Index: experimental/Intersection/CubicToQuadratics.cpp |
diff --git a/experimental/Intersection/CubicToQuadratics.cpp b/experimental/Intersection/CubicToQuadratics.cpp |
deleted file mode 100644 |
index 5eeaf19c9f349396637dccc08b547301bc573766..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/CubicToQuadratics.cpp |
+++ /dev/null |
@@ -1,217 +0,0 @@ |
-/* |
-http://stackoverflow.com/questions/2009160/how-do-i-convert-the-2-control-points-of-a-cubic-curve-to-the-single-control-poi |
-*/ |
- |
-/* |
-Let's call the control points of the cubic Q0..Q3 and the control points of the quadratic P0..P2. |
-Then for degree elevation, the equations are: |
- |
-Q0 = P0 |
-Q1 = 1/3 P0 + 2/3 P1 |
-Q2 = 2/3 P1 + 1/3 P2 |
-Q3 = P2 |
-In your case you have Q0..Q3 and you're solving for P0..P2. There are two ways to compute P1 from |
- the equations above: |
- |
-P1 = 3/2 Q1 - 1/2 Q0 |
-P1 = 3/2 Q2 - 1/2 Q3 |
-If this is a degree-elevated cubic, then both equations will give the same answer for P1. Since |
- it's likely not, your best bet is to average them. So, |
- |
-P1 = -1/4 Q0 + 3/4 Q1 + 3/4 Q2 - 1/4 Q3 |
- |
- |
-Cubic defined by: P1/2 - anchor points, C1/C2 control points |
-|x| is the euclidean norm of x |
-mid-point approx of cubic: a quad that shares the same anchors with the cubic and has the |
- control point at C = (3·C2 - P2 + 3·C1 - P1)/4 |
- |
-Algorithm |
- |
-pick an absolute precision (prec) |
-Compute the Tdiv as the root of (cubic) equation |
-sqrt(3)/18 · |P2 - 3·C2 + 3·C1 - P1|/2 · Tdiv ^ 3 = prec |
-if Tdiv < 0.5 divide the cubic at Tdiv. First segment [0..Tdiv] can be approximated with by a |
- quadratic, with a defect less than prec, by the mid-point approximation. |
- Repeat from step 2 with the second resulted segment (corresponding to 1-Tdiv) |
-0.5<=Tdiv<1 - simply divide the cubic in two. The two halves can be approximated by the mid-point |
- approximation |
-Tdiv>=1 - the entire cubic can be approximated by the mid-point approximation |
- |
-confirmed by (maybe stolen from) |
-http://www.caffeineowl.com/graphics/2d/vectorial/cubic2quad01.html |
-// maybe in turn derived from http://www.cccg.ca/proceedings/2004/36.pdf |
-// also stored at http://www.cis.usouthal.edu/~hain/general/Publications/Bezier/bezier%20cccg04%20paper.pdf |
- |
-*/ |
- |
-#include "CubicUtilities.h" |
-#include "CurveIntersection.h" |
-#include "LineIntersection.h" |
-#include "TSearch.h" |
- |
-const bool AVERAGE_END_POINTS = true; // results in better fitting curves |
- |
-#define USE_CUBIC_END_POINTS 1 |
- |
-static double calcTDiv(const Cubic& cubic, double precision, double start) { |
- const double adjust = sqrt(3) / 36; |
- Cubic sub; |
- const Cubic* cPtr; |
- if (start == 0) { |
- cPtr = &cubic; |
- } else { |
- // OPTIMIZE: special-case half-split ? |
- sub_divide(cubic, start, 1, sub); |
- cPtr = ⊂ |
- } |
- const Cubic& c = *cPtr; |
- double dx = c[3].x - 3 * (c[2].x - c[1].x) - c[0].x; |
- double dy = c[3].y - 3 * (c[2].y - c[1].y) - c[0].y; |
- double dist = sqrt(dx * dx + dy * dy); |
- double tDiv3 = precision / (adjust * dist); |
- double t = cube_root(tDiv3); |
- if (start > 0) { |
- t = start + (1 - start) * t; |
- } |
- return t; |
-} |
- |
-void demote_cubic_to_quad(const Cubic& cubic, Quadratic& quad) { |
- quad[0] = cubic[0]; |
-if (AVERAGE_END_POINTS) { |
- const _Point fromC1 = { (3 * cubic[1].x - cubic[0].x) / 2, (3 * cubic[1].y - cubic[0].y) / 2 }; |
- const _Point fromC2 = { (3 * cubic[2].x - cubic[3].x) / 2, (3 * cubic[2].y - cubic[3].y) / 2 }; |
- quad[1].x = (fromC1.x + fromC2.x) / 2; |
- quad[1].y = (fromC1.y + fromC2.y) / 2; |
-} else { |
- lineIntersect((const _Line&) cubic[0], (const _Line&) cubic[2], quad[1]); |
-} |
- quad[2] = cubic[3]; |
-} |
- |
-int cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<Quadratic>& quadratics) { |
- SkTDArray<double> ts; |
- cubic_to_quadratics(cubic, precision, ts); |
- int tsCount = ts.count(); |
- double t1Start = 0; |
- int order = 0; |
- for (int idx = 0; idx <= tsCount; ++idx) { |
- double t1 = idx < tsCount ? ts[idx] : 1; |
- Cubic part; |
- sub_divide(cubic, t1Start, t1, part); |
- Quadratic q1; |
- demote_cubic_to_quad(part, q1); |
- Quadratic s1; |
- int o1 = reduceOrder(q1, s1, kReduceOrder_TreatAsFill); |
- if (order < o1) { |
- order = o1; |
- } |
- memcpy(quadratics.append(), o1 < 2 ? s1 : q1, sizeof(Quadratic)); |
- t1Start = t1; |
- } |
- return order; |
-} |
- |
-static bool addSimpleTs(const Cubic& cubic, double precision, SkTDArray<double>& ts) { |
- double tDiv = calcTDiv(cubic, precision, 0); |
- if (tDiv >= 1) { |
- return true; |
- } |
- if (tDiv >= 0.5) { |
- *ts.append() = 0.5; |
- return true; |
- } |
- return false; |
-} |
- |
-static void addTs(const Cubic& cubic, double precision, double start, double end, |
- SkTDArray<double>& ts) { |
- double tDiv = calcTDiv(cubic, precision, 0); |
- double parts = ceil(1.0 / tDiv); |
- for (double index = 0; index < parts; ++index) { |
- double newT = start + (index / parts) * (end - start); |
- if (newT > 0 && newT < 1) { |
- *ts.append() = newT; |
- } |
- } |
-} |
- |
-// flavor that returns T values only, deferring computing the quads until they are needed |
-// FIXME: when called from recursive intersect 2, this could take the original cubic |
-// and do a more precise job when calling chop at and sub divide by computing the fractional ts. |
-// it would still take the prechopped cubic for reduce order and find cubic inflections |
-void cubic_to_quadratics(const Cubic& cubic, double precision, SkTDArray<double>& ts) { |
- Cubic reduced; |
- int order = reduceOrder(cubic, reduced, kReduceOrder_QuadraticsAllowed, |
- kReduceOrder_TreatAsFill); |
- if (order < 3) { |
- return; |
- } |
- double inflectT[5]; |
- int inflections = find_cubic_inflections(cubic, inflectT); |
- SkASSERT(inflections <= 2); |
- if (!ends_are_extrema_in_x_or_y(cubic)) { |
- inflections += find_cubic_max_curvature(cubic, &inflectT[inflections]); |
- SkASSERT(inflections <= 5); |
- } |
- QSort<double>(inflectT, &inflectT[inflections - 1]); |
- // OPTIMIZATION: is this filtering common enough that it needs to be pulled out into its |
- // own subroutine? |
- while (inflections && approximately_less_than_zero(inflectT[0])) { |
- memcpy(inflectT, &inflectT[1], sizeof(inflectT[0]) * --inflections); |
- } |
- int start = 0; |
- do { |
- int next = start + 1; |
- if (next >= inflections) { |
- break; |
- } |
- if (!approximately_equal(inflectT[start], inflectT[next])) { |
- ++start; |
- continue; |
- } |
- memcpy(&inflectT[start], &inflectT[next], sizeof(inflectT[0]) * (--inflections - start)); |
- } while (true); |
- while (inflections && approximately_greater_than_one(inflectT[inflections - 1])) { |
- --inflections; |
- } |
- CubicPair pair; |
- if (inflections == 1) { |
- chop_at(cubic, pair, inflectT[0]); |
- int orderP1 = reduceOrder(pair.first(), reduced, kReduceOrder_NoQuadraticsAllowed, |
- kReduceOrder_TreatAsFill); |
- if (orderP1 < 2) { |
- --inflections; |
- } else { |
- int orderP2 = reduceOrder(pair.second(), reduced, kReduceOrder_NoQuadraticsAllowed, |
- kReduceOrder_TreatAsFill); |
- if (orderP2 < 2) { |
- --inflections; |
- } |
- } |
- } |
- if (inflections == 0 && addSimpleTs(cubic, precision, ts)) { |
- return; |
- } |
- if (inflections == 1) { |
- chop_at(cubic, pair, inflectT[0]); |
- addTs(pair.first(), precision, 0, inflectT[0], ts); |
- addTs(pair.second(), precision, inflectT[0], 1, ts); |
- return; |
- } |
- if (inflections > 1) { |
- Cubic part; |
- sub_divide(cubic, 0, inflectT[0], part); |
- addTs(part, precision, 0, inflectT[0], ts); |
- int last = inflections - 1; |
- for (int idx = 0; idx < last; ++idx) { |
- sub_divide(cubic, inflectT[idx], inflectT[idx + 1], part); |
- addTs(part, precision, inflectT[idx], inflectT[idx + 1], ts); |
- } |
- sub_divide(cubic, inflectT[last], 1, part); |
- addTs(part, precision, inflectT[last], 1, ts); |
- return; |
- } |
- addTs(cubic, precision, 0, 1, ts); |
-} |