Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(33)

Unified Diff: experimental/Intersection/Simplify.cpp

Issue 867213004: remove prototype pathops code (Closed) Base URL: https://skia.googlesource.com/skia.git@master
Patch Set: Created 5 years, 11 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « experimental/Intersection/Simplify.h ('k') | experimental/Intersection/SimplifyAddIntersectingTs_Test.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: experimental/Intersection/Simplify.cpp
diff --git a/experimental/Intersection/Simplify.cpp b/experimental/Intersection/Simplify.cpp
deleted file mode 100644
index d99cdf315e92d5c649835635d047e1d4d6cbb249..0000000000000000000000000000000000000000
--- a/experimental/Intersection/Simplify.cpp
+++ /dev/null
@@ -1,6608 +0,0 @@
-/*
- * Copyright 2012 Google Inc.
- *
- * Use of this source code is governed by a BSD-style license that can be
- * found in the LICENSE file.
- */
-#include "Simplify.h"
-
-#undef SkASSERT
-#define SkASSERT(cond) while (!(cond)) { sk_throw(); }
-
-// Terminology:
-// A Path contains one of more Contours
-// A Contour is made up of Segment array
-// A Segment is described by a Verb and a Point array with 2, 3, or 4 points
-// A Verb is one of Line, Quad(ratic), or Cubic
-// A Segment contains a Span array
-// A Span is describes a portion of a Segment using starting and ending T
-// T values range from 0 to 1, where 0 is the first Point in the Segment
-// An Edge is a Segment generated from a Span
-
-// FIXME: remove once debugging is complete
-#ifdef SK_DEBUG
-int gDebugMaxWindSum = SK_MaxS32;
-int gDebugMaxWindValue = SK_MaxS32;
-#endif
-
-#define PIN_ADD_T 0
-#define TRY_ROTATE 1
-#define ONE_PASS_COINCIDENCE_CHECK 0
-#define APPROXIMATE_CUBICS 1
-#define COMPACT_DEBUG_SORT 0
-
-#define DEBUG_UNUSED 0 // set to expose unused functions
-
-#if FORCE_RELEASE || defined SK_RELEASE
-
-const bool gRunTestsInOneThread = false;
-
-#define DEBUG_ACTIVE_OP 0
-#define DEBUG_ACTIVE_SPANS 0
-#define DEBUG_ACTIVE_SPANS_SHORT_FORM 0
-#define DEBUG_ADD_INTERSECTING_TS 0
-#define DEBUG_ADD_T_PAIR 0
-#define DEBUG_ANGLE 0
-#define DEBUG_AS_C_CODE 1
-#define DEBUG_ASSEMBLE 0
-#define DEBUG_CONCIDENT 0
-#define DEBUG_CROSS 0
-#define DEBUG_FLOW 0
-#define DEBUG_MARK_DONE 0
-#define DEBUG_PATH_CONSTRUCTION 0
-#define DEBUG_SHOW_WINDING 0
-#define DEBUG_SORT 0
-#define DEBUG_SWAP_TOP 0
-#define DEBUG_UNSORTABLE 0
-#define DEBUG_WIND_BUMP 0
-#define DEBUG_WINDING 0
-#define DEBUG_WINDING_AT_T 0
-
-#else
-
-const bool gRunTestsInOneThread = true;
-
-#define DEBUG_ACTIVE_OP 1
-#define DEBUG_ACTIVE_SPANS 1
-#define DEBUG_ACTIVE_SPANS_SHORT_FORM 0
-#define DEBUG_ADD_INTERSECTING_TS 1
-#define DEBUG_ADD_T_PAIR 1
-#define DEBUG_ANGLE 1
-#define DEBUG_AS_C_CODE 1
-#define DEBUG_ASSEMBLE 1
-#define DEBUG_CONCIDENT 1
-#define DEBUG_CROSS 0
-#define DEBUG_FLOW 1
-#define DEBUG_MARK_DONE 1
-#define DEBUG_PATH_CONSTRUCTION 1
-#define DEBUG_SHOW_WINDING 0
-#define DEBUG_SORT 1
-#define DEBUG_SWAP_TOP 1
-#define DEBUG_UNSORTABLE 1
-#define DEBUG_WIND_BUMP 0
-#define DEBUG_WINDING 1
-#define DEBUG_WINDING_AT_T 1
-
-#endif
-
-#define DEBUG_DUMP (DEBUG_ACTIVE_OP | DEBUG_ACTIVE_SPANS | DEBUG_CONCIDENT | DEBUG_SORT | \
- DEBUG_PATH_CONSTRUCTION)
-
-#if DEBUG_AS_C_CODE
-#define CUBIC_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}}"
-#define QUAD_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}}"
-#define LINE_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}}"
-#define PT_DEBUG_STR "{{%1.17g,%1.17g}}"
-#else
-#define CUBIC_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
-#define QUAD_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)"
-#define LINE_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g)"
-#define PT_DEBUG_STR "(%1.9g,%1.9g)"
-#endif
-#define T_DEBUG_STR(t, n) #t "[" #n "]=%1.9g"
-#define TX_DEBUG_STR(t) #t "[%d]=%1.9g"
-#define CUBIC_DEBUG_DATA(c) c[0].fX, c[0].fY, c[1].fX, c[1].fY, c[2].fX, c[2].fY, c[3].fX, c[3].fY
-#define QUAD_DEBUG_DATA(q) q[0].fX, q[0].fY, q[1].fX, q[1].fY, q[2].fX, q[2].fY
-#define LINE_DEBUG_DATA(l) l[0].fX, l[0].fY, l[1].fX, l[1].fY
-#define PT_DEBUG_DATA(i, n) i.fPt[n].x, i.fPt[n].y
-
-#if DEBUG_DUMP
-static const char* kLVerbStr[] = {"", "line", "quad", "cubic"};
-// static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"};
-static int gContourID;
-static int gSegmentID;
-#endif
-
-#if DEBUG_SORT || DEBUG_SWAP_TOP
-static int gDebugSortCountDefault = SK_MaxS32;
-static int gDebugSortCount;
-#endif
-
-#if DEBUG_ACTIVE_OP
-static const char* kShapeOpStr[] = {"diff", "sect", "union", "xor"};
-#endif
-
-#ifndef DEBUG_TEST
-#define DEBUG_TEST 0
-#endif
-
-#define MAKE_CONST_LINE(line, pts) \
- const _Line line = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}}
-#define MAKE_CONST_QUAD(quad, pts) \
- const Quadratic quad = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \
- {pts[2].fX, pts[2].fY}}
-#define MAKE_CONST_CUBIC(cubic, pts) \
- const Cubic cubic = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \
- {pts[2].fX, pts[2].fY}, {pts[3].fX, pts[3].fY}}
-
-static int LineIntersect(const SkPoint a[2], const SkPoint b[2],
- Intersections& intersections) {
- MAKE_CONST_LINE(aLine, a);
- MAKE_CONST_LINE(bLine, b);
- return intersect(aLine, bLine, intersections);
-}
-
-static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2],
- Intersections& intersections) {
- MAKE_CONST_QUAD(aQuad, a);
- MAKE_CONST_LINE(bLine, b);
- return intersect(aQuad, bLine, intersections);
-}
-
-static int CubicLineIntersect(const SkPoint a[4], const SkPoint b[2],
- Intersections& intersections) {
- MAKE_CONST_CUBIC(aCubic, a);
- MAKE_CONST_LINE(bLine, b);
- return intersect(aCubic, bLine, intersections);
-}
-
-static int QuadIntersect(const SkPoint a[3], const SkPoint b[3],
- Intersections& intersections) {
- MAKE_CONST_QUAD(aQuad, a);
- MAKE_CONST_QUAD(bQuad, b);
-#define TRY_QUARTIC_SOLUTION 1
-#if TRY_QUARTIC_SOLUTION
- intersect2(aQuad, bQuad, intersections);
-#else
- intersect(aQuad, bQuad, intersections);
-#endif
- return intersections.fUsed;
-}
-
-#if APPROXIMATE_CUBICS
-static int CubicQuadIntersect(const SkPoint a[4], const SkPoint b[3],
- Intersections& intersections) {
- MAKE_CONST_CUBIC(aCubic, a);
- MAKE_CONST_QUAD(bQuad, b);
- return intersect(aCubic, bQuad, intersections);
-}
-#endif
-
-static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], Intersections& intersections) {
- MAKE_CONST_CUBIC(aCubic, a);
- MAKE_CONST_CUBIC(bCubic, b);
-#if APPROXIMATE_CUBICS
- intersect3(aCubic, bCubic, intersections);
-#else
- intersect(aCubic, bCubic, intersections);
-#endif
- return intersections.fUsed;
-}
-
-static int CubicIntersect(const SkPoint a[4], Intersections& intersections) {
- MAKE_CONST_CUBIC(aCubic, a);
- return intersect(aCubic, intersections);
-}
-
-static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right,
- SkScalar y, bool flipped, Intersections& intersections) {
- MAKE_CONST_LINE(aLine, a);
- return horizontalIntersect(aLine, left, right, y, flipped, intersections);
-}
-
-static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right,
- SkScalar y, bool flipped, Intersections& intersections) {
- MAKE_CONST_QUAD(aQuad, a);
- return horizontalIntersect(aQuad, left, right, y, flipped, intersections);
-}
-
-static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right,
- SkScalar y, bool flipped, Intersections& intersections) {
- MAKE_CONST_CUBIC(aCubic, a);
- return horizontalIntersect(aCubic, left, right, y, flipped, intersections);
-}
-
-static int (* const HSegmentIntersect[])(const SkPoint [], SkScalar ,
- SkScalar , SkScalar , bool , Intersections& ) = {
- NULL,
- HLineIntersect,
- HQuadIntersect,
- HCubicIntersect
-};
-
-static int VLineIntersect(const SkPoint a[2], SkScalar top, SkScalar bottom,
- SkScalar x, bool flipped, Intersections& intersections) {
- MAKE_CONST_LINE(aLine, a);
- return verticalIntersect(aLine, top, bottom, x, flipped, intersections);
-}
-
-static int VQuadIntersect(const SkPoint a[3], SkScalar top, SkScalar bottom,
- SkScalar x, bool flipped, Intersections& intersections) {
- MAKE_CONST_QUAD(aQuad, a);
- return verticalIntersect(aQuad, top, bottom, x, flipped, intersections);
-}
-
-static int VCubicIntersect(const SkPoint a[4], SkScalar top, SkScalar bottom,
- SkScalar x, bool flipped, Intersections& intersections) {
- MAKE_CONST_CUBIC(aCubic, a);
- return verticalIntersect(aCubic, top, bottom, x, flipped, intersections);
-}
-
-static int (* const VSegmentIntersect[])(const SkPoint [], SkScalar ,
- SkScalar , SkScalar , bool , Intersections& ) = {
- NULL,
- VLineIntersect,
- VQuadIntersect,
- VCubicIntersect
-};
-
-static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) {
- MAKE_CONST_LINE(line, a);
- double x, y;
- xy_at_t(line, t, x, y);
- out->fX = SkDoubleToScalar(x);
- out->fY = SkDoubleToScalar(y);
-}
-
-static void LineXYAtT(const SkPoint a[2], double t, _Point* out) {
- MAKE_CONST_LINE(line, a);
- xy_at_t(line, t, out->x, out->y);
-}
-
-static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) {
- MAKE_CONST_QUAD(quad, a);
- double x, y;
- xy_at_t(quad, t, x, y);
- out->fX = SkDoubleToScalar(x);
- out->fY = SkDoubleToScalar(y);
-}
-
-static void QuadXYAtT(const SkPoint a[3], double t, _Point* out) {
- MAKE_CONST_QUAD(quad, a);
- xy_at_t(quad, t, out->x, out->y);
-}
-
-static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) {
- MAKE_CONST_CUBIC(cubic, a);
- double x, y;
- xy_at_t(cubic, t, x, y);
- out->fX = SkDoubleToScalar(x);
- out->fY = SkDoubleToScalar(y);
-}
-
-static void CubicXYAtT(const SkPoint a[4], double t, _Point* out) {
- MAKE_CONST_CUBIC(cubic, a);
- xy_at_t(cubic, t, out->x, out->y);
-}
-
-static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = {
- NULL,
- LineXYAtT,
- QuadXYAtT,
- CubicXYAtT
-};
-
-static void (* const SegmentXYAtT2[])(const SkPoint [], double , _Point* ) = {
- NULL,
- LineXYAtT,
- QuadXYAtT,
- CubicXYAtT
-};
-
-static SkScalar LineXAtT(const SkPoint a[2], double t) {
- MAKE_CONST_LINE(aLine, a);
- double x;
- xy_at_t(aLine, t, x, *(double*) 0);
- return SkDoubleToScalar(x);
-}
-
-static SkScalar QuadXAtT(const SkPoint a[3], double t) {
- MAKE_CONST_QUAD(quad, a);
- double x;
- xy_at_t(quad, t, x, *(double*) 0);
- return SkDoubleToScalar(x);
-}
-
-static SkScalar CubicXAtT(const SkPoint a[4], double t) {
- MAKE_CONST_CUBIC(cubic, a);
- double x;
- xy_at_t(cubic, t, x, *(double*) 0);
- return SkDoubleToScalar(x);
-}
-
-static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = {
- NULL,
- LineXAtT,
- QuadXAtT,
- CubicXAtT
-};
-
-static SkScalar LineYAtT(const SkPoint a[2], double t) {
- MAKE_CONST_LINE(aLine, a);
- double y;
- xy_at_t(aLine, t, *(double*) 0, y);
- return SkDoubleToScalar(y);
-}
-
-static SkScalar QuadYAtT(const SkPoint a[3], double t) {
- MAKE_CONST_QUAD(quad, a);
- double y;
- xy_at_t(quad, t, *(double*) 0, y);
- return SkDoubleToScalar(y);
-}
-
-static SkScalar CubicYAtT(const SkPoint a[4], double t) {
- MAKE_CONST_CUBIC(cubic, a);
- double y;
- xy_at_t(cubic, t, *(double*) 0, y);
- return SkDoubleToScalar(y);
-}
-
-static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = {
- NULL,
- LineYAtT,
- QuadYAtT,
- CubicYAtT
-};
-
-static SkScalar LineDXAtT(const SkPoint a[2], double ) {
- return a[1].fX - a[0].fX;
-}
-
-static SkScalar QuadDXAtT(const SkPoint a[3], double t) {
- MAKE_CONST_QUAD(quad, a);
- double x = dx_at_t(quad, t);
- return SkDoubleToScalar(x);
-}
-
-static SkScalar CubicDXAtT(const SkPoint a[4], double t) {
- MAKE_CONST_CUBIC(cubic, a);
- double x = dx_at_t(cubic, t);
- return SkDoubleToScalar(x);
-}
-
-static SkScalar (* const SegmentDXAtT[])(const SkPoint [], double ) = {
- NULL,
- LineDXAtT,
- QuadDXAtT,
- CubicDXAtT
-};
-
-static SkScalar LineDYAtT(const SkPoint a[2], double ) {
- return a[1].fY - a[0].fY;
-}
-
-static SkScalar QuadDYAtT(const SkPoint a[3], double t) {
- MAKE_CONST_QUAD(quad, a);
- double y = dy_at_t(quad, t);
- return SkDoubleToScalar(y);
-}
-
-static SkScalar CubicDYAtT(const SkPoint a[4], double t) {
- MAKE_CONST_CUBIC(cubic, a);
- double y = dy_at_t(cubic, t);
- return SkDoubleToScalar(y);
-}
-
-static SkScalar (* const SegmentDYAtT[])(const SkPoint [], double ) = {
- NULL,
- LineDYAtT,
- QuadDYAtT,
- CubicDYAtT
-};
-
-static SkVector LineDXDYAtT(const SkPoint a[2], double ) {
- return a[1] - a[0];
-}
-
-static SkVector QuadDXDYAtT(const SkPoint a[3], double t) {
- MAKE_CONST_QUAD(quad, a);
- _Vector v = dxdy_at_t(quad, t);
- return v.asSkVector();
-}
-
-static SkVector CubicDXDYAtT(const SkPoint a[4], double t) {
- MAKE_CONST_CUBIC(cubic, a);
- _Vector v = dxdy_at_t(cubic, t);
- return v.asSkVector();
-}
-
-static SkVector (* const SegmentDXDYAtT[])(const SkPoint [], double ) = {
- NULL,
- LineDXDYAtT,
- QuadDXDYAtT,
- CubicDXDYAtT
-};
-
-static void LineSubDivide(const SkPoint a[2], double startT, double endT,
- SkPoint sub[2]) {
- MAKE_CONST_LINE(aLine, a);
- _Line dst;
- sub_divide(aLine, startT, endT, dst);
- sub[0].fX = SkDoubleToScalar(dst[0].x);
- sub[0].fY = SkDoubleToScalar(dst[0].y);
- sub[1].fX = SkDoubleToScalar(dst[1].x);
- sub[1].fY = SkDoubleToScalar(dst[1].y);
-}
-
-static void QuadSubDivide(const SkPoint a[3], double startT, double endT,
- SkPoint sub[3]) {
- MAKE_CONST_QUAD(aQuad, a);
- Quadratic dst;
- sub_divide(aQuad, startT, endT, dst);
- sub[0].fX = SkDoubleToScalar(dst[0].x);
- sub[0].fY = SkDoubleToScalar(dst[0].y);
- sub[1].fX = SkDoubleToScalar(dst[1].x);
- sub[1].fY = SkDoubleToScalar(dst[1].y);
- sub[2].fX = SkDoubleToScalar(dst[2].x);
- sub[2].fY = SkDoubleToScalar(dst[2].y);
-}
-
-static void CubicSubDivide(const SkPoint a[4], double startT, double endT,
- SkPoint sub[4]) {
- MAKE_CONST_CUBIC(aCubic, a);
- Cubic dst;
- sub_divide(aCubic, startT, endT, dst);
- sub[0].fX = SkDoubleToScalar(dst[0].x);
- sub[0].fY = SkDoubleToScalar(dst[0].y);
- sub[1].fX = SkDoubleToScalar(dst[1].x);
- sub[1].fY = SkDoubleToScalar(dst[1].y);
- sub[2].fX = SkDoubleToScalar(dst[2].x);
- sub[2].fY = SkDoubleToScalar(dst[2].y);
- sub[3].fX = SkDoubleToScalar(dst[3].x);
- sub[3].fY = SkDoubleToScalar(dst[3].y);
-}
-
-static void (* const SegmentSubDivide[])(const SkPoint [], double , double ,
- SkPoint []) = {
- NULL,
- LineSubDivide,
- QuadSubDivide,
- CubicSubDivide
-};
-
-static void LineSubDivideHD(const SkPoint a[2], double startT, double endT, _Line& dst) {
- MAKE_CONST_LINE(aLine, a);
- sub_divide(aLine, startT, endT, dst);
-}
-
-static void QuadSubDivideHD(const SkPoint a[3], double startT, double endT, Quadratic& dst) {
- MAKE_CONST_QUAD(aQuad, a);
- sub_divide(aQuad, startT, endT, dst);
-}
-
-static void CubicSubDivideHD(const SkPoint a[4], double startT, double endT, Cubic& dst) {
- MAKE_CONST_CUBIC(aCubic, a);
- sub_divide(aCubic, startT, endT, dst);
-}
-
-static SkPoint QuadTop(const SkPoint a[3], double startT, double endT) {
- MAKE_CONST_QUAD(quad, a);
- _Point topPt = top(quad, startT, endT);
- return topPt.asSkPoint();
-}
-
-static SkPoint CubicTop(const SkPoint a[3], double startT, double endT) {
- MAKE_CONST_CUBIC(cubic, a);
- _Point topPt = top(cubic, startT, endT);
- return topPt.asSkPoint();
-}
-
-static SkPoint (* SegmentTop[])(const SkPoint[], double , double ) = {
- NULL,
- NULL,
- QuadTop,
- CubicTop
-};
-
-#if DEBUG_UNUSED
-static void QuadSubBounds(const SkPoint a[3], double startT, double endT,
- SkRect& bounds) {
- SkPoint dst[3];
- QuadSubDivide(a, startT, endT, dst);
- bounds.fLeft = bounds.fRight = dst[0].fX;
- bounds.fTop = bounds.fBottom = dst[0].fY;
- for (int index = 1; index < 3; ++index) {
- bounds.growToInclude(dst[index].fX, dst[index].fY);
- }
-}
-
-static void CubicSubBounds(const SkPoint a[4], double startT, double endT,
- SkRect& bounds) {
- SkPoint dst[4];
- CubicSubDivide(a, startT, endT, dst);
- bounds.fLeft = bounds.fRight = dst[0].fX;
- bounds.fTop = bounds.fBottom = dst[0].fY;
- for (int index = 1; index < 4; ++index) {
- bounds.growToInclude(dst[index].fX, dst[index].fY);
- }
-}
-#endif
-
-static SkPath::Verb QuadReduceOrder(const SkPoint a[3],
- SkTDArray<SkPoint>& reducePts) {
- MAKE_CONST_QUAD(aQuad, a);
- Quadratic dst;
- int order = reduceOrder(aQuad, dst, kReduceOrder_TreatAsFill);
- if (order == 2) { // quad became line
- for (int index = 0; index < order; ++index) {
- SkPoint* pt = reducePts.append();
- pt->fX = SkDoubleToScalar(dst[index].x);
- pt->fY = SkDoubleToScalar(dst[index].y);
- }
- }
- return (SkPath::Verb) (order - 1);
-}
-
-static SkPath::Verb CubicReduceOrder(const SkPoint a[4],
- SkTDArray<SkPoint>& reducePts) {
- MAKE_CONST_CUBIC(aCubic, a);
- Cubic dst;
- int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed, kReduceOrder_TreatAsFill);
- if (order == 2 || order == 3) { // cubic became line or quad
- for (int index = 0; index < order; ++index) {
- SkPoint* pt = reducePts.append();
- pt->fX = SkDoubleToScalar(dst[index].x);
- pt->fY = SkDoubleToScalar(dst[index].y);
- }
- }
- return (SkPath::Verb) (order - 1);
-}
-
-static bool QuadIsLinear(const SkPoint a[3]) {
- MAKE_CONST_QUAD(aQuad, a);
- return isLinear(aQuad, 0, 2);
-}
-
-static bool CubicIsLinear(const SkPoint a[4]) {
- MAKE_CONST_CUBIC(aCubic, a);
- return isLinear(aCubic, 0, 3);
-}
-
-static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) {
- MAKE_CONST_LINE(aLine, a);
- double x[2];
- xy_at_t(aLine, startT, x[0], *(double*) 0);
- xy_at_t(aLine, endT, x[1], *(double*) 0);
- return SkMinScalar((float) x[0], (float) x[1]);
-}
-
-static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) {
- MAKE_CONST_QUAD(aQuad, a);
- return (float) leftMostT(aQuad, startT, endT);
-}
-
-static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) {
- MAKE_CONST_CUBIC(aCubic, a);
- return (float) leftMostT(aCubic, startT, endT);
-}
-
-static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) = {
- NULL,
- LineLeftMost,
- QuadLeftMost,
- CubicLeftMost
-};
-
-#if 0 // currently unused
-static int QuadRayIntersect(const SkPoint a[3], const SkPoint b[2],
- Intersections& intersections) {
- MAKE_CONST_QUAD(aQuad, a);
- MAKE_CONST_LINE(bLine, b);
- return intersectRay(aQuad, bLine, intersections);
-}
-#endif
-
-static int QuadRayIntersect(const SkPoint a[3], const _Line& bLine, Intersections& intersections) {
- MAKE_CONST_QUAD(aQuad, a);
- return intersectRay(aQuad, bLine, intersections);
-}
-
-static int CubicRayIntersect(const SkPoint a[3], const _Line& bLine, Intersections& intersections) {
- MAKE_CONST_CUBIC(aCubic, a);
- return intersectRay(aCubic, bLine, intersections);
-}
-
-static int (* const SegmentRayIntersect[])(const SkPoint [], const _Line& , Intersections&) = {
- NULL,
- NULL,
- QuadRayIntersect,
- CubicRayIntersect
-};
-
-
-
-static bool LineVertical(const SkPoint a[2], double startT, double endT) {
- MAKE_CONST_LINE(aLine, a);
- double x[2];
- xy_at_t(aLine, startT, x[0], *(double*) 0);
- xy_at_t(aLine, endT, x[1], *(double*) 0);
- return AlmostEqualUlps((float) x[0], (float) x[1]);
-}
-
-static bool QuadVertical(const SkPoint a[3], double startT, double endT) {
- SkPoint dst[3];
- QuadSubDivide(a, startT, endT, dst);
- return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX);
-}
-
-static bool CubicVertical(const SkPoint a[4], double startT, double endT) {
- SkPoint dst[4];
- CubicSubDivide(a, startT, endT, dst);
- return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, dst[2].fX)
- && AlmostEqualUlps(dst[2].fX, dst[3].fX);
-}
-
-static bool (* const SegmentVertical[])(const SkPoint [], double , double) = {
- NULL,
- LineVertical,
- QuadVertical,
- CubicVertical
-};
-
-class Segment;
-
-struct Span {
- Segment* fOther;
- mutable SkPoint fPt; // lazily computed as needed
- double fT;
- double fOtherT; // value at fOther[fOtherIndex].fT
- int fOtherIndex; // can't be used during intersection
- int fWindSum; // accumulated from contours surrounding this one.
- int fOppSum; // for binary operators: the opposite winding sum
- int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident
- int fOppValue; // normally 0 -- when binary coincident edges combine, opp value goes here
- bool fDone; // if set, this span to next higher T has been processed
- bool fUnsortableStart; // set when start is part of an unsortable pair
- bool fUnsortableEnd; // set when end is part of an unsortable pair
- bool fTiny; // if set, span may still be considered once for edge following
- bool fLoop; // set when a cubic loops back to this point
-};
-
-// sorting angles
-// given angles of {dx dy ddx ddy dddx dddy} sort them
-class Angle {
-public:
- // FIXME: this is bogus for quads and cubics
- // if the quads and cubics' line from end pt to ctrl pt are coincident,
- // there's no obvious way to determine the curve ordering from the
- // derivatives alone. In particular, if one quadratic's coincident tangent
- // is longer than the other curve, the final control point can place the
- // longer curve on either side of the shorter one.
- // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf
- // may provide some help, but nothing has been figured out yet.
-
- /*(
- for quads and cubics, set up a parameterized line (e.g. LineParameters )
- for points [0] to [1]. See if point [2] is on that line, or on one side
- or the other. If it both quads' end points are on the same side, choose
- the shorter tangent. If the tangents are equal, choose the better second
- tangent angle
-
- maybe I could set up LineParameters lazily
- */
- bool operator<(const Angle& rh) const {
- double y = dy();
- double ry = rh.dy();
- if ((y < 0) ^ (ry < 0)) { // OPTIMIZATION: better to use y * ry < 0 ?
- return y < 0;
- }
- double x = dx();
- double rx = rh.dx();
- if (y == 0 && ry == 0 && x * rx < 0) {
- return x < rx;
- }
- double x_ry = x * ry;
- double rx_y = rx * y;
- double cmp = x_ry - rx_y;
- if (!approximately_zero(cmp)) {
- return cmp < 0;
- }
- if (approximately_zero(x_ry) && approximately_zero(rx_y)
- && !approximately_zero_squared(cmp)) {
- return cmp < 0;
- }
- // at this point, the initial tangent line is coincident
- // see if edges curl away from each other
- if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide)
- || !approximately_zero(rh.fSide))) {
- // FIXME: running demo will trigger this assertion
- // (don't know if commenting out will trigger further assertion or not)
- // commenting it out allows demo to run in release, though
- // SkASSERT(fSide != rh.fSide);
- return fSide < rh.fSide;
- }
- // see if either curve can be lengthened and try the tangent compare again
- if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolutely identical
- && (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not intersecting
- Angle longer = *this;
- Angle rhLonger = rh;
- if (longer.lengthen() | rhLonger.lengthen()) {
- return longer < rhLonger;
- }
- #if 0
- // what if we extend in the other direction?
- longer = *this;
- rhLonger = rh;
- if (longer.reverseLengthen() | rhLonger.reverseLengthen()) {
- return longer < rhLonger;
- }
- #endif
- }
- if ((fVerb == SkPath::kLine_Verb && approximately_zero(x) && approximately_zero(y))
- || (rh.fVerb == SkPath::kLine_Verb
- && approximately_zero(rx) && approximately_zero(ry))) {
- // See general unsortable comment below. This case can happen when
- // one line has a non-zero change in t but no change in x and y.
- fUnsortable = true;
- rh.fUnsortable = true;
- return this < &rh; // even with no solution, return a stable sort
- }
- if ((*rh.fSpans)[SkMin32(rh.fStart, rh.fEnd)].fTiny
- || (*fSpans)[SkMin32(fStart, fEnd)].fTiny) {
- fUnsortable = true;
- rh.fUnsortable = true;
- return this < &rh; // even with no solution, return a stable sort
- }
- SkASSERT(fVerb >= SkPath::kQuad_Verb);
- SkASSERT(rh.fVerb >= SkPath::kQuad_Verb);
- // FIXME: until I can think of something better, project a ray from the
- // end of the shorter tangent to midway between the end points
- // through both curves and use the resulting angle to sort
- // FIXME: some of this setup can be moved to set() if it works, or cached if it's expensive
- double len = fTangent1.normalSquared();
- double rlen = rh.fTangent1.normalSquared();
- _Line ray;
- Intersections i, ri;
- int roots, rroots;
- bool flip = false;
- do {
- bool useThis = (len < rlen) ^ flip;
- const Cubic& part = useThis ? fCurvePart : rh.fCurvePart;
- SkPath::Verb partVerb = useThis ? fVerb : rh.fVerb;
- ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqual(part[1]) ?
- part[2] : part[1];
- ray[1].x = (part[0].x + part[partVerb].x) / 2;
- ray[1].y = (part[0].y + part[partVerb].y) / 2;
- SkASSERT(ray[0] != ray[1]);
- roots = (*SegmentRayIntersect[fVerb])(fPts, ray, i);
- rroots = (*SegmentRayIntersect[rh.fVerb])(rh.fPts, ray, ri);
- } while ((roots == 0 || rroots == 0) && (flip ^= true));
- if (roots == 0 || rroots == 0) {
- // FIXME: we don't have a solution in this case. The interim solution
- // is to mark the edges as unsortable, exclude them from this and
- // future computations, and allow the returned path to be fragmented
- fUnsortable = true;
- rh.fUnsortable = true;
- return this < &rh; // even with no solution, return a stable sort
- }
- _Point loc;
- double best = SK_ScalarInfinity;
- double dx, dy, dist;
- int index;
- for (index = 0; index < roots; ++index) {
- (*SegmentXYAtT2[fVerb])(fPts, i.fT[0][index], &loc);
- dx = loc.x - ray[0].x;
- dy = loc.y - ray[0].y;
- dist = dx * dx + dy * dy;
- if (best > dist) {
- best = dist;
- }
- }
- for (index = 0; index < rroots; ++index) {
- (*SegmentXYAtT2[rh.fVerb])(rh.fPts, ri.fT[0][index], &loc);
- dx = loc.x - ray[0].x;
- dy = loc.y - ray[0].y;
- dist = dx * dx + dy * dy;
- if (best > dist) {
- return fSide < 0;
- }
- }
- return fSide > 0;
- }
-
- double dx() const {
- return fTangent1.dx();
- }
-
- double dy() const {
- return fTangent1.dy();
- }
-
- int end() const {
- return fEnd;
- }
-
- bool isHorizontal() const {
- return dy() == 0 && fVerb == SkPath::kLine_Verb;
- }
-
- bool lengthen() {
- int newEnd = fEnd;
- if (fStart < fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) {
- fEnd = newEnd;
- setSpans();
- return true;
- }
- return false;
- }
-
- bool reverseLengthen() {
- if (fReversed) {
- return false;
- }
- int newEnd = fStart;
- if (fStart > fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) {
- fEnd = newEnd;
- fReversed = true;
- setSpans();
- return true;
- }
- return false;
- }
-
- void set(const SkPoint* orig, SkPath::Verb verb, const Segment* segment,
- int start, int end, const SkTDArray<Span>& spans) {
- fSegment = segment;
- fStart = start;
- fEnd = end;
- fPts = orig;
- fVerb = verb;
- fSpans = &spans;
- fReversed = false;
- fUnsortable = false;
- setSpans();
- }
-
-
- void setSpans() {
- double startT = (*fSpans)[fStart].fT;
- double endT = (*fSpans)[fEnd].fT;
- switch (fVerb) {
- case SkPath::kLine_Verb:
- _Line l;
- LineSubDivideHD(fPts, startT, endT, l);
- // OPTIMIZATION: for pure line compares, we never need fTangent1.c
- fTangent1.lineEndPoints(l);
- fSide = 0;
- break;
- case SkPath::kQuad_Verb: {
- Quadratic& quad = (Quadratic&)fCurvePart;
- QuadSubDivideHD(fPts, startT, endT, quad);
- fTangent1.quadEndPoints(quad, 0, 1);
- if (dx() == 0 && dy() == 0) {
- fTangent1.quadEndPoints(quad);
- }
- fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -- compare sign only
- } break;
- case SkPath::kCubic_Verb: {
- int nextC = 2;
- CubicSubDivideHD(fPts, startT, endT, fCurvePart);
- fTangent1.cubicEndPoints(fCurvePart, 0, 1);
- if (dx() == 0 && dy() == 0) {
- fTangent1.cubicEndPoints(fCurvePart, 0, 2);
- nextC = 3;
- if (dx() == 0 && dy() == 0) {
- fTangent1.cubicEndPoints(fCurvePart, 0, 3);
- }
- }
- fSide = -fTangent1.pointDistance(fCurvePart[nextC]); // compare sign only
- if (nextC == 2 && approximately_zero(fSide)) {
- fSide = -fTangent1.pointDistance(fCurvePart[3]);
- }
- } break;
- default:
- SkASSERT(0);
- }
- fUnsortable = dx() == 0 && dy() == 0;
- if (fUnsortable) {
- return;
- }
- SkASSERT(fStart != fEnd);
- int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 31 type macro?
- for (int index = fStart; index != fEnd; index += step) {
-#if 1
- const Span& thisSpan = (*fSpans)[index];
- const Span& nextSpan = (*fSpans)[index + step];
- if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) {
- continue;
- }
- fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsortableEnd;
-#if DEBUG_UNSORTABLE
- if (fUnsortable) {
- SkPoint iPt, ePt;
- (*SegmentXYAtT[fVerb])(fPts, thisSpan.fT, &iPt);
- (*SegmentXYAtT[fVerb])(fPts, nextSpan.fT, &ePt);
- SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
- index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
- }
-#endif
- return;
-#else
- if ((*fSpans)[index].fUnsortableStart) {
- fUnsortable = true;
- return;
- }
-#endif
- }
-#if 1
-#if DEBUG_UNSORTABLE
- SkPoint iPt, ePt;
- (*SegmentXYAtT[fVerb])(fPts, startT, &iPt);
- (*SegmentXYAtT[fVerb])(fPts, endT, &ePt);
- SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n", __FUNCTION__,
- fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY);
-#endif
- fUnsortable = true;
-#endif
- }
-
- Segment* segment() const {
- return const_cast<Segment*>(fSegment);
- }
-
- int sign() const {
- return SkSign32(fStart - fEnd);
- }
-
- const SkTDArray<Span>* spans() const {
- return fSpans;
- }
-
- int start() const {
- return fStart;
- }
-
- bool unsortable() const {
- return fUnsortable;
- }
-
-#if DEBUG_ANGLE
- const SkPoint* pts() const {
- return fPts;
- }
-
- SkPath::Verb verb() const {
- return fVerb;
- }
-
- void debugShow(const SkPoint& a) const {
- SkDebugf(" d=(%1.9g,%1.9g) side=%1.9g\n", dx(), dy(), fSide);
- }
-#endif
-
-private:
- const SkPoint* fPts;
- Cubic fCurvePart;
- SkPath::Verb fVerb;
- double fSide;
- LineParameters fTangent1;
- const SkTDArray<Span>* fSpans;
- const Segment* fSegment;
- int fStart;
- int fEnd;
- bool fReversed;
- mutable bool fUnsortable; // this alone is editable by the less than operator
-};
-
-// Bounds, unlike Rect, does not consider a line to be empty.
-struct Bounds : public SkRect {
- static bool Intersects(const Bounds& a, const Bounds& b) {
- return a.fLeft <= b.fRight && b.fLeft <= a.fRight &&
- a.fTop <= b.fBottom && b.fTop <= a.fBottom;
- }
-
- void add(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) {
- if (left < fLeft) {
- fLeft = left;
- }
- if (top < fTop) {
- fTop = top;
- }
- if (right > fRight) {
- fRight = right;
- }
- if (bottom > fBottom) {
- fBottom = bottom;
- }
- }
-
- void add(const Bounds& toAdd) {
- add(toAdd.fLeft, toAdd.fTop, toAdd.fRight, toAdd.fBottom);
- }
-
- void add(const SkPoint& pt) {
- if (pt.fX < fLeft) fLeft = pt.fX;
- if (pt.fY < fTop) fTop = pt.fY;
- if (pt.fX > fRight) fRight = pt.fX;
- if (pt.fY > fBottom) fBottom = pt.fY;
- }
-
- bool isEmpty() {
- return fLeft > fRight || fTop > fBottom
- || (fLeft == fRight && fTop == fBottom)
- || sk_double_isnan(fLeft) || sk_double_isnan(fRight)
- || sk_double_isnan(fTop) || sk_double_isnan(fBottom);
- }
-
- void setCubicBounds(const SkPoint a[4]) {
- _Rect dRect;
- MAKE_CONST_CUBIC(cubic, a);
- dRect.setBounds(cubic);
- set((float) dRect.left, (float) dRect.top, (float) dRect.right,
- (float) dRect.bottom);
- }
-
- void setLineBounds(const SkPoint a[2]) {
- setPoint(a[0]);
- add(a[1]);
- }
-
- void setQuadBounds(const SkPoint a[3]) {
- MAKE_CONST_QUAD(quad, a);
- _Rect dRect;
- dRect.setBounds(quad);
- set((float) dRect.left, (float) dRect.top, (float) dRect.right,
- (float) dRect.bottom);
- }
-
- void setPoint(const SkPoint& pt) {
- fLeft = fRight = pt.fX;
- fTop = fBottom = pt.fY;
- }
-};
-
-static void (Bounds::*setSegmentBounds[])(const SkPoint[]) = {
- NULL,
- &Bounds::setLineBounds,
- &Bounds::setQuadBounds,
- &Bounds::setCubicBounds
-};
-
-// OPTIMIZATION: does the following also work, and is it any faster?
-// return outerWinding * innerWinding > 0
-// || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) < 0)))
-static bool useInnerWinding(int outerWinding, int innerWinding) {
- SkASSERT(outerWinding != SK_MaxS32);
- SkASSERT(innerWinding != SK_MaxS32);
- int absOut = abs(outerWinding);
- int absIn = abs(innerWinding);
- bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn;
-#if 0 && DEBUG_WINDING
- if (outerWinding * innerWinding < 0) {
- SkDebugf("%s outer=%d inner=%d result=%s\n", __FUNCTION__,
- outerWinding, innerWinding, result ? "true" : "false");
- }
-#endif
- return result;
-}
-
-#define F (false) // discard the edge
-#define T (true) // keep the edge
-
-static const bool gUnaryActiveEdge[2][2] = {
-// from=0 from=1
-// to=0,1 to=0,1
- {F, T}, {T, F},
-};
-
-static const bool gActiveEdge[kShapeOp_Count][2][2][2][2] = {
-// miFrom=0 miFrom=1
-// miTo=0 miTo=1 miTo=0 miTo=1
-// suFrom=0 1 suFrom=0 1 suFrom=0 1 suFrom=0 1
-// suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1
- {{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}, // mi - su
- {{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}, // mi & su
- {{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}, // mi | su
- {{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}, // mi ^ su
-};
-
-#undef F
-#undef T
-
-// wrap path to keep track of whether the contour is initialized and non-empty
-class PathWrapper {
-public:
- PathWrapper(SkPath& path)
- : fPathPtr(&path)
- , fCloses(0)
- , fMoves(0)
- {
- init();
- }
-
- void close() {
- if (!fHasMove) {
- return;
- }
- bool callClose = isClosed();
- lineTo();
- if (fEmpty) {
- return;
- }
- if (callClose) {
- #if DEBUG_PATH_CONSTRUCTION
- SkDebugf("path.close();\n");
- #endif
- fPathPtr->close();
- fCloses++;
- }
- init();
- }
-
- void cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkPoint& pt3) {
- lineTo();
- moveTo();
- fDefer[1] = pt3;
- nudge();
- fDefer[0] = fDefer[1];
-#if DEBUG_PATH_CONSTRUCTION
- SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n",
- pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY);
-#endif
- fPathPtr->cubicTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY);
- fEmpty = false;
- }
-
- void deferredLine(const SkPoint& pt) {
- if (pt == fDefer[1]) {
- return;
- }
- if (changedSlopes(pt)) {
- lineTo();
- fDefer[0] = fDefer[1];
- }
- fDefer[1] = pt;
- }
-
- void deferredMove(const SkPoint& pt) {
- fMoved = true;
- fHasMove = true;
- fEmpty = true;
- fDefer[0] = fDefer[1] = pt;
- }
-
- void deferredMoveLine(const SkPoint& pt) {
- if (!fHasMove) {
- deferredMove(pt);
- }
- deferredLine(pt);
- }
-
- bool hasMove() const {
- return fHasMove;
- }
-
- void init() {
- fEmpty = true;
- fHasMove = false;
- fMoved = false;
- }
-
- bool isClosed() const {
- return !fEmpty && fFirstPt == fDefer[1];
- }
-
- void lineTo() {
- if (fDefer[0] == fDefer[1]) {
- return;
- }
- moveTo();
- nudge();
- fEmpty = false;
-#if DEBUG_PATH_CONSTRUCTION
- SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1].fX, fDefer[1].fY);
-#endif
- fPathPtr->lineTo(fDefer[1].fX, fDefer[1].fY);
- fDefer[0] = fDefer[1];
- }
-
- const SkPath* nativePath() const {
- return fPathPtr;
- }
-
- void nudge() {
- if (fEmpty || !AlmostEqualUlps(fDefer[1].fX, fFirstPt.fX)
- || !AlmostEqualUlps(fDefer[1].fY, fFirstPt.fY)) {
- return;
- }
- fDefer[1] = fFirstPt;
- }
-
- void quadTo(const SkPoint& pt1, const SkPoint& pt2) {
- lineTo();
- moveTo();
- fDefer[1] = pt2;
- nudge();
- fDefer[0] = fDefer[1];
-#if DEBUG_PATH_CONSTRUCTION
- SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n",
- pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY);
-#endif
- fPathPtr->quadTo(pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY);
- fEmpty = false;
- }
-
- bool someAssemblyRequired() const {
- return fCloses < fMoves;
- }
-
-protected:
- bool changedSlopes(const SkPoint& pt) const {
- if (fDefer[0] == fDefer[1]) {
- return false;
- }
- SkScalar deferDx = fDefer[1].fX - fDefer[0].fX;
- SkScalar deferDy = fDefer[1].fY - fDefer[0].fY;
- SkScalar lineDx = pt.fX - fDefer[1].fX;
- SkScalar lineDy = pt.fY - fDefer[1].fY;
- return deferDx * lineDy != deferDy * lineDx;
- }
-
- void moveTo() {
- if (!fMoved) {
- return;
- }
- fFirstPt = fDefer[0];
-#if DEBUG_PATH_CONSTRUCTION
- SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fDefer[0].fX, fDefer[0].fY);
-#endif
- fPathPtr->moveTo(fDefer[0].fX, fDefer[0].fY);
- fMoved = false;
- fMoves++;
- }
-
-private:
- SkPath* fPathPtr;
- SkPoint fDefer[2];
- SkPoint fFirstPt;
- int fCloses;
- int fMoves;
- bool fEmpty;
- bool fHasMove;
- bool fMoved;
-};
-
-class Segment {
-public:
- Segment() {
-#if DEBUG_DUMP
- fID = ++gSegmentID;
-#endif
- }
-
- bool operator<(const Segment& rh) const {
- return fBounds.fTop < rh.fBounds.fTop;
- }
-
- bool activeAngle(int index, int& done, SkTDArray<Angle>& angles) {
- if (activeAngleInner(index, done, angles)) {
- return true;
- }
- int lesser = index;
- while (--lesser >= 0 && equalPoints(index, lesser)) {
- if (activeAngleOther(lesser, done, angles)) {
- return true;
- }
- }
- lesser = index;
- do {
- if (activeAngleOther(index, done, angles)) {
- return true;
- }
- } while (++index < fTs.count() && equalPoints(index, lesser));
- return false;
- }
-
- bool activeAngleOther(int index, int& done, SkTDArray<Angle>& angles) {
- Span* span = &fTs[index];
- Segment* other = span->fOther;
- int oIndex = span->fOtherIndex;
- return other->activeAngleInner(oIndex, done, angles);
- }
-
- bool activeAngleInner(int index, int& done, SkTDArray<Angle>& angles) {
- int next = nextExactSpan(index, 1);
- if (next > 0) {
- Span& upSpan = fTs[index];
- if (upSpan.fWindValue || upSpan.fOppValue) {
- addAngle(angles, index, next);
- if (upSpan.fDone || upSpan.fUnsortableEnd) {
- done++;
- } else if (upSpan.fWindSum != SK_MinS32) {
- return true;
- }
- } else if (!upSpan.fDone) {
- upSpan.fDone = true;
- fDoneSpans++;
- }
- }
- int prev = nextExactSpan(index, -1);
- // edge leading into junction
- if (prev >= 0) {
- Span& downSpan = fTs[prev];
- if (downSpan.fWindValue || downSpan.fOppValue) {
- addAngle(angles, index, prev);
- if (downSpan.fDone) {
- done++;
- } else if (downSpan.fWindSum != SK_MinS32) {
- return true;
- }
- } else if (!downSpan.fDone) {
- downSpan.fDone = true;
- fDoneSpans++;
- }
- }
- return false;
- }
-
- SkPoint activeLeftTop(bool onlySortable, int* firstT) const {
- SkASSERT(!done());
- SkPoint topPt = {SK_ScalarMax, SK_ScalarMax};
- int count = fTs.count();
- // see if either end is not done since we want smaller Y of the pair
- bool lastDone = true;
- bool lastUnsortable = false;
- double lastT = -1;
- for (int index = 0; index < count; ++index) {
- const Span& span = fTs[index];
- if (onlySortable && (span.fUnsortableStart || lastUnsortable)) {
- goto next;
- }
- if (span.fDone && lastDone) {
- goto next;
- }
- if (approximately_negative(span.fT - lastT)) {
- goto next;
- }
- {
- const SkPoint& xy = xyAtT(&span);
- if (topPt.fY > xy.fY || (topPt.fY == xy.fY && topPt.fX > xy.fX)) {
- topPt = xy;
- if (firstT) {
- *firstT = index;
- }
- }
- if (fVerb != SkPath::kLine_Verb && !lastDone) {
- SkPoint curveTop = (*SegmentTop[fVerb])(fPts, lastT, span.fT);
- if (topPt.fY > curveTop.fY || (topPt.fY == curveTop.fY
- && topPt.fX > curveTop.fX)) {
- topPt = curveTop;
- if (firstT) {
- *firstT = index;
- }
- }
- }
- lastT = span.fT;
- }
- next:
- lastDone = span.fDone;
- lastUnsortable = span.fUnsortableEnd;
- }
- return topPt;
- }
-
- bool activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, ShapeOp op) {
- int sumMiWinding = updateWinding(endIndex, index);
- int sumSuWinding = updateOppWinding(endIndex, index);
- if (fOperand) {
- SkTSwap<int>(sumMiWinding, sumSuWinding);
- }
- int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
- return activeOp(xorMiMask, xorSuMask, index, endIndex, op, sumMiWinding, sumSuWinding,
- maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
- }
-
- bool activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, ShapeOp op,
- int& sumMiWinding, int& sumSuWinding,
- int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) {
- setUpWindings(index, endIndex, sumMiWinding, sumSuWinding,
- maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
- bool miFrom;
- bool miTo;
- bool suFrom;
- bool suTo;
- if (operand()) {
- miFrom = (oppMaxWinding & xorMiMask) != 0;
- miTo = (oppSumWinding & xorMiMask) != 0;
- suFrom = (maxWinding & xorSuMask) != 0;
- suTo = (sumWinding & xorSuMask) != 0;
- } else {
- miFrom = (maxWinding & xorMiMask) != 0;
- miTo = (sumWinding & xorMiMask) != 0;
- suFrom = (oppMaxWinding & xorSuMask) != 0;
- suTo = (oppSumWinding & xorSuMask) != 0;
- }
- bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo];
-#if DEBUG_ACTIVE_OP
- SkDebugf("%s op=%s miFrom=%d miTo=%d suFrom=%d suTo=%d result=%d\n", __FUNCTION__,
- kShapeOpStr[op], miFrom, miTo, suFrom, suTo, result);
-#endif
- SkASSERT(result != -1);
- return result;
- }
-
- bool activeWinding(int index, int endIndex) {
- int sumWinding = updateWinding(endIndex, index);
- int maxWinding;
- return activeWinding(index, endIndex, maxWinding, sumWinding);
- }
-
- bool activeWinding(int index, int endIndex, int& maxWinding, int& sumWinding) {
- setUpWinding(index, endIndex, maxWinding, sumWinding);
- bool from = maxWinding != 0;
- bool to = sumWinding != 0;
- bool result = gUnaryActiveEdge[from][to];
- SkASSERT(result != -1);
- return result;
- }
-
- void addAngle(SkTDArray<Angle>& angles, int start, int end) const {
- SkASSERT(start != end);
- Angle* angle = angles.append();
-#if DEBUG_ANGLE
- if (angles.count() > 1 && !fTs[start].fTiny) {
- SkPoint angle0Pt, newPt;
- (*SegmentXYAtT[angles[0].verb()])(angles[0].pts(),
- (*angles[0].spans())[angles[0].start()].fT, &angle0Pt);
- (*SegmentXYAtT[fVerb])(fPts, fTs[start].fT, &newPt);
- SkASSERT(AlmostEqualUlps(angle0Pt.fX, newPt.fX));
- SkASSERT(AlmostEqualUlps(angle0Pt.fY, newPt.fY));
- }
-#endif
- angle->set(fPts, fVerb, this, start, end, fTs);
- }
-
- void addCancelOutsides(double tStart, double oStart, Segment& other,
- double oEnd) {
- int tIndex = -1;
- int tCount = fTs.count();
- int oIndex = -1;
- int oCount = other.fTs.count();
- do {
- ++tIndex;
- } while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tCount);
- int tIndexStart = tIndex;
- do {
- ++oIndex;
- } while (!approximately_negative(oStart - other.fTs[oIndex].fT) && oIndex < oCount);
- int oIndexStart = oIndex;
- double nextT;
- do {
- nextT = fTs[++tIndex].fT;
- } while (nextT < 1 && approximately_negative(nextT - tStart));
- double oNextT;
- do {
- oNextT = other.fTs[++oIndex].fT;
- } while (oNextT < 1 && approximately_negative(oNextT - oStart));
- // at this point, spans before and after are at:
- // fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex]
- // if tIndexStart == 0, no prior span
- // if nextT == 1, no following span
-
- // advance the span with zero winding
- // if the following span exists (not past the end, non-zero winding)
- // connect the two edges
- if (!fTs[tIndexStart].fWindValue) {
- if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) {
- #if DEBUG_CONCIDENT
- SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
- __FUNCTION__, fID, other.fID, tIndexStart - 1,
- fTs[tIndexStart].fT, xyAtT(tIndexStart).fX,
- xyAtT(tIndexStart).fY);
- #endif
- addTPair(fTs[tIndexStart].fT, other, other.fTs[oIndex].fT, false,
- fTs[tIndexStart].fPt);
- }
- if (nextT < 1 && fTs[tIndex].fWindValue) {
- #if DEBUG_CONCIDENT
- SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
- __FUNCTION__, fID, other.fID, tIndex,
- fTs[tIndex].fT, xyAtT(tIndex).fX,
- xyAtT(tIndex).fY);
- #endif
- addTPair(fTs[tIndex].fT, other, other.fTs[oIndexStart].fT, false, fTs[tIndex].fPt);
- }
- } else {
- SkASSERT(!other.fTs[oIndexStart].fWindValue);
- if (oIndexStart > 0 && other.fTs[oIndexStart - 1].fWindValue) {
- #if DEBUG_CONCIDENT
- SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
- __FUNCTION__, fID, other.fID, oIndexStart - 1,
- other.fTs[oIndexStart].fT, other.xyAtT(oIndexStart).fX,
- other.xyAtT(oIndexStart).fY);
- other.debugAddTPair(other.fTs[oIndexStart].fT, *this, fTs[tIndex].fT);
- #endif
- }
- if (oNextT < 1 && other.fTs[oIndex].fWindValue) {
- #if DEBUG_CONCIDENT
- SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n",
- __FUNCTION__, fID, other.fID, oIndex,
- other.fTs[oIndex].fT, other.xyAtT(oIndex).fX,
- other.xyAtT(oIndex).fY);
- other.debugAddTPair(other.fTs[oIndex].fT, *this, fTs[tIndexStart].fT);
- #endif
- }
- }
- }
-
- void addCoinOutsides(const SkTDArray<double>& outsideTs, Segment& other,
- double oEnd) {
- // walk this to outsideTs[0]
- // walk other to outsideTs[1]
- // if either is > 0, add a pointer to the other, copying adjacent winding
- int tIndex = -1;
- int oIndex = -1;
- double tStart = outsideTs[0];
- double oStart = outsideTs[1];
- do {
- ++tIndex;
- } while (!approximately_negative(tStart - fTs[tIndex].fT));
- SkPoint ptStart = fTs[tIndex].fPt;
- do {
- ++oIndex;
- } while (!approximately_negative(oStart - other.fTs[oIndex].fT));
- if (tIndex > 0 || oIndex > 0 || fOperand != other.fOperand) {
- addTPair(tStart, other, oStart, false, ptStart);
- }
- tStart = fTs[tIndex].fT;
- oStart = other.fTs[oIndex].fT;
- do {
- double nextT;
- do {
- nextT = fTs[++tIndex].fT;
- } while (approximately_negative(nextT - tStart));
- tStart = nextT;
- ptStart = fTs[tIndex].fPt;
- do {
- nextT = other.fTs[++oIndex].fT;
- } while (approximately_negative(nextT - oStart));
- oStart = nextT;
- if (tStart == 1 && oStart == 1 && fOperand == other.fOperand) {
- break;
- }
- addTPair(tStart, other, oStart, false, ptStart);
- } while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oStart));
- }
-
- void addCubic(const SkPoint pts[4], bool operand, bool evenOdd) {
- init(pts, SkPath::kCubic_Verb, operand, evenOdd);
- fBounds.setCubicBounds(pts);
- }
-
- /* SkPoint */ void addCurveTo(int start, int end, PathWrapper& path, bool active) const {
- SkPoint edge[4];
- const SkPoint* ePtr;
- int lastT = fTs.count() - 1;
- if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end == 0)) {
- ePtr = fPts;
- } else {
- // OPTIMIZE? if not active, skip remainder and return xy_at_t(end)
- subDivide(start, end, edge);
- ePtr = edge;
- }
- if (active) {
- bool reverse = ePtr == fPts && start != 0;
- if (reverse) {
- path.deferredMoveLine(ePtr[fVerb]);
- switch (fVerb) {
- case SkPath::kLine_Verb:
- path.deferredLine(ePtr[0]);
- break;
- case SkPath::kQuad_Verb:
- path.quadTo(ePtr[1], ePtr[0]);
- break;
- case SkPath::kCubic_Verb:
- path.cubicTo(ePtr[2], ePtr[1], ePtr[0]);
- break;
- default:
- SkASSERT(0);
- }
- // return ePtr[0];
- } else {
- path.deferredMoveLine(ePtr[0]);
- switch (fVerb) {
- case SkPath::kLine_Verb:
- path.deferredLine(ePtr[1]);
- break;
- case SkPath::kQuad_Verb:
- path.quadTo(ePtr[1], ePtr[2]);
- break;
- case SkPath::kCubic_Verb:
- path.cubicTo(ePtr[1], ePtr[2], ePtr[3]);
- break;
- default:
- SkASSERT(0);
- }
- }
- }
- // return ePtr[fVerb];
- }
-
- void addLine(const SkPoint pts[2], bool operand, bool evenOdd) {
- init(pts, SkPath::kLine_Verb, operand, evenOdd);
- fBounds.set(pts, 2);
- }
-
-#if 0
- const SkPoint& addMoveTo(int tIndex, PathWrapper& path, bool active) const {
- const SkPoint& pt = xyAtT(tIndex);
- if (active) {
- path.deferredMove(pt);
- }
- return pt;
- }
-#endif
-
- // add 2 to edge or out of range values to get T extremes
- void addOtherT(int index, double otherT, int otherIndex) {
- Span& span = fTs[index];
- #if PIN_ADD_T
- if (precisely_less_than_zero(otherT)) {
- otherT = 0;
- } else if (precisely_greater_than_one(otherT)) {
- otherT = 1;
- }
- #endif
- span.fOtherT = otherT;
- span.fOtherIndex = otherIndex;
- }
-
- void addQuad(const SkPoint pts[3], bool operand, bool evenOdd) {
- init(pts, SkPath::kQuad_Verb, operand, evenOdd);
- fBounds.setQuadBounds(pts);
- }
-
- // Defer all coincident edge processing until
- // after normal intersections have been computed
-
-// no need to be tricky; insert in normal T order
-// resolve overlapping ts when considering coincidence later
-
- // add non-coincident intersection. Resulting edges are sorted in T.
- int addT(Segment* other, const SkPoint& pt, double& newT) {
- // FIXME: in the pathological case where there is a ton of intercepts,
- // binary search?
- int insertedAt = -1;
- size_t tCount = fTs.count();
- #if PIN_ADD_T
- // FIXME: only do this pinning here (e.g. this is done also in quad/line intersect)
- if (precisely_less_than_zero(newT)) {
- newT = 0;
- } else if (precisely_greater_than_one(newT)) {
- newT = 1;
- }
- #endif
- for (size_t index = 0; index < tCount; ++index) {
- // OPTIMIZATION: if there are three or more identical Ts, then
- // the fourth and following could be further insertion-sorted so
- // that all the edges are clockwise or counterclockwise.
- // This could later limit segment tests to the two adjacent
- // neighbors, although it doesn't help with determining which
- // circular direction to go in.
- if (newT < fTs[index].fT) {
- insertedAt = index;
- break;
- }
- }
- Span* span;
- if (insertedAt >= 0) {
- span = fTs.insert(insertedAt);
- } else {
- insertedAt = tCount;
- span = fTs.append();
- }
- span->fT = newT;
- span->fOther = other;
- span->fPt = pt;
- span->fWindSum = SK_MinS32;
- span->fOppSum = SK_MinS32;
- span->fWindValue = 1;
- span->fOppValue = 0;
- span->fTiny = false;
- span->fLoop = false;
- if ((span->fDone = newT == 1)) {
- ++fDoneSpans;
- }
- span->fUnsortableStart = false;
- span->fUnsortableEnd = false;
- int less = -1;
- while (&span[less + 1] - fTs.begin() > 0 && xyAtT(&span[less]) == xyAtT(span)) {
-#if 1
- if (span[less].fDone) {
- break;
- }
- double tInterval = newT - span[less].fT;
- if (precisely_negative(tInterval)) {
- break;
- }
- if (fVerb == SkPath::kCubic_Verb) {
- double tMid = newT - tInterval / 2;
- _Point midPt;
- CubicXYAtT(fPts, tMid, &midPt);
- if (!midPt.approximatelyEqual(xyAtT(span))) {
- break;
- }
- }
- span[less].fTiny = true;
- span[less].fDone = true;
- if (approximately_negative(newT - span[less].fT)) {
- if (approximately_greater_than_one(newT)) {
- span[less].fUnsortableStart = true;
- span[less - 1].fUnsortableEnd = true;
- }
- if (approximately_less_than_zero(span[less].fT)) {
- span[less + 1].fUnsortableStart = true;
- span[less].fUnsortableEnd = true;
- }
- }
- ++fDoneSpans;
-#else
- double tInterval = newT - span[less].fT;
- if (precisely_negative(tInterval)) {
- break;
- }
- if (fVerb == SkPath::kCubic_Verb) {
- double tMid = newT - tInterval / 2;
- _Point midPt;
- CubicXYAtT(fPts, tMid, &midPt);
- if (!midPt.approximatelyEqual(xyAtT(span))) {
- break;
- }
- }
- SkASSERT(span[less].fDone == span->fDone);
- if (span[less].fT == 0) {
- span->fT = newT = 0;
- } else {
- setSpanT(less, newT);
- }
-#endif
- --less;
- }
- int more = 1;
- while (fTs.end() - &span[more - 1] > 1 && xyAtT(&span[more]) == xyAtT(span)) {
-#if 1
- if (span[more - 1].fDone) {
- break;
- }
- double tEndInterval = span[more].fT - newT;
- if (precisely_negative(tEndInterval)) {
- break;
- }
- if (fVerb == SkPath::kCubic_Verb) {
- double tMid = newT - tEndInterval / 2;
- _Point midEndPt;
- CubicXYAtT(fPts, tMid, &midEndPt);
- if (!midEndPt.approximatelyEqual(xyAtT(span))) {
- break;
- }
- }
- span[more - 1].fTiny = true;
- span[more - 1].fDone = true;
- if (approximately_negative(span[more].fT - newT)) {
- if (approximately_greater_than_one(span[more].fT)) {
- span[more + 1].fUnsortableStart = true;
- span[more].fUnsortableEnd = true;
- }
- if (approximately_less_than_zero(newT)) {
- span[more].fUnsortableStart = true;
- span[more - 1].fUnsortableEnd = true;
- }
- }
- ++fDoneSpans;
-#else
- double tEndInterval = span[more].fT - newT;
- if (precisely_negative(tEndInterval)) {
- break;
- }
- if (fVerb == SkPath::kCubic_Verb) {
- double tMid = newT - tEndInterval / 2;
- _Point midEndPt;
- CubicXYAtT(fPts, tMid, &midEndPt);
- if (!midEndPt.approximatelyEqual(xyAtT(span))) {
- break;
- }
- }
- SkASSERT(span[more - 1].fDone == span[more].fDone);
- if (newT == 0) {
- setSpanT(more, 0);
- } else {
- span->fT = newT = span[more].fT;
- }
-#endif
- ++more;
- }
- return insertedAt;
- }
-
- // set spans from start to end to decrement by one
- // note this walks other backwards
- // FIMXE: there's probably an edge case that can be constructed where
- // two span in one segment are separated by float epsilon on one span but
- // not the other, if one segment is very small. For this
- // case the counts asserted below may or may not be enough to separate the
- // spans. Even if the counts work out, what if the spans aren't correctly
- // sorted? It feels better in such a case to match the span's other span
- // pointer since both coincident segments must contain the same spans.
- void addTCancel(double startT, double endT, Segment& other,
- double oStartT, double oEndT) {
- SkASSERT(!approximately_negative(endT - startT));
- SkASSERT(!approximately_negative(oEndT - oStartT));
- bool binary = fOperand != other.fOperand;
- int index = 0;
- while (!approximately_negative(startT - fTs[index].fT)) {
- ++index;
- }
- int oIndex = other.fTs.count();
- while (approximately_positive(other.fTs[--oIndex].fT - oEndT))
- ;
- double tRatio = (oEndT - oStartT) / (endT - startT);
- Span* test = &fTs[index];
- Span* oTest = &other.fTs[oIndex];
- SkTDArray<double> outsideTs;
- SkTDArray<double> oOutsideTs;
- do {
- bool decrement = test->fWindValue && oTest->fWindValue && !binary;
- bool track = test->fWindValue || oTest->fWindValue;
- double testT = test->fT;
- double oTestT = oTest->fT;
- Span* span = test;
- do {
- if (decrement) {
- decrementSpan(span);
- } else if (track && span->fT < 1 && oTestT < 1) {
- TrackOutside(outsideTs, span->fT, oTestT);
- }
- span = &fTs[++index];
- } while (approximately_negative(span->fT - testT));
- Span* oSpan = oTest;
- double otherTMatchStart = oEndT - (span->fT - startT) * tRatio;
- double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio;
- SkDEBUGCODE(int originalWindValue = oSpan->fWindValue);
- while (approximately_negative(otherTMatchStart - oSpan->fT)
- && !approximately_negative(otherTMatchEnd - oSpan->fT)) {
- #ifdef SK_DEBUG
- SkASSERT(originalWindValue == oSpan->fWindValue);
- #endif
- if (decrement) {
- other.decrementSpan(oSpan);
- } else if (track && oSpan->fT < 1 && testT < 1) {
- TrackOutside(oOutsideTs, oSpan->fT, testT);
- }
- if (!oIndex) {
- break;
- }
- oSpan = &other.fTs[--oIndex];
- }
- test = span;
- oTest = oSpan;
- } while (!approximately_negative(endT - test->fT));
- SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT));
- // FIXME: determine if canceled edges need outside ts added
- if (!done() && outsideTs.count()) {
- double tStart = outsideTs[0];
- double oStart = outsideTs[1];
- addCancelOutsides(tStart, oStart, other, oEndT);
- int count = outsideTs.count();
- if (count > 2) {
- double tStart = outsideTs[count - 2];
- double oStart = outsideTs[count - 1];
- addCancelOutsides(tStart, oStart, other, oEndT);
- }
- }
- if (!other.done() && oOutsideTs.count()) {
- double tStart = oOutsideTs[0];
- double oStart = oOutsideTs[1];
- other.addCancelOutsides(tStart, oStart, *this, endT);
- }
- }
-
- int addSelfT(Segment* other, const SkPoint& pt, double& newT) {
- int result = addT(other, pt, newT);
- Span* span = &fTs[result];
- span->fLoop = true;
- return result;
- }
-
- int addUnsortableT(Segment* other, bool start, const SkPoint& pt, double& newT) {
- int result = addT(other, pt, newT);
- Span* span = &fTs[result];
- if (start) {
- if (result > 0) {
- span[result - 1].fUnsortableEnd = true;
- }
- span[result].fUnsortableStart = true;
- } else {
- span[result].fUnsortableEnd = true;
- if (result + 1 < fTs.count()) {
- span[result + 1].fUnsortableStart = true;
- }
- }
- return result;
- }
-
- int bumpCoincidentThis(const Span* oTest, bool opp, int index,
- SkTDArray<double>& outsideTs) {
- int oWindValue = oTest->fWindValue;
- int oOppValue = oTest->fOppValue;
- if (opp) {
- SkTSwap<int>(oWindValue, oOppValue);
- }
- Span* const test = &fTs[index];
- Span* end = test;
- const double oStartT = oTest->fT;
- do {
- if (bumpSpan(end, oWindValue, oOppValue)) {
- TrackOutside(outsideTs, end->fT, oStartT);
- }
- end = &fTs[++index];
- } while (approximately_negative(end->fT - test->fT));
- return index;
- }
-
- // because of the order in which coincidences are resolved, this and other
- // may not have the same intermediate points. Compute the corresponding
- // intermediate T values (using this as the master, other as the follower)
- // and walk other conditionally -- hoping that it catches up in the end
- int bumpCoincidentOther(const Span* test, double oEndT, int& oIndex,
- SkTDArray<double>& oOutsideTs) {
- Span* const oTest = &fTs[oIndex];
- Span* oEnd = oTest;
- const double startT = test->fT;
- const double oStartT = oTest->fT;
- while (!approximately_negative(oEndT - oEnd->fT)
- && approximately_negative(oEnd->fT - oStartT)) {
- zeroSpan(oEnd);
- TrackOutside(oOutsideTs, oEnd->fT, startT);
- oEnd = &fTs[++oIndex];
- }
- return oIndex;
- }
-
- // FIXME: need to test this case:
- // contourA has two segments that are coincident
- // contourB has two segments that are coincident in the same place
- // each ends up with +2/0 pairs for winding count
- // since logic below doesn't transfer count (only increments/decrements) can this be
- // resolved to +4/0 ?
-
- // set spans from start to end to increment the greater by one and decrement
- // the lesser
- void addTCoincident(double startT, double endT, Segment& other, double oStartT, double oEndT) {
- SkASSERT(!approximately_negative(endT - startT));
- SkASSERT(!approximately_negative(oEndT - oStartT));
- bool opp = fOperand ^ other.fOperand;
- int index = 0;
- while (!approximately_negative(startT - fTs[index].fT)) {
- ++index;
- }
- int oIndex = 0;
- while (!approximately_negative(oStartT - other.fTs[oIndex].fT)) {
- ++oIndex;
- }
- Span* test = &fTs[index];
- Span* oTest = &other.fTs[oIndex];
- SkTDArray<double> outsideTs;
- SkTDArray<double> oOutsideTs;
- do {
- // if either span has an opposite value and the operands don't match, resolve first
- // SkASSERT(!test->fDone || !oTest->fDone);
- if (test->fDone || oTest->fDone) {
- index = advanceCoincidentThis(oTest, opp, index);
- oIndex = other.advanceCoincidentOther(test, oEndT, oIndex);
- } else {
- index = bumpCoincidentThis(oTest, opp, index, outsideTs);
- oIndex = other.bumpCoincidentOther(test, oEndT, oIndex, oOutsideTs);
- }
- test = &fTs[index];
- oTest = &other.fTs[oIndex];
- } while (!approximately_negative(endT - test->fT));
- SkASSERT(approximately_negative(oTest->fT - oEndT));
- SkASSERT(approximately_negative(oEndT - oTest->fT));
- if (!done() && outsideTs.count()) {
- addCoinOutsides(outsideTs, other, oEndT);
- }
- if (!other.done() && oOutsideTs.count()) {
- other.addCoinOutsides(oOutsideTs, *this, endT);
- }
- }
-
- // FIXME: this doesn't prevent the same span from being added twice
- // fix in caller, SkASSERT here?
- void addTPair(double t, Segment& other, double otherT, bool borrowWind, const SkPoint& pt) {
- int tCount = fTs.count();
- for (int tIndex = 0; tIndex < tCount; ++tIndex) {
- const Span& span = fTs[tIndex];
- if (!approximately_negative(span.fT - t)) {
- break;
- }
- if (approximately_negative(span.fT - t) && span.fOther == &other
- && approximately_equal(span.fOtherT, otherT)) {
-#if DEBUG_ADD_T_PAIR
- SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n",
- __FUNCTION__, fID, t, other.fID, otherT);
-#endif
- return;
- }
- }
-#if DEBUG_ADD_T_PAIR
- SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n",
- __FUNCTION__, fID, t, other.fID, otherT);
-#endif
- int insertedAt = addT(&other, pt, t);
- int otherInsertedAt = other.addT(this, pt, otherT);
- addOtherT(insertedAt, otherT, otherInsertedAt);
- other.addOtherT(otherInsertedAt, t, insertedAt);
- matchWindingValue(insertedAt, t, borrowWind);
- other.matchWindingValue(otherInsertedAt, otherT, borrowWind);
- }
-
- void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) const {
- // add edge leading into junction
- int min = SkMin32(end, start);
- if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) {
- addAngle(angles, end, start);
- }
- // add edge leading away from junction
- int step = SkSign32(end - start);
- int tIndex = nextExactSpan(end, step);
- min = SkMin32(end, tIndex);
- if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0)) {
- addAngle(angles, end, tIndex);
- }
- }
-
- int advanceCoincidentThis(const Span* oTest, bool opp, int index) {
- Span* const test = &fTs[index];
- Span* end = test;
- do {
- end = &fTs[++index];
- } while (approximately_negative(end->fT - test->fT));
- return index;
- }
-
- int advanceCoincidentOther(const Span* test, double oEndT, int& oIndex) {
- Span* const oTest = &fTs[oIndex];
- Span* oEnd = oTest;
- const double oStartT = oTest->fT;
- while (!approximately_negative(oEndT - oEnd->fT)
- && approximately_negative(oEnd->fT - oStartT)) {
- oEnd = &fTs[++oIndex];
- }
- return oIndex;
- }
-
- bool betweenTs(int lesser, double testT, int greater) {
- if (lesser > greater) {
- SkTSwap<int>(lesser, greater);
- }
- return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT);
- }
-
- const Bounds& bounds() const {
- return fBounds;
- }
-
- void buildAngles(int index, SkTDArray<Angle>& angles, bool includeOpp) const {
- double referenceT = fTs[index].fT;
- int lesser = index;
- while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == fOperand)
- && precisely_negative(referenceT - fTs[lesser].fT)) {
- buildAnglesInner(lesser, angles);
- }
- do {
- buildAnglesInner(index, angles);
- } while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOperand == fOperand)
- && precisely_negative(fTs[index].fT - referenceT));
- }
-
- void buildAnglesInner(int index, SkTDArray<Angle>& angles) const {
- const Span* span = &fTs[index];
- Segment* other = span->fOther;
- // if there is only one live crossing, and no coincidence, continue
- // in the same direction
- // if there is coincidence, the only choice may be to reverse direction
- // find edge on either side of intersection
- int oIndex = span->fOtherIndex;
- // if done == -1, prior span has already been processed
- int step = 1;
- int next = other->nextExactSpan(oIndex, step);
- if (next < 0) {
- step = -step;
- next = other->nextExactSpan(oIndex, step);
- }
- // add candidate into and away from junction
- other->addTwoAngles(next, oIndex, angles);
- }
-
- int computeSum(int startIndex, int endIndex, bool binary) {
- SkTDArray<Angle> angles;
- addTwoAngles(startIndex, endIndex, angles);
- buildAngles(endIndex, angles, false);
- // OPTIMIZATION: check all angles to see if any have computed wind sum
- // before sorting (early exit if none)
- SkTDArray<Angle*> sorted;
- bool sortable = SortAngles(angles, sorted);
-#if DEBUG_SORT
- sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
-#endif
- if (!sortable) {
- return SK_MinS32;
- }
- int angleCount = angles.count();
- const Angle* angle;
- const Segment* base;
- int winding;
- int oWinding;
- int firstIndex = 0;
- do {
- angle = sorted[firstIndex];
- base = angle->segment();
- winding = base->windSum(angle);
- if (winding != SK_MinS32) {
- oWinding = base->oppSum(angle);
- break;
- }
- if (++firstIndex == angleCount) {
- return SK_MinS32;
- }
- } while (true);
- // turn winding into contourWinding
- int spanWinding = base->spanSign(angle);
- bool inner = useInnerWinding(winding + spanWinding, winding);
- #if DEBUG_WINDING
- SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __FUNCTION__,
- spanWinding, winding, angle->sign(), inner,
- inner ? winding + spanWinding : winding);
- #endif
- if (inner) {
- winding += spanWinding;
- }
- #if DEBUG_SORT
- base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding);
- #endif
- int nextIndex = firstIndex + 1;
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
- winding -= base->spanSign(angle);
- oWinding -= base->oppSign(angle);
- do {
- if (nextIndex == angleCount) {
- nextIndex = 0;
- }
- angle = sorted[nextIndex];
- Segment* segment = angle->segment();
- bool opp = base->fOperand ^ segment->fOperand;
- int maxWinding, oMaxWinding;
- int spanSign = segment->spanSign(angle);
- int oppoSign = segment->oppSign(angle);
- if (opp) {
- oMaxWinding = oWinding;
- oWinding -= spanSign;
- maxWinding = winding;
- if (oppoSign) {
- winding -= oppoSign;
- }
- } else {
- maxWinding = winding;
- winding -= spanSign;
- oMaxWinding = oWinding;
- if (oppoSign) {
- oWinding -= oppoSign;
- }
- }
- if (segment->windSum(angle) == SK_MinS32) {
- if (opp) {
- if (useInnerWinding(oMaxWinding, oWinding)) {
- oMaxWinding = oWinding;
- }
- if (oppoSign && useInnerWinding(maxWinding, winding)) {
- maxWinding = winding;
- }
- (void) segment->markAndChaseWinding(angle, oMaxWinding, maxWinding);
- } else {
- if (useInnerWinding(maxWinding, winding)) {
- maxWinding = winding;
- }
- if (oppoSign && useInnerWinding(oMaxWinding, oWinding)) {
- oMaxWinding = oWinding;
- }
- (void) segment->markAndChaseWinding(angle, maxWinding,
- binary ? oMaxWinding : 0);
- }
- }
- } while (++nextIndex != lastIndex);
- int minIndex = SkMin32(startIndex, endIndex);
- return windSum(minIndex);
- }
-
- int crossedSpanY(const SkPoint& basePt, SkScalar& bestY, double& hitT, bool& hitSomething,
- double mid, bool opp, bool current) const {
- SkScalar bottom = fBounds.fBottom;
- int bestTIndex = -1;
- if (bottom <= bestY) {
- return bestTIndex;
- }
- SkScalar top = fBounds.fTop;
- if (top >= basePt.fY) {
- return bestTIndex;
- }
- if (fBounds.fLeft > basePt.fX) {
- return bestTIndex;
- }
- if (fBounds.fRight < basePt.fX) {
- return bestTIndex;
- }
- if (fBounds.fLeft == fBounds.fRight) {
- // if vertical, and directly above test point, wait for another one
- return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestTIndex;
- }
- // intersect ray starting at basePt with edge
- Intersections intersections;
- // OPTIMIZE: use specialty function that intersects ray with curve,
- // returning t values only for curve (we don't care about t on ray)
- int pts = (*VSegmentIntersect[fVerb])(fPts, top, bottom, basePt.fX, false, intersections);
- if (pts == 0 || (current && pts == 1)) {
- return bestTIndex;
- }
- if (current) {
- SkASSERT(pts > 1);
- int closestIdx = 0;
- double closest = fabs(intersections.fT[0][0] - mid);
- for (int idx = 1; idx < pts; ++idx) {
- double test = fabs(intersections.fT[0][idx] - mid);
- if (closest > test) {
- closestIdx = idx;
- closest = test;
- }
- }
- if (closestIdx < pts - 1) {
- intersections.fT[0][closestIdx] = intersections.fT[0][pts - 1];
- }
- --pts;
- }
- double bestT = -1;
- for (int index = 0; index < pts; ++index) {
- double foundT = intersections.fT[0][index];
- if (approximately_less_than_zero(foundT)
- || approximately_greater_than_one(foundT)) {
- continue;
- }
- SkScalar testY = (*SegmentYAtT[fVerb])(fPts, foundT);
- if (approximately_negative(testY - bestY)
- || approximately_negative(basePt.fY - testY)) {
- continue;
- }
- if (pts > 1 && fVerb == SkPath::kLine_Verb) {
- return SK_MinS32; // if the intersection is edge on, wait for another one
- }
- if (fVerb > SkPath::kLine_Verb) {
- SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, foundT);
- if (approximately_zero(dx)) {
- return SK_MinS32; // hit vertical, wait for another one
- }
- }
- bestY = testY;
- bestT = foundT;
- }
- if (bestT < 0) {
- return bestTIndex;
- }
- SkASSERT(bestT >= 0);
- SkASSERT(bestT <= 1);
- int start;
- int end = 0;
- do {
- start = end;
- end = nextSpan(start, 1);
- } while (fTs[end].fT < bestT);
- // FIXME: see next candidate for a better pattern to find the next start/end pair
- while (start + 1 < end && fTs[start].fDone) {
- ++start;
- }
- if (!isCanceled(start)) {
- hitT = bestT;
- bestTIndex = start;
- hitSomething = true;
- }
- return bestTIndex;
- }
-
- void decrementSpan(Span* span) {
- SkASSERT(span->fWindValue > 0);
- if (--(span->fWindValue) == 0) {
- if (!span->fOppValue && !span->fDone) {
- span->fDone = true;
- ++fDoneSpans;
- }
- }
- }
-
- bool bumpSpan(Span* span, int windDelta, int oppDelta) {
- SkASSERT(!span->fDone);
- span->fWindValue += windDelta;
- SkASSERT(span->fWindValue >= 0);
- span->fOppValue += oppDelta;
- SkASSERT(span->fOppValue >= 0);
- if (fXor) {
- span->fWindValue &= 1;
- }
- if (fOppXor) {
- span->fOppValue &= 1;
- }
- if (!span->fWindValue && !span->fOppValue) {
- span->fDone = true;
- ++fDoneSpans;
- return true;
- }
- return false;
- }
-
- // OPTIMIZE
- // when the edges are initially walked, they don't automatically get the prior and next
- // edges assigned to positions t=0 and t=1. Doing that would remove the need for this check,
- // and would additionally remove the need for similar checks in condition edges. It would
- // also allow intersection code to assume end of segment intersections (maybe?)
- bool complete() const {
- int count = fTs.count();
- return count > 1 && fTs[0].fT == 0 && fTs[--count].fT == 1;
- }
-
- bool done() const {
- SkASSERT(fDoneSpans <= fTs.count());
- return fDoneSpans == fTs.count();
- }
-
- bool done(int min) const {
- return fTs[min].fDone;
- }
-
- bool done(const Angle* angle) const {
- return done(SkMin32(angle->start(), angle->end()));
- }
-
- SkVector dxdy(int index) const {
- return (*SegmentDXDYAtT[fVerb])(fPts, fTs[index].fT);
- }
-
- SkScalar dy(int index) const {
- return (*SegmentDYAtT[fVerb])(fPts, fTs[index].fT);
- }
-
- bool equalPoints(int greaterTIndex, int lesserTIndex) {
- SkASSERT(greaterTIndex >= lesserTIndex);
- double greaterT = fTs[greaterTIndex].fT;
- double lesserT = fTs[lesserTIndex].fT;
- if (greaterT == lesserT) {
- return true;
- }
- if (!approximately_negative(greaterT - lesserT)) {
- return false;
- }
- return xyAtT(greaterTIndex) == xyAtT(lesserTIndex);
- }
-
- /*
- The M and S variable name parts stand for the operators.
- Mi stands for Minuend (see wiki subtraction, analogous to difference)
- Su stands for Subtrahend
- The Opp variable name part designates that the value is for the Opposite operator.
- Opposite values result from combining coincident spans.
- */
-
- Segment* findNextOp(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd,
- bool& unsortable, ShapeOp op, const int xorMiMask, const int xorSuMask) {
- const int startIndex = nextStart;
- const int endIndex = nextEnd;
- SkASSERT(startIndex != endIndex);
- const int count = fTs.count();
- SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0);
- const int step = SkSign32(endIndex - startIndex);
- const int end = nextExactSpan(startIndex, step);
- SkASSERT(end >= 0);
- Span* endSpan = &fTs[end];
- Segment* other;
- if (isSimple(end)) {
- // mark the smaller of startIndex, endIndex done, and all adjacent
- // spans with the same T value (but not 'other' spans)
- #if DEBUG_WINDING
- SkDebugf("%s simple\n", __FUNCTION__);
- #endif
- int min = SkMin32(startIndex, endIndex);
- if (fTs[min].fDone) {
- return NULL;
- }
- markDoneBinary(min);
- other = endSpan->fOther;
- nextStart = endSpan->fOtherIndex;
- double startT = other->fTs[nextStart].fT;
- nextEnd = nextStart;
- do {
- nextEnd += step;
- }
- while (precisely_zero(startT - other->fTs[nextEnd].fT));
- SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
- return other;
- }
- // more than one viable candidate -- measure angles to find best
- SkTDArray<Angle> angles;
- SkASSERT(startIndex - endIndex != 0);
- SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
- addTwoAngles(startIndex, end, angles);
- buildAngles(end, angles, true);
- SkTDArray<Angle*> sorted;
- bool sortable = SortAngles(angles, sorted);
- int angleCount = angles.count();
- int firstIndex = findStartingEdge(sorted, startIndex, end);
- SkASSERT(firstIndex >= 0);
- #if DEBUG_SORT
- debugShowSort(__FUNCTION__, sorted, firstIndex);
- #endif
- if (!sortable) {
- unsortable = true;
- return NULL;
- }
- SkASSERT(sorted[firstIndex]->segment() == this);
- #if DEBUG_WINDING
- SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex,
- sorted[firstIndex]->sign());
- #endif
- int sumMiWinding = updateWinding(endIndex, startIndex);
- int sumSuWinding = updateOppWinding(endIndex, startIndex);
- if (operand()) {
- SkTSwap<int>(sumMiWinding, sumSuWinding);
- }
- int nextIndex = firstIndex + 1;
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
- const Angle* foundAngle = NULL;
- bool foundDone = false;
- // iterate through the angle, and compute everyone's winding
- Segment* nextSegment;
- int activeCount = 0;
- do {
- SkASSERT(nextIndex != firstIndex);
- if (nextIndex == angleCount) {
- nextIndex = 0;
- }
- const Angle* nextAngle = sorted[nextIndex];
- nextSegment = nextAngle->segment();
- int maxWinding, sumWinding, oppMaxWinding, oppSumWinding;
- bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextAngle->start(),
- nextAngle->end(), op, sumMiWinding, sumSuWinding,
- maxWinding, sumWinding, oppMaxWinding, oppSumWinding);
- if (activeAngle) {
- ++activeCount;
- if (!foundAngle || (foundDone && activeCount & 1)) {
- if (nextSegment->tiny(nextAngle)) {
- unsortable = true;
- return NULL;
- }
- foundAngle = nextAngle;
- foundDone = nextSegment->done(nextAngle) && !nextSegment->tiny(nextAngle);
- }
- }
- if (nextSegment->done()) {
- continue;
- }
- if (nextSegment->windSum(nextAngle) != SK_MinS32) {
- continue;
- }
- Span* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWinding,
- oppSumWinding, activeAngle, nextAngle);
- if (last) {
- *chase.append() = last;
-#if DEBUG_WINDING
- SkDebugf("%s chase.append id=%d\n", __FUNCTION__,
- last->fOther->fTs[last->fOtherIndex].fOther->debugID());
-#endif
- }
- } while (++nextIndex != lastIndex);
- markDoneBinary(SkMin32(startIndex, endIndex));
- if (!foundAngle) {
- return NULL;
- }
- nextStart = foundAngle->start();
- nextEnd = foundAngle->end();
- nextSegment = foundAngle->segment();
-
- #if DEBUG_WINDING
- SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n",
- __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd);
- #endif
- return nextSegment;
- }
-
- Segment* findNextWinding(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd,
- bool& unsortable) {
- const int startIndex = nextStart;
- const int endIndex = nextEnd;
- SkASSERT(startIndex != endIndex);
- const int count = fTs.count();
- SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0);
- const int step = SkSign32(endIndex - startIndex);
- const int end = nextExactSpan(startIndex, step);
- SkASSERT(end >= 0);
- Span* endSpan = &fTs[end];
- Segment* other;
- if (isSimple(end)) {
- // mark the smaller of startIndex, endIndex done, and all adjacent
- // spans with the same T value (but not 'other' spans)
- #if DEBUG_WINDING
- SkDebugf("%s simple\n", __FUNCTION__);
- #endif
- int min = SkMin32(startIndex, endIndex);
- if (fTs[min].fDone) {
- return NULL;
- }
- markDoneUnary(min);
- other = endSpan->fOther;
- nextStart = endSpan->fOtherIndex;
- double startT = other->fTs[nextStart].fT;
- nextEnd = nextStart;
- do {
- nextEnd += step;
- }
- while (precisely_zero(startT - other->fTs[nextEnd].fT));
- SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
- return other;
- }
- // more than one viable candidate -- measure angles to find best
- SkTDArray<Angle> angles;
- SkASSERT(startIndex - endIndex != 0);
- SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
- addTwoAngles(startIndex, end, angles);
- buildAngles(end, angles, true);
- SkTDArray<Angle*> sorted;
- bool sortable = SortAngles(angles, sorted);
- int angleCount = angles.count();
- int firstIndex = findStartingEdge(sorted, startIndex, end);
- SkASSERT(firstIndex >= 0);
- #if DEBUG_SORT
- debugShowSort(__FUNCTION__, sorted, firstIndex);
- #endif
- if (!sortable) {
- unsortable = true;
- return NULL;
- }
- SkASSERT(sorted[firstIndex]->segment() == this);
- #if DEBUG_WINDING
- SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex,
- sorted[firstIndex]->sign());
- #endif
- int sumWinding = updateWinding(endIndex, startIndex);
- int nextIndex = firstIndex + 1;
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
- const Angle* foundAngle = NULL;
- bool foundDone = false;
- // iterate through the angle, and compute everyone's winding
- Segment* nextSegment;
- int activeCount = 0;
- do {
- SkASSERT(nextIndex != firstIndex);
- if (nextIndex == angleCount) {
- nextIndex = 0;
- }
- const Angle* nextAngle = sorted[nextIndex];
- nextSegment = nextAngle->segment();
- int maxWinding;
- bool activeAngle = nextSegment->activeWinding(nextAngle->start(), nextAngle->end(),
- maxWinding, sumWinding);
- if (activeAngle) {
- ++activeCount;
- if (!foundAngle || (foundDone && activeCount & 1)) {
- if (nextSegment->tiny(nextAngle)) {
- unsortable = true;
- return NULL;
- }
- foundAngle = nextAngle;
- foundDone = nextSegment->done(nextAngle);
- }
- }
- if (nextSegment->done()) {
- continue;
- }
- if (nextSegment->windSum(nextAngle) != SK_MinS32) {
- continue;
- }
- Span* last = nextSegment->markAngle(maxWinding, sumWinding, activeAngle, nextAngle);
- if (last) {
- *chase.append() = last;
-#if DEBUG_WINDING
- SkDebugf("%s chase.append id=%d\n", __FUNCTION__,
- last->fOther->fTs[last->fOtherIndex].fOther->debugID());
-#endif
- }
- } while (++nextIndex != lastIndex);
- markDoneUnary(SkMin32(startIndex, endIndex));
- if (!foundAngle) {
- return NULL;
- }
- nextStart = foundAngle->start();
- nextEnd = foundAngle->end();
- nextSegment = foundAngle->segment();
- #if DEBUG_WINDING
- SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n",
- __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd);
- #endif
- return nextSegment;
- }
-
- Segment* findNextXor(int& nextStart, int& nextEnd, bool& unsortable) {
- const int startIndex = nextStart;
- const int endIndex = nextEnd;
- SkASSERT(startIndex != endIndex);
- int count = fTs.count();
- SkASSERT(startIndex < endIndex ? startIndex < count - 1
- : startIndex > 0);
- int step = SkSign32(endIndex - startIndex);
- int end = nextExactSpan(startIndex, step);
- SkASSERT(end >= 0);
- Span* endSpan = &fTs[end];
- Segment* other;
- if (isSimple(end)) {
- #if DEBUG_WINDING
- SkDebugf("%s simple\n", __FUNCTION__);
- #endif
- int min = SkMin32(startIndex, endIndex);
- if (fTs[min].fDone) {
- return NULL;
- }
- markDone(min, 1);
- other = endSpan->fOther;
- nextStart = endSpan->fOtherIndex;
- double startT = other->fTs[nextStart].fT;
- #if 01 // FIXME: I don't know why the logic here is difference from the winding case
- SkDEBUGCODE(bool firstLoop = true;)
- if ((approximately_less_than_zero(startT) && step < 0)
- || (approximately_greater_than_one(startT) && step > 0)) {
- step = -step;
- SkDEBUGCODE(firstLoop = false;)
- }
- do {
- #endif
- nextEnd = nextStart;
- do {
- nextEnd += step;
- }
- while (precisely_zero(startT - other->fTs[nextEnd].fT));
- #if 01
- if (other->fTs[SkMin32(nextStart, nextEnd)].fWindValue) {
- break;
- }
- #ifdef SK_DEBUG
- SkASSERT(firstLoop);
- #endif
- SkDEBUGCODE(firstLoop = false;)
- step = -step;
- } while (true);
- #endif
- SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count());
- return other;
- }
- SkTDArray<Angle> angles;
- SkASSERT(startIndex - endIndex != 0);
- SkASSERT((startIndex - endIndex < 0) ^ (step < 0));
- addTwoAngles(startIndex, end, angles);
- buildAngles(end, angles, false);
- SkTDArray<Angle*> sorted;
- bool sortable = SortAngles(angles, sorted);
- if (!sortable) {
- unsortable = true;
- #if DEBUG_SORT
- debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIndex, end), 0, 0);
- #endif
- return NULL;
- }
- int angleCount = angles.count();
- int firstIndex = findStartingEdge(sorted, startIndex, end);
- SkASSERT(firstIndex >= 0);
- #if DEBUG_SORT
- debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0);
- #endif
- SkASSERT(sorted[firstIndex]->segment() == this);
- int nextIndex = firstIndex + 1;
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
- const Angle* foundAngle = NULL;
- bool foundDone = false;
- Segment* nextSegment;
- int activeCount = 0;
- do {
- SkASSERT(nextIndex != firstIndex);
- if (nextIndex == angleCount) {
- nextIndex = 0;
- }
- const Angle* nextAngle = sorted[nextIndex];
- nextSegment = nextAngle->segment();
- ++activeCount;
- if (!foundAngle || (foundDone && activeCount & 1)) {
- if (nextSegment->tiny(nextAngle)) {
- unsortable = true;
- return NULL;
- }
- foundAngle = nextAngle;
- foundDone = nextSegment->done(nextAngle);
- }
- if (nextSegment->done()) {
- continue;
- }
- } while (++nextIndex != lastIndex);
- markDone(SkMin32(startIndex, endIndex), 1);
- if (!foundAngle) {
- return NULL;
- }
- nextStart = foundAngle->start();
- nextEnd = foundAngle->end();
- nextSegment = foundAngle->segment();
- #if DEBUG_WINDING
- SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n",
- __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, nextEnd);
- #endif
- return nextSegment;
- }
-
- int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) {
- int angleCount = sorted.count();
- int firstIndex = -1;
- for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
- const Angle* angle = sorted[angleIndex];
- if (angle->segment() == this && angle->start() == end &&
- angle->end() == start) {
- firstIndex = angleIndex;
- break;
- }
- }
- return firstIndex;
- }
-
- // FIXME: this is tricky code; needs its own unit test
- // note that fOtherIndex isn't computed yet, so it can't be used here
- void findTooCloseToCall() {
- int count = fTs.count();
- if (count < 3) { // require t=0, x, 1 at minimum
- return;
- }
- int matchIndex = 0;
- int moCount;
- Span* match;
- Segment* mOther;
- do {
- match = &fTs[matchIndex];
- mOther = match->fOther;
- // FIXME: allow quads, cubics to be near coincident?
- if (mOther->fVerb == SkPath::kLine_Verb) {
- moCount = mOther->fTs.count();
- if (moCount >= 3) {
- break;
- }
- }
- if (++matchIndex >= count) {
- return;
- }
- } while (true); // require t=0, x, 1 at minimum
- // OPTIMIZATION: defer matchPt until qualifying toCount is found?
- const SkPoint* matchPt = &xyAtT(match);
- // look for a pair of nearby T values that map to the same (x,y) value
- // if found, see if the pair of other segments share a common point. If
- // so, the span from here to there is coincident.
- for (int index = matchIndex + 1; index < count; ++index) {
- Span* test = &fTs[index];
- if (test->fDone) {
- continue;
- }
- Segment* tOther = test->fOther;
- if (tOther->fVerb != SkPath::kLine_Verb) {
- continue; // FIXME: allow quads, cubics to be near coincident?
- }
- int toCount = tOther->fTs.count();
- if (toCount < 3) { // require t=0, x, 1 at minimum
- continue;
- }
- const SkPoint* testPt = &xyAtT(test);
- if (*matchPt != *testPt) {
- matchIndex = index;
- moCount = toCount;
- match = test;
- mOther = tOther;
- matchPt = testPt;
- continue;
- }
- int moStart = -1;
- int moEnd = -1;
- double moStartT, moEndT;
- for (int moIndex = 0; moIndex < moCount; ++moIndex) {
- Span& moSpan = mOther->fTs[moIndex];
- if (moSpan.fDone) {
- continue;
- }
- if (moSpan.fOther == this) {
- if (moSpan.fOtherT == match->fT) {
- moStart = moIndex;
- moStartT = moSpan.fT;
- }
- continue;
- }
- if (moSpan.fOther == tOther) {
- if (tOther->windValueAt(moSpan.fOtherT) == 0) {
- moStart = -1;
- break;
- }
- SkASSERT(moEnd == -1);
- moEnd = moIndex;
- moEndT = moSpan.fT;
- }
- }
- if (moStart < 0 || moEnd < 0) {
- continue;
- }
- // FIXME: if moStartT, moEndT are initialized to NaN, can skip this test
- if (approximately_equal(moStartT, moEndT)) {
- continue;
- }
- int toStart = -1;
- int toEnd = -1;
- double toStartT, toEndT;
- for (int toIndex = 0; toIndex < toCount; ++toIndex) {
- Span& toSpan = tOther->fTs[toIndex];
- if (toSpan.fDone) {
- continue;
- }
- if (toSpan.fOther == this) {
- if (toSpan.fOtherT == test->fT) {
- toStart = toIndex;
- toStartT = toSpan.fT;
- }
- continue;
- }
- if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) {
- if (mOther->windValueAt(toSpan.fOtherT) == 0) {
- moStart = -1;
- break;
- }
- SkASSERT(toEnd == -1);
- toEnd = toIndex;
- toEndT = toSpan.fT;
- }
- }
- // FIXME: if toStartT, toEndT are initialized to NaN, can skip this test
- if (toStart <= 0 || toEnd <= 0) {
- continue;
- }
- if (approximately_equal(toStartT, toEndT)) {
- continue;
- }
- // test to see if the segment between there and here is linear
- if (!mOther->isLinear(moStart, moEnd)
- || !tOther->isLinear(toStart, toEnd)) {
- continue;
- }
- bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1;
- if (flipped) {
- mOther->addTCancel(moStartT, moEndT, *tOther, toEndT, toStartT);
- } else {
- mOther->addTCoincident(moStartT, moEndT, *tOther, toStartT, toEndT);
- }
- }
- }
-
- // FIXME: either:
- // a) mark spans with either end unsortable as done, or
- // b) rewrite findTop / findTopSegment / findTopContour to iterate further
- // when encountering an unsortable span
-
- // OPTIMIZATION : for a pair of lines, can we compute points at T (cached)
- // and use more concise logic like the old edge walker code?
- // FIXME: this needs to deal with coincident edges
- Segment* findTop(int& tIndex, int& endIndex, bool& unsortable, bool onlySortable) {
- // iterate through T intersections and return topmost
- // topmost tangent from y-min to first pt is closer to horizontal
- SkASSERT(!done());
- int firstT = -1;
- /* SkPoint topPt = */ activeLeftTop(onlySortable, &firstT);
- if (firstT < 0) {
- unsortable = true;
- firstT = 0;
- while (fTs[firstT].fDone) {
- SkASSERT(firstT < fTs.count());
- ++firstT;
- }
- tIndex = firstT;
- endIndex = nextExactSpan(firstT, 1);
- return this;
- }
- // sort the edges to find the leftmost
- int step = 1;
- int end = nextSpan(firstT, step);
- if (end == -1) {
- step = -1;
- end = nextSpan(firstT, step);
- SkASSERT(end != -1);
- }
- // if the topmost T is not on end, or is three-way or more, find left
- // look for left-ness from tLeft to firstT (matching y of other)
- SkTDArray<Angle> angles;
- SkASSERT(firstT - end != 0);
- addTwoAngles(end, firstT, angles);
- buildAngles(firstT, angles, true);
- SkTDArray<Angle*> sorted;
- bool sortable = SortAngles(angles, sorted);
- int first = SK_MaxS32;
- SkScalar top = SK_ScalarMax;
- int count = sorted.count();
- for (int index = 0; index < count; ++index) {
- const Angle* angle = sorted[index];
- Segment* next = angle->segment();
- Bounds bounds;
- next->subDivideBounds(angle->end(), angle->start(), bounds);
- if (approximately_greater(top, bounds.fTop)) {
- top = bounds.fTop;
- first = index;
- }
- }
- SkASSERT(first < SK_MaxS32);
- #if DEBUG_SORT // || DEBUG_SWAP_TOP
- sorted[first]->segment()->debugShowSort(__FUNCTION__, sorted, first, 0, 0);
- #endif
- if (onlySortable && !sortable) {
- unsortable = true;
- return NULL;
- }
- // skip edges that have already been processed
- firstT = first - 1;
- Segment* leftSegment;
- do {
- if (++firstT == count) {
- firstT = 0;
- }
- const Angle* angle = sorted[firstT];
- SkASSERT(!onlySortable || !angle->unsortable());
- leftSegment = angle->segment();
- tIndex = angle->end();
- endIndex = angle->start();
- } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone);
- if (leftSegment->verb() >= SkPath::kQuad_Verb) {
- if (!leftSegment->clockwise(tIndex, endIndex)) {
- bool swap = leftSegment->verb() == SkPath::kQuad_Verb
- || (!leftSegment->monotonic_in_y(tIndex, endIndex)
- && !leftSegment->serpentine(tIndex, endIndex));
- #if DEBUG_SWAP_TOP
- SkDebugf("%s swap=%d serpentine=%d controls_contained_by_ends=%d\n", __FUNCTION__,
- swap,
- leftSegment->serpentine(tIndex, endIndex),
- leftSegment->controls_contained_by_ends(tIndex, endIndex),
- leftSegment->monotonic_in_y(tIndex, endIndex));
- #endif
- if (swap) {
- // FIXME: I doubt it makes sense to (necessarily) swap if the edge was not the first
- // sorted but merely the first not already processed (i.e., not done)
- SkTSwap(tIndex, endIndex);
- }
- }
- }
- SkASSERT(!leftSegment->fTs[SkMin32(tIndex, endIndex)].fTiny);
- return leftSegment;
- }
-
- // FIXME: not crazy about this
- // when the intersections are performed, the other index is into an
- // incomplete array. As the array grows, the indices become incorrect
- // while the following fixes the indices up again, it isn't smart about
- // skipping segments whose indices are already correct
- // assuming we leave the code that wrote the index in the first place
- void fixOtherTIndex() {
- int iCount = fTs.count();
- for (int i = 0; i < iCount; ++i) {
- Span& iSpan = fTs[i];
- double oT = iSpan.fOtherT;
- Segment* other = iSpan.fOther;
- int oCount = other->fTs.count();
- for (int o = 0; o < oCount; ++o) {
- Span& oSpan = other->fTs[o];
- if (oT == oSpan.fT && this == oSpan.fOther && oSpan.fOtherT == iSpan.fT) {
- iSpan.fOtherIndex = o;
- break;
- }
- }
- }
- }
-
- void init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd) {
- fDoneSpans = 0;
- fOperand = operand;
- fXor = evenOdd;
- fPts = pts;
- fVerb = verb;
- }
-
- void initWinding(int start, int end) {
- int local = spanSign(start, end);
- int oppLocal = oppSign(start, end);
- (void) markAndChaseWinding(start, end, local, oppLocal);
- // OPTIMIZATION: the reverse mark and chase could skip the first marking
- (void) markAndChaseWinding(end, start, local, oppLocal);
- }
-
- void initWinding(int start, int end, int winding, int oppWinding) {
- int local = spanSign(start, end);
- if (local * winding >= 0) {
- winding += local;
- }
- int oppLocal = oppSign(start, end);
- if (oppLocal * oppWinding >= 0) {
- oppWinding += oppLocal;
- }
- (void) markAndChaseWinding(start, end, winding, oppWinding);
- }
-
-/*
-when we start with a vertical intersect, we try to use the dx to determine if the edge is to
-the left or the right of vertical. This determines if we need to add the span's
-sign or not. However, this isn't enough.
-If the supplied sign (winding) is zero, then we didn't hit another vertical span, so dx is needed.
-If there was a winding, then it may or may not need adjusting. If the span the winding was borrowed
-from has the same x direction as this span, the winding should change. If the dx is opposite, then
-the same winding is shared by both.
-*/
- void initWinding(int start, int end, double tHit, int winding, SkScalar hitDx, int oppWind,
- SkScalar hitOppDx) {
- SkASSERT(hitDx || !winding);
- SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, tHit);
- SkASSERT(dx);
- int windVal = windValue(SkMin32(start, end));
- #if DEBUG_WINDING_AT_T
- SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, winding,
- hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal);
- #endif
- if (!winding) {
- winding = dx < 0 ? windVal : -windVal;
- } else if (winding * dx < 0) {
- int sideWind = winding + (dx < 0 ? windVal : -windVal);
- if (abs(winding) < abs(sideWind)) {
- winding = sideWind;
- }
- }
- #if DEBUG_WINDING_AT_T
- SkDebugf(" winding=%d\n", winding);
- #endif
- int oppLocal = oppSign(start, end);
- SkASSERT(hitOppDx || !oppWind || !oppLocal);
- int oppWindVal = oppValue(SkMin32(start, end));
- if (!oppWind) {
- oppWind = dx < 0 ? oppWindVal : -oppWindVal;
- } else if (hitOppDx * dx >= 0) {
- int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal);
- if (abs(oppWind) < abs(oppSideWind)) {
- oppWind = oppSideWind;
- }
- }
- (void) markAndChaseWinding(start, end, winding, oppWind);
- }
-
- bool intersected() const {
- return fTs.count() > 0;
- }
-
- bool isCanceled(int tIndex) const {
- return fTs[tIndex].fWindValue == 0 && fTs[tIndex].fOppValue == 0;
- }
-
- bool isConnected(int startIndex, int endIndex) const {
- return fTs[startIndex].fWindSum != SK_MinS32
- || fTs[endIndex].fWindSum != SK_MinS32;
- }
-
- bool isHorizontal() const {
- return fBounds.fTop == fBounds.fBottom;
- }
-
- bool isLinear(int start, int end) const {
- if (fVerb == SkPath::kLine_Verb) {
- return true;
- }
- if (fVerb == SkPath::kQuad_Verb) {
- SkPoint qPart[3];
- QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart);
- return QuadIsLinear(qPart);
- } else {
- SkASSERT(fVerb == SkPath::kCubic_Verb);
- SkPoint cPart[4];
- CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart);
- return CubicIsLinear(cPart);
- }
- }
-
- // OPTIMIZE: successive calls could start were the last leaves off
- // or calls could specialize to walk forwards or backwards
- bool isMissing(double startT) const {
- size_t tCount = fTs.count();
- for (size_t index = 0; index < tCount; ++index) {
- if (approximately_zero(startT - fTs[index].fT)) {
- return false;
- }
- }
- return true;
- }
-
- bool isSimple(int end) const {
- int count = fTs.count();
- if (count == 2) {
- return true;
- }
- double t = fTs[end].fT;
- if (approximately_less_than_zero(t)) {
- return !approximately_less_than_zero(fTs[1].fT);
- }
- if (approximately_greater_than_one(t)) {
- return !approximately_greater_than_one(fTs[count - 2].fT);
- }
- return false;
- }
-
- bool isVertical() const {
- return fBounds.fLeft == fBounds.fRight;
- }
-
- bool isVertical(int start, int end) const {
- return (*SegmentVertical[fVerb])(fPts, start, end);
- }
-
- SkScalar leftMost(int start, int end) const {
- return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT);
- }
-
- // this span is excluded by the winding rule -- chase the ends
- // as long as they are unambiguous to mark connections as done
- // and give them the same winding value
- Span* markAndChaseDone(const Angle* angle, int winding) {
- int index = angle->start();
- int endIndex = angle->end();
- return markAndChaseDone(index, endIndex, winding);
- }
-
- Span* markAndChaseDone(int index, int endIndex, int winding) {
- int step = SkSign32(endIndex - index);
- int min = SkMin32(index, endIndex);
- markDone(min, winding);
- Span* last;
- Segment* other = this;
- while ((other = other->nextChase(index, step, min, last))) {
- other->markDone(min, winding);
- }
- return last;
- }
-
- Span* markAndChaseDoneBinary(const Angle* angle, int winding, int oppWinding) {
- int index = angle->start();
- int endIndex = angle->end();
- int step = SkSign32(endIndex - index);
- int min = SkMin32(index, endIndex);
- markDoneBinary(min, winding, oppWinding);
- Span* last;
- Segment* other = this;
- while ((other = other->nextChase(index, step, min, last))) {
- other->markDoneBinary(min, winding, oppWinding);
- }
- return last;
- }
-
- Span* markAndChaseDoneBinary(int index, int endIndex) {
- int step = SkSign32(endIndex - index);
- int min = SkMin32(index, endIndex);
- markDoneBinary(min);
- Span* last;
- Segment* other = this;
- while ((other = other->nextChase(index, step, min, last))) {
- if (other->done()) {
- return NULL;
- }
- other->markDoneBinary(min);
- }
- return last;
- }
-
- Span* markAndChaseDoneUnary(int index, int endIndex) {
- int step = SkSign32(endIndex - index);
- int min = SkMin32(index, endIndex);
- markDoneUnary(min);
- Span* last;
- Segment* other = this;
- while ((other = other->nextChase(index, step, min, last))) {
- if (other->done()) {
- return NULL;
- }
- other->markDoneUnary(min);
- }
- return last;
- }
-
- Span* markAndChaseDoneUnary(const Angle* angle, int winding) {
- int index = angle->start();
- int endIndex = angle->end();
- return markAndChaseDone(index, endIndex, winding);
- }
-
- Span* markAndChaseWinding(const Angle* angle, const int winding) {
- int index = angle->start();
- int endIndex = angle->end();
- int step = SkSign32(endIndex - index);
- int min = SkMin32(index, endIndex);
- markWinding(min, winding);
- Span* last;
- Segment* other = this;
- while ((other = other->nextChase(index, step, min, last))) {
- if (other->fTs[min].fWindSum != SK_MinS32) {
- SkASSERT(other->fTs[min].fWindSum == winding);
- return NULL;
- }
- other->markWinding(min, winding);
- }
- return last;
- }
-
- Span* markAndChaseWinding(int index, int endIndex, int winding, int oppWinding) {
- int min = SkMin32(index, endIndex);
- int step = SkSign32(endIndex - index);
- markWinding(min, winding, oppWinding);
- Span* last;
- Segment* other = this;
- while ((other = other->nextChase(index, step, min, last))) {
- if (other->fTs[min].fWindSum != SK_MinS32) {
- SkASSERT(other->fTs[min].fWindSum == winding || other->fTs[min].fLoop);
- return NULL;
- }
- other->markWinding(min, winding, oppWinding);
- }
- return last;
- }
-
- Span* markAndChaseWinding(const Angle* angle, int winding, int oppWinding) {
- int start = angle->start();
- int end = angle->end();
- return markAndChaseWinding(start, end, winding, oppWinding);
- }
-
- Span* markAngle(int maxWinding, int sumWinding, bool activeAngle, const Angle* angle) {
- SkASSERT(angle->segment() == this);
- if (useInnerWinding(maxWinding, sumWinding)) {
- maxWinding = sumWinding;
- }
- Span* last;
- if (activeAngle) {
- last = markAndChaseWinding(angle, maxWinding);
- } else {
- last = markAndChaseDoneUnary(angle, maxWinding);
- }
- return last;
- }
-
- Span* markAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSumWinding,
- bool activeAngle, const Angle* angle) {
- SkASSERT(angle->segment() == this);
- if (useInnerWinding(maxWinding, sumWinding)) {
- maxWinding = sumWinding;
- }
- if (oppMaxWinding != oppSumWinding && useInnerWinding(oppMaxWinding, oppSumWinding)) {
- oppMaxWinding = oppSumWinding;
- }
- Span* last;
- if (activeAngle) {
- last = markAndChaseWinding(angle, maxWinding, oppMaxWinding);
- } else {
- last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding);
- }
- return last;
- }
-
- // FIXME: this should also mark spans with equal (x,y)
- // This may be called when the segment is already marked done. While this
- // wastes time, it shouldn't do any more than spin through the T spans.
- // OPTIMIZATION: abort on first done found (assuming that this code is
- // always called to mark segments done).
- void markDone(int index, int winding) {
- // SkASSERT(!done());
- SkASSERT(winding);
- double referenceT = fTs[index].fT;
- int lesser = index;
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
- markOneDone(__FUNCTION__, lesser, winding);
- }
- do {
- markOneDone(__FUNCTION__, index, winding);
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
- }
-
- void markDoneBinary(int index, int winding, int oppWinding) {
- // SkASSERT(!done());
- SkASSERT(winding || oppWinding);
- double referenceT = fTs[index].fT;
- int lesser = index;
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
- markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding);
- }
- do {
- markOneDoneBinary(__FUNCTION__, index, winding, oppWinding);
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
- }
-
- void markDoneBinary(int index) {
- double referenceT = fTs[index].fT;
- int lesser = index;
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
- markOneDoneBinary(__FUNCTION__, lesser);
- }
- do {
- markOneDoneBinary(__FUNCTION__, index);
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
- }
-
- void markDoneUnary(int index, int winding) {
- // SkASSERT(!done());
- SkASSERT(winding);
- double referenceT = fTs[index].fT;
- int lesser = index;
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
- markOneDoneUnary(__FUNCTION__, lesser, winding);
- }
- do {
- markOneDoneUnary(__FUNCTION__, index, winding);
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
- }
-
- void markDoneUnary(int index) {
- double referenceT = fTs[index].fT;
- int lesser = index;
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
- markOneDoneUnary(__FUNCTION__, lesser);
- }
- do {
- markOneDoneUnary(__FUNCTION__, index);
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
- }
-
- void markOneDone(const char* funName, int tIndex, int winding) {
- Span* span = markOneWinding(funName, tIndex, winding);
- if (!span) {
- return;
- }
- span->fDone = true;
- fDoneSpans++;
- }
-
- void markOneDoneBinary(const char* funName, int tIndex) {
- Span* span = verifyOneWinding(funName, tIndex);
- if (!span) {
- return;
- }
- span->fDone = true;
- fDoneSpans++;
- }
-
- void markOneDoneBinary(const char* funName, int tIndex, int winding, int oppWinding) {
- Span* span = markOneWinding(funName, tIndex, winding, oppWinding);
- if (!span) {
- return;
- }
- span->fDone = true;
- fDoneSpans++;
- }
-
- void markOneDoneUnary(const char* funName, int tIndex) {
- Span* span = verifyOneWindingU(funName, tIndex);
- if (!span) {
- return;
- }
- span->fDone = true;
- fDoneSpans++;
- }
-
- void markOneDoneUnary(const char* funName, int tIndex, int winding) {
- Span* span = markOneWinding(funName, tIndex, winding);
- if (!span) {
- return;
- }
- span->fDone = true;
- fDoneSpans++;
- }
-
- Span* markOneWinding(const char* funName, int tIndex, int winding) {
- Span& span = fTs[tIndex];
- if (span.fDone) {
- return NULL;
- }
- #if DEBUG_MARK_DONE
- debugShowNewWinding(funName, span, winding);
- #endif
- SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
- #ifdef SK_DEBUG
- SkASSERT(abs(winding) <= gDebugMaxWindSum);
- #endif
- span.fWindSum = winding;
- return &span;
- }
-
- Span* markOneWinding(const char* funName, int tIndex, int winding, int oppWinding) {
- Span& span = fTs[tIndex];
- if (span.fDone) {
- return NULL;
- }
- #if DEBUG_MARK_DONE
- debugShowNewWinding(funName, span, winding, oppWinding);
- #endif
- SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding);
- #ifdef SK_DEBUG
- SkASSERT(abs(winding) <= gDebugMaxWindSum);
- #endif
- span.fWindSum = winding;
- SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding);
- #ifdef SK_DEBUG
- SkASSERT(abs(oppWinding) <= gDebugMaxWindSum);
- #endif
- span.fOppSum = oppWinding;
- return &span;
- }
-
- bool controls_contained_by_ends(int tStart, int tEnd) const {
- if (fVerb != SkPath::kCubic_Verb) {
- return false;
- }
- MAKE_CONST_CUBIC(aCubic, fPts);
- Cubic dst;
- sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst);
- return ::controls_contained_by_ends(dst);
- }
-
- // from http://stackoverflow.com/questions/1165647/how-to-determine-if-a-list-of-polygon-points-are-in-clockwise-order
- bool clockwise(int tStart, int tEnd) const {
- SkASSERT(fVerb != SkPath::kLine_Verb);
- SkPoint edge[4];
- subDivide(tStart, tEnd, edge);
- double sum = (edge[0].fX - edge[fVerb].fX) * (edge[0].fY + edge[fVerb].fY);
- if (fVerb == SkPath::kCubic_Verb) {
- SkScalar lesser = SkTMin(edge[0].fY, edge[3].fY);
- if (edge[1].fY < lesser && edge[2].fY < lesser) {
- _Line tangent1 = { {edge[0].fX, edge[0].fY}, {edge[1].fX, edge[1].fY} };
- _Line tangent2 = { {edge[2].fX, edge[2].fY}, {edge[3].fX, edge[3].fY} };
- if (testIntersect(tangent1, tangent2)) {
- SkPoint topPt = CubicTop(fPts, fTs[tStart].fT, fTs[tEnd].fT);
- sum += (topPt.fX - edge[0].fX) * (topPt.fY + edge[0].fY);
- sum += (edge[3].fX - topPt.fX) * (edge[3].fY + topPt.fY);
- return sum <= 0;
- }
- }
- }
- for (int idx = 0; idx < fVerb; ++idx){
- sum += (edge[idx + 1].fX - edge[idx].fX) * (edge[idx + 1].fY + edge[idx].fY);
- }
- return sum <= 0;
- }
-
- bool monotonic_in_y(int tStart, int tEnd) const {
- if (fVerb != SkPath::kCubic_Verb) {
- return false;
- }
- MAKE_CONST_CUBIC(aCubic, fPts);
- Cubic dst;
- sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst);
- return ::monotonic_in_y(dst);
- }
-
- bool serpentine(int tStart, int tEnd) const {
- if (fVerb != SkPath::kCubic_Verb) {
- return false;
- }
- MAKE_CONST_CUBIC(aCubic, fPts);
- Cubic dst;
- sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst);
- return ::serpentine(dst);
- }
-
- Span* verifyOneWinding(const char* funName, int tIndex) {
- Span& span = fTs[tIndex];
- if (span.fDone) {
- return NULL;
- }
- #if DEBUG_MARK_DONE
- debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum);
- #endif
- SkASSERT(span.fWindSum != SK_MinS32);
- SkASSERT(span.fOppSum != SK_MinS32);
- return &span;
- }
-
- Span* verifyOneWindingU(const char* funName, int tIndex) {
- Span& span = fTs[tIndex];
- if (span.fDone) {
- return NULL;
- }
- #if DEBUG_MARK_DONE
- debugShowNewWinding(funName, span, span.fWindSum);
- #endif
- SkASSERT(span.fWindSum != SK_MinS32);
- return &span;
- }
-
- // note that just because a span has one end that is unsortable, that's
- // not enough to mark it done. The other end may be sortable, allowing the
- // span to be added.
- // FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both ends
- void markUnsortable(int start, int end) {
- Span* span = &fTs[start];
- if (start < end) {
-#if DEBUG_UNSORTABLE
- debugShowNewWinding(__FUNCTION__, *span, 0);
-#endif
- span->fUnsortableStart = true;
- } else {
- --span;
-#if DEBUG_UNSORTABLE
- debugShowNewWinding(__FUNCTION__, *span, 0);
-#endif
- span->fUnsortableEnd = true;
- }
- if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) {
- return;
- }
- span->fDone = true;
- fDoneSpans++;
- }
-
- void markWinding(int index, int winding) {
- // SkASSERT(!done());
- SkASSERT(winding);
- double referenceT = fTs[index].fT;
- int lesser = index;
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
- markOneWinding(__FUNCTION__, lesser, winding);
- }
- do {
- markOneWinding(__FUNCTION__, index, winding);
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
- }
-
- void markWinding(int index, int winding, int oppWinding) {
- // SkASSERT(!done());
- SkASSERT(winding || oppWinding);
- double referenceT = fTs[index].fT;
- int lesser = index;
- while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT)) {
- markOneWinding(__FUNCTION__, lesser, winding, oppWinding);
- }
- do {
- markOneWinding(__FUNCTION__, index, winding, oppWinding);
- } while (++index < fTs.count() && precisely_negative(fTs[index].fT - referenceT));
- }
-
- void matchWindingValue(int tIndex, double t, bool borrowWind) {
- int nextDoorWind = SK_MaxS32;
- int nextOppWind = SK_MaxS32;
- if (tIndex > 0) {
- const Span& below = fTs[tIndex - 1];
- if (approximately_negative(t - below.fT)) {
- nextDoorWind = below.fWindValue;
- nextOppWind = below.fOppValue;
- }
- }
- if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) {
- const Span& above = fTs[tIndex + 1];
- if (approximately_negative(above.fT - t)) {
- nextDoorWind = above.fWindValue;
- nextOppWind = above.fOppValue;
- }
- }
- if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) {
- const Span& below = fTs[tIndex - 1];
- nextDoorWind = below.fWindValue;
- nextOppWind = below.fOppValue;
- }
- if (nextDoorWind != SK_MaxS32) {
- Span& newSpan = fTs[tIndex];
- newSpan.fWindValue = nextDoorWind;
- newSpan.fOppValue = nextOppWind;
- if (!nextDoorWind && !nextOppWind && !newSpan.fDone) {
- newSpan.fDone = true;
- ++fDoneSpans;
- }
- }
- }
-
- bool moreHorizontal(int index, int endIndex, bool& unsortable) const {
- // find bounds
- Bounds bounds;
- bounds.setPoint(xyAtT(index));
- bounds.add(xyAtT(endIndex));
- SkScalar width = bounds.width();
- SkScalar height = bounds.height();
- if (width > height) {
- if (approximately_negative(width)) {
- unsortable = true; // edge is too small to resolve meaningfully
- }
- return false;
- } else {
- if (approximately_negative(height)) {
- unsortable = true; // edge is too small to resolve meaningfully
- }
- return true;
- }
- }
-
- // return span if when chasing, two or more radiating spans are not done
- // OPTIMIZATION: ? multiple spans is detected when there is only one valid
- // candidate and the remaining spans have windValue == 0 (canceled by
- // coincidence). The coincident edges could either be removed altogether,
- // or this code could be more complicated in detecting this case. Worth it?
- bool multipleSpans(int end) const {
- return end > 0 && end < fTs.count() - 1;
- }
-
- bool nextCandidate(int& start, int& end) const {
- while (fTs[end].fDone) {
- if (fTs[end].fT == 1) {
- return false;
- }
- ++end;
- }
- start = end;
- end = nextExactSpan(start, 1);
- return true;
- }
-
- Segment* nextChase(int& index, const int step, int& min, Span*& last) {
- int end = nextExactSpan(index, step);
- SkASSERT(end >= 0);
- if (multipleSpans(end)) {
- last = &fTs[end];
- return NULL;
- }
- const Span& endSpan = fTs[end];
- Segment* other = endSpan.fOther;
- index = endSpan.fOtherIndex;
- SkASSERT(index >= 0);
- int otherEnd = other->nextExactSpan(index, step);
- SkASSERT(otherEnd >= 0);
- min = SkMin32(index, otherEnd);
- return other;
- }
-
- // This has callers for two different situations: one establishes the end
- // of the current span, and one establishes the beginning of the next span
- // (thus the name). When this is looking for the end of the current span,
- // coincidence is found when the beginning Ts contain -step and the end
- // contains step. When it is looking for the beginning of the next, the
- // first Ts found can be ignored and the last Ts should contain -step.
- // OPTIMIZATION: probably should split into two functions
- int nextSpan(int from, int step) const {
- const Span& fromSpan = fTs[from];
- int count = fTs.count();
- int to = from;
- while (step > 0 ? ++to < count : --to >= 0) {
- const Span& span = fTs[to];
- if (approximately_zero(span.fT - fromSpan.fT)) {
- continue;
- }
- return to;
- }
- return -1;
- }
-
- // FIXME
- // this returns at any difference in T, vs. a preset minimum. It may be
- // that all callers to nextSpan should use this instead.
- // OPTIMIZATION splitting this into separate loops for up/down steps
- // would allow using precisely_negative instead of precisely_zero
- int nextExactSpan(int from, int step) const {
- const Span& fromSpan = fTs[from];
- int count = fTs.count();
- int to = from;
- while (step > 0 ? ++to < count : --to >= 0) {
- const Span& span = fTs[to];
- if (precisely_zero(span.fT - fromSpan.fT)) {
- continue;
- }
- return to;
- }
- return -1;
- }
-
- bool operand() const {
- return fOperand;
- }
-
- int oppSign(const Angle* angle) const {
- SkASSERT(angle->segment() == this);
- return oppSign(angle->start(), angle->end());
- }
-
- int oppSign(int startIndex, int endIndex) const {
- int result = startIndex < endIndex ? -fTs[startIndex].fOppValue
- : fTs[endIndex].fOppValue;
-#if DEBUG_WIND_BUMP
- SkDebugf("%s oppSign=%d\n", __FUNCTION__, result);
-#endif
- return result;
- }
-
- int oppSum(int tIndex) const {
- return fTs[tIndex].fOppSum;
- }
-
- int oppSum(const Angle* angle) const {
- int lesser = SkMin32(angle->start(), angle->end());
- return fTs[lesser].fOppSum;
- }
-
- int oppValue(int tIndex) const {
- return fTs[tIndex].fOppValue;
- }
-
- int oppValue(const Angle* angle) const {
- int lesser = SkMin32(angle->start(), angle->end());
- return fTs[lesser].fOppValue;
- }
-
- const SkPoint* pts() const {
- return fPts;
- }
-
- void reset() {
- init(NULL, (SkPath::Verb) -1, false, false);
- fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
- fTs.reset();
- }
-
- void setOppXor(bool isOppXor) {
- fOppXor = isOppXor;
- }
-
- void setSpanT(int index, double t) {
- Span& span = fTs[index];
- span.fT = t;
- span.fOther->fTs[span.fOtherIndex].fOtherT = t;
- }
-
- void setUpWinding(int index, int endIndex, int& maxWinding, int& sumWinding) {
- int deltaSum = spanSign(index, endIndex);
- maxWinding = sumWinding;
- sumWinding = sumWinding -= deltaSum;
- }
-
- void setUpWindings(int index, int endIndex, int& sumMiWinding, int& sumSuWinding,
- int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWinding) {
- int deltaSum = spanSign(index, endIndex);
- int oppDeltaSum = oppSign(index, endIndex);
- if (operand()) {
- maxWinding = sumSuWinding;
- sumWinding = sumSuWinding -= deltaSum;
- oppMaxWinding = sumMiWinding;
- oppSumWinding = sumMiWinding -= oppDeltaSum;
- } else {
- maxWinding = sumMiWinding;
- sumWinding = sumMiWinding -= deltaSum;
- oppMaxWinding = sumSuWinding;
- oppSumWinding = sumSuWinding -= oppDeltaSum;
- }
- }
-
- // This marks all spans unsortable so that this info is available for early
- // exclusion in find top and others. This could be optimized to only mark
- // adjacent spans that unsortable. However, this makes it difficult to later
- // determine starting points for edge detection in find top and the like.
- static bool SortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleList) {
- bool sortable = true;
- int angleCount = angles.count();
- int angleIndex;
- angleList.setReserve(angleCount);
- for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
- Angle& angle = angles[angleIndex];
- *angleList.append() = &angle;
- sortable &= !angle.unsortable();
- }
- if (sortable) {
- QSort<Angle>(angleList.begin(), angleList.end() - 1);
- for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
- if (angles[angleIndex].unsortable()) {
- sortable = false;
- break;
- }
- }
- }
- if (!sortable) {
- for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) {
- Angle& angle = angles[angleIndex];
- angle.segment()->markUnsortable(angle.start(), angle.end());
- }
- }
- return sortable;
- }
-
- // OPTIMIZATION: mark as debugging only if used solely by tests
- const Span& span(int tIndex) const {
- return fTs[tIndex];
- }
-
- int spanSign(const Angle* angle) const {
- SkASSERT(angle->segment() == this);
- return spanSign(angle->start(), angle->end());
- }
-
- int spanSign(int startIndex, int endIndex) const {
- int result = startIndex < endIndex ? -fTs[startIndex].fWindValue
- : fTs[endIndex].fWindValue;
-#if DEBUG_WIND_BUMP
- SkDebugf("%s spanSign=%d\n", __FUNCTION__, result);
-#endif
- return result;
- }
-
- void subDivide(int start, int end, SkPoint edge[4]) const {
- edge[0] = fTs[start].fPt;
- edge[fVerb] = fTs[end].fPt;
- if (fVerb == SkPath::kQuad_Verb || fVerb == SkPath::kCubic_Verb) {
- _Point sub[2] = {{ edge[0].fX, edge[0].fY}, {edge[fVerb].fX, edge[fVerb].fY }};
- if (fVerb == SkPath::kQuad_Verb) {
- MAKE_CONST_QUAD(aQuad, fPts);
- edge[1] = sub_divide(aQuad, sub[0], sub[1], fTs[start].fT, fTs[end].fT).asSkPoint();
- } else {
- MAKE_CONST_CUBIC(aCubic, fPts);
- sub_divide(aCubic, sub[0], sub[1], fTs[start].fT, fTs[end].fT, sub);
- edge[1] = sub[0].asSkPoint();
- edge[2] = sub[1].asSkPoint();
- }
- }
- }
-
- void subDivideBounds(int start, int end, Bounds& bounds) const {
- SkPoint edge[4];
- subDivide(start, end, edge);
- (bounds.*setSegmentBounds[fVerb])(edge);
- }
-
- // OPTIMIZATION: mark as debugging only if used solely by tests
- double t(int tIndex) const {
- return fTs[tIndex].fT;
- }
-
- double tAtMid(int start, int end, double mid) const {
- return fTs[start].fT * (1 - mid) + fTs[end].fT * mid;
- }
-
- bool tiny(const Angle* angle) const {
- int start = angle->start();
- int end = angle->end();
- const Span& mSpan = fTs[SkMin32(start, end)];
- return mSpan.fTiny;
- }
-
- static void TrackOutside(SkTDArray<double>& outsideTs, double end,
- double start) {
- int outCount = outsideTs.count();
- if (outCount == 0 || !approximately_negative(end - outsideTs[outCount - 2])) {
- *outsideTs.append() = end;
- *outsideTs.append() = start;
- }
- }
-
- void undoneSpan(int& start, int& end) {
- size_t tCount = fTs.count();
- size_t index;
- for (index = 0; index < tCount; ++index) {
- if (!fTs[index].fDone) {
- break;
- }
- }
- SkASSERT(index < tCount - 1);
- start = index;
- double startT = fTs[index].fT;
- while (approximately_negative(fTs[++index].fT - startT))
- SkASSERT(index < tCount);
- SkASSERT(index < tCount);
- end = index;
- }
-
- bool unsortable(int index) const {
- return fTs[index].fUnsortableStart || fTs[index].fUnsortableEnd;
- }
-
- void updatePts(const SkPoint pts[]) {
- fPts = pts;
- }
-
- int updateOppWinding(int index, int endIndex) const {
- int lesser = SkMin32(index, endIndex);
- int oppWinding = oppSum(lesser);
- int oppSpanWinding = oppSign(index, endIndex);
- if (oppSpanWinding && useInnerWinding(oppWinding - oppSpanWinding, oppWinding)
- && oppWinding != SK_MaxS32) {
- oppWinding -= oppSpanWinding;
- }
- return oppWinding;
- }
-
- int updateOppWinding(const Angle* angle) const {
- int startIndex = angle->start();
- int endIndex = angle->end();
- return updateOppWinding(endIndex, startIndex);
- }
-
- int updateOppWindingReverse(const Angle* angle) const {
- int startIndex = angle->start();
- int endIndex = angle->end();
- return updateOppWinding(startIndex, endIndex);
- }
-
- int updateWinding(int index, int endIndex) const {
- int lesser = SkMin32(index, endIndex);
- int winding = windSum(lesser);
- int spanWinding = spanSign(index, endIndex);
- if (winding && useInnerWinding(winding - spanWinding, winding) && winding != SK_MaxS32) {
- winding -= spanWinding;
- }
- return winding;
- }
-
- int updateWinding(const Angle* angle) const {
- int startIndex = angle->start();
- int endIndex = angle->end();
- return updateWinding(endIndex, startIndex);
- }
-
- int updateWindingReverse(const Angle* angle) const {
- int startIndex = angle->start();
- int endIndex = angle->end();
- return updateWinding(startIndex, endIndex);
- }
-
- SkPath::Verb verb() const {
- return fVerb;
- }
-
- int windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar& dx) const {
- if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a span, disregard
- return SK_MinS32;
- }
- int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex);
- SkASSERT(winding != SK_MinS32);
- int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex);
- #if DEBUG_WINDING_AT_T
- SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal);
- #endif
- // see if a + change in T results in a +/- change in X (compute x'(T))
- dx = (*SegmentDXAtT[fVerb])(fPts, tHit);
- if (fVerb > SkPath::kLine_Verb && approximately_zero(dx)) {
- dx = fPts[2].fX - fPts[1].fX - dx;
- }
- if (dx == 0) {
- #if DEBUG_WINDING_AT_T
- SkDebugf(" dx=0 winding=SK_MinS32\n");
- #endif
- return SK_MinS32;
- }
- if (winding * dx > 0) { // if same signs, result is negative
- winding += dx > 0 ? -windVal : windVal;
- }
- #if DEBUG_WINDING_AT_T
- SkDebugf(" dx=%c winding=%d\n", dx > 0 ? '+' : '-', winding);
- #endif
- return winding;
- }
-
- int windSum(int tIndex) const {
- return fTs[tIndex].fWindSum;
- }
-
- int windSum(const Angle* angle) const {
- int start = angle->start();
- int end = angle->end();
- int index = SkMin32(start, end);
- return windSum(index);
- }
-
- int windValue(int tIndex) const {
- return fTs[tIndex].fWindValue;
- }
-
- int windValue(const Angle* angle) const {
- int start = angle->start();
- int end = angle->end();
- int index = SkMin32(start, end);
- return windValue(index);
- }
-
- int windValueAt(double t) const {
- int count = fTs.count();
- for (int index = 0; index < count; ++index) {
- if (fTs[index].fT == t) {
- return fTs[index].fWindValue;
- }
- }
- SkASSERT(0);
- return 0;
- }
-
- SkScalar xAtT(int index) const {
- return xAtT(&fTs[index]);
- }
-
- SkScalar xAtT(const Span* span) const {
- return xyAtT(span).fX;
- }
-
- const SkPoint& xyAtT(int index) const {
- return xyAtT(&fTs[index]);
- }
-
- const SkPoint& xyAtT(const Span* span) const {
- if (SkScalarIsNaN(span->fPt.fX)) {
- SkASSERT(0); // make sure this path is never used
- if (span->fT == 0) {
- span->fPt = fPts[0];
- } else if (span->fT == 1) {
- span->fPt = fPts[fVerb];
- } else {
- (*SegmentXYAtT[fVerb])(fPts, span->fT, &span->fPt);
- }
- }
- return span->fPt;
- }
-
- // used only by right angle winding finding
- void xyAtT(double mid, SkPoint& pt) const {
- (*SegmentXYAtT[fVerb])(fPts, mid, &pt);
- }
-
- SkScalar yAtT(int index) const {
- return yAtT(&fTs[index]);
- }
-
- SkScalar yAtT(const Span* span) const {
- return xyAtT(span).fY;
- }
-
- void zeroCoincidentOpp(Span* oTest, int index) {
- Span* const test = &fTs[index];
- Span* end = test;
- do {
- end->fOppValue = 0;
- end = &fTs[++index];
- } while (approximately_negative(end->fT - test->fT));
- }
-
- void zeroCoincidentOther(Span* test, const double tRatio, const double oEndT, int oIndex) {
- Span* const oTest = &fTs[oIndex];
- Span* oEnd = oTest;
- const double startT = test->fT;
- const double oStartT = oTest->fT;
- double otherTMatch = (test->fT - startT) * tRatio + oStartT;
- while (!approximately_negative(oEndT - oEnd->fT)
- && approximately_negative(oEnd->fT - otherTMatch)) {
- oEnd->fOppValue = 0;
- oEnd = &fTs[++oIndex];
- }
- }
-
- void zeroSpan(Span* span) {
- SkASSERT(span->fWindValue > 0 || span->fOppValue > 0);
- span->fWindValue = 0;
- span->fOppValue = 0;
- SkASSERT(!span->fDone);
- span->fDone = true;
- ++fDoneSpans;
- }
-
-#if DEBUG_DUMP
- void dump() const {
- const char className[] = "Segment";
- const int tab = 4;
- for (int i = 0; i < fTs.count(); ++i) {
- SkPoint out;
- (*SegmentXYAtT[fVerb])(fPts, t(i), &out);
- SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d"
- " otherT=%1.9g windSum=%d\n",
- tab + sizeof(className), className, fID,
- kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY,
- fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum);
- }
- SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)",
- tab + sizeof(className), className, fID,
- fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom);
- }
-#endif
-
-#if DEBUG_CONCIDENT
- // SkASSERT if pair has not already been added
- void debugAddTPair(double t, const Segment& other, double otherT) const {
- for (int i = 0; i < fTs.count(); ++i) {
- if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == otherT) {
- return;
- }
- }
- SkASSERT(0);
- }
-#endif
-
-#if DEBUG_DUMP
- int debugID() const {
- return fID;
- }
-#endif
-
-#if DEBUG_WINDING
- void debugShowSums() const {
- SkDebugf("%s id=%d (%1.9g,%1.9g %1.9g,%1.9g)", __FUNCTION__, fID,
- fPts[0].fX, fPts[0].fY, fPts[fVerb].fX, fPts[fVerb].fY);
- for (int i = 0; i < fTs.count(); ++i) {
- const Span& span = fTs[i];
- SkDebugf(" [t=%1.3g %1.9g,%1.9g w=", span.fT, xAtT(&span), yAtT(&span));
- if (span.fWindSum == SK_MinS32) {
- SkDebugf("?");
- } else {
- SkDebugf("%d", span.fWindSum);
- }
- SkDebugf("]");
- }
- SkDebugf("\n");
- }
-#endif
-
-#if DEBUG_CONCIDENT
- void debugShowTs() const {
- SkDebugf("%s id=%d", __FUNCTION__, fID);
- int lastWind = -1;
- int lastOpp = -1;
- double lastT = -1;
- int i;
- for (i = 0; i < fTs.count(); ++i) {
- bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue
- || lastOpp != fTs[i].fOppValue;
- if (change && lastWind >= 0) {
- SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]",
- lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp);
- }
- if (change) {
- SkDebugf(" [o=%d", fTs[i].fOther->fID);
- lastWind = fTs[i].fWindValue;
- lastOpp = fTs[i].fOppValue;
- lastT = fTs[i].fT;
- } else {
- SkDebugf(",%d", fTs[i].fOther->fID);
- }
- }
- if (i <= 0) {
- return;
- }
- SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]",
- lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp);
- if (fOperand) {
- SkDebugf(" operand");
- }
- if (done()) {
- SkDebugf(" done");
- }
- SkDebugf("\n");
- }
-#endif
-
-#if DEBUG_ACTIVE_SPANS
- void debugShowActiveSpans() const {
- if (done()) {
- return;
- }
-#if DEBUG_ACTIVE_SPANS_SHORT_FORM
- int lastId = -1;
- double lastT = -1;
-#endif
- for (int i = 0; i < fTs.count(); ++i) {
- SkASSERT(&fTs[i] == &fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOther->
- fTs[fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOtherIndex]);
- if (fTs[i].fDone) {
- continue;
- }
-#if DEBUG_ACTIVE_SPANS_SHORT_FORM
- if (lastId == fID && lastT == fTs[i].fT) {
- continue;
- }
- lastId = fID;
- lastT = fTs[i].fT;
-#endif
- SkDebugf("%s id=%d", __FUNCTION__, fID);
- SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
- for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
- SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
- }
- const Span* span = &fTs[i];
- SkDebugf(") t=%1.9g (%1.9g,%1.9g)", fTs[i].fT,
- xAtT(span), yAtT(span));
- int iEnd = i + 1;
- while (fTs[iEnd].fT < 1 && approximately_equal(fTs[i].fT, fTs[iEnd].fT)) {
- ++iEnd;
- }
- SkDebugf(" tEnd=%1.9g", fTs[iEnd].fT);
- const Segment* other = fTs[i].fOther;
- SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=",
- other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex);
- if (fTs[i].fWindSum == SK_MinS32) {
- SkDebugf("?");
- } else {
- SkDebugf("%d", fTs[i].fWindSum);
- }
- SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fOppValue);
- }
- }
-
- // This isn't useful yet -- but leaving it in for now in case i think of something
- // to use it for
- void validateActiveSpans() const {
- if (done()) {
- return;
- }
- int tCount = fTs.count();
- for (int index = 0; index < tCount; ++index) {
- if (fTs[index].fDone) {
- continue;
- }
- // count number of connections which are not done
- int first = index;
- double baseT = fTs[index].fT;
- while (first > 0 && approximately_equal(fTs[first - 1].fT, baseT)) {
- --first;
- }
- int last = index;
- while (last < tCount - 1 && approximately_equal(fTs[last + 1].fT, baseT)) {
- ++last;
- }
- int connections = 0;
- connections += first > 0 && !fTs[first - 1].fDone;
- for (int test = first; test <= last; ++test) {
- connections += !fTs[test].fDone;
- const Segment* other = fTs[test].fOther;
- int oIndex = fTs[test].fOtherIndex;
- connections += !other->fTs[oIndex].fDone;
- connections += oIndex > 0 && !other->fTs[oIndex - 1].fDone;
- }
- // SkASSERT(!(connections & 1));
- }
- }
-#endif
-
-#if DEBUG_MARK_DONE || DEBUG_UNSORTABLE
- void debugShowNewWinding(const char* fun, const Span& span, int winding) {
- const SkPoint& pt = xyAtT(&span);
- SkDebugf("%s id=%d", fun, fID);
- SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
- for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
- SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
- }
- SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther->
- fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]);
- SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d windSum=",
- span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY,
- (&span)[1].fT, winding);
- if (span.fWindSum == SK_MinS32) {
- SkDebugf("?");
- } else {
- SkDebugf("%d", span.fWindSum);
- }
- SkDebugf(" windValue=%d\n", span.fWindValue);
- }
-
- void debugShowNewWinding(const char* fun, const Span& span, int winding, int oppWinding) {
- const SkPoint& pt = xyAtT(&span);
- SkDebugf("%s id=%d", fun, fID);
- SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY);
- for (int vIndex = 1; vIndex <= fVerb; ++vIndex) {
- SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY);
- }
- SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther->
- fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]);
- SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d newOppSum=%d oppSum=",
- span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX, pt.fY,
- (&span)[1].fT, winding, oppWinding);
- if (span.fOppSum == SK_MinS32) {
- SkDebugf("?");
- } else {
- SkDebugf("%d", span.fOppSum);
- }
- SkDebugf(" windSum=");
- if (span.fWindSum == SK_MinS32) {
- SkDebugf("?");
- } else {
- SkDebugf("%d", span.fWindSum);
- }
- SkDebugf(" windValue=%d\n", span.fWindValue);
- }
-#endif
-
-#if DEBUG_SORT || DEBUG_SWAP_TOP
- void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first,
- const int contourWinding, const int oppContourWinding) const {
- if (--gDebugSortCount < 0) {
- return;
- }
- SkASSERT(angles[first]->segment() == this);
- SkASSERT(angles.count() > 1);
- int lastSum = contourWinding;
- int oppLastSum = oppContourWinding;
- const Angle* firstAngle = angles[first];
- int windSum = lastSum - spanSign(firstAngle);
- int oppoSign = oppSign(firstAngle);
- int oppWindSum = oppLastSum - oppoSign;
- #define WIND_AS_STRING(x) char x##Str[12]; if (!valid_wind(x)) strcpy(x##Str, "?"); \
- else snprintf(x##Str, sizeof(x##Str), "%d", x)
- WIND_AS_STRING(contourWinding);
- WIND_AS_STRING(oppContourWinding);
- SkDebugf("%s %s contourWinding=%s oppContourWinding=%s sign=%d\n", fun, __FUNCTION__,
- contourWindingStr, oppContourWindingStr, spanSign(angles[first]));
- int index = first;
- bool firstTime = true;
- do {
- const Angle& angle = *angles[index];
- const Segment& segment = *angle.segment();
- int start = angle.start();
- int end = angle.end();
- const Span& sSpan = segment.fTs[start];
- const Span& eSpan = segment.fTs[end];
- const Span& mSpan = segment.fTs[SkMin32(start, end)];
- bool opp = segment.fOperand ^ fOperand;
- if (!firstTime) {
- oppoSign = segment.oppSign(&angle);
- if (opp) {
- oppLastSum = oppWindSum;
- oppWindSum -= segment.spanSign(&angle);
- if (oppoSign) {
- lastSum = windSum;
- windSum -= oppoSign;
- }
- } else {
- lastSum = windSum;
- windSum -= segment.spanSign(&angle);
- if (oppoSign) {
- oppLastSum = oppWindSum;
- oppWindSum -= oppoSign;
- }
- }
- }
- SkDebugf("%s [%d] %s", __FUNCTION__, index,
- angle.unsortable() ? "*** UNSORTABLE *** " : "");
- #if COMPACT_DEBUG_SORT
- SkDebugf("id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)",
- segment.fID, kLVerbStr[segment.fVerb],
- start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end,
- segment.xAtT(&eSpan), segment.yAtT(&eSpan));
- #else
- switch (segment.fVerb) {
- case SkPath::kLine_Verb:
- SkDebugf(LINE_DEBUG_STR, LINE_DEBUG_DATA(segment.fPts));
- break;
- case SkPath::kQuad_Verb:
- SkDebugf(QUAD_DEBUG_STR, QUAD_DEBUG_DATA(segment.fPts));
- break;
- case SkPath::kCubic_Verb:
- SkDebugf(CUBIC_DEBUG_STR, CUBIC_DEBUG_DATA(segment.fPts));
- break;
- default:
- SkASSERT(0);
- }
- SkDebugf(" tStart=%1.9g tEnd=%1.9g", sSpan.fT, eSpan.fT);
- #endif
- SkDebugf(" sign=%d windValue=%d windSum=", angle.sign(), mSpan.fWindValue);
- winding_printf(mSpan.fWindSum);
- int last, wind;
- if (opp) {
- last = oppLastSum;
- wind = oppWindSum;
- } else {
- last = lastSum;
- wind = windSum;
- }
- bool useInner = valid_wind(last) && valid_wind(wind) && useInnerWinding(last, wind);
- WIND_AS_STRING(last);
- WIND_AS_STRING(wind);
- WIND_AS_STRING(lastSum);
- WIND_AS_STRING(oppLastSum);
- WIND_AS_STRING(windSum);
- WIND_AS_STRING(oppWindSum);
- #undef WIND_AS_STRING
- if (!oppoSign) {
- SkDebugf(" %s->%s (max=%s)", lastStr, windStr, useInner ? windStr : lastStr);
- } else {
- SkDebugf(" %s->%s (%s->%s)", lastStr, windStr, opp ? lastSumStr : oppLastSumStr,
- opp ? windSumStr : oppWindSumStr);
- }
- SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp);
-#if false && DEBUG_ANGLE
- angle.debugShow(segment.xyAtT(&sSpan));
-#endif
- ++index;
- if (index == angles.count()) {
- index = 0;
- }
- if (firstTime) {
- firstTime = false;
- }
- } while (index != first);
- }
-
- void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int first) {
- const Angle* firstAngle = angles[first];
- const Segment* segment = firstAngle->segment();
- int winding = segment->updateWinding(firstAngle);
- int oppWinding = segment->updateOppWinding(firstAngle);
- debugShowSort(fun, angles, first, winding, oppWinding);
- }
-
-#endif
-
-#if DEBUG_WINDING
- static char as_digit(int value) {
- return value < 0 ? '?' : value <= 9 ? '0' + value : '+';
- }
-#endif
-
-#if DEBUG_SHOW_WINDING
- int debugShowWindingValues(int slotCount, int ofInterest) const {
- if (!(1 << fID & ofInterest)) {
- return 0;
- }
- int sum = 0;
- SkTDArray<char> slots;
- slots.setCount(slotCount * 2);
- memset(slots.begin(), ' ', slotCount * 2);
- for (int i = 0; i < fTs.count(); ++i) {
- // if (!(1 << fTs[i].fOther->fID & ofInterest)) {
- // continue;
- // }
- sum += fTs[i].fWindValue;
- slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue);
- sum += fTs[i].fOppValue;
- slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValue);
- }
- SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.begin(), slotCount,
- slots.begin() + slotCount);
- return sum;
- }
-#endif
-
-private:
- const SkPoint* fPts;
- Bounds fBounds;
- SkTDArray<Span> fTs; // two or more (always includes t=0 t=1)
- // OPTIMIZATION: could pack donespans, verb, operand, xor into 1 int-sized value
- int fDoneSpans; // quick check that segment is finished
- // OPTIMIZATION: force the following to be byte-sized
- SkPath::Verb fVerb;
- bool fOperand;
- bool fXor; // set if original contour had even-odd fill
- bool fOppXor; // set if opposite operand had even-odd fill
-#if DEBUG_DUMP
- int fID;
-#endif
-};
-
-class Contour;
-
-struct Coincidence {
- Contour* fContours[2];
- int fSegments[2];
- double fTs[2][2];
- SkPoint fPts[2];
-};
-
-class Contour {
-public:
- Contour() {
- reset();
-#if DEBUG_DUMP
- fID = ++gContourID;
-#endif
- }
-
- bool operator<(const Contour& rh) const {
- return fBounds.fTop == rh.fBounds.fTop
- ? fBounds.fLeft < rh.fBounds.fLeft
- : fBounds.fTop < rh.fBounds.fTop;
- }
-
- void addCoincident(int index, Contour* other, int otherIndex,
- const Intersections& ts, bool swap) {
- Coincidence& coincidence = *fCoincidences.append();
- coincidence.fContours[0] = this; // FIXME: no need to store
- coincidence.fContours[1] = other;
- coincidence.fSegments[0] = index;
- coincidence.fSegments[1] = otherIndex;
- coincidence.fTs[swap][0] = ts.fT[0][0];
- coincidence.fTs[swap][1] = ts.fT[0][1];
- coincidence.fTs[!swap][0] = ts.fT[1][0];
- coincidence.fTs[!swap][1] = ts.fT[1][1];
- coincidence.fPts[0] = ts.fPt[0].asSkPoint();
- coincidence.fPts[1] = ts.fPt[1].asSkPoint();
- }
-
- void addCross(const Contour* crosser) {
-#ifdef DEBUG_CROSS
- for (int index = 0; index < fCrosses.count(); ++index) {
- SkASSERT(fCrosses[index] != crosser);
- }
-#endif
- *fCrosses.append() = crosser;
- }
-
- void addCubic(const SkPoint pts[4]) {
- fSegments.push_back().addCubic(pts, fOperand, fXor);
- fContainsCurves = fContainsCubics = true;
- }
-
- int addLine(const SkPoint pts[2]) {
- fSegments.push_back().addLine(pts, fOperand, fXor);
- return fSegments.count();
- }
-
- void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) {
- fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex);
- }
-
- int addQuad(const SkPoint pts[3]) {
- fSegments.push_back().addQuad(pts, fOperand, fXor);
- fContainsCurves = true;
- return fSegments.count();
- }
-
- int addT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt, double& newT) {
- setContainsIntercepts();
- return fSegments[segIndex].addT(&other->fSegments[otherIndex], pt, newT);
- }
-
- int addSelfT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt, double& newT) {
- setContainsIntercepts();
- return fSegments[segIndex].addSelfT(&other->fSegments[otherIndex], pt, newT);
- }
-
- int addUnsortableT(int segIndex, Contour* other, int otherIndex, bool start,
- const SkPoint& pt, double& newT) {
- return fSegments[segIndex].addUnsortableT(&other->fSegments[otherIndex], start, pt, newT);
- }
-
- const Bounds& bounds() const {
- return fBounds;
- }
-
- void complete() {
- setBounds();
- fContainsIntercepts = false;
- }
-
- bool containsCubics() const {
- return fContainsCubics;
- }
-
- bool crosses(const Contour* crosser) const {
- for (int index = 0; index < fCrosses.count(); ++index) {
- if (fCrosses[index] == crosser) {
- return true;
- }
- }
- return false;
- }
-
- bool done() const {
- return fDone;
- }
-
- const SkPoint& end() const {
- const Segment& segment = fSegments.back();
- return segment.pts()[segment.verb()];
- }
-
- void findTooCloseToCall() {
- int segmentCount = fSegments.count();
- for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
- fSegments[sIndex].findTooCloseToCall();
- }
- }
-
- void fixOtherTIndex() {
- int segmentCount = fSegments.count();
- for (int sIndex = 0; sIndex < segmentCount; ++sIndex) {
- fSegments[sIndex].fixOtherTIndex();
- }
- }
-
- Segment* nonVerticalSegment(int& start, int& end) {
- int segmentCount = fSortedSegments.count();
- SkASSERT(segmentCount > 0);
- for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sortedIndex) {
- Segment* testSegment = fSortedSegments[sortedIndex];
- if (testSegment->done()) {
- continue;
- }
- start = end = 0;
- while (testSegment->nextCandidate(start, end)) {
- if (!testSegment->isVertical(start, end)) {
- return testSegment;
- }
- }
- }
- return NULL;
- }
-
- bool operand() const {
- return fOperand;
- }
-
- void reset() {
- fSegments.reset();
- fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax);
- fContainsCurves = fContainsCubics = fContainsIntercepts = fDone = false;
- }
-
- void resolveCoincidence(SkTDArray<Contour*>& contourList) {
- int count = fCoincidences.count();
- for (int index = 0; index < count; ++index) {
- Coincidence& coincidence = fCoincidences[index];
- SkASSERT(coincidence.fContours[0] == this);
- int thisIndex = coincidence.fSegments[0];
- Segment& thisOne = fSegments[thisIndex];
- Contour* otherContour = coincidence.fContours[1];
- int otherIndex = coincidence.fSegments[1];
- Segment& other = otherContour->fSegments[otherIndex];
- if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) {
- continue;
- }
- #if DEBUG_CONCIDENT
- thisOne.debugShowTs();
- other.debugShowTs();
- #endif
- double startT = coincidence.fTs[0][0];
- double endT = coincidence.fTs[0][1];
- bool cancelers = false;
- if (startT > endT) {
- SkTSwap<double>(startT, endT);
- cancelers ^= true; // FIXME: just assign true
- }
- SkASSERT(!approximately_negative(endT - startT));
- double oStartT = coincidence.fTs[1][0];
- double oEndT = coincidence.fTs[1][1];
- if (oStartT > oEndT) {
- SkTSwap<double>(oStartT, oEndT);
- cancelers ^= true;
- }
- SkASSERT(!approximately_negative(oEndT - oStartT));
- bool opp = fOperand ^ otherContour->fOperand;
- if (cancelers && !opp) {
- // make sure startT and endT have t entries
- if (startT > 0 || oEndT < 1
- || thisOne.isMissing(startT) || other.isMissing(oEndT)) {
- thisOne.addTPair(startT, other, oEndT, true, coincidence.fPts[0]);
- }
- if (oStartT > 0 || endT < 1
- || thisOne.isMissing(endT) || other.isMissing(oStartT)) {
- other.addTPair(oStartT, thisOne, endT, true, coincidence.fPts[1]);
- }
- if (!thisOne.done() && !other.done()) {
- thisOne.addTCancel(startT, endT, other, oStartT, oEndT);
- }
- } else {
- if (startT > 0 || oStartT > 0
- || thisOne.isMissing(startT) || other.isMissing(oStartT)) {
- thisOne.addTPair(startT, other, oStartT, true, coincidence.fPts[0]);
- }
- if (endT < 1 || oEndT < 1
- || thisOne.isMissing(endT) || other.isMissing(oEndT)) {
- other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[1]);
- }
- if (!thisOne.done() && !other.done()) {
- thisOne.addTCoincident(startT, endT, other, oStartT, oEndT);
- }
- }
- #if DEBUG_CONCIDENT
- thisOne.debugShowTs();
- other.debugShowTs();
- #endif
- #if DEBUG_SHOW_WINDING
- debugShowWindingValues(contourList);
- #endif
- }
- }
-
- // first pass, add missing T values
- // second pass, determine winding values of overlaps
- void addCoincidentPoints() {
- int count = fCoincidences.count();
- for (int index = 0; index < count; ++index) {
- Coincidence& coincidence = fCoincidences[index];
- SkASSERT(coincidence.fContours[0] == this);
- int thisIndex = coincidence.fSegments[0];
- Segment& thisOne = fSegments[thisIndex];
- Contour* otherContour = coincidence.fContours[1];
- int otherIndex = coincidence.fSegments[1];
- Segment& other = otherContour->fSegments[otherIndex];
- if ((thisOne.done() || other.done()) && thisOne.complete() && other.complete()) {
- // OPTIMIZATION: remove from array
- continue;
- }
- #if DEBUG_CONCIDENT
- thisOne.debugShowTs();
- other.debugShowTs();
- #endif
- double startT = coincidence.fTs[0][0];
- double endT = coincidence.fTs[0][1];
- bool cancelers;
- if ((cancelers = startT > endT)) {
- SkTSwap(startT, endT);
- SkTSwap(coincidence.fPts[0], coincidence.fPts[1]);
- }
- SkASSERT(!approximately_negative(endT - startT));
- double oStartT = coincidence.fTs[1][0];
- double oEndT = coincidence.fTs[1][1];
- if (oStartT > oEndT) {
- SkTSwap<double>(oStartT, oEndT);
- cancelers ^= true;
- }
- SkASSERT(!approximately_negative(oEndT - oStartT));
- bool opp = fOperand ^ otherContour->fOperand;
- if (cancelers && !opp) {
- // make sure startT and endT have t entries
- if (startT > 0 || oEndT < 1
- || thisOne.isMissing(startT) || other.isMissing(oEndT)) {
- thisOne.addTPair(startT, other, oEndT, true, coincidence.fPts[0]);
- }
- if (oStartT > 0 || endT < 1
- || thisOne.isMissing(endT) || other.isMissing(oStartT)) {
- other.addTPair(oStartT, thisOne, endT, true, coincidence.fPts[1]);
- }
- } else {
- if (startT > 0 || oStartT > 0
- || thisOne.isMissing(startT) || other.isMissing(oStartT)) {
- thisOne.addTPair(startT, other, oStartT, true, coincidence.fPts[0]);
- }
- if (endT < 1 || oEndT < 1
- || thisOne.isMissing(endT) || other.isMissing(oEndT)) {
- other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[1]);
- }
- }
- #if DEBUG_CONCIDENT
- thisOne.debugShowTs();
- other.debugShowTs();
- #endif
- }
- }
-
- void calcCoincidentWinding() {
- int count = fCoincidences.count();
- for (int index = 0; index < count; ++index) {
- Coincidence& coincidence = fCoincidences[index];
- SkASSERT(coincidence.fContours[0] == this);
- int thisIndex = coincidence.fSegments[0];
- Segment& thisOne = fSegments[thisIndex];
- if (thisOne.done()) {
- continue;
- }
- Contour* otherContour = coincidence.fContours[1];
- int otherIndex = coincidence.fSegments[1];
- Segment& other = otherContour->fSegments[otherIndex];
- if (other.done()) {
- continue;
- }
- double startT = coincidence.fTs[0][0];
- double endT = coincidence.fTs[0][1];
- bool cancelers;
- if ((cancelers = startT > endT)) {
- SkTSwap<double>(startT, endT);
- }
- SkASSERT(!approximately_negative(endT - startT));
- double oStartT = coincidence.fTs[1][0];
- double oEndT = coincidence.fTs[1][1];
- if (oStartT > oEndT) {
- SkTSwap<double>(oStartT, oEndT);
- cancelers ^= true;
- }
- SkASSERT(!approximately_negative(oEndT - oStartT));
- bool opp = fOperand ^ otherContour->fOperand;
- if (cancelers && !opp) {
- // make sure startT and endT have t entries
- if (!thisOne.done() && !other.done()) {
- thisOne.addTCancel(startT, endT, other, oStartT, oEndT);
- }
- } else {
- if (!thisOne.done() && !other.done()) {
- thisOne.addTCoincident(startT, endT, other, oStartT, oEndT);
- }
- }
- #if DEBUG_CONCIDENT
- thisOne.debugShowTs();
- other.debugShowTs();
- #endif
- }
- }
-
- SkTArray<Segment>& segments() {
- return fSegments;
- }
-
- void setContainsIntercepts() {
- fContainsIntercepts = true;
- }
-
- void setOperand(bool isOp) {
- fOperand = isOp;
- }
-
- void setOppXor(bool isOppXor) {
- fOppXor = isOppXor;
- int segmentCount = fSegments.count();
- for (int test = 0; test < segmentCount; ++test) {
- fSegments[test].setOppXor(isOppXor);
- }
- }
-
- void setXor(bool isXor) {
- fXor = isXor;
- }
-
- void sortSegments() {
- int segmentCount = fSegments.count();
- fSortedSegments.setReserve(segmentCount);
- for (int test = 0; test < segmentCount; ++test) {
- *fSortedSegments.append() = &fSegments[test];
- }
- QSort<Segment>(fSortedSegments.begin(), fSortedSegments.end() - 1);
- fFirstSorted = 0;
- }
-
- const SkPoint& start() const {
- return fSegments.front().pts()[0];
- }
-
- void toPath(PathWrapper& path) const {
- int segmentCount = fSegments.count();
- const SkPoint& pt = fSegments.front().pts()[0];
- path.deferredMove(pt);
- for (int test = 0; test < segmentCount; ++test) {
- fSegments[test].addCurveTo(0, 1, path, true);
- }
- path.close();
- }
-
- void toPartialBackward(PathWrapper& path) const {
- int segmentCount = fSegments.count();
- for (int test = segmentCount - 1; test >= 0; --test) {
- fSegments[test].addCurveTo(1, 0, path, true);
- }
- }
-
- void toPartialForward(PathWrapper& path) const {
- int segmentCount = fSegments.count();
- for (int test = 0; test < segmentCount; ++test) {
- fSegments[test].addCurveTo(0, 1, path, true);
- }
- }
-
- void topSortableSegment(const SkPoint& topLeft, SkPoint& bestXY, Segment*& topStart) {
- int segmentCount = fSortedSegments.count();
- SkASSERT(segmentCount > 0);
- int sortedIndex = fFirstSorted;
- fDone = true; // may be cleared below
- for ( ; sortedIndex < segmentCount; ++sortedIndex) {
- Segment* testSegment = fSortedSegments[sortedIndex];
- if (testSegment->done()) {
- if (sortedIndex == fFirstSorted) {
- ++fFirstSorted;
- }
- continue;
- }
- fDone = false;
- SkPoint testXY = testSegment->activeLeftTop(true, NULL);
- if (topStart) {
- if (testXY.fY < topLeft.fY) {
- continue;
- }
- if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) {
- continue;
- }
- if (bestXY.fY < testXY.fY) {
- continue;
- }
- if (bestXY.fY == testXY.fY && bestXY.fX < testXY.fX) {
- continue;
- }
- }
- topStart = testSegment;
- bestXY = testXY;
- }
- }
-
- Segment* undoneSegment(int& start, int& end) {
- int segmentCount = fSegments.count();
- for (int test = 0; test < segmentCount; ++test) {
- Segment* testSegment = &fSegments[test];
- if (testSegment->done()) {
- continue;
- }
- testSegment->undoneSpan(start, end);
- return testSegment;
- }
- return NULL;
- }
-
- int updateSegment(int index, const SkPoint* pts) {
- Segment& segment = fSegments[index];
- segment.updatePts(pts);
- return segment.verb() + 1;
- }
-
-#if DEBUG_TEST
- SkTArray<Segment>& debugSegments() {
- return fSegments;
- }
-#endif
-
-#if DEBUG_DUMP
- void dump() {
- int i;
- const char className[] = "Contour";
- const int tab = 4;
- SkDebugf("%s %p (contour=%d)\n", className, this, fID);
- for (i = 0; i < fSegments.count(); ++i) {
- SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className),
- className, i);
- fSegments[i].dump();
- }
- SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n",
- tab + sizeof(className), className,
- fBounds.fLeft, fBounds.fTop,
- fBounds.fRight, fBounds.fBottom);
- SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className),
- className, fContainsIntercepts);
- SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className),
- className, fContainsCurves);
- }
-#endif
-
-#if DEBUG_ACTIVE_SPANS
- void debugShowActiveSpans() {
- for (int index = 0; index < fSegments.count(); ++index) {
- fSegments[index].debugShowActiveSpans();
- }
- }
-
- void validateActiveSpans() {
- for (int index = 0; index < fSegments.count(); ++index) {
- fSegments[index].validateActiveSpans();
- }
- }
-#endif
-
-#if DEBUG_SHOW_WINDING
- int debugShowWindingValues(int totalSegments, int ofInterest) {
- int count = fSegments.count();
- int sum = 0;
- for (int index = 0; index < count; ++index) {
- sum += fSegments[index].debugShowWindingValues(totalSegments, ofInterest);
- }
- // SkDebugf("%s sum=%d\n", __FUNCTION__, sum);
- return sum;
- }
-
- static void debugShowWindingValues(SkTDArray<Contour*>& contourList) {
- // int ofInterest = 1 << 1 | 1 << 5 | 1 << 9 | 1 << 13;
- // int ofInterest = 1 << 4 | 1 << 8 | 1 << 12 | 1 << 16;
- int ofInterest = 1 << 5 | 1 << 8;
- int total = 0;
- int index;
- for (index = 0; index < contourList.count(); ++index) {
- total += contourList[index]->segments().count();
- }
- int sum = 0;
- for (index = 0; index < contourList.count(); ++index) {
- sum += contourList[index]->debugShowWindingValues(total, ofInterest);
- }
- // SkDebugf("%s total=%d\n", __FUNCTION__, sum);
- }
-#endif
-
-protected:
- void setBounds() {
- int count = fSegments.count();
- if (count == 0) {
- SkDebugf("%s empty contour\n", __FUNCTION__);
- SkASSERT(0);
- // FIXME: delete empty contour?
- return;
- }
- fBounds = fSegments.front().bounds();
- for (int index = 1; index < count; ++index) {
- fBounds.add(fSegments[index].bounds());
- }
- }
-
-private:
- SkTArray<Segment> fSegments;
- SkTDArray<Segment*> fSortedSegments;
- int fFirstSorted;
- SkTDArray<Coincidence> fCoincidences;
- SkTDArray<const Contour*> fCrosses;
- Bounds fBounds;
- bool fContainsIntercepts; // FIXME: is this used by anybody?
- bool fContainsCubics;
- bool fContainsCurves;
- bool fDone;
- bool fOperand; // true for the second argument to a binary operator
- bool fXor;
- bool fOppXor;
-#if DEBUG_DUMP
- int fID;
-#endif
-};
-
-class EdgeBuilder {
-public:
-
-EdgeBuilder(const PathWrapper& path, SkTArray<Contour>& contours)
- : fPath(path.nativePath())
- , fContours(contours)
-{
- init();
-}
-
-EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours)
- : fPath(&path)
- , fContours(contours)
-{
- init();
-}
-
-void init() {
- fCurrentContour = NULL;
- fOperand = false;
- fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask;
-#if DEBUG_DUMP
- gContourID = 0;
- gSegmentID = 0;
-#endif
- fSecondHalf = preFetch();
-}
-
-void addOperand(const SkPath& path) {
- SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Verb);
- fPathVerbs.pop();
- fPath = &path;
- fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask;
- preFetch();
-}
-
-void finish() {
- walk();
- complete();
- if (fCurrentContour && !fCurrentContour->segments().count()) {
- fContours.pop_back();
- }
- // correct pointers in contours since fReducePts may have moved as it grew
- int cIndex = 0;
- int extraCount = fExtra.count();
- SkASSERT(extraCount == 0 || fExtra[0] == -1);
- int eIndex = 0;
- int rIndex = 0;
- while (++eIndex < extraCount) {
- int offset = fExtra[eIndex];
- if (offset < 0) {
- ++cIndex;
- continue;
- }
- fCurrentContour = &fContours[cIndex];
- rIndex += fCurrentContour->updateSegment(offset - 1,
- &fReducePts[rIndex]);
- }
- fExtra.reset(); // we're done with this
-}
-
-ShapeOpMask xorMask() const {
- return fXorMask[fOperand];
-}
-
-protected:
-
-void complete() {
- if (fCurrentContour && fCurrentContour->segments().count()) {
- fCurrentContour->complete();
- fCurrentContour = NULL;
- }
-}
-
-// FIXME:remove once we can access path pts directly
-int preFetch() {
- SkPath::RawIter iter(*fPath); // FIXME: access path directly when allowed
- SkPoint pts[4];
- SkPath::Verb verb;
- do {
- verb = iter.next(pts);
- *fPathVerbs.append() = verb;
- if (verb == SkPath::kMove_Verb) {
- *fPathPts.append() = pts[0];
- } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) {
- fPathPts.append(verb, &pts[1]);
- }
- } while (verb != SkPath::kDone_Verb);
- return fPathVerbs.count() - 1;
-}
-
-void walk() {
- SkPath::Verb reducedVerb;
- uint8_t* verbPtr = fPathVerbs.begin();
- uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf];
- const SkPoint* pointsPtr = fPathPts.begin();
- const SkPoint* finalCurveStart = NULL;
- const SkPoint* finalCurveEnd = NULL;
- SkPath::Verb verb;
- while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) {
- switch (verb) {
- case SkPath::kMove_Verb:
- complete();
- if (!fCurrentContour) {
- fCurrentContour = fContours.push_back_n(1);
- fCurrentContour->setOperand(fOperand);
- fCurrentContour->setXor(fXorMask[fOperand] == kEvenOdd_Mask);
- *fExtra.append() = -1; // start new contour
- }
- finalCurveEnd = pointsPtr++;
- goto nextVerb;
- case SkPath::kLine_Verb:
- // skip degenerate points
- if (pointsPtr[-1].fX != pointsPtr[0].fX
- || pointsPtr[-1].fY != pointsPtr[0].fY) {
- fCurrentContour->addLine(&pointsPtr[-1]);
- }
- break;
- case SkPath::kQuad_Verb:
-
- reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts);
- if (reducedVerb == 0) {
- break; // skip degenerate points
- }
- if (reducedVerb == 1) {
- *fExtra.append() =
- fCurrentContour->addLine(fReducePts.end() - 2);
- break;
- }
- fCurrentContour->addQuad(&pointsPtr[-1]);
- break;
- case SkPath::kCubic_Verb:
- reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts);
- if (reducedVerb == 0) {
- break; // skip degenerate points
- }
- if (reducedVerb == 1) {
- *fExtra.append() =
- fCurrentContour->addLine(fReducePts.end() - 2);
- break;
- }
- if (reducedVerb == 2) {
- *fExtra.append() =
- fCurrentContour->addQuad(fReducePts.end() - 3);
- break;
- }
- fCurrentContour->addCubic(&pointsPtr[-1]);
- break;
- case SkPath::kClose_Verb:
- SkASSERT(fCurrentContour);
- if (finalCurveStart && finalCurveEnd
- && *finalCurveStart != *finalCurveEnd) {
- *fReducePts.append() = *finalCurveStart;
- *fReducePts.append() = *finalCurveEnd;
- *fExtra.append() =
- fCurrentContour->addLine(fReducePts.end() - 2);
- }
- complete();
- goto nextVerb;
- default:
- SkDEBUGFAIL("bad verb");
- return;
- }
- finalCurveStart = &pointsPtr[verb - 1];
- pointsPtr += verb;
- SkASSERT(fCurrentContour);
- nextVerb:
- if (verbPtr == endOfFirstHalf) {
- fOperand = true;
- }
- }
-}
-
-private:
- const SkPath* fPath;
- SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead
- SkTDArray<uint8_t> fPathVerbs; // FIXME: remove
- Contour* fCurrentContour;
- SkTArray<Contour>& fContours;
- SkTDArray<SkPoint> fReducePts; // segments created on the fly
- SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour
- ShapeOpMask fXorMask[2];
- int fSecondHalf;
- bool fOperand;
-};
-
-class Work {
-public:
- enum SegmentType {
- kHorizontalLine_Segment = -1,
- kVerticalLine_Segment = 0,
- kLine_Segment = SkPath::kLine_Verb,
- kQuad_Segment = SkPath::kQuad_Verb,
- kCubic_Segment = SkPath::kCubic_Verb,
- };
-
- void addCoincident(Work& other, const Intersections& ts, bool swap) {
- fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap);
- }
-
- // FIXME: does it make sense to write otherIndex now if we're going to
- // fix it up later?
- void addOtherT(int index, double otherT, int otherIndex) {
- fContour->addOtherT(fIndex, index, otherT, otherIndex);
- }
-
- // Avoid collapsing t values that are close to the same since
- // we walk ts to describe consecutive intersections. Since a pair of ts can
- // be nearly equal, any problems caused by this should be taken care
- // of later.
- // On the edge or out of range values are negative; add 2 to get end
- int addT(const Work& other, const SkPoint& pt, double& newT) {
- return fContour->addT(fIndex, other.fContour, other.fIndex, pt, newT);
- }
-
- int addSelfT(const Work& other, const SkPoint& pt, double& newT) {
- return fContour->addSelfT(fIndex, other.fContour, other.fIndex, pt, newT);
- }
-
- int addUnsortableT(const Work& other, bool start, const SkPoint& pt, double& newT) {
- return fContour->addUnsortableT(fIndex, other.fContour, other.fIndex, start, pt, newT);
- }
-
- bool advance() {
- return ++fIndex < fLast;
- }
-
- SkScalar bottom() const {
- return bounds().fBottom;
- }
-
- const Bounds& bounds() const {
- return fContour->segments()[fIndex].bounds();
- }
-
-#if !APPROXIMATE_CUBICS
- const SkPoint* cubic() const {
- return fCubic;
- }
-#endif
-
- void init(Contour* contour) {
- fContour = contour;
- fIndex = 0;
- fLast = contour->segments().count();
- }
-
- bool isAdjacent(const Work& next) {
- return fContour == next.fContour && fIndex + 1 == next.fIndex;
- }
-
- bool isFirstLast(const Work& next) {
- return fContour == next.fContour && fIndex == 0
- && next.fIndex == fLast - 1;
- }
-
- SkScalar left() const {
- return bounds().fLeft;
- }
-
-#if !APPROXIMATE_CUBICS
- void promoteToCubic() {
- fCubic[0] = pts()[0];
- fCubic[2] = pts()[1];
- fCubic[3] = pts()[2];
- fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3;
- fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3;
- fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3;
- fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3;
- }
-#endif
-
- const SkPoint* pts() const {
- return fContour->segments()[fIndex].pts();
- }
-
- SkScalar right() const {
- return bounds().fRight;
- }
-
- ptrdiff_t segmentIndex() const {
- return fIndex;
- }
-
- SegmentType segmentType() const {
- const Segment& segment = fContour->segments()[fIndex];
- SegmentType type = (SegmentType) segment.verb();
- if (type != kLine_Segment) {
- return type;
- }
- if (segment.isHorizontal()) {
- return kHorizontalLine_Segment;
- }
- if (segment.isVertical()) {
- return kVerticalLine_Segment;
- }
- return kLine_Segment;
- }
-
- bool startAfter(const Work& after) {
- fIndex = after.fIndex;
- return advance();
- }
-
- SkScalar top() const {
- return bounds().fTop;
- }
-
- SkPath::Verb verb() const {
- return fContour->segments()[fIndex].verb();
- }
-
- SkScalar x() const {
- return bounds().fLeft;
- }
-
- bool xFlipped() const {
- return x() != pts()[0].fX;
- }
-
- SkScalar y() const {
- return bounds().fTop;
- }
-
- bool yFlipped() const {
- return y() != pts()[0].fY;
- }
-
-protected:
- Contour* fContour;
-#if !APPROXIMATE_CUBICS
- SkPoint fCubic[4];
-#endif
- int fIndex;
- int fLast;
-};
-
-#if DEBUG_ADD_INTERSECTING_TS
-
-static void debugShowLineIntersection(int pts, const Work& wt, const Work& wn,
- const Intersections& i) {
- SkASSERT(i.used() == pts);
- if (!pts) {
- SkDebugf("%s no intersect " LINE_DEBUG_STR " " LINE_DEBUG_STR "\n",
- __FUNCTION__, LINE_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts()));
- return;
- }
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " LINE_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
- i.fT[0][0], LINE_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
- if (pts == 2) {
- SkDebugf(" " T_DEBUG_STR(wtTs, 1) " " PT_DEBUG_STR, i.fT[0][1], PT_DEBUG_DATA(i, 1));
- }
- SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts()));
- if (pts == 2) {
- SkDebugf(" " T_DEBUG_STR(wnTs, 1), i.fT[1][1]);
- }
- SkDebugf("\n");
-}
-
-static void debugShowQuadLineIntersection(int pts, const Work& wt,
- const Work& wn, const Intersections& i) {
- SkASSERT(i.used() == pts);
- if (!pts) {
- SkDebugf("%s no intersect " QUAD_DEBUG_STR " " LINE_DEBUG_STR "\n",
- __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts()));
- return;
- }
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
- i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n));
- }
- SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts()));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]);
- }
- SkDebugf("\n");
-}
-
-static void debugShowQuadIntersection(int pts, const Work& wt,
- const Work& wn, const Intersections& i) {
- SkASSERT(i.used() == pts);
- if (!pts) {
- SkDebugf("%s no intersect " QUAD_DEBUG_STR " " QUAD_DEBUG_STR "\n",
- __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts()));
- return;
- }
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
- i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n));
- }
- SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts()));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]);
- }
- SkDebugf("\n");
-}
-
-static void debugShowCubicLineIntersection(int pts, const Work& wt,
- const Work& wn, const Intersections& i) {
- SkASSERT(i.used() == pts);
- if (!pts) {
- SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " LINE_DEBUG_STR "\n",
- __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts()));
- return;
- }
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
- i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n));
- }
- SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts()));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]);
- }
- SkDebugf("\n");
-}
-
-static void debugShowCubicQuadIntersection(int pts, const Work& wt,
- const Work& wn, const Intersections& i) {
- SkASSERT(i.used() == pts);
- if (!pts) {
- SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " QUAD_DEBUG_STR "\n",
- __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts()));
- return;
- }
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
- i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n));
- }
- SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts()));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]);
- }
- SkDebugf("\n");
-}
-
-static void debugShowCubicIntersection(int pts, const Work& wt,
- const Work& wn, const Intersections& i) {
- SkASSERT(i.used() == pts);
- if (!pts) {
- SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " CUBIC_DEBUG_STR "\n",
- __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), CUBIC_DEBUG_DATA(wn.pts()));
- return;
- }
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
- i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBUG_DATA(i, n));
- }
- SkDebugf(" wnTs[0]=%g " CUBIC_DEBUG_STR, i.fT[1][0], CUBIC_DEBUG_DATA(wn.pts()));
- for (int n = 1; n < pts; ++n) {
- SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]);
- }
- SkDebugf("\n");
-}
-
-static void debugShowCubicIntersection(int pts, const Work& wt, const Intersections& i) {
- SkASSERT(i.used() == pts);
- if (!pts) {
- SkDebugf("%s no self intersect " CUBIC_DEBUG_STR "\n", __FUNCTION__,
- CUBIC_DEBUG_DATA(wt.pts()));
- return;
- }
- SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __FUNCTION__,
- i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0));
- SkDebugf(" " T_DEBUG_STR(wtTs, 1), i.fT[1][0]);
- SkDebugf("\n");
-}
-
-#else
-static void debugShowLineIntersection(int , const Work& , const Work& , const Intersections& ) {
-}
-
-static void debugShowQuadLineIntersection(int , const Work& , const Work& , const Intersections& ) {
-}
-
-static void debugShowQuadIntersection(int , const Work& , const Work& , const Intersections& ) {
-}
-
-static void debugShowCubicLineIntersection(int , const Work& , const Work& ,
- const Intersections& ) {
-}
-
-static void debugShowCubicQuadIntersection(int , const Work& , const Work& ,
- const Intersections& ) {
-}
-
-static void debugShowCubicIntersection(int , const Work& , const Work& , const Intersections& ) {
-}
-
-static void debugShowCubicIntersection(int , const Work& , const Intersections& ) {
-}
-#endif
-
-static bool addIntersectTs(Contour* test, Contour* next) {
-
- if (test != next) {
- if (test->bounds().fBottom < next->bounds().fTop) {
- return false;
- }
- if (!Bounds::Intersects(test->bounds(), next->bounds())) {
- return true;
- }
- }
- Work wt;
- wt.init(test);
- bool foundCommonContour = test == next;
- do {
- Work wn;
- wn.init(next);
- if (test == next && !wn.startAfter(wt)) {
- continue;
- }
- do {
- if (!Bounds::Intersects(wt.bounds(), wn.bounds())) {
- continue;
- }
- int pts;
- Intersections ts;
- bool swap = false;
- switch (wt.segmentType()) {
- case Work::kHorizontalLine_Segment:
- swap = true;
- switch (wn.segmentType()) {
- case Work::kHorizontalLine_Segment:
- case Work::kVerticalLine_Segment:
- case Work::kLine_Segment: {
- pts = HLineIntersect(wn.pts(), wt.left(),
- wt.right(), wt.y(), wt.xFlipped(), ts);
- debugShowLineIntersection(pts, wt, wn, ts);
- break;
- }
- case Work::kQuad_Segment: {
- pts = HQuadIntersect(wn.pts(), wt.left(),
- wt.right(), wt.y(), wt.xFlipped(), ts);
- break;
- }
- case Work::kCubic_Segment: {
- pts = HCubicIntersect(wn.pts(), wt.left(),
- wt.right(), wt.y(), wt.xFlipped(), ts);
- debugShowCubicLineIntersection(pts, wn, wt, ts);
- break;
- }
- default:
- SkASSERT(0);
- }
- break;
- case Work::kVerticalLine_Segment:
- swap = true;
- switch (wn.segmentType()) {
- case Work::kHorizontalLine_Segment:
- case Work::kVerticalLine_Segment:
- case Work::kLine_Segment: {
- pts = VLineIntersect(wn.pts(), wt.top(),
- wt.bottom(), wt.x(), wt.yFlipped(), ts);
- debugShowLineIntersection(pts, wt, wn, ts);
- break;
- }
- case Work::kQuad_Segment: {
- pts = VQuadIntersect(wn.pts(), wt.top(),
- wt.bottom(), wt.x(), wt.yFlipped(), ts);
- break;
- }
- case Work::kCubic_Segment: {
- pts = VCubicIntersect(wn.pts(), wt.top(),
- wt.bottom(), wt.x(), wt.yFlipped(), ts);
- debugShowCubicLineIntersection(pts, wn, wt, ts);
- break;
- }
- default:
- SkASSERT(0);
- }
- break;
- case Work::kLine_Segment:
- switch (wn.segmentType()) {
- case Work::kHorizontalLine_Segment:
- pts = HLineIntersect(wt.pts(), wn.left(),
- wn.right(), wn.y(), wn.xFlipped(), ts);
- debugShowLineIntersection(pts, wt, wn, ts);
- break;
- case Work::kVerticalLine_Segment:
- pts = VLineIntersect(wt.pts(), wn.top(),
- wn.bottom(), wn.x(), wn.yFlipped(), ts);
- debugShowLineIntersection(pts, wt, wn, ts);
- break;
- case Work::kLine_Segment: {
- pts = LineIntersect(wt.pts(), wn.pts(), ts);
- debugShowLineIntersection(pts, wt, wn, ts);
- break;
- }
- case Work::kQuad_Segment: {
- swap = true;
- pts = QuadLineIntersect(wn.pts(), wt.pts(), ts);
- debugShowQuadLineIntersection(pts, wn, wt, ts);
- break;
- }
- case Work::kCubic_Segment: {
- swap = true;
- pts = CubicLineIntersect(wn.pts(), wt.pts(), ts);
- debugShowCubicLineIntersection(pts, wn, wt, ts);
- break;
- }
- default:
- SkASSERT(0);
- }
- break;
- case Work::kQuad_Segment:
- switch (wn.segmentType()) {
- case Work::kHorizontalLine_Segment:
- pts = HQuadIntersect(wt.pts(), wn.left(),
- wn.right(), wn.y(), wn.xFlipped(), ts);
- break;
- case Work::kVerticalLine_Segment:
- pts = VQuadIntersect(wt.pts(), wn.top(),
- wn.bottom(), wn.x(), wn.yFlipped(), ts);
- break;
- case Work::kLine_Segment: {
- pts = QuadLineIntersect(wt.pts(), wn.pts(), ts);
- debugShowQuadLineIntersection(pts, wt, wn, ts);
- break;
- }
- case Work::kQuad_Segment: {
- pts = QuadIntersect(wt.pts(), wn.pts(), ts);
- debugShowQuadIntersection(pts, wt, wn, ts);
- break;
- }
- case Work::kCubic_Segment: {
- #if APPROXIMATE_CUBICS
- swap = true;
- pts = CubicQuadIntersect(wn.pts(), wt.pts(), ts);
- debugShowCubicQuadIntersection(pts, wn, wt, ts);
- #else
- wt.promoteToCubic();
- pts = CubicIntersect(wt.cubic(), wn.pts(), ts);
- debugShowCubicIntersection(pts, wt, wn, ts);
- #endif
- break;
- }
- default:
- SkASSERT(0);
- }
- break;
- case Work::kCubic_Segment:
- switch (wn.segmentType()) {
- case Work::kHorizontalLine_Segment:
- pts = HCubicIntersect(wt.pts(), wn.left(),
- wn.right(), wn.y(), wn.xFlipped(), ts);
- debugShowCubicLineIntersection(pts, wt, wn, ts);
- break;
- case Work::kVerticalLine_Segment:
- pts = VCubicIntersect(wt.pts(), wn.top(),
- wn.bottom(), wn.x(), wn.yFlipped(), ts);
- debugShowCubicLineIntersection(pts, wt, wn, ts);
- break;
- case Work::kLine_Segment: {
- pts = CubicLineIntersect(wt.pts(), wn.pts(), ts);
- debugShowCubicLineIntersection(pts, wt, wn, ts);
- break;
- }
- case Work::kQuad_Segment: {
- #if APPROXIMATE_CUBICS
- pts = CubicQuadIntersect(wt.pts(), wn.pts(), ts);
- debugShowCubicQuadIntersection(pts, wt, wn, ts);
- #else
- wn.promoteToCubic();
- pts = CubicIntersect(wt.pts(), wn.cubic(), ts);
- debugShowCubicIntersection(pts, wt, wn, ts);
- #endif
- break;
- }
- case Work::kCubic_Segment: {
- pts = CubicIntersect(wt.pts(), wn.pts(), ts);
- debugShowCubicIntersection(pts, wt, wn, ts);
- break;
- }
- default:
- SkASSERT(0);
- }
- break;
- default:
- SkASSERT(0);
- }
- if (!foundCommonContour && pts > 0) {
- test->addCross(next);
- next->addCross(test);
- foundCommonContour = true;
- }
- // in addition to recording T values, record matching segment
- if (ts.unsortable()) {
- bool start = true;
- for (int pt = 0; pt < ts.used(); ++pt) {
- // FIXME: if unsortable, the other points to the original. This logic is
- // untested downstream.
- SkPoint point = ts.fPt[pt].asSkPoint();
- int testTAt = wt.addUnsortableT(wt, start, point, ts.fT[swap][pt]);
- wt.addOtherT(testTAt, ts.fT[swap][pt], testTAt);
- testTAt = wn.addUnsortableT(wn, start ^ ts.fFlip, point, ts.fT[!swap][pt]);
- wn.addOtherT(testTAt, ts.fT[!swap][pt], testTAt);
- start ^= true;
- }
- continue;
- }
- if (pts == 2) {
- if (wn.segmentType() <= Work::kLine_Segment
- && wt.segmentType() <= Work::kLine_Segment) {
- wt.addCoincident(wn, ts, swap);
- continue;
- }
- if (wn.segmentType() >= Work::kQuad_Segment
- && wt.segmentType() >= Work::kQuad_Segment
- && ts.fIsCoincident[0]) {
- SkASSERT(ts.coincidentUsed() == 2);
- wt.addCoincident(wn, ts, swap);
- continue;
- }
-
- }
- for (int pt = 0; pt < pts; ++pt) {
- SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1);
- SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1);
- SkPoint point = ts.fPt[pt].asSkPoint();
- int testTAt = wt.addT(wn, point, ts.fT[swap][pt]);
- int nextTAt = wn.addT(wt, point, ts.fT[!swap][pt]);
- wt.addOtherT(testTAt, ts.fT[!swap][pt ^ ts.fFlip], nextTAt);
- wn.addOtherT(nextTAt, ts.fT[swap][pt ^ ts.fFlip], testTAt);
- }
- } while (wn.advance());
- } while (wt.advance());
- return true;
-}
-
-static void addSelfIntersectTs(Contour* test) {
- Work wt;
- wt.init(test);
- do {
- if (wt.segmentType() != Work::kCubic_Segment) {
- continue;
- }
- Intersections ts;
- int pts = CubicIntersect(wt.pts(), ts);
- debugShowCubicIntersection(pts, wt, ts);
- if (!pts) {
- continue;
- }
- SkASSERT(pts == 1);
- SkASSERT(ts.fT[0][0] >= 0 && ts.fT[0][0] <= 1);
- SkASSERT(ts.fT[1][0] >= 0 && ts.fT[1][0] <= 1);
- SkPoint point = ts.fPt[0].asSkPoint();
- int testTAt = wt.addSelfT(wt, point, ts.fT[0][0]);
- int nextTAt = wt.addT(wt, point, ts.fT[1][0]);
- wt.addOtherT(testTAt, ts.fT[1][0], nextTAt);
- wt.addOtherT(nextTAt, ts.fT[0][0], testTAt);
- } while (wt.advance());
-}
-
-// resolve any coincident pairs found while intersecting, and
-// see if coincidence is formed by clipping non-concident segments
-static void coincidenceCheck(SkTDArray<Contour*>& contourList, int total) {
- int contourCount = contourList.count();
-#if ONE_PASS_COINCIDENCE_CHECK
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
- Contour* contour = contourList[cIndex];
- contour->resolveCoincidence(contourList);
- }
-#else
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
- Contour* contour = contourList[cIndex];
- contour->addCoincidentPoints();
- }
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
- Contour* contour = contourList[cIndex];
- contour->calcCoincidentWinding();
- }
-#endif
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
- Contour* contour = contourList[cIndex];
- contour->findTooCloseToCall();
- }
-}
-
-static int contourRangeCheckY(SkTDArray<Contour*>& contourList, Segment*& current, int& index,
- int& endIndex, double& bestHit, SkScalar& bestDx, bool& tryAgain, double& mid, bool opp) {
- SkPoint basePt;
- double tAtMid = current->tAtMid(index, endIndex, mid);
- current->xyAtT(tAtMid, basePt);
- int contourCount = contourList.count();
- SkScalar bestY = SK_ScalarMin;
- Segment* bestSeg = NULL;
- int bestTIndex;
- bool bestOpp;
- bool hitSomething = false;
- for (int cTest = 0; cTest < contourCount; ++cTest) {
- Contour* contour = contourList[cTest];
- bool testOpp = contour->operand() ^ current->operand() ^ opp;
- if (basePt.fY < contour->bounds().fTop) {
- continue;
- }
- if (bestY > contour->bounds().fBottom) {
- continue;
- }
- int segmentCount = contour->segments().count();
- for (int test = 0; test < segmentCount; ++test) {
- Segment* testSeg = &contour->segments()[test];
- SkScalar testY = bestY;
- double testHit;
- int testTIndex = testSeg->crossedSpanY(basePt, testY, testHit, hitSomething, tAtMid,
- testOpp, testSeg == current);
- if (testTIndex < 0) {
- if (testTIndex == SK_MinS32) {
- hitSomething = true;
- bestSeg = NULL;
- goto abortContours; // vertical encountered, return and try different point
- }
- continue;
- }
- if (testSeg == current && current->betweenTs(index, testHit, endIndex)) {
- double baseT = current->t(index);
- double endT = current->t(endIndex);
- double newMid = (testHit - baseT) / (endT - baseT);
-#if DEBUG_WINDING
- SkPoint midXY, newXY;
- double midT = current->tAtMid(index, endIndex, mid);
- current->xyAtT(midT, midXY);
- double newMidT = current->tAtMid(index, endIndex, newMid);
- current->xyAtT(newMidT, newXY);
- SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g (%1.9g,%1.9g)"
- " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNCTION__,
- current->debugID(), mid, newMid,
- baseT, current->xAtT(index), current->yAtT(index),
- baseT + mid * (endT - baseT), midXY.fX, midXY.fY,
- baseT + newMid * (endT - baseT), newXY.fX, newXY.fY,
- endT, current->xAtT(endIndex), current->yAtT(endIndex));
-#endif
- mid = newMid * 2; // calling loop with divide by 2 before continuing
- return SK_MinS32;
- }
- bestSeg = testSeg;
- bestHit = testHit;
- bestOpp = testOpp;
- bestTIndex = testTIndex;
- bestY = testY;
- }
- }
-abortContours:
- int result;
- if (!bestSeg) {
- result = hitSomething ? SK_MinS32 : 0;
- } else {
- if (bestSeg->windSum(bestTIndex) == SK_MinS32) {
- current = bestSeg;
- index = bestTIndex;
- endIndex = bestSeg->nextSpan(bestTIndex, 1);
- SkASSERT(index != endIndex && index >= 0 && endIndex >= 0);
- tryAgain = true;
- return 0;
- }
- result = bestSeg->windingAtT(bestHit, bestTIndex, bestOpp, bestDx);
- SkASSERT(bestDx);
- }
- double baseT = current->t(index);
- double endT = current->t(endIndex);
- bestHit = baseT + mid * (endT - baseT);
- return result;
-}
-
-static Segment* findUndone(SkTDArray<Contour*>& contourList, int& start, int& end) {
- int contourCount = contourList.count();
- Segment* result;
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
- Contour* contour = contourList[cIndex];
- result = contour->undoneSegment(start, end);
- if (result) {
- return result;
- }
- }
- return NULL;
-}
-
-#define OLD_FIND_CHASE 1
-
-static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex) {
- while (chase.count()) {
- Span* span;
- chase.pop(&span);
- const Span& backPtr = span->fOther->span(span->fOtherIndex);
- Segment* segment = backPtr.fOther;
- tIndex = backPtr.fOtherIndex;
- SkTDArray<Angle> angles;
- int done = 0;
- if (segment->activeAngle(tIndex, done, angles)) {
- Angle* last = angles.end() - 1;
- tIndex = last->start();
- endIndex = last->end();
- #if TRY_ROTATE
- *chase.insert(0) = span;
- #else
- *chase.append() = span;
- #endif
- return last->segment();
- }
- if (done == angles.count()) {
- continue;
- }
- SkTDArray<Angle*> sorted;
- bool sortable = Segment::SortAngles(angles, sorted);
- int angleCount = sorted.count();
-#if DEBUG_SORT
- sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0);
-#endif
- if (!sortable) {
- continue;
- }
- // find first angle, initialize winding to computed fWindSum
- int firstIndex = -1;
- const Angle* angle;
-#if OLD_FIND_CHASE
- int winding;
- do {
- angle = sorted[++firstIndex];
- segment = angle->segment();
- winding = segment->windSum(angle);
- } while (winding == SK_MinS32);
- int spanWinding = segment->spanSign(angle->start(), angle->end());
- #if DEBUG_WINDING
- SkDebugf("%s winding=%d spanWinding=%d\n",
- __FUNCTION__, winding, spanWinding);
- #endif
- // turn span winding into contour winding
- if (spanWinding * winding < 0) {
- winding += spanWinding;
- }
- #if DEBUG_SORT
- segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0);
- #endif
- // we care about first sign and whether wind sum indicates this
- // edge is inside or outside. Maybe need to pass span winding
- // or first winding or something into this function?
- // advance to first undone angle, then return it and winding
- // (to set whether edges are active or not)
- int nextIndex = firstIndex + 1;
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
- angle = sorted[firstIndex];
- winding -= angle->segment()->spanSign(angle);
-#else
- do {
- angle = sorted[++firstIndex];
- segment = angle->segment();
- } while (segment->windSum(angle) == SK_MinS32);
- #if DEBUG_SORT
- segment->debugShowSort(__FUNCTION__, sorted, firstIndex);
- #endif
- int sumWinding = segment->updateWindingReverse(angle);
- int nextIndex = firstIndex + 1;
- int lastIndex = firstIndex != 0 ? firstIndex : angleCount;
- Segment* first = NULL;
-#endif
- do {
- SkASSERT(nextIndex != firstIndex);
- if (nextIndex == angleCount) {
- nextIndex = 0;
- }
- angle = sorted[nextIndex];
- segment = angle->segment();
-#if OLD_FIND_CHASE
- int maxWinding = winding;
- winding -= segment->spanSign(angle);
- #if DEBUG_SORT
- SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__,
- segment->debugID(), maxWinding, winding, angle->sign());
- #endif
- tIndex = angle->start();
- endIndex = angle->end();
- int lesser = SkMin32(tIndex, endIndex);
- const Span& nextSpan = segment->span(lesser);
- if (!nextSpan.fDone) {
-#if 1
- // FIXME: this be wrong? assign startWinding if edge is in
- // same direction. If the direction is opposite, winding to
- // assign is flipped sign or +/- 1?
- if (useInnerWinding(maxWinding, winding)) {
- maxWinding = winding;
- }
- segment->markAndChaseWinding(angle, maxWinding, 0);
-#endif
- break;
- }
-#else
- int start = angle->start();
- int end = angle->end();
- int maxWinding;
- segment->setUpWinding(start, end, maxWinding, sumWinding);
- if (!segment->done(angle)) {
- if (!first) {
- first = segment;
- tIndex = start;
- endIndex = end;
- }
- (void) segment->markAngle(maxWinding, sumWinding, true, angle);
- }
-#endif
- } while (++nextIndex != lastIndex);
- #if TRY_ROTATE
- *chase.insert(0) = span;
- #else
- *chase.append() = span;
- #endif
- return segment;
- }
- return NULL;
-}
-
-#if DEBUG_ACTIVE_SPANS
-static void debugShowActiveSpans(SkTDArray<Contour*>& contourList) {
- int index;
- for (index = 0; index < contourList.count(); ++ index) {
- contourList[index]->debugShowActiveSpans();
- }
- for (index = 0; index < contourList.count(); ++ index) {
- contourList[index]->validateActiveSpans();
- }
-}
-#endif
-
-static Segment* findSortableTop(SkTDArray<Contour*>& contourList, int& index,
- int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool onlySortable) {
- Segment* result;
- do {
- SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax};
- int contourCount = contourList.count();
- Segment* topStart = NULL;
- done = true;
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
- Contour* contour = contourList[cIndex];
- if (contour->done()) {
- continue;
- }
- const Bounds& bounds = contour->bounds();
- if (bounds.fBottom < topLeft.fY) {
- done = false;
- continue;
- }
- if (bounds.fBottom == topLeft.fY && bounds.fRight < topLeft.fX) {
- done = false;
- continue;
- }
- contour->topSortableSegment(topLeft, bestXY, topStart);
- if (!contour->done()) {
- done = false;
- }
- }
- if (!topStart) {
- return NULL;
- }
- topLeft = bestXY;
- result = topStart->findTop(index, endIndex, unsortable, onlySortable);
- } while (!result);
- return result;
-}
-
-static int rightAngleWinding(SkTDArray<Contour*>& contourList,
- Segment*& current, int& index, int& endIndex, double& tHit, SkScalar& hitDx, bool& tryAgain,
- bool opp) {
- double test = 0.9;
- int contourWinding;
- do {
- contourWinding = contourRangeCheckY(contourList, current, index, endIndex, tHit, hitDx,
- tryAgain, test, opp);
- if (contourWinding != SK_MinS32 || tryAgain) {
- return contourWinding;
- }
- test /= 2;
- } while (!approximately_negative(test));
- SkASSERT(0); // should be OK to comment out, but interested when this hits
- return contourWinding;
-}
-
-static void skipVertical(SkTDArray<Contour*>& contourList,
- Segment*& current, int& index, int& endIndex) {
- if (!current->isVertical(index, endIndex)) {
- return;
- }
- int contourCount = contourList.count();
- for (int cIndex = 0; cIndex < contourCount; ++cIndex) {
- Contour* contour = contourList[cIndex];
- if (contour->done()) {
- continue;
- }
- current = contour->nonVerticalSegment(index, endIndex);
- if (current) {
- return;
- }
- }
-}
-
-static Segment* findSortableTop(SkTDArray<Contour*>& contourList, bool& firstContour, int& index,
- int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool binary) {
- Segment* current = findSortableTop(contourList, index, endIndex, topLeft, unsortable, done,
- true);
- if (!current) {
- return NULL;
- }
- if (firstContour) {
- current->initWinding(index, endIndex);
- firstContour = false;
- return current;
- }
- int minIndex = SkMin32(index, endIndex);
- int sumWinding = current->windSum(minIndex);
- if (sumWinding != SK_MinS32) {
- return current;
- }
- sumWinding = current->computeSum(index, endIndex, binary);
- if (sumWinding != SK_MinS32) {
- return current;
- }
- int contourWinding;
- int oppContourWinding = 0;
- // the simple upward projection of the unresolved points hit unsortable angles
- // shoot rays at right angles to the segment to find its winding, ignoring angle cases
- bool tryAgain;
- double tHit;
- SkScalar hitDx = 0;
- SkScalar hitOppDx = 0;
- do {
- // if current is vertical, find another candidate which is not
- // if only remaining candidates are vertical, then they can be marked done
- SkASSERT(index != endIndex && index >= 0 && endIndex >= 0);
- skipVertical(contourList, current, index, endIndex);
- SkASSERT(index != endIndex && index >= 0 && endIndex >= 0);
- tryAgain = false;
- contourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitDx,
- tryAgain, false);
- if (tryAgain) {
- continue;
- }
- if (!binary) {
- break;
- }
- oppContourWinding = rightAngleWinding(contourList, current, index, endIndex, tHit, hitOppDx,
- tryAgain, true);
- } while (tryAgain);
-
- current->initWinding(index, endIndex, tHit, contourWinding, hitDx, oppContourWinding, hitOppDx);
- return current;
-}
-
-// rewrite that abandons keeping local track of winding
-static bool bridgeWinding(SkTDArray<Contour*>& contourList, PathWrapper& simple) {
- bool firstContour = true;
- bool unsortable = false;
- bool topUnsortable = false;
- SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin};
- do {
- int index, endIndex;
- bool topDone;
- Segment* current = findSortableTop(contourList, firstContour, index, endIndex, topLeft,
- topUnsortable, topDone, false);
- if (!current) {
- if (topUnsortable || !topDone) {
- topUnsortable = false;
- SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMin);
- topLeft.fX = topLeft.fY = SK_ScalarMin;
- continue;
- }
- break;
- }
- SkTDArray<Span*> chaseArray;
- do {
- if (current->activeWinding(index, endIndex)) {
- do {
- #if DEBUG_ACTIVE_SPANS
- if (!unsortable && current->done()) {
- debugShowActiveSpans(contourList);
- }
- #endif
- SkASSERT(unsortable || !current->done());
- int nextStart = index;
- int nextEnd = endIndex;
- Segment* next = current->findNextWinding(chaseArray, nextStart, nextEnd,
- unsortable);
- if (!next) {
- if (!unsortable && simple.hasMove()
- && current->verb() != SkPath::kLine_Verb
- && !simple.isClosed()) {
- current->addCurveTo(index, endIndex, simple, true);
- SkASSERT(simple.isClosed());
- }
- break;
- }
- #if DEBUG_FLOW
- SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
- current->debugID(), current->xyAtT(index).fX, current->xyAtT(index).fY,
- current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY);
- #endif
- current->addCurveTo(index, endIndex, simple, true);
- current = next;
- index = nextStart;
- endIndex = nextEnd;
- } while (!simple.isClosed() && (!unsortable
- || !current->done(SkMin32(index, endIndex))));
- if (current->activeWinding(index, endIndex) && !simple.isClosed()) {
- SkASSERT(unsortable);
- int min = SkMin32(index, endIndex);
- if (!current->done(min)) {
- current->addCurveTo(index, endIndex, simple, true);
- current->markDoneUnary(min);
- }
- }
- simple.close();
- } else {
- Span* last = current->markAndChaseDoneUnary(index, endIndex);
- if (last && !last->fLoop) {
- *chaseArray.append() = last;
- }
- }
- current = findChase(chaseArray, index, endIndex);
- #if DEBUG_ACTIVE_SPANS
- debugShowActiveSpans(contourList);
- #endif
- if (!current) {
- break;
- }
- } while (true);
- } while (true);
- return simple.someAssemblyRequired();
-}
-
-// returns true if all edges were processed
-static bool bridgeXor(SkTDArray<Contour*>& contourList, PathWrapper& simple) {
- Segment* current;
- int start, end;
- bool unsortable = false;
- bool closable = true;
- while ((current = findUndone(contourList, start, end))) {
- do {
- #if DEBUG_ACTIVE_SPANS
- if (!unsortable && current->done()) {
- debugShowActiveSpans(contourList);
- }
- #endif
- SkASSERT(unsortable || !current->done());
- int nextStart = start;
- int nextEnd = end;
- Segment* next = current->findNextXor(nextStart, nextEnd, unsortable);
- if (!next) {
- if (!unsortable && simple.hasMove()
- && current->verb() != SkPath::kLine_Verb
- && !simple.isClosed()) {
- current->addCurveTo(start, end, simple, true);
- SkASSERT(simple.isClosed());
- }
- break;
- }
- #if DEBUG_FLOW
- SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", __FUNCTION__,
- current->debugID(), current->xyAtT(start).fX, current->xyAtT(start).fY,
- current->xyAtT(end).fX, current->xyAtT(end).fY);
- #endif
- current->addCurveTo(start, end, simple, true);
- current = next;
- start = nextStart;
- end = nextEnd;
- } while (!simple.isClosed() && (!unsortable || !current->done(SkMin32(start, end))));
- if (!simple.isClosed()) {
- SkASSERT(unsortable);
- int min = SkMin32(start, end);
- if (!current->done(min)) {
- current->addCurveTo(start, end, simple, true);
- current->markDone(min, 1);
- }
- closable = false;
- }
- simple.close();
- #if DEBUG_ACTIVE_SPANS
- debugShowActiveSpans(contourList);
- #endif
- }
- return closable;
-}
-
-static void fixOtherTIndex(SkTDArray<Contour*>& contourList) {
- int contourCount = contourList.count();
- for (int cTest = 0; cTest < contourCount; ++cTest) {
- Contour* contour = contourList[cTest];
- contour->fixOtherTIndex();
- }
-}
-
-static void sortSegments(SkTDArray<Contour*>& contourList) {
- int contourCount = contourList.count();
- for (int cTest = 0; cTest < contourCount; ++cTest) {
- Contour* contour = contourList[cTest];
- contour->sortSegments();
- }
-}
-
-static void makeContourList(SkTArray<Contour>& contours, SkTDArray<Contour*>& list,
- bool evenOdd, bool oppEvenOdd) {
- int count = contours.count();
- if (count == 0) {
- return;
- }
- for (int index = 0; index < count; ++index) {
- Contour& contour = contours[index];
- contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd);
- *list.append() = &contour;
- }
- QSort<Contour>(list.begin(), list.end() - 1);
-}
-
-static bool approximatelyEqual(const SkPoint& a, const SkPoint& b) {
- return AlmostEqualUlps(a.fX, b.fX) && AlmostEqualUlps(a.fY, b.fY);
-}
-
-static bool lessThan(SkTDArray<double>& distances, const int one, const int two) {
- return distances[one] < distances[two];
-}
- /*
- check start and end of each contour
- if not the same, record them
- match them up
- connect closest
- reassemble contour pieces into new path
- */
-static void assemble(const PathWrapper& path, PathWrapper& simple) {
-#if DEBUG_PATH_CONSTRUCTION
- SkDebugf("%s\n", __FUNCTION__);
-#endif
- SkTArray<Contour> contours;
- EdgeBuilder builder(path, contours);
- builder.finish();
- int count = contours.count();
- int outer;
- SkTDArray<int> runs; // indices of partial contours
- for (outer = 0; outer < count; ++outer) {
- const Contour& eContour = contours[outer];
- const SkPoint& eStart = eContour.start();
- const SkPoint& eEnd = eContour.end();
-#if DEBUG_ASSEMBLE
- SkDebugf("%s contour", __FUNCTION__);
- if (!approximatelyEqual(eStart, eEnd)) {
- SkDebugf("[%d]", runs.count());
- } else {
- SkDebugf(" ");
- }
- SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n",
- eStart.fX, eStart.fY, eEnd.fX, eEnd.fY);
-#endif
- if (approximatelyEqual(eStart, eEnd)) {
- eContour.toPath(simple);
- continue;
- }
- *runs.append() = outer;
- }
- count = runs.count();
- if (count == 0) {
- return;
- }
- SkTDArray<int> sLink, eLink;
- sLink.setCount(count);
- eLink.setCount(count);
- int rIndex, iIndex;
- for (rIndex = 0; rIndex < count; ++rIndex) {
- sLink[rIndex] = eLink[rIndex] = SK_MaxS32;
- }
- SkTDArray<double> distances;
- const int ends = count * 2; // all starts and ends
- const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2
- distances.setCount(entries);
- for (rIndex = 0; rIndex < ends - 1; ++rIndex) {
- outer = runs[rIndex >> 1];
- const Contour& oContour = contours[outer];
- const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start();
- const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2)
- * ends - rIndex - 1;
- for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) {
- int inner = runs[iIndex >> 1];
- const Contour& iContour = contours[inner];
- const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start();
- double dx = iPt.fX - oPt.fX;
- double dy = iPt.fY - oPt.fY;
- double dist = dx * dx + dy * dy;
- distances[row + iIndex] = dist; // oStart distance from iStart
- }
- }
- SkTDArray<int> sortedDist;
- sortedDist.setCount(entries);
- for (rIndex = 0; rIndex < entries; ++rIndex) {
- sortedDist[rIndex] = rIndex;
- }
- QSort<SkTDArray<double>, int>(distances, sortedDist.begin(), sortedDist.end() - 1, lessThan);
- int remaining = count; // number of start/end pairs
- for (rIndex = 0; rIndex < entries; ++rIndex) {
- int pair = sortedDist[rIndex];
- int row = pair / ends;
- int col = pair - row * ends;
- int thingOne = row < col ? row : ends - row - 2;
- int ndxOne = thingOne >> 1;
- bool endOne = thingOne & 1;
- int* linkOne = endOne ? eLink.begin() : sLink.begin();
- if (linkOne[ndxOne] != SK_MaxS32) {
- continue;
- }
- int thingTwo = row < col ? col : ends - row + col - 1;
- int ndxTwo = thingTwo >> 1;
- bool endTwo = thingTwo & 1;
- int* linkTwo = endTwo ? eLink.begin() : sLink.begin();
- if (linkTwo[ndxTwo] != SK_MaxS32) {
- continue;
- }
- SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]);
- bool flip = endOne == endTwo;
- linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo;
- linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne;
- if (!--remaining) {
- break;
- }
- }
- SkASSERT(!remaining);
-#if DEBUG_ASSEMBLE
- for (rIndex = 0; rIndex < count; ++rIndex) {
- int s = sLink[rIndex];
- int e = eLink[rIndex];
- SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : 'e',
- s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e : e);
- }
-#endif
- rIndex = 0;
- do {
- bool forward = true;
- bool first = true;
- int sIndex = sLink[rIndex];
- SkASSERT(sIndex != SK_MaxS32);
- sLink[rIndex] = SK_MaxS32;
- int eIndex;
- if (sIndex < 0) {
- eIndex = sLink[~sIndex];
- sLink[~sIndex] = SK_MaxS32;
- } else {
- eIndex = eLink[sIndex];
- eLink[sIndex] = SK_MaxS32;
- }
- SkASSERT(eIndex != SK_MaxS32);
-#if DEBUG_ASSEMBLE
- SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's' : 'e',
- sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e',
- eIndex < 0 ? ~eIndex : eIndex);
-#endif
- do {
- outer = runs[rIndex];
- const Contour& contour = contours[outer];
- if (first) {
- first = false;
- const SkPoint* startPtr = &contour.start();
- simple.deferredMove(startPtr[0]);
- }
- if (forward) {
- contour.toPartialForward(simple);
- } else {
- contour.toPartialBackward(simple);
- }
-#if DEBUG_ASSEMBLE
- SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex,
- eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex,
- sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex));
-#endif
- if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) {
- simple.close();
- break;
- }
- if (forward) {
- eIndex = eLink[rIndex];
- SkASSERT(eIndex != SK_MaxS32);
- eLink[rIndex] = SK_MaxS32;
- if (eIndex >= 0) {
- SkASSERT(sLink[eIndex] == rIndex);
- sLink[eIndex] = SK_MaxS32;
- } else {
- SkASSERT(eLink[~eIndex] == ~rIndex);
- eLink[~eIndex] = SK_MaxS32;
- }
- } else {
- eIndex = sLink[rIndex];
- SkASSERT(eIndex != SK_MaxS32);
- sLink[rIndex] = SK_MaxS32;
- if (eIndex >= 0) {
- SkASSERT(eLink[eIndex] == rIndex);
- eLink[eIndex] = SK_MaxS32;
- } else {
- SkASSERT(sLink[~eIndex] == ~rIndex);
- sLink[~eIndex] = SK_MaxS32;
- }
- }
- rIndex = eIndex;
- if (rIndex < 0) {
- forward ^= 1;
- rIndex = ~rIndex;
- }
- } while (true);
- for (rIndex = 0; rIndex < count; ++rIndex) {
- if (sLink[rIndex] != SK_MaxS32) {
- break;
- }
- }
- } while (rIndex < count);
-#if DEBUG_ASSEMBLE
- for (rIndex = 0; rIndex < count; ++rIndex) {
- SkASSERT(sLink[rIndex] == SK_MaxS32);
- SkASSERT(eLink[rIndex] == SK_MaxS32);
- }
-#endif
-}
-
-void simplifyx(const SkPath& path, SkPath& result) {
-#if DEBUG_SORT || DEBUG_SWAP_TOP
- gDebugSortCount = gDebugSortCountDefault;
-#endif
- // returns 1 for evenodd, -1 for winding, regardless of inverse-ness
- result.reset();
- result.setFillType(SkPath::kEvenOdd_FillType);
- PathWrapper simple(result);
-
- // turn path into list of segments
- SkTArray<Contour> contours;
- EdgeBuilder builder(path, contours);
- builder.finish();
- SkTDArray<Contour*> contourList;
- makeContourList(contours, contourList, false, false);
- Contour** currentPtr = contourList.begin();
- if (!currentPtr) {
- return;
- }
- Contour** listEnd = contourList.end();
- // find all intersections between segments
- do {
- Contour** nextPtr = currentPtr;
- Contour* current = *currentPtr++;
- if (current->containsCubics()) {
- addSelfIntersectTs(current);
- }
- Contour* next;
- do {
- next = *nextPtr++;
- } while (addIntersectTs(current, next) && nextPtr != listEnd);
- } while (currentPtr != listEnd);
- // eat through coincident edges
- coincidenceCheck(contourList, 0);
- fixOtherTIndex(contourList);
- sortSegments(contourList);
-#if DEBUG_ACTIVE_SPANS
- debugShowActiveSpans(contourList);
-#endif
- // construct closed contours
- if (builder.xorMask() == kWinding_Mask ? bridgeWinding(contourList, simple)
- : !bridgeXor(contourList, simple))
- { // if some edges could not be resolved, assemble remaining fragments
- SkPath temp;
- temp.setFillType(SkPath::kEvenOdd_FillType);
- PathWrapper assembled(temp);
- assemble(simple, assembled);
- result = *assembled.nativePath();
- }
-}
« no previous file with comments | « experimental/Intersection/Simplify.h ('k') | experimental/Intersection/SimplifyAddIntersectingTs_Test.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698