| Index: experimental/Intersection/CubicSubDivide.cpp
|
| diff --git a/experimental/Intersection/CubicSubDivide.cpp b/experimental/Intersection/CubicSubDivide.cpp
|
| deleted file mode 100644
|
| index ddf63cdc2afa42e5ed4be25e14cd60d50730d4b0..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/CubicSubDivide.cpp
|
| +++ /dev/null
|
| @@ -1,147 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "CubicUtilities.h"
|
| -#include "IntersectionUtilities.h"
|
| -
|
| -/*
|
| - Given a cubic c, t1, and t2, find a small cubic segment.
|
| -
|
| - The new cubic is defined as points A, B, C, and D, where
|
| - s1 = 1 - t1
|
| - s2 = 1 - t2
|
| - A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1
|
| - D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2
|
| -
|
| - We don't have B or C. So We define two equations to isolate them.
|
| - First, compute two reference T values 1/3 and 2/3 from t1 to t2:
|
| -
|
| - c(at (2*t1 + t2)/3) == E
|
| - c(at (t1 + 2*t2)/3) == F
|
| -
|
| - Next, compute where those values must be if we know the values of B and C:
|
| -
|
| - _12 = A*2/3 + B*1/3
|
| - 12_ = A*1/3 + B*2/3
|
| - _23 = B*2/3 + C*1/3
|
| - 23_ = B*1/3 + C*2/3
|
| - _34 = C*2/3 + D*1/3
|
| - 34_ = C*1/3 + D*2/3
|
| - _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9
|
| - 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9
|
| - _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9
|
| - 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9
|
| - _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3
|
| - = A*8/27 + B*12/27 + C*6/27 + D*1/27
|
| - = E
|
| - 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3
|
| - = A*1/27 + B*6/27 + C*12/27 + D*8/27
|
| - = F
|
| - E*27 = A*8 + B*12 + C*6 + D
|
| - F*27 = A + B*6 + C*12 + D*8
|
| -
|
| -Group the known values on one side:
|
| -
|
| - M = E*27 - A*8 - D = B*12 + C* 6
|
| - N = F*27 - A - D*8 = B* 6 + C*12
|
| - M*2 - N = B*18
|
| - N*2 - M = C*18
|
| - B = (M*2 - N)/18
|
| - C = (N*2 - M)/18
|
| - */
|
| -
|
| -static double interp_cubic_coords(const double* src, double t)
|
| -{
|
| - double ab = interp(src[0], src[2], t);
|
| - double bc = interp(src[2], src[4], t);
|
| - double cd = interp(src[4], src[6], t);
|
| - double abc = interp(ab, bc, t);
|
| - double bcd = interp(bc, cd, t);
|
| - double abcd = interp(abc, bcd, t);
|
| - return abcd;
|
| -}
|
| -
|
| -void sub_divide(const Cubic& src, double t1, double t2, Cubic& dst) {
|
| - if (t1 == 0 && t2 == 1) {
|
| - dst[0] = src[0];
|
| - dst[1] = src[1];
|
| - dst[2] = src[2];
|
| - dst[3] = src[3];
|
| - return;
|
| - }
|
| - double ax = dst[0].x = interp_cubic_coords(&src[0].x, t1);
|
| - double ay = dst[0].y = interp_cubic_coords(&src[0].y, t1);
|
| - double ex = interp_cubic_coords(&src[0].x, (t1*2+t2)/3);
|
| - double ey = interp_cubic_coords(&src[0].y, (t1*2+t2)/3);
|
| - double fx = interp_cubic_coords(&src[0].x, (t1+t2*2)/3);
|
| - double fy = interp_cubic_coords(&src[0].y, (t1+t2*2)/3);
|
| - double dx = dst[3].x = interp_cubic_coords(&src[0].x, t2);
|
| - double dy = dst[3].y = interp_cubic_coords(&src[0].y, t2);
|
| - double mx = ex * 27 - ax * 8 - dx;
|
| - double my = ey * 27 - ay * 8 - dy;
|
| - double nx = fx * 27 - ax - dx * 8;
|
| - double ny = fy * 27 - ay - dy * 8;
|
| - /* bx = */ dst[1].x = (mx * 2 - nx) / 18;
|
| - /* by = */ dst[1].y = (my * 2 - ny) / 18;
|
| - /* cx = */ dst[2].x = (nx * 2 - mx) / 18;
|
| - /* cy = */ dst[2].y = (ny * 2 - my) / 18;
|
| -}
|
| -
|
| -void sub_divide(const Cubic& src, const _Point& a, const _Point& d,
|
| - double t1, double t2, _Point dst[2]) {
|
| - double ex = interp_cubic_coords(&src[0].x, (t1 * 2 + t2) / 3);
|
| - double ey = interp_cubic_coords(&src[0].y, (t1 * 2 + t2) / 3);
|
| - double fx = interp_cubic_coords(&src[0].x, (t1 + t2 * 2) / 3);
|
| - double fy = interp_cubic_coords(&src[0].y, (t1 + t2 * 2) / 3);
|
| - double mx = ex * 27 - a.x * 8 - d.x;
|
| - double my = ey * 27 - a.y * 8 - d.y;
|
| - double nx = fx * 27 - a.x - d.x * 8;
|
| - double ny = fy * 27 - a.y - d.y * 8;
|
| - /* bx = */ dst[0].x = (mx * 2 - nx) / 18;
|
| - /* by = */ dst[0].y = (my * 2 - ny) / 18;
|
| - /* cx = */ dst[1].x = (nx * 2 - mx) / 18;
|
| - /* cy = */ dst[1].y = (ny * 2 - my) / 18;
|
| -}
|
| -
|
| -/* classic one t subdivision */
|
| -static void interp_cubic_coords(const double* src, double* dst, double t)
|
| -{
|
| - double ab = interp(src[0], src[2], t);
|
| - double bc = interp(src[2], src[4], t);
|
| - double cd = interp(src[4], src[6], t);
|
| - double abc = interp(ab, bc, t);
|
| - double bcd = interp(bc, cd, t);
|
| - double abcd = interp(abc, bcd, t);
|
| -
|
| - dst[0] = src[0];
|
| - dst[2] = ab;
|
| - dst[4] = abc;
|
| - dst[6] = abcd;
|
| - dst[8] = bcd;
|
| - dst[10] = cd;
|
| - dst[12] = src[6];
|
| -}
|
| -
|
| -void chop_at(const Cubic& src, CubicPair& dst, double t)
|
| -{
|
| - if (t == 0.5) {
|
| - dst.pts[0] = src[0];
|
| - dst.pts[1].x = (src[0].x + src[1].x) / 2;
|
| - dst.pts[1].y = (src[0].y + src[1].y) / 2;
|
| - dst.pts[2].x = (src[0].x + 2 * src[1].x + src[2].x) / 4;
|
| - dst.pts[2].y = (src[0].y + 2 * src[1].y + src[2].y) / 4;
|
| - dst.pts[3].x = (src[0].x + 3 * (src[1].x + src[2].x) + src[3].x) / 8;
|
| - dst.pts[3].y = (src[0].y + 3 * (src[1].y + src[2].y) + src[3].y) / 8;
|
| - dst.pts[4].x = (src[1].x + 2 * src[2].x + src[3].x) / 4;
|
| - dst.pts[4].y = (src[1].y + 2 * src[2].y + src[3].y) / 4;
|
| - dst.pts[5].x = (src[2].x + src[3].x) / 2;
|
| - dst.pts[5].y = (src[2].y + src[3].y) / 2;
|
| - dst.pts[6] = src[3];
|
| - return;
|
| - }
|
| - interp_cubic_coords(&src[0].x, &dst.pts[0].x, t);
|
| - interp_cubic_coords(&src[0].y, &dst.pts[0].y, t);
|
| -}
|
|
|