| Index: experimental/Intersection/CubicReduceOrder.cpp
|
| diff --git a/experimental/Intersection/CubicReduceOrder.cpp b/experimental/Intersection/CubicReduceOrder.cpp
|
| deleted file mode 100644
|
| index f7c0c12d4cced69c65bf4cfe66908abe3126c52a..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/CubicReduceOrder.cpp
|
| +++ /dev/null
|
| @@ -1,254 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "CurveIntersection.h"
|
| -#include "Extrema.h"
|
| -#include "IntersectionUtilities.h"
|
| -#include "LineParameters.h"
|
| -
|
| -static double interp_cubic_coords(const double* src, double t)
|
| -{
|
| - double ab = interp(src[0], src[2], t);
|
| - double bc = interp(src[2], src[4], t);
|
| - double cd = interp(src[4], src[6], t);
|
| - double abc = interp(ab, bc, t);
|
| - double bcd = interp(bc, cd, t);
|
| - return interp(abc, bcd, t);
|
| -}
|
| -
|
| -static int coincident_line(const Cubic& cubic, Cubic& reduction) {
|
| - reduction[0] = reduction[1] = cubic[0];
|
| - return 1;
|
| -}
|
| -
|
| -static int vertical_line(const Cubic& cubic, ReduceOrder_Styles reduceStyle, Cubic& reduction) {
|
| - double tValues[2];
|
| - reduction[0] = cubic[0];
|
| - reduction[1] = cubic[3];
|
| - if (reduceStyle == kReduceOrder_TreatAsFill) {
|
| - return 2;
|
| - }
|
| - int smaller = reduction[1].y > reduction[0].y;
|
| - int larger = smaller ^ 1;
|
| - int roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues);
|
| - for (int index = 0; index < roots; ++index) {
|
| - double yExtrema = interp_cubic_coords(&cubic[0].y, tValues[index]);
|
| - if (reduction[smaller].y > yExtrema) {
|
| - reduction[smaller].y = yExtrema;
|
| - continue;
|
| - }
|
| - if (reduction[larger].y < yExtrema) {
|
| - reduction[larger].y = yExtrema;
|
| - }
|
| - }
|
| - return 2;
|
| -}
|
| -
|
| -static int horizontal_line(const Cubic& cubic, ReduceOrder_Styles reduceStyle, Cubic& reduction) {
|
| - double tValues[2];
|
| - reduction[0] = cubic[0];
|
| - reduction[1] = cubic[3];
|
| - if (reduceStyle == kReduceOrder_TreatAsFill) {
|
| - return 2;
|
| - }
|
| - int smaller = reduction[1].x > reduction[0].x;
|
| - int larger = smaller ^ 1;
|
| - int roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues);
|
| - for (int index = 0; index < roots; ++index) {
|
| - double xExtrema = interp_cubic_coords(&cubic[0].x, tValues[index]);
|
| - if (reduction[smaller].x > xExtrema) {
|
| - reduction[smaller].x = xExtrema;
|
| - continue;
|
| - }
|
| - if (reduction[larger].x < xExtrema) {
|
| - reduction[larger].x = xExtrema;
|
| - }
|
| - }
|
| - return 2;
|
| -}
|
| -
|
| -// check to see if it is a quadratic or a line
|
| -static int check_quadratic(const Cubic& cubic, Cubic& reduction) {
|
| - double dx10 = cubic[1].x - cubic[0].x;
|
| - double dx23 = cubic[2].x - cubic[3].x;
|
| - double midX = cubic[0].x + dx10 * 3 / 2;
|
| - if (!AlmostEqualUlps(midX - cubic[3].x, dx23 * 3 / 2)) {
|
| - return 0;
|
| - }
|
| - double dy10 = cubic[1].y - cubic[0].y;
|
| - double dy23 = cubic[2].y - cubic[3].y;
|
| - double midY = cubic[0].y + dy10 * 3 / 2;
|
| - if (!AlmostEqualUlps(midY - cubic[3].y, dy23 * 3 / 2)) {
|
| - return 0;
|
| - }
|
| - reduction[0] = cubic[0];
|
| - reduction[1].x = midX;
|
| - reduction[1].y = midY;
|
| - reduction[2] = cubic[3];
|
| - return 3;
|
| -}
|
| -
|
| -static int check_linear(const Cubic& cubic, ReduceOrder_Styles reduceStyle,
|
| - int minX, int maxX, int minY, int maxY, Cubic& reduction) {
|
| - int startIndex = 0;
|
| - int endIndex = 3;
|
| - while (cubic[startIndex].approximatelyEqual(cubic[endIndex])) {
|
| - --endIndex;
|
| - if (endIndex == 0) {
|
| - printf("%s shouldn't get here if all four points are about equal\n", __FUNCTION__);
|
| - SkASSERT(0);
|
| - }
|
| - }
|
| - if (!isLinear(cubic, startIndex, endIndex)) {
|
| - return 0;
|
| - }
|
| - // four are colinear: return line formed by outside
|
| - reduction[0] = cubic[0];
|
| - reduction[1] = cubic[3];
|
| - if (reduceStyle == kReduceOrder_TreatAsFill) {
|
| - return 2;
|
| - }
|
| - int sameSide1;
|
| - int sameSide2;
|
| - bool useX = cubic[maxX].x - cubic[minX].x >= cubic[maxY].y - cubic[minY].y;
|
| - if (useX) {
|
| - sameSide1 = sign(cubic[0].x - cubic[1].x) + sign(cubic[3].x - cubic[1].x);
|
| - sameSide2 = sign(cubic[0].x - cubic[2].x) + sign(cubic[3].x - cubic[2].x);
|
| - } else {
|
| - sameSide1 = sign(cubic[0].y - cubic[1].y) + sign(cubic[3].y - cubic[1].y);
|
| - sameSide2 = sign(cubic[0].y - cubic[2].y) + sign(cubic[3].y - cubic[2].y);
|
| - }
|
| - if (sameSide1 == sameSide2 && (sameSide1 & 3) != 2) {
|
| - return 2;
|
| - }
|
| - double tValues[2];
|
| - int roots;
|
| - if (useX) {
|
| - roots = findExtrema(cubic[0].x, cubic[1].x, cubic[2].x, cubic[3].x, tValues);
|
| - } else {
|
| - roots = findExtrema(cubic[0].y, cubic[1].y, cubic[2].y, cubic[3].y, tValues);
|
| - }
|
| - for (int index = 0; index < roots; ++index) {
|
| - _Point extrema;
|
| - extrema.x = interp_cubic_coords(&cubic[0].x, tValues[index]);
|
| - extrema.y = interp_cubic_coords(&cubic[0].y, tValues[index]);
|
| - // sameSide > 0 means mid is smaller than either [0] or [3], so replace smaller
|
| - int replace;
|
| - if (useX) {
|
| - if (extrema.x < cubic[0].x ^ extrema.x < cubic[3].x) {
|
| - continue;
|
| - }
|
| - replace = (extrema.x < cubic[0].x | extrema.x < cubic[3].x)
|
| - ^ (cubic[0].x < cubic[3].x);
|
| - } else {
|
| - if (extrema.y < cubic[0].y ^ extrema.y < cubic[3].y) {
|
| - continue;
|
| - }
|
| - replace = (extrema.y < cubic[0].y | extrema.y < cubic[3].y)
|
| - ^ (cubic[0].y < cubic[3].y);
|
| - }
|
| - reduction[replace] = extrema;
|
| - }
|
| - return 2;
|
| -}
|
| -
|
| -bool isLinear(const Cubic& cubic, int startIndex, int endIndex) {
|
| - LineParameters lineParameters;
|
| - lineParameters.cubicEndPoints(cubic, startIndex, endIndex);
|
| - // FIXME: maybe it's possible to avoid this and compare non-normalized
|
| - lineParameters.normalize();
|
| - double distance = lineParameters.controlPtDistance(cubic, 1);
|
| - if (!approximately_zero(distance)) {
|
| - return false;
|
| - }
|
| - distance = lineParameters.controlPtDistance(cubic, 2);
|
| - return approximately_zero(distance);
|
| -}
|
| -
|
| -/* food for thought:
|
| -http://objectmix.com/graphics/132906-fast-precision-driven-cubic-quadratic-piecewise-degree-reduction-algos-2-a.html
|
| -
|
| -Given points c1, c2, c3 and c4 of a cubic Bezier, the points of the
|
| -corresponding quadratic Bezier are (given in convex combinations of
|
| -points):
|
| -
|
| -q1 = (11/13)c1 + (3/13)c2 -(3/13)c3 + (2/13)c4
|
| -q2 = -c1 + (3/2)c2 + (3/2)c3 - c4
|
| -q3 = (2/13)c1 - (3/13)c2 + (3/13)c3 + (11/13)c4
|
| -
|
| -Of course, this curve does not interpolate the end-points, but it would
|
| -be interesting to see the behaviour of such a curve in an applet.
|
| -
|
| ---
|
| -Kalle Rutanen
|
| -http://kaba.hilvi.org
|
| -
|
| -*/
|
| -
|
| -// reduce to a quadratic or smaller
|
| -// look for identical points
|
| -// look for all four points in a line
|
| - // note that three points in a line doesn't simplify a cubic
|
| -// look for approximation with single quadratic
|
| - // save approximation with multiple quadratics for later
|
| -int reduceOrder(const Cubic& cubic, Cubic& reduction, ReduceOrder_Quadratics allowQuadratics,
|
| - ReduceOrder_Styles reduceStyle) {
|
| - int index, minX, maxX, minY, maxY;
|
| - int minXSet, minYSet;
|
| - minX = maxX = minY = maxY = 0;
|
| - minXSet = minYSet = 0;
|
| - for (index = 1; index < 4; ++index) {
|
| - if (cubic[minX].x > cubic[index].x) {
|
| - minX = index;
|
| - }
|
| - if (cubic[minY].y > cubic[index].y) {
|
| - minY = index;
|
| - }
|
| - if (cubic[maxX].x < cubic[index].x) {
|
| - maxX = index;
|
| - }
|
| - if (cubic[maxY].y < cubic[index].y) {
|
| - maxY = index;
|
| - }
|
| - }
|
| - for (index = 0; index < 4; ++index) {
|
| - double cx = cubic[index].x;
|
| - double cy = cubic[index].y;
|
| - double denom = SkTMax(fabs(cx), SkTMax(fabs(cy),
|
| - SkTMax(fabs(cubic[minX].x), fabs(cubic[minY].y))));
|
| - if (denom == 0) {
|
| - minXSet |= 1 << index;
|
| - minYSet |= 1 << index;
|
| - continue;
|
| - }
|
| - double inv = 1 / denom;
|
| - if (approximately_equal_half(cx * inv, cubic[minX].x * inv)) {
|
| - minXSet |= 1 << index;
|
| - }
|
| - if (approximately_equal_half(cy * inv, cubic[minY].y * inv)) {
|
| - minYSet |= 1 << index;
|
| - }
|
| - }
|
| - if (minXSet == 0xF) { // test for vertical line
|
| - if (minYSet == 0xF) { // return 1 if all four are coincident
|
| - return coincident_line(cubic, reduction);
|
| - }
|
| - return vertical_line(cubic, reduceStyle, reduction);
|
| - }
|
| - if (minYSet == 0xF) { // test for horizontal line
|
| - return horizontal_line(cubic, reduceStyle, reduction);
|
| - }
|
| - int result = check_linear(cubic, reduceStyle, minX, maxX, minY, maxY, reduction);
|
| - if (result) {
|
| - return result;
|
| - }
|
| - if (allowQuadratics == kReduceOrder_QuadraticsAllowed
|
| - && (result = check_quadratic(cubic, reduction))) {
|
| - return result;
|
| - }
|
| - memcpy(reduction, cubic, sizeof(Cubic));
|
| - return 4;
|
| -}
|
|
|