Index: experimental/Intersection/CubicReduceOrder.cpp |
diff --git a/experimental/Intersection/CubicReduceOrder.cpp b/experimental/Intersection/CubicReduceOrder.cpp |
deleted file mode 100644 |
index f7c0c12d4cced69c65bf4cfe66908abe3126c52a..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/CubicReduceOrder.cpp |
+++ /dev/null |
@@ -1,254 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "CurveIntersection.h" |
-#include "Extrema.h" |
-#include "IntersectionUtilities.h" |
-#include "LineParameters.h" |
- |
-static double interp_cubic_coords(const double* src, double t) |
-{ |
- double ab = interp(src[0], src[2], t); |
- double bc = interp(src[2], src[4], t); |
- double cd = interp(src[4], src[6], t); |
- double abc = interp(ab, bc, t); |
- double bcd = interp(bc, cd, t); |
- return interp(abc, bcd, t); |
-} |
- |
-static int coincident_line(const Cubic& cubic, Cubic& reduction) { |
- reduction[0] = reduction[1] = cubic[0]; |
- return 1; |
-} |
- |
-static int vertical_line(const Cubic& cubic, ReduceOrder_Styles reduceStyle, Cubic& reduction) { |
- double tValues[2]; |
- reduction[0] = cubic[0]; |
- reduction[1] = cubic[3]; |
- if (reduceStyle == kReduceOrder_TreatAsFill) { |
- return 2; |
- } |
- int smaller = reduction[1].y > reduction[0].y; |
- int larger = smaller ^ 1; |
- int roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues); |
- for (int index = 0; index < roots; ++index) { |
- double yExtrema = interp_cubic_coords(&cubic[0].y, tValues[index]); |
- if (reduction[smaller].y > yExtrema) { |
- reduction[smaller].y = yExtrema; |
- continue; |
- } |
- if (reduction[larger].y < yExtrema) { |
- reduction[larger].y = yExtrema; |
- } |
- } |
- return 2; |
-} |
- |
-static int horizontal_line(const Cubic& cubic, ReduceOrder_Styles reduceStyle, Cubic& reduction) { |
- double tValues[2]; |
- reduction[0] = cubic[0]; |
- reduction[1] = cubic[3]; |
- if (reduceStyle == kReduceOrder_TreatAsFill) { |
- return 2; |
- } |
- int smaller = reduction[1].x > reduction[0].x; |
- int larger = smaller ^ 1; |
- int roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues); |
- for (int index = 0; index < roots; ++index) { |
- double xExtrema = interp_cubic_coords(&cubic[0].x, tValues[index]); |
- if (reduction[smaller].x > xExtrema) { |
- reduction[smaller].x = xExtrema; |
- continue; |
- } |
- if (reduction[larger].x < xExtrema) { |
- reduction[larger].x = xExtrema; |
- } |
- } |
- return 2; |
-} |
- |
-// check to see if it is a quadratic or a line |
-static int check_quadratic(const Cubic& cubic, Cubic& reduction) { |
- double dx10 = cubic[1].x - cubic[0].x; |
- double dx23 = cubic[2].x - cubic[3].x; |
- double midX = cubic[0].x + dx10 * 3 / 2; |
- if (!AlmostEqualUlps(midX - cubic[3].x, dx23 * 3 / 2)) { |
- return 0; |
- } |
- double dy10 = cubic[1].y - cubic[0].y; |
- double dy23 = cubic[2].y - cubic[3].y; |
- double midY = cubic[0].y + dy10 * 3 / 2; |
- if (!AlmostEqualUlps(midY - cubic[3].y, dy23 * 3 / 2)) { |
- return 0; |
- } |
- reduction[0] = cubic[0]; |
- reduction[1].x = midX; |
- reduction[1].y = midY; |
- reduction[2] = cubic[3]; |
- return 3; |
-} |
- |
-static int check_linear(const Cubic& cubic, ReduceOrder_Styles reduceStyle, |
- int minX, int maxX, int minY, int maxY, Cubic& reduction) { |
- int startIndex = 0; |
- int endIndex = 3; |
- while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) { |
- --endIndex; |
- if (endIndex == 0) { |
- printf("%s shouldn't get here if all four points are about equal\n", __FUNCTION__); |
- SkASSERT(0); |
- } |
- } |
- if (!isLinear(cubic, startIndex, endIndex)) { |
- return 0; |
- } |
- // four are colinear: return line formed by outside |
- reduction[0] = cubic[0]; |
- reduction[1] = cubic[3]; |
- if (reduceStyle == kReduceOrder_TreatAsFill) { |
- return 2; |
- } |
- int sameSide1; |
- int sameSide2; |
- bool useX = cubic[maxX].x - cubic[minX].x >= cubic[maxY].y - cubic[minY].y; |
- if (useX) { |
- sameSide1 = sign(cubic[0].x - cubic[1].x) + sign(cubic[3].x - cubic[1].x); |
- sameSide2 = sign(cubic[0].x - cubic[2].x) + sign(cubic[3].x - cubic[2].x); |
- } else { |
- sameSide1 = sign(cubic[0].y - cubic[1].y) + sign(cubic[3].y - cubic[1].y); |
- sameSide2 = sign(cubic[0].y - cubic[2].y) + sign(cubic[3].y - cubic[2].y); |
- } |
- if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) { |
- return 2; |
- } |
- double tValues[2]; |
- int roots; |
- if (useX) { |
- roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues); |
- } else { |
- roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues); |
- } |
- for (int index = 0; index < roots; ++index) { |
- _Point extrema; |
- extrema.x = interp_cubic_coords(&cubic[0].x, tValues[index]); |
- extrema.y = interp_cubic_coords(&cubic[0].y, tValues[index]); |
- // sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller |
- int replace; |
- if (useX) { |
- if (extrema.x < cubic[0].x ^ extrema.x < cubic[3].x) { |
- continue; |
- } |
- replace = (extrema.x < cubic[0].x | extrema.x < cubic[3].x) |
- ^ (cubic[0].x < cubic[3].x); |
- } else { |
- if (extrema.y < cubic[0].y ^ extrema.y < cubic[3].y) { |
- continue; |
- } |
- replace = (extrema.y < cubic[0].y | extrema.y < cubic[3].y) |
- ^ (cubic[0].y < cubic[3].y); |
- } |
- reduction[replace] = extrema; |
- } |
- return 2; |
-} |
- |
-bool isLinear(const Cubic& cubic, int startIndex, int endIndex) { |
- LineParameters lineParameters; |
- lineParameters.cubicEndPoints(cubic, startIndex, endIndex); |
- // FIXME: maybe it's possible to avoid this and compare non-normalized |
- lineParameters.normalize(); |
- double distance = lineParameters.controlPtDistance(cubic, 1); |
- if (!approximately_zero(distance)) { |
- return false; |
- } |
- distance = lineParameters.controlPtDistance(cubic, 2); |
- return approximately_zero(distance); |
-} |
- |
-/* food for thought: |
-http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html |
- |
-Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the |
-corresponding quadratic Bezier are (given in convex combinations of |
-points): |
- |
-q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4 |
-q2 = -c1 + (3/2)c2 + (3/2)c3 - c4 |
-q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4 |
- |
-Of course, this curve does not interpolate the end-points, but it would |
-be interesting to see the behaviour of such a curve in an applet. |
- |
--- |
-Kalle Rutanen |
-http://kaba.hilvi.org |
- |
-*/ |
- |
-// reduce to a quadratic or smaller |
-// look for identical points |
-// look for all four points in a line |
- // note that three points in a line doesn't simplify a cubic |
-// look for approximation with single quadratic |
- // save approximation with multiple quadratics for later |
-int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Quadratics allowQuadratics, |
- ReduceOrder_Styles reduceStyle) { |
- int index, minX, maxX, minY, maxY; |
- int minXSet, minYSet; |
- minX = maxX = minY = maxY = 0; |
- minXSet = minYSet = 0; |
- for (index = 1; index < 4; ++index) { |
- if (cubic[minX].x > cubic[index].x) { |
- minX = index; |
- } |
- if (cubic[minY].y > cubic[index].y) { |
- minY = index; |
- } |
- if (cubic[maxX].x < cubic[index].x) { |
- maxX = index; |
- } |
- if (cubic[maxY].y < cubic[index].y) { |
- maxY = index; |
- } |
- } |
- for (index = 0; index < 4; ++index) { |
- double cx = cubic[index].x; |
- double cy = cubic[index].y; |
- double denom = SkTMax(fabs(cx), SkTMax(fabs(cy), |
- SkTMax(fabs(cubic[minX].x), fabs(cubic[minY].y)))); |
- if (denom == 0) { |
- minXSet |= 1 << index; |
- minYSet |= 1 << index; |
- continue; |
- } |
- double inv = 1 / denom; |
- if (approximately_equal_half(cx * inv, cubic[minX].x * inv)) { |
- minXSet |= 1 << index; |
- } |
- if (approximately_equal_half(cy * inv, cubic[minY].y * inv)) { |
- minYSet |= 1 << index; |
- } |
- } |
- if (minXSet == 0xF) { // test for vertical line |
- if (minYSet == 0xF) { // return 1 if all four are coincident |
- return coincident_line(cubic, reduction); |
- } |
- return vertical_line(cubic, reduceStyle, reduction); |
- } |
- if (minYSet == 0xF) { // test for horizontal line |
- return horizontal_line(cubic, reduceStyle, reduction); |
- } |
- int result = check_linear(cubic, reduceStyle, minX, maxX, minY, maxY, reduction); |
- if (result) { |
- return result; |
- } |
- if (allowQuadratics == kReduceOrder_QuadraticsAllowed |
- && (result = check_quadratic(cubic, reduction))) { |
- return result; |
- } |
- memcpy(reduction, cubic, sizeof(Cubic)); |
- return 4; |
-} |