OLD | NEW |
| (Empty) |
1 /* | |
2 * Copyright 2012 Google Inc. | |
3 * | |
4 * Use of this source code is governed by a BSD-style license that can be | |
5 * found in the LICENSE file. | |
6 */ | |
7 #include "CurveIntersection.h" | |
8 #include "Intersections.h" | |
9 #include "LineUtilities.h" | |
10 #include "QuadraticUtilities.h" | |
11 | |
12 /* | |
13 Find the interection of a line and quadratic by solving for valid t values. | |
14 | |
15 From http://stackoverflow.com/questions/1853637/how-to-find-the-mathematical-fun
ction-defining-a-bezier-curve | |
16 | |
17 "A Bezier curve is a parametric function. A quadratic Bezier curve (i.e. three | |
18 control points) can be expressed as: F(t) = A(1 - t)^2 + B(1 - t)t + Ct^2 where | |
19 A, B and C are points and t goes from zero to one. | |
20 | |
21 This will give you two equations: | |
22 | |
23 x = a(1 - t)^2 + b(1 - t)t + ct^2 | |
24 y = d(1 - t)^2 + e(1 - t)t + ft^2 | |
25 | |
26 If you add for instance the line equation (y = kx + m) to that, you'll end up | |
27 with three equations and three unknowns (x, y and t)." | |
28 | |
29 Similar to above, the quadratic is represented as | |
30 x = a(1-t)^2 + 2b(1-t)t + ct^2 | |
31 y = d(1-t)^2 + 2e(1-t)t + ft^2 | |
32 and the line as | |
33 y = g*x + h | |
34 | |
35 Using Mathematica, solve for the values of t where the quadratic intersects the | |
36 line: | |
37 | |
38 (in) t1 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - x, | |
39 d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - g*x - h, x] | |
40 (out) -d + h + 2 d t - 2 e t - d t^2 + 2 e t^2 - f t^2 + | |
41 g (a - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2) | |
42 (in) Solve[t1 == 0, t] | |
43 (out) { | |
44 {t -> (-2 d + 2 e + 2 a g - 2 b g - | |
45 Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - | |
46 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / | |
47 (2 (-d + 2 e - f + a g - 2 b g + c g)) | |
48 }, | |
49 {t -> (-2 d + 2 e + 2 a g - 2 b g + | |
50 Sqrt[(2 d - 2 e - 2 a g + 2 b g)^2 - | |
51 4 (-d + 2 e - f + a g - 2 b g + c g) (-d + a g + h)]) / | |
52 (2 (-d + 2 e - f + a g - 2 b g + c g)) | |
53 } | |
54 } | |
55 | |
56 Using the results above (when the line tends towards horizontal) | |
57 A = (-(d - 2*e + f) + g*(a - 2*b + c) ) | |
58 B = 2*( (d - e ) - g*(a - b ) ) | |
59 C = (-(d ) + g*(a ) + h ) | |
60 | |
61 If g goes to infinity, we can rewrite the line in terms of x. | |
62 x = g'*y + h' | |
63 | |
64 And solve accordingly in Mathematica: | |
65 | |
66 (in) t2 = Resultant[a*(1 - t)^2 + 2*b*(1 - t)*t + c*t^2 - g'*y - h', | |
67 d*(1 - t)^2 + 2*e*(1 - t)*t + f*t^2 - y, y] | |
68 (out) a - h' - 2 a t + 2 b t + a t^2 - 2 b t^2 + c t^2 - | |
69 g' (d - 2 d t + 2 e t + d t^2 - 2 e t^2 + f t^2) | |
70 (in) Solve[t2 == 0, t] | |
71 (out) { | |
72 {t -> (2 a - 2 b - 2 d g' + 2 e g' - | |
73 Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - | |
74 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')]) / | |
75 (2 (a - 2 b + c - d g' + 2 e g' - f g')) | |
76 }, | |
77 {t -> (2 a - 2 b - 2 d g' + 2 e g' + | |
78 Sqrt[(-2 a + 2 b + 2 d g' - 2 e g')^2 - | |
79 4 (a - 2 b + c - d g' + 2 e g' - f g') (a - d g' - h')])/ | |
80 (2 (a - 2 b + c - d g' + 2 e g' - f g')) | |
81 } | |
82 } | |
83 | |
84 Thus, if the slope of the line tends towards vertical, we use: | |
85 A = ( (a - 2*b + c) - g'*(d - 2*e + f) ) | |
86 B = 2*(-(a - b ) + g'*(d - e ) ) | |
87 C = ( (a ) - g'*(d ) - h' ) | |
88 */ | |
89 | |
90 | |
91 class LineQuadraticIntersections { | |
92 public: | |
93 | |
94 LineQuadraticIntersections(const Quadratic& q, const _Line& l, Intersections& i) | |
95 : quad(q) | |
96 , line(l) | |
97 , intersections(i) { | |
98 } | |
99 | |
100 int intersectRay(double roots[2]) { | |
101 /* | |
102 solve by rotating line+quad so line is horizontal, then finding the roots | |
103 set up matrix to rotate quad to x-axis | |
104 |cos(a) -sin(a)| | |
105 |sin(a) cos(a)| | |
106 note that cos(a) = A(djacent) / Hypoteneuse | |
107 sin(a) = O(pposite) / Hypoteneuse | |
108 since we are computing Ts, we can ignore hypoteneuse, the scale factor: | |
109 | A -O | | |
110 | O A | | |
111 A = line[1].x - line[0].x (adjacent side of the right triangle) | |
112 O = line[1].y - line[0].y (opposite side of the right triangle) | |
113 for each of the three points (e.g. n = 0 to 2) | |
114 quad[n].y' = (quad[n].y - line[0].y) * A - (quad[n].x - line[0].x) * O | |
115 */ | |
116 double adj = line[1].x - line[0].x; | |
117 double opp = line[1].y - line[0].y; | |
118 double r[3]; | |
119 for (int n = 0; n < 3; ++n) { | |
120 r[n] = (quad[n].y - line[0].y) * adj - (quad[n].x - line[0].x) * opp; | |
121 } | |
122 double A = r[2]; | |
123 double B = r[1]; | |
124 double C = r[0]; | |
125 A += C - 2 * B; // A = a - 2*b + c | |
126 B -= C; // B = -(b - c) | |
127 return quadraticRootsValidT(A, 2 * B, C, roots); | |
128 } | |
129 | |
130 int intersect() { | |
131 addEndPoints(); | |
132 double rootVals[2]; | |
133 int roots = intersectRay(rootVals); | |
134 for (int index = 0; index < roots; ++index) { | |
135 double quadT = rootVals[index]; | |
136 double lineT = findLineT(quadT); | |
137 if (pinTs(quadT, lineT)) { | |
138 _Point pt; | |
139 xy_at_t(line, lineT, pt.x, pt.y); | |
140 intersections.insert(quadT, lineT, pt); | |
141 } | |
142 } | |
143 return intersections.fUsed; | |
144 } | |
145 | |
146 int horizontalIntersect(double axisIntercept, double roots[2]) { | |
147 double D = quad[2].y; // f | |
148 double E = quad[1].y; // e | |
149 double F = quad[0].y; // d | |
150 D += F - 2 * E; // D = d - 2*e + f | |
151 E -= F; // E = -(d - e) | |
152 F -= axisIntercept; | |
153 return quadraticRootsValidT(D, 2 * E, F, roots); | |
154 } | |
155 | |
156 int horizontalIntersect(double axisIntercept, double left, double right, bool fl
ipped) { | |
157 addHorizontalEndPoints(left, right, axisIntercept); | |
158 double rootVals[2]; | |
159 int roots = horizontalIntersect(axisIntercept, rootVals); | |
160 for (int index = 0; index < roots; ++index) { | |
161 _Point pt; | |
162 double quadT = rootVals[index]; | |
163 xy_at_t(quad, quadT, pt.x, pt.y); | |
164 double lineT = (pt.x - left) / (right - left); | |
165 if (pinTs(quadT, lineT)) { | |
166 intersections.insert(quadT, lineT, pt); | |
167 } | |
168 } | |
169 if (flipped) { | |
170 flip(); | |
171 } | |
172 return intersections.fUsed; | |
173 } | |
174 | |
175 int verticalIntersect(double axisIntercept, double roots[2]) { | |
176 double D = quad[2].x; // f | |
177 double E = quad[1].x; // e | |
178 double F = quad[0].x; // d | |
179 D += F - 2 * E; // D = d - 2*e + f | |
180 E -= F; // E = -(d - e) | |
181 F -= axisIntercept; | |
182 return quadraticRootsValidT(D, 2 * E, F, roots); | |
183 } | |
184 | |
185 int verticalIntersect(double axisIntercept, double top, double bottom, bool flip
ped) { | |
186 addVerticalEndPoints(top, bottom, axisIntercept); | |
187 double rootVals[2]; | |
188 int roots = verticalIntersect(axisIntercept, rootVals); | |
189 for (int index = 0; index < roots; ++index) { | |
190 _Point pt; | |
191 double quadT = rootVals[index]; | |
192 xy_at_t(quad, quadT, pt.x, pt.y); | |
193 double lineT = (pt.y - top) / (bottom - top); | |
194 if (pinTs(quadT, lineT)) { | |
195 intersections.insert(quadT, lineT, pt); | |
196 } | |
197 } | |
198 if (flipped) { | |
199 flip(); | |
200 } | |
201 return intersections.fUsed; | |
202 } | |
203 | |
204 protected: | |
205 | |
206 // add endpoints first to get zero and one t values exactly | |
207 void addEndPoints() | |
208 { | |
209 for (int qIndex = 0; qIndex < 3; qIndex += 2) { | |
210 for (int lIndex = 0; lIndex < 2; lIndex++) { | |
211 if (quad[qIndex] == line[lIndex]) { | |
212 intersections.insert(qIndex >> 1, lIndex, line[lIndex]); | |
213 } | |
214 } | |
215 } | |
216 } | |
217 | |
218 void addHorizontalEndPoints(double left, double right, double y) | |
219 { | |
220 for (int qIndex = 0; qIndex < 3; qIndex += 2) { | |
221 if (quad[qIndex].y != y) { | |
222 continue; | |
223 } | |
224 if (quad[qIndex].x == left) { | |
225 intersections.insert(qIndex >> 1, 0, quad[qIndex]); | |
226 } | |
227 if (quad[qIndex].x == right) { | |
228 intersections.insert(qIndex >> 1, 1, quad[qIndex]); | |
229 } | |
230 } | |
231 } | |
232 | |
233 void addVerticalEndPoints(double top, double bottom, double x) | |
234 { | |
235 for (int qIndex = 0; qIndex < 3; qIndex += 2) { | |
236 if (quad[qIndex].x != x) { | |
237 continue; | |
238 } | |
239 if (quad[qIndex].y == top) { | |
240 intersections.insert(qIndex >> 1, 0, quad[qIndex]); | |
241 } | |
242 if (quad[qIndex].y == bottom) { | |
243 intersections.insert(qIndex >> 1, 1, quad[qIndex]); | |
244 } | |
245 } | |
246 } | |
247 | |
248 double findLineT(double t) { | |
249 double x, y; | |
250 xy_at_t(quad, t, x, y); | |
251 double dx = line[1].x - line[0].x; | |
252 double dy = line[1].y - line[0].y; | |
253 if (fabs(dx) > fabs(dy)) { | |
254 return (x - line[0].x) / dx; | |
255 } | |
256 return (y - line[0].y) / dy; | |
257 } | |
258 | |
259 void flip() { | |
260 // OPTIMIZATION: instead of swapping, pass original line, use [1].y - [0].y | |
261 int roots = intersections.fUsed; | |
262 for (int index = 0; index < roots; ++index) { | |
263 intersections.fT[1][index] = 1 - intersections.fT[1][index]; | |
264 } | |
265 } | |
266 | |
267 static bool pinTs(double& quadT, double& lineT) { | |
268 if (!approximately_one_or_less(lineT)) { | |
269 return false; | |
270 } | |
271 if (!approximately_zero_or_more(lineT)) { | |
272 return false; | |
273 } | |
274 if (precisely_less_than_zero(quadT)) { | |
275 quadT = 0; | |
276 } else if (precisely_greater_than_one(quadT)) { | |
277 quadT = 1; | |
278 } | |
279 if (precisely_less_than_zero(lineT)) { | |
280 lineT = 0; | |
281 } else if (precisely_greater_than_one(lineT)) { | |
282 lineT = 1; | |
283 } | |
284 return true; | |
285 } | |
286 | |
287 private: | |
288 | |
289 const Quadratic& quad; | |
290 const _Line& line; | |
291 Intersections& intersections; | |
292 }; | |
293 | |
294 // utility for pairs of coincident quads | |
295 static double horizontalIntersect(const Quadratic& quad, const _Point& pt) { | |
296 LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); | |
297 double rootVals[2]; | |
298 int roots = q.horizontalIntersect(pt.y, rootVals); | |
299 for (int index = 0; index < roots; ++index) { | |
300 double x; | |
301 double t = rootVals[index]; | |
302 xy_at_t(quad, t, x, *(double*) 0); | |
303 if (AlmostEqualUlps(x, pt.x)) { | |
304 return t; | |
305 } | |
306 } | |
307 return -1; | |
308 } | |
309 | |
310 static double verticalIntersect(const Quadratic& quad, const _Point& pt) { | |
311 LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); | |
312 double rootVals[2]; | |
313 int roots = q.verticalIntersect(pt.x, rootVals); | |
314 for (int index = 0; index < roots; ++index) { | |
315 double y; | |
316 double t = rootVals[index]; | |
317 xy_at_t(quad, t, *(double*) 0, y); | |
318 if (AlmostEqualUlps(y, pt.y)) { | |
319 return t; | |
320 } | |
321 } | |
322 return -1; | |
323 } | |
324 | |
325 double axialIntersect(const Quadratic& q1, const _Point& p, bool vertical) { | |
326 if (vertical) { | |
327 return verticalIntersect(q1, p); | |
328 } | |
329 return horizontalIntersect(q1, p); | |
330 } | |
331 | |
332 int horizontalIntersect(const Quadratic& quad, double left, double right, | |
333 double y, double tRange[2]) { | |
334 LineQuadraticIntersections q(quad, *((_Line*) 0), *((Intersections*) 0)); | |
335 double rootVals[2]; | |
336 int result = q.horizontalIntersect(y, rootVals); | |
337 int tCount = 0; | |
338 for (int index = 0; index < result; ++index) { | |
339 double x, y; | |
340 xy_at_t(quad, rootVals[index], x, y); | |
341 if (x < left || x > right) { | |
342 continue; | |
343 } | |
344 tRange[tCount++] = rootVals[index]; | |
345 } | |
346 return tCount; | |
347 } | |
348 | |
349 int horizontalIntersect(const Quadratic& quad, double left, double right, double
y, | |
350 bool flipped, Intersections& intersections) { | |
351 LineQuadraticIntersections q(quad, *((_Line*) 0), intersections); | |
352 return q.horizontalIntersect(y, left, right, flipped); | |
353 } | |
354 | |
355 int verticalIntersect(const Quadratic& quad, double top, double bottom, double x
, | |
356 bool flipped, Intersections& intersections) { | |
357 LineQuadraticIntersections q(quad, *((_Line*) 0), intersections); | |
358 return q.verticalIntersect(x, top, bottom, flipped); | |
359 } | |
360 | |
361 int intersect(const Quadratic& quad, const _Line& line, Intersections& i) { | |
362 LineQuadraticIntersections q(quad, line, i); | |
363 return q.intersect(); | |
364 } | |
365 | |
366 int intersectRay(const Quadratic& quad, const _Line& line, Intersections& i) { | |
367 LineQuadraticIntersections q(quad, line, i); | |
368 return q.intersectRay(i.fT[0]); | |
369 } | |
OLD | NEW |