Index: experimental/Intersection/Simplify.cpp |
diff --git a/experimental/Intersection/Simplify.cpp b/experimental/Intersection/Simplify.cpp |
deleted file mode 100644 |
index d99cdf315e92d5c649835635d047e1d4d6cbb249..0000000000000000000000000000000000000000 |
--- a/experimental/Intersection/Simplify.cpp |
+++ /dev/null |
@@ -1,6608 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
-#include "Simplify.h" |
- |
-#undef SkASSERT |
-#define SkASSERT(cond) while (!(cond)) { sk_throw(); } |
- |
-// Terminology: |
-// A Path contains one of more Contours |
-// A Contour is made up of Segment array |
-// A Segment is described by a Verb and a Point array with 2, 3, or 4 points |
-// A Verb is one of Line, Quad(ratic), or Cubic |
-// A Segment contains a Span array |
-// A Span is describes a portion of a Segment using starting and ending T |
-// T values range from 0 to 1, where 0 is the first Point in the Segment |
-// An Edge is a Segment generated from a Span |
- |
-// FIXME: remove once debugging is complete |
-#ifdef SK_DEBUG |
-int gDebugMaxWindSum = SK_MaxS32; |
-int gDebugMaxWindValue = SK_MaxS32; |
-#endif |
- |
-#define PIN_ADD_T 0 |
-#define TRY_ROTATE 1 |
-#define ONE_PASS_COINCIDENCE_CHECK 0 |
-#define APPROXIMATE_CUBICS 1 |
-#define COMPACT_DEBUG_SORT 0 |
- |
-#define DEBUG_UNUSED 0 // set to expose unused functions |
- |
-#if FORCE_RELEASE || defined SK_RELEASE |
- |
-const bool gRunTestsInOneThread = false; |
- |
-#define DEBUG_ACTIVE_OP 0 |
-#define DEBUG_ACTIVE_SPANS 0 |
-#define DEBUG_ACTIVE_SPANS_SHORT_FORM 0 |
-#define DEBUG_ADD_INTERSECTING_TS 0 |
-#define DEBUG_ADD_T_PAIR 0 |
-#define DEBUG_ANGLE 0 |
-#define DEBUG_AS_C_CODE 1 |
-#define DEBUG_ASSEMBLE 0 |
-#define DEBUG_CONCIDENT 0 |
-#define DEBUG_CROSS 0 |
-#define DEBUG_FLOW 0 |
-#define DEBUG_MARK_DONE 0 |
-#define DEBUG_PATH_CONSTRUCTION 0 |
-#define DEBUG_SHOW_WINDING 0 |
-#define DEBUG_SORT 0 |
-#define DEBUG_SWAP_TOP 0 |
-#define DEBUG_UNSORTABLE 0 |
-#define DEBUG_WIND_BUMP 0 |
-#define DEBUG_WINDING 0 |
-#define DEBUG_WINDING_AT_T 0 |
- |
-#else |
- |
-const bool gRunTestsInOneThread = true; |
- |
-#define DEBUG_ACTIVE_OP 1 |
-#define DEBUG_ACTIVE_SPANS 1 |
-#define DEBUG_ACTIVE_SPANS_SHORT_FORM 0 |
-#define DEBUG_ADD_INTERSECTING_TS 1 |
-#define DEBUG_ADD_T_PAIR 1 |
-#define DEBUG_ANGLE 1 |
-#define DEBUG_AS_C_CODE 1 |
-#define DEBUG_ASSEMBLE 1 |
-#define DEBUG_CONCIDENT 1 |
-#define DEBUG_CROSS 0 |
-#define DEBUG_FLOW 1 |
-#define DEBUG_MARK_DONE 1 |
-#define DEBUG_PATH_CONSTRUCTION 1 |
-#define DEBUG_SHOW_WINDING 0 |
-#define DEBUG_SORT 1 |
-#define DEBUG_SWAP_TOP 1 |
-#define DEBUG_UNSORTABLE 1 |
-#define DEBUG_WIND_BUMP 0 |
-#define DEBUG_WINDING 1 |
-#define DEBUG_WINDING_AT_T 1 |
- |
-#endif |
- |
-#define DEBUG_DUMP (DEBUG_ACTIVE_OP | DEBUG_ACTIVE_SPANS | DEBUG_CONCIDENT | DEBUG_SORT | \ |
- DEBUG_PATH_CONSTRUCTION) |
- |
-#if DEBUG_AS_C_CODE |
-#define CUBIC_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}}" |
-#define QUAD_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}}" |
-#define LINE_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}}" |
-#define PT_DEBUG_STR "{{%1.17g,%1.17g}}" |
-#else |
-#define CUBIC_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" |
-#define QUAD_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" |
-#define LINE_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g)" |
-#define PT_DEBUG_STR "(%1.9g,%1.9g)" |
-#endif |
-#define T_DEBUG_STR(t, n) #t "[" #n "]=%1.9g" |
-#define TX_DEBUG_STR(t) #t "[%d]=%1.9g" |
-#define CUBIC_DEBUG_DATA(c) c[0].fX, c[0].fY, c[1].fX, c[1].fY, c[2].fX, c[2].fY, c[3].fX, c[3].fY |
-#define QUAD_DEBUG_DATA(q) q[0].fX, q[0].fY, q[1].fX, q[1].fY, q[2].fX, q[2].fY |
-#define LINE_DEBUG_DATA(l) l[0].fX, l[0].fY, l[1].fX, l[1].fY |
-#define PT_DEBUG_DATA(i, n) i.fPt[n].x, i.fPt[n].y |
- |
-#if DEBUG_DUMP |
-static const char* kLVerbStr[] = {"", "line", "quad", "cubic"}; |
-// static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"}; |
-static int gContourID; |
-static int gSegmentID; |
-#endif |
- |
-#if DEBUG_SORT || DEBUG_SWAP_TOP |
-static int gDebugSortCountDefault = SK_MaxS32; |
-static int gDebugSortCount; |
-#endif |
- |
-#if DEBUG_ACTIVE_OP |
-static const char* kShapeOpStr[] = {"diff", "sect", "union", "xor"}; |
-#endif |
- |
-#ifndef DEBUG_TEST |
-#define DEBUG_TEST 0 |
-#endif |
- |
-#define MAKE_CONST_LINE(line, pts) \ |
- const _Line line = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}} |
-#define MAKE_CONST_QUAD(quad, pts) \ |
- const Quadratic quad = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \ |
- {pts[2].fX, pts[2].fY}} |
-#define MAKE_CONST_CUBIC(cubic, pts) \ |
- const Cubic cubic = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \ |
- {pts[2].fX, pts[2].fY}, {pts[3].fX, pts[3].fY}} |
- |
-static int LineIntersect(const SkPoint a[2], const SkPoint b[2], |
- Intersections& intersections) { |
- MAKE_CONST_LINE(aLine, a); |
- MAKE_CONST_LINE(bLine, b); |
- return intersect(aLine, bLine, intersections); |
-} |
- |
-static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2], |
- Intersections& intersections) { |
- MAKE_CONST_QUAD(aQuad, a); |
- MAKE_CONST_LINE(bLine, b); |
- return intersect(aQuad, bLine, intersections); |
-} |
- |
-static int CubicLineIntersect(const SkPoint a[4], const SkPoint b[2], |
- Intersections& intersections) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- MAKE_CONST_LINE(bLine, b); |
- return intersect(aCubic, bLine, intersections); |
-} |
- |
-static int QuadIntersect(const SkPoint a[3], const SkPoint b[3], |
- Intersections& intersections) { |
- MAKE_CONST_QUAD(aQuad, a); |
- MAKE_CONST_QUAD(bQuad, b); |
-#define TRY_QUARTIC_SOLUTION 1 |
-#if TRY_QUARTIC_SOLUTION |
- intersect2(aQuad, bQuad, intersections); |
-#else |
- intersect(aQuad, bQuad, intersections); |
-#endif |
- return intersections.fUsed; |
-} |
- |
-#if APPROXIMATE_CUBICS |
-static int CubicQuadIntersect(const SkPoint a[4], const SkPoint b[3], |
- Intersections& intersections) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- MAKE_CONST_QUAD(bQuad, b); |
- return intersect(aCubic, bQuad, intersections); |
-} |
-#endif |
- |
-static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], Intersections& intersections) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- MAKE_CONST_CUBIC(bCubic, b); |
-#if APPROXIMATE_CUBICS |
- intersect3(aCubic, bCubic, intersections); |
-#else |
- intersect(aCubic, bCubic, intersections); |
-#endif |
- return intersections.fUsed; |
-} |
- |
-static int CubicIntersect(const SkPoint a[4], Intersections& intersections) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- return intersect(aCubic, intersections); |
-} |
- |
-static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, |
- SkScalar y, bool flipped, Intersections& intersections) { |
- MAKE_CONST_LINE(aLine, a); |
- return horizontalIntersect(aLine, left, right, y, flipped, intersections); |
-} |
- |
-static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, |
- SkScalar y, bool flipped, Intersections& intersections) { |
- MAKE_CONST_QUAD(aQuad, a); |
- return horizontalIntersect(aQuad, left, right, y, flipped, intersections); |
-} |
- |
-static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, |
- SkScalar y, bool flipped, Intersections& intersections) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- return horizontalIntersect(aCubic, left, right, y, flipped, intersections); |
-} |
- |
-static int (* const HSegmentIntersect[])(const SkPoint [], SkScalar , |
- SkScalar , SkScalar , bool , Intersections& ) = { |
- NULL, |
- HLineIntersect, |
- HQuadIntersect, |
- HCubicIntersect |
-}; |
- |
-static int VLineIntersect(const SkPoint a[2], SkScalar top, SkScalar bottom, |
- SkScalar x, bool flipped, Intersections& intersections) { |
- MAKE_CONST_LINE(aLine, a); |
- return verticalIntersect(aLine, top, bottom, x, flipped, intersections); |
-} |
- |
-static int VQuadIntersect(const SkPoint a[3], SkScalar top, SkScalar bottom, |
- SkScalar x, bool flipped, Intersections& intersections) { |
- MAKE_CONST_QUAD(aQuad, a); |
- return verticalIntersect(aQuad, top, bottom, x, flipped, intersections); |
-} |
- |
-static int VCubicIntersect(const SkPoint a[4], SkScalar top, SkScalar bottom, |
- SkScalar x, bool flipped, Intersections& intersections) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- return verticalIntersect(aCubic, top, bottom, x, flipped, intersections); |
-} |
- |
-static int (* const VSegmentIntersect[])(const SkPoint [], SkScalar , |
- SkScalar , SkScalar , bool , Intersections& ) = { |
- NULL, |
- VLineIntersect, |
- VQuadIntersect, |
- VCubicIntersect |
-}; |
- |
-static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) { |
- MAKE_CONST_LINE(line, a); |
- double x, y; |
- xy_at_t(line, t, x, y); |
- out->fX = SkDoubleToScalar(x); |
- out->fY = SkDoubleToScalar(y); |
-} |
- |
-static void LineXYAtT(const SkPoint a[2], double t, _Point* out) { |
- MAKE_CONST_LINE(line, a); |
- xy_at_t(line, t, out->x, out->y); |
-} |
- |
-static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) { |
- MAKE_CONST_QUAD(quad, a); |
- double x, y; |
- xy_at_t(quad, t, x, y); |
- out->fX = SkDoubleToScalar(x); |
- out->fY = SkDoubleToScalar(y); |
-} |
- |
-static void QuadXYAtT(const SkPoint a[3], double t, _Point* out) { |
- MAKE_CONST_QUAD(quad, a); |
- xy_at_t(quad, t, out->x, out->y); |
-} |
- |
-static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) { |
- MAKE_CONST_CUBIC(cubic, a); |
- double x, y; |
- xy_at_t(cubic, t, x, y); |
- out->fX = SkDoubleToScalar(x); |
- out->fY = SkDoubleToScalar(y); |
-} |
- |
-static void CubicXYAtT(const SkPoint a[4], double t, _Point* out) { |
- MAKE_CONST_CUBIC(cubic, a); |
- xy_at_t(cubic, t, out->x, out->y); |
-} |
- |
-static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = { |
- NULL, |
- LineXYAtT, |
- QuadXYAtT, |
- CubicXYAtT |
-}; |
- |
-static void (* const SegmentXYAtT2[])(const SkPoint [], double , _Point* ) = { |
- NULL, |
- LineXYAtT, |
- QuadXYAtT, |
- CubicXYAtT |
-}; |
- |
-static SkScalar LineXAtT(const SkPoint a[2], double t) { |
- MAKE_CONST_LINE(aLine, a); |
- double x; |
- xy_at_t(aLine, t, x, *(double*) 0); |
- return SkDoubleToScalar(x); |
-} |
- |
-static SkScalar QuadXAtT(const SkPoint a[3], double t) { |
- MAKE_CONST_QUAD(quad, a); |
- double x; |
- xy_at_t(quad, t, x, *(double*) 0); |
- return SkDoubleToScalar(x); |
-} |
- |
-static SkScalar CubicXAtT(const SkPoint a[4], double t) { |
- MAKE_CONST_CUBIC(cubic, a); |
- double x; |
- xy_at_t(cubic, t, x, *(double*) 0); |
- return SkDoubleToScalar(x); |
-} |
- |
-static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = { |
- NULL, |
- LineXAtT, |
- QuadXAtT, |
- CubicXAtT |
-}; |
- |
-static SkScalar LineYAtT(const SkPoint a[2], double t) { |
- MAKE_CONST_LINE(aLine, a); |
- double y; |
- xy_at_t(aLine, t, *(double*) 0, y); |
- return SkDoubleToScalar(y); |
-} |
- |
-static SkScalar QuadYAtT(const SkPoint a[3], double t) { |
- MAKE_CONST_QUAD(quad, a); |
- double y; |
- xy_at_t(quad, t, *(double*) 0, y); |
- return SkDoubleToScalar(y); |
-} |
- |
-static SkScalar CubicYAtT(const SkPoint a[4], double t) { |
- MAKE_CONST_CUBIC(cubic, a); |
- double y; |
- xy_at_t(cubic, t, *(double*) 0, y); |
- return SkDoubleToScalar(y); |
-} |
- |
-static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = { |
- NULL, |
- LineYAtT, |
- QuadYAtT, |
- CubicYAtT |
-}; |
- |
-static SkScalar LineDXAtT(const SkPoint a[2], double ) { |
- return a[1].fX - a[0].fX; |
-} |
- |
-static SkScalar QuadDXAtT(const SkPoint a[3], double t) { |
- MAKE_CONST_QUAD(quad, a); |
- double x = dx_at_t(quad, t); |
- return SkDoubleToScalar(x); |
-} |
- |
-static SkScalar CubicDXAtT(const SkPoint a[4], double t) { |
- MAKE_CONST_CUBIC(cubic, a); |
- double x = dx_at_t(cubic, t); |
- return SkDoubleToScalar(x); |
-} |
- |
-static SkScalar (* const SegmentDXAtT[])(const SkPoint [], double ) = { |
- NULL, |
- LineDXAtT, |
- QuadDXAtT, |
- CubicDXAtT |
-}; |
- |
-static SkScalar LineDYAtT(const SkPoint a[2], double ) { |
- return a[1].fY - a[0].fY; |
-} |
- |
-static SkScalar QuadDYAtT(const SkPoint a[3], double t) { |
- MAKE_CONST_QUAD(quad, a); |
- double y = dy_at_t(quad, t); |
- return SkDoubleToScalar(y); |
-} |
- |
-static SkScalar CubicDYAtT(const SkPoint a[4], double t) { |
- MAKE_CONST_CUBIC(cubic, a); |
- double y = dy_at_t(cubic, t); |
- return SkDoubleToScalar(y); |
-} |
- |
-static SkScalar (* const SegmentDYAtT[])(const SkPoint [], double ) = { |
- NULL, |
- LineDYAtT, |
- QuadDYAtT, |
- CubicDYAtT |
-}; |
- |
-static SkVector LineDXDYAtT(const SkPoint a[2], double ) { |
- return a[1] - a[0]; |
-} |
- |
-static SkVector QuadDXDYAtT(const SkPoint a[3], double t) { |
- MAKE_CONST_QUAD(quad, a); |
- _Vector v = dxdy_at_t(quad, t); |
- return v.asSkVector(); |
-} |
- |
-static SkVector CubicDXDYAtT(const SkPoint a[4], double t) { |
- MAKE_CONST_CUBIC(cubic, a); |
- _Vector v = dxdy_at_t(cubic, t); |
- return v.asSkVector(); |
-} |
- |
-static SkVector (* const SegmentDXDYAtT[])(const SkPoint [], double ) = { |
- NULL, |
- LineDXDYAtT, |
- QuadDXDYAtT, |
- CubicDXDYAtT |
-}; |
- |
-static void LineSubDivide(const SkPoint a[2], double startT, double endT, |
- SkPoint sub[2]) { |
- MAKE_CONST_LINE(aLine, a); |
- _Line dst; |
- sub_divide(aLine, startT, endT, dst); |
- sub[0].fX = SkDoubleToScalar(dst[0].x); |
- sub[0].fY = SkDoubleToScalar(dst[0].y); |
- sub[1].fX = SkDoubleToScalar(dst[1].x); |
- sub[1].fY = SkDoubleToScalar(dst[1].y); |
-} |
- |
-static void QuadSubDivide(const SkPoint a[3], double startT, double endT, |
- SkPoint sub[3]) { |
- MAKE_CONST_QUAD(aQuad, a); |
- Quadratic dst; |
- sub_divide(aQuad, startT, endT, dst); |
- sub[0].fX = SkDoubleToScalar(dst[0].x); |
- sub[0].fY = SkDoubleToScalar(dst[0].y); |
- sub[1].fX = SkDoubleToScalar(dst[1].x); |
- sub[1].fY = SkDoubleToScalar(dst[1].y); |
- sub[2].fX = SkDoubleToScalar(dst[2].x); |
- sub[2].fY = SkDoubleToScalar(dst[2].y); |
-} |
- |
-static void CubicSubDivide(const SkPoint a[4], double startT, double endT, |
- SkPoint sub[4]) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- Cubic dst; |
- sub_divide(aCubic, startT, endT, dst); |
- sub[0].fX = SkDoubleToScalar(dst[0].x); |
- sub[0].fY = SkDoubleToScalar(dst[0].y); |
- sub[1].fX = SkDoubleToScalar(dst[1].x); |
- sub[1].fY = SkDoubleToScalar(dst[1].y); |
- sub[2].fX = SkDoubleToScalar(dst[2].x); |
- sub[2].fY = SkDoubleToScalar(dst[2].y); |
- sub[3].fX = SkDoubleToScalar(dst[3].x); |
- sub[3].fY = SkDoubleToScalar(dst[3].y); |
-} |
- |
-static void (* const SegmentSubDivide[])(const SkPoint [], double , double , |
- SkPoint []) = { |
- NULL, |
- LineSubDivide, |
- QuadSubDivide, |
- CubicSubDivide |
-}; |
- |
-static void LineSubDivideHD(const SkPoint a[2], double startT, double endT, _Line& dst) { |
- MAKE_CONST_LINE(aLine, a); |
- sub_divide(aLine, startT, endT, dst); |
-} |
- |
-static void QuadSubDivideHD(const SkPoint a[3], double startT, double endT, Quadratic& dst) { |
- MAKE_CONST_QUAD(aQuad, a); |
- sub_divide(aQuad, startT, endT, dst); |
-} |
- |
-static void CubicSubDivideHD(const SkPoint a[4], double startT, double endT, Cubic& dst) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- sub_divide(aCubic, startT, endT, dst); |
-} |
- |
-static SkPoint QuadTop(const SkPoint a[3], double startT, double endT) { |
- MAKE_CONST_QUAD(quad, a); |
- _Point topPt = top(quad, startT, endT); |
- return topPt.asSkPoint(); |
-} |
- |
-static SkPoint CubicTop(const SkPoint a[3], double startT, double endT) { |
- MAKE_CONST_CUBIC(cubic, a); |
- _Point topPt = top(cubic, startT, endT); |
- return topPt.asSkPoint(); |
-} |
- |
-static SkPoint (* SegmentTop[])(const SkPoint[], double , double ) = { |
- NULL, |
- NULL, |
- QuadTop, |
- CubicTop |
-}; |
- |
-#if DEBUG_UNUSED |
-static void QuadSubBounds(const SkPoint a[3], double startT, double endT, |
- SkRect& bounds) { |
- SkPoint dst[3]; |
- QuadSubDivide(a, startT, endT, dst); |
- bounds.fLeft = bounds.fRight = dst[0].fX; |
- bounds.fTop = bounds.fBottom = dst[0].fY; |
- for (int index = 1; index < 3; ++index) { |
- bounds.growToInclude(dst[index].fX, dst[index].fY); |
- } |
-} |
- |
-static void CubicSubBounds(const SkPoint a[4], double startT, double endT, |
- SkRect& bounds) { |
- SkPoint dst[4]; |
- CubicSubDivide(a, startT, endT, dst); |
- bounds.fLeft = bounds.fRight = dst[0].fX; |
- bounds.fTop = bounds.fBottom = dst[0].fY; |
- for (int index = 1; index < 4; ++index) { |
- bounds.growToInclude(dst[index].fX, dst[index].fY); |
- } |
-} |
-#endif |
- |
-static SkPath::Verb QuadReduceOrder(const SkPoint a[3], |
- SkTDArray<SkPoint>& reducePts) { |
- MAKE_CONST_QUAD(aQuad, a); |
- Quadratic dst; |
- int order = reduceOrder(aQuad, dst, kReduceOrder_TreatAsFill); |
- if (order == 2) { // quad became line |
- for (int index = 0; index < order; ++index) { |
- SkPoint* pt = reducePts.append(); |
- pt->fX = SkDoubleToScalar(dst[index].x); |
- pt->fY = SkDoubleToScalar(dst[index].y); |
- } |
- } |
- return (SkPath::Verb) (order - 1); |
-} |
- |
-static SkPath::Verb CubicReduceOrder(const SkPoint a[4], |
- SkTDArray<SkPoint>& reducePts) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- Cubic dst; |
- int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill); |
- if (order == 2 || order == 3) { // cubic became line or quad |
- for (int index = 0; index < order; ++index) { |
- SkPoint* pt = reducePts.append(); |
- pt->fX = SkDoubleToScalar(dst[index].x); |
- pt->fY = SkDoubleToScalar(dst[index].y); |
- } |
- } |
- return (SkPath::Verb) (order - 1); |
-} |
- |
-static bool QuadIsLinear(const SkPoint a[3]) { |
- MAKE_CONST_QUAD(aQuad, a); |
- return isLinear(aQuad, 0, 2); |
-} |
- |
-static bool CubicIsLinear(const SkPoint a[4]) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- return isLinear(aCubic, 0, 3); |
-} |
- |
-static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) { |
- MAKE_CONST_LINE(aLine, a); |
- double x[2]; |
- xy_at_t(aLine, startT, x[0], *(double*) 0); |
- xy_at_t(aLine, endT, x[1], *(double*) 0); |
- return SkMinScalar((float) x[0], (float) x[1]); |
-} |
- |
-static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) { |
- MAKE_CONST_QUAD(aQuad, a); |
- return (float) leftMostT(aQuad, startT, endT); |
-} |
- |
-static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- return (float) leftMostT(aCubic, startT, endT); |
-} |
- |
-static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = { |
- NULL, |
- LineLeftMost, |
- QuadLeftMost, |
- CubicLeftMost |
-}; |
- |
-#if 0 // currently unused |
-static int QuadRayIntersect(const SkPoint a[3], const SkPoint b[2], |
- Intersections& intersections) { |
- MAKE_CONST_QUAD(aQuad, a); |
- MAKE_CONST_LINE(bLine, b); |
- return intersectRay(aQuad, bLine, intersections); |
-} |
-#endif |
- |
-static int QuadRayIntersect(const SkPoint a[3], const _Line& bLine, Intersections& intersections) { |
- MAKE_CONST_QUAD(aQuad, a); |
- return intersectRay(aQuad, bLine, intersections); |
-} |
- |
-static int CubicRayIntersect(const SkPoint a[3], const _Line& bLine, Intersections& intersections) { |
- MAKE_CONST_CUBIC(aCubic, a); |
- return intersectRay(aCubic, bLine, intersections); |
-} |
- |
-static int (* const SegmentRayIntersect[])(const SkPoint [], const _Line& , Intersections&) = { |
- NULL, |
- NULL, |
- QuadRayIntersect, |
- CubicRayIntersect |
-}; |
- |
- |
- |
-static bool LineVertical(const SkPoint a[2], double startT, double endT) { |
- MAKE_CONST_LINE(aLine, a); |
- double x[2]; |
- xy_at_t(aLine, startT, x[0], *(double*) 0); |
- xy_at_t(aLine, endT, x[1], *(double*) 0); |
- return AlmostEqualUlps((float) x[0], (float) x[1]); |
-} |
- |
-static bool QuadVertical(const SkPoint a[3], double startT, double endT) { |
- SkPoint dst[3]; |
- QuadSubDivide(a, startT, endT, dst); |
- return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX); |
-} |
- |
-static bool CubicVertical(const SkPoint a[4], double startT, double endT) { |
- SkPoint dst[4]; |
- CubicSubDivide(a, startT, endT, dst); |
- return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX) |
- && AlmostEqualUlps(dst[2].fX, dst[3].fX); |
-} |
- |
-static bool (* const SegmentVertical[])(const SkPoint [], double , double) = { |
- NULL, |
- LineVertical, |
- QuadVertical, |
- CubicVertical |
-}; |
- |
-class Segment; |
- |
-struct Span { |
- Segment* fOther; |
- mutable SkPoint fPt; // lazily computed as needed |
- double fT; |
- double fOtherT; // value at fOther[fOtherIndex].fT |
- int fOtherIndex; // can't be used during intersection |
- int fWindSum; // accumulated from contours surrounding this one. |
- int fOppSum; // for binary operators: the opposite winding sum |
- int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident |
- int fOppValue; // normally 0 -- when binary coincident edges combine, opp value goes here |
- bool fDone; // if set, this span to next higher T has been processed |
- bool fUnsortableStart; // set when start is part of an unsortable pair |
- bool fUnsortableEnd; // set when end is part of an unsortable pair |
- bool fTiny; // if set, span may still be considered once for edge following |
- bool fLoop; // set when a cubic loops back to this point |
-}; |
- |
-// sorting angles |
-// given angles of {dx dy ddx ddy dddx dddy} sort them |
-class Angle { |
-public: |
- // FIXME: this is bogus for quads and cubics |
- // if the quads and cubics' line from end pt to ctrl pt are coincident, |
- // there's no obvious way to determine the curve ordering from the |
- // derivatives alone. In particular, if one quadratic's coincident tangent |
- // is longer than the other curve, the final control point can place the |
- // longer curve on either side of the shorter one. |
- // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf |
- // may provide some help, but nothing has been figured out yet. |
- |
- /*( |
- for quads and cubics, set up a parameterized line (e.g. LineParameters ) |
- for points [0] to [1]. See if point [2] is on that line, or on one side |
- or the other. If it both quads' end points are on the same side, choose |
- the shorter tangent. If the tangents are equal, choose the better second |
- tangent angle |
- |
- maybe I could set up LineParameters lazily |
- */ |
- bool operator<(const Angle& rh) const { |
- double y = dy(); |
- double ry = rh.dy(); |
- if ((y < 0) ^ (ry < 0)) { // OPTIMIZATION: better to use y * ry < 0 ? |
- return y < 0; |
- } |
- double x = dx(); |
- double rx = rh.dx(); |
- if (y == 0 && ry == 0 && x * rx < 0) { |
- return x < rx; |
- } |
- double x_ry = x * ry; |
- double rx_y = rx * y; |
- double cmp = x_ry - rx_y; |
- if (!approximately_zero(cmp)) { |
- return cmp < 0; |
- } |
- if (approximately_zero(x_ry) && approximately_zero(rx_y) |
- && !approximately_zero_squared(cmp)) { |
- return cmp < 0; |
- } |
- // at this point, the initial tangent line is coincident |
- // see if edges curl away from each other |
- if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide) |
- || !approximately_zero(rh.fSide))) { |
- // FIXME: running demo will trigger this assertion |
- // (don't know if commenting out will trigger further assertion or not) |
- // commenting it out allows demo to run in release, though |
- // SkASSERT(fSide != rh.fSide); |
- return fSide < rh.fSide; |
- } |
- // see if either curve can be lengthened and try the tangent compare again |
- if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical |
- && (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting |
- Angle longer = *this; |
- Angle rhLonger = rh; |
- if (longer.lengthen() | rhLonger.lengthen()) { |
- return longer < rhLonger; |
- } |
- #if 0 |
- // what if we extend in the other direction? |
- longer = *this; |
- rhLonger = rh; |
- if (longer.reverseLengthen() | rhLonger.reverseLengthen()) { |
- return longer < rhLonger; |
- } |
- #endif |
- } |
- if ((fVerb == SkPath::kLine_Verb && approximately_zero(x) && approximately_zero(y)) |
- || (rh.fVerb == SkPath::kLine_Verb |
- && approximately_zero(rx) && approximately_zero(ry))) { |
- // See general unsortable comment below. This case can happen when |
- // one line has a non-zero change in t but no change in x and y. |
- fUnsortable = true; |
- rh.fUnsortable = true; |
- return this < &rh; // even with no solution, return a stable sort |
- } |
- if ((*rh.fSpans)[SkMin32(rh.fStart, rh.fEnd)].fTiny |
- || (*fSpans)[SkMin32(fStart, fEnd)].fTiny) { |
- fUnsortable = true; |
- rh.fUnsortable = true; |
- return this < &rh; // even with no solution, return a stable sort |
- } |
- SkASSERT(fVerb >= SkPath::kQuad_Verb); |
- SkASSERT(rh.fVerb >= SkPath::kQuad_Verb); |
- // FIXME: until I can think of something better, project a ray from the |
- // end of the shorter tangent to midway between the end points |
- // through both curves and use the resulting angle to sort |
- // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive |
- double len = fTangent1.normalSquared(); |
- double rlen = rh.fTangent1.normalSquared(); |
- _Line ray; |
- Intersections i, ri; |
- int roots, rroots; |
- bool flip = false; |
- do { |
- bool useThis = (len < rlen) ^ flip; |
- const Cubic& part = useThis ? fCurvePart : rh.fCurvePart; |
- SkPath::Verb partVerb = useThis ? fVerb : rh.fVerb; |
- ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ? |
- part[2] : part[1]; |
- ray[1].x = (part[0].x + part[partVerb].x) / 2; |
- ray[1].y = (part[0].y + part[partVerb].y) / 2; |
- SkASSERT(ray[0] != ray[1]); |
- roots = (*SegmentRayIntersect[fVerb])(fPts, ray, i); |
- rroots = (*SegmentRayIntersect[rh.fVerb])(rh.fPts, ray, ri); |
- } while ((roots == 0 || rroots == 0) && (flip ^= true)); |
- if (roots == 0 || rroots == 0) { |
- // FIXME: we don't have a solution in this case. The interim solution |
- // is to mark the edges as unsortable, exclude them from this and |
- // future computations, and allow the returned path to be fragmented |
- fUnsortable = true; |
- rh.fUnsortable = true; |
- return this < &rh; // even with no solution, return a stable sort |
- } |
- _Point loc; |
- double best = SK_ScalarInfinity; |
- double dx, dy, dist; |
- int index; |
- for (index = 0; index < roots; ++index) { |
- (*SegmentXYAtT2[fVerb])(fPts, i.fT[0][index], &loc); |
- dx = loc.x - ray[0].x; |
- dy = loc.y - ray[0].y; |
- dist = dx * dx + dy * dy; |
- if (best > dist) { |
- best = dist; |
- } |
- } |
- for (index = 0; index < rroots; ++index) { |
- (*SegmentXYAtT2[rh.fVerb])(rh.fPts, ri.fT[0][index], &loc); |
- dx = loc.x - ray[0].x; |
- dy = loc.y - ray[0].y; |
- dist = dx * dx + dy * dy; |
- if (best > dist) { |
- return fSide < 0; |
- } |
- } |
- return fSide > 0; |
- } |
- |
- double dx() const { |
- return fTangent1.dx(); |
- } |
- |
- double dy() const { |
- return fTangent1.dy(); |
- } |
- |
- int end() const { |
- return fEnd; |
- } |
- |
- bool isHorizontal() const { |
- return dy() == 0 && fVerb == SkPath::kLine_Verb; |
- } |
- |
- bool lengthen() { |
- int newEnd = fEnd; |
- if (fStart < fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { |
- fEnd = newEnd; |
- setSpans(); |
- return true; |
- } |
- return false; |
- } |
- |
- bool reverseLengthen() { |
- if (fReversed) { |
- return false; |
- } |
- int newEnd = fStart; |
- if (fStart > fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { |
- fEnd = newEnd; |
- fReversed = true; |
- setSpans(); |
- return true; |
- } |
- return false; |
- } |
- |
- void set(const SkPoint* orig, SkPath::Verb verb, const Segment* segment, |
- int start, int end, const SkTDArray<Span>& spans) { |
- fSegment = segment; |
- fStart = start; |
- fEnd = end; |
- fPts = orig; |
- fVerb = verb; |
- fSpans = &spans; |
- fReversed = false; |
- fUnsortable = false; |
- setSpans(); |
- } |
- |
- |
- void setSpans() { |
- double startT = (*fSpans)[fStart].fT; |
- double endT = (*fSpans)[fEnd].fT; |
- switch (fVerb) { |
- case SkPath::kLine_Verb: |
- _Line l; |
- LineSubDivideHD(fPts, startT, endT, l); |
- // OPTIMIZATION: for pure line compares, we never need fTangent1.c |
- fTangent1.lineEndPoints(l); |
- fSide = 0; |
- break; |
- case SkPath::kQuad_Verb: { |
- Quadratic& quad = (Quadratic&)fCurvePart; |
- QuadSubDivideHD(fPts, startT, endT, quad); |
- fTangent1.quadEndPoints(quad, 0, 1); |
- if (dx() == 0 && dy() == 0) { |
- fTangent1.quadEndPoints(quad); |
- } |
- fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -- compare sign only |
- } break; |
- case SkPath::kCubic_Verb: { |
- int nextC = 2; |
- CubicSubDivideHD(fPts, startT, endT, fCurvePart); |
- fTangent1.cubicEndPoints(fCurvePart, 0, 1); |
- if (dx() == 0 && dy() == 0) { |
- fTangent1.cubicEndPoints(fCurvePart, 0, 2); |
- nextC = 3; |
- if (dx() == 0 && dy() == 0) { |
- fTangent1.cubicEndPoints(fCurvePart, 0, 3); |
- } |
- } |
- fSide = -fTangent1.pointDistance(fCurvePart[nextC]); // compare sign only |
- if (nextC == 2 && approximately_zero(fSide)) { |
- fSide = -fTangent1.pointDistance(fCurvePart[3]); |
- } |
- } break; |
- default: |
- SkASSERT(0); |
- } |
- fUnsortable = dx() == 0 && dy() == 0; |
- if (fUnsortable) { |
- return; |
- } |
- SkASSERT(fStart != fEnd); |
- int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro? |
- for (int index = fStart; index != fEnd; index += step) { |
-#if 1 |
- const Span& thisSpan = (*fSpans)[index]; |
- const Span& nextSpan = (*fSpans)[index + step]; |
- if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) { |
- continue; |
- } |
- fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd; |
-#if DEBUG_UNSORTABLE |
- if (fUnsortable) { |
- SkPoint iPt, ePt; |
- (*SegmentXYAtT[fVerb])(fPts, thisSpan.fT, &iPt); |
- (*SegmentXYAtT[fVerb])(fPts, nextSpan.fT, &ePt); |
- SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, |
- index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); |
- } |
-#endif |
- return; |
-#else |
- if ((*fSpans)[index].fUnsortableStart) { |
- fUnsortable = true; |
- return; |
- } |
-#endif |
- } |
-#if 1 |
-#if DEBUG_UNSORTABLE |
- SkPoint iPt, ePt; |
- (*SegmentXYAtT[fVerb])(fPts, startT, &iPt); |
- (*SegmentXYAtT[fVerb])(fPts, endT, &ePt); |
- SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__, |
- fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); |
-#endif |
- fUnsortable = true; |
-#endif |
- } |
- |
- Segment* segment() const { |
- return const_cast<Segment*>(fSegment); |
- } |
- |
- int sign() const { |
- return SkSign32(fStart - fEnd); |
- } |
- |
- const SkTDArray<Span>* spans() const { |
- return fSpans; |
- } |
- |
- int start() const { |
- return fStart; |
- } |
- |
- bool unsortable() const { |
- return fUnsortable; |
- } |
- |
-#if DEBUG_ANGLE |
- const SkPoint* pts() const { |
- return fPts; |
- } |
- |
- SkPath::Verb verb() const { |
- return fVerb; |
- } |
- |
- void debugShow(const SkPoint& a) const { |
- SkDebugf(" d=(%1.9g,%1.9g) side=%1.9g\n", dx(), dy(), fSide); |
- } |
-#endif |
- |
-private: |
- const SkPoint* fPts; |
- Cubic fCurvePart; |
- SkPath::Verb fVerb; |
- double fSide; |
- LineParameters fTangent1; |
- const SkTDArray<Span>* fSpans; |
- const Segment* fSegment; |
- int fStart; |
- int fEnd; |
- bool fReversed; |
- mutable bool fUnsortable; // this alone is editable by the less than operator |
-}; |
- |
-// Bounds, unlike Rect, does not consider a line to be empty. |
-struct Bounds : public SkRect { |
- static bool Intersects(const Bounds& a, const Bounds& b) { |
- return a.fLeft <= b.fRight && b.fLeft <= a.fRight && |
- a.fTop <= b.fBottom && b.fTop <= a.fBottom; |
- } |
- |
- void add(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { |
- if (left < fLeft) { |
- fLeft = left; |
- } |
- if (top < fTop) { |
- fTop = top; |
- } |
- if (right > fRight) { |
- fRight = right; |
- } |
- if (bottom > fBottom) { |
- fBottom = bottom; |
- } |
- } |
- |
- void add(const Bounds& toAdd) { |
- add(toAdd.fLeft, toAdd.fTop, toAdd.fRight, toAdd.fBottom); |
- } |
- |
- void add(const SkPoint& pt) { |
- if (pt.fX < fLeft) fLeft = pt.fX; |
- if (pt.fY < fTop) fTop = pt.fY; |
- if (pt.fX > fRight) fRight = pt.fX; |
- if (pt.fY > fBottom) fBottom = pt.fY; |
- } |
- |
- bool isEmpty() { |
- return fLeft > fRight || fTop > fBottom |
- || (fLeft == fRight && fTop == fBottom) |
- || sk_double_isnan(fLeft) || sk_double_isnan(fRight) |
- || sk_double_isnan(fTop) || sk_double_isnan(fBottom); |
- } |
- |
- void setCubicBounds(const SkPoint a[4]) { |
- _Rect dRect; |
- MAKE_CONST_CUBIC(cubic, a); |
- dRect.setBounds(cubic); |
- set((float) dRect.left, (float) dRect.top, (float) dRect.right, |
- (float) dRect.bottom); |
- } |
- |
- void setLineBounds(const SkPoint a[2]) { |
- setPoint(a[0]); |
- add(a[1]); |
- } |
- |
- void setQuadBounds(const SkPoint a[3]) { |
- MAKE_CONST_QUAD(quad, a); |
- _Rect dRect; |
- dRect.setBounds(quad); |
- set((float) dRect.left, (float) dRect.top, (float) dRect.right, |
- (float) dRect.bottom); |
- } |
- |
- void setPoint(const SkPoint& pt) { |
- fLeft = fRight = pt.fX; |
- fTop = fBottom = pt.fY; |
- } |
-}; |
- |
-static void (Bounds::*setSegmentBounds[])(const SkPoint[]) = { |
- NULL, |
- &Bounds::setLineBounds, |
- &Bounds::setQuadBounds, |
- &Bounds::setCubicBounds |
-}; |
- |
-// OPTIMIZATION: does the following also work, and is it any faster? |
-// return outerWinding * innerWinding > 0 |
-// || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) < 0))) |
-static bool useInnerWinding(int outerWinding, int innerWinding) { |
- SkASSERT(outerWinding != SK_MaxS32); |
- SkASSERT(innerWinding != SK_MaxS32); |
- int absOut = abs(outerWinding); |
- int absIn = abs(innerWinding); |
- bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn; |
-#if 0 && DEBUG_WINDING |
- if (outerWinding * innerWinding < 0) { |
- SkDebugf("%s outer=%d inner=%d result=%s\n", __FUNCTION__, |
- outerWinding, innerWinding, result ? "true" : "false"); |
- } |
-#endif |
- return result; |
-} |
- |
-#define F (false) // discard the edge |
-#define T (true) // keep the edge |
- |
-static const bool gUnaryActiveEdge[2][2] = { |
-// from=0 from=1 |
-// to=0,1 to=0,1 |
- {F, T}, {T, F}, |
-}; |
- |
-static const bool gActiveEdge[kShapeOp_Count][2][2][2][2] = { |
-// miFrom=0 miFrom=1 |
-// miTo=0 miTo=1 miTo=0 miTo=1 |
-// suFrom=0 1 suFrom=0 1 suFrom=0 1 suFrom=0 1 |
-// suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 |
- {{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}, // mi - su |
- {{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}, // mi & su |
- {{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}, // mi | su |
- {{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}, // mi ^ su |
-}; |
- |
-#undef F |
-#undef T |
- |
-// wrap path to keep track of whether the contour is initialized and non-empty |
-class PathWrapper { |
-public: |
- PathWrapper(SkPath& path) |
- : fPathPtr(&path) |
- , fCloses(0) |
- , fMoves(0) |
- { |
- init(); |
- } |
- |
- void close() { |
- if (!fHasMove) { |
- return; |
- } |
- bool callClose = isClosed(); |
- lineTo(); |
- if (fEmpty) { |
- return; |
- } |
- if (callClose) { |
- #if DEBUG_PATH_CONSTRUCTION |
- SkDebugf("path.close();\n"); |
- #endif |
- fPathPtr->close(); |
- fCloses++; |
- } |
- init(); |
- } |
- |
- void cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkPoint& pt3) { |
- lineTo(); |
- moveTo(); |
- fDefer[1] = pt3; |
- nudge(); |
- fDefer[0] = fDefer[1]; |
-#if DEBUG_PATH_CONSTRUCTION |
- SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n", |
- pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY); |
-#endif |
- fPathPtr->cubicTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY); |
- fEmpty = false; |
- } |
- |
- void deferredLine(const SkPoint& pt) { |
- if (pt == fDefer[1]) { |
- return; |
- } |
- if (changedSlopes(pt)) { |
- lineTo(); |
- fDefer[0] = fDefer[1]; |
- } |
- fDefer[1] = pt; |
- } |
- |
- void deferredMove(const SkPoint& pt) { |
- fMoved = true; |
- fHasMove = true; |
- fEmpty = true; |
- fDefer[0] = fDefer[1] = pt; |
- } |
- |
- void deferredMoveLine(const SkPoint& pt) { |
- if (!fHasMove) { |
- deferredMove(pt); |
- } |
- deferredLine(pt); |
- } |
- |
- bool hasMove() const { |
- return fHasMove; |
- } |
- |
- void init() { |
- fEmpty = true; |
- fHasMove = false; |
- fMoved = false; |
- } |
- |
- bool isClosed() const { |
- return !fEmpty && fFirstPt == fDefer[1]; |
- } |
- |
- void lineTo() { |
- if (fDefer[0] == fDefer[1]) { |
- return; |
- } |
- moveTo(); |
- nudge(); |
- fEmpty = false; |
-#if DEBUG_PATH_CONSTRUCTION |
- SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1].fX, fDefer[1].fY); |
-#endif |
- fPathPtr->lineTo(fDefer[1].fX, fDefer[1].fY); |
- fDefer[0] = fDefer[1]; |
- } |
- |
- const SkPath* nativePath() const { |
- return fPathPtr; |
- } |
- |
- void nudge() { |
- if (fEmpty || !AlmostEqualUlps(fDefer[1].fX, fFirstPt.fX) |
- || !AlmostEqualUlps(fDefer[1].fY, fFirstPt.fY)) { |
- return; |
- } |
- fDefer[1] = fFirstPt; |
- } |
- |
- void quadTo(const SkPoint& pt1, const SkPoint& pt2) { |
- lineTo(); |
- moveTo(); |
- fDefer[1] = pt2; |
- nudge(); |
- fDefer[0] = fDefer[1]; |
-#if DEBUG_PATH_CONSTRUCTION |
- SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n", |
- pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY); |
-#endif |
- fPathPtr->quadTo(pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY); |
- fEmpty = false; |
- } |
- |
- bool someAssemblyRequired() const { |
- return fCloses < fMoves; |
- } |
- |
-protected: |
- bool changedSlopes(const SkPoint& pt) const { |
- if (fDefer[0] == fDefer[1]) { |
- return false; |
- } |
- SkScalar deferDx = fDefer[1].fX - fDefer[0].fX; |
- SkScalar deferDy = fDefer[1].fY - fDefer[0].fY; |
- SkScalar lineDx = pt.fX - fDefer[1].fX; |
- SkScalar lineDy = pt.fY - fDefer[1].fY; |
- return deferDx * lineDy != deferDy * lineDx; |
- } |
- |
- void moveTo() { |
- if (!fMoved) { |
- return; |
- } |
- fFirstPt = fDefer[0]; |
-#if DEBUG_PATH_CONSTRUCTION |
- SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fDefer[0].fX, fDefer[0].fY); |
-#endif |
- fPathPtr->moveTo(fDefer[0].fX, fDefer[0].fY); |
- fMoved = false; |
- fMoves++; |
- } |
- |
-private: |
- SkPath* fPathPtr; |
- SkPoint fDefer[2]; |
- SkPoint fFirstPt; |
- int fCloses; |
- int fMoves; |
- bool fEmpty; |
- bool fHasMove; |
- bool fMoved; |
-}; |
- |
-class Segment { |
-public: |
- Segment() { |
-#if DEBUG_DUMP |
- fID = ++gSegmentID; |
-#endif |
- } |
- |
- bool operator<(const Segment& rh) const { |
- return fBounds.fTop < rh.fBounds.fTop; |
- } |
- |
- bool activeAngle(int index, int& done, SkTDArray<Angle>& angles) { |
- if (activeAngleInner(index, done, angles)) { |
- return true; |
- } |
- int lesser = index; |
- while (--lesser >= 0 && equalPoints(index, lesser)) { |
- if (activeAngleOther(lesser, done, angles)) { |
- return true; |
- } |
- } |
- lesser = index; |
- do { |
- if (activeAngleOther(index, done, angles)) { |
- return true; |
- } |
- } while (++index < fTs.count() && equalPoints(index, lesser)); |
- return false; |
- } |
- |
- bool activeAngleOther(int index, int& done, SkTDArray<Angle>& angles) { |
- Span* span = &fTs[index]; |
- Segment* other = span->fOther; |
- int oIndex = span->fOtherIndex; |
- return other->activeAngleInner(oIndex, done, angles); |
- } |
- |
- bool activeAngleInner(int index, int& done, SkTDArray<Angle>& angles) { |
- int next = nextExactSpan(index, 1); |
- if (next > 0) { |
- Span& upSpan = fTs[index]; |
- if (upSpan.fWindValue || upSpan.fOppValue) { |
- addAngle(angles, index, next); |
- if (upSpan.fDone || upSpan.fUnsortableEnd) { |
- done++; |
- } else if (upSpan.fWindSum != SK_MinS32) { |
- return true; |
- } |
- } else if (!upSpan.fDone) { |
- upSpan.fDone = true; |
- fDoneSpans++; |
- } |
- } |
- int prev = nextExactSpan(index, -1); |
- // edge leading into junction |
- if (prev >= 0) { |
- Span& downSpan = fTs[prev]; |
- if (downSpan.fWindValue || downSpan.fOppValue) { |
- addAngle(angles, index, prev); |
- if (downSpan.fDone) { |
- done++; |
- } else if (downSpan.fWindSum != SK_MinS32) { |
- return true; |
- } |
- } else if (!downSpan.fDone) { |
- downSpan.fDone = true; |
- fDoneSpans++; |
- } |
- } |
- return false; |
- } |
- |
- SkPoint activeLeftTop(bool onlySortable, int* firstT) const { |
- SkASSERT(!done()); |
- SkPoint topPt = {SK_ScalarMax, SK_ScalarMax}; |
- int count = fTs.count(); |
- // see if either end is not done since we want smaller Y of the pair |
- bool lastDone = true; |
- bool lastUnsortable = false; |
- double lastT = -1; |
- for (int index = 0; index < count; ++index) { |
- const Span& span = fTs[index]; |
- if (onlySortable && (span.fUnsortableStart || lastUnsortable)) { |
- goto next; |
- } |
- if (span.fDone && lastDone) { |
- goto next; |
- } |
- if (approximately_negative(span.fT - lastT)) { |
- goto next; |
- } |
- { |
- const SkPoint& xy = xyAtT(&span); |
- if (topPt.fY > xy.fY || (topPt.fY == xy.fY && topPt.fX > xy.fX)) { |
- topPt = xy; |
- if (firstT) { |
- *firstT = index; |
- } |
- } |
- if (fVerb != SkPath::kLine_Verb && !lastDone) { |
- SkPoint curveTop = (*SegmentTop[fVerb])(fPts, lastT, span.fT); |
- if (topPt.fY > curveTop.fY || (topPt.fY == curveTop.fY |
- && topPt.fX > curveTop.fX)) { |
- topPt = curveTop; |
- if (firstT) { |
- *firstT = index; |
- } |
- } |
- } |
- lastT = span.fT; |
- } |
- next: |
- lastDone = span.fDone; |
- lastUnsortable = span.fUnsortableEnd; |
- } |
- return topPt; |
- } |
- |
- bool activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, ShapeOp op) { |
- int sumMiWinding = updateWinding(endIndex, index); |
- int sumSuWinding = updateOppWinding(endIndex, index); |
- if (fOperand) { |
- SkTSwap<int>(sumMiWinding, sumSuWinding); |
- } |
- int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; |
- return activeOp(xorMiMask, xorSuMask, index, endIndex, op, sumMiWinding, sumSuWinding, |
- maxWinding, sumWinding, oppMaxWinding, oppSumWinding); |
- } |
- |
- bool activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, ShapeOp op, |
- int& sumMiWinding, int& sumSuWinding, |
- int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) { |
- setUpWindings(index, endIndex, sumMiWinding, sumSuWinding, |
- maxWinding, sumWinding, oppMaxWinding, oppSumWinding); |
- bool miFrom; |
- bool miTo; |
- bool suFrom; |
- bool suTo; |
- if (operand()) { |
- miFrom = (oppMaxWinding & xorMiMask) != 0; |
- miTo = (oppSumWinding & xorMiMask) != 0; |
- suFrom = (maxWinding & xorSuMask) != 0; |
- suTo = (sumWinding & xorSuMask) != 0; |
- } else { |
- miFrom = (maxWinding & xorMiMask) != 0; |
- miTo = (sumWinding & xorMiMask) != 0; |
- suFrom = (oppMaxWinding & xorSuMask) != 0; |
- suTo = (oppSumWinding & xorSuMask) != 0; |
- } |
- bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo]; |
-#if DEBUG_ACTIVE_OP |
- SkDebugf("%s op=%s miFrom=%d miTo=%d suFrom=%d suTo=%d result=%d\n", __FUNCTION__, |
- kShapeOpStr[op], miFrom, miTo, suFrom, suTo, result); |
-#endif |
- SkASSERT(result != -1); |
- return result; |
- } |
- |
- bool activeWinding(int index, int endIndex) { |
- int sumWinding = updateWinding(endIndex, index); |
- int maxWinding; |
- return activeWinding(index, endIndex, maxWinding, sumWinding); |
- } |
- |
- bool activeWinding(int index, int endIndex, int& maxWinding, int& sumWinding) { |
- setUpWinding(index, endIndex, maxWinding, sumWinding); |
- bool from = maxWinding != 0; |
- bool to = sumWinding != 0; |
- bool result = gUnaryActiveEdge[from][to]; |
- SkASSERT(result != -1); |
- return result; |
- } |
- |
- void addAngle(SkTDArray<Angle>& angles, int start, int end) const { |
- SkASSERT(start != end); |
- Angle* angle = angles.append(); |
-#if DEBUG_ANGLE |
- if (angles.count() > 1 && !fTs[start].fTiny) { |
- SkPoint angle0Pt, newPt; |
- (*SegmentXYAtT[angles[0].verb()])(angles[0].pts(), |
- (*angles[0].spans())[angles[0].start()].fT, &angle0Pt); |
- (*SegmentXYAtT[fVerb])(fPts, fTs[start].fT, &newPt); |
- SkASSERT(AlmostEqualUlps(angle0Pt.fX, newPt.fX)); |
- SkASSERT(AlmostEqualUlps(angle0Pt.fY, newPt.fY)); |
- } |
-#endif |
- angle->set(fPts, fVerb, this, start, end, fTs); |
- } |
- |
- void addCancelOutsides(double tStart, double oStart, Segment& other, |
- double oEnd) { |
- int tIndex = -1; |
- int tCount = fTs.count(); |
- int oIndex = -1; |
- int oCount = other.fTs.count(); |
- do { |
- ++tIndex; |
- } while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tCount); |
- int tIndexStart = tIndex; |
- do { |
- ++oIndex; |
- } while (!approximately_negative(oStart - other.fTs[oIndex].fT) && oIndex < oCount); |
- int oIndexStart = oIndex; |
- double nextT; |
- do { |
- nextT = fTs[++tIndex].fT; |
- } while (nextT < 1 && approximately_negative(nextT - tStart)); |
- double oNextT; |
- do { |
- oNextT = other.fTs[++oIndex].fT; |
- } while (oNextT < 1 && approximately_negative(oNextT - oStart)); |
- // at this point, spans before and after are at: |
- // fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex] |
- // if tIndexStart == 0, no prior span |
- // if nextT == 1, no following span |
- |
- // advance the span with zero winding |
- // if the following span exists (not past the end, non-zero winding) |
- // connect the two edges |
- if (!fTs[tIndexStart].fWindValue) { |
- if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) { |
- #if DEBUG_CONCIDENT |
- SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
- __FUNCTION__, fID, other.fID, tIndexStart - 1, |
- fTs[tIndexStart].fT, xyAtT(tIndexStart).fX, |
- xyAtT(tIndexStart).fY); |
- #endif |
- addTPair(fTs[tIndexStart].fT, other, other.fTs[oIndex].fT, false, |
- fTs[tIndexStart].fPt); |
- } |
- if (nextT < 1 && fTs[tIndex].fWindValue) { |
- #if DEBUG_CONCIDENT |
- SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
- __FUNCTION__, fID, other.fID, tIndex, |
- fTs[tIndex].fT, xyAtT(tIndex).fX, |
- xyAtT(tIndex).fY); |
- #endif |
- addTPair(fTs[tIndex].fT, other, other.fTs[oIndexStart].fT, false, fTs[tIndex].fPt); |
- } |
- } else { |
- SkASSERT(!other.fTs[oIndexStart].fWindValue); |
- if (oIndexStart > 0 && other.fTs[oIndexStart - 1].fWindValue) { |
- #if DEBUG_CONCIDENT |
- SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
- __FUNCTION__, fID, other.fID, oIndexStart - 1, |
- other.fTs[oIndexStart].fT, other.xyAtT(oIndexStart).fX, |
- other.xyAtT(oIndexStart).fY); |
- other.debugAddTPair(other.fTs[oIndexStart].fT, *this, fTs[tIndex].fT); |
- #endif |
- } |
- if (oNextT < 1 && other.fTs[oIndex].fWindValue) { |
- #if DEBUG_CONCIDENT |
- SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", |
- __FUNCTION__, fID, other.fID, oIndex, |
- other.fTs[oIndex].fT, other.xyAtT(oIndex).fX, |
- other.xyAtT(oIndex).fY); |
- other.debugAddTPair(other.fTs[oIndex].fT, *this, fTs[tIndexStart].fT); |
- #endif |
- } |
- } |
- } |
- |
- void addCoinOutsides(const SkTDArray<double>& outsideTs, Segment& other, |
- double oEnd) { |
- // walk this to outsideTs[0] |
- // walk other to outsideTs[1] |
- // if either is > 0, add a pointer to the other, copying adjacent winding |
- int tIndex = -1; |
- int oIndex = -1; |
- double tStart = outsideTs[0]; |
- double oStart = outsideTs[1]; |
- do { |
- ++tIndex; |
- } while (!approximately_negative(tStart - fTs[tIndex].fT)); |
- SkPoint ptStart = fTs[tIndex].fPt; |
- do { |
- ++oIndex; |
- } while (!approximately_negative(oStart - other.fTs[oIndex].fT)); |
- if (tIndex > 0 || oIndex > 0 || fOperand != other.fOperand) { |
- addTPair(tStart, other, oStart, false, ptStart); |
- } |
- tStart = fTs[tIndex].fT; |
- oStart = other.fTs[oIndex].fT; |
- do { |
- double nextT; |
- do { |
- nextT = fTs[++tIndex].fT; |
- } while (approximately_negative(nextT - tStart)); |
- tStart = nextT; |
- ptStart = fTs[tIndex].fPt; |
- do { |
- nextT = other.fTs[++oIndex].fT; |
- } while (approximately_negative(nextT - oStart)); |
- oStart = nextT; |
- if (tStart == 1 && oStart == 1 && fOperand == other.fOperand) { |
- break; |
- } |
- addTPair(tStart, other, oStart, false, ptStart); |
- } while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oStart)); |
- } |
- |
- void addCubic(const SkPoint pts[4], bool operand, bool evenOdd) { |
- init(pts, SkPath::kCubic_Verb, operand, evenOdd); |
- fBounds.setCubicBounds(pts); |
- } |
- |
- /* SkPoint */ void addCurveTo(int start, int end, PathWrapper& path, bool active) const { |
- SkPoint edge[4]; |
- const SkPoint* ePtr; |
- int lastT = fTs.count() - 1; |
- if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end == 0)) { |
- ePtr = fPts; |
- } else { |
- // OPTIMIZE? if not active, skip remainder and return xy_at_t(end) |
- subDivide(start, end, edge); |
- ePtr = edge; |
- } |
- if (active) { |
- bool reverse = ePtr == fPts && start != 0; |
- if (reverse) { |
- path.deferredMoveLine(ePtr[fVerb]); |
- switch (fVerb) { |
- case SkPath::kLine_Verb: |
- path.deferredLine(ePtr[0]); |
- break; |
- case SkPath::kQuad_Verb: |
- path.quadTo(ePtr[1], ePtr[0]); |
- break; |
- case SkPath::kCubic_Verb: |
- path.cubicTo(ePtr[2], ePtr[1], ePtr[0]); |
- break; |
- default: |
- SkASSERT(0); |
- } |
- // return ePtr[0]; |
- } else { |
- path.deferredMoveLine(ePtr[0]); |
- switch (fVerb) { |
- case SkPath::kLine_Verb: |
- path.deferredLine(ePtr[1]); |
- break; |
- case SkPath::kQuad_Verb: |
- path.quadTo(ePtr[1], ePtr[2]); |
- break; |
- case SkPath::kCubic_Verb: |
- path.cubicTo(ePtr[1], ePtr[2], ePtr[3]); |
- break; |
- default: |
- SkASSERT(0); |
- } |
- } |
- } |
- // return ePtr[fVerb]; |
- } |
- |
- void addLine(const SkPoint pts[2], bool operand, bool evenOdd) { |
- init(pts, SkPath::kLine_Verb, operand, evenOdd); |
- fBounds.set(pts, 2); |
- } |
- |
-#if 0 |
- const SkPoint& addMoveTo(int tIndex, PathWrapper& path, bool active) const { |
- const SkPoint& pt = xyAtT(tIndex); |
- if (active) { |
- path.deferredMove(pt); |
- } |
- return pt; |
- } |
-#endif |
- |
- // add 2 to edge or out of range values to get T extremes |
- void addOtherT(int index, double otherT, int otherIndex) { |
- Span& span = fTs[index]; |
- #if PIN_ADD_T |
- if (precisely_less_than_zero(otherT)) { |
- otherT = 0; |
- } else if (precisely_greater_than_one(otherT)) { |
- otherT = 1; |
- } |
- #endif |
- span.fOtherT = otherT; |
- span.fOtherIndex = otherIndex; |
- } |
- |
- void addQuad(const SkPoint pts[3], bool operand, bool evenOdd) { |
- init(pts, SkPath::kQuad_Verb, operand, evenOdd); |
- fBounds.setQuadBounds(pts); |
- } |
- |
- // Defer all coincident edge processing until |
- // after normal intersections have been computed |
- |
-// no need to be tricky; insert in normal T order |
-// resolve overlapping ts when considering coincidence later |
- |
- // add non-coincident intersection. Resulting edges are sorted in T. |
- int addT(Segment* other, const SkPoint& pt, double& newT) { |
- // FIXME: in the pathological case where there is a ton of intercepts, |
- // binary search? |
- int insertedAt = -1; |
- size_t tCount = fTs.count(); |
- #if PIN_ADD_T |
- // FIXME: only do this pinning here (e.g. this is done also in quad/line intersect) |
- if (precisely_less_than_zero(newT)) { |
- newT = 0; |
- } else if (precisely_greater_than_one(newT)) { |
- newT = 1; |
- } |
- #endif |
- for (size_t index = 0; index < tCount; ++index) { |
- // OPTIMIZATION: if there are three or more identical Ts, then |
- // the fourth and following could be further insertion-sorted so |
- // that all the edges are clockwise or counterclockwise. |
- // This could later limit segment tests to the two adjacent |
- // neighbors, although it doesn't help with determining which |
- // circular direction to go in. |
- if (newT < fTs[index].fT) { |
- insertedAt = index; |
- break; |
- } |
- } |
- Span* span; |
- if (insertedAt >= 0) { |
- span = fTs.insert(insertedAt); |
- } else { |
- insertedAt = tCount; |
- span = fTs.append(); |
- } |
- span->fT = newT; |
- span->fOther = other; |
- span->fPt = pt; |
- span->fWindSum = SK_MinS32; |
- span->fOppSum = SK_MinS32; |
- span->fWindValue = 1; |
- span->fOppValue = 0; |
- span->fTiny = false; |
- span->fLoop = false; |
- if ((span->fDone = newT == 1)) { |
- ++fDoneSpans; |
- } |
- span->fUnsortableStart = false; |
- span->fUnsortableEnd = false; |
- int less = -1; |
- while (&span[less + 1] - fTs.begin() > 0 && xyAtT(&span[less]) == xyAtT(span)) { |
-#if 1 |
- if (span[less].fDone) { |
- break; |
- } |
- double tInterval = newT - span[less].fT; |
- if (precisely_negative(tInterval)) { |
- break; |
- } |
- if (fVerb == SkPath::kCubic_Verb) { |
- double tMid = newT - tInterval / 2; |
- _Point midPt; |
- CubicXYAtT(fPts, tMid, &midPt); |
- if (!midPt.approximatelyEqual(xyAtT(span))) { |
- break; |
- } |
- } |
- span[less].fTiny = true; |
- span[less].fDone = true; |
- if (approximately_negative(newT - span[less].fT)) { |
- if (approximately_greater_than_one(newT)) { |
- span[less].fUnsortableStart = true; |
- span[less - 1].fUnsortableEnd = true; |
- } |
- if (approximately_less_than_zero(span[less].fT)) { |
- span[less + 1].fUnsortableStart = true; |
- span[less].fUnsortableEnd = true; |
- } |
- } |
- ++fDoneSpans; |
-#else |
- double tInterval = newT - span[less].fT; |
- if (precisely_negative(tInterval)) { |
- break; |
- } |
- if (fVerb == SkPath::kCubic_Verb) { |
- double tMid = newT - tInterval / 2; |
- _Point midPt; |
- CubicXYAtT(fPts, tMid, &midPt); |
- if (!midPt.approximatelyEqual(xyAtT(span))) { |
- break; |
- } |
- } |
- SkASSERT(span[less].fDone == span->fDone); |
- if (span[less].fT == 0) { |
- span->fT = newT = 0; |
- } else { |
- setSpanT(less, newT); |
- } |
-#endif |
- --less; |
- } |
- int more = 1; |
- while (fTs.end() - &span[more - 1] > 1 && xyAtT(&span[more]) == xyAtT(span)) { |
-#if 1 |
- if (span[more - 1].fDone) { |
- break; |
- } |
- double tEndInterval = span[more].fT - newT; |
- if (precisely_negative(tEndInterval)) { |
- break; |
- } |
- if (fVerb == SkPath::kCubic_Verb) { |
- double tMid = newT - tEndInterval / 2; |
- _Point midEndPt; |
- CubicXYAtT(fPts, tMid, &midEndPt); |
- if (!midEndPt.approximatelyEqual(xyAtT(span))) { |
- break; |
- } |
- } |
- span[more - 1].fTiny = true; |
- span[more - 1].fDone = true; |
- if (approximately_negative(span[more].fT - newT)) { |
- if (approximately_greater_than_one(span[more].fT)) { |
- span[more + 1].fUnsortableStart = true; |
- span[more].fUnsortableEnd = true; |
- } |
- if (approximately_less_than_zero(newT)) { |
- span[more].fUnsortableStart = true; |
- span[more - 1].fUnsortableEnd = true; |
- } |
- } |
- ++fDoneSpans; |
-#else |
- double tEndInterval = span[more].fT - newT; |
- if (precisely_negative(tEndInterval)) { |
- break; |
- } |
- if (fVerb == SkPath::kCubic_Verb) { |
- double tMid = newT - tEndInterval / 2; |
- _Point midEndPt; |
- CubicXYAtT(fPts, tMid, &midEndPt); |
- if (!midEndPt.approximatelyEqual(xyAtT(span))) { |
- break; |
- } |
- } |
- SkASSERT(span[more - 1].fDone == span[more].fDone); |
- if (newT == 0) { |
- setSpanT(more, 0); |
- } else { |
- span->fT = newT = span[more].fT; |
- } |
-#endif |
- ++more; |
- } |
- return insertedAt; |
- } |
- |
- // set spans from start to end to decrement by one |
- // note this walks other backwards |
- // FIMXE: there's probably an edge case that can be constructed where |
- // two span in one segment are separated by float epsilon on one span but |
- // not the other, if one segment is very small. For this |
- // case the counts asserted below may or may not be enough to separate the |
- // spans. Even if the counts work out, what if the spans aren't correctly |
- // sorted? It feels better in such a case to match the span's other span |
- // pointer since both coincident segments must contain the same spans. |
- void addTCancel(double startT, double endT, Segment& other, |
- double oStartT, double oEndT) { |
- SkASSERT(!approximately_negative(endT - startT)); |
- SkASSERT(!approximately_negative(oEndT - oStartT)); |
- bool binary = fOperand != other.fOperand; |
- int index = 0; |
- while (!approximately_negative(startT - fTs[index].fT)) { |
- ++index; |
- } |
- int oIndex = other.fTs.count(); |
- while (approximately_positive(other.fTs[--oIndex].fT - oEndT)) |
- ; |
- double tRatio = (oEndT - oStartT) / (endT - startT); |
- Span* test = &fTs[index]; |
- Span* oTest = &other.fTs[oIndex]; |
- SkTDArray<double> outsideTs; |
- SkTDArray<double> oOutsideTs; |
- do { |
- bool decrement = test->fWindValue && oTest->fWindValue && !binary; |
- bool track = test->fWindValue || oTest->fWindValue; |
- double testT = test->fT; |
- double oTestT = oTest->fT; |
- Span* span = test; |
- do { |
- if (decrement) { |
- decrementSpan(span); |
- } else if (track && span->fT < 1 && oTestT < 1) { |
- TrackOutside(outsideTs, span->fT, oTestT); |
- } |
- span = &fTs[++index]; |
- } while (approximately_negative(span->fT - testT)); |
- Span* oSpan = oTest; |
- double otherTMatchStart = oEndT - (span->fT - startT) * tRatio; |
- double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio; |
- SkDEBUGCODE(int originalWindValue = oSpan->fWindValue); |
- while (approximately_negative(otherTMatchStart - oSpan->fT) |
- && !approximately_negative(otherTMatchEnd - oSpan->fT)) { |
- #ifdef SK_DEBUG |
- SkASSERT(originalWindValue == oSpan->fWindValue); |
- #endif |
- if (decrement) { |
- other.decrementSpan(oSpan); |
- } else if (track && oSpan->fT < 1 && testT < 1) { |
- TrackOutside(oOutsideTs, oSpan->fT, testT); |
- } |
- if (!oIndex) { |
- break; |
- } |
- oSpan = &other.fTs[--oIndex]; |
- } |
- test = span; |
- oTest = oSpan; |
- } while (!approximately_negative(endT - test->fT)); |
- SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT)); |
- // FIXME: determine if canceled edges need outside ts added |
- if (!done() && outsideTs.count()) { |
- double tStart = outsideTs[0]; |
- double oStart = outsideTs[1]; |
- addCancelOutsides(tStart, oStart, other, oEndT); |
- int count = outsideTs.count(); |
- if (count > 2) { |
- double tStart = outsideTs[count - 2]; |
- double oStart = outsideTs[count - 1]; |
- addCancelOutsides(tStart, oStart, other, oEndT); |
- } |
- } |
- if (!other.done() && oOutsideTs.count()) { |
- double tStart = oOutsideTs[0]; |
- double oStart = oOutsideTs[1]; |
- other.addCancelOutsides(tStart, oStart, *this, endT); |
- } |
- } |
- |
- int addSelfT(Segment* other, const SkPoint& pt, double& newT) { |
- int result = addT(other, pt, newT); |
- Span* span = &fTs[result]; |
- span->fLoop = true; |
- return result; |
- } |
- |
- int addUnsortableT(Segment* other, bool start, const SkPoint& pt, double& newT) { |
- int result = addT(other, pt, newT); |
- Span* span = &fTs[result]; |
- if (start) { |
- if (result > 0) { |
- span[result - 1].fUnsortableEnd = true; |
- } |
- span[result].fUnsortableStart = true; |
- } else { |
- span[result].fUnsortableEnd = true; |
- if (result + 1 < fTs.count()) { |
- span[result + 1].fUnsortableStart = true; |
- } |
- } |
- return result; |
- } |
- |
- int bumpCoincidentThis(const Span* oTest, bool opp, int index, |
- SkTDArray<double>& outsideTs) { |
- int oWindValue = oTest->fWindValue; |
- int oOppValue = oTest->fOppValue; |
- if (opp) { |
- SkTSwap<int>(oWindValue, oOppValue); |
- } |
- Span* const test = &fTs[index]; |
- Span* end = test; |
- const double oStartT = oTest->fT; |
- do { |
- if (bumpSpan(end, oWindValue, oOppValue)) { |
- TrackOutside(outsideTs, end->fT, oStartT); |
- } |
- end = &fTs[++index]; |
- } while (approximately_negative(end->fT - test->fT)); |
- return index; |
- } |
- |
- // because of the order in which coincidences are resolved, this and other |
- // may not have the same intermediate points. Compute the corresponding |
- // intermediate T values (using this as the master, other as the follower) |
- // and walk other conditionally -- hoping that it catches up in the end |
- int bumpCoincidentOther(const Span* test, double oEndT, int& oIndex, |
- SkTDArray<double>& oOutsideTs) { |
- Span* const oTest = &fTs[oIndex]; |
- Span* oEnd = oTest; |
- const double startT = test->fT; |
- const double oStartT = oTest->fT; |
- while (!approximately_negative(oEndT - oEnd->fT) |
- && approximately_negative(oEnd->fT - oStartT)) { |
- zeroSpan(oEnd); |
- TrackOutside(oOutsideTs, oEnd->fT, startT); |
- oEnd = &fTs[++oIndex]; |
- } |
- return oIndex; |
- } |
- |
- // FIXME: need to test this case: |
- // contourA has two segments that are coincident |
- // contourB has two segments that are coincident in the same place |
- // each ends up with +2/0 pairs for winding count |
- // since logic below doesn't transfer count (only increments/decrements) can this be |
- // resolved to +4/0 ? |
- |
- // set spans from start to end to increment the greater by one and decrement |
- // the lesser |
- void addTCoincident(double startT, double endT, Segment& other, double oStartT, double oEndT) { |
- SkASSERT(!approximately_negative(endT - startT)); |
- SkASSERT(!approximately_negative(oEndT - oStartT)); |
- bool opp = fOperand ^ other.fOperand; |
- int index = 0; |
- while (!approximately_negative(startT - fTs[index].fT)) { |
- ++index; |
- } |
- int oIndex = 0; |
- while (!approximately_negative(oStartT - other.fTs[oIndex].fT)) { |
- ++oIndex; |
- } |
- Span* test = &fTs[index]; |
- Span* oTest = &other.fTs[oIndex]; |
- SkTDArray<double> outsideTs; |
- SkTDArray<double> oOutsideTs; |
- do { |
- // if either span has an opposite value and the operands don't match, resolve first |
- // SkASSERT(!test->fDone || !oTest->fDone); |
- if (test->fDone || oTest->fDone) { |
- index = advanceCoincidentThis(oTest, opp, index); |
- oIndex = other.advanceCoincidentOther(test, oEndT, oIndex); |
- } else { |
- index = bumpCoincidentThis(oTest, opp, index, outsideTs); |
- oIndex = other.bumpCoincidentOther(test, oEndT, oIndex, oOutsideTs); |
- } |
- test = &fTs[index]; |
- oTest = &other.fTs[oIndex]; |
- } while (!approximately_negative(endT - test->fT)); |
- SkASSERT(approximately_negative(oTest->fT - oEndT)); |
- SkASSERT(approximately_negative(oEndT - oTest->fT)); |
- if (!done() && outsideTs.count()) { |
- addCoinOutsides(outsideTs, other, oEndT); |
- } |
- if (!other.done() && oOutsideTs.count()) { |
- other.addCoinOutsides(oOutsideTs, *this, endT); |
- } |
- } |
- |
- // FIXME: this doesn't prevent the same span from being added twice |
- // fix in caller, SkASSERT here? |
- void addTPair(double t, Segment& other, double otherT, bool borrowWind, const SkPoint& pt) { |
- int tCount = fTs.count(); |
- for (int tIndex = 0; tIndex < tCount; ++tIndex) { |
- const Span& span = fTs[tIndex]; |
- if (!approximately_negative(span.fT - t)) { |
- break; |
- } |
- if (approximately_negative(span.fT - t) && span.fOther == &other |
- && approximately_equal(span.fOtherT, otherT)) { |
-#if DEBUG_ADD_T_PAIR |
- SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n", |
- __FUNCTION__, fID, t, other.fID, otherT); |
-#endif |
- return; |
- } |
- } |
-#if DEBUG_ADD_T_PAIR |
- SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n", |
- __FUNCTION__, fID, t, other.fID, otherT); |
-#endif |
- int insertedAt = addT(&other, pt, t); |
- int otherInsertedAt = other.addT(this, pt, otherT); |
- addOtherT(insertedAt, otherT, otherInsertedAt); |
- other.addOtherT(otherInsertedAt, t, insertedAt); |
- matchWindingValue(insertedAt, t, borrowWind); |
- other.matchWindingValue(otherInsertedAt, otherT, borrowWind); |
- } |
- |
- void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) const { |
- // add edge leading into junction |
- int min = SkMin32(end, start); |
- if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) { |
- addAngle(angles, end, start); |
- } |
- // add edge leading away from junction |
- int step = SkSign32(end - start); |
- int tIndex = nextExactSpan(end, step); |
- min = SkMin32(end, tIndex); |
- if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0)) { |
- addAngle(angles, end, tIndex); |
- } |
- } |
- |
- int advanceCoincidentThis(const Span* oTest, bool opp, int index) { |
- Span* const test = &fTs[index]; |
- Span* end = test; |
- do { |
- end = &fTs[++index]; |
- } while (approximately_negative(end->fT - test->fT)); |
- return index; |
- } |
- |
- int advanceCoincidentOther(const Span* test, double oEndT, int& oIndex) { |
- Span* const oTest = &fTs[oIndex]; |
- Span* oEnd = oTest; |
- const double oStartT = oTest->fT; |
- while (!approximately_negative(oEndT - oEnd->fT) |
- && approximately_negative(oEnd->fT - oStartT)) { |
- oEnd = &fTs[++oIndex]; |
- } |
- return oIndex; |
- } |
- |
- bool betweenTs(int lesser, double testT, int greater) { |
- if (lesser > greater) { |
- SkTSwap<int>(lesser, greater); |
- } |
- return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT); |
- } |
- |
- const Bounds& bounds() const { |
- return fBounds; |
- } |
- |
- void buildAngles(int index, SkTDArray<Angle>& angles, bool includeOpp) const { |
- double referenceT = fTs[index].fT; |
- int lesser = index; |
- while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == fOperand) |
- && precisely_negative(referenceT - fTs[lesser].fT)) { |
- buildAnglesInner(lesser, angles); |
- } |
- do { |
- buildAnglesInner(index, angles); |
- } while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOperand == fOperand) |
- && precisely_negative(fTs[index].fT - referenceT)); |
- } |
- |
- void buildAnglesInner(int index, SkTDArray<Angle>& angles) const { |
- const Span* span = &fTs[index]; |
- Segment* other = span->fOther; |
- // if there is only one live crossing, and no coincidence, continue |
- // in the same direction |
- // if there is coincidence, the only choice may be to reverse direction |
- // find edge on either side of intersection |
- int oIndex = span->fOtherIndex; |
- // if done == -1, prior span has already been processed |
- int step = 1; |
- int next = other->nextExactSpan(oIndex, step); |
- if (next < 0) { |
- step = -step; |
- next = other->nextExactSpan(oIndex, step); |
- } |
- // add candidate into and away from junction |
- other->addTwoAngles(next, oIndex, angles); |
- } |
- |
- int computeSum(int startIndex, int endIndex, bool binary) { |
- SkTDArray<Angle> angles; |
- addTwoAngles(startIndex, endIndex, angles); |
- buildAngles(endIndex, angles, false); |
- // OPTIMIZATION: check all angles to see if any have computed wind sum |
- // before sorting (early exit if none) |
- SkTDArray<Angle*> sorted; |
- bool sortable = SortAngles(angles, sorted); |
-#if DEBUG_SORT |
- sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); |
-#endif |
- if (!sortable) { |
- return SK_MinS32; |
- } |
- int angleCount = angles.count(); |
- const Angle* angle; |
- const Segment* base; |
- int winding; |
- int oWinding; |
- int firstIndex = 0; |
- do { |
- angle = sorted[firstIndex]; |
- base = angle->segment(); |
- winding = base->windSum(angle); |
- if (winding != SK_MinS32) { |
- oWinding = base->oppSum(angle); |
- break; |
- } |
- if (++firstIndex == angleCount) { |
- return SK_MinS32; |
- } |
- } while (true); |
- // turn winding into contourWinding |
- int spanWinding = base->spanSign(angle); |
- bool inner = useInnerWinding(winding + spanWinding, winding); |
- #if DEBUG_WINDING |
- SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __FUNCTION__, |
- spanWinding, winding, angle->sign(), inner, |
- inner ? winding + spanWinding : winding); |
- #endif |
- if (inner) { |
- winding += spanWinding; |
- } |
- #if DEBUG_SORT |
- base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding); |
- #endif |
- int nextIndex = firstIndex + 1; |
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
- winding -= base->spanSign(angle); |
- oWinding -= base->oppSign(angle); |
- do { |
- if (nextIndex == angleCount) { |
- nextIndex = 0; |
- } |
- angle = sorted[nextIndex]; |
- Segment* segment = angle->segment(); |
- bool opp = base->fOperand ^ segment->fOperand; |
- int maxWinding, oMaxWinding; |
- int spanSign = segment->spanSign(angle); |
- int oppoSign = segment->oppSign(angle); |
- if (opp) { |
- oMaxWinding = oWinding; |
- oWinding -= spanSign; |
- maxWinding = winding; |
- if (oppoSign) { |
- winding -= oppoSign; |
- } |
- } else { |
- maxWinding = winding; |
- winding -= spanSign; |
- oMaxWinding = oWinding; |
- if (oppoSign) { |
- oWinding -= oppoSign; |
- } |
- } |
- if (segment->windSum(angle) == SK_MinS32) { |
- if (opp) { |
- if (useInnerWinding(oMaxWinding, oWinding)) { |
- oMaxWinding = oWinding; |
- } |
- if (oppoSign && useInnerWinding(maxWinding, winding)) { |
- maxWinding = winding; |
- } |
- (void) segment->markAndChaseWinding(angle, oMaxWinding, maxWinding); |
- } else { |
- if (useInnerWinding(maxWinding, winding)) { |
- maxWinding = winding; |
- } |
- if (oppoSign && useInnerWinding(oMaxWinding, oWinding)) { |
- oMaxWinding = oWinding; |
- } |
- (void) segment->markAndChaseWinding(angle, maxWinding, |
- binary ? oMaxWinding : 0); |
- } |
- } |
- } while (++nextIndex != lastIndex); |
- int minIndex = SkMin32(startIndex, endIndex); |
- return windSum(minIndex); |
- } |
- |
- int crossedSpanY(const SkPoint& basePt, SkScalar& bestY, double& hitT, bool& hitSomething, |
- double mid, bool opp, bool current) const { |
- SkScalar bottom = fBounds.fBottom; |
- int bestTIndex = -1; |
- if (bottom <= bestY) { |
- return bestTIndex; |
- } |
- SkScalar top = fBounds.fTop; |
- if (top >= basePt.fY) { |
- return bestTIndex; |
- } |
- if (fBounds.fLeft > basePt.fX) { |
- return bestTIndex; |
- } |
- if (fBounds.fRight < basePt.fX) { |
- return bestTIndex; |
- } |
- if (fBounds.fLeft == fBounds.fRight) { |
- // if vertical, and directly above test point, wait for another one |
- return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestTIndex; |
- } |
- // intersect ray starting at basePt with edge |
- Intersections intersections; |
- // OPTIMIZE: use specialty function that intersects ray with curve, |
- // returning t values only for curve (we don't care about t on ray) |
- int pts = (*VSegmentIntersect[fVerb])(fPts, top, bottom, basePt.fX, false, intersections); |
- if (pts == 0 || (current && pts == 1)) { |
- return bestTIndex; |
- } |
- if (current) { |
- SkASSERT(pts > 1); |
- int closestIdx = 0; |
- double closest = fabs(intersections.fT[0][0] - mid); |
- for (int idx = 1; idx < pts; ++idx) { |
- double test = fabs(intersections.fT[0][idx] - mid); |
- if (closest > test) { |
- closestIdx = idx; |
- closest = test; |
- } |
- } |
- if (closestIdx < pts - 1) { |
- intersections.fT[0][closestIdx] = intersections.fT[0][pts - 1]; |
- } |
- --pts; |
- } |
- double bestT = -1; |
- for (int index = 0; index < pts; ++index) { |
- double foundT = intersections.fT[0][index]; |
- if (approximately_less_than_zero(foundT) |
- || approximately_greater_than_one(foundT)) { |
- continue; |
- } |
- SkScalar testY = (*SegmentYAtT[fVerb])(fPts, foundT); |
- if (approximately_negative(testY - bestY) |
- || approximately_negative(basePt.fY - testY)) { |
- continue; |
- } |
- if (pts > 1 && fVerb == SkPath::kLine_Verb) { |
- return SK_MinS32; // if the intersection is edge on, wait for another one |
- } |
- if (fVerb > SkPath::kLine_Verb) { |
- SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, foundT); |
- if (approximately_zero(dx)) { |
- return SK_MinS32; // hit vertical, wait for another one |
- } |
- } |
- bestY = testY; |
- bestT = foundT; |
- } |
- if (bestT < 0) { |
- return bestTIndex; |
- } |
- SkASSERT(bestT >= 0); |
- SkASSERT(bestT <= 1); |
- int start; |
- int end = 0; |
- do { |
- start = end; |
- end = nextSpan(start, 1); |
- } while (fTs[end].fT < bestT); |
- // FIXME: see next candidate for a better pattern to find the next start/end pair |
- while (start + 1 < end && fTs[start].fDone) { |
- ++start; |
- } |
- if (!isCanceled(start)) { |
- hitT = bestT; |
- bestTIndex = start; |
- hitSomething = true; |
- } |
- return bestTIndex; |
- } |
- |
- void decrementSpan(Span* span) { |
- SkASSERT(span->fWindValue > 0); |
- if (--(span->fWindValue) == 0) { |
- if (!span->fOppValue && !span->fDone) { |
- span->fDone = true; |
- ++fDoneSpans; |
- } |
- } |
- } |
- |
- bool bumpSpan(Span* span, int windDelta, int oppDelta) { |
- SkASSERT(!span->fDone); |
- span->fWindValue += windDelta; |
- SkASSERT(span->fWindValue >= 0); |
- span->fOppValue += oppDelta; |
- SkASSERT(span->fOppValue >= 0); |
- if (fXor) { |
- span->fWindValue &= 1; |
- } |
- if (fOppXor) { |
- span->fOppValue &= 1; |
- } |
- if (!span->fWindValue && !span->fOppValue) { |
- span->fDone = true; |
- ++fDoneSpans; |
- return true; |
- } |
- return false; |
- } |
- |
- // OPTIMIZE |
- // when the edges are initially walked, they don't automatically get the prior and next |
- // edges assigned to positions t=0 and t=1. Doing that would remove the need for this check, |
- // and would additionally remove the need for similar checks in condition edges. It would |
- // also allow intersection code to assume end of segment intersections (maybe?) |
- bool complete() const { |
- int count = fTs.count(); |
- return count > 1 && fTs[0].fT == 0 && fTs[--count].fT == 1; |
- } |
- |
- bool done() const { |
- SkASSERT(fDoneSpans <= fTs.count()); |
- return fDoneSpans == fTs.count(); |
- } |
- |
- bool done(int min) const { |
- return fTs[min].fDone; |
- } |
- |
- bool done(const Angle* angle) const { |
- return done(SkMin32(angle->start(), angle->end())); |
- } |
- |
- SkVector dxdy(int index) const { |
- return (*SegmentDXDYAtT[fVerb])(fPts, fTs[index].fT); |
- } |
- |
- SkScalar dy(int index) const { |
- return (*SegmentDYAtT[fVerb])(fPts, fTs[index].fT); |
- } |
- |
- bool equalPoints(int greaterTIndex, int lesserTIndex) { |
- SkASSERT(greaterTIndex >= lesserTIndex); |
- double greaterT = fTs[greaterTIndex].fT; |
- double lesserT = fTs[lesserTIndex].fT; |
- if (greaterT == lesserT) { |
- return true; |
- } |
- if (!approximately_negative(greaterT - lesserT)) { |
- return false; |
- } |
- return xyAtT(greaterTIndex) == xyAtT(lesserTIndex); |
- } |
- |
- /* |
- The M and S variable name parts stand for the operators. |
- Mi stands for Minuend (see wiki subtraction, analogous to difference) |
- Su stands for Subtrahend |
- The Opp variable name part designates that the value is for the Opposite operator. |
- Opposite values result from combining coincident spans. |
- */ |
- |
- Segment* findNextOp(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd, |
- bool& unsortable, ShapeOp op, const int xorMiMask, const int xorSuMask) { |
- const int startIndex = nextStart; |
- const int endIndex = nextEnd; |
- SkASSERT(startIndex != endIndex); |
- const int count = fTs.count(); |
- SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); |
- const int step = SkSign32(endIndex - startIndex); |
- const int end = nextExactSpan(startIndex, step); |
- SkASSERT(end >= 0); |
- Span* endSpan = &fTs[end]; |
- Segment* other; |
- if (isSimple(end)) { |
- // mark the smaller of startIndex, endIndex done, and all adjacent |
- // spans with the same T value (but not 'other' spans) |
- #if DEBUG_WINDING |
- SkDebugf("%s simple\n", __FUNCTION__); |
- #endif |
- int min = SkMin32(startIndex, endIndex); |
- if (fTs[min].fDone) { |
- return NULL; |
- } |
- markDoneBinary(min); |
- other = endSpan->fOther; |
- nextStart = endSpan->fOtherIndex; |
- double startT = other->fTs[nextStart].fT; |
- nextEnd = nextStart; |
- do { |
- nextEnd += step; |
- } |
- while (precisely_zero(startT - other->fTs[nextEnd].fT)); |
- SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); |
- return other; |
- } |
- // more than one viable candidate -- measure angles to find best |
- SkTDArray<Angle> angles; |
- SkASSERT(startIndex - endIndex != 0); |
- SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
- addTwoAngles(startIndex, end, angles); |
- buildAngles(end, angles, true); |
- SkTDArray<Angle*> sorted; |
- bool sortable = SortAngles(angles, sorted); |
- int angleCount = angles.count(); |
- int firstIndex = findStartingEdge(sorted, startIndex, end); |
- SkASSERT(firstIndex >= 0); |
- #if DEBUG_SORT |
- debugShowSort(__FUNCTION__, sorted, firstIndex); |
- #endif |
- if (!sortable) { |
- unsortable = true; |
- return NULL; |
- } |
- SkASSERT(sorted[firstIndex]->segment() == this); |
- #if DEBUG_WINDING |
- SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, |
- sorted[firstIndex]->sign()); |
- #endif |
- int sumMiWinding = updateWinding(endIndex, startIndex); |
- int sumSuWinding = updateOppWinding(endIndex, startIndex); |
- if (operand()) { |
- SkTSwap<int>(sumMiWinding, sumSuWinding); |
- } |
- int nextIndex = firstIndex + 1; |
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
- const Angle* foundAngle = NULL; |
- bool foundDone = false; |
- // iterate through the angle, and compute everyone's winding |
- Segment* nextSegment; |
- int activeCount = 0; |
- do { |
- SkASSERT(nextIndex != firstIndex); |
- if (nextIndex == angleCount) { |
- nextIndex = 0; |
- } |
- const Angle* nextAngle = sorted[nextIndex]; |
- nextSegment = nextAngle->segment(); |
- int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; |
- bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextAngle->start(), |
- nextAngle->end(), op, sumMiWinding, sumSuWinding, |
- maxWinding, sumWinding, oppMaxWinding, oppSumWinding); |
- if (activeAngle) { |
- ++activeCount; |
- if (!foundAngle || (foundDone && activeCount & 1)) { |
- if (nextSegment->tiny(nextAngle)) { |
- unsortable = true; |
- return NULL; |
- } |
- foundAngle = nextAngle; |
- foundDone = nextSegment->done(nextAngle) && !nextSegment->tiny(nextAngle); |
- } |
- } |
- if (nextSegment->done()) { |
- continue; |
- } |
- if (nextSegment->windSum(nextAngle) != SK_MinS32) { |
- continue; |
- } |
- Span* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWinding, |
- oppSumWinding, activeAngle, nextAngle); |
- if (last) { |
- *chase.append() = last; |
-#if DEBUG_WINDING |
- SkDebugf("%s chase.append id=%d\n", __FUNCTION__, |
- last->fOther->fTs[last->fOtherIndex].fOther->debugID()); |
-#endif |
- } |
- } while (++nextIndex != lastIndex); |
- markDoneBinary(SkMin32(startIndex, endIndex)); |
- if (!foundAngle) { |
- return NULL; |
- } |
- nextStart = foundAngle->start(); |
- nextEnd = foundAngle->end(); |
- nextSegment = foundAngle->segment(); |
- |
- #if DEBUG_WINDING |
- SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
- __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); |
- #endif |
- return nextSegment; |
- } |
- |
- Segment* findNextWinding(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd, |
- bool& unsortable) { |
- const int startIndex = nextStart; |
- const int endIndex = nextEnd; |
- SkASSERT(startIndex != endIndex); |
- const int count = fTs.count(); |
- SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0); |
- const int step = SkSign32(endIndex - startIndex); |
- const int end = nextExactSpan(startIndex, step); |
- SkASSERT(end >= 0); |
- Span* endSpan = &fTs[end]; |
- Segment* other; |
- if (isSimple(end)) { |
- // mark the smaller of startIndex, endIndex done, and all adjacent |
- // spans with the same T value (but not 'other' spans) |
- #if DEBUG_WINDING |
- SkDebugf("%s simple\n", __FUNCTION__); |
- #endif |
- int min = SkMin32(startIndex, endIndex); |
- if (fTs[min].fDone) { |
- return NULL; |
- } |
- markDoneUnary(min); |
- other = endSpan->fOther; |
- nextStart = endSpan->fOtherIndex; |
- double startT = other->fTs[nextStart].fT; |
- nextEnd = nextStart; |
- do { |
- nextEnd += step; |
- } |
- while (precisely_zero(startT - other->fTs[nextEnd].fT)); |
- SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); |
- return other; |
- } |
- // more than one viable candidate -- measure angles to find best |
- SkTDArray<Angle> angles; |
- SkASSERT(startIndex - endIndex != 0); |
- SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
- addTwoAngles(startIndex, end, angles); |
- buildAngles(end, angles, true); |
- SkTDArray<Angle*> sorted; |
- bool sortable = SortAngles(angles, sorted); |
- int angleCount = angles.count(); |
- int firstIndex = findStartingEdge(sorted, startIndex, end); |
- SkASSERT(firstIndex >= 0); |
- #if DEBUG_SORT |
- debugShowSort(__FUNCTION__, sorted, firstIndex); |
- #endif |
- if (!sortable) { |
- unsortable = true; |
- return NULL; |
- } |
- SkASSERT(sorted[firstIndex]->segment() == this); |
- #if DEBUG_WINDING |
- SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, |
- sorted[firstIndex]->sign()); |
- #endif |
- int sumWinding = updateWinding(endIndex, startIndex); |
- int nextIndex = firstIndex + 1; |
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
- const Angle* foundAngle = NULL; |
- bool foundDone = false; |
- // iterate through the angle, and compute everyone's winding |
- Segment* nextSegment; |
- int activeCount = 0; |
- do { |
- SkASSERT(nextIndex != firstIndex); |
- if (nextIndex == angleCount) { |
- nextIndex = 0; |
- } |
- const Angle* nextAngle = sorted[nextIndex]; |
- nextSegment = nextAngle->segment(); |
- int maxWinding; |
- bool activeAngle = nextSegment->activeWinding(nextAngle->start(), nextAngle->end(), |
- maxWinding, sumWinding); |
- if (activeAngle) { |
- ++activeCount; |
- if (!foundAngle || (foundDone && activeCount & 1)) { |
- if (nextSegment->tiny(nextAngle)) { |
- unsortable = true; |
- return NULL; |
- } |
- foundAngle = nextAngle; |
- foundDone = nextSegment->done(nextAngle); |
- } |
- } |
- if (nextSegment->done()) { |
- continue; |
- } |
- if (nextSegment->windSum(nextAngle) != SK_MinS32) { |
- continue; |
- } |
- Span* last = nextSegment->markAngle(maxWinding, sumWinding, activeAngle, nextAngle); |
- if (last) { |
- *chase.append() = last; |
-#if DEBUG_WINDING |
- SkDebugf("%s chase.append id=%d\n", __FUNCTION__, |
- last->fOther->fTs[last->fOtherIndex].fOther->debugID()); |
-#endif |
- } |
- } while (++nextIndex != lastIndex); |
- markDoneUnary(SkMin32(startIndex, endIndex)); |
- if (!foundAngle) { |
- return NULL; |
- } |
- nextStart = foundAngle->start(); |
- nextEnd = foundAngle->end(); |
- nextSegment = foundAngle->segment(); |
- #if DEBUG_WINDING |
- SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
- __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); |
- #endif |
- return nextSegment; |
- } |
- |
- Segment* findNextXor(int& nextStart, int& nextEnd, bool& unsortable) { |
- const int startIndex = nextStart; |
- const int endIndex = nextEnd; |
- SkASSERT(startIndex != endIndex); |
- int count = fTs.count(); |
- SkASSERT(startIndex < endIndex ? startIndex < count - 1 |
- : startIndex > 0); |
- int step = SkSign32(endIndex - startIndex); |
- int end = nextExactSpan(startIndex, step); |
- SkASSERT(end >= 0); |
- Span* endSpan = &fTs[end]; |
- Segment* other; |
- if (isSimple(end)) { |
- #if DEBUG_WINDING |
- SkDebugf("%s simple\n", __FUNCTION__); |
- #endif |
- int min = SkMin32(startIndex, endIndex); |
- if (fTs[min].fDone) { |
- return NULL; |
- } |
- markDone(min, 1); |
- other = endSpan->fOther; |
- nextStart = endSpan->fOtherIndex; |
- double startT = other->fTs[nextStart].fT; |
- #if 01 // FIXME: I don't know why the logic here is difference from the winding case |
- SkDEBUGCODE(bool firstLoop = true;) |
- if ((approximately_less_than_zero(startT) && step < 0) |
- || (approximately_greater_than_one(startT) && step > 0)) { |
- step = -step; |
- SkDEBUGCODE(firstLoop = false;) |
- } |
- do { |
- #endif |
- nextEnd = nextStart; |
- do { |
- nextEnd += step; |
- } |
- while (precisely_zero(startT - other->fTs[nextEnd].fT)); |
- #if 01 |
- if (other->fTs[SkMin32(nextStart, nextEnd)].fWindValue) { |
- break; |
- } |
- #ifdef SK_DEBUG |
- SkASSERT(firstLoop); |
- #endif |
- SkDEBUGCODE(firstLoop = false;) |
- step = -step; |
- } while (true); |
- #endif |
- SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); |
- return other; |
- } |
- SkTDArray<Angle> angles; |
- SkASSERT(startIndex - endIndex != 0); |
- SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); |
- addTwoAngles(startIndex, end, angles); |
- buildAngles(end, angles, false); |
- SkTDArray<Angle*> sorted; |
- bool sortable = SortAngles(angles, sorted); |
- if (!sortable) { |
- unsortable = true; |
- #if DEBUG_SORT |
- debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIndex, end), 0, 0); |
- #endif |
- return NULL; |
- } |
- int angleCount = angles.count(); |
- int firstIndex = findStartingEdge(sorted, startIndex, end); |
- SkASSERT(firstIndex >= 0); |
- #if DEBUG_SORT |
- debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0); |
- #endif |
- SkASSERT(sorted[firstIndex]->segment() == this); |
- int nextIndex = firstIndex + 1; |
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
- const Angle* foundAngle = NULL; |
- bool foundDone = false; |
- Segment* nextSegment; |
- int activeCount = 0; |
- do { |
- SkASSERT(nextIndex != firstIndex); |
- if (nextIndex == angleCount) { |
- nextIndex = 0; |
- } |
- const Angle* nextAngle = sorted[nextIndex]; |
- nextSegment = nextAngle->segment(); |
- ++activeCount; |
- if (!foundAngle || (foundDone && activeCount & 1)) { |
- if (nextSegment->tiny(nextAngle)) { |
- unsortable = true; |
- return NULL; |
- } |
- foundAngle = nextAngle; |
- foundDone = nextSegment->done(nextAngle); |
- } |
- if (nextSegment->done()) { |
- continue; |
- } |
- } while (++nextIndex != lastIndex); |
- markDone(SkMin32(startIndex, endIndex), 1); |
- if (!foundAngle) { |
- return NULL; |
- } |
- nextStart = foundAngle->start(); |
- nextEnd = foundAngle->end(); |
- nextSegment = foundAngle->segment(); |
- #if DEBUG_WINDING |
- SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", |
- __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd); |
- #endif |
- return nextSegment; |
- } |
- |
- int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) { |
- int angleCount = sorted.count(); |
- int firstIndex = -1; |
- for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
- const Angle* angle = sorted[angleIndex]; |
- if (angle->segment() == this && angle->start() == end && |
- angle->end() == start) { |
- firstIndex = angleIndex; |
- break; |
- } |
- } |
- return firstIndex; |
- } |
- |
- // FIXME: this is tricky code; needs its own unit test |
- // note that fOtherIndex isn't computed yet, so it can't be used here |
- void findTooCloseToCall() { |
- int count = fTs.count(); |
- if (count < 3) { // require t=0, x, 1 at minimum |
- return; |
- } |
- int matchIndex = 0; |
- int moCount; |
- Span* match; |
- Segment* mOther; |
- do { |
- match = &fTs[matchIndex]; |
- mOther = match->fOther; |
- // FIXME: allow quads, cubics to be near coincident? |
- if (mOther->fVerb == SkPath::kLine_Verb) { |
- moCount = mOther->fTs.count(); |
- if (moCount >= 3) { |
- break; |
- } |
- } |
- if (++matchIndex >= count) { |
- return; |
- } |
- } while (true); // require t=0, x, 1 at minimum |
- // OPTIMIZATION: defer matchPt until qualifying toCount is found? |
- const SkPoint* matchPt = &xyAtT(match); |
- // look for a pair of nearby T values that map to the same (x,y) value |
- // if found, see if the pair of other segments share a common point. If |
- // so, the span from here to there is coincident. |
- for (int index = matchIndex + 1; index < count; ++index) { |
- Span* test = &fTs[index]; |
- if (test->fDone) { |
- continue; |
- } |
- Segment* tOther = test->fOther; |
- if (tOther->fVerb != SkPath::kLine_Verb) { |
- continue; // FIXME: allow quads, cubics to be near coincident? |
- } |
- int toCount = tOther->fTs.count(); |
- if (toCount < 3) { // require t=0, x, 1 at minimum |
- continue; |
- } |
- const SkPoint* testPt = &xyAtT(test); |
- if (*matchPt != *testPt) { |
- matchIndex = index; |
- moCount = toCount; |
- match = test; |
- mOther = tOther; |
- matchPt = testPt; |
- continue; |
- } |
- int moStart = -1; |
- int moEnd = -1; |
- double moStartT, moEndT; |
- for (int moIndex = 0; moIndex < moCount; ++moIndex) { |
- Span& moSpan = mOther->fTs[moIndex]; |
- if (moSpan.fDone) { |
- continue; |
- } |
- if (moSpan.fOther == this) { |
- if (moSpan.fOtherT == match->fT) { |
- moStart = moIndex; |
- moStartT = moSpan.fT; |
- } |
- continue; |
- } |
- if (moSpan.fOther == tOther) { |
- if (tOther->windValueAt(moSpan.fOtherT) == 0) { |
- moStart = -1; |
- break; |
- } |
- SkASSERT(moEnd == -1); |
- moEnd = moIndex; |
- moEndT = moSpan.fT; |
- } |
- } |
- if (moStart < 0 || moEnd < 0) { |
- continue; |
- } |
- // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test |
- if (approximately_equal(moStartT, moEndT)) { |
- continue; |
- } |
- int toStart = -1; |
- int toEnd = -1; |
- double toStartT, toEndT; |
- for (int toIndex = 0; toIndex < toCount; ++toIndex) { |
- Span& toSpan = tOther->fTs[toIndex]; |
- if (toSpan.fDone) { |
- continue; |
- } |
- if (toSpan.fOther == this) { |
- if (toSpan.fOtherT == test->fT) { |
- toStart = toIndex; |
- toStartT = toSpan.fT; |
- } |
- continue; |
- } |
- if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) { |
- if (mOther->windValueAt(toSpan.fOtherT) == 0) { |
- moStart = -1; |
- break; |
- } |
- SkASSERT(toEnd == -1); |
- toEnd = toIndex; |
- toEndT = toSpan.fT; |
- } |
- } |
- // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test |
- if (toStart <= 0 || toEnd <= 0) { |
- continue; |
- } |
- if (approximately_equal(toStartT, toEndT)) { |
- continue; |
- } |
- // test to see if the segment between there and here is linear |
- if (!mOther->isLinear(moStart, moEnd) |
- || !tOther->isLinear(toStart, toEnd)) { |
- continue; |
- } |
- bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1; |
- if (flipped) { |
- mOther->addTCancel(moStartT, moEndT, *tOther, toEndT, toStartT); |
- } else { |
- mOther->addTCoincident(moStartT, moEndT, *tOther, toStartT, toEndT); |
- } |
- } |
- } |
- |
- // FIXME: either: |
- // a) mark spans with either end unsortable as done, or |
- // b) rewrite findTop / findTopSegment / findTopContour to iterate further |
- // when encountering an unsortable span |
- |
- // OPTIMIZATION : for a pair of lines, can we compute points at T (cached) |
- // and use more concise logic like the old edge walker code? |
- // FIXME: this needs to deal with coincident edges |
- Segment* findTop(int& tIndex, int& endIndex, bool& unsortable, bool onlySortable) { |
- // iterate through T intersections and return topmost |
- // topmost tangent from y-min to first pt is closer to horizontal |
- SkASSERT(!done()); |
- int firstT = -1; |
- /* SkPoint topPt = */ activeLeftTop(onlySortable, &firstT); |
- if (firstT < 0) { |
- unsortable = true; |
- firstT = 0; |
- while (fTs[firstT].fDone) { |
- SkASSERT(firstT < fTs.count()); |
- ++firstT; |
- } |
- tIndex = firstT; |
- endIndex = nextExactSpan(firstT, 1); |
- return this; |
- } |
- // sort the edges to find the leftmost |
- int step = 1; |
- int end = nextSpan(firstT, step); |
- if (end == -1) { |
- step = -1; |
- end = nextSpan(firstT, step); |
- SkASSERT(end != -1); |
- } |
- // if the topmost T is not on end, or is three-way or more, find left |
- // look for left-ness from tLeft to firstT (matching y of other) |
- SkTDArray<Angle> angles; |
- SkASSERT(firstT - end != 0); |
- addTwoAngles(end, firstT, angles); |
- buildAngles(firstT, angles, true); |
- SkTDArray<Angle*> sorted; |
- bool sortable = SortAngles(angles, sorted); |
- int first = SK_MaxS32; |
- SkScalar top = SK_ScalarMax; |
- int count = sorted.count(); |
- for (int index = 0; index < count; ++index) { |
- const Angle* angle = sorted[index]; |
- Segment* next = angle->segment(); |
- Bounds bounds; |
- next->subDivideBounds(angle->end(), angle->start(), bounds); |
- if (approximately_greater(top, bounds.fTop)) { |
- top = bounds.fTop; |
- first = index; |
- } |
- } |
- SkASSERT(first < SK_MaxS32); |
- #if DEBUG_SORT // || DEBUG_SWAP_TOP |
- sorted[first]->segment()->debugShowSort(__FUNCTION__, sorted, first, 0, 0); |
- #endif |
- if (onlySortable && !sortable) { |
- unsortable = true; |
- return NULL; |
- } |
- // skip edges that have already been processed |
- firstT = first - 1; |
- Segment* leftSegment; |
- do { |
- if (++firstT == count) { |
- firstT = 0; |
- } |
- const Angle* angle = sorted[firstT]; |
- SkASSERT(!onlySortable || !angle->unsortable()); |
- leftSegment = angle->segment(); |
- tIndex = angle->end(); |
- endIndex = angle->start(); |
- } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone); |
- if (leftSegment->verb() >= SkPath::kQuad_Verb) { |
- if (!leftSegment->clockwise(tIndex, endIndex)) { |
- bool swap = leftSegment->verb() == SkPath::kQuad_Verb |
- || (!leftSegment->monotonic_in_y(tIndex, endIndex) |
- && !leftSegment->serpentine(tIndex, endIndex)); |
- #if DEBUG_SWAP_TOP |
- SkDebugf("%s swap=%d serpentine=%d controls_contained_by_ends=%d\n", __FUNCTION__, |
- swap, |
- leftSegment->serpentine(tIndex, endIndex), |
- leftSegment->controls_contained_by_ends(tIndex, endIndex), |
- leftSegment->monotonic_in_y(tIndex, endIndex)); |
- #endif |
- if (swap) { |
- // FIXME: I doubt it makes sense to (necessarily) swap if the edge was not the first |
- // sorted but merely the first not already processed (i.e., not done) |
- SkTSwap(tIndex, endIndex); |
- } |
- } |
- } |
- SkASSERT(!leftSegment->fTs[SkMin32(tIndex, endIndex)].fTiny); |
- return leftSegment; |
- } |
- |
- // FIXME: not crazy about this |
- // when the intersections are performed, the other index is into an |
- // incomplete array. As the array grows, the indices become incorrect |
- // while the following fixes the indices up again, it isn't smart about |
- // skipping segments whose indices are already correct |
- // assuming we leave the code that wrote the index in the first place |
- void fixOtherTIndex() { |
- int iCount = fTs.count(); |
- for (int i = 0; i < iCount; ++i) { |
- Span& iSpan = fTs[i]; |
- double oT = iSpan.fOtherT; |
- Segment* other = iSpan.fOther; |
- int oCount = other->fTs.count(); |
- for (int o = 0; o < oCount; ++o) { |
- Span& oSpan = other->fTs[o]; |
- if (oT == oSpan.fT && this == oSpan.fOther && oSpan.fOtherT == iSpan.fT) { |
- iSpan.fOtherIndex = o; |
- break; |
- } |
- } |
- } |
- } |
- |
- void init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd) { |
- fDoneSpans = 0; |
- fOperand = operand; |
- fXor = evenOdd; |
- fPts = pts; |
- fVerb = verb; |
- } |
- |
- void initWinding(int start, int end) { |
- int local = spanSign(start, end); |
- int oppLocal = oppSign(start, end); |
- (void) markAndChaseWinding(start, end, local, oppLocal); |
- // OPTIMIZATION: the reverse mark and chase could skip the first marking |
- (void) markAndChaseWinding(end, start, local, oppLocal); |
- } |
- |
- void initWinding(int start, int end, int winding, int oppWinding) { |
- int local = spanSign(start, end); |
- if (local * winding >= 0) { |
- winding += local; |
- } |
- int oppLocal = oppSign(start, end); |
- if (oppLocal * oppWinding >= 0) { |
- oppWinding += oppLocal; |
- } |
- (void) markAndChaseWinding(start, end, winding, oppWinding); |
- } |
- |
-/* |
-when we start with a vertical intersect, we try to use the dx to determine if the edge is to |
-the left or the right of vertical. This determines if we need to add the span's |
-sign or not. However, this isn't enough. |
-If the supplied sign (winding) is zero, then we didn't hit another vertical span, so dx is needed. |
-If there was a winding, then it may or may not need adjusting. If the span the winding was borrowed |
-from has the same x direction as this span, the winding should change. If the dx is opposite, then |
-the same winding is shared by both. |
-*/ |
- void initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, int oppWind, |
- SkScalar hitOppDx) { |
- SkASSERT(hitDx || !winding); |
- SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, tHit); |
- SkASSERT(dx); |
- int windVal = windValue(SkMin32(start, end)); |
- #if DEBUG_WINDING_AT_T |
- SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, winding, |
- hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal); |
- #endif |
- if (!winding) { |
- winding = dx < 0 ? windVal : -windVal; |
- } else if (winding * dx < 0) { |
- int sideWind = winding + (dx < 0 ? windVal : -windVal); |
- if (abs(winding) < abs(sideWind)) { |
- winding = sideWind; |
- } |
- } |
- #if DEBUG_WINDING_AT_T |
- SkDebugf(" winding=%d\n", winding); |
- #endif |
- int oppLocal = oppSign(start, end); |
- SkASSERT(hitOppDx || !oppWind || !oppLocal); |
- int oppWindVal = oppValue(SkMin32(start, end)); |
- if (!oppWind) { |
- oppWind = dx < 0 ? oppWindVal : -oppWindVal; |
- } else if (hitOppDx * dx >= 0) { |
- int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal); |
- if (abs(oppWind) < abs(oppSideWind)) { |
- oppWind = oppSideWind; |
- } |
- } |
- (void) markAndChaseWinding(start, end, winding, oppWind); |
- } |
- |
- bool intersected() const { |
- return fTs.count() > 0; |
- } |
- |
- bool isCanceled(int tIndex) const { |
- return fTs[tIndex].fWindValue == 0 && fTs[tIndex].fOppValue == 0; |
- } |
- |
- bool isConnected(int startIndex, int endIndex) const { |
- return fTs[startIndex].fWindSum != SK_MinS32 |
- || fTs[endIndex].fWindSum != SK_MinS32; |
- } |
- |
- bool isHorizontal() const { |
- return fBounds.fTop == fBounds.fBottom; |
- } |
- |
- bool isLinear(int start, int end) const { |
- if (fVerb == SkPath::kLine_Verb) { |
- return true; |
- } |
- if (fVerb == SkPath::kQuad_Verb) { |
- SkPoint qPart[3]; |
- QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart); |
- return QuadIsLinear(qPart); |
- } else { |
- SkASSERT(fVerb == SkPath::kCubic_Verb); |
- SkPoint cPart[4]; |
- CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart); |
- return CubicIsLinear(cPart); |
- } |
- } |
- |
- // OPTIMIZE: successive calls could start were the last leaves off |
- // or calls could specialize to walk forwards or backwards |
- bool isMissing(double startT) const { |
- size_t tCount = fTs.count(); |
- for (size_t index = 0; index < tCount; ++index) { |
- if (approximately_zero(startT - fTs[index].fT)) { |
- return false; |
- } |
- } |
- return true; |
- } |
- |
- bool isSimple(int end) const { |
- int count = fTs.count(); |
- if (count == 2) { |
- return true; |
- } |
- double t = fTs[end].fT; |
- if (approximately_less_than_zero(t)) { |
- return !approximately_less_than_zero(fTs[1].fT); |
- } |
- if (approximately_greater_than_one(t)) { |
- return !approximately_greater_than_one(fTs[count - 2].fT); |
- } |
- return false; |
- } |
- |
- bool isVertical() const { |
- return fBounds.fLeft == fBounds.fRight; |
- } |
- |
- bool isVertical(int start, int end) const { |
- return (*SegmentVertical[fVerb])(fPts, start, end); |
- } |
- |
- SkScalar leftMost(int start, int end) const { |
- return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT); |
- } |
- |
- // this span is excluded by the winding rule -- chase the ends |
- // as long as they are unambiguous to mark connections as done |
- // and give them the same winding value |
- Span* markAndChaseDone(const Angle* angle, int winding) { |
- int index = angle->start(); |
- int endIndex = angle->end(); |
- return markAndChaseDone(index, endIndex, winding); |
- } |
- |
- Span* markAndChaseDone(int index, int endIndex, int winding) { |
- int step = SkSign32(endIndex - index); |
- int min = SkMin32(index, endIndex); |
- markDone(min, winding); |
- Span* last; |
- Segment* other = this; |
- while ((other = other->nextChase(index, step, min, last))) { |
- other->markDone(min, winding); |
- } |
- return last; |
- } |
- |
- Span* markAndChaseDoneBinary(const Angle* angle, int winding, int oppWinding) { |
- int index = angle->start(); |
- int endIndex = angle->end(); |
- int step = SkSign32(endIndex - index); |
- int min = SkMin32(index, endIndex); |
- markDoneBinary(min, winding, oppWinding); |
- Span* last; |
- Segment* other = this; |
- while ((other = other->nextChase(index, step, min, last))) { |
- other->markDoneBinary(min, winding, oppWinding); |
- } |
- return last; |
- } |
- |
- Span* markAndChaseDoneBinary(int index, int endIndex) { |
- int step = SkSign32(endIndex - index); |
- int min = SkMin32(index, endIndex); |
- markDoneBinary(min); |
- Span* last; |
- Segment* other = this; |
- while ((other = other->nextChase(index, step, min, last))) { |
- if (other->done()) { |
- return NULL; |
- } |
- other->markDoneBinary(min); |
- } |
- return last; |
- } |
- |
- Span* markAndChaseDoneUnary(int index, int endIndex) { |
- int step = SkSign32(endIndex - index); |
- int min = SkMin32(index, endIndex); |
- markDoneUnary(min); |
- Span* last; |
- Segment* other = this; |
- while ((other = other->nextChase(index, step, min, last))) { |
- if (other->done()) { |
- return NULL; |
- } |
- other->markDoneUnary(min); |
- } |
- return last; |
- } |
- |
- Span* markAndChaseDoneUnary(const Angle* angle, int winding) { |
- int index = angle->start(); |
- int endIndex = angle->end(); |
- return markAndChaseDone(index, endIndex, winding); |
- } |
- |
- Span* markAndChaseWinding(const Angle* angle, const int winding) { |
- int index = angle->start(); |
- int endIndex = angle->end(); |
- int step = SkSign32(endIndex - index); |
- int min = SkMin32(index, endIndex); |
- markWinding(min, winding); |
- Span* last; |
- Segment* other = this; |
- while ((other = other->nextChase(index, step, min, last))) { |
- if (other->fTs[min].fWindSum != SK_MinS32) { |
- SkASSERT(other->fTs[min].fWindSum == winding); |
- return NULL; |
- } |
- other->markWinding(min, winding); |
- } |
- return last; |
- } |
- |
- Span* markAndChaseWinding(int index, int endIndex, int winding, int oppWinding) { |
- int min = SkMin32(index, endIndex); |
- int step = SkSign32(endIndex - index); |
- markWinding(min, winding, oppWinding); |
- Span* last; |
- Segment* other = this; |
- while ((other = other->nextChase(index, step, min, last))) { |
- if (other->fTs[min].fWindSum != SK_MinS32) { |
- SkASSERT(other->fTs[min].fWindSum == winding || other->fTs[min].fLoop); |
- return NULL; |
- } |
- other->markWinding(min, winding, oppWinding); |
- } |
- return last; |
- } |
- |
- Span* markAndChaseWinding(const Angle* angle, int winding, int oppWinding) { |
- int start = angle->start(); |
- int end = angle->end(); |
- return markAndChaseWinding(start, end, winding, oppWinding); |
- } |
- |
- Span* markAngle(int maxWinding, int sumWinding, bool activeAngle, const Angle* angle) { |
- SkASSERT(angle->segment() == this); |
- if (useInnerWinding(maxWinding, sumWinding)) { |
- maxWinding = sumWinding; |
- } |
- Span* last; |
- if (activeAngle) { |
- last = markAndChaseWinding(angle, maxWinding); |
- } else { |
- last = markAndChaseDoneUnary(angle, maxWinding); |
- } |
- return last; |
- } |
- |
- Span* markAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSumWinding, |
- bool activeAngle, const Angle* angle) { |
- SkASSERT(angle->segment() == this); |
- if (useInnerWinding(maxWinding, sumWinding)) { |
- maxWinding = sumWinding; |
- } |
- if (oppMaxWinding != oppSumWinding && useInnerWinding(oppMaxWinding, oppSumWinding)) { |
- oppMaxWinding = oppSumWinding; |
- } |
- Span* last; |
- if (activeAngle) { |
- last = markAndChaseWinding(angle, maxWinding, oppMaxWinding); |
- } else { |
- last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding); |
- } |
- return last; |
- } |
- |
- // FIXME: this should also mark spans with equal (x,y) |
- // This may be called when the segment is already marked done. While this |
- // wastes time, it shouldn't do any more than spin through the T spans. |
- // OPTIMIZATION: abort on first done found (assuming that this code is |
- // always called to mark segments done). |
- void markDone(int index, int winding) { |
- // SkASSERT(!done()); |
- SkASSERT(winding); |
- double referenceT = fTs[index].fT; |
- int lesser = index; |
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
- markOneDone(__FUNCTION__, lesser, winding); |
- } |
- do { |
- markOneDone(__FUNCTION__, index, winding); |
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
- } |
- |
- void markDoneBinary(int index, int winding, int oppWinding) { |
- // SkASSERT(!done()); |
- SkASSERT(winding || oppWinding); |
- double referenceT = fTs[index].fT; |
- int lesser = index; |
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
- markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding); |
- } |
- do { |
- markOneDoneBinary(__FUNCTION__, index, winding, oppWinding); |
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
- } |
- |
- void markDoneBinary(int index) { |
- double referenceT = fTs[index].fT; |
- int lesser = index; |
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
- markOneDoneBinary(__FUNCTION__, lesser); |
- } |
- do { |
- markOneDoneBinary(__FUNCTION__, index); |
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
- } |
- |
- void markDoneUnary(int index, int winding) { |
- // SkASSERT(!done()); |
- SkASSERT(winding); |
- double referenceT = fTs[index].fT; |
- int lesser = index; |
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
- markOneDoneUnary(__FUNCTION__, lesser, winding); |
- } |
- do { |
- markOneDoneUnary(__FUNCTION__, index, winding); |
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
- } |
- |
- void markDoneUnary(int index) { |
- double referenceT = fTs[index].fT; |
- int lesser = index; |
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
- markOneDoneUnary(__FUNCTION__, lesser); |
- } |
- do { |
- markOneDoneUnary(__FUNCTION__, index); |
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
- } |
- |
- void markOneDone(const char* funName, int tIndex, int winding) { |
- Span* span = markOneWinding(funName, tIndex, winding); |
- if (!span) { |
- return; |
- } |
- span->fDone = true; |
- fDoneSpans++; |
- } |
- |
- void markOneDoneBinary(const char* funName, int tIndex) { |
- Span* span = verifyOneWinding(funName, tIndex); |
- if (!span) { |
- return; |
- } |
- span->fDone = true; |
- fDoneSpans++; |
- } |
- |
- void markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding) { |
- Span* span = markOneWinding(funName, tIndex, winding, oppWinding); |
- if (!span) { |
- return; |
- } |
- span->fDone = true; |
- fDoneSpans++; |
- } |
- |
- void markOneDoneUnary(const char* funName, int tIndex) { |
- Span* span = verifyOneWindingU(funName, tIndex); |
- if (!span) { |
- return; |
- } |
- span->fDone = true; |
- fDoneSpans++; |
- } |
- |
- void markOneDoneUnary(const char* funName, int tIndex, int winding) { |
- Span* span = markOneWinding(funName, tIndex, winding); |
- if (!span) { |
- return; |
- } |
- span->fDone = true; |
- fDoneSpans++; |
- } |
- |
- Span* markOneWinding(const char* funName, int tIndex, int winding) { |
- Span& span = fTs[tIndex]; |
- if (span.fDone) { |
- return NULL; |
- } |
- #if DEBUG_MARK_DONE |
- debugShowNewWinding(funName, span, winding); |
- #endif |
- SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); |
- #ifdef SK_DEBUG |
- SkASSERT(abs(winding) <= gDebugMaxWindSum); |
- #endif |
- span.fWindSum = winding; |
- return &span; |
- } |
- |
- Span* markOneWinding(const char* funName, int tIndex, int winding, int oppWinding) { |
- Span& span = fTs[tIndex]; |
- if (span.fDone) { |
- return NULL; |
- } |
- #if DEBUG_MARK_DONE |
- debugShowNewWinding(funName, span, winding, oppWinding); |
- #endif |
- SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); |
- #ifdef SK_DEBUG |
- SkASSERT(abs(winding) <= gDebugMaxWindSum); |
- #endif |
- span.fWindSum = winding; |
- SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding); |
- #ifdef SK_DEBUG |
- SkASSERT(abs(oppWinding) <= gDebugMaxWindSum); |
- #endif |
- span.fOppSum = oppWinding; |
- return &span; |
- } |
- |
- bool controls_contained_by_ends(int tStart, int tEnd) const { |
- if (fVerb != SkPath::kCubic_Verb) { |
- return false; |
- } |
- MAKE_CONST_CUBIC(aCubic, fPts); |
- Cubic dst; |
- sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); |
- return ::controls_contained_by_ends(dst); |
- } |
- |
- // from http://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order |
- bool clockwise(int tStart, int tEnd) const { |
- SkASSERT(fVerb != SkPath::kLine_Verb); |
- SkPoint edge[4]; |
- subDivide(tStart, tEnd, edge); |
- double sum = (edge[0].fX - edge[fVerb].fX) * (edge[0].fY + edge[fVerb].fY); |
- if (fVerb == SkPath::kCubic_Verb) { |
- SkScalar lesser = SkTMin(edge[0].fY, edge[3].fY); |
- if (edge[1].fY < lesser && edge[2].fY < lesser) { |
- _Line tangent1 = { {edge[0].fX, edge[0].fY}, {edge[1].fX, edge[1].fY} }; |
- _Line tangent2 = { {edge[2].fX, edge[2].fY}, {edge[3].fX, edge[3].fY} }; |
- if (testIntersect(tangent1, tangent2)) { |
- SkPoint topPt = CubicTop(fPts, fTs[tStart].fT, fTs[tEnd].fT); |
- sum += (topPt.fX - edge[0].fX) * (topPt.fY + edge[0].fY); |
- sum += (edge[3].fX - topPt.fX) * (edge[3].fY + topPt.fY); |
- return sum <= 0; |
- } |
- } |
- } |
- for (int idx = 0; idx < fVerb; ++idx){ |
- sum += (edge[idx + 1].fX - edge[idx].fX) * (edge[idx + 1].fY + edge[idx].fY); |
- } |
- return sum <= 0; |
- } |
- |
- bool monotonic_in_y(int tStart, int tEnd) const { |
- if (fVerb != SkPath::kCubic_Verb) { |
- return false; |
- } |
- MAKE_CONST_CUBIC(aCubic, fPts); |
- Cubic dst; |
- sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); |
- return ::monotonic_in_y(dst); |
- } |
- |
- bool serpentine(int tStart, int tEnd) const { |
- if (fVerb != SkPath::kCubic_Verb) { |
- return false; |
- } |
- MAKE_CONST_CUBIC(aCubic, fPts); |
- Cubic dst; |
- sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); |
- return ::serpentine(dst); |
- } |
- |
- Span* verifyOneWinding(const char* funName, int tIndex) { |
- Span& span = fTs[tIndex]; |
- if (span.fDone) { |
- return NULL; |
- } |
- #if DEBUG_MARK_DONE |
- debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum); |
- #endif |
- SkASSERT(span.fWindSum != SK_MinS32); |
- SkASSERT(span.fOppSum != SK_MinS32); |
- return &span; |
- } |
- |
- Span* verifyOneWindingU(const char* funName, int tIndex) { |
- Span& span = fTs[tIndex]; |
- if (span.fDone) { |
- return NULL; |
- } |
- #if DEBUG_MARK_DONE |
- debugShowNewWinding(funName, span, span.fWindSum); |
- #endif |
- SkASSERT(span.fWindSum != SK_MinS32); |
- return &span; |
- } |
- |
- // note that just because a span has one end that is unsortable, that's |
- // not enough to mark it done. The other end may be sortable, allowing the |
- // span to be added. |
- // FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both ends |
- void markUnsortable(int start, int end) { |
- Span* span = &fTs[start]; |
- if (start < end) { |
-#if DEBUG_UNSORTABLE |
- debugShowNewWinding(__FUNCTION__, *span, 0); |
-#endif |
- span->fUnsortableStart = true; |
- } else { |
- --span; |
-#if DEBUG_UNSORTABLE |
- debugShowNewWinding(__FUNCTION__, *span, 0); |
-#endif |
- span->fUnsortableEnd = true; |
- } |
- if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) { |
- return; |
- } |
- span->fDone = true; |
- fDoneSpans++; |
- } |
- |
- void markWinding(int index, int winding) { |
- // SkASSERT(!done()); |
- SkASSERT(winding); |
- double referenceT = fTs[index].fT; |
- int lesser = index; |
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
- markOneWinding(__FUNCTION__, lesser, winding); |
- } |
- do { |
- markOneWinding(__FUNCTION__, index, winding); |
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
- } |
- |
- void markWinding(int index, int winding, int oppWinding) { |
- // SkASSERT(!done()); |
- SkASSERT(winding || oppWinding); |
- double referenceT = fTs[index].fT; |
- int lesser = index; |
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) { |
- markOneWinding(__FUNCTION__, lesser, winding, oppWinding); |
- } |
- do { |
- markOneWinding(__FUNCTION__, index, winding, oppWinding); |
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT)); |
- } |
- |
- void matchWindingValue(int tIndex, double t, bool borrowWind) { |
- int nextDoorWind = SK_MaxS32; |
- int nextOppWind = SK_MaxS32; |
- if (tIndex > 0) { |
- const Span& below = fTs[tIndex - 1]; |
- if (approximately_negative(t - below.fT)) { |
- nextDoorWind = below.fWindValue; |
- nextOppWind = below.fOppValue; |
- } |
- } |
- if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) { |
- const Span& above = fTs[tIndex + 1]; |
- if (approximately_negative(above.fT - t)) { |
- nextDoorWind = above.fWindValue; |
- nextOppWind = above.fOppValue; |
- } |
- } |
- if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) { |
- const Span& below = fTs[tIndex - 1]; |
- nextDoorWind = below.fWindValue; |
- nextOppWind = below.fOppValue; |
- } |
- if (nextDoorWind != SK_MaxS32) { |
- Span& newSpan = fTs[tIndex]; |
- newSpan.fWindValue = nextDoorWind; |
- newSpan.fOppValue = nextOppWind; |
- if (!nextDoorWind && !nextOppWind && !newSpan.fDone) { |
- newSpan.fDone = true; |
- ++fDoneSpans; |
- } |
- } |
- } |
- |
- bool moreHorizontal(int index, int endIndex, bool& unsortable) const { |
- // find bounds |
- Bounds bounds; |
- bounds.setPoint(xyAtT(index)); |
- bounds.add(xyAtT(endIndex)); |
- SkScalar width = bounds.width(); |
- SkScalar height = bounds.height(); |
- if (width > height) { |
- if (approximately_negative(width)) { |
- unsortable = true; // edge is too small to resolve meaningfully |
- } |
- return false; |
- } else { |
- if (approximately_negative(height)) { |
- unsortable = true; // edge is too small to resolve meaningfully |
- } |
- return true; |
- } |
- } |
- |
- // return span if when chasing, two or more radiating spans are not done |
- // OPTIMIZATION: ? multiple spans is detected when there is only one valid |
- // candidate and the remaining spans have windValue == 0 (canceled by |
- // coincidence). The coincident edges could either be removed altogether, |
- // or this code could be more complicated in detecting this case. Worth it? |
- bool multipleSpans(int end) const { |
- return end > 0 && end < fTs.count() - 1; |
- } |
- |
- bool nextCandidate(int& start, int& end) const { |
- while (fTs[end].fDone) { |
- if (fTs[end].fT == 1) { |
- return false; |
- } |
- ++end; |
- } |
- start = end; |
- end = nextExactSpan(start, 1); |
- return true; |
- } |
- |
- Segment* nextChase(int& index, const int step, int& min, Span*& last) { |
- int end = nextExactSpan(index, step); |
- SkASSERT(end >= 0); |
- if (multipleSpans(end)) { |
- last = &fTs[end]; |
- return NULL; |
- } |
- const Span& endSpan = fTs[end]; |
- Segment* other = endSpan.fOther; |
- index = endSpan.fOtherIndex; |
- SkASSERT(index >= 0); |
- int otherEnd = other->nextExactSpan(index, step); |
- SkASSERT(otherEnd >= 0); |
- min = SkMin32(index, otherEnd); |
- return other; |
- } |
- |
- // This has callers for two different situations: one establishes the end |
- // of the current span, and one establishes the beginning of the next span |
- // (thus the name). When this is looking for the end of the current span, |
- // coincidence is found when the beginning Ts contain -step and the end |
- // contains step. When it is looking for the beginning of the next, the |
- // first Ts found can be ignored and the last Ts should contain -step. |
- // OPTIMIZATION: probably should split into two functions |
- int nextSpan(int from, int step) const { |
- const Span& fromSpan = fTs[from]; |
- int count = fTs.count(); |
- int to = from; |
- while (step > 0 ? ++to < count : --to >= 0) { |
- const Span& span = fTs[to]; |
- if (approximately_zero(span.fT - fromSpan.fT)) { |
- continue; |
- } |
- return to; |
- } |
- return -1; |
- } |
- |
- // FIXME |
- // this returns at any difference in T, vs. a preset minimum. It may be |
- // that all callers to nextSpan should use this instead. |
- // OPTIMIZATION splitting this into separate loops for up/down steps |
- // would allow using precisely_negative instead of precisely_zero |
- int nextExactSpan(int from, int step) const { |
- const Span& fromSpan = fTs[from]; |
- int count = fTs.count(); |
- int to = from; |
- while (step > 0 ? ++to < count : --to >= 0) { |
- const Span& span = fTs[to]; |
- if (precisely_zero(span.fT - fromSpan.fT)) { |
- continue; |
- } |
- return to; |
- } |
- return -1; |
- } |
- |
- bool operand() const { |
- return fOperand; |
- } |
- |
- int oppSign(const Angle* angle) const { |
- SkASSERT(angle->segment() == this); |
- return oppSign(angle->start(), angle->end()); |
- } |
- |
- int oppSign(int startIndex, int endIndex) const { |
- int result = startIndex < endIndex ? -fTs[startIndex].fOppValue |
- : fTs[endIndex].fOppValue; |
-#if DEBUG_WIND_BUMP |
- SkDebugf("%s oppSign=%d\n", __FUNCTION__, result); |
-#endif |
- return result; |
- } |
- |
- int oppSum(int tIndex) const { |
- return fTs[tIndex].fOppSum; |
- } |
- |
- int oppSum(const Angle* angle) const { |
- int lesser = SkMin32(angle->start(), angle->end()); |
- return fTs[lesser].fOppSum; |
- } |
- |
- int oppValue(int tIndex) const { |
- return fTs[tIndex].fOppValue; |
- } |
- |
- int oppValue(const Angle* angle) const { |
- int lesser = SkMin32(angle->start(), angle->end()); |
- return fTs[lesser].fOppValue; |
- } |
- |
- const SkPoint* pts() const { |
- return fPts; |
- } |
- |
- void reset() { |
- init(NULL, (SkPath::Verb) -1, false, false); |
- fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); |
- fTs.reset(); |
- } |
- |
- void setOppXor(bool isOppXor) { |
- fOppXor = isOppXor; |
- } |
- |
- void setSpanT(int index, double t) { |
- Span& span = fTs[index]; |
- span.fT = t; |
- span.fOther->fTs[span.fOtherIndex].fOtherT = t; |
- } |
- |
- void setUpWinding(int index, int endIndex, int& maxWinding, int& sumWinding) { |
- int deltaSum = spanSign(index, endIndex); |
- maxWinding = sumWinding; |
- sumWinding = sumWinding -= deltaSum; |
- } |
- |
- void setUpWindings(int index, int endIndex, int& sumMiWinding, int& sumSuWinding, |
- int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) { |
- int deltaSum = spanSign(index, endIndex); |
- int oppDeltaSum = oppSign(index, endIndex); |
- if (operand()) { |
- maxWinding = sumSuWinding; |
- sumWinding = sumSuWinding -= deltaSum; |
- oppMaxWinding = sumMiWinding; |
- oppSumWinding = sumMiWinding -= oppDeltaSum; |
- } else { |
- maxWinding = sumMiWinding; |
- sumWinding = sumMiWinding -= deltaSum; |
- oppMaxWinding = sumSuWinding; |
- oppSumWinding = sumSuWinding -= oppDeltaSum; |
- } |
- } |
- |
- // This marks all spans unsortable so that this info is available for early |
- // exclusion in find top and others. This could be optimized to only mark |
- // adjacent spans that unsortable. However, this makes it difficult to later |
- // determine starting points for edge detection in find top and the like. |
- static bool SortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) { |
- bool sortable = true; |
- int angleCount = angles.count(); |
- int angleIndex; |
- angleList.setReserve(angleCount); |
- for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
- Angle& angle = angles[angleIndex]; |
- *angleList.append() = ∠ |
- sortable &= !angle.unsortable(); |
- } |
- if (sortable) { |
- QSort<Angle>(angleList.begin(), angleList.end() - 1); |
- for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
- if (angles[angleIndex].unsortable()) { |
- sortable = false; |
- break; |
- } |
- } |
- } |
- if (!sortable) { |
- for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { |
- Angle& angle = angles[angleIndex]; |
- angle.segment()->markUnsortable(angle.start(), angle.end()); |
- } |
- } |
- return sortable; |
- } |
- |
- // OPTIMIZATION: mark as debugging only if used solely by tests |
- const Span& span(int tIndex) const { |
- return fTs[tIndex]; |
- } |
- |
- int spanSign(const Angle* angle) const { |
- SkASSERT(angle->segment() == this); |
- return spanSign(angle->start(), angle->end()); |
- } |
- |
- int spanSign(int startIndex, int endIndex) const { |
- int result = startIndex < endIndex ? -fTs[startIndex].fWindValue |
- : fTs[endIndex].fWindValue; |
-#if DEBUG_WIND_BUMP |
- SkDebugf("%s spanSign=%d\n", __FUNCTION__, result); |
-#endif |
- return result; |
- } |
- |
- void subDivide(int start, int end, SkPoint edge[4]) const { |
- edge[0] = fTs[start].fPt; |
- edge[fVerb] = fTs[end].fPt; |
- if (fVerb == SkPath::kQuad_Verb || fVerb == SkPath::kCubic_Verb) { |
- _Point sub[2] = {{ edge[0].fX, edge[0].fY}, {edge[fVerb].fX, edge[fVerb].fY }}; |
- if (fVerb == SkPath::kQuad_Verb) { |
- MAKE_CONST_QUAD(aQuad, fPts); |
- edge[1] = sub_divide(aQuad, sub[0], sub[1], fTs[start].fT, fTs[end].fT).asSkPoint(); |
- } else { |
- MAKE_CONST_CUBIC(aCubic, fPts); |
- sub_divide(aCubic, sub[0], sub[1], fTs[start].fT, fTs[end].fT, sub); |
- edge[1] = sub[0].asSkPoint(); |
- edge[2] = sub[1].asSkPoint(); |
- } |
- } |
- } |
- |
- void subDivideBounds(int start, int end, Bounds& bounds) const { |
- SkPoint edge[4]; |
- subDivide(start, end, edge); |
- (bounds.*setSegmentBounds[fVerb])(edge); |
- } |
- |
- // OPTIMIZATION: mark as debugging only if used solely by tests |
- double t(int tIndex) const { |
- return fTs[tIndex].fT; |
- } |
- |
- double tAtMid(int start, int end, double mid) const { |
- return fTs[start].fT * (1 - mid) + fTs[end].fT * mid; |
- } |
- |
- bool tiny(const Angle* angle) const { |
- int start = angle->start(); |
- int end = angle->end(); |
- const Span& mSpan = fTs[SkMin32(start, end)]; |
- return mSpan.fTiny; |
- } |
- |
- static void TrackOutside(SkTDArray<double>& outsideTs, double end, |
- double start) { |
- int outCount = outsideTs.count(); |
- if (outCount == 0 || !approximately_negative(end - outsideTs[outCount - 2])) { |
- *outsideTs.append() = end; |
- *outsideTs.append() = start; |
- } |
- } |
- |
- void undoneSpan(int& start, int& end) { |
- size_t tCount = fTs.count(); |
- size_t index; |
- for (index = 0; index < tCount; ++index) { |
- if (!fTs[index].fDone) { |
- break; |
- } |
- } |
- SkASSERT(index < tCount - 1); |
- start = index; |
- double startT = fTs[index].fT; |
- while (approximately_negative(fTs[++index].fT - startT)) |
- SkASSERT(index < tCount); |
- SkASSERT(index < tCount); |
- end = index; |
- } |
- |
- bool unsortable(int index) const { |
- return fTs[index].fUnsortableStart || fTs[index].fUnsortableEnd; |
- } |
- |
- void updatePts(const SkPoint pts[]) { |
- fPts = pts; |
- } |
- |
- int updateOppWinding(int index, int endIndex) const { |
- int lesser = SkMin32(index, endIndex); |
- int oppWinding = oppSum(lesser); |
- int oppSpanWinding = oppSign(index, endIndex); |
- if (oppSpanWinding && useInnerWinding(oppWinding - oppSpanWinding, oppWinding) |
- && oppWinding != SK_MaxS32) { |
- oppWinding -= oppSpanWinding; |
- } |
- return oppWinding; |
- } |
- |
- int updateOppWinding(const Angle* angle) const { |
- int startIndex = angle->start(); |
- int endIndex = angle->end(); |
- return updateOppWinding(endIndex, startIndex); |
- } |
- |
- int updateOppWindingReverse(const Angle* angle) const { |
- int startIndex = angle->start(); |
- int endIndex = angle->end(); |
- return updateOppWinding(startIndex, endIndex); |
- } |
- |
- int updateWinding(int index, int endIndex) const { |
- int lesser = SkMin32(index, endIndex); |
- int winding = windSum(lesser); |
- int spanWinding = spanSign(index, endIndex); |
- if (winding && useInnerWinding(winding - spanWinding, winding) && winding != SK_MaxS32) { |
- winding -= spanWinding; |
- } |
- return winding; |
- } |
- |
- int updateWinding(const Angle* angle) const { |
- int startIndex = angle->start(); |
- int endIndex = angle->end(); |
- return updateWinding(endIndex, startIndex); |
- } |
- |
- int updateWindingReverse(const Angle* angle) const { |
- int startIndex = angle->start(); |
- int endIndex = angle->end(); |
- return updateWinding(startIndex, endIndex); |
- } |
- |
- SkPath::Verb verb() const { |
- return fVerb; |
- } |
- |
- int windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar& dx) const { |
- if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a span, disregard |
- return SK_MinS32; |
- } |
- int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex); |
- SkASSERT(winding != SK_MinS32); |
- int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex); |
- #if DEBUG_WINDING_AT_T |
- SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal); |
- #endif |
- // see if a + change in T results in a +/- change in X (compute x'(T)) |
- dx = (*SegmentDXAtT[fVerb])(fPts, tHit); |
- if (fVerb > SkPath::kLine_Verb && approximately_zero(dx)) { |
- dx = fPts[2].fX - fPts[1].fX - dx; |
- } |
- if (dx == 0) { |
- #if DEBUG_WINDING_AT_T |
- SkDebugf(" dx=0 winding=SK_MinS32\n"); |
- #endif |
- return SK_MinS32; |
- } |
- if (winding * dx > 0) { // if same signs, result is negative |
- winding += dx > 0 ? -windVal : windVal; |
- } |
- #if DEBUG_WINDING_AT_T |
- SkDebugf(" dx=%c winding=%d\n", dx > 0 ? '+' : '-', winding); |
- #endif |
- return winding; |
- } |
- |
- int windSum(int tIndex) const { |
- return fTs[tIndex].fWindSum; |
- } |
- |
- int windSum(const Angle* angle) const { |
- int start = angle->start(); |
- int end = angle->end(); |
- int index = SkMin32(start, end); |
- return windSum(index); |
- } |
- |
- int windValue(int tIndex) const { |
- return fTs[tIndex].fWindValue; |
- } |
- |
- int windValue(const Angle* angle) const { |
- int start = angle->start(); |
- int end = angle->end(); |
- int index = SkMin32(start, end); |
- return windValue(index); |
- } |
- |
- int windValueAt(double t) const { |
- int count = fTs.count(); |
- for (int index = 0; index < count; ++index) { |
- if (fTs[index].fT == t) { |
- return fTs[index].fWindValue; |
- } |
- } |
- SkASSERT(0); |
- return 0; |
- } |
- |
- SkScalar xAtT(int index) const { |
- return xAtT(&fTs[index]); |
- } |
- |
- SkScalar xAtT(const Span* span) const { |
- return xyAtT(span).fX; |
- } |
- |
- const SkPoint& xyAtT(int index) const { |
- return xyAtT(&fTs[index]); |
- } |
- |
- const SkPoint& xyAtT(const Span* span) const { |
- if (SkScalarIsNaN(span->fPt.fX)) { |
- SkASSERT(0); // make sure this path is never used |
- if (span->fT == 0) { |
- span->fPt = fPts[0]; |
- } else if (span->fT == 1) { |
- span->fPt = fPts[fVerb]; |
- } else { |
- (*SegmentXYAtT[fVerb])(fPts, span->fT, &span->fPt); |
- } |
- } |
- return span->fPt; |
- } |
- |
- // used only by right angle winding finding |
- void xyAtT(double mid, SkPoint& pt) const { |
- (*SegmentXYAtT[fVerb])(fPts, mid, &pt); |
- } |
- |
- SkScalar yAtT(int index) const { |
- return yAtT(&fTs[index]); |
- } |
- |
- SkScalar yAtT(const Span* span) const { |
- return xyAtT(span).fY; |
- } |
- |
- void zeroCoincidentOpp(Span* oTest, int index) { |
- Span* const test = &fTs[index]; |
- Span* end = test; |
- do { |
- end->fOppValue = 0; |
- end = &fTs[++index]; |
- } while (approximately_negative(end->fT - test->fT)); |
- } |
- |
- void zeroCoincidentOther(Span* test, const double tRatio, const double oEndT, int oIndex) { |
- Span* const oTest = &fTs[oIndex]; |
- Span* oEnd = oTest; |
- const double startT = test->fT; |
- const double oStartT = oTest->fT; |
- double otherTMatch = (test->fT - startT) * tRatio + oStartT; |
- while (!approximately_negative(oEndT - oEnd->fT) |
- && approximately_negative(oEnd->fT - otherTMatch)) { |
- oEnd->fOppValue = 0; |
- oEnd = &fTs[++oIndex]; |
- } |
- } |
- |
- void zeroSpan(Span* span) { |
- SkASSERT(span->fWindValue > 0 || span->fOppValue > 0); |
- span->fWindValue = 0; |
- span->fOppValue = 0; |
- SkASSERT(!span->fDone); |
- span->fDone = true; |
- ++fDoneSpans; |
- } |
- |
-#if DEBUG_DUMP |
- void dump() const { |
- const char className[] = "Segment"; |
- const int tab = 4; |
- for (int i = 0; i < fTs.count(); ++i) { |
- SkPoint out; |
- (*SegmentXYAtT[fVerb])(fPts, t(i), &out); |
- SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d" |
- " otherT=%1.9g windSum=%d\n", |
- tab + sizeof(className), className, fID, |
- kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY, |
- fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum); |
- } |
- SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)", |
- tab + sizeof(className), className, fID, |
- fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); |
- } |
-#endif |
- |
-#if DEBUG_CONCIDENT |
- // SkASSERT if pair has not already been added |
- void debugAddTPair(double t, const Segment& other, double otherT) const { |
- for (int i = 0; i < fTs.count(); ++i) { |
- if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) { |
- return; |
- } |
- } |
- SkASSERT(0); |
- } |
-#endif |
- |
-#if DEBUG_DUMP |
- int debugID() const { |
- return fID; |
- } |
-#endif |
- |
-#if DEBUG_WINDING |
- void debugShowSums() const { |
- SkDebugf("%s id=%d (%1.9g,%1.9g %1.9g,%1.9g)", __FUNCTION__, fID, |
- fPts[0].fX, fPts[0].fY, fPts[fVerb].fX, fPts[fVerb].fY); |
- for (int i = 0; i < fTs.count(); ++i) { |
- const Span& span = fTs[i]; |
- SkDebugf(" [t=%1.3g %1.9g,%1.9g w=", span.fT, xAtT(&span), yAtT(&span)); |
- if (span.fWindSum == SK_MinS32) { |
- SkDebugf("?"); |
- } else { |
- SkDebugf("%d", span.fWindSum); |
- } |
- SkDebugf("]"); |
- } |
- SkDebugf("\n"); |
- } |
-#endif |
- |
-#if DEBUG_CONCIDENT |
- void debugShowTs() const { |
- SkDebugf("%s id=%d", __FUNCTION__, fID); |
- int lastWind = -1; |
- int lastOpp = -1; |
- double lastT = -1; |
- int i; |
- for (i = 0; i < fTs.count(); ++i) { |
- bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue |
- || lastOpp != fTs[i].fOppValue; |
- if (change && lastWind >= 0) { |
- SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", |
- lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); |
- } |
- if (change) { |
- SkDebugf(" [o=%d", fTs[i].fOther->fID); |
- lastWind = fTs[i].fWindValue; |
- lastOpp = fTs[i].fOppValue; |
- lastT = fTs[i].fT; |
- } else { |
- SkDebugf(",%d", fTs[i].fOther->fID); |
- } |
- } |
- if (i <= 0) { |
- return; |
- } |
- SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", |
- lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); |
- if (fOperand) { |
- SkDebugf(" operand"); |
- } |
- if (done()) { |
- SkDebugf(" done"); |
- } |
- SkDebugf("\n"); |
- } |
-#endif |
- |
-#if DEBUG_ACTIVE_SPANS |
- void debugShowActiveSpans() const { |
- if (done()) { |
- return; |
- } |
-#if DEBUG_ACTIVE_SPANS_SHORT_FORM |
- int lastId = -1; |
- double lastT = -1; |
-#endif |
- for (int i = 0; i < fTs.count(); ++i) { |
- SkASSERT(&fTs[i] == &fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOther-> |
- fTs[fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOtherIndex]); |
- if (fTs[i].fDone) { |
- continue; |
- } |
-#if DEBUG_ACTIVE_SPANS_SHORT_FORM |
- if (lastId == fID && lastT == fTs[i].fT) { |
- continue; |
- } |
- lastId = fID; |
- lastT = fTs[i].fT; |
-#endif |
- SkDebugf("%s id=%d", __FUNCTION__, fID); |
- SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
- for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
- SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
- } |
- const Span* span = &fTs[i]; |
- SkDebugf(") t=%1.9g (%1.9g,%1.9g)", fTs[i].fT, |
- xAtT(span), yAtT(span)); |
- int iEnd = i + 1; |
- while (fTs[iEnd].fT < 1 && approximately_equal(fTs[i].fT, fTs[iEnd].fT)) { |
- ++iEnd; |
- } |
- SkDebugf(" tEnd=%1.9g", fTs[iEnd].fT); |
- const Segment* other = fTs[i].fOther; |
- SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=", |
- other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex); |
- if (fTs[i].fWindSum == SK_MinS32) { |
- SkDebugf("?"); |
- } else { |
- SkDebugf("%d", fTs[i].fWindSum); |
- } |
- SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fOppValue); |
- } |
- } |
- |
- // This isn't useful yet -- but leaving it in for now in case i think of something |
- // to use it for |
- void validateActiveSpans() const { |
- if (done()) { |
- return; |
- } |
- int tCount = fTs.count(); |
- for (int index = 0; index < tCount; ++index) { |
- if (fTs[index].fDone) { |
- continue; |
- } |
- // count number of connections which are not done |
- int first = index; |
- double baseT = fTs[index].fT; |
- while (first > 0 && approximately_equal(fTs[first - 1].fT, baseT)) { |
- --first; |
- } |
- int last = index; |
- while (last < tCount - 1 && approximately_equal(fTs[last + 1].fT, baseT)) { |
- ++last; |
- } |
- int connections = 0; |
- connections += first > 0 && !fTs[first - 1].fDone; |
- for (int test = first; test <= last; ++test) { |
- connections += !fTs[test].fDone; |
- const Segment* other = fTs[test].fOther; |
- int oIndex = fTs[test].fOtherIndex; |
- connections += !other->fTs[oIndex].fDone; |
- connections += oIndex > 0 && !other->fTs[oIndex - 1].fDone; |
- } |
- // SkASSERT(!(connections & 1)); |
- } |
- } |
-#endif |
- |
-#if DEBUG_MARK_DONE || DEBUG_UNSORTABLE |
- void debugShowNewWinding(const char* fun, const Span& span, int winding) { |
- const SkPoint& pt = xyAtT(&span); |
- SkDebugf("%s id=%d", fun, fID); |
- SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
- for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
- SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
- } |
- SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> |
- fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); |
- SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d windSum=", |
- span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, |
- (&span)[1].fT, winding); |
- if (span.fWindSum == SK_MinS32) { |
- SkDebugf("?"); |
- } else { |
- SkDebugf("%d", span.fWindSum); |
- } |
- SkDebugf(" windValue=%d\n", span.fWindValue); |
- } |
- |
- void debugShowNewWinding(const char* fun, const Span& span, int winding, int oppWinding) { |
- const SkPoint& pt = xyAtT(&span); |
- SkDebugf("%s id=%d", fun, fID); |
- SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); |
- for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { |
- SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); |
- } |
- SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> |
- fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); |
- SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d newOppSum=%d oppSum=", |
- span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY, |
- (&span)[1].fT, winding, oppWinding); |
- if (span.fOppSum == SK_MinS32) { |
- SkDebugf("?"); |
- } else { |
- SkDebugf("%d", span.fOppSum); |
- } |
- SkDebugf(" windSum="); |
- if (span.fWindSum == SK_MinS32) { |
- SkDebugf("?"); |
- } else { |
- SkDebugf("%d", span.fWindSum); |
- } |
- SkDebugf(" windValue=%d\n", span.fWindValue); |
- } |
-#endif |
- |
-#if DEBUG_SORT || DEBUG_SWAP_TOP |
- void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first, |
- const int contourWinding, const int oppContourWinding) const { |
- if (--gDebugSortCount < 0) { |
- return; |
- } |
- SkASSERT(angles[first]->segment() == this); |
- SkASSERT(angles.count() > 1); |
- int lastSum = contourWinding; |
- int oppLastSum = oppContourWinding; |
- const Angle* firstAngle = angles[first]; |
- int windSum = lastSum - spanSign(firstAngle); |
- int oppoSign = oppSign(firstAngle); |
- int oppWindSum = oppLastSum - oppoSign; |
- #define WIND_AS_STRING(x) char x##Str[12]; if (!valid_wind(x)) strcpy(x##Str, "?"); \ |
- else snprintf(x##Str, sizeof(x##Str), "%d", x) |
- WIND_AS_STRING(contourWinding); |
- WIND_AS_STRING(oppContourWinding); |
- SkDebugf("%s %s contourWinding=%s oppContourWinding=%s sign=%d\n", fun, __FUNCTION__, |
- contourWindingStr, oppContourWindingStr, spanSign(angles[first])); |
- int index = first; |
- bool firstTime = true; |
- do { |
- const Angle& angle = *angles[index]; |
- const Segment& segment = *angle.segment(); |
- int start = angle.start(); |
- int end = angle.end(); |
- const Span& sSpan = segment.fTs[start]; |
- const Span& eSpan = segment.fTs[end]; |
- const Span& mSpan = segment.fTs[SkMin32(start, end)]; |
- bool opp = segment.fOperand ^ fOperand; |
- if (!firstTime) { |
- oppoSign = segment.oppSign(&angle); |
- if (opp) { |
- oppLastSum = oppWindSum; |
- oppWindSum -= segment.spanSign(&angle); |
- if (oppoSign) { |
- lastSum = windSum; |
- windSum -= oppoSign; |
- } |
- } else { |
- lastSum = windSum; |
- windSum -= segment.spanSign(&angle); |
- if (oppoSign) { |
- oppLastSum = oppWindSum; |
- oppWindSum -= oppoSign; |
- } |
- } |
- } |
- SkDebugf("%s [%d] %s", __FUNCTION__, index, |
- angle.unsortable() ? "*** UNSORTABLE *** " : ""); |
- #if COMPACT_DEBUG_SORT |
- SkDebugf("id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)", |
- segment.fID, kLVerbStr[segment.fVerb], |
- start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end, |
- segment.xAtT(&eSpan), segment.yAtT(&eSpan)); |
- #else |
- switch (segment.fVerb) { |
- case SkPath::kLine_Verb: |
- SkDebugf(LINE_DEBUG_STR, LINE_DEBUG_DATA(segment.fPts)); |
- break; |
- case SkPath::kQuad_Verb: |
- SkDebugf(QUAD_DEBUG_STR, QUAD_DEBUG_DATA(segment.fPts)); |
- break; |
- case SkPath::kCubic_Verb: |
- SkDebugf(CUBIC_DEBUG_STR, CUBIC_DEBUG_DATA(segment.fPts)); |
- break; |
- default: |
- SkASSERT(0); |
- } |
- SkDebugf(" tStart=%1.9g tEnd=%1.9g", sSpan.fT, eSpan.fT); |
- #endif |
- SkDebugf(" sign=%d windValue=%d windSum=", angle.sign(), mSpan.fWindValue); |
- winding_printf(mSpan.fWindSum); |
- int last, wind; |
- if (opp) { |
- last = oppLastSum; |
- wind = oppWindSum; |
- } else { |
- last = lastSum; |
- wind = windSum; |
- } |
- bool useInner = valid_wind(last) && valid_wind(wind) && useInnerWinding(last, wind); |
- WIND_AS_STRING(last); |
- WIND_AS_STRING(wind); |
- WIND_AS_STRING(lastSum); |
- WIND_AS_STRING(oppLastSum); |
- WIND_AS_STRING(windSum); |
- WIND_AS_STRING(oppWindSum); |
- #undef WIND_AS_STRING |
- if (!oppoSign) { |
- SkDebugf(" %s->%s (max=%s)", lastStr, windStr, useInner ? windStr : lastStr); |
- } else { |
- SkDebugf(" %s->%s (%s->%s)", lastStr, windStr, opp ? lastSumStr : oppLastSumStr, |
- opp ? windSumStr : oppWindSumStr); |
- } |
- SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp); |
-#if false && DEBUG_ANGLE |
- angle.debugShow(segment.xyAtT(&sSpan)); |
-#endif |
- ++index; |
- if (index == angles.count()) { |
- index = 0; |
- } |
- if (firstTime) { |
- firstTime = false; |
- } |
- } while (index != first); |
- } |
- |
- void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first) { |
- const Angle* firstAngle = angles[first]; |
- const Segment* segment = firstAngle->segment(); |
- int winding = segment->updateWinding(firstAngle); |
- int oppWinding = segment->updateOppWinding(firstAngle); |
- debugShowSort(fun, angles, first, winding, oppWinding); |
- } |
- |
-#endif |
- |
-#if DEBUG_WINDING |
- static char as_digit(int value) { |
- return value < 0 ? '?' : value <= 9 ? '0' + value : '+'; |
- } |
-#endif |
- |
-#if DEBUG_SHOW_WINDING |
- int debugShowWindingValues(int slotCount, int ofInterest) const { |
- if (!(1 << fID & ofInterest)) { |
- return 0; |
- } |
- int sum = 0; |
- SkTDArray<char> slots; |
- slots.setCount(slotCount * 2); |
- memset(slots.begin(), ' ', slotCount * 2); |
- for (int i = 0; i < fTs.count(); ++i) { |
- // if (!(1 << fTs[i].fOther->fID & ofInterest)) { |
- // continue; |
- // } |
- sum += fTs[i].fWindValue; |
- slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue); |
- sum += fTs[i].fOppValue; |
- slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValue); |
- } |
- SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.begin(), slotCount, |
- slots.begin() + slotCount); |
- return sum; |
- } |
-#endif |
- |
-private: |
- const SkPoint* fPts; |
- Bounds fBounds; |
- SkTDArray<Span> fTs; // two or more (always includes t=0 t=1) |
- // OPTIMIZATION: could pack donespans, verb, operand, xor into 1 int-sized value |
- int fDoneSpans; // quick check that segment is finished |
- // OPTIMIZATION: force the following to be byte-sized |
- SkPath::Verb fVerb; |
- bool fOperand; |
- bool fXor; // set if original contour had even-odd fill |
- bool fOppXor; // set if opposite operand had even-odd fill |
-#if DEBUG_DUMP |
- int fID; |
-#endif |
-}; |
- |
-class Contour; |
- |
-struct Coincidence { |
- Contour* fContours[2]; |
- int fSegments[2]; |
- double fTs[2][2]; |
- SkPoint fPts[2]; |
-}; |
- |
-class Contour { |
-public: |
- Contour() { |
- reset(); |
-#if DEBUG_DUMP |
- fID = ++gContourID; |
-#endif |
- } |
- |
- bool operator<(const Contour& rh) const { |
- return fBounds.fTop == rh.fBounds.fTop |
- ? fBounds.fLeft < rh.fBounds.fLeft |
- : fBounds.fTop < rh.fBounds.fTop; |
- } |
- |
- void addCoincident(int index, Contour* other, int otherIndex, |
- const Intersections& ts, bool swap) { |
- Coincidence& coincidence = *fCoincidences.append(); |
- coincidence.fContours[0] = this; // FIXME: no need to store |
- coincidence.fContours[1] = other; |
- coincidence.fSegments[0] = index; |
- coincidence.fSegments[1] = otherIndex; |
- coincidence.fTs[swap][0] = ts.fT[0][0]; |
- coincidence.fTs[swap][1] = ts.fT[0][1]; |
- coincidence.fTs[!swap][0] = ts.fT[1][0]; |
- coincidence.fTs[!swap][1] = ts.fT[1][1]; |
- coincidence.fPts[0] = ts.fPt[0].asSkPoint(); |
- coincidence.fPts[1] = ts.fPt[1].asSkPoint(); |
- } |
- |
- void addCross(const Contour* crosser) { |
-#ifdef DEBUG_CROSS |
- for (int index = 0; index < fCrosses.count(); ++index) { |
- SkASSERT(fCrosses[index] != crosser); |
- } |
-#endif |
- *fCrosses.append() = crosser; |
- } |
- |
- void addCubic(const SkPoint pts[4]) { |
- fSegments.push_back().addCubic(pts, fOperand, fXor); |
- fContainsCurves = fContainsCubics = true; |
- } |
- |
- int addLine(const SkPoint pts[2]) { |
- fSegments.push_back().addLine(pts, fOperand, fXor); |
- return fSegments.count(); |
- } |
- |
- void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) { |
- fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex); |
- } |
- |
- int addQuad(const SkPoint pts[3]) { |
- fSegments.push_back().addQuad(pts, fOperand, fXor); |
- fContainsCurves = true; |
- return fSegments.count(); |
- } |
- |
- int addT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt, double& newT) { |
- setContainsIntercepts(); |
- return fSegments[segIndex].addT(&other->fSegments[otherIndex], pt, newT); |
- } |
- |
- int addSelfT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt, double& newT) { |
- setContainsIntercepts(); |
- return fSegments[segIndex].addSelfT(&other->fSegments[otherIndex], pt, newT); |
- } |
- |
- int addUnsortableT(int segIndex, Contour* other, int otherIndex, bool start, |
- const SkPoint& pt, double& newT) { |
- return fSegments[segIndex].addUnsortableT(&other->fSegments[otherIndex], start, pt, newT); |
- } |
- |
- const Bounds& bounds() const { |
- return fBounds; |
- } |
- |
- void complete() { |
- setBounds(); |
- fContainsIntercepts = false; |
- } |
- |
- bool containsCubics() const { |
- return fContainsCubics; |
- } |
- |
- bool crosses(const Contour* crosser) const { |
- for (int index = 0; index < fCrosses.count(); ++index) { |
- if (fCrosses[index] == crosser) { |
- return true; |
- } |
- } |
- return false; |
- } |
- |
- bool done() const { |
- return fDone; |
- } |
- |
- const SkPoint& end() const { |
- const Segment& segment = fSegments.back(); |
- return segment.pts()[segment.verb()]; |
- } |
- |
- void findTooCloseToCall() { |
- int segmentCount = fSegments.count(); |
- for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { |
- fSegments[sIndex].findTooCloseToCall(); |
- } |
- } |
- |
- void fixOtherTIndex() { |
- int segmentCount = fSegments.count(); |
- for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { |
- fSegments[sIndex].fixOtherTIndex(); |
- } |
- } |
- |
- Segment* nonVerticalSegment(int& start, int& end) { |
- int segmentCount = fSortedSegments.count(); |
- SkASSERT(segmentCount > 0); |
- for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sortedIndex) { |
- Segment* testSegment = fSortedSegments[sortedIndex]; |
- if (testSegment->done()) { |
- continue; |
- } |
- start = end = 0; |
- while (testSegment->nextCandidate(start, end)) { |
- if (!testSegment->isVertical(start, end)) { |
- return testSegment; |
- } |
- } |
- } |
- return NULL; |
- } |
- |
- bool operand() const { |
- return fOperand; |
- } |
- |
- void reset() { |
- fSegments.reset(); |
- fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); |
- fContainsCurves = fContainsCubics = fContainsIntercepts = fDone = false; |
- } |
- |
- void resolveCoincidence(SkTDArray<Contour*>& contourList) { |
- int count = fCoincidences.count(); |
- for (int index = 0; index < count; ++index) { |
- Coincidence& coincidence = fCoincidences[index]; |
- SkASSERT(coincidence.fContours[0] == this); |
- int thisIndex = coincidence.fSegments[0]; |
- Segment& thisOne = fSegments[thisIndex]; |
- Contour* otherContour = coincidence.fContours[1]; |
- int otherIndex = coincidence.fSegments[1]; |
- Segment& other = otherContour->fSegments[otherIndex]; |
- if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { |
- continue; |
- } |
- #if DEBUG_CONCIDENT |
- thisOne.debugShowTs(); |
- other.debugShowTs(); |
- #endif |
- double startT = coincidence.fTs[0][0]; |
- double endT = coincidence.fTs[0][1]; |
- bool cancelers = false; |
- if (startT > endT) { |
- SkTSwap<double>(startT, endT); |
- cancelers ^= true; // FIXME: just assign true |
- } |
- SkASSERT(!approximately_negative(endT - startT)); |
- double oStartT = coincidence.fTs[1][0]; |
- double oEndT = coincidence.fTs[1][1]; |
- if (oStartT > oEndT) { |
- SkTSwap<double>(oStartT, oEndT); |
- cancelers ^= true; |
- } |
- SkASSERT(!approximately_negative(oEndT - oStartT)); |
- bool opp = fOperand ^ otherContour->fOperand; |
- if (cancelers && !opp) { |
- // make sure startT and endT have t entries |
- if (startT > 0 || oEndT < 1 |
- || thisOne.isMissing(startT) || other.isMissing(oEndT)) { |
- thisOne.addTPair(startT, other, oEndT, true, coincidence.fPts[0]); |
- } |
- if (oStartT > 0 || endT < 1 |
- || thisOne.isMissing(endT) || other.isMissing(oStartT)) { |
- other.addTPair(oStartT, thisOne, endT, true, coincidence.fPts[1]); |
- } |
- if (!thisOne.done() && !other.done()) { |
- thisOne.addTCancel(startT, endT, other, oStartT, oEndT); |
- } |
- } else { |
- if (startT > 0 || oStartT > 0 |
- || thisOne.isMissing(startT) || other.isMissing(oStartT)) { |
- thisOne.addTPair(startT, other, oStartT, true, coincidence.fPts[0]); |
- } |
- if (endT < 1 || oEndT < 1 |
- || thisOne.isMissing(endT) || other.isMissing(oEndT)) { |
- other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[1]); |
- } |
- if (!thisOne.done() && !other.done()) { |
- thisOne.addTCoincident(startT, endT, other, oStartT, oEndT); |
- } |
- } |
- #if DEBUG_CONCIDENT |
- thisOne.debugShowTs(); |
- other.debugShowTs(); |
- #endif |
- #if DEBUG_SHOW_WINDING |
- debugShowWindingValues(contourList); |
- #endif |
- } |
- } |
- |
- // first pass, add missing T values |
- // second pass, determine winding values of overlaps |
- void addCoincidentPoints() { |
- int count = fCoincidences.count(); |
- for (int index = 0; index < count; ++index) { |
- Coincidence& coincidence = fCoincidences[index]; |
- SkASSERT(coincidence.fContours[0] == this); |
- int thisIndex = coincidence.fSegments[0]; |
- Segment& thisOne = fSegments[thisIndex]; |
- Contour* otherContour = coincidence.fContours[1]; |
- int otherIndex = coincidence.fSegments[1]; |
- Segment& other = otherContour->fSegments[otherIndex]; |
- if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) { |
- // OPTIMIZATION: remove from array |
- continue; |
- } |
- #if DEBUG_CONCIDENT |
- thisOne.debugShowTs(); |
- other.debugShowTs(); |
- #endif |
- double startT = coincidence.fTs[0][0]; |
- double endT = coincidence.fTs[0][1]; |
- bool cancelers; |
- if ((cancelers = startT > endT)) { |
- SkTSwap(startT, endT); |
- SkTSwap(coincidence.fPts[0], coincidence.fPts[1]); |
- } |
- SkASSERT(!approximately_negative(endT - startT)); |
- double oStartT = coincidence.fTs[1][0]; |
- double oEndT = coincidence.fTs[1][1]; |
- if (oStartT > oEndT) { |
- SkTSwap<double>(oStartT, oEndT); |
- cancelers ^= true; |
- } |
- SkASSERT(!approximately_negative(oEndT - oStartT)); |
- bool opp = fOperand ^ otherContour->fOperand; |
- if (cancelers && !opp) { |
- // make sure startT and endT have t entries |
- if (startT > 0 || oEndT < 1 |
- || thisOne.isMissing(startT) || other.isMissing(oEndT)) { |
- thisOne.addTPair(startT, other, oEndT, true, coincidence.fPts[0]); |
- } |
- if (oStartT > 0 || endT < 1 |
- || thisOne.isMissing(endT) || other.isMissing(oStartT)) { |
- other.addTPair(oStartT, thisOne, endT, true, coincidence.fPts[1]); |
- } |
- } else { |
- if (startT > 0 || oStartT > 0 |
- || thisOne.isMissing(startT) || other.isMissing(oStartT)) { |
- thisOne.addTPair(startT, other, oStartT, true, coincidence.fPts[0]); |
- } |
- if (endT < 1 || oEndT < 1 |
- || thisOne.isMissing(endT) || other.isMissing(oEndT)) { |
- other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[1]); |
- } |
- } |
- #if DEBUG_CONCIDENT |
- thisOne.debugShowTs(); |
- other.debugShowTs(); |
- #endif |
- } |
- } |
- |
- void calcCoincidentWinding() { |
- int count = fCoincidences.count(); |
- for (int index = 0; index < count; ++index) { |
- Coincidence& coincidence = fCoincidences[index]; |
- SkASSERT(coincidence.fContours[0] == this); |
- int thisIndex = coincidence.fSegments[0]; |
- Segment& thisOne = fSegments[thisIndex]; |
- if (thisOne.done()) { |
- continue; |
- } |
- Contour* otherContour = coincidence.fContours[1]; |
- int otherIndex = coincidence.fSegments[1]; |
- Segment& other = otherContour->fSegments[otherIndex]; |
- if (other.done()) { |
- continue; |
- } |
- double startT = coincidence.fTs[0][0]; |
- double endT = coincidence.fTs[0][1]; |
- bool cancelers; |
- if ((cancelers = startT > endT)) { |
- SkTSwap<double>(startT, endT); |
- } |
- SkASSERT(!approximately_negative(endT - startT)); |
- double oStartT = coincidence.fTs[1][0]; |
- double oEndT = coincidence.fTs[1][1]; |
- if (oStartT > oEndT) { |
- SkTSwap<double>(oStartT, oEndT); |
- cancelers ^= true; |
- } |
- SkASSERT(!approximately_negative(oEndT - oStartT)); |
- bool opp = fOperand ^ otherContour->fOperand; |
- if (cancelers && !opp) { |
- // make sure startT and endT have t entries |
- if (!thisOne.done() && !other.done()) { |
- thisOne.addTCancel(startT, endT, other, oStartT, oEndT); |
- } |
- } else { |
- if (!thisOne.done() && !other.done()) { |
- thisOne.addTCoincident(startT, endT, other, oStartT, oEndT); |
- } |
- } |
- #if DEBUG_CONCIDENT |
- thisOne.debugShowTs(); |
- other.debugShowTs(); |
- #endif |
- } |
- } |
- |
- SkTArray<Segment>& segments() { |
- return fSegments; |
- } |
- |
- void setContainsIntercepts() { |
- fContainsIntercepts = true; |
- } |
- |
- void setOperand(bool isOp) { |
- fOperand = isOp; |
- } |
- |
- void setOppXor(bool isOppXor) { |
- fOppXor = isOppXor; |
- int segmentCount = fSegments.count(); |
- for (int test = 0; test < segmentCount; ++test) { |
- fSegments[test].setOppXor(isOppXor); |
- } |
- } |
- |
- void setXor(bool isXor) { |
- fXor = isXor; |
- } |
- |
- void sortSegments() { |
- int segmentCount = fSegments.count(); |
- fSortedSegments.setReserve(segmentCount); |
- for (int test = 0; test < segmentCount; ++test) { |
- *fSortedSegments.append() = &fSegments[test]; |
- } |
- QSort<Segment>(fSortedSegments.begin(), fSortedSegments.end() - 1); |
- fFirstSorted = 0; |
- } |
- |
- const SkPoint& start() const { |
- return fSegments.front().pts()[0]; |
- } |
- |
- void toPath(PathWrapper& path) const { |
- int segmentCount = fSegments.count(); |
- const SkPoint& pt = fSegments.front().pts()[0]; |
- path.deferredMove(pt); |
- for (int test = 0; test < segmentCount; ++test) { |
- fSegments[test].addCurveTo(0, 1, path, true); |
- } |
- path.close(); |
- } |
- |
- void toPartialBackward(PathWrapper& path) const { |
- int segmentCount = fSegments.count(); |
- for (int test = segmentCount - 1; test >= 0; --test) { |
- fSegments[test].addCurveTo(1, 0, path, true); |
- } |
- } |
- |
- void toPartialForward(PathWrapper& path) const { |
- int segmentCount = fSegments.count(); |
- for (int test = 0; test < segmentCount; ++test) { |
- fSegments[test].addCurveTo(0, 1, path, true); |
- } |
- } |
- |
- void topSortableSegment(const SkPoint& topLeft, SkPoint& bestXY, Segment*& topStart) { |
- int segmentCount = fSortedSegments.count(); |
- SkASSERT(segmentCount > 0); |
- int sortedIndex = fFirstSorted; |
- fDone = true; // may be cleared below |
- for ( ; sortedIndex < segmentCount; ++sortedIndex) { |
- Segment* testSegment = fSortedSegments[sortedIndex]; |
- if (testSegment->done()) { |
- if (sortedIndex == fFirstSorted) { |
- ++fFirstSorted; |
- } |
- continue; |
- } |
- fDone = false; |
- SkPoint testXY = testSegment->activeLeftTop(true, NULL); |
- if (topStart) { |
- if (testXY.fY < topLeft.fY) { |
- continue; |
- } |
- if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) { |
- continue; |
- } |
- if (bestXY.fY < testXY.fY) { |
- continue; |
- } |
- if (bestXY.fY == testXY.fY && bestXY.fX < testXY.fX) { |
- continue; |
- } |
- } |
- topStart = testSegment; |
- bestXY = testXY; |
- } |
- } |
- |
- Segment* undoneSegment(int& start, int& end) { |
- int segmentCount = fSegments.count(); |
- for (int test = 0; test < segmentCount; ++test) { |
- Segment* testSegment = &fSegments[test]; |
- if (testSegment->done()) { |
- continue; |
- } |
- testSegment->undoneSpan(start, end); |
- return testSegment; |
- } |
- return NULL; |
- } |
- |
- int updateSegment(int index, const SkPoint* pts) { |
- Segment& segment = fSegments[index]; |
- segment.updatePts(pts); |
- return segment.verb() + 1; |
- } |
- |
-#if DEBUG_TEST |
- SkTArray<Segment>& debugSegments() { |
- return fSegments; |
- } |
-#endif |
- |
-#if DEBUG_DUMP |
- void dump() { |
- int i; |
- const char className[] = "Contour"; |
- const int tab = 4; |
- SkDebugf("%s %p (contour=%d)\n", className, this, fID); |
- for (i = 0; i < fSegments.count(); ++i) { |
- SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className), |
- className, i); |
- fSegments[i].dump(); |
- } |
- SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n", |
- tab + sizeof(className), className, |
- fBounds.fLeft, fBounds.fTop, |
- fBounds.fRight, fBounds.fBottom); |
- SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className), |
- className, fContainsIntercepts); |
- SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className), |
- className, fContainsCurves); |
- } |
-#endif |
- |
-#if DEBUG_ACTIVE_SPANS |
- void debugShowActiveSpans() { |
- for (int index = 0; index < fSegments.count(); ++index) { |
- fSegments[index].debugShowActiveSpans(); |
- } |
- } |
- |
- void validateActiveSpans() { |
- for (int index = 0; index < fSegments.count(); ++index) { |
- fSegments[index].validateActiveSpans(); |
- } |
- } |
-#endif |
- |
-#if DEBUG_SHOW_WINDING |
- int debugShowWindingValues(int totalSegments, int ofInterest) { |
- int count = fSegments.count(); |
- int sum = 0; |
- for (int index = 0; index < count; ++index) { |
- sum += fSegments[index].debugShowWindingValues(totalSegments, ofInterest); |
- } |
- // SkDebugf("%s sum=%d\n", __FUNCTION__, sum); |
- return sum; |
- } |
- |
- static void debugShowWindingValues(SkTDArray<Contour*>& contourList) { |
- // int ofInterest = 1 << 1 | 1 << 5 | 1 << 9 | 1 << 13; |
- // int ofInterest = 1 << 4 | 1 << 8 | 1 << 12 | 1 << 16; |
- int ofInterest = 1 << 5 | 1 << 8; |
- int total = 0; |
- int index; |
- for (index = 0; index < contourList.count(); ++index) { |
- total += contourList[index]->segments().count(); |
- } |
- int sum = 0; |
- for (index = 0; index < contourList.count(); ++index) { |
- sum += contourList[index]->debugShowWindingValues(total, ofInterest); |
- } |
- // SkDebugf("%s total=%d\n", __FUNCTION__, sum); |
- } |
-#endif |
- |
-protected: |
- void setBounds() { |
- int count = fSegments.count(); |
- if (count == 0) { |
- SkDebugf("%s empty contour\n", __FUNCTION__); |
- SkASSERT(0); |
- // FIXME: delete empty contour? |
- return; |
- } |
- fBounds = fSegments.front().bounds(); |
- for (int index = 1; index < count; ++index) { |
- fBounds.add(fSegments[index].bounds()); |
- } |
- } |
- |
-private: |
- SkTArray<Segment> fSegments; |
- SkTDArray<Segment*> fSortedSegments; |
- int fFirstSorted; |
- SkTDArray<Coincidence> fCoincidences; |
- SkTDArray<const Contour*> fCrosses; |
- Bounds fBounds; |
- bool fContainsIntercepts; // FIXME: is this used by anybody? |
- bool fContainsCubics; |
- bool fContainsCurves; |
- bool fDone; |
- bool fOperand; // true for the second argument to a binary operator |
- bool fXor; |
- bool fOppXor; |
-#if DEBUG_DUMP |
- int fID; |
-#endif |
-}; |
- |
-class EdgeBuilder { |
-public: |
- |
-EdgeBuilder(const PathWrapper& path, SkTArray<Contour>& contours) |
- : fPath(path.nativePath()) |
- , fContours(contours) |
-{ |
- init(); |
-} |
- |
-EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours) |
- : fPath(&path) |
- , fContours(contours) |
-{ |
- init(); |
-} |
- |
-void init() { |
- fCurrentContour = NULL; |
- fOperand = false; |
- fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask; |
-#if DEBUG_DUMP |
- gContourID = 0; |
- gSegmentID = 0; |
-#endif |
- fSecondHalf = preFetch(); |
-} |
- |
-void addOperand(const SkPath& path) { |
- SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb); |
- fPathVerbs.pop(); |
- fPath = &path; |
- fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask; |
- preFetch(); |
-} |
- |
-void finish() { |
- walk(); |
- complete(); |
- if (fCurrentContour && !fCurrentContour->segments().count()) { |
- fContours.pop_back(); |
- } |
- // correct pointers in contours since fReducePts may have moved as it grew |
- int cIndex = 0; |
- int extraCount = fExtra.count(); |
- SkASSERT(extraCount == 0 || fExtra[0] == -1); |
- int eIndex = 0; |
- int rIndex = 0; |
- while (++eIndex < extraCount) { |
- int offset = fExtra[eIndex]; |
- if (offset < 0) { |
- ++cIndex; |
- continue; |
- } |
- fCurrentContour = &fContours[cIndex]; |
- rIndex += fCurrentContour->updateSegment(offset - 1, |
- &fReducePts[rIndex]); |
- } |
- fExtra.reset(); // we're done with this |
-} |
- |
-ShapeOpMask xorMask() const { |
- return fXorMask[fOperand]; |
-} |
- |
-protected: |
- |
-void complete() { |
- if (fCurrentContour && fCurrentContour->segments().count()) { |
- fCurrentContour->complete(); |
- fCurrentContour = NULL; |
- } |
-} |
- |
-// FIXME:remove once we can access path pts directly |
-int preFetch() { |
- SkPath::RawIter iter(*fPath); // FIXME: access path directly when allowed |
- SkPoint pts[4]; |
- SkPath::Verb verb; |
- do { |
- verb = iter.next(pts); |
- *fPathVerbs.append() = verb; |
- if (verb == SkPath::kMove_Verb) { |
- *fPathPts.append() = pts[0]; |
- } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) { |
- fPathPts.append(verb, &pts[1]); |
- } |
- } while (verb != SkPath::kDone_Verb); |
- return fPathVerbs.count() - 1; |
-} |
- |
-void walk() { |
- SkPath::Verb reducedVerb; |
- uint8_t* verbPtr = fPathVerbs.begin(); |
- uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf]; |
- const SkPoint* pointsPtr = fPathPts.begin(); |
- const SkPoint* finalCurveStart = NULL; |
- const SkPoint* finalCurveEnd = NULL; |
- SkPath::Verb verb; |
- while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) { |
- switch (verb) { |
- case SkPath::kMove_Verb: |
- complete(); |
- if (!fCurrentContour) { |
- fCurrentContour = fContours.push_back_n(1); |
- fCurrentContour->setOperand(fOperand); |
- fCurrentContour->setXor(fXorMask[fOperand] == kEvenOdd_Mask); |
- *fExtra.append() = -1; // start new contour |
- } |
- finalCurveEnd = pointsPtr++; |
- goto nextVerb; |
- case SkPath::kLine_Verb: |
- // skip degenerate points |
- if (pointsPtr[-1].fX != pointsPtr[0].fX |
- || pointsPtr[-1].fY != pointsPtr[0].fY) { |
- fCurrentContour->addLine(&pointsPtr[-1]); |
- } |
- break; |
- case SkPath::kQuad_Verb: |
- |
- reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts); |
- if (reducedVerb == 0) { |
- break; // skip degenerate points |
- } |
- if (reducedVerb == 1) { |
- *fExtra.append() = |
- fCurrentContour->addLine(fReducePts.end() - 2); |
- break; |
- } |
- fCurrentContour->addQuad(&pointsPtr[-1]); |
- break; |
- case SkPath::kCubic_Verb: |
- reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts); |
- if (reducedVerb == 0) { |
- break; // skip degenerate points |
- } |
- if (reducedVerb == 1) { |
- *fExtra.append() = |
- fCurrentContour->addLine(fReducePts.end() - 2); |
- break; |
- } |
- if (reducedVerb == 2) { |
- *fExtra.append() = |
- fCurrentContour->addQuad(fReducePts.end() - 3); |
- break; |
- } |
- fCurrentContour->addCubic(&pointsPtr[-1]); |
- break; |
- case SkPath::kClose_Verb: |
- SkASSERT(fCurrentContour); |
- if (finalCurveStart && finalCurveEnd |
- && *finalCurveStart != *finalCurveEnd) { |
- *fReducePts.append() = *finalCurveStart; |
- *fReducePts.append() = *finalCurveEnd; |
- *fExtra.append() = |
- fCurrentContour->addLine(fReducePts.end() - 2); |
- } |
- complete(); |
- goto nextVerb; |
- default: |
- SkDEBUGFAIL("bad verb"); |
- return; |
- } |
- finalCurveStart = &pointsPtr[verb - 1]; |
- pointsPtr += verb; |
- SkASSERT(fCurrentContour); |
- nextVerb: |
- if (verbPtr == endOfFirstHalf) { |
- fOperand = true; |
- } |
- } |
-} |
- |
-private: |
- const SkPath* fPath; |
- SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead |
- SkTDArray<uint8_t> fPathVerbs; // FIXME: remove |
- Contour* fCurrentContour; |
- SkTArray<Contour>& fContours; |
- SkTDArray<SkPoint> fReducePts; // segments created on the fly |
- SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour |
- ShapeOpMask fXorMask[2]; |
- int fSecondHalf; |
- bool fOperand; |
-}; |
- |
-class Work { |
-public: |
- enum SegmentType { |
- kHorizontalLine_Segment = -1, |
- kVerticalLine_Segment = 0, |
- kLine_Segment = SkPath::kLine_Verb, |
- kQuad_Segment = SkPath::kQuad_Verb, |
- kCubic_Segment = SkPath::kCubic_Verb, |
- }; |
- |
- void addCoincident(Work& other, const Intersections& ts, bool swap) { |
- fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap); |
- } |
- |
- // FIXME: does it make sense to write otherIndex now if we're going to |
- // fix it up later? |
- void addOtherT(int index, double otherT, int otherIndex) { |
- fContour->addOtherT(fIndex, index, otherT, otherIndex); |
- } |
- |
- // Avoid collapsing t values that are close to the same since |
- // we walk ts to describe consecutive intersections. Since a pair of ts can |
- // be nearly equal, any problems caused by this should be taken care |
- // of later. |
- // On the edge or out of range values are negative; add 2 to get end |
- int addT(const Work& other, const SkPoint& pt, double& newT) { |
- return fContour->addT(fIndex, other.fContour, other.fIndex, pt, newT); |
- } |
- |
- int addSelfT(const Work& other, const SkPoint& pt, double& newT) { |
- return fContour->addSelfT(fIndex, other.fContour, other.fIndex, pt, newT); |
- } |
- |
- int addUnsortableT(const Work& other, bool start, const SkPoint& pt, double& newT) { |
- return fContour->addUnsortableT(fIndex, other.fContour, other.fIndex, start, pt, newT); |
- } |
- |
- bool advance() { |
- return ++fIndex < fLast; |
- } |
- |
- SkScalar bottom() const { |
- return bounds().fBottom; |
- } |
- |
- const Bounds& bounds() const { |
- return fContour->segments()[fIndex].bounds(); |
- } |
- |
-#if !APPROXIMATE_CUBICS |
- const SkPoint* cubic() const { |
- return fCubic; |
- } |
-#endif |
- |
- void init(Contour* contour) { |
- fContour = contour; |
- fIndex = 0; |
- fLast = contour->segments().count(); |
- } |
- |
- bool isAdjacent(const Work& next) { |
- return fContour == next.fContour && fIndex + 1 == next.fIndex; |
- } |
- |
- bool isFirstLast(const Work& next) { |
- return fContour == next.fContour && fIndex == 0 |
- && next.fIndex == fLast - 1; |
- } |
- |
- SkScalar left() const { |
- return bounds().fLeft; |
- } |
- |
-#if !APPROXIMATE_CUBICS |
- void promoteToCubic() { |
- fCubic[0] = pts()[0]; |
- fCubic[2] = pts()[1]; |
- fCubic[3] = pts()[2]; |
- fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3; |
- fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3; |
- fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3; |
- fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3; |
- } |
-#endif |
- |
- const SkPoint* pts() const { |
- return fContour->segments()[fIndex].pts(); |
- } |
- |
- SkScalar right() const { |
- return bounds().fRight; |
- } |
- |
- ptrdiff_t segmentIndex() const { |
- return fIndex; |
- } |
- |
- SegmentType segmentType() const { |
- const Segment& segment = fContour->segments()[fIndex]; |
- SegmentType type = (SegmentType) segment.verb(); |
- if (type != kLine_Segment) { |
- return type; |
- } |
- if (segment.isHorizontal()) { |
- return kHorizontalLine_Segment; |
- } |
- if (segment.isVertical()) { |
- return kVerticalLine_Segment; |
- } |
- return kLine_Segment; |
- } |
- |
- bool startAfter(const Work& after) { |
- fIndex = after.fIndex; |
- return advance(); |
- } |
- |
- SkScalar top() const { |
- return bounds().fTop; |
- } |
- |
- SkPath::Verb verb() const { |
- return fContour->segments()[fIndex].verb(); |
- } |
- |
- SkScalar x() const { |
- return bounds().fLeft; |
- } |
- |
- bool xFlipped() const { |
- return x() != pts()[0].fX; |
- } |
- |
- SkScalar y() const { |
- return bounds().fTop; |
- } |
- |
- bool yFlipped() const { |
- return y() != pts()[0].fY; |
- } |
- |
-protected: |
- Contour* fContour; |
-#if !APPROXIMATE_CUBICS |
- SkPoint fCubic[4]; |
-#endif |
- int fIndex; |
- int fLast; |
-}; |
- |
-#if DEBUG_ADD_INTERSECTING_TS |
- |
-static void debugShowLineIntersection(int pts, const Work& wt, const Work& wn, |
- const Intersections& i) { |
- SkASSERT(i.used() == pts); |
- if (!pts) { |
- SkDebugf("%s no intersect " LINE_DEBUG_STR " " LINE_DEBUG_STR "\n", |
- __FUNCTION__, LINE_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); |
- return; |
- } |
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " LINE_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, |
- i.fT[0][0], LINE_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); |
- if (pts == 2) { |
- SkDebugf(" " T_DEBUG_STR(wtTs, 1) " " PT_DEBUG_STR, i.fT[0][1], PT_DEBUG_DATA(i, 1)); |
- } |
- SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts())); |
- if (pts == 2) { |
- SkDebugf(" " T_DEBUG_STR(wnTs, 1), i.fT[1][1]); |
- } |
- SkDebugf("\n"); |
-} |
- |
-static void debugShowQuadLineIntersection(int pts, const Work& wt, |
- const Work& wn, const Intersections& i) { |
- SkASSERT(i.used() == pts); |
- if (!pts) { |
- SkDebugf("%s no intersect " QUAD_DEBUG_STR " " LINE_DEBUG_STR "\n", |
- __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); |
- return; |
- } |
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, |
- i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); |
- } |
- SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts())); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); |
- } |
- SkDebugf("\n"); |
-} |
- |
-static void debugShowQuadIntersection(int pts, const Work& wt, |
- const Work& wn, const Intersections& i) { |
- SkASSERT(i.used() == pts); |
- if (!pts) { |
- SkDebugf("%s no intersect " QUAD_DEBUG_STR " " QUAD_DEBUG_STR "\n", |
- __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts())); |
- return; |
- } |
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, |
- i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); |
- } |
- SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts())); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); |
- } |
- SkDebugf("\n"); |
-} |
- |
-static void debugShowCubicLineIntersection(int pts, const Work& wt, |
- const Work& wn, const Intersections& i) { |
- SkASSERT(i.used() == pts); |
- if (!pts) { |
- SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " LINE_DEBUG_STR "\n", |
- __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts())); |
- return; |
- } |
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, |
- i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); |
- } |
- SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts())); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); |
- } |
- SkDebugf("\n"); |
-} |
- |
-static void debugShowCubicQuadIntersection(int pts, const Work& wt, |
- const Work& wn, const Intersections& i) { |
- SkASSERT(i.used() == pts); |
- if (!pts) { |
- SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " QUAD_DEBUG_STR "\n", |
- __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts())); |
- return; |
- } |
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, |
- i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); |
- } |
- SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts())); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); |
- } |
- SkDebugf("\n"); |
-} |
- |
-static void debugShowCubicIntersection(int pts, const Work& wt, |
- const Work& wn, const Intersections& i) { |
- SkASSERT(i.used() == pts); |
- if (!pts) { |
- SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " CUBIC_DEBUG_STR "\n", |
- __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), CUBIC_DEBUG_DATA(wn.pts())); |
- return; |
- } |
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, |
- i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n)); |
- } |
- SkDebugf(" wnTs[0]=%g " CUBIC_DEBUG_STR, i.fT[1][0], CUBIC_DEBUG_DATA(wn.pts())); |
- for (int n = 1; n < pts; ++n) { |
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); |
- } |
- SkDebugf("\n"); |
-} |
- |
-static void debugShowCubicIntersection(int pts, const Work& wt, const Intersections& i) { |
- SkASSERT(i.used() == pts); |
- if (!pts) { |
- SkDebugf("%s no self intersect " CUBIC_DEBUG_STR "\n", __FUNCTION__, |
- CUBIC_DEBUG_DATA(wt.pts())); |
- return; |
- } |
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__, |
- i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); |
- SkDebugf(" " T_DEBUG_STR(wtTs, 1), i.fT[1][0]); |
- SkDebugf("\n"); |
-} |
- |
-#else |
-static void debugShowLineIntersection(int , const Work& , const Work& , const Intersections& ) { |
-} |
- |
-static void debugShowQuadLineIntersection(int , const Work& , const Work& , const Intersections& ) { |
-} |
- |
-static void debugShowQuadIntersection(int , const Work& , const Work& , const Intersections& ) { |
-} |
- |
-static void debugShowCubicLineIntersection(int , const Work& , const Work& , |
- const Intersections& ) { |
-} |
- |
-static void debugShowCubicQuadIntersection(int , const Work& , const Work& , |
- const Intersections& ) { |
-} |
- |
-static void debugShowCubicIntersection(int , const Work& , const Work& , const Intersections& ) { |
-} |
- |
-static void debugShowCubicIntersection(int , const Work& , const Intersections& ) { |
-} |
-#endif |
- |
-static bool addIntersectTs(Contour* test, Contour* next) { |
- |
- if (test != next) { |
- if (test->bounds().fBottom < next->bounds().fTop) { |
- return false; |
- } |
- if (!Bounds::Intersects(test->bounds(), next->bounds())) { |
- return true; |
- } |
- } |
- Work wt; |
- wt.init(test); |
- bool foundCommonContour = test == next; |
- do { |
- Work wn; |
- wn.init(next); |
- if (test == next && !wn.startAfter(wt)) { |
- continue; |
- } |
- do { |
- if (!Bounds::Intersects(wt.bounds(), wn.bounds())) { |
- continue; |
- } |
- int pts; |
- Intersections ts; |
- bool swap = false; |
- switch (wt.segmentType()) { |
- case Work::kHorizontalLine_Segment: |
- swap = true; |
- switch (wn.segmentType()) { |
- case Work::kHorizontalLine_Segment: |
- case Work::kVerticalLine_Segment: |
- case Work::kLine_Segment: { |
- pts = HLineIntersect(wn.pts(), wt.left(), |
- wt.right(), wt.y(), wt.xFlipped(), ts); |
- debugShowLineIntersection(pts, wt, wn, ts); |
- break; |
- } |
- case Work::kQuad_Segment: { |
- pts = HQuadIntersect(wn.pts(), wt.left(), |
- wt.right(), wt.y(), wt.xFlipped(), ts); |
- break; |
- } |
- case Work::kCubic_Segment: { |
- pts = HCubicIntersect(wn.pts(), wt.left(), |
- wt.right(), wt.y(), wt.xFlipped(), ts); |
- debugShowCubicLineIntersection(pts, wn, wt, ts); |
- break; |
- } |
- default: |
- SkASSERT(0); |
- } |
- break; |
- case Work::kVerticalLine_Segment: |
- swap = true; |
- switch (wn.segmentType()) { |
- case Work::kHorizontalLine_Segment: |
- case Work::kVerticalLine_Segment: |
- case Work::kLine_Segment: { |
- pts = VLineIntersect(wn.pts(), wt.top(), |
- wt.bottom(), wt.x(), wt.yFlipped(), ts); |
- debugShowLineIntersection(pts, wt, wn, ts); |
- break; |
- } |
- case Work::kQuad_Segment: { |
- pts = VQuadIntersect(wn.pts(), wt.top(), |
- wt.bottom(), wt.x(), wt.yFlipped(), ts); |
- break; |
- } |
- case Work::kCubic_Segment: { |
- pts = VCubicIntersect(wn.pts(), wt.top(), |
- wt.bottom(), wt.x(), wt.yFlipped(), ts); |
- debugShowCubicLineIntersection(pts, wn, wt, ts); |
- break; |
- } |
- default: |
- SkASSERT(0); |
- } |
- break; |
- case Work::kLine_Segment: |
- switch (wn.segmentType()) { |
- case Work::kHorizontalLine_Segment: |
- pts = HLineIntersect(wt.pts(), wn.left(), |
- wn.right(), wn.y(), wn.xFlipped(), ts); |
- debugShowLineIntersection(pts, wt, wn, ts); |
- break; |
- case Work::kVerticalLine_Segment: |
- pts = VLineIntersect(wt.pts(), wn.top(), |
- wn.bottom(), wn.x(), wn.yFlipped(), ts); |
- debugShowLineIntersection(pts, wt, wn, ts); |
- break; |
- case Work::kLine_Segment: { |
- pts = LineIntersect(wt.pts(), wn.pts(), ts); |
- debugShowLineIntersection(pts, wt, wn, ts); |
- break; |
- } |
- case Work::kQuad_Segment: { |
- swap = true; |
- pts = QuadLineIntersect(wn.pts(), wt.pts(), ts); |
- debugShowQuadLineIntersection(pts, wn, wt, ts); |
- break; |
- } |
- case Work::kCubic_Segment: { |
- swap = true; |
- pts = CubicLineIntersect(wn.pts(), wt.pts(), ts); |
- debugShowCubicLineIntersection(pts, wn, wt, ts); |
- break; |
- } |
- default: |
- SkASSERT(0); |
- } |
- break; |
- case Work::kQuad_Segment: |
- switch (wn.segmentType()) { |
- case Work::kHorizontalLine_Segment: |
- pts = HQuadIntersect(wt.pts(), wn.left(), |
- wn.right(), wn.y(), wn.xFlipped(), ts); |
- break; |
- case Work::kVerticalLine_Segment: |
- pts = VQuadIntersect(wt.pts(), wn.top(), |
- wn.bottom(), wn.x(), wn.yFlipped(), ts); |
- break; |
- case Work::kLine_Segment: { |
- pts = QuadLineIntersect(wt.pts(), wn.pts(), ts); |
- debugShowQuadLineIntersection(pts, wt, wn, ts); |
- break; |
- } |
- case Work::kQuad_Segment: { |
- pts = QuadIntersect(wt.pts(), wn.pts(), ts); |
- debugShowQuadIntersection(pts, wt, wn, ts); |
- break; |
- } |
- case Work::kCubic_Segment: { |
- #if APPROXIMATE_CUBICS |
- swap = true; |
- pts = CubicQuadIntersect(wn.pts(), wt.pts(), ts); |
- debugShowCubicQuadIntersection(pts, wn, wt, ts); |
- #else |
- wt.promoteToCubic(); |
- pts = CubicIntersect(wt.cubic(), wn.pts(), ts); |
- debugShowCubicIntersection(pts, wt, wn, ts); |
- #endif |
- break; |
- } |
- default: |
- SkASSERT(0); |
- } |
- break; |
- case Work::kCubic_Segment: |
- switch (wn.segmentType()) { |
- case Work::kHorizontalLine_Segment: |
- pts = HCubicIntersect(wt.pts(), wn.left(), |
- wn.right(), wn.y(), wn.xFlipped(), ts); |
- debugShowCubicLineIntersection(pts, wt, wn, ts); |
- break; |
- case Work::kVerticalLine_Segment: |
- pts = VCubicIntersect(wt.pts(), wn.top(), |
- wn.bottom(), wn.x(), wn.yFlipped(), ts); |
- debugShowCubicLineIntersection(pts, wt, wn, ts); |
- break; |
- case Work::kLine_Segment: { |
- pts = CubicLineIntersect(wt.pts(), wn.pts(), ts); |
- debugShowCubicLineIntersection(pts, wt, wn, ts); |
- break; |
- } |
- case Work::kQuad_Segment: { |
- #if APPROXIMATE_CUBICS |
- pts = CubicQuadIntersect(wt.pts(), wn.pts(), ts); |
- debugShowCubicQuadIntersection(pts, wt, wn, ts); |
- #else |
- wn.promoteToCubic(); |
- pts = CubicIntersect(wt.pts(), wn.cubic(), ts); |
- debugShowCubicIntersection(pts, wt, wn, ts); |
- #endif |
- break; |
- } |
- case Work::kCubic_Segment: { |
- pts = CubicIntersect(wt.pts(), wn.pts(), ts); |
- debugShowCubicIntersection(pts, wt, wn, ts); |
- break; |
- } |
- default: |
- SkASSERT(0); |
- } |
- break; |
- default: |
- SkASSERT(0); |
- } |
- if (!foundCommonContour && pts > 0) { |
- test->addCross(next); |
- next->addCross(test); |
- foundCommonContour = true; |
- } |
- // in addition to recording T values, record matching segment |
- if (ts.unsortable()) { |
- bool start = true; |
- for (int pt = 0; pt < ts.used(); ++pt) { |
- // FIXME: if unsortable, the other points to the original. This logic is |
- // untested downstream. |
- SkPoint point = ts.fPt[pt].asSkPoint(); |
- int testTAt = wt.addUnsortableT(wt, start, point, ts.fT[swap][pt]); |
- wt.addOtherT(testTAt, ts.fT[swap][pt], testTAt); |
- testTAt = wn.addUnsortableT(wn, start ^ ts.fFlip, point, ts.fT[!swap][pt]); |
- wn.addOtherT(testTAt, ts.fT[!swap][pt], testTAt); |
- start ^= true; |
- } |
- continue; |
- } |
- if (pts == 2) { |
- if (wn.segmentType() <= Work::kLine_Segment |
- && wt.segmentType() <= Work::kLine_Segment) { |
- wt.addCoincident(wn, ts, swap); |
- continue; |
- } |
- if (wn.segmentType() >= Work::kQuad_Segment |
- && wt.segmentType() >= Work::kQuad_Segment |
- && ts.fIsCoincident[0]) { |
- SkASSERT(ts.coincidentUsed() == 2); |
- wt.addCoincident(wn, ts, swap); |
- continue; |
- } |
- |
- } |
- for (int pt = 0; pt < pts; ++pt) { |
- SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1); |
- SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1); |
- SkPoint point = ts.fPt[pt].asSkPoint(); |
- int testTAt = wt.addT(wn, point, ts.fT[swap][pt]); |
- int nextTAt = wn.addT(wt, point, ts.fT[!swap][pt]); |
- wt.addOtherT(testTAt, ts.fT[!swap][pt ^ ts.fFlip], nextTAt); |
- wn.addOtherT(nextTAt, ts.fT[swap][pt ^ ts.fFlip], testTAt); |
- } |
- } while (wn.advance()); |
- } while (wt.advance()); |
- return true; |
-} |
- |
-static void addSelfIntersectTs(Contour* test) { |
- Work wt; |
- wt.init(test); |
- do { |
- if (wt.segmentType() != Work::kCubic_Segment) { |
- continue; |
- } |
- Intersections ts; |
- int pts = CubicIntersect(wt.pts(), ts); |
- debugShowCubicIntersection(pts, wt, ts); |
- if (!pts) { |
- continue; |
- } |
- SkASSERT(pts == 1); |
- SkASSERT(ts.fT[0][0] >= 0 && ts.fT[0][0] <= 1); |
- SkASSERT(ts.fT[1][0] >= 0 && ts.fT[1][0] <= 1); |
- SkPoint point = ts.fPt[0].asSkPoint(); |
- int testTAt = wt.addSelfT(wt, point, ts.fT[0][0]); |
- int nextTAt = wt.addT(wt, point, ts.fT[1][0]); |
- wt.addOtherT(testTAt, ts.fT[1][0], nextTAt); |
- wt.addOtherT(nextTAt, ts.fT[0][0], testTAt); |
- } while (wt.advance()); |
-} |
- |
-// resolve any coincident pairs found while intersecting, and |
-// see if coincidence is formed by clipping non-concident segments |
-static void coincidenceCheck(SkTDArray<Contour*>& contourList, int total) { |
- int contourCount = contourList.count(); |
-#if ONE_PASS_COINCIDENCE_CHECK |
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
- Contour* contour = contourList[cIndex]; |
- contour->resolveCoincidence(contourList); |
- } |
-#else |
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
- Contour* contour = contourList[cIndex]; |
- contour->addCoincidentPoints(); |
- } |
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
- Contour* contour = contourList[cIndex]; |
- contour->calcCoincidentWinding(); |
- } |
-#endif |
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
- Contour* contour = contourList[cIndex]; |
- contour->findTooCloseToCall(); |
- } |
-} |
- |
-static int contourRangeCheckY(SkTDArray<Contour*>& contourList, Segment*& current, int& index, |
- int& endIndex, double& bestHit, SkScalar& bestDx, bool& tryAgain, double& mid, bool opp) { |
- SkPoint basePt; |
- double tAtMid = current->tAtMid(index, endIndex, mid); |
- current->xyAtT(tAtMid, basePt); |
- int contourCount = contourList.count(); |
- SkScalar bestY = SK_ScalarMin; |
- Segment* bestSeg = NULL; |
- int bestTIndex; |
- bool bestOpp; |
- bool hitSomething = false; |
- for (int cTest = 0; cTest < contourCount; ++cTest) { |
- Contour* contour = contourList[cTest]; |
- bool testOpp = contour->operand() ^ current->operand() ^ opp; |
- if (basePt.fY < contour->bounds().fTop) { |
- continue; |
- } |
- if (bestY > contour->bounds().fBottom) { |
- continue; |
- } |
- int segmentCount = contour->segments().count(); |
- for (int test = 0; test < segmentCount; ++test) { |
- Segment* testSeg = &contour->segments()[test]; |
- SkScalar testY = bestY; |
- double testHit; |
- int testTIndex = testSeg->crossedSpanY(basePt, testY, testHit, hitSomething, tAtMid, |
- testOpp, testSeg == current); |
- if (testTIndex < 0) { |
- if (testTIndex == SK_MinS32) { |
- hitSomething = true; |
- bestSeg = NULL; |
- goto abortContours; // vertical encountered, return and try different point |
- } |
- continue; |
- } |
- if (testSeg == current && current->betweenTs(index, testHit, endIndex)) { |
- double baseT = current->t(index); |
- double endT = current->t(endIndex); |
- double newMid = (testHit - baseT) / (endT - baseT); |
-#if DEBUG_WINDING |
- SkPoint midXY, newXY; |
- double midT = current->tAtMid(index, endIndex, mid); |
- current->xyAtT(midT, midXY); |
- double newMidT = current->tAtMid(index, endIndex, newMid); |
- current->xyAtT(newMidT, newXY); |
- SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)" |
- " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__, |
- current->debugID(), mid, newMid, |
- baseT, current->xAtT(index), current->yAtT(index), |
- baseT + mid * (endT - baseT), midXY.fX, midXY.fY, |
- baseT + newMid * (endT - baseT), newXY.fX, newXY.fY, |
- endT, current->xAtT(endIndex), current->yAtT(endIndex)); |
-#endif |
- mid = newMid * 2; // calling loop with divide by 2 before continuing |
- return SK_MinS32; |
- } |
- bestSeg = testSeg; |
- bestHit = testHit; |
- bestOpp = testOpp; |
- bestTIndex = testTIndex; |
- bestY = testY; |
- } |
- } |
-abortContours: |
- int result; |
- if (!bestSeg) { |
- result = hitSomething ? SK_MinS32 : 0; |
- } else { |
- if (bestSeg->windSum(bestTIndex) == SK_MinS32) { |
- current = bestSeg; |
- index = bestTIndex; |
- endIndex = bestSeg->nextSpan(bestTIndex, 1); |
- SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); |
- tryAgain = true; |
- return 0; |
- } |
- result = bestSeg->windingAtT(bestHit, bestTIndex, bestOpp, bestDx); |
- SkASSERT(bestDx); |
- } |
- double baseT = current->t(index); |
- double endT = current->t(endIndex); |
- bestHit = baseT + mid * (endT - baseT); |
- return result; |
-} |
- |
-static Segment* findUndone(SkTDArray<Contour*>& contourList, int& start, int& end) { |
- int contourCount = contourList.count(); |
- Segment* result; |
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
- Contour* contour = contourList[cIndex]; |
- result = contour->undoneSegment(start, end); |
- if (result) { |
- return result; |
- } |
- } |
- return NULL; |
-} |
- |
-#define OLD_FIND_CHASE 1 |
- |
-static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex) { |
- while (chase.count()) { |
- Span* span; |
- chase.pop(&span); |
- const Span& backPtr = span->fOther->span(span->fOtherIndex); |
- Segment* segment = backPtr.fOther; |
- tIndex = backPtr.fOtherIndex; |
- SkTDArray<Angle> angles; |
- int done = 0; |
- if (segment->activeAngle(tIndex, done, angles)) { |
- Angle* last = angles.end() - 1; |
- tIndex = last->start(); |
- endIndex = last->end(); |
- #if TRY_ROTATE |
- *chase.insert(0) = span; |
- #else |
- *chase.append() = span; |
- #endif |
- return last->segment(); |
- } |
- if (done == angles.count()) { |
- continue; |
- } |
- SkTDArray<Angle*> sorted; |
- bool sortable = Segment::SortAngles(angles, sorted); |
- int angleCount = sorted.count(); |
-#if DEBUG_SORT |
- sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); |
-#endif |
- if (!sortable) { |
- continue; |
- } |
- // find first angle, initialize winding to computed fWindSum |
- int firstIndex = -1; |
- const Angle* angle; |
-#if OLD_FIND_CHASE |
- int winding; |
- do { |
- angle = sorted[++firstIndex]; |
- segment = angle->segment(); |
- winding = segment->windSum(angle); |
- } while (winding == SK_MinS32); |
- int spanWinding = segment->spanSign(angle->start(), angle->end()); |
- #if DEBUG_WINDING |
- SkDebugf("%s winding=%d spanWinding=%d\n", |
- __FUNCTION__, winding, spanWinding); |
- #endif |
- // turn span winding into contour winding |
- if (spanWinding * winding < 0) { |
- winding += spanWinding; |
- } |
- #if DEBUG_SORT |
- segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0); |
- #endif |
- // we care about first sign and whether wind sum indicates this |
- // edge is inside or outside. Maybe need to pass span winding |
- // or first winding or something into this function? |
- // advance to first undone angle, then return it and winding |
- // (to set whether edges are active or not) |
- int nextIndex = firstIndex + 1; |
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
- angle = sorted[firstIndex]; |
- winding -= angle->segment()->spanSign(angle); |
-#else |
- do { |
- angle = sorted[++firstIndex]; |
- segment = angle->segment(); |
- } while (segment->windSum(angle) == SK_MinS32); |
- #if DEBUG_SORT |
- segment->debugShowSort(__FUNCTION__, sorted, firstIndex); |
- #endif |
- int sumWinding = segment->updateWindingReverse(angle); |
- int nextIndex = firstIndex + 1; |
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount; |
- Segment* first = NULL; |
-#endif |
- do { |
- SkASSERT(nextIndex != firstIndex); |
- if (nextIndex == angleCount) { |
- nextIndex = 0; |
- } |
- angle = sorted[nextIndex]; |
- segment = angle->segment(); |
-#if OLD_FIND_CHASE |
- int maxWinding = winding; |
- winding -= segment->spanSign(angle); |
- #if DEBUG_SORT |
- SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__, |
- segment->debugID(), maxWinding, winding, angle->sign()); |
- #endif |
- tIndex = angle->start(); |
- endIndex = angle->end(); |
- int lesser = SkMin32(tIndex, endIndex); |
- const Span& nextSpan = segment->span(lesser); |
- if (!nextSpan.fDone) { |
-#if 1 |
- // FIXME: this be wrong? assign startWinding if edge is in |
- // same direction. If the direction is opposite, winding to |
- // assign is flipped sign or +/- 1? |
- if (useInnerWinding(maxWinding, winding)) { |
- maxWinding = winding; |
- } |
- segment->markAndChaseWinding(angle, maxWinding, 0); |
-#endif |
- break; |
- } |
-#else |
- int start = angle->start(); |
- int end = angle->end(); |
- int maxWinding; |
- segment->setUpWinding(start, end, maxWinding, sumWinding); |
- if (!segment->done(angle)) { |
- if (!first) { |
- first = segment; |
- tIndex = start; |
- endIndex = end; |
- } |
- (void) segment->markAngle(maxWinding, sumWinding, true, angle); |
- } |
-#endif |
- } while (++nextIndex != lastIndex); |
- #if TRY_ROTATE |
- *chase.insert(0) = span; |
- #else |
- *chase.append() = span; |
- #endif |
- return segment; |
- } |
- return NULL; |
-} |
- |
-#if DEBUG_ACTIVE_SPANS |
-static void debugShowActiveSpans(SkTDArray<Contour*>& contourList) { |
- int index; |
- for (index = 0; index < contourList.count(); ++ index) { |
- contourList[index]->debugShowActiveSpans(); |
- } |
- for (index = 0; index < contourList.count(); ++ index) { |
- contourList[index]->validateActiveSpans(); |
- } |
-} |
-#endif |
- |
-static Segment* findSortableTop(SkTDArray<Contour*>& contourList, int& index, |
- int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool onlySortable) { |
- Segment* result; |
- do { |
- SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax}; |
- int contourCount = contourList.count(); |
- Segment* topStart = NULL; |
- done = true; |
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
- Contour* contour = contourList[cIndex]; |
- if (contour->done()) { |
- continue; |
- } |
- const Bounds& bounds = contour->bounds(); |
- if (bounds.fBottom < topLeft.fY) { |
- done = false; |
- continue; |
- } |
- if (bounds.fBottom == topLeft.fY && bounds.fRight < topLeft.fX) { |
- done = false; |
- continue; |
- } |
- contour->topSortableSegment(topLeft, bestXY, topStart); |
- if (!contour->done()) { |
- done = false; |
- } |
- } |
- if (!topStart) { |
- return NULL; |
- } |
- topLeft = bestXY; |
- result = topStart->findTop(index, endIndex, unsortable, onlySortable); |
- } while (!result); |
- return result; |
-} |
- |
-static int rightAngleWinding(SkTDArray<Contour*>& contourList, |
- Segment*& current, int& index, int& endIndex, double& tHit, SkScalar& hitDx, bool& tryAgain, |
- bool opp) { |
- double test = 0.9; |
- int contourWinding; |
- do { |
- contourWinding = contourRangeCheckY(contourList, current, index, endIndex, tHit, hitDx, |
- tryAgain, test, opp); |
- if (contourWinding != SK_MinS32 || tryAgain) { |
- return contourWinding; |
- } |
- test /= 2; |
- } while (!approximately_negative(test)); |
- SkASSERT(0); // should be OK to comment out, but interested when this hits |
- return contourWinding; |
-} |
- |
-static void skipVertical(SkTDArray<Contour*>& contourList, |
- Segment*& current, int& index, int& endIndex) { |
- if (!current->isVertical(index, endIndex)) { |
- return; |
- } |
- int contourCount = contourList.count(); |
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) { |
- Contour* contour = contourList[cIndex]; |
- if (contour->done()) { |
- continue; |
- } |
- current = contour->nonVerticalSegment(index, endIndex); |
- if (current) { |
- return; |
- } |
- } |
-} |
- |
-static Segment* findSortableTop(SkTDArray<Contour*>& contourList, bool& firstContour, int& index, |
- int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool binary) { |
- Segment* current = findSortableTop(contourList, index, endIndex, topLeft, unsortable, done, |
- true); |
- if (!current) { |
- return NULL; |
- } |
- if (firstContour) { |
- current->initWinding(index, endIndex); |
- firstContour = false; |
- return current; |
- } |
- int minIndex = SkMin32(index, endIndex); |
- int sumWinding = current->windSum(minIndex); |
- if (sumWinding != SK_MinS32) { |
- return current; |
- } |
- sumWinding = current->computeSum(index, endIndex, binary); |
- if (sumWinding != SK_MinS32) { |
- return current; |
- } |
- int contourWinding; |
- int oppContourWinding = 0; |
- // the simple upward projection of the unresolved points hit unsortable angles |
- // shoot rays at right angles to the segment to find its winding, ignoring angle cases |
- bool tryAgain; |
- double tHit; |
- SkScalar hitDx = 0; |
- SkScalar hitOppDx = 0; |
- do { |
- // if current is vertical, find another candidate which is not |
- // if only remaining candidates are vertical, then they can be marked done |
- SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); |
- skipVertical(contourList, current, index, endIndex); |
- SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); |
- tryAgain = false; |
- contourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitDx, |
- tryAgain, false); |
- if (tryAgain) { |
- continue; |
- } |
- if (!binary) { |
- break; |
- } |
- oppContourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitOppDx, |
- tryAgain, true); |
- } while (tryAgain); |
- |
- current->initWinding(index, endIndex, tHit, contourWinding, hitDx, oppContourWinding, hitOppDx); |
- return current; |
-} |
- |
-// rewrite that abandons keeping local track of winding |
-static bool bridgeWinding(SkTDArray<Contour*>& contourList, PathWrapper& simple) { |
- bool firstContour = true; |
- bool unsortable = false; |
- bool topUnsortable = false; |
- SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin}; |
- do { |
- int index, endIndex; |
- bool topDone; |
- Segment* current = findSortableTop(contourList, firstContour, index, endIndex, topLeft, |
- topUnsortable, topDone, false); |
- if (!current) { |
- if (topUnsortable || !topDone) { |
- topUnsortable = false; |
- SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin); |
- topLeft.fX = topLeft.fY = SK_ScalarMin; |
- continue; |
- } |
- break; |
- } |
- SkTDArray<Span*> chaseArray; |
- do { |
- if (current->activeWinding(index, endIndex)) { |
- do { |
- #if DEBUG_ACTIVE_SPANS |
- if (!unsortable && current->done()) { |
- debugShowActiveSpans(contourList); |
- } |
- #endif |
- SkASSERT(unsortable || !current->done()); |
- int nextStart = index; |
- int nextEnd = endIndex; |
- Segment* next = current->findNextWinding(chaseArray, nextStart, nextEnd, |
- unsortable); |
- if (!next) { |
- if (!unsortable && simple.hasMove() |
- && current->verb() != SkPath::kLine_Verb |
- && !simple.isClosed()) { |
- current->addCurveTo(index, endIndex, simple, true); |
- SkASSERT(simple.isClosed()); |
- } |
- break; |
- } |
- #if DEBUG_FLOW |
- SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, |
- current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY, |
- current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY); |
- #endif |
- current->addCurveTo(index, endIndex, simple, true); |
- current = next; |
- index = nextStart; |
- endIndex = nextEnd; |
- } while (!simple.isClosed() && (!unsortable |
- || !current->done(SkMin32(index, endIndex)))); |
- if (current->activeWinding(index, endIndex) && !simple.isClosed()) { |
- SkASSERT(unsortable); |
- int min = SkMin32(index, endIndex); |
- if (!current->done(min)) { |
- current->addCurveTo(index, endIndex, simple, true); |
- current->markDoneUnary(min); |
- } |
- } |
- simple.close(); |
- } else { |
- Span* last = current->markAndChaseDoneUnary(index, endIndex); |
- if (last && !last->fLoop) { |
- *chaseArray.append() = last; |
- } |
- } |
- current = findChase(chaseArray, index, endIndex); |
- #if DEBUG_ACTIVE_SPANS |
- debugShowActiveSpans(contourList); |
- #endif |
- if (!current) { |
- break; |
- } |
- } while (true); |
- } while (true); |
- return simple.someAssemblyRequired(); |
-} |
- |
-// returns true if all edges were processed |
-static bool bridgeXor(SkTDArray<Contour*>& contourList, PathWrapper& simple) { |
- Segment* current; |
- int start, end; |
- bool unsortable = false; |
- bool closable = true; |
- while ((current = findUndone(contourList, start, end))) { |
- do { |
- #if DEBUG_ACTIVE_SPANS |
- if (!unsortable && current->done()) { |
- debugShowActiveSpans(contourList); |
- } |
- #endif |
- SkASSERT(unsortable || !current->done()); |
- int nextStart = start; |
- int nextEnd = end; |
- Segment* next = current->findNextXor(nextStart, nextEnd, unsortable); |
- if (!next) { |
- if (!unsortable && simple.hasMove() |
- && current->verb() != SkPath::kLine_Verb |
- && !simple.isClosed()) { |
- current->addCurveTo(start, end, simple, true); |
- SkASSERT(simple.isClosed()); |
- } |
- break; |
- } |
- #if DEBUG_FLOW |
- SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__, |
- current->debugID(), current->xyAtT(start).fX, current->xyAtT(start).fY, |
- current->xyAtT(end).fX, current->xyAtT(end).fY); |
- #endif |
- current->addCurveTo(start, end, simple, true); |
- current = next; |
- start = nextStart; |
- end = nextEnd; |
- } while (!simple.isClosed() && (!unsortable || !current->done(SkMin32(start, end)))); |
- if (!simple.isClosed()) { |
- SkASSERT(unsortable); |
- int min = SkMin32(start, end); |
- if (!current->done(min)) { |
- current->addCurveTo(start, end, simple, true); |
- current->markDone(min, 1); |
- } |
- closable = false; |
- } |
- simple.close(); |
- #if DEBUG_ACTIVE_SPANS |
- debugShowActiveSpans(contourList); |
- #endif |
- } |
- return closable; |
-} |
- |
-static void fixOtherTIndex(SkTDArray<Contour*>& contourList) { |
- int contourCount = contourList.count(); |
- for (int cTest = 0; cTest < contourCount; ++cTest) { |
- Contour* contour = contourList[cTest]; |
- contour->fixOtherTIndex(); |
- } |
-} |
- |
-static void sortSegments(SkTDArray<Contour*>& contourList) { |
- int contourCount = contourList.count(); |
- for (int cTest = 0; cTest < contourCount; ++cTest) { |
- Contour* contour = contourList[cTest]; |
- contour->sortSegments(); |
- } |
-} |
- |
-static void makeContourList(SkTArray<Contour>& contours, SkTDArray<Contour*>& list, |
- bool evenOdd, bool oppEvenOdd) { |
- int count = contours.count(); |
- if (count == 0) { |
- return; |
- } |
- for (int index = 0; index < count; ++index) { |
- Contour& contour = contours[index]; |
- contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd); |
- *list.append() = &contour; |
- } |
- QSort<Contour>(list.begin(), list.end() - 1); |
-} |
- |
-static bool approximatelyEqual(const SkPoint& a, const SkPoint& b) { |
- return AlmostEqualUlps(a.fX, b.fX) && AlmostEqualUlps(a.fY, b.fY); |
-} |
- |
-static bool lessThan(SkTDArray<double>& distances, const int one, const int two) { |
- return distances[one] < distances[two]; |
-} |
- /* |
- check start and end of each contour |
- if not the same, record them |
- match them up |
- connect closest |
- reassemble contour pieces into new path |
- */ |
-static void assemble(const PathWrapper& path, PathWrapper& simple) { |
-#if DEBUG_PATH_CONSTRUCTION |
- SkDebugf("%s\n", __FUNCTION__); |
-#endif |
- SkTArray<Contour> contours; |
- EdgeBuilder builder(path, contours); |
- builder.finish(); |
- int count = contours.count(); |
- int outer; |
- SkTDArray<int> runs; // indices of partial contours |
- for (outer = 0; outer < count; ++outer) { |
- const Contour& eContour = contours[outer]; |
- const SkPoint& eStart = eContour.start(); |
- const SkPoint& eEnd = eContour.end(); |
-#if DEBUG_ASSEMBLE |
- SkDebugf("%s contour", __FUNCTION__); |
- if (!approximatelyEqual(eStart, eEnd)) { |
- SkDebugf("[%d]", runs.count()); |
- } else { |
- SkDebugf(" "); |
- } |
- SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", |
- eStart.fX, eStart.fY, eEnd.fX, eEnd.fY); |
-#endif |
- if (approximatelyEqual(eStart, eEnd)) { |
- eContour.toPath(simple); |
- continue; |
- } |
- *runs.append() = outer; |
- } |
- count = runs.count(); |
- if (count == 0) { |
- return; |
- } |
- SkTDArray<int> sLink, eLink; |
- sLink.setCount(count); |
- eLink.setCount(count); |
- int rIndex, iIndex; |
- for (rIndex = 0; rIndex < count; ++rIndex) { |
- sLink[rIndex] = eLink[rIndex] = SK_MaxS32; |
- } |
- SkTDArray<double> distances; |
- const int ends = count * 2; // all starts and ends |
- const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2 |
- distances.setCount(entries); |
- for (rIndex = 0; rIndex < ends - 1; ++rIndex) { |
- outer = runs[rIndex >> 1]; |
- const Contour& oContour = contours[outer]; |
- const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start(); |
- const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2) |
- * ends - rIndex - 1; |
- for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) { |
- int inner = runs[iIndex >> 1]; |
- const Contour& iContour = contours[inner]; |
- const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start(); |
- double dx = iPt.fX - oPt.fX; |
- double dy = iPt.fY - oPt.fY; |
- double dist = dx * dx + dy * dy; |
- distances[row + iIndex] = dist; // oStart distance from iStart |
- } |
- } |
- SkTDArray<int> sortedDist; |
- sortedDist.setCount(entries); |
- for (rIndex = 0; rIndex < entries; ++rIndex) { |
- sortedDist[rIndex] = rIndex; |
- } |
- QSort<SkTDArray<double>, int>(distances, sortedDist.begin(), sortedDist.end() - 1, lessThan); |
- int remaining = count; // number of start/end pairs |
- for (rIndex = 0; rIndex < entries; ++rIndex) { |
- int pair = sortedDist[rIndex]; |
- int row = pair / ends; |
- int col = pair - row * ends; |
- int thingOne = row < col ? row : ends - row - 2; |
- int ndxOne = thingOne >> 1; |
- bool endOne = thingOne & 1; |
- int* linkOne = endOne ? eLink.begin() : sLink.begin(); |
- if (linkOne[ndxOne] != SK_MaxS32) { |
- continue; |
- } |
- int thingTwo = row < col ? col : ends - row + col - 1; |
- int ndxTwo = thingTwo >> 1; |
- bool endTwo = thingTwo & 1; |
- int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); |
- if (linkTwo[ndxTwo] != SK_MaxS32) { |
- continue; |
- } |
- SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); |
- bool flip = endOne == endTwo; |
- linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; |
- linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; |
- if (!--remaining) { |
- break; |
- } |
- } |
- SkASSERT(!remaining); |
-#if DEBUG_ASSEMBLE |
- for (rIndex = 0; rIndex < count; ++rIndex) { |
- int s = sLink[rIndex]; |
- int e = eLink[rIndex]; |
- SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e', |
- s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e); |
- } |
-#endif |
- rIndex = 0; |
- do { |
- bool forward = true; |
- bool first = true; |
- int sIndex = sLink[rIndex]; |
- SkASSERT(sIndex != SK_MaxS32); |
- sLink[rIndex] = SK_MaxS32; |
- int eIndex; |
- if (sIndex < 0) { |
- eIndex = sLink[~sIndex]; |
- sLink[~sIndex] = SK_MaxS32; |
- } else { |
- eIndex = eLink[sIndex]; |
- eLink[sIndex] = SK_MaxS32; |
- } |
- SkASSERT(eIndex != SK_MaxS32); |
-#if DEBUG_ASSEMBLE |
- SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e', |
- sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', |
- eIndex < 0 ? ~eIndex : eIndex); |
-#endif |
- do { |
- outer = runs[rIndex]; |
- const Contour& contour = contours[outer]; |
- if (first) { |
- first = false; |
- const SkPoint* startPtr = &contour.start(); |
- simple.deferredMove(startPtr[0]); |
- } |
- if (forward) { |
- contour.toPartialForward(simple); |
- } else { |
- contour.toPartialBackward(simple); |
- } |
-#if DEBUG_ASSEMBLE |
- SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex, |
- eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, |
- sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); |
-#endif |
- if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { |
- simple.close(); |
- break; |
- } |
- if (forward) { |
- eIndex = eLink[rIndex]; |
- SkASSERT(eIndex != SK_MaxS32); |
- eLink[rIndex] = SK_MaxS32; |
- if (eIndex >= 0) { |
- SkASSERT(sLink[eIndex] == rIndex); |
- sLink[eIndex] = SK_MaxS32; |
- } else { |
- SkASSERT(eLink[~eIndex] == ~rIndex); |
- eLink[~eIndex] = SK_MaxS32; |
- } |
- } else { |
- eIndex = sLink[rIndex]; |
- SkASSERT(eIndex != SK_MaxS32); |
- sLink[rIndex] = SK_MaxS32; |
- if (eIndex >= 0) { |
- SkASSERT(eLink[eIndex] == rIndex); |
- eLink[eIndex] = SK_MaxS32; |
- } else { |
- SkASSERT(sLink[~eIndex] == ~rIndex); |
- sLink[~eIndex] = SK_MaxS32; |
- } |
- } |
- rIndex = eIndex; |
- if (rIndex < 0) { |
- forward ^= 1; |
- rIndex = ~rIndex; |
- } |
- } while (true); |
- for (rIndex = 0; rIndex < count; ++rIndex) { |
- if (sLink[rIndex] != SK_MaxS32) { |
- break; |
- } |
- } |
- } while (rIndex < count); |
-#if DEBUG_ASSEMBLE |
- for (rIndex = 0; rIndex < count; ++rIndex) { |
- SkASSERT(sLink[rIndex] == SK_MaxS32); |
- SkASSERT(eLink[rIndex] == SK_MaxS32); |
- } |
-#endif |
-} |
- |
-void simplifyx(const SkPath& path, SkPath& result) { |
-#if DEBUG_SORT || DEBUG_SWAP_TOP |
- gDebugSortCount = gDebugSortCountDefault; |
-#endif |
- // returns 1 for evenodd, -1 for winding, regardless of inverse-ness |
- result.reset(); |
- result.setFillType(SkPath::kEvenOdd_FillType); |
- PathWrapper simple(result); |
- |
- // turn path into list of segments |
- SkTArray<Contour> contours; |
- EdgeBuilder builder(path, contours); |
- builder.finish(); |
- SkTDArray<Contour*> contourList; |
- makeContourList(contours, contourList, false, false); |
- Contour** currentPtr = contourList.begin(); |
- if (!currentPtr) { |
- return; |
- } |
- Contour** listEnd = contourList.end(); |
- // find all intersections between segments |
- do { |
- Contour** nextPtr = currentPtr; |
- Contour* current = *currentPtr++; |
- if (current->containsCubics()) { |
- addSelfIntersectTs(current); |
- } |
- Contour* next; |
- do { |
- next = *nextPtr++; |
- } while (addIntersectTs(current, next) && nextPtr != listEnd); |
- } while (currentPtr != listEnd); |
- // eat through coincident edges |
- coincidenceCheck(contourList, 0); |
- fixOtherTIndex(contourList); |
- sortSegments(contourList); |
-#if DEBUG_ACTIVE_SPANS |
- debugShowActiveSpans(contourList); |
-#endif |
- // construct closed contours |
- if (builder.xorMask() == kWinding_Mask ? bridgeWinding(contourList, simple) |
- : !bridgeXor(contourList, simple)) |
- { // if some edges could not be resolved, assemble remaining fragments |
- SkPath temp; |
- temp.setFillType(SkPath::kEvenOdd_FillType); |
- PathWrapper assembled(temp); |
- assemble(simple, assembled); |
- result = *assembled.nativePath(); |
- } |
-} |