Index: experimental/Intersection/CubicSubDivide.cpp |
diff --git a/experimental/Intersection/CubicSubDivide.cpp b/experimental/Intersection/CubicSubDivide.cpp |
deleted file mode 100644 |
index ddf63cdc2afa42e5ed4be25e14cd60d50730d4b0..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/CubicSubDivide.cpp |
+++ /dev/null |
@@ -1,147 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "CubicUtilities.h" |
-#include "IntersectionUtilities.h" |
- |
-/* |
- Given a cubic c, t1, and t2, find a small cubic segment. |
- |
- The new cubic is defined as points A, B, C, and D, where |
- s1 = 1 - t1 |
- s2 = 1 - t2 |
- A = c[0]*s1*s1*s1 + 3*c[1]*s1*s1*t1 + 3*c[2]*s1*t1*t1 + c[3]*t1*t1*t1 |
- D = c[0]*s2*s2*s2 + 3*c[1]*s2*s2*t2 + 3*c[2]*s2*t2*t2 + c[3]*t2*t2*t2 |
- |
- We don't have B or C. So We define two equations to isolate them. |
- First, compute two reference T values 1/3 and 2/3 from t1 to t2: |
- |
- c(at (2*t1 + t2)/3) == E |
- c(at (t1 + 2*t2)/3) == F |
- |
- Next, compute where those values must be if we know the values of B and C: |
- |
- _12 = A*2/3 + B*1/3 |
- 12_ = A*1/3 + B*2/3 |
- _23 = B*2/3 + C*1/3 |
- 23_ = B*1/3 + C*2/3 |
- _34 = C*2/3 + D*1/3 |
- 34_ = C*1/3 + D*2/3 |
- _123 = (A*2/3 + B*1/3)*2/3 + (B*2/3 + C*1/3)*1/3 = A*4/9 + B*4/9 + C*1/9 |
- 123_ = (A*1/3 + B*2/3)*1/3 + (B*1/3 + C*2/3)*2/3 = A*1/9 + B*4/9 + C*4/9 |
- _234 = (B*2/3 + C*1/3)*2/3 + (C*2/3 + D*1/3)*1/3 = B*4/9 + C*4/9 + D*1/9 |
- 234_ = (B*1/3 + C*2/3)*1/3 + (C*1/3 + D*2/3)*2/3 = B*1/9 + C*4/9 + D*4/9 |
- _1234 = (A*4/9 + B*4/9 + C*1/9)*2/3 + (B*4/9 + C*4/9 + D*1/9)*1/3 |
- = A*8/27 + B*12/27 + C*6/27 + D*1/27 |
- = E |
- 1234_ = (A*1/9 + B*4/9 + C*4/9)*1/3 + (B*1/9 + C*4/9 + D*4/9)*2/3 |
- = A*1/27 + B*6/27 + C*12/27 + D*8/27 |
- = F |
- E*27 = A*8 + B*12 + C*6 + D |
- F*27 = A + B*6 + C*12 + D*8 |
- |
-Group the known values on one side: |
- |
- M = E*27 - A*8 - D = B*12 + C* 6 |
- N = F*27 - A - D*8 = B* 6 + C*12 |
- M*2 - N = B*18 |
- N*2 - M = C*18 |
- B = (M*2 - N)/18 |
- C = (N*2 - M)/18 |
- */ |
- |
-static double interp_cubic_coords(const double* src, double t) |
-{ |
- double ab = interp(src[0], src[2], t); |
- double bc = interp(src[2], src[4], t); |
- double cd = interp(src[4], src[6], t); |
- double abc = interp(ab, bc, t); |
- double bcd = interp(bc, cd, t); |
- double abcd = interp(abc, bcd, t); |
- return abcd; |
-} |
- |
-void sub_divide(const Cubic& src, double t1, double t2, Cubic& dst) { |
- if (t1 == 0 && t2 == 1) { |
- dst[0] = src[0]; |
- dst[1] = src[1]; |
- dst[2] = src[2]; |
- dst[3] = src[3]; |
- return; |
- } |
- double ax = dst[0].x = interp_cubic_coords(&src[0].x, t1); |
- double ay = dst[0].y = interp_cubic_coords(&src[0].y, t1); |
- double ex = interp_cubic_coords(&src[0].x, (t1*2+t2)/3); |
- double ey = interp_cubic_coords(&src[0].y, (t1*2+t2)/3); |
- double fx = interp_cubic_coords(&src[0].x, (t1+t2*2)/3); |
- double fy = interp_cubic_coords(&src[0].y, (t1+t2*2)/3); |
- double dx = dst[3].x = interp_cubic_coords(&src[0].x, t2); |
- double dy = dst[3].y = interp_cubic_coords(&src[0].y, t2); |
- double mx = ex * 27 - ax * 8 - dx; |
- double my = ey * 27 - ay * 8 - dy; |
- double nx = fx * 27 - ax - dx * 8; |
- double ny = fy * 27 - ay - dy * 8; |
- /* bx = */ dst[1].x = (mx * 2 - nx) / 18; |
- /* by = */ dst[1].y = (my * 2 - ny) / 18; |
- /* cx = */ dst[2].x = (nx * 2 - mx) / 18; |
- /* cy = */ dst[2].y = (ny * 2 - my) / 18; |
-} |
- |
-void sub_divide(const Cubic& src, const _Point& a, const _Point& d, |
- double t1, double t2, _Point dst[2]) { |
- double ex = interp_cubic_coords(&src[0].x, (t1 * 2 + t2) / 3); |
- double ey = interp_cubic_coords(&src[0].y, (t1 * 2 + t2) / 3); |
- double fx = interp_cubic_coords(&src[0].x, (t1 + t2 * 2) / 3); |
- double fy = interp_cubic_coords(&src[0].y, (t1 + t2 * 2) / 3); |
- double mx = ex * 27 - a.x * 8 - d.x; |
- double my = ey * 27 - a.y * 8 - d.y; |
- double nx = fx * 27 - a.x - d.x * 8; |
- double ny = fy * 27 - a.y - d.y * 8; |
- /* bx = */ dst[0].x = (mx * 2 - nx) / 18; |
- /* by = */ dst[0].y = (my * 2 - ny) / 18; |
- /* cx = */ dst[1].x = (nx * 2 - mx) / 18; |
- /* cy = */ dst[1].y = (ny * 2 - my) / 18; |
-} |
- |
-/* classic one t subdivision */ |
-static void interp_cubic_coords(const double* src, double* dst, double t) |
-{ |
- double ab = interp(src[0], src[2], t); |
- double bc = interp(src[2], src[4], t); |
- double cd = interp(src[4], src[6], t); |
- double abc = interp(ab, bc, t); |
- double bcd = interp(bc, cd, t); |
- double abcd = interp(abc, bcd, t); |
- |
- dst[0] = src[0]; |
- dst[2] = ab; |
- dst[4] = abc; |
- dst[6] = abcd; |
- dst[8] = bcd; |
- dst[10] = cd; |
- dst[12] = src[6]; |
-} |
- |
-void chop_at(const Cubic& src, CubicPair& dst, double t) |
-{ |
- if (t == 0.5) { |
- dst.pts[0] = src[0]; |
- dst.pts[1].x = (src[0].x + src[1].x) / 2; |
- dst.pts[1].y = (src[0].y + src[1].y) / 2; |
- dst.pts[2].x = (src[0].x + 2 * src[1].x + src[2].x) / 4; |
- dst.pts[2].y = (src[0].y + 2 * src[1].y + src[2].y) / 4; |
- dst.pts[3].x = (src[0].x + 3 * (src[1].x + src[2].x) + src[3].x) / 8; |
- dst.pts[3].y = (src[0].y + 3 * (src[1].y + src[2].y) + src[3].y) / 8; |
- dst.pts[4].x = (src[1].x + 2 * src[2].x + src[3].x) / 4; |
- dst.pts[4].y = (src[1].y + 2 * src[2].y + src[3].y) / 4; |
- dst.pts[5].x = (src[2].x + src[3].x) / 2; |
- dst.pts[5].y = (src[2].y + src[3].y) / 2; |
- dst.pts[6] = src[3]; |
- return; |
- } |
- interp_cubic_coords(&src[0].x, &dst.pts[0].x, t); |
- interp_cubic_coords(&src[0].y, &dst.pts[0].y, t); |
-} |