| Index: experimental/Intersection/CubicToQuadratics.cpp
|
| diff --git a/experimental/Intersection/CubicToQuadratics.cpp b/experimental/Intersection/CubicToQuadratics.cpp
|
| deleted file mode 100644
|
| index 5eeaf19c9f349396637dccc08b547301bc573766..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/CubicToQuadratics.cpp
|
| +++ /dev/null
|
| @@ -1,217 +0,0 @@
|
| -/*
|
| -http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi
|
| -*/
|
| -
|
| -/*
|
| -Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2.
|
| -Then for degree elevation, the equations are:
|
| -
|
| -Q0 = P0
|
| -Q1 = 1/3 P0 + 2/3 P1
|
| -Q2 = 2/3 P1 + 1/3 P2
|
| -Q3 = P2
|
| -In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from
|
| - the equations above:
|
| -
|
| -P1 = 3/2 Q1 - 1/2 Q0
|
| -P1 = 3/2 Q2 - 1/2 Q3
|
| -If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since
|
| - it's likely not, your best bet is to average them. So,
|
| -
|
| -P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3
|
| -
|
| -
|
| -Cubic defined by: P1/2 - anchor points, C1/C2 control points
|
| -|x| is the euclidean norm of x
|
| -mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the
|
| - control point at C = (3·C2 - P2 + 3·C1 - P1)/4
|
| -
|
| -Algorithm
|
| -
|
| -pick an absolute precision (prec)
|
| -Compute the Tdiv as the root of (cubic) equation
|
| -sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec
|
| -if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a
|
| - quadratic, with a defect less than prec, by the mid-point approximation.
|
| - Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv)
|
| -0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point
|
| - approximation
|
| -Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation
|
| -
|
| -confirmed by (maybe stolen from)
|
| -http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html
|
| -// maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf
|
| -// also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf
|
| -
|
| -*/
|
| -
|
| -#include "CubicUtilities.h"
|
| -#include "CurveIntersection.h"
|
| -#include "LineIntersection.h"
|
| -#include "TSearch.h"
|
| -
|
| -const bool AVERAGE_END_POINTS = true; // results in better fitting curves
|
| -
|
| -#define USE_CUBIC_END_POINTS 1
|
| -
|
| -static double calcTDiv(const Cubic& cubic, double precision, double start) {
|
| - const double adjust = sqrt(3) / 36;
|
| - Cubic sub;
|
| - const Cubic* cPtr;
|
| - if (start == 0) {
|
| - cPtr = &cubic;
|
| - } else {
|
| - // OPTIMIZE: special-case half-split ?
|
| - sub_divide(cubic, start, 1, sub);
|
| - cPtr = ⊂
|
| - }
|
| - const Cubic& c = *cPtr;
|
| - double dx = c[3].x - 3 * (c[2].x - c[1].x) - c[0].x;
|
| - double dy = c[3].y - 3 * (c[2].y - c[1].y) - c[0].y;
|
| - double dist = sqrt(dx * dx + dy * dy);
|
| - double tDiv3 = precision / (adjust * dist);
|
| - double t = cube_root(tDiv3);
|
| - if (start > 0) {
|
| - t = start + (1 - start) * t;
|
| - }
|
| - return t;
|
| -}
|
| -
|
| -void demote_cubic_to_quad(const Cubic& cubic, Quadratic& quad) {
|
| - quad[0] = cubic[0];
|
| -if (AVERAGE_END_POINTS) {
|
| - const _Point fromC1 = { (3 * cubic[1].x - cubic[0].x) / 2, (3 * cubic[1].y - cubic[0].y) / 2 };
|
| - const _Point fromC2 = { (3 * cubic[2].x - cubic[3].x) / 2, (3 * cubic[2].y - cubic[3].y) / 2 };
|
| - quad[1].x = (fromC1.x + fromC2.x) / 2;
|
| - quad[1].y = (fromC1.y + fromC2.y) / 2;
|
| -} else {
|
| - lineIntersect((const _Line&) cubic[0], (const _Line&) cubic[2], quad[1]);
|
| -}
|
| - quad[2] = cubic[3];
|
| -}
|
| -
|
| -int cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<Quadratic>& quadratics) {
|
| - SkTDArray<double> ts;
|
| - cubic_to_quadratics(cubic, precision, ts);
|
| - int tsCount = ts.count();
|
| - double t1Start = 0;
|
| - int order = 0;
|
| - for (int idx = 0; idx <= tsCount; ++idx) {
|
| - double t1 = idx < tsCount ? ts[idx] : 1;
|
| - Cubic part;
|
| - sub_divide(cubic, t1Start, t1, part);
|
| - Quadratic q1;
|
| - demote_cubic_to_quad(part, q1);
|
| - Quadratic s1;
|
| - int o1 = reduceOrder(q1, s1, kReduceOrder_TreatAsFill);
|
| - if (order < o1) {
|
| - order = o1;
|
| - }
|
| - memcpy(quadratics.append(), o1 < 2 ? s1 : q1, sizeof(Quadratic));
|
| - t1Start = t1;
|
| - }
|
| - return order;
|
| -}
|
| -
|
| -static bool addSimpleTs(const Cubic& cubic, double precision, SkTDArray<double>& ts) {
|
| - double tDiv = calcTDiv(cubic, precision, 0);
|
| - if (tDiv >= 1) {
|
| - return true;
|
| - }
|
| - if (tDiv >= 0.5) {
|
| - *ts.append() = 0.5;
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -static void addTs(const Cubic& cubic, double precision, double start, double end,
|
| - SkTDArray<double>& ts) {
|
| - double tDiv = calcTDiv(cubic, precision, 0);
|
| - double parts = ceil(1.0 / tDiv);
|
| - for (double index = 0; index < parts; ++index) {
|
| - double newT = start + (index / parts) * (end - start);
|
| - if (newT > 0 && newT < 1) {
|
| - *ts.append() = newT;
|
| - }
|
| - }
|
| -}
|
| -
|
| -// flavor that returns T values only, deferring computing the quads until they are needed
|
| -// FIXME: when called from recursive intersect 2, this could take the original cubic
|
| -// and do a more precise job when calling chop at and sub divide by computing the fractional ts.
|
| -// it would still take the prechopped cubic for reduce order and find cubic inflections
|
| -void cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<double>& ts) {
|
| - Cubic reduced;
|
| - int order = reduceOrder(cubic, reduced, kReduceOrder_QuadraticsAllowed,
|
| - kReduceOrder_TreatAsFill);
|
| - if (order < 3) {
|
| - return;
|
| - }
|
| - double inflectT[5];
|
| - int inflections = find_cubic_inflections(cubic, inflectT);
|
| - SkASSERT(inflections <= 2);
|
| - if (!ends_are_extrema_in_x_or_y(cubic)) {
|
| - inflections += find_cubic_max_curvature(cubic, &inflectT[inflections]);
|
| - SkASSERT(inflections <= 5);
|
| - }
|
| - QSort<double>(inflectT, &inflectT[inflections - 1]);
|
| - // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its
|
| - // own subroutine?
|
| - while (inflections && approximately_less_than_zero(inflectT[0])) {
|
| - memcpy(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections);
|
| - }
|
| - int start = 0;
|
| - do {
|
| - int next = start + 1;
|
| - if (next >= inflections) {
|
| - break;
|
| - }
|
| - if (!approximately_equal(inflectT[start], inflectT[next])) {
|
| - ++start;
|
| - continue;
|
| - }
|
| - memcpy(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start));
|
| - } while (true);
|
| - while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) {
|
| - --inflections;
|
| - }
|
| - CubicPair pair;
|
| - if (inflections == 1) {
|
| - chop_at(cubic, pair, inflectT[0]);
|
| - int orderP1 = reduceOrder(pair.first(), reduced, kReduceOrder_NoQuadraticsAllowed,
|
| - kReduceOrder_TreatAsFill);
|
| - if (orderP1 < 2) {
|
| - --inflections;
|
| - } else {
|
| - int orderP2 = reduceOrder(pair.second(), reduced, kReduceOrder_NoQuadraticsAllowed,
|
| - kReduceOrder_TreatAsFill);
|
| - if (orderP2 < 2) {
|
| - --inflections;
|
| - }
|
| - }
|
| - }
|
| - if (inflections == 0 && addSimpleTs(cubic, precision, ts)) {
|
| - return;
|
| - }
|
| - if (inflections == 1) {
|
| - chop_at(cubic, pair, inflectT[0]);
|
| - addTs(pair.first(), precision, 0, inflectT[0], ts);
|
| - addTs(pair.second(), precision, inflectT[0], 1, ts);
|
| - return;
|
| - }
|
| - if (inflections > 1) {
|
| - Cubic part;
|
| - sub_divide(cubic, 0, inflectT[0], part);
|
| - addTs(part, precision, 0, inflectT[0], ts);
|
| - int last = inflections - 1;
|
| - for (int idx = 0; idx < last; ++idx) {
|
| - sub_divide(cubic, inflectT[idx], inflectT[idx + 1], part);
|
| - addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts);
|
| - }
|
| - sub_divide(cubic, inflectT[last], 1, part);
|
| - addTs(part, precision, inflectT[last], 1, ts);
|
| - return;
|
| - }
|
| - addTs(cubic, precision, 0, 1, ts);
|
| -}
|
|
|