (precisely_less_than_zero(lineT)) {
280 lineT = 0;
281 } else if (precisely_greater_than_one(lineT)) {
282 lineT = 1;
283 }
284 return true;
285 }
286
287 private:
288
289 const Quadratic& quad;
290 const _Line& line;
291 Intersections& intersections;
292 };
293
294 // utility for pairs of coincident quads
295 static double horizontalIntersect(const Quadratic& quad, const _Point& pt) {
296 LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
297 double rootVals[2];
298 int roots = q.horizontalIntersect(pt.y, rootVals);
299 for (int index = 0; index < roots; ++index) {
300 double x;
301 double t = rootVals[index];
302 xy_at_t(quad, t, x, *(double*) 0);
303 if (AlmostEqualUlps(x, pt.x)) {
304 return t;
305 }
306 }
307 return -1;
308 }
309
310 static double verticalIntersect(const Quadratic& quad, const _Point& pt) {
311 LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
312 double rootVals[2];
313 int roots = q.verticalIntersect(pt.x, rootVals);
314 for (int index = 0; index < roots; ++index) {
315 double y;
316 double t = rootVals[index];
317 xy_at_t(quad, t, *(double*) 0, y);
318 if (AlmostEqualUlps(y, pt.y)) {
319 return t;
320 }
321 }
322 return -1;
323 }
324
325 double axialIntersect(const Quadratic& q1, const _Point& p, bool vertical) {
326 if (vertical) {
327 return verticalIntersect(q1, p);
328 }
329 return horizontalIntersect(q1, p);
330 }
331
332 int horizontalIntersect(const Quadratic& quad, double left, double right,
333 double y, double tRange[2]) {
334 LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0));
335 double rootVals[2];
336 int result = q.horizontalIntersect(y, rootVals);
337 int tCount = 0;
338 for (int index = 0; index < result; ++index) {
339 double x, y;
340 xy_at_t(quad, rootVals[index], x, y);
341 if (x < left || x > right) {
342 continue;
343 }
344 tRange[tCount++] = rootVals[index];
345 }
346 return tCount;
347 }
348
349 int horizontalIntersect(const Quadratic& quad, double left, double right, double y,
350 bool flipped, Intersections& intersections) {
351 LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
352 return q.horizontalIntersect(y, left, right, flipped);
353 }
354
355 int verticalIntersect(const Quadratic& quad, double top, double bottom, double x ,
356 bool flipped, Intersections& intersections) {
357 LineQuadraticIntersections q(quad, *((_Line*) 0), intersections);
358 return q.verticalIntersect(x, top, bottom, flipped);
359 }
360
361 int intersect(const Quadratic& quad, const _Line& line, Intersections& i) {
362 LineQuadraticIntersections q(quad, line, i);
363 return q.intersect();
364 }
365
366 int intersectRay(const Quadratic& quad, const _Line& line, Intersections& i) {
367 LineQuadraticIntersections q(quad, line, i);
368 return q.intersectRay(i.fT[0]);
369 }
OLDNEW
« no previous file with comments | « experimental/Intersection/LineParameteters_Test.cpp ('k') | experimental/Intersection/LineQuadraticIntersection_Test.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698