Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(271)

Unified Diff: experimental/Intersection/CubicToQuadratics.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « experimental/Intersection/CubicSubDivide.cpp ('k') | experimental/Intersection/CubicToQuadratics_Test.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: experimental/Intersection/CubicToQuadratics.cpp
diff --git a/experimental/Intersection/CubicToQuadratics.cpp b/experimental/Intersection/CubicToQuadratics.cpp
deleted file mode 100644
index 5eeaf19c9f349396637dccc08b547301bc573766..0000000000000000000000000000000000000000
--- a/experimental/Intersection/CubicToQuadratics.cpp
+++ /dev/null
@@ -1,217 +0,0 @@
-/*
-http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
-*/
-
-/*
-Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
-Then for degree elevation, the equations are:
-
-Q0 = P0
-Q1 = 1/3 P0 + 2/3 P1
-Q2 = 2/3 P1 + 1/3 P2
-Q3 = P2
-In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
- the equations above:
-
-P1 = 3/2 Q1 - 1/2 Q0
-P1 = 3/2 Q2 - 1/2 Q3
-If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
- it's likely not, your best bet is to average them. So,
-
-P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
-
-
-Cubic defined by: P1/2 - anchor points, C1/C2 control points
-|x| is the euclidean norm of x
-mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
- control point at C = (3·C2 - P2 + 3·C1 - P1)/4
-
-Algorithm
-
-pick an absolute precision (prec)
-Compute the Tdiv as the root of (cubic) equation
-sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec
-if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
- quadratic, with a defect less than prec, by the mid-point approximation.
- Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
-0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
- approximation
-Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
-
-confirmed by (maybe stolen from)
-http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
-// maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf
-// also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf
-
-*/
-
-#include "CubicUtilities.h"
-#include "CurveIntersection.h"
-#include "LineIntersection.h"
-#include "TSearch.h"
-
-const bool AVERAGE_END_POINTS = true; // results in better fitting curves
-
-#define USE_CUBIC_END_POINTS 1
-
-static double calcTDiv(const Cubic& cubic, double precision, double start) {
- const double adjust = sqrt(3) / 36;
- Cubic sub;
- const Cubic* cPtr;
- if (start == 0) {
- cPtr = &cubic;
- } else {
- // OPTIMIZE: special-case half-split ?
- sub_divide(cubic, start, 1, sub);
- cPtr = &sub;
- }
- const Cubic& c = *cPtr;
- double dx = c[3].x - 3 * (c[2].x - c[1].x) - c[0].x;
- double dy = c[3].y - 3 * (c[2].y - c[1].y) - c[0].y;
- double dist = sqrt(dx * dx + dy * dy);
- double tDiv3 = precision / (adjust * dist);
- double t = cube_root(tDiv3);
- if (start > 0) {
- t = start + (1 - start) * t;
- }
- return t;
-}
-
-void demote_cubic_to_quad(const Cubic& cubic, Quadratic& quad) {
- quad[0] = cubic[0];
-if (AVERAGE_END_POINTS) {
- const _Point fromC1 = { (3 * cubic[1].x - cubic[0].x) / 2, (3 * cubic[1].y - cubic[0].y) / 2 };
- const _Point fromC2 = { (3 * cubic[2].x - cubic[3].x) / 2, (3 * cubic[2].y - cubic[3].y) / 2 };
- quad[1].x = (fromC1.x + fromC2.x) / 2;
- quad[1].y = (fromC1.y + fromC2.y) / 2;
-} else {
- lineIntersect((const _Line&) cubic[0], (const _Line&) cubic[2], quad[1]);
-}
- quad[2] = cubic[3];
-}
-
-int cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<Quadratic>& quadratics) {
- SkTDArray<double> ts;
- cubic_to_quadratics(cubic, precision, ts);
- int tsCount = ts.count();
- double t1Start = 0;
- int order = 0;
- for (int idx = 0; idx <= tsCount; ++idx) {
- double t1 = idx < tsCount ? ts[idx] : 1;
- Cubic part;
- sub_divide(cubic, t1Start, t1, part);
- Quadratic q1;
- demote_cubic_to_quad(part, q1);
- Quadratic s1;
- int o1 = reduceOrder(q1, s1, kReduceOrder_TreatAsFill);
- if (order < o1) {
- order = o1;
- }
- memcpy(quadratics.append(), o1 < 2 ? s1 : q1, sizeof(Quadratic));
- t1Start = t1;
- }
- return order;
-}
-
-static bool addSimpleTs(const Cubic& cubic, double precision, SkTDArray<double>& ts) {
- double tDiv = calcTDiv(cubic, precision, 0);
- if (tDiv >= 1) {
- return true;
- }
- if (tDiv >= 0.5) {
- *ts.append() = 0.5;
- return true;
- }
- return false;
-}
-
-static void addTs(const Cubic& cubic, double precision, double start, double end,
- SkTDArray<double>& ts) {
- double tDiv = calcTDiv(cubic, precision, 0);
- double parts = ceil(1.0 / tDiv);
- for (double index = 0; index < parts; ++index) {
- double newT = start + (index / parts) * (end - start);
- if (newT > 0 && newT < 1) {
- *ts.append() = newT;
- }
- }
-}
-
-// flavor that returns T values only, deferring computing the quads until they are needed
-// FIXME: when called from recursive intersect 2, this could take the original cubic
-// and do a more precise job when calling chop at and sub divide by computing the fractional ts.
-// it would still take the prechopped cubic for reduce order and find cubic inflections
-void cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<double>& ts) {
- Cubic reduced;
- int order = reduceOrder(cubic, reduced, kReduceOrder_QuadraticsAllowed,
- kReduceOrder_TreatAsFill);
- if (order < 3) {
- return;
- }
- double inflectT[5];
- int inflections = find_cubic_inflections(cubic, inflectT);
- SkASSERT(inflections <= 2);
- if (!ends_are_extrema_in_x_or_y(cubic)) {
- inflections += find_cubic_max_curvature(cubic, &inflectT[inflections]);
- SkASSERT(inflections <= 5);
- }
- QSort<double>(inflectT, &inflectT[inflections - 1]);
- // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
- // own subroutine?
- while (inflections && approximately_less_than_zero(inflectT[0])) {
- memcpy(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
- }
- int start = 0;
- do {
- int next = start + 1;
- if (next >= inflections) {
- break;
- }
- if (!approximately_equal(inflectT[start], inflectT[next])) {
- ++start;
- continue;
- }
- memcpy(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
- } while (true);
- while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
- --inflections;
- }
- CubicPair pair;
- if (inflections == 1) {
- chop_at(cubic, pair, inflectT[0]);
- int orderP1 = reduceOrder(pair.first(), reduced, kReduceOrder_NoQuadraticsAllowed,
- kReduceOrder_TreatAsFill);
- if (orderP1 < 2) {
- --inflections;
- } else {
- int orderP2 = reduceOrder(pair.second(), reduced, kReduceOrder_NoQuadraticsAllowed,
- kReduceOrder_TreatAsFill);
- if (orderP2 < 2) {
- --inflections;
- }
- }
- }
- if (inflections == 0 && addSimpleTs(cubic, precision, ts)) {
- return;
- }
- if (inflections == 1) {
- chop_at(cubic, pair, inflectT[0]);
- addTs(pair.first(), precision, 0, inflectT[0], ts);
- addTs(pair.second(), precision, inflectT[0], 1, ts);
- return;
- }
- if (inflections > 1) {
- Cubic part;
- sub_divide(cubic, 0, inflectT[0], part);
- addTs(part, precision, 0, inflectT[0], ts);
- int last = inflections - 1;
- for (int idx = 0; idx < last; ++idx) {
- sub_divide(cubic, inflectT[idx], inflectT[idx + 1], part);
- addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
- }
- sub_divide(cubic, inflectT[last], 1, part);
- addTs(part, precision, inflectT[last], 1, ts);
- return;
- }
- addTs(cubic, precision, 0, 1, ts);
-}
« no previous file with comments | « experimental/Intersection/CubicSubDivide.cpp ('k') | experimental/Intersection/CubicToQuadratics_Test.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698