| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2012 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 #include "Simplify.h" | |
| 8 | |
| 9 #undef SkASSERT | |
| 10 #define SkASSERT(cond) while (!(cond)) { sk_throw(); } | |
| 11 | |
| 12 // Terminology: | |
| 13 // A Path contains one of more Contours | |
| 14 // A Contour is made up of Segment array | |
| 15 // A Segment is described by a Verb and a Point array with 2, 3, or 4 points | |
| 16 // A Verb is one of Line, Quad(ratic), or Cubic | |
| 17 // A Segment contains a Span array | |
| 18 // A Span is describes a portion of a Segment using starting and ending T | |
| 19 // T values range from 0 to 1, where 0 is the first Point in the Segment | |
| 20 // An Edge is a Segment generated from a Span | |
| 21 | |
| 22 // FIXME: remove once debugging is complete | |
| 23 #ifdef SK_DEBUG | |
| 24 int gDebugMaxWindSum = SK_MaxS32; | |
| 25 int gDebugMaxWindValue = SK_MaxS32; | |
| 26 #endif | |
| 27 | |
| 28 #define PIN_ADD_T 0 | |
| 29 #define TRY_ROTATE 1 | |
| 30 #define ONE_PASS_COINCIDENCE_CHECK 0 | |
| 31 #define APPROXIMATE_CUBICS 1 | |
| 32 #define COMPACT_DEBUG_SORT 0 | |
| 33 | |
| 34 #define DEBUG_UNUSED 0 // set to expose unused functions | |
| 35 | |
| 36 #if FORCE_RELEASE || defined SK_RELEASE | |
| 37 | |
| 38 const bool gRunTestsInOneThread = false; | |
| 39 | |
| 40 #define DEBUG_ACTIVE_OP 0 | |
| 41 #define DEBUG_ACTIVE_SPANS 0 | |
| 42 #define DEBUG_ACTIVE_SPANS_SHORT_FORM 0 | |
| 43 #define DEBUG_ADD_INTERSECTING_TS 0 | |
| 44 #define DEBUG_ADD_T_PAIR 0 | |
| 45 #define DEBUG_ANGLE 0 | |
| 46 #define DEBUG_AS_C_CODE 1 | |
| 47 #define DEBUG_ASSEMBLE 0 | |
| 48 #define DEBUG_CONCIDENT 0 | |
| 49 #define DEBUG_CROSS 0 | |
| 50 #define DEBUG_FLOW 0 | |
| 51 #define DEBUG_MARK_DONE 0 | |
| 52 #define DEBUG_PATH_CONSTRUCTION 0 | |
| 53 #define DEBUG_SHOW_WINDING 0 | |
| 54 #define DEBUG_SORT 0 | |
| 55 #define DEBUG_SWAP_TOP 0 | |
| 56 #define DEBUG_UNSORTABLE 0 | |
| 57 #define DEBUG_WIND_BUMP 0 | |
| 58 #define DEBUG_WINDING 0 | |
| 59 #define DEBUG_WINDING_AT_T 0 | |
| 60 | |
| 61 #else | |
| 62 | |
| 63 const bool gRunTestsInOneThread = true; | |
| 64 | |
| 65 #define DEBUG_ACTIVE_OP 1 | |
| 66 #define DEBUG_ACTIVE_SPANS 1 | |
| 67 #define DEBUG_ACTIVE_SPANS_SHORT_FORM 0 | |
| 68 #define DEBUG_ADD_INTERSECTING_TS 1 | |
| 69 #define DEBUG_ADD_T_PAIR 1 | |
| 70 #define DEBUG_ANGLE 1 | |
| 71 #define DEBUG_AS_C_CODE 1 | |
| 72 #define DEBUG_ASSEMBLE 1 | |
| 73 #define DEBUG_CONCIDENT 1 | |
| 74 #define DEBUG_CROSS 0 | |
| 75 #define DEBUG_FLOW 1 | |
| 76 #define DEBUG_MARK_DONE 1 | |
| 77 #define DEBUG_PATH_CONSTRUCTION 1 | |
| 78 #define DEBUG_SHOW_WINDING 0 | |
| 79 #define DEBUG_SORT 1 | |
| 80 #define DEBUG_SWAP_TOP 1 | |
| 81 #define DEBUG_UNSORTABLE 1 | |
| 82 #define DEBUG_WIND_BUMP 0 | |
| 83 #define DEBUG_WINDING 1 | |
| 84 #define DEBUG_WINDING_AT_T 1 | |
| 85 | |
| 86 #endif | |
| 87 | |
| 88 #define DEBUG_DUMP (DEBUG_ACTIVE_OP | DEBUG_ACTIVE_SPANS | DEBUG_CONCIDENT | DEB
UG_SORT | \ | |
| 89 DEBUG_PATH_CONSTRUCTION) | |
| 90 | |
| 91 #if DEBUG_AS_C_CODE | |
| 92 #define CUBIC_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1
.17g,%1.17g}}" | |
| 93 #define QUAD_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}, {%1.17g,%1.17g}}" | |
| 94 #define LINE_DEBUG_STR "{{%1.17g,%1.17g}, {%1.17g,%1.17g}}" | |
| 95 #define PT_DEBUG_STR "{{%1.17g,%1.17g}}" | |
| 96 #else | |
| 97 #define CUBIC_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" | |
| 98 #define QUAD_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g %1.9g,%1.9g)" | |
| 99 #define LINE_DEBUG_STR "(%1.9g,%1.9g %1.9g,%1.9g)" | |
| 100 #define PT_DEBUG_STR "(%1.9g,%1.9g)" | |
| 101 #endif | |
| 102 #define T_DEBUG_STR(t, n) #t "[" #n "]=%1.9g" | |
| 103 #define TX_DEBUG_STR(t) #t "[%d]=%1.9g" | |
| 104 #define CUBIC_DEBUG_DATA(c) c[0].fX, c[0].fY, c[1].fX, c[1].fY, c[2].fX, c[2].fY
, c[3].fX, c[3].fY | |
| 105 #define QUAD_DEBUG_DATA(q) q[0].fX, q[0].fY, q[1].fX, q[1].fY, q[2].fX, q[2].fY | |
| 106 #define LINE_DEBUG_DATA(l) l[0].fX, l[0].fY, l[1].fX, l[1].fY | |
| 107 #define PT_DEBUG_DATA(i, n) i.fPt[n].x, i.fPt[n].y | |
| 108 | |
| 109 #if DEBUG_DUMP | |
| 110 static const char* kLVerbStr[] = {"", "line", "quad", "cubic"}; | |
| 111 // static const char* kUVerbStr[] = {"", "Line", "Quad", "Cubic"}; | |
| 112 static int gContourID; | |
| 113 static int gSegmentID; | |
| 114 #endif | |
| 115 | |
| 116 #if DEBUG_SORT || DEBUG_SWAP_TOP | |
| 117 static int gDebugSortCountDefault = SK_MaxS32; | |
| 118 static int gDebugSortCount; | |
| 119 #endif | |
| 120 | |
| 121 #if DEBUG_ACTIVE_OP | |
| 122 static const char* kShapeOpStr[] = {"diff", "sect", "union", "xor"}; | |
| 123 #endif | |
| 124 | |
| 125 #ifndef DEBUG_TEST | |
| 126 #define DEBUG_TEST 0 | |
| 127 #endif | |
| 128 | |
| 129 #define MAKE_CONST_LINE(line, pts) \ | |
| 130 const _Line line = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}} | |
| 131 #define MAKE_CONST_QUAD(quad, pts) \ | |
| 132 const Quadratic quad = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \ | |
| 133 {pts[2].fX, pts[2].fY}} | |
| 134 #define MAKE_CONST_CUBIC(cubic, pts) \ | |
| 135 const Cubic cubic = {{pts[0].fX, pts[0].fY}, {pts[1].fX, pts[1].fY}, \ | |
| 136 {pts[2].fX, pts[2].fY}, {pts[3].fX, pts[3].fY}} | |
| 137 | |
| 138 static int LineIntersect(const SkPoint a[2], const SkPoint b[2], | |
| 139 Intersections& intersections) { | |
| 140 MAKE_CONST_LINE(aLine, a); | |
| 141 MAKE_CONST_LINE(bLine, b); | |
| 142 return intersect(aLine, bLine, intersections); | |
| 143 } | |
| 144 | |
| 145 static int QuadLineIntersect(const SkPoint a[3], const SkPoint b[2], | |
| 146 Intersections& intersections) { | |
| 147 MAKE_CONST_QUAD(aQuad, a); | |
| 148 MAKE_CONST_LINE(bLine, b); | |
| 149 return intersect(aQuad, bLine, intersections); | |
| 150 } | |
| 151 | |
| 152 static int CubicLineIntersect(const SkPoint a[4], const SkPoint b[2], | |
| 153 Intersections& intersections) { | |
| 154 MAKE_CONST_CUBIC(aCubic, a); | |
| 155 MAKE_CONST_LINE(bLine, b); | |
| 156 return intersect(aCubic, bLine, intersections); | |
| 157 } | |
| 158 | |
| 159 static int QuadIntersect(const SkPoint a[3], const SkPoint b[3], | |
| 160 Intersections& intersections) { | |
| 161 MAKE_CONST_QUAD(aQuad, a); | |
| 162 MAKE_CONST_QUAD(bQuad, b); | |
| 163 #define TRY_QUARTIC_SOLUTION 1 | |
| 164 #if TRY_QUARTIC_SOLUTION | |
| 165 intersect2(aQuad, bQuad, intersections); | |
| 166 #else | |
| 167 intersect(aQuad, bQuad, intersections); | |
| 168 #endif | |
| 169 return intersections.fUsed; | |
| 170 } | |
| 171 | |
| 172 #if APPROXIMATE_CUBICS | |
| 173 static int CubicQuadIntersect(const SkPoint a[4], const SkPoint b[3], | |
| 174 Intersections& intersections) { | |
| 175 MAKE_CONST_CUBIC(aCubic, a); | |
| 176 MAKE_CONST_QUAD(bQuad, b); | |
| 177 return intersect(aCubic, bQuad, intersections); | |
| 178 } | |
| 179 #endif | |
| 180 | |
| 181 static int CubicIntersect(const SkPoint a[4], const SkPoint b[4], Intersections&
intersections) { | |
| 182 MAKE_CONST_CUBIC(aCubic, a); | |
| 183 MAKE_CONST_CUBIC(bCubic, b); | |
| 184 #if APPROXIMATE_CUBICS | |
| 185 intersect3(aCubic, bCubic, intersections); | |
| 186 #else | |
| 187 intersect(aCubic, bCubic, intersections); | |
| 188 #endif | |
| 189 return intersections.fUsed; | |
| 190 } | |
| 191 | |
| 192 static int CubicIntersect(const SkPoint a[4], Intersections& intersections) { | |
| 193 MAKE_CONST_CUBIC(aCubic, a); | |
| 194 return intersect(aCubic, intersections); | |
| 195 } | |
| 196 | |
| 197 static int HLineIntersect(const SkPoint a[2], SkScalar left, SkScalar right, | |
| 198 SkScalar y, bool flipped, Intersections& intersections) { | |
| 199 MAKE_CONST_LINE(aLine, a); | |
| 200 return horizontalIntersect(aLine, left, right, y, flipped, intersections); | |
| 201 } | |
| 202 | |
| 203 static int HQuadIntersect(const SkPoint a[3], SkScalar left, SkScalar right, | |
| 204 SkScalar y, bool flipped, Intersections& intersections) { | |
| 205 MAKE_CONST_QUAD(aQuad, a); | |
| 206 return horizontalIntersect(aQuad, left, right, y, flipped, intersections); | |
| 207 } | |
| 208 | |
| 209 static int HCubicIntersect(const SkPoint a[4], SkScalar left, SkScalar right, | |
| 210 SkScalar y, bool flipped, Intersections& intersections) { | |
| 211 MAKE_CONST_CUBIC(aCubic, a); | |
| 212 return horizontalIntersect(aCubic, left, right, y, flipped, intersections); | |
| 213 } | |
| 214 | |
| 215 static int (* const HSegmentIntersect[])(const SkPoint [], SkScalar , | |
| 216 SkScalar , SkScalar , bool , Intersections& ) = { | |
| 217 NULL, | |
| 218 HLineIntersect, | |
| 219 HQuadIntersect, | |
| 220 HCubicIntersect | |
| 221 }; | |
| 222 | |
| 223 static int VLineIntersect(const SkPoint a[2], SkScalar top, SkScalar bottom, | |
| 224 SkScalar x, bool flipped, Intersections& intersections) { | |
| 225 MAKE_CONST_LINE(aLine, a); | |
| 226 return verticalIntersect(aLine, top, bottom, x, flipped, intersections); | |
| 227 } | |
| 228 | |
| 229 static int VQuadIntersect(const SkPoint a[3], SkScalar top, SkScalar bottom, | |
| 230 SkScalar x, bool flipped, Intersections& intersections) { | |
| 231 MAKE_CONST_QUAD(aQuad, a); | |
| 232 return verticalIntersect(aQuad, top, bottom, x, flipped, intersections); | |
| 233 } | |
| 234 | |
| 235 static int VCubicIntersect(const SkPoint a[4], SkScalar top, SkScalar bottom, | |
| 236 SkScalar x, bool flipped, Intersections& intersections) { | |
| 237 MAKE_CONST_CUBIC(aCubic, a); | |
| 238 return verticalIntersect(aCubic, top, bottom, x, flipped, intersections); | |
| 239 } | |
| 240 | |
| 241 static int (* const VSegmentIntersect[])(const SkPoint [], SkScalar , | |
| 242 SkScalar , SkScalar , bool , Intersections& ) = { | |
| 243 NULL, | |
| 244 VLineIntersect, | |
| 245 VQuadIntersect, | |
| 246 VCubicIntersect | |
| 247 }; | |
| 248 | |
| 249 static void LineXYAtT(const SkPoint a[2], double t, SkPoint* out) { | |
| 250 MAKE_CONST_LINE(line, a); | |
| 251 double x, y; | |
| 252 xy_at_t(line, t, x, y); | |
| 253 out->fX = SkDoubleToScalar(x); | |
| 254 out->fY = SkDoubleToScalar(y); | |
| 255 } | |
| 256 | |
| 257 static void LineXYAtT(const SkPoint a[2], double t, _Point* out) { | |
| 258 MAKE_CONST_LINE(line, a); | |
| 259 xy_at_t(line, t, out->x, out->y); | |
| 260 } | |
| 261 | |
| 262 static void QuadXYAtT(const SkPoint a[3], double t, SkPoint* out) { | |
| 263 MAKE_CONST_QUAD(quad, a); | |
| 264 double x, y; | |
| 265 xy_at_t(quad, t, x, y); | |
| 266 out->fX = SkDoubleToScalar(x); | |
| 267 out->fY = SkDoubleToScalar(y); | |
| 268 } | |
| 269 | |
| 270 static void QuadXYAtT(const SkPoint a[3], double t, _Point* out) { | |
| 271 MAKE_CONST_QUAD(quad, a); | |
| 272 xy_at_t(quad, t, out->x, out->y); | |
| 273 } | |
| 274 | |
| 275 static void CubicXYAtT(const SkPoint a[4], double t, SkPoint* out) { | |
| 276 MAKE_CONST_CUBIC(cubic, a); | |
| 277 double x, y; | |
| 278 xy_at_t(cubic, t, x, y); | |
| 279 out->fX = SkDoubleToScalar(x); | |
| 280 out->fY = SkDoubleToScalar(y); | |
| 281 } | |
| 282 | |
| 283 static void CubicXYAtT(const SkPoint a[4], double t, _Point* out) { | |
| 284 MAKE_CONST_CUBIC(cubic, a); | |
| 285 xy_at_t(cubic, t, out->x, out->y); | |
| 286 } | |
| 287 | |
| 288 static void (* const SegmentXYAtT[])(const SkPoint [], double , SkPoint* ) = { | |
| 289 NULL, | |
| 290 LineXYAtT, | |
| 291 QuadXYAtT, | |
| 292 CubicXYAtT | |
| 293 }; | |
| 294 | |
| 295 static void (* const SegmentXYAtT2[])(const SkPoint [], double , _Point* ) = { | |
| 296 NULL, | |
| 297 LineXYAtT, | |
| 298 QuadXYAtT, | |
| 299 CubicXYAtT | |
| 300 }; | |
| 301 | |
| 302 static SkScalar LineXAtT(const SkPoint a[2], double t) { | |
| 303 MAKE_CONST_LINE(aLine, a); | |
| 304 double x; | |
| 305 xy_at_t(aLine, t, x, *(double*) 0); | |
| 306 return SkDoubleToScalar(x); | |
| 307 } | |
| 308 | |
| 309 static SkScalar QuadXAtT(const SkPoint a[3], double t) { | |
| 310 MAKE_CONST_QUAD(quad, a); | |
| 311 double x; | |
| 312 xy_at_t(quad, t, x, *(double*) 0); | |
| 313 return SkDoubleToScalar(x); | |
| 314 } | |
| 315 | |
| 316 static SkScalar CubicXAtT(const SkPoint a[4], double t) { | |
| 317 MAKE_CONST_CUBIC(cubic, a); | |
| 318 double x; | |
| 319 xy_at_t(cubic, t, x, *(double*) 0); | |
| 320 return SkDoubleToScalar(x); | |
| 321 } | |
| 322 | |
| 323 static SkScalar (* const SegmentXAtT[])(const SkPoint [], double ) = { | |
| 324 NULL, | |
| 325 LineXAtT, | |
| 326 QuadXAtT, | |
| 327 CubicXAtT | |
| 328 }; | |
| 329 | |
| 330 static SkScalar LineYAtT(const SkPoint a[2], double t) { | |
| 331 MAKE_CONST_LINE(aLine, a); | |
| 332 double y; | |
| 333 xy_at_t(aLine, t, *(double*) 0, y); | |
| 334 return SkDoubleToScalar(y); | |
| 335 } | |
| 336 | |
| 337 static SkScalar QuadYAtT(const SkPoint a[3], double t) { | |
| 338 MAKE_CONST_QUAD(quad, a); | |
| 339 double y; | |
| 340 xy_at_t(quad, t, *(double*) 0, y); | |
| 341 return SkDoubleToScalar(y); | |
| 342 } | |
| 343 | |
| 344 static SkScalar CubicYAtT(const SkPoint a[4], double t) { | |
| 345 MAKE_CONST_CUBIC(cubic, a); | |
| 346 double y; | |
| 347 xy_at_t(cubic, t, *(double*) 0, y); | |
| 348 return SkDoubleToScalar(y); | |
| 349 } | |
| 350 | |
| 351 static SkScalar (* const SegmentYAtT[])(const SkPoint [], double ) = { | |
| 352 NULL, | |
| 353 LineYAtT, | |
| 354 QuadYAtT, | |
| 355 CubicYAtT | |
| 356 }; | |
| 357 | |
| 358 static SkScalar LineDXAtT(const SkPoint a[2], double ) { | |
| 359 return a[1].fX - a[0].fX; | |
| 360 } | |
| 361 | |
| 362 static SkScalar QuadDXAtT(const SkPoint a[3], double t) { | |
| 363 MAKE_CONST_QUAD(quad, a); | |
| 364 double x = dx_at_t(quad, t); | |
| 365 return SkDoubleToScalar(x); | |
| 366 } | |
| 367 | |
| 368 static SkScalar CubicDXAtT(const SkPoint a[4], double t) { | |
| 369 MAKE_CONST_CUBIC(cubic, a); | |
| 370 double x = dx_at_t(cubic, t); | |
| 371 return SkDoubleToScalar(x); | |
| 372 } | |
| 373 | |
| 374 static SkScalar (* const SegmentDXAtT[])(const SkPoint [], double ) = { | |
| 375 NULL, | |
| 376 LineDXAtT, | |
| 377 QuadDXAtT, | |
| 378 CubicDXAtT | |
| 379 }; | |
| 380 | |
| 381 static SkScalar LineDYAtT(const SkPoint a[2], double ) { | |
| 382 return a[1].fY - a[0].fY; | |
| 383 } | |
| 384 | |
| 385 static SkScalar QuadDYAtT(const SkPoint a[3], double t) { | |
| 386 MAKE_CONST_QUAD(quad, a); | |
| 387 double y = dy_at_t(quad, t); | |
| 388 return SkDoubleToScalar(y); | |
| 389 } | |
| 390 | |
| 391 static SkScalar CubicDYAtT(const SkPoint a[4], double t) { | |
| 392 MAKE_CONST_CUBIC(cubic, a); | |
| 393 double y = dy_at_t(cubic, t); | |
| 394 return SkDoubleToScalar(y); | |
| 395 } | |
| 396 | |
| 397 static SkScalar (* const SegmentDYAtT[])(const SkPoint [], double ) = { | |
| 398 NULL, | |
| 399 LineDYAtT, | |
| 400 QuadDYAtT, | |
| 401 CubicDYAtT | |
| 402 }; | |
| 403 | |
| 404 static SkVector LineDXDYAtT(const SkPoint a[2], double ) { | |
| 405 return a[1] - a[0]; | |
| 406 } | |
| 407 | |
| 408 static SkVector QuadDXDYAtT(const SkPoint a[3], double t) { | |
| 409 MAKE_CONST_QUAD(quad, a); | |
| 410 _Vector v = dxdy_at_t(quad, t); | |
| 411 return v.asSkVector(); | |
| 412 } | |
| 413 | |
| 414 static SkVector CubicDXDYAtT(const SkPoint a[4], double t) { | |
| 415 MAKE_CONST_CUBIC(cubic, a); | |
| 416 _Vector v = dxdy_at_t(cubic, t); | |
| 417 return v.asSkVector(); | |
| 418 } | |
| 419 | |
| 420 static SkVector (* const SegmentDXDYAtT[])(const SkPoint [], double ) = { | |
| 421 NULL, | |
| 422 LineDXDYAtT, | |
| 423 QuadDXDYAtT, | |
| 424 CubicDXDYAtT | |
| 425 }; | |
| 426 | |
| 427 static void LineSubDivide(const SkPoint a[2], double startT, double endT, | |
| 428 SkPoint sub[2]) { | |
| 429 MAKE_CONST_LINE(aLine, a); | |
| 430 _Line dst; | |
| 431 sub_divide(aLine, startT, endT, dst); | |
| 432 sub[0].fX = SkDoubleToScalar(dst[0].x); | |
| 433 sub[0].fY = SkDoubleToScalar(dst[0].y); | |
| 434 sub[1].fX = SkDoubleToScalar(dst[1].x); | |
| 435 sub[1].fY = SkDoubleToScalar(dst[1].y); | |
| 436 } | |
| 437 | |
| 438 static void QuadSubDivide(const SkPoint a[3], double startT, double endT, | |
| 439 SkPoint sub[3]) { | |
| 440 MAKE_CONST_QUAD(aQuad, a); | |
| 441 Quadratic dst; | |
| 442 sub_divide(aQuad, startT, endT, dst); | |
| 443 sub[0].fX = SkDoubleToScalar(dst[0].x); | |
| 444 sub[0].fY = SkDoubleToScalar(dst[0].y); | |
| 445 sub[1].fX = SkDoubleToScalar(dst[1].x); | |
| 446 sub[1].fY = SkDoubleToScalar(dst[1].y); | |
| 447 sub[2].fX = SkDoubleToScalar(dst[2].x); | |
| 448 sub[2].fY = SkDoubleToScalar(dst[2].y); | |
| 449 } | |
| 450 | |
| 451 static void CubicSubDivide(const SkPoint a[4], double startT, double endT, | |
| 452 SkPoint sub[4]) { | |
| 453 MAKE_CONST_CUBIC(aCubic, a); | |
| 454 Cubic dst; | |
| 455 sub_divide(aCubic, startT, endT, dst); | |
| 456 sub[0].fX = SkDoubleToScalar(dst[0].x); | |
| 457 sub[0].fY = SkDoubleToScalar(dst[0].y); | |
| 458 sub[1].fX = SkDoubleToScalar(dst[1].x); | |
| 459 sub[1].fY = SkDoubleToScalar(dst[1].y); | |
| 460 sub[2].fX = SkDoubleToScalar(dst[2].x); | |
| 461 sub[2].fY = SkDoubleToScalar(dst[2].y); | |
| 462 sub[3].fX = SkDoubleToScalar(dst[3].x); | |
| 463 sub[3].fY = SkDoubleToScalar(dst[3].y); | |
| 464 } | |
| 465 | |
| 466 static void (* const SegmentSubDivide[])(const SkPoint [], double , double , | |
| 467 SkPoint []) = { | |
| 468 NULL, | |
| 469 LineSubDivide, | |
| 470 QuadSubDivide, | |
| 471 CubicSubDivide | |
| 472 }; | |
| 473 | |
| 474 static void LineSubDivideHD(const SkPoint a[2], double startT, double endT, _Lin
e& dst) { | |
| 475 MAKE_CONST_LINE(aLine, a); | |
| 476 sub_divide(aLine, startT, endT, dst); | |
| 477 } | |
| 478 | |
| 479 static void QuadSubDivideHD(const SkPoint a[3], double startT, double endT, Quad
ratic& dst) { | |
| 480 MAKE_CONST_QUAD(aQuad, a); | |
| 481 sub_divide(aQuad, startT, endT, dst); | |
| 482 } | |
| 483 | |
| 484 static void CubicSubDivideHD(const SkPoint a[4], double startT, double endT, Cub
ic& dst) { | |
| 485 MAKE_CONST_CUBIC(aCubic, a); | |
| 486 sub_divide(aCubic, startT, endT, dst); | |
| 487 } | |
| 488 | |
| 489 static SkPoint QuadTop(const SkPoint a[3], double startT, double endT) { | |
| 490 MAKE_CONST_QUAD(quad, a); | |
| 491 _Point topPt = top(quad, startT, endT); | |
| 492 return topPt.asSkPoint(); | |
| 493 } | |
| 494 | |
| 495 static SkPoint CubicTop(const SkPoint a[3], double startT, double endT) { | |
| 496 MAKE_CONST_CUBIC(cubic, a); | |
| 497 _Point topPt = top(cubic, startT, endT); | |
| 498 return topPt.asSkPoint(); | |
| 499 } | |
| 500 | |
| 501 static SkPoint (* SegmentTop[])(const SkPoint[], double , double ) = { | |
| 502 NULL, | |
| 503 NULL, | |
| 504 QuadTop, | |
| 505 CubicTop | |
| 506 }; | |
| 507 | |
| 508 #if DEBUG_UNUSED | |
| 509 static void QuadSubBounds(const SkPoint a[3], double startT, double endT, | |
| 510 SkRect& bounds) { | |
| 511 SkPoint dst[3]; | |
| 512 QuadSubDivide(a, startT, endT, dst); | |
| 513 bounds.fLeft = bounds.fRight = dst[0].fX; | |
| 514 bounds.fTop = bounds.fBottom = dst[0].fY; | |
| 515 for (int index = 1; index < 3; ++index) { | |
| 516 bounds.growToInclude(dst[index].fX, dst[index].fY); | |
| 517 } | |
| 518 } | |
| 519 | |
| 520 static void CubicSubBounds(const SkPoint a[4], double startT, double endT, | |
| 521 SkRect& bounds) { | |
| 522 SkPoint dst[4]; | |
| 523 CubicSubDivide(a, startT, endT, dst); | |
| 524 bounds.fLeft = bounds.fRight = dst[0].fX; | |
| 525 bounds.fTop = bounds.fBottom = dst[0].fY; | |
| 526 for (int index = 1; index < 4; ++index) { | |
| 527 bounds.growToInclude(dst[index].fX, dst[index].fY); | |
| 528 } | |
| 529 } | |
| 530 #endif | |
| 531 | |
| 532 static SkPath::Verb QuadReduceOrder(const SkPoint a[3], | |
| 533 SkTDArray<SkPoint>& reducePts) { | |
| 534 MAKE_CONST_QUAD(aQuad, a); | |
| 535 Quadratic dst; | |
| 536 int order = reduceOrder(aQuad, dst, kReduceOrder_TreatAsFill); | |
| 537 if (order == 2) { // quad became line | |
| 538 for (int index = 0; index < order; ++index) { | |
| 539 SkPoint* pt = reducePts.append(); | |
| 540 pt->fX = SkDoubleToScalar(dst[index].x); | |
| 541 pt->fY = SkDoubleToScalar(dst[index].y); | |
| 542 } | |
| 543 } | |
| 544 return (SkPath::Verb) (order - 1); | |
| 545 } | |
| 546 | |
| 547 static SkPath::Verb CubicReduceOrder(const SkPoint a[4], | |
| 548 SkTDArray<SkPoint>& reducePts) { | |
| 549 MAKE_CONST_CUBIC(aCubic, a); | |
| 550 Cubic dst; | |
| 551 int order = reduceOrder(aCubic, dst, kReduceOrder_QuadraticsAllowed, kReduce
Order_TreatAsFill); | |
| 552 if (order == 2 || order == 3) { // cubic became line or quad | |
| 553 for (int index = 0; index < order; ++index) { | |
| 554 SkPoint* pt = reducePts.append(); | |
| 555 pt->fX = SkDoubleToScalar(dst[index].x); | |
| 556 pt->fY = SkDoubleToScalar(dst[index].y); | |
| 557 } | |
| 558 } | |
| 559 return (SkPath::Verb) (order - 1); | |
| 560 } | |
| 561 | |
| 562 static bool QuadIsLinear(const SkPoint a[3]) { | |
| 563 MAKE_CONST_QUAD(aQuad, a); | |
| 564 return isLinear(aQuad, 0, 2); | |
| 565 } | |
| 566 | |
| 567 static bool CubicIsLinear(const SkPoint a[4]) { | |
| 568 MAKE_CONST_CUBIC(aCubic, a); | |
| 569 return isLinear(aCubic, 0, 3); | |
| 570 } | |
| 571 | |
| 572 static SkScalar LineLeftMost(const SkPoint a[2], double startT, double endT) { | |
| 573 MAKE_CONST_LINE(aLine, a); | |
| 574 double x[2]; | |
| 575 xy_at_t(aLine, startT, x[0], *(double*) 0); | |
| 576 xy_at_t(aLine, endT, x[1], *(double*) 0); | |
| 577 return SkMinScalar((float) x[0], (float) x[1]); | |
| 578 } | |
| 579 | |
| 580 static SkScalar QuadLeftMost(const SkPoint a[3], double startT, double endT) { | |
| 581 MAKE_CONST_QUAD(aQuad, a); | |
| 582 return (float) leftMostT(aQuad, startT, endT); | |
| 583 } | |
| 584 | |
| 585 static SkScalar CubicLeftMost(const SkPoint a[4], double startT, double endT) { | |
| 586 MAKE_CONST_CUBIC(aCubic, a); | |
| 587 return (float) leftMostT(aCubic, startT, endT); | |
| 588 } | |
| 589 | |
| 590 static SkScalar (* const SegmentLeftMost[])(const SkPoint [], double , double) =
{ | |
| 591 NULL, | |
| 592 LineLeftMost, | |
| 593 QuadLeftMost, | |
| 594 CubicLeftMost | |
| 595 }; | |
| 596 | |
| 597 #if 0 // currently unused | |
| 598 static int QuadRayIntersect(const SkPoint a[3], const SkPoint b[2], | |
| 599 Intersections& intersections) { | |
| 600 MAKE_CONST_QUAD(aQuad, a); | |
| 601 MAKE_CONST_LINE(bLine, b); | |
| 602 return intersectRay(aQuad, bLine, intersections); | |
| 603 } | |
| 604 #endif | |
| 605 | |
| 606 static int QuadRayIntersect(const SkPoint a[3], const _Line& bLine, Intersection
s& intersections) { | |
| 607 MAKE_CONST_QUAD(aQuad, a); | |
| 608 return intersectRay(aQuad, bLine, intersections); | |
| 609 } | |
| 610 | |
| 611 static int CubicRayIntersect(const SkPoint a[3], const _Line& bLine, Intersectio
ns& intersections) { | |
| 612 MAKE_CONST_CUBIC(aCubic, a); | |
| 613 return intersectRay(aCubic, bLine, intersections); | |
| 614 } | |
| 615 | |
| 616 static int (* const SegmentRayIntersect[])(const SkPoint [], const _Line& , Inte
rsections&) = { | |
| 617 NULL, | |
| 618 NULL, | |
| 619 QuadRayIntersect, | |
| 620 CubicRayIntersect | |
| 621 }; | |
| 622 | |
| 623 | |
| 624 | |
| 625 static bool LineVertical(const SkPoint a[2], double startT, double endT) { | |
| 626 MAKE_CONST_LINE(aLine, a); | |
| 627 double x[2]; | |
| 628 xy_at_t(aLine, startT, x[0], *(double*) 0); | |
| 629 xy_at_t(aLine, endT, x[1], *(double*) 0); | |
| 630 return AlmostEqualUlps((float) x[0], (float) x[1]); | |
| 631 } | |
| 632 | |
| 633 static bool QuadVertical(const SkPoint a[3], double startT, double endT) { | |
| 634 SkPoint dst[3]; | |
| 635 QuadSubDivide(a, startT, endT, dst); | |
| 636 return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, d
st[2].fX); | |
| 637 } | |
| 638 | |
| 639 static bool CubicVertical(const SkPoint a[4], double startT, double endT) { | |
| 640 SkPoint dst[4]; | |
| 641 CubicSubDivide(a, startT, endT, dst); | |
| 642 return AlmostEqualUlps(dst[0].fX, dst[1].fX) && AlmostEqualUlps(dst[1].fX, d
st[2].fX) | |
| 643 && AlmostEqualUlps(dst[2].fX, dst[3].fX); | |
| 644 } | |
| 645 | |
| 646 static bool (* const SegmentVertical[])(const SkPoint [], double , double) = { | |
| 647 NULL, | |
| 648 LineVertical, | |
| 649 QuadVertical, | |
| 650 CubicVertical | |
| 651 }; | |
| 652 | |
| 653 class Segment; | |
| 654 | |
| 655 struct Span { | |
| 656 Segment* fOther; | |
| 657 mutable SkPoint fPt; // lazily computed as needed | |
| 658 double fT; | |
| 659 double fOtherT; // value at fOther[fOtherIndex].fT | |
| 660 int fOtherIndex; // can't be used during intersection | |
| 661 int fWindSum; // accumulated from contours surrounding this one. | |
| 662 int fOppSum; // for binary operators: the opposite winding sum | |
| 663 int fWindValue; // 0 == canceled; 1 == normal; >1 == coincident | |
| 664 int fOppValue; // normally 0 -- when binary coincident edges combine, opp va
lue goes here | |
| 665 bool fDone; // if set, this span to next higher T has been processed | |
| 666 bool fUnsortableStart; // set when start is part of an unsortable pair | |
| 667 bool fUnsortableEnd; // set when end is part of an unsortable pair | |
| 668 bool fTiny; // if set, span may still be considered once for edge following | |
| 669 bool fLoop; // set when a cubic loops back to this point | |
| 670 }; | |
| 671 | |
| 672 // sorting angles | |
| 673 // given angles of {dx dy ddx ddy dddx dddy} sort them | |
| 674 class Angle { | |
| 675 public: | |
| 676 // FIXME: this is bogus for quads and cubics | |
| 677 // if the quads and cubics' line from end pt to ctrl pt are coincident, | |
| 678 // there's no obvious way to determine the curve ordering from the | |
| 679 // derivatives alone. In particular, if one quadratic's coincident tangent | |
| 680 // is longer than the other curve, the final control point can place the | |
| 681 // longer curve on either side of the shorter one. | |
| 682 // Using Bezier curve focus http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf | |
| 683 // may provide some help, but nothing has been figured out yet. | |
| 684 | |
| 685 /*( | |
| 686 for quads and cubics, set up a parameterized line (e.g. LineParameters ) | |
| 687 for points [0] to [1]. See if point [2] is on that line, or on one side | |
| 688 or the other. If it both quads' end points are on the same side, choose | |
| 689 the shorter tangent. If the tangents are equal, choose the better second | |
| 690 tangent angle | |
| 691 | |
| 692 maybe I could set up LineParameters lazily | |
| 693 */ | |
| 694 bool operator<(const Angle& rh) const { | |
| 695 double y = dy(); | |
| 696 double ry = rh.dy(); | |
| 697 if ((y < 0) ^ (ry < 0)) { // OPTIMIZATION: better to use y * ry < 0 ? | |
| 698 return y < 0; | |
| 699 } | |
| 700 double x = dx(); | |
| 701 double rx = rh.dx(); | |
| 702 if (y == 0 && ry == 0 && x * rx < 0) { | |
| 703 return x < rx; | |
| 704 } | |
| 705 double x_ry = x * ry; | |
| 706 double rx_y = rx * y; | |
| 707 double cmp = x_ry - rx_y; | |
| 708 if (!approximately_zero(cmp)) { | |
| 709 return cmp < 0; | |
| 710 } | |
| 711 if (approximately_zero(x_ry) && approximately_zero(rx_y) | |
| 712 && !approximately_zero_squared(cmp)) { | |
| 713 return cmp < 0; | |
| 714 } | |
| 715 // at this point, the initial tangent line is coincident | |
| 716 // see if edges curl away from each other | |
| 717 if (fSide * rh.fSide <= 0 && (!approximately_zero(fSide) | |
| 718 || !approximately_zero(rh.fSide))) { | |
| 719 // FIXME: running demo will trigger this assertion | |
| 720 // (don't know if commenting out will trigger further assertion or n
ot) | |
| 721 // commenting it out allows demo to run in release, though | |
| 722 // SkASSERT(fSide != rh.fSide); | |
| 723 return fSide < rh.fSide; | |
| 724 } | |
| 725 // see if either curve can be lengthened and try the tangent compare aga
in | |
| 726 if (cmp && (*fSpans)[fEnd].fOther != rh.fSegment // tangents not absolut
ely identical | |
| 727 && (*rh.fSpans)[rh.fEnd].fOther != fSegment) { // and not inters
ecting | |
| 728 Angle longer = *this; | |
| 729 Angle rhLonger = rh; | |
| 730 if (longer.lengthen() | rhLonger.lengthen()) { | |
| 731 return longer < rhLonger; | |
| 732 } | |
| 733 #if 0 | |
| 734 // what if we extend in the other direction? | |
| 735 longer = *this; | |
| 736 rhLonger = rh; | |
| 737 if (longer.reverseLengthen() | rhLonger.reverseLengthen()) { | |
| 738 return longer < rhLonger; | |
| 739 } | |
| 740 #endif | |
| 741 } | |
| 742 if ((fVerb == SkPath::kLine_Verb && approximately_zero(x) && approximate
ly_zero(y)) | |
| 743 || (rh.fVerb == SkPath::kLine_Verb | |
| 744 && approximately_zero(rx) && approximately_zero(ry))) { | |
| 745 // See general unsortable comment below. This case can happen when | |
| 746 // one line has a non-zero change in t but no change in x and y. | |
| 747 fUnsortable = true; | |
| 748 rh.fUnsortable = true; | |
| 749 return this < &rh; // even with no solution, return a stable sort | |
| 750 } | |
| 751 if ((*rh.fSpans)[SkMin32(rh.fStart, rh.fEnd)].fTiny | |
| 752 || (*fSpans)[SkMin32(fStart, fEnd)].fTiny) { | |
| 753 fUnsortable = true; | |
| 754 rh.fUnsortable = true; | |
| 755 return this < &rh; // even with no solution, return a stable sort | |
| 756 } | |
| 757 SkASSERT(fVerb >= SkPath::kQuad_Verb); | |
| 758 SkASSERT(rh.fVerb >= SkPath::kQuad_Verb); | |
| 759 // FIXME: until I can think of something better, project a ray from the | |
| 760 // end of the shorter tangent to midway between the end points | |
| 761 // through both curves and use the resulting angle to sort | |
| 762 // FIXME: some of this setup can be moved to set() if it works, or cache
d if it's expensive | |
| 763 double len = fTangent1.normalSquared(); | |
| 764 double rlen = rh.fTangent1.normalSquared(); | |
| 765 _Line ray; | |
| 766 Intersections i, ri; | |
| 767 int roots, rroots; | |
| 768 bool flip = false; | |
| 769 do { | |
| 770 bool useThis = (len < rlen) ^ flip; | |
| 771 const Cubic& part = useThis ? fCurvePart : rh.fCurvePart; | |
| 772 SkPath::Verb partVerb = useThis ? fVerb : rh.fVerb; | |
| 773 ray[0] = partVerb == SkPath::kCubic_Verb && part[0].approximatelyEqu
al(part[1]) ? | |
| 774 part[2] : part[1]; | |
| 775 ray[1].x = (part[0].x + part[partVerb].x) / 2; | |
| 776 ray[1].y = (part[0].y + part[partVerb].y) / 2; | |
| 777 SkASSERT(ray[0] != ray[1]); | |
| 778 roots = (*SegmentRayIntersect[fVerb])(fPts, ray, i); | |
| 779 rroots = (*SegmentRayIntersect[rh.fVerb])(rh.fPts, ray, ri); | |
| 780 } while ((roots == 0 || rroots == 0) && (flip ^= true)); | |
| 781 if (roots == 0 || rroots == 0) { | |
| 782 // FIXME: we don't have a solution in this case. The interim solutio
n | |
| 783 // is to mark the edges as unsortable, exclude them from this and | |
| 784 // future computations, and allow the returned path to be fragmented | |
| 785 fUnsortable = true; | |
| 786 rh.fUnsortable = true; | |
| 787 return this < &rh; // even with no solution, return a stable sort | |
| 788 } | |
| 789 _Point loc; | |
| 790 double best = SK_ScalarInfinity; | |
| 791 double dx, dy, dist; | |
| 792 int index; | |
| 793 for (index = 0; index < roots; ++index) { | |
| 794 (*SegmentXYAtT2[fVerb])(fPts, i.fT[0][index], &loc); | |
| 795 dx = loc.x - ray[0].x; | |
| 796 dy = loc.y - ray[0].y; | |
| 797 dist = dx * dx + dy * dy; | |
| 798 if (best > dist) { | |
| 799 best = dist; | |
| 800 } | |
| 801 } | |
| 802 for (index = 0; index < rroots; ++index) { | |
| 803 (*SegmentXYAtT2[rh.fVerb])(rh.fPts, ri.fT[0][index], &loc); | |
| 804 dx = loc.x - ray[0].x; | |
| 805 dy = loc.y - ray[0].y; | |
| 806 dist = dx * dx + dy * dy; | |
| 807 if (best > dist) { | |
| 808 return fSide < 0; | |
| 809 } | |
| 810 } | |
| 811 return fSide > 0; | |
| 812 } | |
| 813 | |
| 814 double dx() const { | |
| 815 return fTangent1.dx(); | |
| 816 } | |
| 817 | |
| 818 double dy() const { | |
| 819 return fTangent1.dy(); | |
| 820 } | |
| 821 | |
| 822 int end() const { | |
| 823 return fEnd; | |
| 824 } | |
| 825 | |
| 826 bool isHorizontal() const { | |
| 827 return dy() == 0 && fVerb == SkPath::kLine_Verb; | |
| 828 } | |
| 829 | |
| 830 bool lengthen() { | |
| 831 int newEnd = fEnd; | |
| 832 if (fStart < fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { | |
| 833 fEnd = newEnd; | |
| 834 setSpans(); | |
| 835 return true; | |
| 836 } | |
| 837 return false; | |
| 838 } | |
| 839 | |
| 840 bool reverseLengthen() { | |
| 841 if (fReversed) { | |
| 842 return false; | |
| 843 } | |
| 844 int newEnd = fStart; | |
| 845 if (fStart > fEnd ? ++newEnd < fSpans->count() : --newEnd >= 0) { | |
| 846 fEnd = newEnd; | |
| 847 fReversed = true; | |
| 848 setSpans(); | |
| 849 return true; | |
| 850 } | |
| 851 return false; | |
| 852 } | |
| 853 | |
| 854 void set(const SkPoint* orig, SkPath::Verb verb, const Segment* segment, | |
| 855 int start, int end, const SkTDArray<Span>& spans) { | |
| 856 fSegment = segment; | |
| 857 fStart = start; | |
| 858 fEnd = end; | |
| 859 fPts = orig; | |
| 860 fVerb = verb; | |
| 861 fSpans = &spans; | |
| 862 fReversed = false; | |
| 863 fUnsortable = false; | |
| 864 setSpans(); | |
| 865 } | |
| 866 | |
| 867 | |
| 868 void setSpans() { | |
| 869 double startT = (*fSpans)[fStart].fT; | |
| 870 double endT = (*fSpans)[fEnd].fT; | |
| 871 switch (fVerb) { | |
| 872 case SkPath::kLine_Verb: | |
| 873 _Line l; | |
| 874 LineSubDivideHD(fPts, startT, endT, l); | |
| 875 // OPTIMIZATION: for pure line compares, we never need fTangent1.c | |
| 876 fTangent1.lineEndPoints(l); | |
| 877 fSide = 0; | |
| 878 break; | |
| 879 case SkPath::kQuad_Verb: { | |
| 880 Quadratic& quad = (Quadratic&)fCurvePart; | |
| 881 QuadSubDivideHD(fPts, startT, endT, quad); | |
| 882 fTangent1.quadEndPoints(quad, 0, 1); | |
| 883 if (dx() == 0 && dy() == 0) { | |
| 884 fTangent1.quadEndPoints(quad); | |
| 885 } | |
| 886 fSide = -fTangent1.pointDistance(fCurvePart[2]); // not normalized -
- compare sign only | |
| 887 } break; | |
| 888 case SkPath::kCubic_Verb: { | |
| 889 int nextC = 2; | |
| 890 CubicSubDivideHD(fPts, startT, endT, fCurvePart); | |
| 891 fTangent1.cubicEndPoints(fCurvePart, 0, 1); | |
| 892 if (dx() == 0 && dy() == 0) { | |
| 893 fTangent1.cubicEndPoints(fCurvePart, 0, 2); | |
| 894 nextC = 3; | |
| 895 if (dx() == 0 && dy() == 0) { | |
| 896 fTangent1.cubicEndPoints(fCurvePart, 0, 3); | |
| 897 } | |
| 898 } | |
| 899 fSide = -fTangent1.pointDistance(fCurvePart[nextC]); // compare sign
only | |
| 900 if (nextC == 2 && approximately_zero(fSide)) { | |
| 901 fSide = -fTangent1.pointDistance(fCurvePart[3]); | |
| 902 } | |
| 903 } break; | |
| 904 default: | |
| 905 SkASSERT(0); | |
| 906 } | |
| 907 fUnsortable = dx() == 0 && dy() == 0; | |
| 908 if (fUnsortable) { | |
| 909 return; | |
| 910 } | |
| 911 SkASSERT(fStart != fEnd); | |
| 912 int step = fStart < fEnd ? 1 : -1; // OPTIMIZE: worth fStart - fEnd >> 3
1 type macro? | |
| 913 for (int index = fStart; index != fEnd; index += step) { | |
| 914 #if 1 | |
| 915 const Span& thisSpan = (*fSpans)[index]; | |
| 916 const Span& nextSpan = (*fSpans)[index + step]; | |
| 917 if (thisSpan.fTiny || precisely_equal(thisSpan.fT, nextSpan.fT)) { | |
| 918 continue; | |
| 919 } | |
| 920 fUnsortable = step > 0 ? thisSpan.fUnsortableStart : nextSpan.fUnsor
tableEnd; | |
| 921 #if DEBUG_UNSORTABLE | |
| 922 if (fUnsortable) { | |
| 923 SkPoint iPt, ePt; | |
| 924 (*SegmentXYAtT[fVerb])(fPts, thisSpan.fT, &iPt); | |
| 925 (*SegmentXYAtT[fVerb])(fPts, nextSpan.fT, &ePt); | |
| 926 SkDebugf("%s unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n"
, __FUNCTION__, | |
| 927 index, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); | |
| 928 } | |
| 929 #endif | |
| 930 return; | |
| 931 #else | |
| 932 if ((*fSpans)[index].fUnsortableStart) { | |
| 933 fUnsortable = true; | |
| 934 return; | |
| 935 } | |
| 936 #endif | |
| 937 } | |
| 938 #if 1 | |
| 939 #if DEBUG_UNSORTABLE | |
| 940 SkPoint iPt, ePt; | |
| 941 (*SegmentXYAtT[fVerb])(fPts, startT, &iPt); | |
| 942 (*SegmentXYAtT[fVerb])(fPts, endT, &ePt); | |
| 943 SkDebugf("%s all tiny unsortable [%d] (%1.9g,%1.9g) [%d] (%1.9g,%1.9g)\n
", __FUNCTION__, | |
| 944 fStart, iPt.fX, iPt.fY, fEnd, ePt.fX, ePt.fY); | |
| 945 #endif | |
| 946 fUnsortable = true; | |
| 947 #endif | |
| 948 } | |
| 949 | |
| 950 Segment* segment() const { | |
| 951 return const_cast<Segment*>(fSegment); | |
| 952 } | |
| 953 | |
| 954 int sign() const { | |
| 955 return SkSign32(fStart - fEnd); | |
| 956 } | |
| 957 | |
| 958 const SkTDArray<Span>* spans() const { | |
| 959 return fSpans; | |
| 960 } | |
| 961 | |
| 962 int start() const { | |
| 963 return fStart; | |
| 964 } | |
| 965 | |
| 966 bool unsortable() const { | |
| 967 return fUnsortable; | |
| 968 } | |
| 969 | |
| 970 #if DEBUG_ANGLE | |
| 971 const SkPoint* pts() const { | |
| 972 return fPts; | |
| 973 } | |
| 974 | |
| 975 SkPath::Verb verb() const { | |
| 976 return fVerb; | |
| 977 } | |
| 978 | |
| 979 void debugShow(const SkPoint& a) const { | |
| 980 SkDebugf(" d=(%1.9g,%1.9g) side=%1.9g\n", dx(), dy(), fSide); | |
| 981 } | |
| 982 #endif | |
| 983 | |
| 984 private: | |
| 985 const SkPoint* fPts; | |
| 986 Cubic fCurvePart; | |
| 987 SkPath::Verb fVerb; | |
| 988 double fSide; | |
| 989 LineParameters fTangent1; | |
| 990 const SkTDArray<Span>* fSpans; | |
| 991 const Segment* fSegment; | |
| 992 int fStart; | |
| 993 int fEnd; | |
| 994 bool fReversed; | |
| 995 mutable bool fUnsortable; // this alone is editable by the less than operato
r | |
| 996 }; | |
| 997 | |
| 998 // Bounds, unlike Rect, does not consider a line to be empty. | |
| 999 struct Bounds : public SkRect { | |
| 1000 static bool Intersects(const Bounds& a, const Bounds& b) { | |
| 1001 return a.fLeft <= b.fRight && b.fLeft <= a.fRight && | |
| 1002 a.fTop <= b.fBottom && b.fTop <= a.fBottom; | |
| 1003 } | |
| 1004 | |
| 1005 void add(SkScalar left, SkScalar top, SkScalar right, SkScalar bottom) { | |
| 1006 if (left < fLeft) { | |
| 1007 fLeft = left; | |
| 1008 } | |
| 1009 if (top < fTop) { | |
| 1010 fTop = top; | |
| 1011 } | |
| 1012 if (right > fRight) { | |
| 1013 fRight = right; | |
| 1014 } | |
| 1015 if (bottom > fBottom) { | |
| 1016 fBottom = bottom; | |
| 1017 } | |
| 1018 } | |
| 1019 | |
| 1020 void add(const Bounds& toAdd) { | |
| 1021 add(toAdd.fLeft, toAdd.fTop, toAdd.fRight, toAdd.fBottom); | |
| 1022 } | |
| 1023 | |
| 1024 void add(const SkPoint& pt) { | |
| 1025 if (pt.fX < fLeft) fLeft = pt.fX; | |
| 1026 if (pt.fY < fTop) fTop = pt.fY; | |
| 1027 if (pt.fX > fRight) fRight = pt.fX; | |
| 1028 if (pt.fY > fBottom) fBottom = pt.fY; | |
| 1029 } | |
| 1030 | |
| 1031 bool isEmpty() { | |
| 1032 return fLeft > fRight || fTop > fBottom | |
| 1033 || (fLeft == fRight && fTop == fBottom) | |
| 1034 || sk_double_isnan(fLeft) || sk_double_isnan(fRight) | |
| 1035 || sk_double_isnan(fTop) || sk_double_isnan(fBottom); | |
| 1036 } | |
| 1037 | |
| 1038 void setCubicBounds(const SkPoint a[4]) { | |
| 1039 _Rect dRect; | |
| 1040 MAKE_CONST_CUBIC(cubic, a); | |
| 1041 dRect.setBounds(cubic); | |
| 1042 set((float) dRect.left, (float) dRect.top, (float) dRect.right, | |
| 1043 (float) dRect.bottom); | |
| 1044 } | |
| 1045 | |
| 1046 void setLineBounds(const SkPoint a[2]) { | |
| 1047 setPoint(a[0]); | |
| 1048 add(a[1]); | |
| 1049 } | |
| 1050 | |
| 1051 void setQuadBounds(const SkPoint a[3]) { | |
| 1052 MAKE_CONST_QUAD(quad, a); | |
| 1053 _Rect dRect; | |
| 1054 dRect.setBounds(quad); | |
| 1055 set((float) dRect.left, (float) dRect.top, (float) dRect.right, | |
| 1056 (float) dRect.bottom); | |
| 1057 } | |
| 1058 | |
| 1059 void setPoint(const SkPoint& pt) { | |
| 1060 fLeft = fRight = pt.fX; | |
| 1061 fTop = fBottom = pt.fY; | |
| 1062 } | |
| 1063 }; | |
| 1064 | |
| 1065 static void (Bounds::*setSegmentBounds[])(const SkPoint[]) = { | |
| 1066 NULL, | |
| 1067 &Bounds::setLineBounds, | |
| 1068 &Bounds::setQuadBounds, | |
| 1069 &Bounds::setCubicBounds | |
| 1070 }; | |
| 1071 | |
| 1072 // OPTIMIZATION: does the following also work, and is it any faster? | |
| 1073 // return outerWinding * innerWinding > 0 | |
| 1074 // || ((outerWinding + innerWinding < 0) ^ ((outerWinding - innerWinding) <
0))) | |
| 1075 static bool useInnerWinding(int outerWinding, int innerWinding) { | |
| 1076 SkASSERT(outerWinding != SK_MaxS32); | |
| 1077 SkASSERT(innerWinding != SK_MaxS32); | |
| 1078 int absOut = abs(outerWinding); | |
| 1079 int absIn = abs(innerWinding); | |
| 1080 bool result = absOut == absIn ? outerWinding < 0 : absOut < absIn; | |
| 1081 #if 0 && DEBUG_WINDING | |
| 1082 if (outerWinding * innerWinding < 0) { | |
| 1083 SkDebugf("%s outer=%d inner=%d result=%s\n", __FUNCTION__, | |
| 1084 outerWinding, innerWinding, result ? "true" : "false"); | |
| 1085 } | |
| 1086 #endif | |
| 1087 return result; | |
| 1088 } | |
| 1089 | |
| 1090 #define F (false) // discard the edge | |
| 1091 #define T (true) // keep the edge | |
| 1092 | |
| 1093 static const bool gUnaryActiveEdge[2][2] = { | |
| 1094 // from=0 from=1 | |
| 1095 // to=0,1 to=0,1 | |
| 1096 {F, T}, {T, F}, | |
| 1097 }; | |
| 1098 | |
| 1099 static const bool gActiveEdge[kShapeOp_Count][2][2][2][2] = { | |
| 1100 // miFrom=0 miFrom=1 | |
| 1101 // miTo=0 miTo=1 miTo=0 miTo=1 | |
| 1102 // suFrom=0 1 suFrom=0 1 suFrom=0 1 suFrom=0 1 | |
| 1103 // suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 suTo=0,1 | |
| 1104 {{{{F, F}, {F, F}}, {{T, F}, {T, F}}}, {{{T, T}, {F, F}}, {{F, T}, {T, F}}}}
, // mi - su | |
| 1105 {{{{F, F}, {F, F}}, {{F, T}, {F, T}}}, {{{F, F}, {T, T}}, {{F, T}, {T, F}}}}
, // mi & su | |
| 1106 {{{{F, T}, {T, F}}, {{T, T}, {F, F}}}, {{{T, F}, {T, F}}, {{F, F}, {F, F}}}}
, // mi | su | |
| 1107 {{{{F, T}, {T, F}}, {{T, F}, {F, T}}}, {{{T, F}, {F, T}}, {{F, T}, {T, F}}}}
, // mi ^ su | |
| 1108 }; | |
| 1109 | |
| 1110 #undef F | |
| 1111 #undef T | |
| 1112 | |
| 1113 // wrap path to keep track of whether the contour is initialized and non-empty | |
| 1114 class PathWrapper { | |
| 1115 public: | |
| 1116 PathWrapper(SkPath& path) | |
| 1117 : fPathPtr(&path) | |
| 1118 , fCloses(0) | |
| 1119 , fMoves(0) | |
| 1120 { | |
| 1121 init(); | |
| 1122 } | |
| 1123 | |
| 1124 void close() { | |
| 1125 if (!fHasMove) { | |
| 1126 return; | |
| 1127 } | |
| 1128 bool callClose = isClosed(); | |
| 1129 lineTo(); | |
| 1130 if (fEmpty) { | |
| 1131 return; | |
| 1132 } | |
| 1133 if (callClose) { | |
| 1134 #if DEBUG_PATH_CONSTRUCTION | |
| 1135 SkDebugf("path.close();\n"); | |
| 1136 #endif | |
| 1137 fPathPtr->close(); | |
| 1138 fCloses++; | |
| 1139 } | |
| 1140 init(); | |
| 1141 } | |
| 1142 | |
| 1143 void cubicTo(const SkPoint& pt1, const SkPoint& pt2, const SkPoint& pt3) { | |
| 1144 lineTo(); | |
| 1145 moveTo(); | |
| 1146 fDefer[1] = pt3; | |
| 1147 nudge(); | |
| 1148 fDefer[0] = fDefer[1]; | |
| 1149 #if DEBUG_PATH_CONSTRUCTION | |
| 1150 SkDebugf("path.cubicTo(%1.9g,%1.9g, %1.9g,%1.9g, %1.9g,%1.9g);\n", | |
| 1151 pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1].fY); | |
| 1152 #endif | |
| 1153 fPathPtr->cubicTo(pt1.fX, pt1.fY, pt2.fX, pt2.fY, fDefer[1].fX, fDefer[1
].fY); | |
| 1154 fEmpty = false; | |
| 1155 } | |
| 1156 | |
| 1157 void deferredLine(const SkPoint& pt) { | |
| 1158 if (pt == fDefer[1]) { | |
| 1159 return; | |
| 1160 } | |
| 1161 if (changedSlopes(pt)) { | |
| 1162 lineTo(); | |
| 1163 fDefer[0] = fDefer[1]; | |
| 1164 } | |
| 1165 fDefer[1] = pt; | |
| 1166 } | |
| 1167 | |
| 1168 void deferredMove(const SkPoint& pt) { | |
| 1169 fMoved = true; | |
| 1170 fHasMove = true; | |
| 1171 fEmpty = true; | |
| 1172 fDefer[0] = fDefer[1] = pt; | |
| 1173 } | |
| 1174 | |
| 1175 void deferredMoveLine(const SkPoint& pt) { | |
| 1176 if (!fHasMove) { | |
| 1177 deferredMove(pt); | |
| 1178 } | |
| 1179 deferredLine(pt); | |
| 1180 } | |
| 1181 | |
| 1182 bool hasMove() const { | |
| 1183 return fHasMove; | |
| 1184 } | |
| 1185 | |
| 1186 void init() { | |
| 1187 fEmpty = true; | |
| 1188 fHasMove = false; | |
| 1189 fMoved = false; | |
| 1190 } | |
| 1191 | |
| 1192 bool isClosed() const { | |
| 1193 return !fEmpty && fFirstPt == fDefer[1]; | |
| 1194 } | |
| 1195 | |
| 1196 void lineTo() { | |
| 1197 if (fDefer[0] == fDefer[1]) { | |
| 1198 return; | |
| 1199 } | |
| 1200 moveTo(); | |
| 1201 nudge(); | |
| 1202 fEmpty = false; | |
| 1203 #if DEBUG_PATH_CONSTRUCTION | |
| 1204 SkDebugf("path.lineTo(%1.9g,%1.9g);\n", fDefer[1].fX, fDefer[1].fY); | |
| 1205 #endif | |
| 1206 fPathPtr->lineTo(fDefer[1].fX, fDefer[1].fY); | |
| 1207 fDefer[0] = fDefer[1]; | |
| 1208 } | |
| 1209 | |
| 1210 const SkPath* nativePath() const { | |
| 1211 return fPathPtr; | |
| 1212 } | |
| 1213 | |
| 1214 void nudge() { | |
| 1215 if (fEmpty || !AlmostEqualUlps(fDefer[1].fX, fFirstPt.fX) | |
| 1216 || !AlmostEqualUlps(fDefer[1].fY, fFirstPt.fY)) { | |
| 1217 return; | |
| 1218 } | |
| 1219 fDefer[1] = fFirstPt; | |
| 1220 } | |
| 1221 | |
| 1222 void quadTo(const SkPoint& pt1, const SkPoint& pt2) { | |
| 1223 lineTo(); | |
| 1224 moveTo(); | |
| 1225 fDefer[1] = pt2; | |
| 1226 nudge(); | |
| 1227 fDefer[0] = fDefer[1]; | |
| 1228 #if DEBUG_PATH_CONSTRUCTION | |
| 1229 SkDebugf("path.quadTo(%1.9g,%1.9g, %1.9g,%1.9g);\n", | |
| 1230 pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY); | |
| 1231 #endif | |
| 1232 fPathPtr->quadTo(pt1.fX, pt1.fY, fDefer[1].fX, fDefer[1].fY); | |
| 1233 fEmpty = false; | |
| 1234 } | |
| 1235 | |
| 1236 bool someAssemblyRequired() const { | |
| 1237 return fCloses < fMoves; | |
| 1238 } | |
| 1239 | |
| 1240 protected: | |
| 1241 bool changedSlopes(const SkPoint& pt) const { | |
| 1242 if (fDefer[0] == fDefer[1]) { | |
| 1243 return false; | |
| 1244 } | |
| 1245 SkScalar deferDx = fDefer[1].fX - fDefer[0].fX; | |
| 1246 SkScalar deferDy = fDefer[1].fY - fDefer[0].fY; | |
| 1247 SkScalar lineDx = pt.fX - fDefer[1].fX; | |
| 1248 SkScalar lineDy = pt.fY - fDefer[1].fY; | |
| 1249 return deferDx * lineDy != deferDy * lineDx; | |
| 1250 } | |
| 1251 | |
| 1252 void moveTo() { | |
| 1253 if (!fMoved) { | |
| 1254 return; | |
| 1255 } | |
| 1256 fFirstPt = fDefer[0]; | |
| 1257 #if DEBUG_PATH_CONSTRUCTION | |
| 1258 SkDebugf("path.moveTo(%1.9g,%1.9g);\n", fDefer[0].fX, fDefer[0].fY); | |
| 1259 #endif | |
| 1260 fPathPtr->moveTo(fDefer[0].fX, fDefer[0].fY); | |
| 1261 fMoved = false; | |
| 1262 fMoves++; | |
| 1263 } | |
| 1264 | |
| 1265 private: | |
| 1266 SkPath* fPathPtr; | |
| 1267 SkPoint fDefer[2]; | |
| 1268 SkPoint fFirstPt; | |
| 1269 int fCloses; | |
| 1270 int fMoves; | |
| 1271 bool fEmpty; | |
| 1272 bool fHasMove; | |
| 1273 bool fMoved; | |
| 1274 }; | |
| 1275 | |
| 1276 class Segment { | |
| 1277 public: | |
| 1278 Segment() { | |
| 1279 #if DEBUG_DUMP | |
| 1280 fID = ++gSegmentID; | |
| 1281 #endif | |
| 1282 } | |
| 1283 | |
| 1284 bool operator<(const Segment& rh) const { | |
| 1285 return fBounds.fTop < rh.fBounds.fTop; | |
| 1286 } | |
| 1287 | |
| 1288 bool activeAngle(int index, int& done, SkTDArray<Angle>& angles) { | |
| 1289 if (activeAngleInner(index, done, angles)) { | |
| 1290 return true; | |
| 1291 } | |
| 1292 int lesser = index; | |
| 1293 while (--lesser >= 0 && equalPoints(index, lesser)) { | |
| 1294 if (activeAngleOther(lesser, done, angles)) { | |
| 1295 return true; | |
| 1296 } | |
| 1297 } | |
| 1298 lesser = index; | |
| 1299 do { | |
| 1300 if (activeAngleOther(index, done, angles)) { | |
| 1301 return true; | |
| 1302 } | |
| 1303 } while (++index < fTs.count() && equalPoints(index, lesser)); | |
| 1304 return false; | |
| 1305 } | |
| 1306 | |
| 1307 bool activeAngleOther(int index, int& done, SkTDArray<Angle>& angles) { | |
| 1308 Span* span = &fTs[index]; | |
| 1309 Segment* other = span->fOther; | |
| 1310 int oIndex = span->fOtherIndex; | |
| 1311 return other->activeAngleInner(oIndex, done, angles); | |
| 1312 } | |
| 1313 | |
| 1314 bool activeAngleInner(int index, int& done, SkTDArray<Angle>& angles) { | |
| 1315 int next = nextExactSpan(index, 1); | |
| 1316 if (next > 0) { | |
| 1317 Span& upSpan = fTs[index]; | |
| 1318 if (upSpan.fWindValue || upSpan.fOppValue) { | |
| 1319 addAngle(angles, index, next); | |
| 1320 if (upSpan.fDone || upSpan.fUnsortableEnd) { | |
| 1321 done++; | |
| 1322 } else if (upSpan.fWindSum != SK_MinS32) { | |
| 1323 return true; | |
| 1324 } | |
| 1325 } else if (!upSpan.fDone) { | |
| 1326 upSpan.fDone = true; | |
| 1327 fDoneSpans++; | |
| 1328 } | |
| 1329 } | |
| 1330 int prev = nextExactSpan(index, -1); | |
| 1331 // edge leading into junction | |
| 1332 if (prev >= 0) { | |
| 1333 Span& downSpan = fTs[prev]; | |
| 1334 if (downSpan.fWindValue || downSpan.fOppValue) { | |
| 1335 addAngle(angles, index, prev); | |
| 1336 if (downSpan.fDone) { | |
| 1337 done++; | |
| 1338 } else if (downSpan.fWindSum != SK_MinS32) { | |
| 1339 return true; | |
| 1340 } | |
| 1341 } else if (!downSpan.fDone) { | |
| 1342 downSpan.fDone = true; | |
| 1343 fDoneSpans++; | |
| 1344 } | |
| 1345 } | |
| 1346 return false; | |
| 1347 } | |
| 1348 | |
| 1349 SkPoint activeLeftTop(bool onlySortable, int* firstT) const { | |
| 1350 SkASSERT(!done()); | |
| 1351 SkPoint topPt = {SK_ScalarMax, SK_ScalarMax}; | |
| 1352 int count = fTs.count(); | |
| 1353 // see if either end is not done since we want smaller Y of the pair | |
| 1354 bool lastDone = true; | |
| 1355 bool lastUnsortable = false; | |
| 1356 double lastT = -1; | |
| 1357 for (int index = 0; index < count; ++index) { | |
| 1358 const Span& span = fTs[index]; | |
| 1359 if (onlySortable && (span.fUnsortableStart || lastUnsortable)) { | |
| 1360 goto next; | |
| 1361 } | |
| 1362 if (span.fDone && lastDone) { | |
| 1363 goto next; | |
| 1364 } | |
| 1365 if (approximately_negative(span.fT - lastT)) { | |
| 1366 goto next; | |
| 1367 } | |
| 1368 { | |
| 1369 const SkPoint& xy = xyAtT(&span); | |
| 1370 if (topPt.fY > xy.fY || (topPt.fY == xy.fY && topPt.fX > xy.fX))
{ | |
| 1371 topPt = xy; | |
| 1372 if (firstT) { | |
| 1373 *firstT = index; | |
| 1374 } | |
| 1375 } | |
| 1376 if (fVerb != SkPath::kLine_Verb && !lastDone) { | |
| 1377 SkPoint curveTop = (*SegmentTop[fVerb])(fPts, lastT, span.fT
); | |
| 1378 if (topPt.fY > curveTop.fY || (topPt.fY == curveTop.fY | |
| 1379 && topPt.fX > curveTop.fX)) { | |
| 1380 topPt = curveTop; | |
| 1381 if (firstT) { | |
| 1382 *firstT = index; | |
| 1383 } | |
| 1384 } | |
| 1385 } | |
| 1386 lastT = span.fT; | |
| 1387 } | |
| 1388 next: | |
| 1389 lastDone = span.fDone; | |
| 1390 lastUnsortable = span.fUnsortableEnd; | |
| 1391 } | |
| 1392 return topPt; | |
| 1393 } | |
| 1394 | |
| 1395 bool activeOp(int index, int endIndex, int xorMiMask, int xorSuMask, ShapeOp
op) { | |
| 1396 int sumMiWinding = updateWinding(endIndex, index); | |
| 1397 int sumSuWinding = updateOppWinding(endIndex, index); | |
| 1398 if (fOperand) { | |
| 1399 SkTSwap<int>(sumMiWinding, sumSuWinding); | |
| 1400 } | |
| 1401 int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; | |
| 1402 return activeOp(xorMiMask, xorSuMask, index, endIndex, op, sumMiWinding,
sumSuWinding, | |
| 1403 maxWinding, sumWinding, oppMaxWinding, oppSumWinding); | |
| 1404 } | |
| 1405 | |
| 1406 bool activeOp(int xorMiMask, int xorSuMask, int index, int endIndex, ShapeOp
op, | |
| 1407 int& sumMiWinding, int& sumSuWinding, | |
| 1408 int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWin
ding) { | |
| 1409 setUpWindings(index, endIndex, sumMiWinding, sumSuWinding, | |
| 1410 maxWinding, sumWinding, oppMaxWinding, oppSumWinding); | |
| 1411 bool miFrom; | |
| 1412 bool miTo; | |
| 1413 bool suFrom; | |
| 1414 bool suTo; | |
| 1415 if (operand()) { | |
| 1416 miFrom = (oppMaxWinding & xorMiMask) != 0; | |
| 1417 miTo = (oppSumWinding & xorMiMask) != 0; | |
| 1418 suFrom = (maxWinding & xorSuMask) != 0; | |
| 1419 suTo = (sumWinding & xorSuMask) != 0; | |
| 1420 } else { | |
| 1421 miFrom = (maxWinding & xorMiMask) != 0; | |
| 1422 miTo = (sumWinding & xorMiMask) != 0; | |
| 1423 suFrom = (oppMaxWinding & xorSuMask) != 0; | |
| 1424 suTo = (oppSumWinding & xorSuMask) != 0; | |
| 1425 } | |
| 1426 bool result = gActiveEdge[op][miFrom][miTo][suFrom][suTo]; | |
| 1427 #if DEBUG_ACTIVE_OP | |
| 1428 SkDebugf("%s op=%s miFrom=%d miTo=%d suFrom=%d suTo=%d result=%d\n", __F
UNCTION__, | |
| 1429 kShapeOpStr[op], miFrom, miTo, suFrom, suTo, result); | |
| 1430 #endif | |
| 1431 SkASSERT(result != -1); | |
| 1432 return result; | |
| 1433 } | |
| 1434 | |
| 1435 bool activeWinding(int index, int endIndex) { | |
| 1436 int sumWinding = updateWinding(endIndex, index); | |
| 1437 int maxWinding; | |
| 1438 return activeWinding(index, endIndex, maxWinding, sumWinding); | |
| 1439 } | |
| 1440 | |
| 1441 bool activeWinding(int index, int endIndex, int& maxWinding, int& sumWinding
) { | |
| 1442 setUpWinding(index, endIndex, maxWinding, sumWinding); | |
| 1443 bool from = maxWinding != 0; | |
| 1444 bool to = sumWinding != 0; | |
| 1445 bool result = gUnaryActiveEdge[from][to]; | |
| 1446 SkASSERT(result != -1); | |
| 1447 return result; | |
| 1448 } | |
| 1449 | |
| 1450 void addAngle(SkTDArray<Angle>& angles, int start, int end) const { | |
| 1451 SkASSERT(start != end); | |
| 1452 Angle* angle = angles.append(); | |
| 1453 #if DEBUG_ANGLE | |
| 1454 if (angles.count() > 1 && !fTs[start].fTiny) { | |
| 1455 SkPoint angle0Pt, newPt; | |
| 1456 (*SegmentXYAtT[angles[0].verb()])(angles[0].pts(), | |
| 1457 (*angles[0].spans())[angles[0].start()].fT, &angle0Pt); | |
| 1458 (*SegmentXYAtT[fVerb])(fPts, fTs[start].fT, &newPt); | |
| 1459 SkASSERT(AlmostEqualUlps(angle0Pt.fX, newPt.fX)); | |
| 1460 SkASSERT(AlmostEqualUlps(angle0Pt.fY, newPt.fY)); | |
| 1461 } | |
| 1462 #endif | |
| 1463 angle->set(fPts, fVerb, this, start, end, fTs); | |
| 1464 } | |
| 1465 | |
| 1466 void addCancelOutsides(double tStart, double oStart, Segment& other, | |
| 1467 double oEnd) { | |
| 1468 int tIndex = -1; | |
| 1469 int tCount = fTs.count(); | |
| 1470 int oIndex = -1; | |
| 1471 int oCount = other.fTs.count(); | |
| 1472 do { | |
| 1473 ++tIndex; | |
| 1474 } while (!approximately_negative(tStart - fTs[tIndex].fT) && tIndex < tC
ount); | |
| 1475 int tIndexStart = tIndex; | |
| 1476 do { | |
| 1477 ++oIndex; | |
| 1478 } while (!approximately_negative(oStart - other.fTs[oIndex].fT) && oInde
x < oCount); | |
| 1479 int oIndexStart = oIndex; | |
| 1480 double nextT; | |
| 1481 do { | |
| 1482 nextT = fTs[++tIndex].fT; | |
| 1483 } while (nextT < 1 && approximately_negative(nextT - tStart)); | |
| 1484 double oNextT; | |
| 1485 do { | |
| 1486 oNextT = other.fTs[++oIndex].fT; | |
| 1487 } while (oNextT < 1 && approximately_negative(oNextT - oStart)); | |
| 1488 // at this point, spans before and after are at: | |
| 1489 // fTs[tIndexStart - 1], fTs[tIndexStart], fTs[tIndex] | |
| 1490 // if tIndexStart == 0, no prior span | |
| 1491 // if nextT == 1, no following span | |
| 1492 | |
| 1493 // advance the span with zero winding | |
| 1494 // if the following span exists (not past the end, non-zero winding) | |
| 1495 // connect the two edges | |
| 1496 if (!fTs[tIndexStart].fWindValue) { | |
| 1497 if (tIndexStart > 0 && fTs[tIndexStart - 1].fWindValue) { | |
| 1498 #if DEBUG_CONCIDENT | |
| 1499 SkDebugf("%s 1 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", | |
| 1500 __FUNCTION__, fID, other.fID, tIndexStart - 1, | |
| 1501 fTs[tIndexStart].fT, xyAtT(tIndexStart).fX, | |
| 1502 xyAtT(tIndexStart).fY); | |
| 1503 #endif | |
| 1504 addTPair(fTs[tIndexStart].fT, other, other.fTs[oIndex].fT, false
, | |
| 1505 fTs[tIndexStart].fPt); | |
| 1506 } | |
| 1507 if (nextT < 1 && fTs[tIndex].fWindValue) { | |
| 1508 #if DEBUG_CONCIDENT | |
| 1509 SkDebugf("%s 2 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", | |
| 1510 __FUNCTION__, fID, other.fID, tIndex, | |
| 1511 fTs[tIndex].fT, xyAtT(tIndex).fX, | |
| 1512 xyAtT(tIndex).fY); | |
| 1513 #endif | |
| 1514 addTPair(fTs[tIndex].fT, other, other.fTs[oIndexStart].fT, false
, fTs[tIndex].fPt); | |
| 1515 } | |
| 1516 } else { | |
| 1517 SkASSERT(!other.fTs[oIndexStart].fWindValue); | |
| 1518 if (oIndexStart > 0 && other.fTs[oIndexStart - 1].fWindValue) { | |
| 1519 #if DEBUG_CONCIDENT | |
| 1520 SkDebugf("%s 3 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", | |
| 1521 __FUNCTION__, fID, other.fID, oIndexStart - 1, | |
| 1522 other.fTs[oIndexStart].fT, other.xyAtT(oIndexStart).fX, | |
| 1523 other.xyAtT(oIndexStart).fY); | |
| 1524 other.debugAddTPair(other.fTs[oIndexStart].fT, *this, fTs[tIndex
].fT); | |
| 1525 #endif | |
| 1526 } | |
| 1527 if (oNextT < 1 && other.fTs[oIndex].fWindValue) { | |
| 1528 #if DEBUG_CONCIDENT | |
| 1529 SkDebugf("%s 4 this=%d other=%d t [%d] %1.9g (%1.9g,%1.9g)\n", | |
| 1530 __FUNCTION__, fID, other.fID, oIndex, | |
| 1531 other.fTs[oIndex].fT, other.xyAtT(oIndex).fX, | |
| 1532 other.xyAtT(oIndex).fY); | |
| 1533 other.debugAddTPair(other.fTs[oIndex].fT, *this, fTs[tIndexStart
].fT); | |
| 1534 #endif | |
| 1535 } | |
| 1536 } | |
| 1537 } | |
| 1538 | |
| 1539 void addCoinOutsides(const SkTDArray<double>& outsideTs, Segment& other, | |
| 1540 double oEnd) { | |
| 1541 // walk this to outsideTs[0] | |
| 1542 // walk other to outsideTs[1] | |
| 1543 // if either is > 0, add a pointer to the other, copying adjacent windin
g | |
| 1544 int tIndex = -1; | |
| 1545 int oIndex = -1; | |
| 1546 double tStart = outsideTs[0]; | |
| 1547 double oStart = outsideTs[1]; | |
| 1548 do { | |
| 1549 ++tIndex; | |
| 1550 } while (!approximately_negative(tStart - fTs[tIndex].fT)); | |
| 1551 SkPoint ptStart = fTs[tIndex].fPt; | |
| 1552 do { | |
| 1553 ++oIndex; | |
| 1554 } while (!approximately_negative(oStart - other.fTs[oIndex].fT)); | |
| 1555 if (tIndex > 0 || oIndex > 0 || fOperand != other.fOperand) { | |
| 1556 addTPair(tStart, other, oStart, false, ptStart); | |
| 1557 } | |
| 1558 tStart = fTs[tIndex].fT; | |
| 1559 oStart = other.fTs[oIndex].fT; | |
| 1560 do { | |
| 1561 double nextT; | |
| 1562 do { | |
| 1563 nextT = fTs[++tIndex].fT; | |
| 1564 } while (approximately_negative(nextT - tStart)); | |
| 1565 tStart = nextT; | |
| 1566 ptStart = fTs[tIndex].fPt; | |
| 1567 do { | |
| 1568 nextT = other.fTs[++oIndex].fT; | |
| 1569 } while (approximately_negative(nextT - oStart)); | |
| 1570 oStart = nextT; | |
| 1571 if (tStart == 1 && oStart == 1 && fOperand == other.fOperand) { | |
| 1572 break; | |
| 1573 } | |
| 1574 addTPair(tStart, other, oStart, false, ptStart); | |
| 1575 } while (tStart < 1 && oStart < 1 && !approximately_negative(oEnd - oSta
rt)); | |
| 1576 } | |
| 1577 | |
| 1578 void addCubic(const SkPoint pts[4], bool operand, bool evenOdd) { | |
| 1579 init(pts, SkPath::kCubic_Verb, operand, evenOdd); | |
| 1580 fBounds.setCubicBounds(pts); | |
| 1581 } | |
| 1582 | |
| 1583 /* SkPoint */ void addCurveTo(int start, int end, PathWrapper& path, bool ac
tive) const { | |
| 1584 SkPoint edge[4]; | |
| 1585 const SkPoint* ePtr; | |
| 1586 int lastT = fTs.count() - 1; | |
| 1587 if (lastT < 0 || (start == 0 && end == lastT) || (start == lastT && end
== 0)) { | |
| 1588 ePtr = fPts; | |
| 1589 } else { | |
| 1590 // OPTIMIZE? if not active, skip remainder and return xy_at_t(end) | |
| 1591 subDivide(start, end, edge); | |
| 1592 ePtr = edge; | |
| 1593 } | |
| 1594 if (active) { | |
| 1595 bool reverse = ePtr == fPts && start != 0; | |
| 1596 if (reverse) { | |
| 1597 path.deferredMoveLine(ePtr[fVerb]); | |
| 1598 switch (fVerb) { | |
| 1599 case SkPath::kLine_Verb: | |
| 1600 path.deferredLine(ePtr[0]); | |
| 1601 break; | |
| 1602 case SkPath::kQuad_Verb: | |
| 1603 path.quadTo(ePtr[1], ePtr[0]); | |
| 1604 break; | |
| 1605 case SkPath::kCubic_Verb: | |
| 1606 path.cubicTo(ePtr[2], ePtr[1], ePtr[0]); | |
| 1607 break; | |
| 1608 default: | |
| 1609 SkASSERT(0); | |
| 1610 } | |
| 1611 // return ePtr[0]; | |
| 1612 } else { | |
| 1613 path.deferredMoveLine(ePtr[0]); | |
| 1614 switch (fVerb) { | |
| 1615 case SkPath::kLine_Verb: | |
| 1616 path.deferredLine(ePtr[1]); | |
| 1617 break; | |
| 1618 case SkPath::kQuad_Verb: | |
| 1619 path.quadTo(ePtr[1], ePtr[2]); | |
| 1620 break; | |
| 1621 case SkPath::kCubic_Verb: | |
| 1622 path.cubicTo(ePtr[1], ePtr[2], ePtr[3]); | |
| 1623 break; | |
| 1624 default: | |
| 1625 SkASSERT(0); | |
| 1626 } | |
| 1627 } | |
| 1628 } | |
| 1629 // return ePtr[fVerb]; | |
| 1630 } | |
| 1631 | |
| 1632 void addLine(const SkPoint pts[2], bool operand, bool evenOdd) { | |
| 1633 init(pts, SkPath::kLine_Verb, operand, evenOdd); | |
| 1634 fBounds.set(pts, 2); | |
| 1635 } | |
| 1636 | |
| 1637 #if 0 | |
| 1638 const SkPoint& addMoveTo(int tIndex, PathWrapper& path, bool active) const { | |
| 1639 const SkPoint& pt = xyAtT(tIndex); | |
| 1640 if (active) { | |
| 1641 path.deferredMove(pt); | |
| 1642 } | |
| 1643 return pt; | |
| 1644 } | |
| 1645 #endif | |
| 1646 | |
| 1647 // add 2 to edge or out of range values to get T extremes | |
| 1648 void addOtherT(int index, double otherT, int otherIndex) { | |
| 1649 Span& span = fTs[index]; | |
| 1650 #if PIN_ADD_T | |
| 1651 if (precisely_less_than_zero(otherT)) { | |
| 1652 otherT = 0; | |
| 1653 } else if (precisely_greater_than_one(otherT)) { | |
| 1654 otherT = 1; | |
| 1655 } | |
| 1656 #endif | |
| 1657 span.fOtherT = otherT; | |
| 1658 span.fOtherIndex = otherIndex; | |
| 1659 } | |
| 1660 | |
| 1661 void addQuad(const SkPoint pts[3], bool operand, bool evenOdd) { | |
| 1662 init(pts, SkPath::kQuad_Verb, operand, evenOdd); | |
| 1663 fBounds.setQuadBounds(pts); | |
| 1664 } | |
| 1665 | |
| 1666 // Defer all coincident edge processing until | |
| 1667 // after normal intersections have been computed | |
| 1668 | |
| 1669 // no need to be tricky; insert in normal T order | |
| 1670 // resolve overlapping ts when considering coincidence later | |
| 1671 | |
| 1672 // add non-coincident intersection. Resulting edges are sorted in T. | |
| 1673 int addT(Segment* other, const SkPoint& pt, double& newT) { | |
| 1674 // FIXME: in the pathological case where there is a ton of intercepts, | |
| 1675 // binary search? | |
| 1676 int insertedAt = -1; | |
| 1677 size_t tCount = fTs.count(); | |
| 1678 #if PIN_ADD_T | |
| 1679 // FIXME: only do this pinning here (e.g. this is done also in quad/line
intersect) | |
| 1680 if (precisely_less_than_zero(newT)) { | |
| 1681 newT = 0; | |
| 1682 } else if (precisely_greater_than_one(newT)) { | |
| 1683 newT = 1; | |
| 1684 } | |
| 1685 #endif | |
| 1686 for (size_t index = 0; index < tCount; ++index) { | |
| 1687 // OPTIMIZATION: if there are three or more identical Ts, then | |
| 1688 // the fourth and following could be further insertion-sorted so | |
| 1689 // that all the edges are clockwise or counterclockwise. | |
| 1690 // This could later limit segment tests to the two adjacent | |
| 1691 // neighbors, although it doesn't help with determining which | |
| 1692 // circular direction to go in. | |
| 1693 if (newT < fTs[index].fT) { | |
| 1694 insertedAt = index; | |
| 1695 break; | |
| 1696 } | |
| 1697 } | |
| 1698 Span* span; | |
| 1699 if (insertedAt >= 0) { | |
| 1700 span = fTs.insert(insertedAt); | |
| 1701 } else { | |
| 1702 insertedAt = tCount; | |
| 1703 span = fTs.append(); | |
| 1704 } | |
| 1705 span->fT = newT; | |
| 1706 span->fOther = other; | |
| 1707 span->fPt = pt; | |
| 1708 span->fWindSum = SK_MinS32; | |
| 1709 span->fOppSum = SK_MinS32; | |
| 1710 span->fWindValue = 1; | |
| 1711 span->fOppValue = 0; | |
| 1712 span->fTiny = false; | |
| 1713 span->fLoop = false; | |
| 1714 if ((span->fDone = newT == 1)) { | |
| 1715 ++fDoneSpans; | |
| 1716 } | |
| 1717 span->fUnsortableStart = false; | |
| 1718 span->fUnsortableEnd = false; | |
| 1719 int less = -1; | |
| 1720 while (&span[less + 1] - fTs.begin() > 0 && xyAtT(&span[less]) == xyAtT(
span)) { | |
| 1721 #if 1 | |
| 1722 if (span[less].fDone) { | |
| 1723 break; | |
| 1724 } | |
| 1725 double tInterval = newT - span[less].fT; | |
| 1726 if (precisely_negative(tInterval)) { | |
| 1727 break; | |
| 1728 } | |
| 1729 if (fVerb == SkPath::kCubic_Verb) { | |
| 1730 double tMid = newT - tInterval / 2; | |
| 1731 _Point midPt; | |
| 1732 CubicXYAtT(fPts, tMid, &midPt); | |
| 1733 if (!midPt.approximatelyEqual(xyAtT(span))) { | |
| 1734 break; | |
| 1735 } | |
| 1736 } | |
| 1737 span[less].fTiny = true; | |
| 1738 span[less].fDone = true; | |
| 1739 if (approximately_negative(newT - span[less].fT)) { | |
| 1740 if (approximately_greater_than_one(newT)) { | |
| 1741 span[less].fUnsortableStart = true; | |
| 1742 span[less - 1].fUnsortableEnd = true; | |
| 1743 } | |
| 1744 if (approximately_less_than_zero(span[less].fT)) { | |
| 1745 span[less + 1].fUnsortableStart = true; | |
| 1746 span[less].fUnsortableEnd = true; | |
| 1747 } | |
| 1748 } | |
| 1749 ++fDoneSpans; | |
| 1750 #else | |
| 1751 double tInterval = newT - span[less].fT; | |
| 1752 if (precisely_negative(tInterval)) { | |
| 1753 break; | |
| 1754 } | |
| 1755 if (fVerb == SkPath::kCubic_Verb) { | |
| 1756 double tMid = newT - tInterval / 2; | |
| 1757 _Point midPt; | |
| 1758 CubicXYAtT(fPts, tMid, &midPt); | |
| 1759 if (!midPt.approximatelyEqual(xyAtT(span))) { | |
| 1760 break; | |
| 1761 } | |
| 1762 } | |
| 1763 SkASSERT(span[less].fDone == span->fDone); | |
| 1764 if (span[less].fT == 0) { | |
| 1765 span->fT = newT = 0; | |
| 1766 } else { | |
| 1767 setSpanT(less, newT); | |
| 1768 } | |
| 1769 #endif | |
| 1770 --less; | |
| 1771 } | |
| 1772 int more = 1; | |
| 1773 while (fTs.end() - &span[more - 1] > 1 && xyAtT(&span[more]) == xyAtT(sp
an)) { | |
| 1774 #if 1 | |
| 1775 if (span[more - 1].fDone) { | |
| 1776 break; | |
| 1777 } | |
| 1778 double tEndInterval = span[more].fT - newT; | |
| 1779 if (precisely_negative(tEndInterval)) { | |
| 1780 break; | |
| 1781 } | |
| 1782 if (fVerb == SkPath::kCubic_Verb) { | |
| 1783 double tMid = newT - tEndInterval / 2; | |
| 1784 _Point midEndPt; | |
| 1785 CubicXYAtT(fPts, tMid, &midEndPt); | |
| 1786 if (!midEndPt.approximatelyEqual(xyAtT(span))) { | |
| 1787 break; | |
| 1788 } | |
| 1789 } | |
| 1790 span[more - 1].fTiny = true; | |
| 1791 span[more - 1].fDone = true; | |
| 1792 if (approximately_negative(span[more].fT - newT)) { | |
| 1793 if (approximately_greater_than_one(span[more].fT)) { | |
| 1794 span[more + 1].fUnsortableStart = true; | |
| 1795 span[more].fUnsortableEnd = true; | |
| 1796 } | |
| 1797 if (approximately_less_than_zero(newT)) { | |
| 1798 span[more].fUnsortableStart = true; | |
| 1799 span[more - 1].fUnsortableEnd = true; | |
| 1800 } | |
| 1801 } | |
| 1802 ++fDoneSpans; | |
| 1803 #else | |
| 1804 double tEndInterval = span[more].fT - newT; | |
| 1805 if (precisely_negative(tEndInterval)) { | |
| 1806 break; | |
| 1807 } | |
| 1808 if (fVerb == SkPath::kCubic_Verb) { | |
| 1809 double tMid = newT - tEndInterval / 2; | |
| 1810 _Point midEndPt; | |
| 1811 CubicXYAtT(fPts, tMid, &midEndPt); | |
| 1812 if (!midEndPt.approximatelyEqual(xyAtT(span))) { | |
| 1813 break; | |
| 1814 } | |
| 1815 } | |
| 1816 SkASSERT(span[more - 1].fDone == span[more].fDone); | |
| 1817 if (newT == 0) { | |
| 1818 setSpanT(more, 0); | |
| 1819 } else { | |
| 1820 span->fT = newT = span[more].fT; | |
| 1821 } | |
| 1822 #endif | |
| 1823 ++more; | |
| 1824 } | |
| 1825 return insertedAt; | |
| 1826 } | |
| 1827 | |
| 1828 // set spans from start to end to decrement by one | |
| 1829 // note this walks other backwards | |
| 1830 // FIMXE: there's probably an edge case that can be constructed where | |
| 1831 // two span in one segment are separated by float epsilon on one span but | |
| 1832 // not the other, if one segment is very small. For this | |
| 1833 // case the counts asserted below may or may not be enough to separate the | |
| 1834 // spans. Even if the counts work out, what if the spans aren't correctly | |
| 1835 // sorted? It feels better in such a case to match the span's other span | |
| 1836 // pointer since both coincident segments must contain the same spans. | |
| 1837 void addTCancel(double startT, double endT, Segment& other, | |
| 1838 double oStartT, double oEndT) { | |
| 1839 SkASSERT(!approximately_negative(endT - startT)); | |
| 1840 SkASSERT(!approximately_negative(oEndT - oStartT)); | |
| 1841 bool binary = fOperand != other.fOperand; | |
| 1842 int index = 0; | |
| 1843 while (!approximately_negative(startT - fTs[index].fT)) { | |
| 1844 ++index; | |
| 1845 } | |
| 1846 int oIndex = other.fTs.count(); | |
| 1847 while (approximately_positive(other.fTs[--oIndex].fT - oEndT)) | |
| 1848 ; | |
| 1849 double tRatio = (oEndT - oStartT) / (endT - startT); | |
| 1850 Span* test = &fTs[index]; | |
| 1851 Span* oTest = &other.fTs[oIndex]; | |
| 1852 SkTDArray<double> outsideTs; | |
| 1853 SkTDArray<double> oOutsideTs; | |
| 1854 do { | |
| 1855 bool decrement = test->fWindValue && oTest->fWindValue && !binary; | |
| 1856 bool track = test->fWindValue || oTest->fWindValue; | |
| 1857 double testT = test->fT; | |
| 1858 double oTestT = oTest->fT; | |
| 1859 Span* span = test; | |
| 1860 do { | |
| 1861 if (decrement) { | |
| 1862 decrementSpan(span); | |
| 1863 } else if (track && span->fT < 1 && oTestT < 1) { | |
| 1864 TrackOutside(outsideTs, span->fT, oTestT); | |
| 1865 } | |
| 1866 span = &fTs[++index]; | |
| 1867 } while (approximately_negative(span->fT - testT)); | |
| 1868 Span* oSpan = oTest; | |
| 1869 double otherTMatchStart = oEndT - (span->fT - startT) * tRatio; | |
| 1870 double otherTMatchEnd = oEndT - (test->fT - startT) * tRatio; | |
| 1871 SkDEBUGCODE(int originalWindValue = oSpan->fWindValue); | |
| 1872 while (approximately_negative(otherTMatchStart - oSpan->fT) | |
| 1873 && !approximately_negative(otherTMatchEnd - oSpan->fT)) { | |
| 1874 #ifdef SK_DEBUG | |
| 1875 SkASSERT(originalWindValue == oSpan->fWindValue); | |
| 1876 #endif | |
| 1877 if (decrement) { | |
| 1878 other.decrementSpan(oSpan); | |
| 1879 } else if (track && oSpan->fT < 1 && testT < 1) { | |
| 1880 TrackOutside(oOutsideTs, oSpan->fT, testT); | |
| 1881 } | |
| 1882 if (!oIndex) { | |
| 1883 break; | |
| 1884 } | |
| 1885 oSpan = &other.fTs[--oIndex]; | |
| 1886 } | |
| 1887 test = span; | |
| 1888 oTest = oSpan; | |
| 1889 } while (!approximately_negative(endT - test->fT)); | |
| 1890 SkASSERT(!oIndex || approximately_negative(oTest->fT - oStartT)); | |
| 1891 // FIXME: determine if canceled edges need outside ts added | |
| 1892 if (!done() && outsideTs.count()) { | |
| 1893 double tStart = outsideTs[0]; | |
| 1894 double oStart = outsideTs[1]; | |
| 1895 addCancelOutsides(tStart, oStart, other, oEndT); | |
| 1896 int count = outsideTs.count(); | |
| 1897 if (count > 2) { | |
| 1898 double tStart = outsideTs[count - 2]; | |
| 1899 double oStart = outsideTs[count - 1]; | |
| 1900 addCancelOutsides(tStart, oStart, other, oEndT); | |
| 1901 } | |
| 1902 } | |
| 1903 if (!other.done() && oOutsideTs.count()) { | |
| 1904 double tStart = oOutsideTs[0]; | |
| 1905 double oStart = oOutsideTs[1]; | |
| 1906 other.addCancelOutsides(tStart, oStart, *this, endT); | |
| 1907 } | |
| 1908 } | |
| 1909 | |
| 1910 int addSelfT(Segment* other, const SkPoint& pt, double& newT) { | |
| 1911 int result = addT(other, pt, newT); | |
| 1912 Span* span = &fTs[result]; | |
| 1913 span->fLoop = true; | |
| 1914 return result; | |
| 1915 } | |
| 1916 | |
| 1917 int addUnsortableT(Segment* other, bool start, const SkPoint& pt, double& ne
wT) { | |
| 1918 int result = addT(other, pt, newT); | |
| 1919 Span* span = &fTs[result]; | |
| 1920 if (start) { | |
| 1921 if (result > 0) { | |
| 1922 span[result - 1].fUnsortableEnd = true; | |
| 1923 } | |
| 1924 span[result].fUnsortableStart = true; | |
| 1925 } else { | |
| 1926 span[result].fUnsortableEnd = true; | |
| 1927 if (result + 1 < fTs.count()) { | |
| 1928 span[result + 1].fUnsortableStart = true; | |
| 1929 } | |
| 1930 } | |
| 1931 return result; | |
| 1932 } | |
| 1933 | |
| 1934 int bumpCoincidentThis(const Span* oTest, bool opp, int index, | |
| 1935 SkTDArray<double>& outsideTs) { | |
| 1936 int oWindValue = oTest->fWindValue; | |
| 1937 int oOppValue = oTest->fOppValue; | |
| 1938 if (opp) { | |
| 1939 SkTSwap<int>(oWindValue, oOppValue); | |
| 1940 } | |
| 1941 Span* const test = &fTs[index]; | |
| 1942 Span* end = test; | |
| 1943 const double oStartT = oTest->fT; | |
| 1944 do { | |
| 1945 if (bumpSpan(end, oWindValue, oOppValue)) { | |
| 1946 TrackOutside(outsideTs, end->fT, oStartT); | |
| 1947 } | |
| 1948 end = &fTs[++index]; | |
| 1949 } while (approximately_negative(end->fT - test->fT)); | |
| 1950 return index; | |
| 1951 } | |
| 1952 | |
| 1953 // because of the order in which coincidences are resolved, this and other | |
| 1954 // may not have the same intermediate points. Compute the corresponding | |
| 1955 // intermediate T values (using this as the master, other as the follower) | |
| 1956 // and walk other conditionally -- hoping that it catches up in the end | |
| 1957 int bumpCoincidentOther(const Span* test, double oEndT, int& oIndex, | |
| 1958 SkTDArray<double>& oOutsideTs) { | |
| 1959 Span* const oTest = &fTs[oIndex]; | |
| 1960 Span* oEnd = oTest; | |
| 1961 const double startT = test->fT; | |
| 1962 const double oStartT = oTest->fT; | |
| 1963 while (!approximately_negative(oEndT - oEnd->fT) | |
| 1964 && approximately_negative(oEnd->fT - oStartT)) { | |
| 1965 zeroSpan(oEnd); | |
| 1966 TrackOutside(oOutsideTs, oEnd->fT, startT); | |
| 1967 oEnd = &fTs[++oIndex]; | |
| 1968 } | |
| 1969 return oIndex; | |
| 1970 } | |
| 1971 | |
| 1972 // FIXME: need to test this case: | |
| 1973 // contourA has two segments that are coincident | |
| 1974 // contourB has two segments that are coincident in the same place | |
| 1975 // each ends up with +2/0 pairs for winding count | |
| 1976 // since logic below doesn't transfer count (only increments/decrements) can
this be | |
| 1977 // resolved to +4/0 ? | |
| 1978 | |
| 1979 // set spans from start to end to increment the greater by one and decrement | |
| 1980 // the lesser | |
| 1981 void addTCoincident(double startT, double endT, Segment& other, double oStar
tT, double oEndT) { | |
| 1982 SkASSERT(!approximately_negative(endT - startT)); | |
| 1983 SkASSERT(!approximately_negative(oEndT - oStartT)); | |
| 1984 bool opp = fOperand ^ other.fOperand; | |
| 1985 int index = 0; | |
| 1986 while (!approximately_negative(startT - fTs[index].fT)) { | |
| 1987 ++index; | |
| 1988 } | |
| 1989 int oIndex = 0; | |
| 1990 while (!approximately_negative(oStartT - other.fTs[oIndex].fT)) { | |
| 1991 ++oIndex; | |
| 1992 } | |
| 1993 Span* test = &fTs[index]; | |
| 1994 Span* oTest = &other.fTs[oIndex]; | |
| 1995 SkTDArray<double> outsideTs; | |
| 1996 SkTDArray<double> oOutsideTs; | |
| 1997 do { | |
| 1998 // if either span has an opposite value and the operands don't match
, resolve first | |
| 1999 // SkASSERT(!test->fDone || !oTest->fDone); | |
| 2000 if (test->fDone || oTest->fDone) { | |
| 2001 index = advanceCoincidentThis(oTest, opp, index); | |
| 2002 oIndex = other.advanceCoincidentOther(test, oEndT, oIndex); | |
| 2003 } else { | |
| 2004 index = bumpCoincidentThis(oTest, opp, index, outsideTs); | |
| 2005 oIndex = other.bumpCoincidentOther(test, oEndT, oIndex, oOutside
Ts); | |
| 2006 } | |
| 2007 test = &fTs[index]; | |
| 2008 oTest = &other.fTs[oIndex]; | |
| 2009 } while (!approximately_negative(endT - test->fT)); | |
| 2010 SkASSERT(approximately_negative(oTest->fT - oEndT)); | |
| 2011 SkASSERT(approximately_negative(oEndT - oTest->fT)); | |
| 2012 if (!done() && outsideTs.count()) { | |
| 2013 addCoinOutsides(outsideTs, other, oEndT); | |
| 2014 } | |
| 2015 if (!other.done() && oOutsideTs.count()) { | |
| 2016 other.addCoinOutsides(oOutsideTs, *this, endT); | |
| 2017 } | |
| 2018 } | |
| 2019 | |
| 2020 // FIXME: this doesn't prevent the same span from being added twice | |
| 2021 // fix in caller, SkASSERT here? | |
| 2022 void addTPair(double t, Segment& other, double otherT, bool borrowWind, cons
t SkPoint& pt) { | |
| 2023 int tCount = fTs.count(); | |
| 2024 for (int tIndex = 0; tIndex < tCount; ++tIndex) { | |
| 2025 const Span& span = fTs[tIndex]; | |
| 2026 if (!approximately_negative(span.fT - t)) { | |
| 2027 break; | |
| 2028 } | |
| 2029 if (approximately_negative(span.fT - t) && span.fOther == &other | |
| 2030 && approximately_equal(span.fOtherT, otherT)) { | |
| 2031 #if DEBUG_ADD_T_PAIR | |
| 2032 SkDebugf("%s addTPair duplicate this=%d %1.9g other=%d %1.9g\n", | |
| 2033 __FUNCTION__, fID, t, other.fID, otherT); | |
| 2034 #endif | |
| 2035 return; | |
| 2036 } | |
| 2037 } | |
| 2038 #if DEBUG_ADD_T_PAIR | |
| 2039 SkDebugf("%s addTPair this=%d %1.9g other=%d %1.9g\n", | |
| 2040 __FUNCTION__, fID, t, other.fID, otherT); | |
| 2041 #endif | |
| 2042 int insertedAt = addT(&other, pt, t); | |
| 2043 int otherInsertedAt = other.addT(this, pt, otherT); | |
| 2044 addOtherT(insertedAt, otherT, otherInsertedAt); | |
| 2045 other.addOtherT(otherInsertedAt, t, insertedAt); | |
| 2046 matchWindingValue(insertedAt, t, borrowWind); | |
| 2047 other.matchWindingValue(otherInsertedAt, otherT, borrowWind); | |
| 2048 } | |
| 2049 | |
| 2050 void addTwoAngles(int start, int end, SkTDArray<Angle>& angles) const { | |
| 2051 // add edge leading into junction | |
| 2052 int min = SkMin32(end, start); | |
| 2053 if (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0) { | |
| 2054 addAngle(angles, end, start); | |
| 2055 } | |
| 2056 // add edge leading away from junction | |
| 2057 int step = SkSign32(end - start); | |
| 2058 int tIndex = nextExactSpan(end, step); | |
| 2059 min = SkMin32(end, tIndex); | |
| 2060 if (tIndex >= 0 && (fTs[min].fWindValue > 0 || fTs[min].fOppValue > 0))
{ | |
| 2061 addAngle(angles, end, tIndex); | |
| 2062 } | |
| 2063 } | |
| 2064 | |
| 2065 int advanceCoincidentThis(const Span* oTest, bool opp, int index) { | |
| 2066 Span* const test = &fTs[index]; | |
| 2067 Span* end = test; | |
| 2068 do { | |
| 2069 end = &fTs[++index]; | |
| 2070 } while (approximately_negative(end->fT - test->fT)); | |
| 2071 return index; | |
| 2072 } | |
| 2073 | |
| 2074 int advanceCoincidentOther(const Span* test, double oEndT, int& oIndex) { | |
| 2075 Span* const oTest = &fTs[oIndex]; | |
| 2076 Span* oEnd = oTest; | |
| 2077 const double oStartT = oTest->fT; | |
| 2078 while (!approximately_negative(oEndT - oEnd->fT) | |
| 2079 && approximately_negative(oEnd->fT - oStartT)) { | |
| 2080 oEnd = &fTs[++oIndex]; | |
| 2081 } | |
| 2082 return oIndex; | |
| 2083 } | |
| 2084 | |
| 2085 bool betweenTs(int lesser, double testT, int greater) { | |
| 2086 if (lesser > greater) { | |
| 2087 SkTSwap<int>(lesser, greater); | |
| 2088 } | |
| 2089 return approximately_between(fTs[lesser].fT, testT, fTs[greater].fT); | |
| 2090 } | |
| 2091 | |
| 2092 const Bounds& bounds() const { | |
| 2093 return fBounds; | |
| 2094 } | |
| 2095 | |
| 2096 void buildAngles(int index, SkTDArray<Angle>& angles, bool includeOpp) const
{ | |
| 2097 double referenceT = fTs[index].fT; | |
| 2098 int lesser = index; | |
| 2099 while (--lesser >= 0 && (includeOpp || fTs[lesser].fOther->fOperand == f
Operand) | |
| 2100 && precisely_negative(referenceT - fTs[lesser].fT)) { | |
| 2101 buildAnglesInner(lesser, angles); | |
| 2102 } | |
| 2103 do { | |
| 2104 buildAnglesInner(index, angles); | |
| 2105 } while (++index < fTs.count() && (includeOpp || fTs[index].fOther->fOpe
rand == fOperand) | |
| 2106 && precisely_negative(fTs[index].fT - referenceT)); | |
| 2107 } | |
| 2108 | |
| 2109 void buildAnglesInner(int index, SkTDArray<Angle>& angles) const { | |
| 2110 const Span* span = &fTs[index]; | |
| 2111 Segment* other = span->fOther; | |
| 2112 // if there is only one live crossing, and no coincidence, continue | |
| 2113 // in the same direction | |
| 2114 // if there is coincidence, the only choice may be to reverse direction | |
| 2115 // find edge on either side of intersection | |
| 2116 int oIndex = span->fOtherIndex; | |
| 2117 // if done == -1, prior span has already been processed | |
| 2118 int step = 1; | |
| 2119 int next = other->nextExactSpan(oIndex, step); | |
| 2120 if (next < 0) { | |
| 2121 step = -step; | |
| 2122 next = other->nextExactSpan(oIndex, step); | |
| 2123 } | |
| 2124 // add candidate into and away from junction | |
| 2125 other->addTwoAngles(next, oIndex, angles); | |
| 2126 } | |
| 2127 | |
| 2128 int computeSum(int startIndex, int endIndex, bool binary) { | |
| 2129 SkTDArray<Angle> angles; | |
| 2130 addTwoAngles(startIndex, endIndex, angles); | |
| 2131 buildAngles(endIndex, angles, false); | |
| 2132 // OPTIMIZATION: check all angles to see if any have computed wind sum | |
| 2133 // before sorting (early exit if none) | |
| 2134 SkTDArray<Angle*> sorted; | |
| 2135 bool sortable = SortAngles(angles, sorted); | |
| 2136 #if DEBUG_SORT | |
| 2137 sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); | |
| 2138 #endif | |
| 2139 if (!sortable) { | |
| 2140 return SK_MinS32; | |
| 2141 } | |
| 2142 int angleCount = angles.count(); | |
| 2143 const Angle* angle; | |
| 2144 const Segment* base; | |
| 2145 int winding; | |
| 2146 int oWinding; | |
| 2147 int firstIndex = 0; | |
| 2148 do { | |
| 2149 angle = sorted[firstIndex]; | |
| 2150 base = angle->segment(); | |
| 2151 winding = base->windSum(angle); | |
| 2152 if (winding != SK_MinS32) { | |
| 2153 oWinding = base->oppSum(angle); | |
| 2154 break; | |
| 2155 } | |
| 2156 if (++firstIndex == angleCount) { | |
| 2157 return SK_MinS32; | |
| 2158 } | |
| 2159 } while (true); | |
| 2160 // turn winding into contourWinding | |
| 2161 int spanWinding = base->spanSign(angle); | |
| 2162 bool inner = useInnerWinding(winding + spanWinding, winding); | |
| 2163 #if DEBUG_WINDING | |
| 2164 SkDebugf("%s spanWinding=%d winding=%d sign=%d inner=%d result=%d\n", __
FUNCTION__, | |
| 2165 spanWinding, winding, angle->sign(), inner, | |
| 2166 inner ? winding + spanWinding : winding); | |
| 2167 #endif | |
| 2168 if (inner) { | |
| 2169 winding += spanWinding; | |
| 2170 } | |
| 2171 #if DEBUG_SORT | |
| 2172 base->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, oWinding)
; | |
| 2173 #endif | |
| 2174 int nextIndex = firstIndex + 1; | |
| 2175 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | |
| 2176 winding -= base->spanSign(angle); | |
| 2177 oWinding -= base->oppSign(angle); | |
| 2178 do { | |
| 2179 if (nextIndex == angleCount) { | |
| 2180 nextIndex = 0; | |
| 2181 } | |
| 2182 angle = sorted[nextIndex]; | |
| 2183 Segment* segment = angle->segment(); | |
| 2184 bool opp = base->fOperand ^ segment->fOperand; | |
| 2185 int maxWinding, oMaxWinding; | |
| 2186 int spanSign = segment->spanSign(angle); | |
| 2187 int oppoSign = segment->oppSign(angle); | |
| 2188 if (opp) { | |
| 2189 oMaxWinding = oWinding; | |
| 2190 oWinding -= spanSign; | |
| 2191 maxWinding = winding; | |
| 2192 if (oppoSign) { | |
| 2193 winding -= oppoSign; | |
| 2194 } | |
| 2195 } else { | |
| 2196 maxWinding = winding; | |
| 2197 winding -= spanSign; | |
| 2198 oMaxWinding = oWinding; | |
| 2199 if (oppoSign) { | |
| 2200 oWinding -= oppoSign; | |
| 2201 } | |
| 2202 } | |
| 2203 if (segment->windSum(angle) == SK_MinS32) { | |
| 2204 if (opp) { | |
| 2205 if (useInnerWinding(oMaxWinding, oWinding)) { | |
| 2206 oMaxWinding = oWinding; | |
| 2207 } | |
| 2208 if (oppoSign && useInnerWinding(maxWinding, winding)) { | |
| 2209 maxWinding = winding; | |
| 2210 } | |
| 2211 (void) segment->markAndChaseWinding(angle, oMaxWinding, maxW
inding); | |
| 2212 } else { | |
| 2213 if (useInnerWinding(maxWinding, winding)) { | |
| 2214 maxWinding = winding; | |
| 2215 } | |
| 2216 if (oppoSign && useInnerWinding(oMaxWinding, oWinding)) { | |
| 2217 oMaxWinding = oWinding; | |
| 2218 } | |
| 2219 (void) segment->markAndChaseWinding(angle, maxWinding, | |
| 2220 binary ? oMaxWinding : 0); | |
| 2221 } | |
| 2222 } | |
| 2223 } while (++nextIndex != lastIndex); | |
| 2224 int minIndex = SkMin32(startIndex, endIndex); | |
| 2225 return windSum(minIndex); | |
| 2226 } | |
| 2227 | |
| 2228 int crossedSpanY(const SkPoint& basePt, SkScalar& bestY, double& hitT, bool&
hitSomething, | |
| 2229 double mid, bool opp, bool current) const { | |
| 2230 SkScalar bottom = fBounds.fBottom; | |
| 2231 int bestTIndex = -1; | |
| 2232 if (bottom <= bestY) { | |
| 2233 return bestTIndex; | |
| 2234 } | |
| 2235 SkScalar top = fBounds.fTop; | |
| 2236 if (top >= basePt.fY) { | |
| 2237 return bestTIndex; | |
| 2238 } | |
| 2239 if (fBounds.fLeft > basePt.fX) { | |
| 2240 return bestTIndex; | |
| 2241 } | |
| 2242 if (fBounds.fRight < basePt.fX) { | |
| 2243 return bestTIndex; | |
| 2244 } | |
| 2245 if (fBounds.fLeft == fBounds.fRight) { | |
| 2246 // if vertical, and directly above test point, wait for another one | |
| 2247 return AlmostEqualUlps(basePt.fX, fBounds.fLeft) ? SK_MinS32 : bestT
Index; | |
| 2248 } | |
| 2249 // intersect ray starting at basePt with edge | |
| 2250 Intersections intersections; | |
| 2251 // OPTIMIZE: use specialty function that intersects ray with curve, | |
| 2252 // returning t values only for curve (we don't care about t on ray) | |
| 2253 int pts = (*VSegmentIntersect[fVerb])(fPts, top, bottom, basePt.fX, fals
e, intersections); | |
| 2254 if (pts == 0 || (current && pts == 1)) { | |
| 2255 return bestTIndex; | |
| 2256 } | |
| 2257 if (current) { | |
| 2258 SkASSERT(pts > 1); | |
| 2259 int closestIdx = 0; | |
| 2260 double closest = fabs(intersections.fT[0][0] - mid); | |
| 2261 for (int idx = 1; idx < pts; ++idx) { | |
| 2262 double test = fabs(intersections.fT[0][idx] - mid); | |
| 2263 if (closest > test) { | |
| 2264 closestIdx = idx; | |
| 2265 closest = test; | |
| 2266 } | |
| 2267 } | |
| 2268 if (closestIdx < pts - 1) { | |
| 2269 intersections.fT[0][closestIdx] = intersections.fT[0][pts - 1]; | |
| 2270 } | |
| 2271 --pts; | |
| 2272 } | |
| 2273 double bestT = -1; | |
| 2274 for (int index = 0; index < pts; ++index) { | |
| 2275 double foundT = intersections.fT[0][index]; | |
| 2276 if (approximately_less_than_zero(foundT) | |
| 2277 || approximately_greater_than_one(foundT)) { | |
| 2278 continue; | |
| 2279 } | |
| 2280 SkScalar testY = (*SegmentYAtT[fVerb])(fPts, foundT); | |
| 2281 if (approximately_negative(testY - bestY) | |
| 2282 || approximately_negative(basePt.fY - testY)) { | |
| 2283 continue; | |
| 2284 } | |
| 2285 if (pts > 1 && fVerb == SkPath::kLine_Verb) { | |
| 2286 return SK_MinS32; // if the intersection is edge on, wait for an
other one | |
| 2287 } | |
| 2288 if (fVerb > SkPath::kLine_Verb) { | |
| 2289 SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, foundT); | |
| 2290 if (approximately_zero(dx)) { | |
| 2291 return SK_MinS32; // hit vertical, wait for another one | |
| 2292 } | |
| 2293 } | |
| 2294 bestY = testY; | |
| 2295 bestT = foundT; | |
| 2296 } | |
| 2297 if (bestT < 0) { | |
| 2298 return bestTIndex; | |
| 2299 } | |
| 2300 SkASSERT(bestT >= 0); | |
| 2301 SkASSERT(bestT <= 1); | |
| 2302 int start; | |
| 2303 int end = 0; | |
| 2304 do { | |
| 2305 start = end; | |
| 2306 end = nextSpan(start, 1); | |
| 2307 } while (fTs[end].fT < bestT); | |
| 2308 // FIXME: see next candidate for a better pattern to find the next start
/end pair | |
| 2309 while (start + 1 < end && fTs[start].fDone) { | |
| 2310 ++start; | |
| 2311 } | |
| 2312 if (!isCanceled(start)) { | |
| 2313 hitT = bestT; | |
| 2314 bestTIndex = start; | |
| 2315 hitSomething = true; | |
| 2316 } | |
| 2317 return bestTIndex; | |
| 2318 } | |
| 2319 | |
| 2320 void decrementSpan(Span* span) { | |
| 2321 SkASSERT(span->fWindValue > 0); | |
| 2322 if (--(span->fWindValue) == 0) { | |
| 2323 if (!span->fOppValue && !span->fDone) { | |
| 2324 span->fDone = true; | |
| 2325 ++fDoneSpans; | |
| 2326 } | |
| 2327 } | |
| 2328 } | |
| 2329 | |
| 2330 bool bumpSpan(Span* span, int windDelta, int oppDelta) { | |
| 2331 SkASSERT(!span->fDone); | |
| 2332 span->fWindValue += windDelta; | |
| 2333 SkASSERT(span->fWindValue >= 0); | |
| 2334 span->fOppValue += oppDelta; | |
| 2335 SkASSERT(span->fOppValue >= 0); | |
| 2336 if (fXor) { | |
| 2337 span->fWindValue &= 1; | |
| 2338 } | |
| 2339 if (fOppXor) { | |
| 2340 span->fOppValue &= 1; | |
| 2341 } | |
| 2342 if (!span->fWindValue && !span->fOppValue) { | |
| 2343 span->fDone = true; | |
| 2344 ++fDoneSpans; | |
| 2345 return true; | |
| 2346 } | |
| 2347 return false; | |
| 2348 } | |
| 2349 | |
| 2350 // OPTIMIZE | |
| 2351 // when the edges are initially walked, they don't automatically get the pri
or and next | |
| 2352 // edges assigned to positions t=0 and t=1. Doing that would remove the need
for this check, | |
| 2353 // and would additionally remove the need for similar checks in condition ed
ges. It would | |
| 2354 // also allow intersection code to assume end of segment intersections (mayb
e?) | |
| 2355 bool complete() const { | |
| 2356 int count = fTs.count(); | |
| 2357 return count > 1 && fTs[0].fT == 0 && fTs[--count].fT == 1; | |
| 2358 } | |
| 2359 | |
| 2360 bool done() const { | |
| 2361 SkASSERT(fDoneSpans <= fTs.count()); | |
| 2362 return fDoneSpans == fTs.count(); | |
| 2363 } | |
| 2364 | |
| 2365 bool done(int min) const { | |
| 2366 return fTs[min].fDone; | |
| 2367 } | |
| 2368 | |
| 2369 bool done(const Angle* angle) const { | |
| 2370 return done(SkMin32(angle->start(), angle->end())); | |
| 2371 } | |
| 2372 | |
| 2373 SkVector dxdy(int index) const { | |
| 2374 return (*SegmentDXDYAtT[fVerb])(fPts, fTs[index].fT); | |
| 2375 } | |
| 2376 | |
| 2377 SkScalar dy(int index) const { | |
| 2378 return (*SegmentDYAtT[fVerb])(fPts, fTs[index].fT); | |
| 2379 } | |
| 2380 | |
| 2381 bool equalPoints(int greaterTIndex, int lesserTIndex) { | |
| 2382 SkASSERT(greaterTIndex >= lesserTIndex); | |
| 2383 double greaterT = fTs[greaterTIndex].fT; | |
| 2384 double lesserT = fTs[lesserTIndex].fT; | |
| 2385 if (greaterT == lesserT) { | |
| 2386 return true; | |
| 2387 } | |
| 2388 if (!approximately_negative(greaterT - lesserT)) { | |
| 2389 return false; | |
| 2390 } | |
| 2391 return xyAtT(greaterTIndex) == xyAtT(lesserTIndex); | |
| 2392 } | |
| 2393 | |
| 2394 /* | |
| 2395 The M and S variable name parts stand for the operators. | |
| 2396 Mi stands for Minuend (see wiki subtraction, analogous to difference) | |
| 2397 Su stands for Subtrahend | |
| 2398 The Opp variable name part designates that the value is for the Opposite op
erator. | |
| 2399 Opposite values result from combining coincident spans. | |
| 2400 */ | |
| 2401 | |
| 2402 Segment* findNextOp(SkTDArray<Span*>& chase, int& nextStart, int& nextEnd, | |
| 2403 bool& unsortable, ShapeOp op, const int xorMiMask, const int xorSuMa
sk) { | |
| 2404 const int startIndex = nextStart; | |
| 2405 const int endIndex = nextEnd; | |
| 2406 SkASSERT(startIndex != endIndex); | |
| 2407 const int count = fTs.count(); | |
| 2408 SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0
); | |
| 2409 const int step = SkSign32(endIndex - startIndex); | |
| 2410 const int end = nextExactSpan(startIndex, step); | |
| 2411 SkASSERT(end >= 0); | |
| 2412 Span* endSpan = &fTs[end]; | |
| 2413 Segment* other; | |
| 2414 if (isSimple(end)) { | |
| 2415 // mark the smaller of startIndex, endIndex done, and all adjacent | |
| 2416 // spans with the same T value (but not 'other' spans) | |
| 2417 #if DEBUG_WINDING | |
| 2418 SkDebugf("%s simple\n", __FUNCTION__); | |
| 2419 #endif | |
| 2420 int min = SkMin32(startIndex, endIndex); | |
| 2421 if (fTs[min].fDone) { | |
| 2422 return NULL; | |
| 2423 } | |
| 2424 markDoneBinary(min); | |
| 2425 other = endSpan->fOther; | |
| 2426 nextStart = endSpan->fOtherIndex; | |
| 2427 double startT = other->fTs[nextStart].fT; | |
| 2428 nextEnd = nextStart; | |
| 2429 do { | |
| 2430 nextEnd += step; | |
| 2431 } | |
| 2432 while (precisely_zero(startT - other->fTs[nextEnd].fT)); | |
| 2433 SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); | |
| 2434 return other; | |
| 2435 } | |
| 2436 // more than one viable candidate -- measure angles to find best | |
| 2437 SkTDArray<Angle> angles; | |
| 2438 SkASSERT(startIndex - endIndex != 0); | |
| 2439 SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); | |
| 2440 addTwoAngles(startIndex, end, angles); | |
| 2441 buildAngles(end, angles, true); | |
| 2442 SkTDArray<Angle*> sorted; | |
| 2443 bool sortable = SortAngles(angles, sorted); | |
| 2444 int angleCount = angles.count(); | |
| 2445 int firstIndex = findStartingEdge(sorted, startIndex, end); | |
| 2446 SkASSERT(firstIndex >= 0); | |
| 2447 #if DEBUG_SORT | |
| 2448 debugShowSort(__FUNCTION__, sorted, firstIndex); | |
| 2449 #endif | |
| 2450 if (!sortable) { | |
| 2451 unsortable = true; | |
| 2452 return NULL; | |
| 2453 } | |
| 2454 SkASSERT(sorted[firstIndex]->segment() == this); | |
| 2455 #if DEBUG_WINDING | |
| 2456 SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, | |
| 2457 sorted[firstIndex]->sign()); | |
| 2458 #endif | |
| 2459 int sumMiWinding = updateWinding(endIndex, startIndex); | |
| 2460 int sumSuWinding = updateOppWinding(endIndex, startIndex); | |
| 2461 if (operand()) { | |
| 2462 SkTSwap<int>(sumMiWinding, sumSuWinding); | |
| 2463 } | |
| 2464 int nextIndex = firstIndex + 1; | |
| 2465 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | |
| 2466 const Angle* foundAngle = NULL; | |
| 2467 bool foundDone = false; | |
| 2468 // iterate through the angle, and compute everyone's winding | |
| 2469 Segment* nextSegment; | |
| 2470 int activeCount = 0; | |
| 2471 do { | |
| 2472 SkASSERT(nextIndex != firstIndex); | |
| 2473 if (nextIndex == angleCount) { | |
| 2474 nextIndex = 0; | |
| 2475 } | |
| 2476 const Angle* nextAngle = sorted[nextIndex]; | |
| 2477 nextSegment = nextAngle->segment(); | |
| 2478 int maxWinding, sumWinding, oppMaxWinding, oppSumWinding; | |
| 2479 bool activeAngle = nextSegment->activeOp(xorMiMask, xorSuMask, nextA
ngle->start(), | |
| 2480 nextAngle->end(), op, sumMiWinding, sumSuWinding, | |
| 2481 maxWinding, sumWinding, oppMaxWinding, oppSumWinding); | |
| 2482 if (activeAngle) { | |
| 2483 ++activeCount; | |
| 2484 if (!foundAngle || (foundDone && activeCount & 1)) { | |
| 2485 if (nextSegment->tiny(nextAngle)) { | |
| 2486 unsortable = true; | |
| 2487 return NULL; | |
| 2488 } | |
| 2489 foundAngle = nextAngle; | |
| 2490 foundDone = nextSegment->done(nextAngle) && !nextSegment->ti
ny(nextAngle); | |
| 2491 } | |
| 2492 } | |
| 2493 if (nextSegment->done()) { | |
| 2494 continue; | |
| 2495 } | |
| 2496 if (nextSegment->windSum(nextAngle) != SK_MinS32) { | |
| 2497 continue; | |
| 2498 } | |
| 2499 Span* last = nextSegment->markAngle(maxWinding, sumWinding, oppMaxWi
nding, | |
| 2500 oppSumWinding, activeAngle, nextAngle); | |
| 2501 if (last) { | |
| 2502 *chase.append() = last; | |
| 2503 #if DEBUG_WINDING | |
| 2504 SkDebugf("%s chase.append id=%d\n", __FUNCTION__, | |
| 2505 last->fOther->fTs[last->fOtherIndex].fOther->debugID()); | |
| 2506 #endif | |
| 2507 } | |
| 2508 } while (++nextIndex != lastIndex); | |
| 2509 markDoneBinary(SkMin32(startIndex, endIndex)); | |
| 2510 if (!foundAngle) { | |
| 2511 return NULL; | |
| 2512 } | |
| 2513 nextStart = foundAngle->start(); | |
| 2514 nextEnd = foundAngle->end(); | |
| 2515 nextSegment = foundAngle->segment(); | |
| 2516 | |
| 2517 #if DEBUG_WINDING | |
| 2518 SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", | |
| 2519 __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, next
End); | |
| 2520 #endif | |
| 2521 return nextSegment; | |
| 2522 } | |
| 2523 | |
| 2524 Segment* findNextWinding(SkTDArray<Span*>& chase, int& nextStart, int& nextE
nd, | |
| 2525 bool& unsortable) { | |
| 2526 const int startIndex = nextStart; | |
| 2527 const int endIndex = nextEnd; | |
| 2528 SkASSERT(startIndex != endIndex); | |
| 2529 const int count = fTs.count(); | |
| 2530 SkASSERT(startIndex < endIndex ? startIndex < count - 1 : startIndex > 0
); | |
| 2531 const int step = SkSign32(endIndex - startIndex); | |
| 2532 const int end = nextExactSpan(startIndex, step); | |
| 2533 SkASSERT(end >= 0); | |
| 2534 Span* endSpan = &fTs[end]; | |
| 2535 Segment* other; | |
| 2536 if (isSimple(end)) { | |
| 2537 // mark the smaller of startIndex, endIndex done, and all adjacent | |
| 2538 // spans with the same T value (but not 'other' spans) | |
| 2539 #if DEBUG_WINDING | |
| 2540 SkDebugf("%s simple\n", __FUNCTION__); | |
| 2541 #endif | |
| 2542 int min = SkMin32(startIndex, endIndex); | |
| 2543 if (fTs[min].fDone) { | |
| 2544 return NULL; | |
| 2545 } | |
| 2546 markDoneUnary(min); | |
| 2547 other = endSpan->fOther; | |
| 2548 nextStart = endSpan->fOtherIndex; | |
| 2549 double startT = other->fTs[nextStart].fT; | |
| 2550 nextEnd = nextStart; | |
| 2551 do { | |
| 2552 nextEnd += step; | |
| 2553 } | |
| 2554 while (precisely_zero(startT - other->fTs[nextEnd].fT)); | |
| 2555 SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); | |
| 2556 return other; | |
| 2557 } | |
| 2558 // more than one viable candidate -- measure angles to find best | |
| 2559 SkTDArray<Angle> angles; | |
| 2560 SkASSERT(startIndex - endIndex != 0); | |
| 2561 SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); | |
| 2562 addTwoAngles(startIndex, end, angles); | |
| 2563 buildAngles(end, angles, true); | |
| 2564 SkTDArray<Angle*> sorted; | |
| 2565 bool sortable = SortAngles(angles, sorted); | |
| 2566 int angleCount = angles.count(); | |
| 2567 int firstIndex = findStartingEdge(sorted, startIndex, end); | |
| 2568 SkASSERT(firstIndex >= 0); | |
| 2569 #if DEBUG_SORT | |
| 2570 debugShowSort(__FUNCTION__, sorted, firstIndex); | |
| 2571 #endif | |
| 2572 if (!sortable) { | |
| 2573 unsortable = true; | |
| 2574 return NULL; | |
| 2575 } | |
| 2576 SkASSERT(sorted[firstIndex]->segment() == this); | |
| 2577 #if DEBUG_WINDING | |
| 2578 SkDebugf("%s firstIndex=[%d] sign=%d\n", __FUNCTION__, firstIndex, | |
| 2579 sorted[firstIndex]->sign()); | |
| 2580 #endif | |
| 2581 int sumWinding = updateWinding(endIndex, startIndex); | |
| 2582 int nextIndex = firstIndex + 1; | |
| 2583 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | |
| 2584 const Angle* foundAngle = NULL; | |
| 2585 bool foundDone = false; | |
| 2586 // iterate through the angle, and compute everyone's winding | |
| 2587 Segment* nextSegment; | |
| 2588 int activeCount = 0; | |
| 2589 do { | |
| 2590 SkASSERT(nextIndex != firstIndex); | |
| 2591 if (nextIndex == angleCount) { | |
| 2592 nextIndex = 0; | |
| 2593 } | |
| 2594 const Angle* nextAngle = sorted[nextIndex]; | |
| 2595 nextSegment = nextAngle->segment(); | |
| 2596 int maxWinding; | |
| 2597 bool activeAngle = nextSegment->activeWinding(nextAngle->start(), ne
xtAngle->end(), | |
| 2598 maxWinding, sumWinding); | |
| 2599 if (activeAngle) { | |
| 2600 ++activeCount; | |
| 2601 if (!foundAngle || (foundDone && activeCount & 1)) { | |
| 2602 if (nextSegment->tiny(nextAngle)) { | |
| 2603 unsortable = true; | |
| 2604 return NULL; | |
| 2605 } | |
| 2606 foundAngle = nextAngle; | |
| 2607 foundDone = nextSegment->done(nextAngle); | |
| 2608 } | |
| 2609 } | |
| 2610 if (nextSegment->done()) { | |
| 2611 continue; | |
| 2612 } | |
| 2613 if (nextSegment->windSum(nextAngle) != SK_MinS32) { | |
| 2614 continue; | |
| 2615 } | |
| 2616 Span* last = nextSegment->markAngle(maxWinding, sumWinding, activeAn
gle, nextAngle); | |
| 2617 if (last) { | |
| 2618 *chase.append() = last; | |
| 2619 #if DEBUG_WINDING | |
| 2620 SkDebugf("%s chase.append id=%d\n", __FUNCTION__, | |
| 2621 last->fOther->fTs[last->fOtherIndex].fOther->debugID()); | |
| 2622 #endif | |
| 2623 } | |
| 2624 } while (++nextIndex != lastIndex); | |
| 2625 markDoneUnary(SkMin32(startIndex, endIndex)); | |
| 2626 if (!foundAngle) { | |
| 2627 return NULL; | |
| 2628 } | |
| 2629 nextStart = foundAngle->start(); | |
| 2630 nextEnd = foundAngle->end(); | |
| 2631 nextSegment = foundAngle->segment(); | |
| 2632 #if DEBUG_WINDING | |
| 2633 SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", | |
| 2634 __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, next
End); | |
| 2635 #endif | |
| 2636 return nextSegment; | |
| 2637 } | |
| 2638 | |
| 2639 Segment* findNextXor(int& nextStart, int& nextEnd, bool& unsortable) { | |
| 2640 const int startIndex = nextStart; | |
| 2641 const int endIndex = nextEnd; | |
| 2642 SkASSERT(startIndex != endIndex); | |
| 2643 int count = fTs.count(); | |
| 2644 SkASSERT(startIndex < endIndex ? startIndex < count - 1 | |
| 2645 : startIndex > 0); | |
| 2646 int step = SkSign32(endIndex - startIndex); | |
| 2647 int end = nextExactSpan(startIndex, step); | |
| 2648 SkASSERT(end >= 0); | |
| 2649 Span* endSpan = &fTs[end]; | |
| 2650 Segment* other; | |
| 2651 if (isSimple(end)) { | |
| 2652 #if DEBUG_WINDING | |
| 2653 SkDebugf("%s simple\n", __FUNCTION__); | |
| 2654 #endif | |
| 2655 int min = SkMin32(startIndex, endIndex); | |
| 2656 if (fTs[min].fDone) { | |
| 2657 return NULL; | |
| 2658 } | |
| 2659 markDone(min, 1); | |
| 2660 other = endSpan->fOther; | |
| 2661 nextStart = endSpan->fOtherIndex; | |
| 2662 double startT = other->fTs[nextStart].fT; | |
| 2663 #if 01 // FIXME: I don't know why the logic here is difference from the
winding case | |
| 2664 SkDEBUGCODE(bool firstLoop = true;) | |
| 2665 if ((approximately_less_than_zero(startT) && step < 0) | |
| 2666 || (approximately_greater_than_one(startT) && step > 0)) { | |
| 2667 step = -step; | |
| 2668 SkDEBUGCODE(firstLoop = false;) | |
| 2669 } | |
| 2670 do { | |
| 2671 #endif | |
| 2672 nextEnd = nextStart; | |
| 2673 do { | |
| 2674 nextEnd += step; | |
| 2675 } | |
| 2676 while (precisely_zero(startT - other->fTs[nextEnd].fT)); | |
| 2677 #if 01 | |
| 2678 if (other->fTs[SkMin32(nextStart, nextEnd)].fWindValue) { | |
| 2679 break; | |
| 2680 } | |
| 2681 #ifdef SK_DEBUG | |
| 2682 SkASSERT(firstLoop); | |
| 2683 #endif | |
| 2684 SkDEBUGCODE(firstLoop = false;) | |
| 2685 step = -step; | |
| 2686 } while (true); | |
| 2687 #endif | |
| 2688 SkASSERT(step < 0 ? nextEnd >= 0 : nextEnd < other->fTs.count()); | |
| 2689 return other; | |
| 2690 } | |
| 2691 SkTDArray<Angle> angles; | |
| 2692 SkASSERT(startIndex - endIndex != 0); | |
| 2693 SkASSERT((startIndex - endIndex < 0) ^ (step < 0)); | |
| 2694 addTwoAngles(startIndex, end, angles); | |
| 2695 buildAngles(end, angles, false); | |
| 2696 SkTDArray<Angle*> sorted; | |
| 2697 bool sortable = SortAngles(angles, sorted); | |
| 2698 if (!sortable) { | |
| 2699 unsortable = true; | |
| 2700 #if DEBUG_SORT | |
| 2701 debugShowSort(__FUNCTION__, sorted, findStartingEdge(sorted, startIn
dex, end), 0, 0); | |
| 2702 #endif | |
| 2703 return NULL; | |
| 2704 } | |
| 2705 int angleCount = angles.count(); | |
| 2706 int firstIndex = findStartingEdge(sorted, startIndex, end); | |
| 2707 SkASSERT(firstIndex >= 0); | |
| 2708 #if DEBUG_SORT | |
| 2709 debugShowSort(__FUNCTION__, sorted, firstIndex, 0, 0); | |
| 2710 #endif | |
| 2711 SkASSERT(sorted[firstIndex]->segment() == this); | |
| 2712 int nextIndex = firstIndex + 1; | |
| 2713 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | |
| 2714 const Angle* foundAngle = NULL; | |
| 2715 bool foundDone = false; | |
| 2716 Segment* nextSegment; | |
| 2717 int activeCount = 0; | |
| 2718 do { | |
| 2719 SkASSERT(nextIndex != firstIndex); | |
| 2720 if (nextIndex == angleCount) { | |
| 2721 nextIndex = 0; | |
| 2722 } | |
| 2723 const Angle* nextAngle = sorted[nextIndex]; | |
| 2724 nextSegment = nextAngle->segment(); | |
| 2725 ++activeCount; | |
| 2726 if (!foundAngle || (foundDone && activeCount & 1)) { | |
| 2727 if (nextSegment->tiny(nextAngle)) { | |
| 2728 unsortable = true; | |
| 2729 return NULL; | |
| 2730 } | |
| 2731 foundAngle = nextAngle; | |
| 2732 foundDone = nextSegment->done(nextAngle); | |
| 2733 } | |
| 2734 if (nextSegment->done()) { | |
| 2735 continue; | |
| 2736 } | |
| 2737 } while (++nextIndex != lastIndex); | |
| 2738 markDone(SkMin32(startIndex, endIndex), 1); | |
| 2739 if (!foundAngle) { | |
| 2740 return NULL; | |
| 2741 } | |
| 2742 nextStart = foundAngle->start(); | |
| 2743 nextEnd = foundAngle->end(); | |
| 2744 nextSegment = foundAngle->segment(); | |
| 2745 #if DEBUG_WINDING | |
| 2746 SkDebugf("%s from:[%d] to:[%d] start=%d end=%d\n", | |
| 2747 __FUNCTION__, debugID(), nextSegment->debugID(), nextStart, next
End); | |
| 2748 #endif | |
| 2749 return nextSegment; | |
| 2750 } | |
| 2751 | |
| 2752 int findStartingEdge(SkTDArray<Angle*>& sorted, int start, int end) { | |
| 2753 int angleCount = sorted.count(); | |
| 2754 int firstIndex = -1; | |
| 2755 for (int angleIndex = 0; angleIndex < angleCount; ++angleIndex) { | |
| 2756 const Angle* angle = sorted[angleIndex]; | |
| 2757 if (angle->segment() == this && angle->start() == end && | |
| 2758 angle->end() == start) { | |
| 2759 firstIndex = angleIndex; | |
| 2760 break; | |
| 2761 } | |
| 2762 } | |
| 2763 return firstIndex; | |
| 2764 } | |
| 2765 | |
| 2766 // FIXME: this is tricky code; needs its own unit test | |
| 2767 // note that fOtherIndex isn't computed yet, so it can't be used here | |
| 2768 void findTooCloseToCall() { | |
| 2769 int count = fTs.count(); | |
| 2770 if (count < 3) { // require t=0, x, 1 at minimum | |
| 2771 return; | |
| 2772 } | |
| 2773 int matchIndex = 0; | |
| 2774 int moCount; | |
| 2775 Span* match; | |
| 2776 Segment* mOther; | |
| 2777 do { | |
| 2778 match = &fTs[matchIndex]; | |
| 2779 mOther = match->fOther; | |
| 2780 // FIXME: allow quads, cubics to be near coincident? | |
| 2781 if (mOther->fVerb == SkPath::kLine_Verb) { | |
| 2782 moCount = mOther->fTs.count(); | |
| 2783 if (moCount >= 3) { | |
| 2784 break; | |
| 2785 } | |
| 2786 } | |
| 2787 if (++matchIndex >= count) { | |
| 2788 return; | |
| 2789 } | |
| 2790 } while (true); // require t=0, x, 1 at minimum | |
| 2791 // OPTIMIZATION: defer matchPt until qualifying toCount is found? | |
| 2792 const SkPoint* matchPt = &xyAtT(match); | |
| 2793 // look for a pair of nearby T values that map to the same (x,y) value | |
| 2794 // if found, see if the pair of other segments share a common point. If | |
| 2795 // so, the span from here to there is coincident. | |
| 2796 for (int index = matchIndex + 1; index < count; ++index) { | |
| 2797 Span* test = &fTs[index]; | |
| 2798 if (test->fDone) { | |
| 2799 continue; | |
| 2800 } | |
| 2801 Segment* tOther = test->fOther; | |
| 2802 if (tOther->fVerb != SkPath::kLine_Verb) { | |
| 2803 continue; // FIXME: allow quads, cubics to be near coincident? | |
| 2804 } | |
| 2805 int toCount = tOther->fTs.count(); | |
| 2806 if (toCount < 3) { // require t=0, x, 1 at minimum | |
| 2807 continue; | |
| 2808 } | |
| 2809 const SkPoint* testPt = &xyAtT(test); | |
| 2810 if (*matchPt != *testPt) { | |
| 2811 matchIndex = index; | |
| 2812 moCount = toCount; | |
| 2813 match = test; | |
| 2814 mOther = tOther; | |
| 2815 matchPt = testPt; | |
| 2816 continue; | |
| 2817 } | |
| 2818 int moStart = -1; | |
| 2819 int moEnd = -1; | |
| 2820 double moStartT, moEndT; | |
| 2821 for (int moIndex = 0; moIndex < moCount; ++moIndex) { | |
| 2822 Span& moSpan = mOther->fTs[moIndex]; | |
| 2823 if (moSpan.fDone) { | |
| 2824 continue; | |
| 2825 } | |
| 2826 if (moSpan.fOther == this) { | |
| 2827 if (moSpan.fOtherT == match->fT) { | |
| 2828 moStart = moIndex; | |
| 2829 moStartT = moSpan.fT; | |
| 2830 } | |
| 2831 continue; | |
| 2832 } | |
| 2833 if (moSpan.fOther == tOther) { | |
| 2834 if (tOther->windValueAt(moSpan.fOtherT) == 0) { | |
| 2835 moStart = -1; | |
| 2836 break; | |
| 2837 } | |
| 2838 SkASSERT(moEnd == -1); | |
| 2839 moEnd = moIndex; | |
| 2840 moEndT = moSpan.fT; | |
| 2841 } | |
| 2842 } | |
| 2843 if (moStart < 0 || moEnd < 0) { | |
| 2844 continue; | |
| 2845 } | |
| 2846 // FIXME: if moStartT, moEndT are initialized to NaN, can skip this
test | |
| 2847 if (approximately_equal(moStartT, moEndT)) { | |
| 2848 continue; | |
| 2849 } | |
| 2850 int toStart = -1; | |
| 2851 int toEnd = -1; | |
| 2852 double toStartT, toEndT; | |
| 2853 for (int toIndex = 0; toIndex < toCount; ++toIndex) { | |
| 2854 Span& toSpan = tOther->fTs[toIndex]; | |
| 2855 if (toSpan.fDone) { | |
| 2856 continue; | |
| 2857 } | |
| 2858 if (toSpan.fOther == this) { | |
| 2859 if (toSpan.fOtherT == test->fT) { | |
| 2860 toStart = toIndex; | |
| 2861 toStartT = toSpan.fT; | |
| 2862 } | |
| 2863 continue; | |
| 2864 } | |
| 2865 if (toSpan.fOther == mOther && toSpan.fOtherT == moEndT) { | |
| 2866 if (mOther->windValueAt(toSpan.fOtherT) == 0) { | |
| 2867 moStart = -1; | |
| 2868 break; | |
| 2869 } | |
| 2870 SkASSERT(toEnd == -1); | |
| 2871 toEnd = toIndex; | |
| 2872 toEndT = toSpan.fT; | |
| 2873 } | |
| 2874 } | |
| 2875 // FIXME: if toStartT, toEndT are initialized to NaN, can skip this
test | |
| 2876 if (toStart <= 0 || toEnd <= 0) { | |
| 2877 continue; | |
| 2878 } | |
| 2879 if (approximately_equal(toStartT, toEndT)) { | |
| 2880 continue; | |
| 2881 } | |
| 2882 // test to see if the segment between there and here is linear | |
| 2883 if (!mOther->isLinear(moStart, moEnd) | |
| 2884 || !tOther->isLinear(toStart, toEnd)) { | |
| 2885 continue; | |
| 2886 } | |
| 2887 bool flipped = (moStart - moEnd) * (toStart - toEnd) < 1; | |
| 2888 if (flipped) { | |
| 2889 mOther->addTCancel(moStartT, moEndT, *tOther, toEndT, toStartT); | |
| 2890 } else { | |
| 2891 mOther->addTCoincident(moStartT, moEndT, *tOther, toStartT, toEn
dT); | |
| 2892 } | |
| 2893 } | |
| 2894 } | |
| 2895 | |
| 2896 // FIXME: either: | |
| 2897 // a) mark spans with either end unsortable as done, or | |
| 2898 // b) rewrite findTop / findTopSegment / findTopContour to iterate further | |
| 2899 // when encountering an unsortable span | |
| 2900 | |
| 2901 // OPTIMIZATION : for a pair of lines, can we compute points at T (cached) | |
| 2902 // and use more concise logic like the old edge walker code? | |
| 2903 // FIXME: this needs to deal with coincident edges | |
| 2904 Segment* findTop(int& tIndex, int& endIndex, bool& unsortable, bool onlySort
able) { | |
| 2905 // iterate through T intersections and return topmost | |
| 2906 // topmost tangent from y-min to first pt is closer to horizontal | |
| 2907 SkASSERT(!done()); | |
| 2908 int firstT = -1; | |
| 2909 /* SkPoint topPt = */ activeLeftTop(onlySortable, &firstT); | |
| 2910 if (firstT < 0) { | |
| 2911 unsortable = true; | |
| 2912 firstT = 0; | |
| 2913 while (fTs[firstT].fDone) { | |
| 2914 SkASSERT(firstT < fTs.count()); | |
| 2915 ++firstT; | |
| 2916 } | |
| 2917 tIndex = firstT; | |
| 2918 endIndex = nextExactSpan(firstT, 1); | |
| 2919 return this; | |
| 2920 } | |
| 2921 // sort the edges to find the leftmost | |
| 2922 int step = 1; | |
| 2923 int end = nextSpan(firstT, step); | |
| 2924 if (end == -1) { | |
| 2925 step = -1; | |
| 2926 end = nextSpan(firstT, step); | |
| 2927 SkASSERT(end != -1); | |
| 2928 } | |
| 2929 // if the topmost T is not on end, or is three-way or more, find left | |
| 2930 // look for left-ness from tLeft to firstT (matching y of other) | |
| 2931 SkTDArray<Angle> angles; | |
| 2932 SkASSERT(firstT - end != 0); | |
| 2933 addTwoAngles(end, firstT, angles); | |
| 2934 buildAngles(firstT, angles, true); | |
| 2935 SkTDArray<Angle*> sorted; | |
| 2936 bool sortable = SortAngles(angles, sorted); | |
| 2937 int first = SK_MaxS32; | |
| 2938 SkScalar top = SK_ScalarMax; | |
| 2939 int count = sorted.count(); | |
| 2940 for (int index = 0; index < count; ++index) { | |
| 2941 const Angle* angle = sorted[index]; | |
| 2942 Segment* next = angle->segment(); | |
| 2943 Bounds bounds; | |
| 2944 next->subDivideBounds(angle->end(), angle->start(), bounds); | |
| 2945 if (approximately_greater(top, bounds.fTop)) { | |
| 2946 top = bounds.fTop; | |
| 2947 first = index; | |
| 2948 } | |
| 2949 } | |
| 2950 SkASSERT(first < SK_MaxS32); | |
| 2951 #if DEBUG_SORT // || DEBUG_SWAP_TOP | |
| 2952 sorted[first]->segment()->debugShowSort(__FUNCTION__, sorted, first, 0,
0); | |
| 2953 #endif | |
| 2954 if (onlySortable && !sortable) { | |
| 2955 unsortable = true; | |
| 2956 return NULL; | |
| 2957 } | |
| 2958 // skip edges that have already been processed | |
| 2959 firstT = first - 1; | |
| 2960 Segment* leftSegment; | |
| 2961 do { | |
| 2962 if (++firstT == count) { | |
| 2963 firstT = 0; | |
| 2964 } | |
| 2965 const Angle* angle = sorted[firstT]; | |
| 2966 SkASSERT(!onlySortable || !angle->unsortable()); | |
| 2967 leftSegment = angle->segment(); | |
| 2968 tIndex = angle->end(); | |
| 2969 endIndex = angle->start(); | |
| 2970 } while (leftSegment->fTs[SkMin32(tIndex, endIndex)].fDone); | |
| 2971 if (leftSegment->verb() >= SkPath::kQuad_Verb) { | |
| 2972 if (!leftSegment->clockwise(tIndex, endIndex)) { | |
| 2973 bool swap = leftSegment->verb() == SkPath::kQuad_Verb | |
| 2974 || (!leftSegment->monotonic_in_y(tIndex, endIndex) | |
| 2975 && !leftSegment->serpentine(tIndex, endIndex)); | |
| 2976 #if DEBUG_SWAP_TOP | |
| 2977 SkDebugf("%s swap=%d serpentine=%d controls_contained_by_ends=%d
\n", __FUNCTION__, | |
| 2978 swap, | |
| 2979 leftSegment->serpentine(tIndex, endIndex), | |
| 2980 leftSegment->controls_contained_by_ends(tIndex, endIndex
), | |
| 2981 leftSegment->monotonic_in_y(tIndex, endIndex)); | |
| 2982 #endif | |
| 2983 if (swap) { | |
| 2984 // FIXME: I doubt it makes sense to (necessarily) swap if the edge was n
ot the first | |
| 2985 // sorted but merely the first not already processed (i.e., not done) | |
| 2986 SkTSwap(tIndex, endIndex); | |
| 2987 } | |
| 2988 } | |
| 2989 } | |
| 2990 SkASSERT(!leftSegment->fTs[SkMin32(tIndex, endIndex)].fTiny); | |
| 2991 return leftSegment; | |
| 2992 } | |
| 2993 | |
| 2994 // FIXME: not crazy about this | |
| 2995 // when the intersections are performed, the other index is into an | |
| 2996 // incomplete array. As the array grows, the indices become incorrect | |
| 2997 // while the following fixes the indices up again, it isn't smart about | |
| 2998 // skipping segments whose indices are already correct | |
| 2999 // assuming we leave the code that wrote the index in the first place | |
| 3000 void fixOtherTIndex() { | |
| 3001 int iCount = fTs.count(); | |
| 3002 for (int i = 0; i < iCount; ++i) { | |
| 3003 Span& iSpan = fTs[i]; | |
| 3004 double oT = iSpan.fOtherT; | |
| 3005 Segment* other = iSpan.fOther; | |
| 3006 int oCount = other->fTs.count(); | |
| 3007 for (int o = 0; o < oCount; ++o) { | |
| 3008 Span& oSpan = other->fTs[o]; | |
| 3009 if (oT == oSpan.fT && this == oSpan.fOther && oSpan.fOtherT == i
Span.fT) { | |
| 3010 iSpan.fOtherIndex = o; | |
| 3011 break; | |
| 3012 } | |
| 3013 } | |
| 3014 } | |
| 3015 } | |
| 3016 | |
| 3017 void init(const SkPoint pts[], SkPath::Verb verb, bool operand, bool evenOdd
) { | |
| 3018 fDoneSpans = 0; | |
| 3019 fOperand = operand; | |
| 3020 fXor = evenOdd; | |
| 3021 fPts = pts; | |
| 3022 fVerb = verb; | |
| 3023 } | |
| 3024 | |
| 3025 void initWinding(int start, int end) { | |
| 3026 int local = spanSign(start, end); | |
| 3027 int oppLocal = oppSign(start, end); | |
| 3028 (void) markAndChaseWinding(start, end, local, oppLocal); | |
| 3029 // OPTIMIZATION: the reverse mark and chase could skip the first marking | |
| 3030 (void) markAndChaseWinding(end, start, local, oppLocal); | |
| 3031 } | |
| 3032 | |
| 3033 void initWinding(int start, int end, int winding, int oppWinding) { | |
| 3034 int local = spanSign(start, end); | |
| 3035 if (local * winding >= 0) { | |
| 3036 winding += local; | |
| 3037 } | |
| 3038 int oppLocal = oppSign(start, end); | |
| 3039 if (oppLocal * oppWinding >= 0) { | |
| 3040 oppWinding += oppLocal; | |
| 3041 } | |
| 3042 (void) markAndChaseWinding(start, end, winding, oppWinding); | |
| 3043 } | |
| 3044 | |
| 3045 /* | |
| 3046 when we start with a vertical intersect, we try to use the dx to determine if th
e edge is to | |
| 3047 the left or the right of vertical. This determines if we need to add the span's | |
| 3048 sign or not. However, this isn't enough. | |
| 3049 If the supplied sign (winding) is zero, then we didn't hit another vertical span
, so dx is needed. | |
| 3050 If there was a winding, then it may or may not need adjusting. If the span the w
inding was borrowed | |
| 3051 from has the same x direction as this span, the winding should change. If the dx
is opposite, then | |
| 3052 the same winding is shared by both. | |
| 3053 */ | |
| 3054 void initWinding(int start, int end, double tHit, int winding, SkScalar hitD
x, int oppWind, | |
| 3055 SkScalar hitOppDx) { | |
| 3056 SkASSERT(hitDx || !winding); | |
| 3057 SkScalar dx = (*SegmentDXAtT[fVerb])(fPts, tHit); | |
| 3058 SkASSERT(dx); | |
| 3059 int windVal = windValue(SkMin32(start, end)); | |
| 3060 #if DEBUG_WINDING_AT_T | |
| 3061 SkDebugf("%s oldWinding=%d hitDx=%c dx=%c windVal=%d", __FUNCTION__, win
ding, | |
| 3062 hitDx ? hitDx > 0 ? '+' : '-' : '0', dx > 0 ? '+' : '-', windVal
); | |
| 3063 #endif | |
| 3064 if (!winding) { | |
| 3065 winding = dx < 0 ? windVal : -windVal; | |
| 3066 } else if (winding * dx < 0) { | |
| 3067 int sideWind = winding + (dx < 0 ? windVal : -windVal); | |
| 3068 if (abs(winding) < abs(sideWind)) { | |
| 3069 winding = sideWind; | |
| 3070 } | |
| 3071 } | |
| 3072 #if DEBUG_WINDING_AT_T | |
| 3073 SkDebugf(" winding=%d\n", winding); | |
| 3074 #endif | |
| 3075 int oppLocal = oppSign(start, end); | |
| 3076 SkASSERT(hitOppDx || !oppWind || !oppLocal); | |
| 3077 int oppWindVal = oppValue(SkMin32(start, end)); | |
| 3078 if (!oppWind) { | |
| 3079 oppWind = dx < 0 ? oppWindVal : -oppWindVal; | |
| 3080 } else if (hitOppDx * dx >= 0) { | |
| 3081 int oppSideWind = oppWind + (dx < 0 ? oppWindVal : -oppWindVal); | |
| 3082 if (abs(oppWind) < abs(oppSideWind)) { | |
| 3083 oppWind = oppSideWind; | |
| 3084 } | |
| 3085 } | |
| 3086 (void) markAndChaseWinding(start, end, winding, oppWind); | |
| 3087 } | |
| 3088 | |
| 3089 bool intersected() const { | |
| 3090 return fTs.count() > 0; | |
| 3091 } | |
| 3092 | |
| 3093 bool isCanceled(int tIndex) const { | |
| 3094 return fTs[tIndex].fWindValue == 0 && fTs[tIndex].fOppValue == 0; | |
| 3095 } | |
| 3096 | |
| 3097 bool isConnected(int startIndex, int endIndex) const { | |
| 3098 return fTs[startIndex].fWindSum != SK_MinS32 | |
| 3099 || fTs[endIndex].fWindSum != SK_MinS32; | |
| 3100 } | |
| 3101 | |
| 3102 bool isHorizontal() const { | |
| 3103 return fBounds.fTop == fBounds.fBottom; | |
| 3104 } | |
| 3105 | |
| 3106 bool isLinear(int start, int end) const { | |
| 3107 if (fVerb == SkPath::kLine_Verb) { | |
| 3108 return true; | |
| 3109 } | |
| 3110 if (fVerb == SkPath::kQuad_Verb) { | |
| 3111 SkPoint qPart[3]; | |
| 3112 QuadSubDivide(fPts, fTs[start].fT, fTs[end].fT, qPart); | |
| 3113 return QuadIsLinear(qPart); | |
| 3114 } else { | |
| 3115 SkASSERT(fVerb == SkPath::kCubic_Verb); | |
| 3116 SkPoint cPart[4]; | |
| 3117 CubicSubDivide(fPts, fTs[start].fT, fTs[end].fT, cPart); | |
| 3118 return CubicIsLinear(cPart); | |
| 3119 } | |
| 3120 } | |
| 3121 | |
| 3122 // OPTIMIZE: successive calls could start were the last leaves off | |
| 3123 // or calls could specialize to walk forwards or backwards | |
| 3124 bool isMissing(double startT) const { | |
| 3125 size_t tCount = fTs.count(); | |
| 3126 for (size_t index = 0; index < tCount; ++index) { | |
| 3127 if (approximately_zero(startT - fTs[index].fT)) { | |
| 3128 return false; | |
| 3129 } | |
| 3130 } | |
| 3131 return true; | |
| 3132 } | |
| 3133 | |
| 3134 bool isSimple(int end) const { | |
| 3135 int count = fTs.count(); | |
| 3136 if (count == 2) { | |
| 3137 return true; | |
| 3138 } | |
| 3139 double t = fTs[end].fT; | |
| 3140 if (approximately_less_than_zero(t)) { | |
| 3141 return !approximately_less_than_zero(fTs[1].fT); | |
| 3142 } | |
| 3143 if (approximately_greater_than_one(t)) { | |
| 3144 return !approximately_greater_than_one(fTs[count - 2].fT); | |
| 3145 } | |
| 3146 return false; | |
| 3147 } | |
| 3148 | |
| 3149 bool isVertical() const { | |
| 3150 return fBounds.fLeft == fBounds.fRight; | |
| 3151 } | |
| 3152 | |
| 3153 bool isVertical(int start, int end) const { | |
| 3154 return (*SegmentVertical[fVerb])(fPts, start, end); | |
| 3155 } | |
| 3156 | |
| 3157 SkScalar leftMost(int start, int end) const { | |
| 3158 return (*SegmentLeftMost[fVerb])(fPts, fTs[start].fT, fTs[end].fT); | |
| 3159 } | |
| 3160 | |
| 3161 // this span is excluded by the winding rule -- chase the ends | |
| 3162 // as long as they are unambiguous to mark connections as done | |
| 3163 // and give them the same winding value | |
| 3164 Span* markAndChaseDone(const Angle* angle, int winding) { | |
| 3165 int index = angle->start(); | |
| 3166 int endIndex = angle->end(); | |
| 3167 return markAndChaseDone(index, endIndex, winding); | |
| 3168 } | |
| 3169 | |
| 3170 Span* markAndChaseDone(int index, int endIndex, int winding) { | |
| 3171 int step = SkSign32(endIndex - index); | |
| 3172 int min = SkMin32(index, endIndex); | |
| 3173 markDone(min, winding); | |
| 3174 Span* last; | |
| 3175 Segment* other = this; | |
| 3176 while ((other = other->nextChase(index, step, min, last))) { | |
| 3177 other->markDone(min, winding); | |
| 3178 } | |
| 3179 return last; | |
| 3180 } | |
| 3181 | |
| 3182 Span* markAndChaseDoneBinary(const Angle* angle, int winding, int oppWinding
) { | |
| 3183 int index = angle->start(); | |
| 3184 int endIndex = angle->end(); | |
| 3185 int step = SkSign32(endIndex - index); | |
| 3186 int min = SkMin32(index, endIndex); | |
| 3187 markDoneBinary(min, winding, oppWinding); | |
| 3188 Span* last; | |
| 3189 Segment* other = this; | |
| 3190 while ((other = other->nextChase(index, step, min, last))) { | |
| 3191 other->markDoneBinary(min, winding, oppWinding); | |
| 3192 } | |
| 3193 return last; | |
| 3194 } | |
| 3195 | |
| 3196 Span* markAndChaseDoneBinary(int index, int endIndex) { | |
| 3197 int step = SkSign32(endIndex - index); | |
| 3198 int min = SkMin32(index, endIndex); | |
| 3199 markDoneBinary(min); | |
| 3200 Span* last; | |
| 3201 Segment* other = this; | |
| 3202 while ((other = other->nextChase(index, step, min, last))) { | |
| 3203 if (other->done()) { | |
| 3204 return NULL; | |
| 3205 } | |
| 3206 other->markDoneBinary(min); | |
| 3207 } | |
| 3208 return last; | |
| 3209 } | |
| 3210 | |
| 3211 Span* markAndChaseDoneUnary(int index, int endIndex) { | |
| 3212 int step = SkSign32(endIndex - index); | |
| 3213 int min = SkMin32(index, endIndex); | |
| 3214 markDoneUnary(min); | |
| 3215 Span* last; | |
| 3216 Segment* other = this; | |
| 3217 while ((other = other->nextChase(index, step, min, last))) { | |
| 3218 if (other->done()) { | |
| 3219 return NULL; | |
| 3220 } | |
| 3221 other->markDoneUnary(min); | |
| 3222 } | |
| 3223 return last; | |
| 3224 } | |
| 3225 | |
| 3226 Span* markAndChaseDoneUnary(const Angle* angle, int winding) { | |
| 3227 int index = angle->start(); | |
| 3228 int endIndex = angle->end(); | |
| 3229 return markAndChaseDone(index, endIndex, winding); | |
| 3230 } | |
| 3231 | |
| 3232 Span* markAndChaseWinding(const Angle* angle, const int winding) { | |
| 3233 int index = angle->start(); | |
| 3234 int endIndex = angle->end(); | |
| 3235 int step = SkSign32(endIndex - index); | |
| 3236 int min = SkMin32(index, endIndex); | |
| 3237 markWinding(min, winding); | |
| 3238 Span* last; | |
| 3239 Segment* other = this; | |
| 3240 while ((other = other->nextChase(index, step, min, last))) { | |
| 3241 if (other->fTs[min].fWindSum != SK_MinS32) { | |
| 3242 SkASSERT(other->fTs[min].fWindSum == winding); | |
| 3243 return NULL; | |
| 3244 } | |
| 3245 other->markWinding(min, winding); | |
| 3246 } | |
| 3247 return last; | |
| 3248 } | |
| 3249 | |
| 3250 Span* markAndChaseWinding(int index, int endIndex, int winding, int oppWindi
ng) { | |
| 3251 int min = SkMin32(index, endIndex); | |
| 3252 int step = SkSign32(endIndex - index); | |
| 3253 markWinding(min, winding, oppWinding); | |
| 3254 Span* last; | |
| 3255 Segment* other = this; | |
| 3256 while ((other = other->nextChase(index, step, min, last))) { | |
| 3257 if (other->fTs[min].fWindSum != SK_MinS32) { | |
| 3258 SkASSERT(other->fTs[min].fWindSum == winding || other->fTs[min].
fLoop); | |
| 3259 return NULL; | |
| 3260 } | |
| 3261 other->markWinding(min, winding, oppWinding); | |
| 3262 } | |
| 3263 return last; | |
| 3264 } | |
| 3265 | |
| 3266 Span* markAndChaseWinding(const Angle* angle, int winding, int oppWinding) { | |
| 3267 int start = angle->start(); | |
| 3268 int end = angle->end(); | |
| 3269 return markAndChaseWinding(start, end, winding, oppWinding); | |
| 3270 } | |
| 3271 | |
| 3272 Span* markAngle(int maxWinding, int sumWinding, bool activeAngle, const Angl
e* angle) { | |
| 3273 SkASSERT(angle->segment() == this); | |
| 3274 if (useInnerWinding(maxWinding, sumWinding)) { | |
| 3275 maxWinding = sumWinding; | |
| 3276 } | |
| 3277 Span* last; | |
| 3278 if (activeAngle) { | |
| 3279 last = markAndChaseWinding(angle, maxWinding); | |
| 3280 } else { | |
| 3281 last = markAndChaseDoneUnary(angle, maxWinding); | |
| 3282 } | |
| 3283 return last; | |
| 3284 } | |
| 3285 | |
| 3286 Span* markAngle(int maxWinding, int sumWinding, int oppMaxWinding, int oppSu
mWinding, | |
| 3287 bool activeAngle, const Angle* angle) { | |
| 3288 SkASSERT(angle->segment() == this); | |
| 3289 if (useInnerWinding(maxWinding, sumWinding)) { | |
| 3290 maxWinding = sumWinding; | |
| 3291 } | |
| 3292 if (oppMaxWinding != oppSumWinding && useInnerWinding(oppMaxWinding, opp
SumWinding)) { | |
| 3293 oppMaxWinding = oppSumWinding; | |
| 3294 } | |
| 3295 Span* last; | |
| 3296 if (activeAngle) { | |
| 3297 last = markAndChaseWinding(angle, maxWinding, oppMaxWinding); | |
| 3298 } else { | |
| 3299 last = markAndChaseDoneBinary(angle, maxWinding, oppMaxWinding); | |
| 3300 } | |
| 3301 return last; | |
| 3302 } | |
| 3303 | |
| 3304 // FIXME: this should also mark spans with equal (x,y) | |
| 3305 // This may be called when the segment is already marked done. While this | |
| 3306 // wastes time, it shouldn't do any more than spin through the T spans. | |
| 3307 // OPTIMIZATION: abort on first done found (assuming that this code is | |
| 3308 // always called to mark segments done). | |
| 3309 void markDone(int index, int winding) { | |
| 3310 // SkASSERT(!done()); | |
| 3311 SkASSERT(winding); | |
| 3312 double referenceT = fTs[index].fT; | |
| 3313 int lesser = index; | |
| 3314 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT))
{ | |
| 3315 markOneDone(__FUNCTION__, lesser, winding); | |
| 3316 } | |
| 3317 do { | |
| 3318 markOneDone(__FUNCTION__, index, winding); | |
| 3319 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - ref
erenceT)); | |
| 3320 } | |
| 3321 | |
| 3322 void markDoneBinary(int index, int winding, int oppWinding) { | |
| 3323 // SkASSERT(!done()); | |
| 3324 SkASSERT(winding || oppWinding); | |
| 3325 double referenceT = fTs[index].fT; | |
| 3326 int lesser = index; | |
| 3327 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT))
{ | |
| 3328 markOneDoneBinary(__FUNCTION__, lesser, winding, oppWinding); | |
| 3329 } | |
| 3330 do { | |
| 3331 markOneDoneBinary(__FUNCTION__, index, winding, oppWinding); | |
| 3332 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - ref
erenceT)); | |
| 3333 } | |
| 3334 | |
| 3335 void markDoneBinary(int index) { | |
| 3336 double referenceT = fTs[index].fT; | |
| 3337 int lesser = index; | |
| 3338 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT))
{ | |
| 3339 markOneDoneBinary(__FUNCTION__, lesser); | |
| 3340 } | |
| 3341 do { | |
| 3342 markOneDoneBinary(__FUNCTION__, index); | |
| 3343 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - ref
erenceT)); | |
| 3344 } | |
| 3345 | |
| 3346 void markDoneUnary(int index, int winding) { | |
| 3347 // SkASSERT(!done()); | |
| 3348 SkASSERT(winding); | |
| 3349 double referenceT = fTs[index].fT; | |
| 3350 int lesser = index; | |
| 3351 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT))
{ | |
| 3352 markOneDoneUnary(__FUNCTION__, lesser, winding); | |
| 3353 } | |
| 3354 do { | |
| 3355 markOneDoneUnary(__FUNCTION__, index, winding); | |
| 3356 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - ref
erenceT)); | |
| 3357 } | |
| 3358 | |
| 3359 void markDoneUnary(int index) { | |
| 3360 double referenceT = fTs[index].fT; | |
| 3361 int lesser = index; | |
| 3362 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT))
{ | |
| 3363 markOneDoneUnary(__FUNCTION__, lesser); | |
| 3364 } | |
| 3365 do { | |
| 3366 markOneDoneUnary(__FUNCTION__, index); | |
| 3367 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - ref
erenceT)); | |
| 3368 } | |
| 3369 | |
| 3370 void markOneDone(const char* funName, int tIndex, int winding) { | |
| 3371 Span* span = markOneWinding(funName, tIndex, winding); | |
| 3372 if (!span) { | |
| 3373 return; | |
| 3374 } | |
| 3375 span->fDone = true; | |
| 3376 fDoneSpans++; | |
| 3377 } | |
| 3378 | |
| 3379 void markOneDoneBinary(const char* funName, int tIndex) { | |
| 3380 Span* span = verifyOneWinding(funName, tIndex); | |
| 3381 if (!span) { | |
| 3382 return; | |
| 3383 } | |
| 3384 span->fDone = true; | |
| 3385 fDoneSpans++; | |
| 3386 } | |
| 3387 | |
| 3388 void markOneDoneBinary(const char* funName, int tIndex, int winding, int opp
Winding) { | |
| 3389 Span* span = markOneWinding(funName, tIndex, winding, oppWinding); | |
| 3390 if (!span) { | |
| 3391 return; | |
| 3392 } | |
| 3393 span->fDone = true; | |
| 3394 fDoneSpans++; | |
| 3395 } | |
| 3396 | |
| 3397 void markOneDoneUnary(const char* funName, int tIndex) { | |
| 3398 Span* span = verifyOneWindingU(funName, tIndex); | |
| 3399 if (!span) { | |
| 3400 return; | |
| 3401 } | |
| 3402 span->fDone = true; | |
| 3403 fDoneSpans++; | |
| 3404 } | |
| 3405 | |
| 3406 void markOneDoneUnary(const char* funName, int tIndex, int winding) { | |
| 3407 Span* span = markOneWinding(funName, tIndex, winding); | |
| 3408 if (!span) { | |
| 3409 return; | |
| 3410 } | |
| 3411 span->fDone = true; | |
| 3412 fDoneSpans++; | |
| 3413 } | |
| 3414 | |
| 3415 Span* markOneWinding(const char* funName, int tIndex, int winding) { | |
| 3416 Span& span = fTs[tIndex]; | |
| 3417 if (span.fDone) { | |
| 3418 return NULL; | |
| 3419 } | |
| 3420 #if DEBUG_MARK_DONE | |
| 3421 debugShowNewWinding(funName, span, winding); | |
| 3422 #endif | |
| 3423 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); | |
| 3424 #ifdef SK_DEBUG | |
| 3425 SkASSERT(abs(winding) <= gDebugMaxWindSum); | |
| 3426 #endif | |
| 3427 span.fWindSum = winding; | |
| 3428 return &span; | |
| 3429 } | |
| 3430 | |
| 3431 Span* markOneWinding(const char* funName, int tIndex, int winding, int oppWi
nding) { | |
| 3432 Span& span = fTs[tIndex]; | |
| 3433 if (span.fDone) { | |
| 3434 return NULL; | |
| 3435 } | |
| 3436 #if DEBUG_MARK_DONE | |
| 3437 debugShowNewWinding(funName, span, winding, oppWinding); | |
| 3438 #endif | |
| 3439 SkASSERT(span.fWindSum == SK_MinS32 || span.fWindSum == winding); | |
| 3440 #ifdef SK_DEBUG | |
| 3441 SkASSERT(abs(winding) <= gDebugMaxWindSum); | |
| 3442 #endif | |
| 3443 span.fWindSum = winding; | |
| 3444 SkASSERT(span.fOppSum == SK_MinS32 || span.fOppSum == oppWinding); | |
| 3445 #ifdef SK_DEBUG | |
| 3446 SkASSERT(abs(oppWinding) <= gDebugMaxWindSum); | |
| 3447 #endif | |
| 3448 span.fOppSum = oppWinding; | |
| 3449 return &span; | |
| 3450 } | |
| 3451 | |
| 3452 bool controls_contained_by_ends(int tStart, int tEnd) const { | |
| 3453 if (fVerb != SkPath::kCubic_Verb) { | |
| 3454 return false; | |
| 3455 } | |
| 3456 MAKE_CONST_CUBIC(aCubic, fPts); | |
| 3457 Cubic dst; | |
| 3458 sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); | |
| 3459 return ::controls_contained_by_ends(dst); | |
| 3460 } | |
| 3461 | |
| 3462 // from http://stackoverflow.com/questions/1165647/how-to-determine-if-a-lis
t-of-polygon-points-are-in-clockwise-order | |
| 3463 bool clockwise(int tStart, int tEnd) const { | |
| 3464 SkASSERT(fVerb != SkPath::kLine_Verb); | |
| 3465 SkPoint edge[4]; | |
| 3466 subDivide(tStart, tEnd, edge); | |
| 3467 double sum = (edge[0].fX - edge[fVerb].fX) * (edge[0].fY + edge[fVerb].f
Y); | |
| 3468 if (fVerb == SkPath::kCubic_Verb) { | |
| 3469 SkScalar lesser = SkTMin(edge[0].fY, edge[3].fY); | |
| 3470 if (edge[1].fY < lesser && edge[2].fY < lesser) { | |
| 3471 _Line tangent1 = { {edge[0].fX, edge[0].fY}, {edge[1].fX, edge[1
].fY} }; | |
| 3472 _Line tangent2 = { {edge[2].fX, edge[2].fY}, {edge[3].fX, edge[3
].fY} }; | |
| 3473 if (testIntersect(tangent1, tangent2)) { | |
| 3474 SkPoint topPt = CubicTop(fPts, fTs[tStart].fT, fTs[tEnd].fT)
; | |
| 3475 sum += (topPt.fX - edge[0].fX) * (topPt.fY + edge[0].fY); | |
| 3476 sum += (edge[3].fX - topPt.fX) * (edge[3].fY + topPt.fY); | |
| 3477 return sum <= 0; | |
| 3478 } | |
| 3479 } | |
| 3480 } | |
| 3481 for (int idx = 0; idx < fVerb; ++idx){ | |
| 3482 sum += (edge[idx + 1].fX - edge[idx].fX) * (edge[idx + 1].fY + edge[
idx].fY); | |
| 3483 } | |
| 3484 return sum <= 0; | |
| 3485 } | |
| 3486 | |
| 3487 bool monotonic_in_y(int tStart, int tEnd) const { | |
| 3488 if (fVerb != SkPath::kCubic_Verb) { | |
| 3489 return false; | |
| 3490 } | |
| 3491 MAKE_CONST_CUBIC(aCubic, fPts); | |
| 3492 Cubic dst; | |
| 3493 sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); | |
| 3494 return ::monotonic_in_y(dst); | |
| 3495 } | |
| 3496 | |
| 3497 bool serpentine(int tStart, int tEnd) const { | |
| 3498 if (fVerb != SkPath::kCubic_Verb) { | |
| 3499 return false; | |
| 3500 } | |
| 3501 MAKE_CONST_CUBIC(aCubic, fPts); | |
| 3502 Cubic dst; | |
| 3503 sub_divide(aCubic, fTs[tStart].fT, fTs[tEnd].fT, dst); | |
| 3504 return ::serpentine(dst); | |
| 3505 } | |
| 3506 | |
| 3507 Span* verifyOneWinding(const char* funName, int tIndex) { | |
| 3508 Span& span = fTs[tIndex]; | |
| 3509 if (span.fDone) { | |
| 3510 return NULL; | |
| 3511 } | |
| 3512 #if DEBUG_MARK_DONE | |
| 3513 debugShowNewWinding(funName, span, span.fWindSum, span.fOppSum); | |
| 3514 #endif | |
| 3515 SkASSERT(span.fWindSum != SK_MinS32); | |
| 3516 SkASSERT(span.fOppSum != SK_MinS32); | |
| 3517 return &span; | |
| 3518 } | |
| 3519 | |
| 3520 Span* verifyOneWindingU(const char* funName, int tIndex) { | |
| 3521 Span& span = fTs[tIndex]; | |
| 3522 if (span.fDone) { | |
| 3523 return NULL; | |
| 3524 } | |
| 3525 #if DEBUG_MARK_DONE | |
| 3526 debugShowNewWinding(funName, span, span.fWindSum); | |
| 3527 #endif | |
| 3528 SkASSERT(span.fWindSum != SK_MinS32); | |
| 3529 return &span; | |
| 3530 } | |
| 3531 | |
| 3532 // note that just because a span has one end that is unsortable, that's | |
| 3533 // not enough to mark it done. The other end may be sortable, allowing the | |
| 3534 // span to be added. | |
| 3535 // FIXME: if abs(start - end) > 1, mark intermediates as unsortable on both
ends | |
| 3536 void markUnsortable(int start, int end) { | |
| 3537 Span* span = &fTs[start]; | |
| 3538 if (start < end) { | |
| 3539 #if DEBUG_UNSORTABLE | |
| 3540 debugShowNewWinding(__FUNCTION__, *span, 0); | |
| 3541 #endif | |
| 3542 span->fUnsortableStart = true; | |
| 3543 } else { | |
| 3544 --span; | |
| 3545 #if DEBUG_UNSORTABLE | |
| 3546 debugShowNewWinding(__FUNCTION__, *span, 0); | |
| 3547 #endif | |
| 3548 span->fUnsortableEnd = true; | |
| 3549 } | |
| 3550 if (!span->fUnsortableStart || !span->fUnsortableEnd || span->fDone) { | |
| 3551 return; | |
| 3552 } | |
| 3553 span->fDone = true; | |
| 3554 fDoneSpans++; | |
| 3555 } | |
| 3556 | |
| 3557 void markWinding(int index, int winding) { | |
| 3558 // SkASSERT(!done()); | |
| 3559 SkASSERT(winding); | |
| 3560 double referenceT = fTs[index].fT; | |
| 3561 int lesser = index; | |
| 3562 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT))
{ | |
| 3563 markOneWinding(__FUNCTION__, lesser, winding); | |
| 3564 } | |
| 3565 do { | |
| 3566 markOneWinding(__FUNCTION__, index, winding); | |
| 3567 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - refe
renceT)); | |
| 3568 } | |
| 3569 | |
| 3570 void markWinding(int index, int winding, int oppWinding) { | |
| 3571 // SkASSERT(!done()); | |
| 3572 SkASSERT(winding || oppWinding); | |
| 3573 double referenceT = fTs[index].fT; | |
| 3574 int lesser = index; | |
| 3575 while (--lesser >= 0 && precisely_negative(referenceT - fTs[lesser].fT))
{ | |
| 3576 markOneWinding(__FUNCTION__, lesser, winding, oppWinding); | |
| 3577 } | |
| 3578 do { | |
| 3579 markOneWinding(__FUNCTION__, index, winding, oppWinding); | |
| 3580 } while (++index < fTs.count() && precisely_negative(fTs[index].fT - refe
renceT)); | |
| 3581 } | |
| 3582 | |
| 3583 void matchWindingValue(int tIndex, double t, bool borrowWind) { | |
| 3584 int nextDoorWind = SK_MaxS32; | |
| 3585 int nextOppWind = SK_MaxS32; | |
| 3586 if (tIndex > 0) { | |
| 3587 const Span& below = fTs[tIndex - 1]; | |
| 3588 if (approximately_negative(t - below.fT)) { | |
| 3589 nextDoorWind = below.fWindValue; | |
| 3590 nextOppWind = below.fOppValue; | |
| 3591 } | |
| 3592 } | |
| 3593 if (nextDoorWind == SK_MaxS32 && tIndex + 1 < fTs.count()) { | |
| 3594 const Span& above = fTs[tIndex + 1]; | |
| 3595 if (approximately_negative(above.fT - t)) { | |
| 3596 nextDoorWind = above.fWindValue; | |
| 3597 nextOppWind = above.fOppValue; | |
| 3598 } | |
| 3599 } | |
| 3600 if (nextDoorWind == SK_MaxS32 && borrowWind && tIndex > 0 && t < 1) { | |
| 3601 const Span& below = fTs[tIndex - 1]; | |
| 3602 nextDoorWind = below.fWindValue; | |
| 3603 nextOppWind = below.fOppValue; | |
| 3604 } | |
| 3605 if (nextDoorWind != SK_MaxS32) { | |
| 3606 Span& newSpan = fTs[tIndex]; | |
| 3607 newSpan.fWindValue = nextDoorWind; | |
| 3608 newSpan.fOppValue = nextOppWind; | |
| 3609 if (!nextDoorWind && !nextOppWind && !newSpan.fDone) { | |
| 3610 newSpan.fDone = true; | |
| 3611 ++fDoneSpans; | |
| 3612 } | |
| 3613 } | |
| 3614 } | |
| 3615 | |
| 3616 bool moreHorizontal(int index, int endIndex, bool& unsortable) const { | |
| 3617 // find bounds | |
| 3618 Bounds bounds; | |
| 3619 bounds.setPoint(xyAtT(index)); | |
| 3620 bounds.add(xyAtT(endIndex)); | |
| 3621 SkScalar width = bounds.width(); | |
| 3622 SkScalar height = bounds.height(); | |
| 3623 if (width > height) { | |
| 3624 if (approximately_negative(width)) { | |
| 3625 unsortable = true; // edge is too small to resolve meaningfully | |
| 3626 } | |
| 3627 return false; | |
| 3628 } else { | |
| 3629 if (approximately_negative(height)) { | |
| 3630 unsortable = true; // edge is too small to resolve meaningfully | |
| 3631 } | |
| 3632 return true; | |
| 3633 } | |
| 3634 } | |
| 3635 | |
| 3636 // return span if when chasing, two or more radiating spans are not done | |
| 3637 // OPTIMIZATION: ? multiple spans is detected when there is only one valid | |
| 3638 // candidate and the remaining spans have windValue == 0 (canceled by | |
| 3639 // coincidence). The coincident edges could either be removed altogether, | |
| 3640 // or this code could be more complicated in detecting this case. Worth it? | |
| 3641 bool multipleSpans(int end) const { | |
| 3642 return end > 0 && end < fTs.count() - 1; | |
| 3643 } | |
| 3644 | |
| 3645 bool nextCandidate(int& start, int& end) const { | |
| 3646 while (fTs[end].fDone) { | |
| 3647 if (fTs[end].fT == 1) { | |
| 3648 return false; | |
| 3649 } | |
| 3650 ++end; | |
| 3651 } | |
| 3652 start = end; | |
| 3653 end = nextExactSpan(start, 1); | |
| 3654 return true; | |
| 3655 } | |
| 3656 | |
| 3657 Segment* nextChase(int& index, const int step, int& min, Span*& last) { | |
| 3658 int end = nextExactSpan(index, step); | |
| 3659 SkASSERT(end >= 0); | |
| 3660 if (multipleSpans(end)) { | |
| 3661 last = &fTs[end]; | |
| 3662 return NULL; | |
| 3663 } | |
| 3664 const Span& endSpan = fTs[end]; | |
| 3665 Segment* other = endSpan.fOther; | |
| 3666 index = endSpan.fOtherIndex; | |
| 3667 SkASSERT(index >= 0); | |
| 3668 int otherEnd = other->nextExactSpan(index, step); | |
| 3669 SkASSERT(otherEnd >= 0); | |
| 3670 min = SkMin32(index, otherEnd); | |
| 3671 return other; | |
| 3672 } | |
| 3673 | |
| 3674 // This has callers for two different situations: one establishes the end | |
| 3675 // of the current span, and one establishes the beginning of the next span | |
| 3676 // (thus the name). When this is looking for the end of the current span, | |
| 3677 // coincidence is found when the beginning Ts contain -step and the end | |
| 3678 // contains step. When it is looking for the beginning of the next, the | |
| 3679 // first Ts found can be ignored and the last Ts should contain -step. | |
| 3680 // OPTIMIZATION: probably should split into two functions | |
| 3681 int nextSpan(int from, int step) const { | |
| 3682 const Span& fromSpan = fTs[from]; | |
| 3683 int count = fTs.count(); | |
| 3684 int to = from; | |
| 3685 while (step > 0 ? ++to < count : --to >= 0) { | |
| 3686 const Span& span = fTs[to]; | |
| 3687 if (approximately_zero(span.fT - fromSpan.fT)) { | |
| 3688 continue; | |
| 3689 } | |
| 3690 return to; | |
| 3691 } | |
| 3692 return -1; | |
| 3693 } | |
| 3694 | |
| 3695 // FIXME | |
| 3696 // this returns at any difference in T, vs. a preset minimum. It may be | |
| 3697 // that all callers to nextSpan should use this instead. | |
| 3698 // OPTIMIZATION splitting this into separate loops for up/down steps | |
| 3699 // would allow using precisely_negative instead of precisely_zero | |
| 3700 int nextExactSpan(int from, int step) const { | |
| 3701 const Span& fromSpan = fTs[from]; | |
| 3702 int count = fTs.count(); | |
| 3703 int to = from; | |
| 3704 while (step > 0 ? ++to < count : --to >= 0) { | |
| 3705 const Span& span = fTs[to]; | |
| 3706 if (precisely_zero(span.fT - fromSpan.fT)) { | |
| 3707 continue; | |
| 3708 } | |
| 3709 return to; | |
| 3710 } | |
| 3711 return -1; | |
| 3712 } | |
| 3713 | |
| 3714 bool operand() const { | |
| 3715 return fOperand; | |
| 3716 } | |
| 3717 | |
| 3718 int oppSign(const Angle* angle) const { | |
| 3719 SkASSERT(angle->segment() == this); | |
| 3720 return oppSign(angle->start(), angle->end()); | |
| 3721 } | |
| 3722 | |
| 3723 int oppSign(int startIndex, int endIndex) const { | |
| 3724 int result = startIndex < endIndex ? -fTs[startIndex].fOppValue | |
| 3725 : fTs[endIndex].fOppValue; | |
| 3726 #if DEBUG_WIND_BUMP | |
| 3727 SkDebugf("%s oppSign=%d\n", __FUNCTION__, result); | |
| 3728 #endif | |
| 3729 return result; | |
| 3730 } | |
| 3731 | |
| 3732 int oppSum(int tIndex) const { | |
| 3733 return fTs[tIndex].fOppSum; | |
| 3734 } | |
| 3735 | |
| 3736 int oppSum(const Angle* angle) const { | |
| 3737 int lesser = SkMin32(angle->start(), angle->end()); | |
| 3738 return fTs[lesser].fOppSum; | |
| 3739 } | |
| 3740 | |
| 3741 int oppValue(int tIndex) const { | |
| 3742 return fTs[tIndex].fOppValue; | |
| 3743 } | |
| 3744 | |
| 3745 int oppValue(const Angle* angle) const { | |
| 3746 int lesser = SkMin32(angle->start(), angle->end()); | |
| 3747 return fTs[lesser].fOppValue; | |
| 3748 } | |
| 3749 | |
| 3750 const SkPoint* pts() const { | |
| 3751 return fPts; | |
| 3752 } | |
| 3753 | |
| 3754 void reset() { | |
| 3755 init(NULL, (SkPath::Verb) -1, false, false); | |
| 3756 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); | |
| 3757 fTs.reset(); | |
| 3758 } | |
| 3759 | |
| 3760 void setOppXor(bool isOppXor) { | |
| 3761 fOppXor = isOppXor; | |
| 3762 } | |
| 3763 | |
| 3764 void setSpanT(int index, double t) { | |
| 3765 Span& span = fTs[index]; | |
| 3766 span.fT = t; | |
| 3767 span.fOther->fTs[span.fOtherIndex].fOtherT = t; | |
| 3768 } | |
| 3769 | |
| 3770 void setUpWinding(int index, int endIndex, int& maxWinding, int& sumWinding)
{ | |
| 3771 int deltaSum = spanSign(index, endIndex); | |
| 3772 maxWinding = sumWinding; | |
| 3773 sumWinding = sumWinding -= deltaSum; | |
| 3774 } | |
| 3775 | |
| 3776 void setUpWindings(int index, int endIndex, int& sumMiWinding, int& sumSuWin
ding, | |
| 3777 int& maxWinding, int& sumWinding, int& oppMaxWinding, int& oppSumWin
ding) { | |
| 3778 int deltaSum = spanSign(index, endIndex); | |
| 3779 int oppDeltaSum = oppSign(index, endIndex); | |
| 3780 if (operand()) { | |
| 3781 maxWinding = sumSuWinding; | |
| 3782 sumWinding = sumSuWinding -= deltaSum; | |
| 3783 oppMaxWinding = sumMiWinding; | |
| 3784 oppSumWinding = sumMiWinding -= oppDeltaSum; | |
| 3785 } else { | |
| 3786 maxWinding = sumMiWinding; | |
| 3787 sumWinding = sumMiWinding -= deltaSum; | |
| 3788 oppMaxWinding = sumSuWinding; | |
| 3789 oppSumWinding = sumSuWinding -= oppDeltaSum; | |
| 3790 } | |
| 3791 } | |
| 3792 | |
| 3793 // This marks all spans unsortable so that this info is available for early | |
| 3794 // exclusion in find top and others. This could be optimized to only mark | |
| 3795 // adjacent spans that unsortable. However, this makes it difficult to later | |
| 3796 // determine starting points for edge detection in find top and the like. | |
| 3797 static bool SortAngles(SkTDArray<Angle>& angles, SkTDArray<Angle*>& angleLis
t) { | |
| 3798 bool sortable = true; | |
| 3799 int angleCount = angles.count(); | |
| 3800 int angleIndex; | |
| 3801 angleList.setReserve(angleCount); | |
| 3802 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { | |
| 3803 Angle& angle = angles[angleIndex]; | |
| 3804 *angleList.append() = ∠ | |
| 3805 sortable &= !angle.unsortable(); | |
| 3806 } | |
| 3807 if (sortable) { | |
| 3808 QSort<Angle>(angleList.begin(), angleList.end() - 1); | |
| 3809 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { | |
| 3810 if (angles[angleIndex].unsortable()) { | |
| 3811 sortable = false; | |
| 3812 break; | |
| 3813 } | |
| 3814 } | |
| 3815 } | |
| 3816 if (!sortable) { | |
| 3817 for (angleIndex = 0; angleIndex < angleCount; ++angleIndex) { | |
| 3818 Angle& angle = angles[angleIndex]; | |
| 3819 angle.segment()->markUnsortable(angle.start(), angle.end()); | |
| 3820 } | |
| 3821 } | |
| 3822 return sortable; | |
| 3823 } | |
| 3824 | |
| 3825 // OPTIMIZATION: mark as debugging only if used solely by tests | |
| 3826 const Span& span(int tIndex) const { | |
| 3827 return fTs[tIndex]; | |
| 3828 } | |
| 3829 | |
| 3830 int spanSign(const Angle* angle) const { | |
| 3831 SkASSERT(angle->segment() == this); | |
| 3832 return spanSign(angle->start(), angle->end()); | |
| 3833 } | |
| 3834 | |
| 3835 int spanSign(int startIndex, int endIndex) const { | |
| 3836 int result = startIndex < endIndex ? -fTs[startIndex].fWindValue | |
| 3837 : fTs[endIndex].fWindValue; | |
| 3838 #if DEBUG_WIND_BUMP | |
| 3839 SkDebugf("%s spanSign=%d\n", __FUNCTION__, result); | |
| 3840 #endif | |
| 3841 return result; | |
| 3842 } | |
| 3843 | |
| 3844 void subDivide(int start, int end, SkPoint edge[4]) const { | |
| 3845 edge[0] = fTs[start].fPt; | |
| 3846 edge[fVerb] = fTs[end].fPt; | |
| 3847 if (fVerb == SkPath::kQuad_Verb || fVerb == SkPath::kCubic_Verb) { | |
| 3848 _Point sub[2] = {{ edge[0].fX, edge[0].fY}, {edge[fVerb].fX, edge[fV
erb].fY }}; | |
| 3849 if (fVerb == SkPath::kQuad_Verb) { | |
| 3850 MAKE_CONST_QUAD(aQuad, fPts); | |
| 3851 edge[1] = sub_divide(aQuad, sub[0], sub[1], fTs[start].fT, fTs[e
nd].fT).asSkPoint(); | |
| 3852 } else { | |
| 3853 MAKE_CONST_CUBIC(aCubic, fPts); | |
| 3854 sub_divide(aCubic, sub[0], sub[1], fTs[start].fT, fTs[end].fT, s
ub); | |
| 3855 edge[1] = sub[0].asSkPoint(); | |
| 3856 edge[2] = sub[1].asSkPoint(); | |
| 3857 } | |
| 3858 } | |
| 3859 } | |
| 3860 | |
| 3861 void subDivideBounds(int start, int end, Bounds& bounds) const { | |
| 3862 SkPoint edge[4]; | |
| 3863 subDivide(start, end, edge); | |
| 3864 (bounds.*setSegmentBounds[fVerb])(edge); | |
| 3865 } | |
| 3866 | |
| 3867 // OPTIMIZATION: mark as debugging only if used solely by tests | |
| 3868 double t(int tIndex) const { | |
| 3869 return fTs[tIndex].fT; | |
| 3870 } | |
| 3871 | |
| 3872 double tAtMid(int start, int end, double mid) const { | |
| 3873 return fTs[start].fT * (1 - mid) + fTs[end].fT * mid; | |
| 3874 } | |
| 3875 | |
| 3876 bool tiny(const Angle* angle) const { | |
| 3877 int start = angle->start(); | |
| 3878 int end = angle->end(); | |
| 3879 const Span& mSpan = fTs[SkMin32(start, end)]; | |
| 3880 return mSpan.fTiny; | |
| 3881 } | |
| 3882 | |
| 3883 static void TrackOutside(SkTDArray<double>& outsideTs, double end, | |
| 3884 double start) { | |
| 3885 int outCount = outsideTs.count(); | |
| 3886 if (outCount == 0 || !approximately_negative(end - outsideTs[outCount -
2])) { | |
| 3887 *outsideTs.append() = end; | |
| 3888 *outsideTs.append() = start; | |
| 3889 } | |
| 3890 } | |
| 3891 | |
| 3892 void undoneSpan(int& start, int& end) { | |
| 3893 size_t tCount = fTs.count(); | |
| 3894 size_t index; | |
| 3895 for (index = 0; index < tCount; ++index) { | |
| 3896 if (!fTs[index].fDone) { | |
| 3897 break; | |
| 3898 } | |
| 3899 } | |
| 3900 SkASSERT(index < tCount - 1); | |
| 3901 start = index; | |
| 3902 double startT = fTs[index].fT; | |
| 3903 while (approximately_negative(fTs[++index].fT - startT)) | |
| 3904 SkASSERT(index < tCount); | |
| 3905 SkASSERT(index < tCount); | |
| 3906 end = index; | |
| 3907 } | |
| 3908 | |
| 3909 bool unsortable(int index) const { | |
| 3910 return fTs[index].fUnsortableStart || fTs[index].fUnsortableEnd; | |
| 3911 } | |
| 3912 | |
| 3913 void updatePts(const SkPoint pts[]) { | |
| 3914 fPts = pts; | |
| 3915 } | |
| 3916 | |
| 3917 int updateOppWinding(int index, int endIndex) const { | |
| 3918 int lesser = SkMin32(index, endIndex); | |
| 3919 int oppWinding = oppSum(lesser); | |
| 3920 int oppSpanWinding = oppSign(index, endIndex); | |
| 3921 if (oppSpanWinding && useInnerWinding(oppWinding - oppSpanWinding, oppWi
nding) | |
| 3922 && oppWinding != SK_MaxS32) { | |
| 3923 oppWinding -= oppSpanWinding; | |
| 3924 } | |
| 3925 return oppWinding; | |
| 3926 } | |
| 3927 | |
| 3928 int updateOppWinding(const Angle* angle) const { | |
| 3929 int startIndex = angle->start(); | |
| 3930 int endIndex = angle->end(); | |
| 3931 return updateOppWinding(endIndex, startIndex); | |
| 3932 } | |
| 3933 | |
| 3934 int updateOppWindingReverse(const Angle* angle) const { | |
| 3935 int startIndex = angle->start(); | |
| 3936 int endIndex = angle->end(); | |
| 3937 return updateOppWinding(startIndex, endIndex); | |
| 3938 } | |
| 3939 | |
| 3940 int updateWinding(int index, int endIndex) const { | |
| 3941 int lesser = SkMin32(index, endIndex); | |
| 3942 int winding = windSum(lesser); | |
| 3943 int spanWinding = spanSign(index, endIndex); | |
| 3944 if (winding && useInnerWinding(winding - spanWinding, winding) && windin
g != SK_MaxS32) { | |
| 3945 winding -= spanWinding; | |
| 3946 } | |
| 3947 return winding; | |
| 3948 } | |
| 3949 | |
| 3950 int updateWinding(const Angle* angle) const { | |
| 3951 int startIndex = angle->start(); | |
| 3952 int endIndex = angle->end(); | |
| 3953 return updateWinding(endIndex, startIndex); | |
| 3954 } | |
| 3955 | |
| 3956 int updateWindingReverse(const Angle* angle) const { | |
| 3957 int startIndex = angle->start(); | |
| 3958 int endIndex = angle->end(); | |
| 3959 return updateWinding(startIndex, endIndex); | |
| 3960 } | |
| 3961 | |
| 3962 SkPath::Verb verb() const { | |
| 3963 return fVerb; | |
| 3964 } | |
| 3965 | |
| 3966 int windingAtT(double tHit, int tIndex, bool crossOpp, SkScalar& dx) const { | |
| 3967 if (approximately_zero(tHit - t(tIndex))) { // if we hit the end of a sp
an, disregard | |
| 3968 return SK_MinS32; | |
| 3969 } | |
| 3970 int winding = crossOpp ? oppSum(tIndex) : windSum(tIndex); | |
| 3971 SkASSERT(winding != SK_MinS32); | |
| 3972 int windVal = crossOpp ? oppValue(tIndex) : windValue(tIndex); | |
| 3973 #if DEBUG_WINDING_AT_T | |
| 3974 SkDebugf("%s oldWinding=%d windValue=%d", __FUNCTION__, winding, windVal
); | |
| 3975 #endif | |
| 3976 // see if a + change in T results in a +/- change in X (compute x'(T)) | |
| 3977 dx = (*SegmentDXAtT[fVerb])(fPts, tHit); | |
| 3978 if (fVerb > SkPath::kLine_Verb && approximately_zero(dx)) { | |
| 3979 dx = fPts[2].fX - fPts[1].fX - dx; | |
| 3980 } | |
| 3981 if (dx == 0) { | |
| 3982 #if DEBUG_WINDING_AT_T | |
| 3983 SkDebugf(" dx=0 winding=SK_MinS32\n"); | |
| 3984 #endif | |
| 3985 return SK_MinS32; | |
| 3986 } | |
| 3987 if (winding * dx > 0) { // if same signs, result is negative | |
| 3988 winding += dx > 0 ? -windVal : windVal; | |
| 3989 } | |
| 3990 #if DEBUG_WINDING_AT_T | |
| 3991 SkDebugf(" dx=%c winding=%d\n", dx > 0 ? '+' : '-', winding); | |
| 3992 #endif | |
| 3993 return winding; | |
| 3994 } | |
| 3995 | |
| 3996 int windSum(int tIndex) const { | |
| 3997 return fTs[tIndex].fWindSum; | |
| 3998 } | |
| 3999 | |
| 4000 int windSum(const Angle* angle) const { | |
| 4001 int start = angle->start(); | |
| 4002 int end = angle->end(); | |
| 4003 int index = SkMin32(start, end); | |
| 4004 return windSum(index); | |
| 4005 } | |
| 4006 | |
| 4007 int windValue(int tIndex) const { | |
| 4008 return fTs[tIndex].fWindValue; | |
| 4009 } | |
| 4010 | |
| 4011 int windValue(const Angle* angle) const { | |
| 4012 int start = angle->start(); | |
| 4013 int end = angle->end(); | |
| 4014 int index = SkMin32(start, end); | |
| 4015 return windValue(index); | |
| 4016 } | |
| 4017 | |
| 4018 int windValueAt(double t) const { | |
| 4019 int count = fTs.count(); | |
| 4020 for (int index = 0; index < count; ++index) { | |
| 4021 if (fTs[index].fT == t) { | |
| 4022 return fTs[index].fWindValue; | |
| 4023 } | |
| 4024 } | |
| 4025 SkASSERT(0); | |
| 4026 return 0; | |
| 4027 } | |
| 4028 | |
| 4029 SkScalar xAtT(int index) const { | |
| 4030 return xAtT(&fTs[index]); | |
| 4031 } | |
| 4032 | |
| 4033 SkScalar xAtT(const Span* span) const { | |
| 4034 return xyAtT(span).fX; | |
| 4035 } | |
| 4036 | |
| 4037 const SkPoint& xyAtT(int index) const { | |
| 4038 return xyAtT(&fTs[index]); | |
| 4039 } | |
| 4040 | |
| 4041 const SkPoint& xyAtT(const Span* span) const { | |
| 4042 if (SkScalarIsNaN(span->fPt.fX)) { | |
| 4043 SkASSERT(0); // make sure this path is never used | |
| 4044 if (span->fT == 0) { | |
| 4045 span->fPt = fPts[0]; | |
| 4046 } else if (span->fT == 1) { | |
| 4047 span->fPt = fPts[fVerb]; | |
| 4048 } else { | |
| 4049 (*SegmentXYAtT[fVerb])(fPts, span->fT, &span->fPt); | |
| 4050 } | |
| 4051 } | |
| 4052 return span->fPt; | |
| 4053 } | |
| 4054 | |
| 4055 // used only by right angle winding finding | |
| 4056 void xyAtT(double mid, SkPoint& pt) const { | |
| 4057 (*SegmentXYAtT[fVerb])(fPts, mid, &pt); | |
| 4058 } | |
| 4059 | |
| 4060 SkScalar yAtT(int index) const { | |
| 4061 return yAtT(&fTs[index]); | |
| 4062 } | |
| 4063 | |
| 4064 SkScalar yAtT(const Span* span) const { | |
| 4065 return xyAtT(span).fY; | |
| 4066 } | |
| 4067 | |
| 4068 void zeroCoincidentOpp(Span* oTest, int index) { | |
| 4069 Span* const test = &fTs[index]; | |
| 4070 Span* end = test; | |
| 4071 do { | |
| 4072 end->fOppValue = 0; | |
| 4073 end = &fTs[++index]; | |
| 4074 } while (approximately_negative(end->fT - test->fT)); | |
| 4075 } | |
| 4076 | |
| 4077 void zeroCoincidentOther(Span* test, const double tRatio, const double oEndT
, int oIndex) { | |
| 4078 Span* const oTest = &fTs[oIndex]; | |
| 4079 Span* oEnd = oTest; | |
| 4080 const double startT = test->fT; | |
| 4081 const double oStartT = oTest->fT; | |
| 4082 double otherTMatch = (test->fT - startT) * tRatio + oStartT; | |
| 4083 while (!approximately_negative(oEndT - oEnd->fT) | |
| 4084 && approximately_negative(oEnd->fT - otherTMatch)) { | |
| 4085 oEnd->fOppValue = 0; | |
| 4086 oEnd = &fTs[++oIndex]; | |
| 4087 } | |
| 4088 } | |
| 4089 | |
| 4090 void zeroSpan(Span* span) { | |
| 4091 SkASSERT(span->fWindValue > 0 || span->fOppValue > 0); | |
| 4092 span->fWindValue = 0; | |
| 4093 span->fOppValue = 0; | |
| 4094 SkASSERT(!span->fDone); | |
| 4095 span->fDone = true; | |
| 4096 ++fDoneSpans; | |
| 4097 } | |
| 4098 | |
| 4099 #if DEBUG_DUMP | |
| 4100 void dump() const { | |
| 4101 const char className[] = "Segment"; | |
| 4102 const int tab = 4; | |
| 4103 for (int i = 0; i < fTs.count(); ++i) { | |
| 4104 SkPoint out; | |
| 4105 (*SegmentXYAtT[fVerb])(fPts, t(i), &out); | |
| 4106 SkDebugf("%*s [%d] %s.fTs[%d]=%1.9g (%1.9g,%1.9g) other=%d" | |
| 4107 " otherT=%1.9g windSum=%d\n", | |
| 4108 tab + sizeof(className), className, fID, | |
| 4109 kLVerbStr[fVerb], i, fTs[i].fT, out.fX, out.fY, | |
| 4110 fTs[i].fOther->fID, fTs[i].fOtherT, fTs[i].fWindSum); | |
| 4111 } | |
| 4112 SkDebugf("%*s [%d] fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)", | |
| 4113 tab + sizeof(className), className, fID, | |
| 4114 fBounds.fLeft, fBounds.fTop, fBounds.fRight, fBounds.fBottom); | |
| 4115 } | |
| 4116 #endif | |
| 4117 | |
| 4118 #if DEBUG_CONCIDENT | |
| 4119 // SkASSERT if pair has not already been added | |
| 4120 void debugAddTPair(double t, const Segment& other, double otherT) const { | |
| 4121 for (int i = 0; i < fTs.count(); ++i) { | |
| 4122 if (fTs[i].fT == t && fTs[i].fOther == &other && fTs[i].fOtherT == o
therT) { | |
| 4123 return; | |
| 4124 } | |
| 4125 } | |
| 4126 SkASSERT(0); | |
| 4127 } | |
| 4128 #endif | |
| 4129 | |
| 4130 #if DEBUG_DUMP | |
| 4131 int debugID() const { | |
| 4132 return fID; | |
| 4133 } | |
| 4134 #endif | |
| 4135 | |
| 4136 #if DEBUG_WINDING | |
| 4137 void debugShowSums() const { | |
| 4138 SkDebugf("%s id=%d (%1.9g,%1.9g %1.9g,%1.9g)", __FUNCTION__, fID, | |
| 4139 fPts[0].fX, fPts[0].fY, fPts[fVerb].fX, fPts[fVerb].fY); | |
| 4140 for (int i = 0; i < fTs.count(); ++i) { | |
| 4141 const Span& span = fTs[i]; | |
| 4142 SkDebugf(" [t=%1.3g %1.9g,%1.9g w=", span.fT, xAtT(&span), yAtT(&spa
n)); | |
| 4143 if (span.fWindSum == SK_MinS32) { | |
| 4144 SkDebugf("?"); | |
| 4145 } else { | |
| 4146 SkDebugf("%d", span.fWindSum); | |
| 4147 } | |
| 4148 SkDebugf("]"); | |
| 4149 } | |
| 4150 SkDebugf("\n"); | |
| 4151 } | |
| 4152 #endif | |
| 4153 | |
| 4154 #if DEBUG_CONCIDENT | |
| 4155 void debugShowTs() const { | |
| 4156 SkDebugf("%s id=%d", __FUNCTION__, fID); | |
| 4157 int lastWind = -1; | |
| 4158 int lastOpp = -1; | |
| 4159 double lastT = -1; | |
| 4160 int i; | |
| 4161 for (i = 0; i < fTs.count(); ++i) { | |
| 4162 bool change = lastT != fTs[i].fT || lastWind != fTs[i].fWindValue | |
| 4163 || lastOpp != fTs[i].fOppValue; | |
| 4164 if (change && lastWind >= 0) { | |
| 4165 SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", | |
| 4166 lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastO
pp); | |
| 4167 } | |
| 4168 if (change) { | |
| 4169 SkDebugf(" [o=%d", fTs[i].fOther->fID); | |
| 4170 lastWind = fTs[i].fWindValue; | |
| 4171 lastOpp = fTs[i].fOppValue; | |
| 4172 lastT = fTs[i].fT; | |
| 4173 } else { | |
| 4174 SkDebugf(",%d", fTs[i].fOther->fID); | |
| 4175 } | |
| 4176 } | |
| 4177 if (i <= 0) { | |
| 4178 return; | |
| 4179 } | |
| 4180 SkDebugf(" t=%1.3g %1.9g,%1.9g w=%d o=%d]", | |
| 4181 lastT, xyAtT(i - 1).fX, xyAtT(i - 1).fY, lastWind, lastOpp); | |
| 4182 if (fOperand) { | |
| 4183 SkDebugf(" operand"); | |
| 4184 } | |
| 4185 if (done()) { | |
| 4186 SkDebugf(" done"); | |
| 4187 } | |
| 4188 SkDebugf("\n"); | |
| 4189 } | |
| 4190 #endif | |
| 4191 | |
| 4192 #if DEBUG_ACTIVE_SPANS | |
| 4193 void debugShowActiveSpans() const { | |
| 4194 if (done()) { | |
| 4195 return; | |
| 4196 } | |
| 4197 #if DEBUG_ACTIVE_SPANS_SHORT_FORM | |
| 4198 int lastId = -1; | |
| 4199 double lastT = -1; | |
| 4200 #endif | |
| 4201 for (int i = 0; i < fTs.count(); ++i) { | |
| 4202 SkASSERT(&fTs[i] == &fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOther-> | |
| 4203 fTs[fTs[i].fOther->fTs[fTs[i].fOtherIndex].fOtherIndex]); | |
| 4204 if (fTs[i].fDone) { | |
| 4205 continue; | |
| 4206 } | |
| 4207 #if DEBUG_ACTIVE_SPANS_SHORT_FORM | |
| 4208 if (lastId == fID && lastT == fTs[i].fT) { | |
| 4209 continue; | |
| 4210 } | |
| 4211 lastId = fID; | |
| 4212 lastT = fTs[i].fT; | |
| 4213 #endif | |
| 4214 SkDebugf("%s id=%d", __FUNCTION__, fID); | |
| 4215 SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); | |
| 4216 for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { | |
| 4217 SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); | |
| 4218 } | |
| 4219 const Span* span = &fTs[i]; | |
| 4220 SkDebugf(") t=%1.9g (%1.9g,%1.9g)", fTs[i].fT, | |
| 4221 xAtT(span), yAtT(span)); | |
| 4222 int iEnd = i + 1; | |
| 4223 while (fTs[iEnd].fT < 1 && approximately_equal(fTs[i].fT, fTs[iEnd].
fT)) { | |
| 4224 ++iEnd; | |
| 4225 } | |
| 4226 SkDebugf(" tEnd=%1.9g", fTs[iEnd].fT); | |
| 4227 const Segment* other = fTs[i].fOther; | |
| 4228 SkDebugf(" other=%d otherT=%1.9g otherIndex=%d windSum=", | |
| 4229 other->fID, fTs[i].fOtherT, fTs[i].fOtherIndex); | |
| 4230 if (fTs[i].fWindSum == SK_MinS32) { | |
| 4231 SkDebugf("?"); | |
| 4232 } else { | |
| 4233 SkDebugf("%d", fTs[i].fWindSum); | |
| 4234 } | |
| 4235 SkDebugf(" windValue=%d oppValue=%d\n", fTs[i].fWindValue, fTs[i].fO
ppValue); | |
| 4236 } | |
| 4237 } | |
| 4238 | |
| 4239 // This isn't useful yet -- but leaving it in for now in case i think of som
ething | |
| 4240 // to use it for | |
| 4241 void validateActiveSpans() const { | |
| 4242 if (done()) { | |
| 4243 return; | |
| 4244 } | |
| 4245 int tCount = fTs.count(); | |
| 4246 for (int index = 0; index < tCount; ++index) { | |
| 4247 if (fTs[index].fDone) { | |
| 4248 continue; | |
| 4249 } | |
| 4250 // count number of connections which are not done | |
| 4251 int first = index; | |
| 4252 double baseT = fTs[index].fT; | |
| 4253 while (first > 0 && approximately_equal(fTs[first - 1].fT, baseT)) { | |
| 4254 --first; | |
| 4255 } | |
| 4256 int last = index; | |
| 4257 while (last < tCount - 1 && approximately_equal(fTs[last + 1].fT, ba
seT)) { | |
| 4258 ++last; | |
| 4259 } | |
| 4260 int connections = 0; | |
| 4261 connections += first > 0 && !fTs[first - 1].fDone; | |
| 4262 for (int test = first; test <= last; ++test) { | |
| 4263 connections += !fTs[test].fDone; | |
| 4264 const Segment* other = fTs[test].fOther; | |
| 4265 int oIndex = fTs[test].fOtherIndex; | |
| 4266 connections += !other->fTs[oIndex].fDone; | |
| 4267 connections += oIndex > 0 && !other->fTs[oIndex - 1].fDone; | |
| 4268 } | |
| 4269 // SkASSERT(!(connections & 1)); | |
| 4270 } | |
| 4271 } | |
| 4272 #endif | |
| 4273 | |
| 4274 #if DEBUG_MARK_DONE || DEBUG_UNSORTABLE | |
| 4275 void debugShowNewWinding(const char* fun, const Span& span, int winding) { | |
| 4276 const SkPoint& pt = xyAtT(&span); | |
| 4277 SkDebugf("%s id=%d", fun, fID); | |
| 4278 SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); | |
| 4279 for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { | |
| 4280 SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); | |
| 4281 } | |
| 4282 SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> | |
| 4283 fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); | |
| 4284 SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d windSum=
", | |
| 4285 span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX,
pt.fY, | |
| 4286 (&span)[1].fT, winding); | |
| 4287 if (span.fWindSum == SK_MinS32) { | |
| 4288 SkDebugf("?"); | |
| 4289 } else { | |
| 4290 SkDebugf("%d", span.fWindSum); | |
| 4291 } | |
| 4292 SkDebugf(" windValue=%d\n", span.fWindValue); | |
| 4293 } | |
| 4294 | |
| 4295 void debugShowNewWinding(const char* fun, const Span& span, int winding, int
oppWinding) { | |
| 4296 const SkPoint& pt = xyAtT(&span); | |
| 4297 SkDebugf("%s id=%d", fun, fID); | |
| 4298 SkDebugf(" (%1.9g,%1.9g", fPts[0].fX, fPts[0].fY); | |
| 4299 for (int vIndex = 1; vIndex <= fVerb; ++vIndex) { | |
| 4300 SkDebugf(" %1.9g,%1.9g", fPts[vIndex].fX, fPts[vIndex].fY); | |
| 4301 } | |
| 4302 SkASSERT(&span == &span.fOther->fTs[span.fOtherIndex].fOther-> | |
| 4303 fTs[span.fOther->fTs[span.fOtherIndex].fOtherIndex]); | |
| 4304 SkDebugf(") t=%1.9g [%d] (%1.9g,%1.9g) tEnd=%1.9g newWindSum=%d newOppSu
m=%d oppSum=", | |
| 4305 span.fT, span.fOther->fTs[span.fOtherIndex].fOtherIndex, pt.fX,
pt.fY, | |
| 4306 (&span)[1].fT, winding, oppWinding); | |
| 4307 if (span.fOppSum == SK_MinS32) { | |
| 4308 SkDebugf("?"); | |
| 4309 } else { | |
| 4310 SkDebugf("%d", span.fOppSum); | |
| 4311 } | |
| 4312 SkDebugf(" windSum="); | |
| 4313 if (span.fWindSum == SK_MinS32) { | |
| 4314 SkDebugf("?"); | |
| 4315 } else { | |
| 4316 SkDebugf("%d", span.fWindSum); | |
| 4317 } | |
| 4318 SkDebugf(" windValue=%d\n", span.fWindValue); | |
| 4319 } | |
| 4320 #endif | |
| 4321 | |
| 4322 #if DEBUG_SORT || DEBUG_SWAP_TOP | |
| 4323 void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int fir
st, | |
| 4324 const int contourWinding, const int oppContourWinding) const { | |
| 4325 if (--gDebugSortCount < 0) { | |
| 4326 return; | |
| 4327 } | |
| 4328 SkASSERT(angles[first]->segment() == this); | |
| 4329 SkASSERT(angles.count() > 1); | |
| 4330 int lastSum = contourWinding; | |
| 4331 int oppLastSum = oppContourWinding; | |
| 4332 const Angle* firstAngle = angles[first]; | |
| 4333 int windSum = lastSum - spanSign(firstAngle); | |
| 4334 int oppoSign = oppSign(firstAngle); | |
| 4335 int oppWindSum = oppLastSum - oppoSign; | |
| 4336 #define WIND_AS_STRING(x) char x##Str[12]; if (!valid_wind(x)) strcpy(x#
#Str, "?"); \ | |
| 4337 else snprintf(x##Str, sizeof(x##Str), "%d", x) | |
| 4338 WIND_AS_STRING(contourWinding); | |
| 4339 WIND_AS_STRING(oppContourWinding); | |
| 4340 SkDebugf("%s %s contourWinding=%s oppContourWinding=%s sign=%d\n", fun,
__FUNCTION__, | |
| 4341 contourWindingStr, oppContourWindingStr, spanSign(angles[first])
); | |
| 4342 int index = first; | |
| 4343 bool firstTime = true; | |
| 4344 do { | |
| 4345 const Angle& angle = *angles[index]; | |
| 4346 const Segment& segment = *angle.segment(); | |
| 4347 int start = angle.start(); | |
| 4348 int end = angle.end(); | |
| 4349 const Span& sSpan = segment.fTs[start]; | |
| 4350 const Span& eSpan = segment.fTs[end]; | |
| 4351 const Span& mSpan = segment.fTs[SkMin32(start, end)]; | |
| 4352 bool opp = segment.fOperand ^ fOperand; | |
| 4353 if (!firstTime) { | |
| 4354 oppoSign = segment.oppSign(&angle); | |
| 4355 if (opp) { | |
| 4356 oppLastSum = oppWindSum; | |
| 4357 oppWindSum -= segment.spanSign(&angle); | |
| 4358 if (oppoSign) { | |
| 4359 lastSum = windSum; | |
| 4360 windSum -= oppoSign; | |
| 4361 } | |
| 4362 } else { | |
| 4363 lastSum = windSum; | |
| 4364 windSum -= segment.spanSign(&angle); | |
| 4365 if (oppoSign) { | |
| 4366 oppLastSum = oppWindSum; | |
| 4367 oppWindSum -= oppoSign; | |
| 4368 } | |
| 4369 } | |
| 4370 } | |
| 4371 SkDebugf("%s [%d] %s", __FUNCTION__, index, | |
| 4372 angle.unsortable() ? "*** UNSORTABLE *** " : ""); | |
| 4373 #if COMPACT_DEBUG_SORT | |
| 4374 SkDebugf("id=%d %s start=%d (%1.9g,%,1.9g) end=%d (%1.9g,%,1.9g)", | |
| 4375 segment.fID, kLVerbStr[segment.fVerb], | |
| 4376 start, segment.xAtT(&sSpan), segment.yAtT(&sSpan), end, | |
| 4377 segment.xAtT(&eSpan), segment.yAtT(&eSpan)); | |
| 4378 #else | |
| 4379 switch (segment.fVerb) { | |
| 4380 case SkPath::kLine_Verb: | |
| 4381 SkDebugf(LINE_DEBUG_STR, LINE_DEBUG_DATA(segment.fPts)); | |
| 4382 break; | |
| 4383 case SkPath::kQuad_Verb: | |
| 4384 SkDebugf(QUAD_DEBUG_STR, QUAD_DEBUG_DATA(segment.fPts)); | |
| 4385 break; | |
| 4386 case SkPath::kCubic_Verb: | |
| 4387 SkDebugf(CUBIC_DEBUG_STR, CUBIC_DEBUG_DATA(segment.fPts)); | |
| 4388 break; | |
| 4389 default: | |
| 4390 SkASSERT(0); | |
| 4391 } | |
| 4392 SkDebugf(" tStart=%1.9g tEnd=%1.9g", sSpan.fT, eSpan.fT); | |
| 4393 #endif | |
| 4394 SkDebugf(" sign=%d windValue=%d windSum=", angle.sign(), mSpan.fWind
Value); | |
| 4395 winding_printf(mSpan.fWindSum); | |
| 4396 int last, wind; | |
| 4397 if (opp) { | |
| 4398 last = oppLastSum; | |
| 4399 wind = oppWindSum; | |
| 4400 } else { | |
| 4401 last = lastSum; | |
| 4402 wind = windSum; | |
| 4403 } | |
| 4404 bool useInner = valid_wind(last) && valid_wind(wind) && useInnerWind
ing(last, wind); | |
| 4405 WIND_AS_STRING(last); | |
| 4406 WIND_AS_STRING(wind); | |
| 4407 WIND_AS_STRING(lastSum); | |
| 4408 WIND_AS_STRING(oppLastSum); | |
| 4409 WIND_AS_STRING(windSum); | |
| 4410 WIND_AS_STRING(oppWindSum); | |
| 4411 #undef WIND_AS_STRING | |
| 4412 if (!oppoSign) { | |
| 4413 SkDebugf(" %s->%s (max=%s)", lastStr, windStr, useInner ? windSt
r : lastStr); | |
| 4414 } else { | |
| 4415 SkDebugf(" %s->%s (%s->%s)", lastStr, windStr, opp ? lastSumStr
: oppLastSumStr, | |
| 4416 opp ? windSumStr : oppWindSumStr); | |
| 4417 } | |
| 4418 SkDebugf(" done=%d tiny=%d opp=%d\n", mSpan.fDone, mSpan.fTiny, opp)
; | |
| 4419 #if false && DEBUG_ANGLE | |
| 4420 angle.debugShow(segment.xyAtT(&sSpan)); | |
| 4421 #endif | |
| 4422 ++index; | |
| 4423 if (index == angles.count()) { | |
| 4424 index = 0; | |
| 4425 } | |
| 4426 if (firstTime) { | |
| 4427 firstTime = false; | |
| 4428 } | |
| 4429 } while (index != first); | |
| 4430 } | |
| 4431 | |
| 4432 void debugShowSort(const char* fun, const SkTDArray<Angle*>& angles, int fir
st) { | |
| 4433 const Angle* firstAngle = angles[first]; | |
| 4434 const Segment* segment = firstAngle->segment(); | |
| 4435 int winding = segment->updateWinding(firstAngle); | |
| 4436 int oppWinding = segment->updateOppWinding(firstAngle); | |
| 4437 debugShowSort(fun, angles, first, winding, oppWinding); | |
| 4438 } | |
| 4439 | |
| 4440 #endif | |
| 4441 | |
| 4442 #if DEBUG_WINDING | |
| 4443 static char as_digit(int value) { | |
| 4444 return value < 0 ? '?' : value <= 9 ? '0' + value : '+'; | |
| 4445 } | |
| 4446 #endif | |
| 4447 | |
| 4448 #if DEBUG_SHOW_WINDING | |
| 4449 int debugShowWindingValues(int slotCount, int ofInterest) const { | |
| 4450 if (!(1 << fID & ofInterest)) { | |
| 4451 return 0; | |
| 4452 } | |
| 4453 int sum = 0; | |
| 4454 SkTDArray<char> slots; | |
| 4455 slots.setCount(slotCount * 2); | |
| 4456 memset(slots.begin(), ' ', slotCount * 2); | |
| 4457 for (int i = 0; i < fTs.count(); ++i) { | |
| 4458 // if (!(1 << fTs[i].fOther->fID & ofInterest)) { | |
| 4459 // continue; | |
| 4460 // } | |
| 4461 sum += fTs[i].fWindValue; | |
| 4462 slots[fTs[i].fOther->fID - 1] = as_digit(fTs[i].fWindValue); | |
| 4463 sum += fTs[i].fOppValue; | |
| 4464 slots[slotCount + fTs[i].fOther->fID - 1] = as_digit(fTs[i].fOppValu
e); | |
| 4465 } | |
| 4466 SkDebugf("%s id=%2d %.*s | %.*s\n", __FUNCTION__, fID, slotCount, slots.
begin(), slotCount, | |
| 4467 slots.begin() + slotCount); | |
| 4468 return sum; | |
| 4469 } | |
| 4470 #endif | |
| 4471 | |
| 4472 private: | |
| 4473 const SkPoint* fPts; | |
| 4474 Bounds fBounds; | |
| 4475 SkTDArray<Span> fTs; // two or more (always includes t=0 t=1) | |
| 4476 // OPTIMIZATION: could pack donespans, verb, operand, xor into 1 int-sized v
alue | |
| 4477 int fDoneSpans; // quick check that segment is finished | |
| 4478 // OPTIMIZATION: force the following to be byte-sized | |
| 4479 SkPath::Verb fVerb; | |
| 4480 bool fOperand; | |
| 4481 bool fXor; // set if original contour had even-odd fill | |
| 4482 bool fOppXor; // set if opposite operand had even-odd fill | |
| 4483 #if DEBUG_DUMP | |
| 4484 int fID; | |
| 4485 #endif | |
| 4486 }; | |
| 4487 | |
| 4488 class Contour; | |
| 4489 | |
| 4490 struct Coincidence { | |
| 4491 Contour* fContours[2]; | |
| 4492 int fSegments[2]; | |
| 4493 double fTs[2][2]; | |
| 4494 SkPoint fPts[2]; | |
| 4495 }; | |
| 4496 | |
| 4497 class Contour { | |
| 4498 public: | |
| 4499 Contour() { | |
| 4500 reset(); | |
| 4501 #if DEBUG_DUMP | |
| 4502 fID = ++gContourID; | |
| 4503 #endif | |
| 4504 } | |
| 4505 | |
| 4506 bool operator<(const Contour& rh) const { | |
| 4507 return fBounds.fTop == rh.fBounds.fTop | |
| 4508 ? fBounds.fLeft < rh.fBounds.fLeft | |
| 4509 : fBounds.fTop < rh.fBounds.fTop; | |
| 4510 } | |
| 4511 | |
| 4512 void addCoincident(int index, Contour* other, int otherIndex, | |
| 4513 const Intersections& ts, bool swap) { | |
| 4514 Coincidence& coincidence = *fCoincidences.append(); | |
| 4515 coincidence.fContours[0] = this; // FIXME: no need to store | |
| 4516 coincidence.fContours[1] = other; | |
| 4517 coincidence.fSegments[0] = index; | |
| 4518 coincidence.fSegments[1] = otherIndex; | |
| 4519 coincidence.fTs[swap][0] = ts.fT[0][0]; | |
| 4520 coincidence.fTs[swap][1] = ts.fT[0][1]; | |
| 4521 coincidence.fTs[!swap][0] = ts.fT[1][0]; | |
| 4522 coincidence.fTs[!swap][1] = ts.fT[1][1]; | |
| 4523 coincidence.fPts[0] = ts.fPt[0].asSkPoint(); | |
| 4524 coincidence.fPts[1] = ts.fPt[1].asSkPoint(); | |
| 4525 } | |
| 4526 | |
| 4527 void addCross(const Contour* crosser) { | |
| 4528 #ifdef DEBUG_CROSS | |
| 4529 for (int index = 0; index < fCrosses.count(); ++index) { | |
| 4530 SkASSERT(fCrosses[index] != crosser); | |
| 4531 } | |
| 4532 #endif | |
| 4533 *fCrosses.append() = crosser; | |
| 4534 } | |
| 4535 | |
| 4536 void addCubic(const SkPoint pts[4]) { | |
| 4537 fSegments.push_back().addCubic(pts, fOperand, fXor); | |
| 4538 fContainsCurves = fContainsCubics = true; | |
| 4539 } | |
| 4540 | |
| 4541 int addLine(const SkPoint pts[2]) { | |
| 4542 fSegments.push_back().addLine(pts, fOperand, fXor); | |
| 4543 return fSegments.count(); | |
| 4544 } | |
| 4545 | |
| 4546 void addOtherT(int segIndex, int tIndex, double otherT, int otherIndex) { | |
| 4547 fSegments[segIndex].addOtherT(tIndex, otherT, otherIndex); | |
| 4548 } | |
| 4549 | |
| 4550 int addQuad(const SkPoint pts[3]) { | |
| 4551 fSegments.push_back().addQuad(pts, fOperand, fXor); | |
| 4552 fContainsCurves = true; | |
| 4553 return fSegments.count(); | |
| 4554 } | |
| 4555 | |
| 4556 int addT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt, do
uble& newT) { | |
| 4557 setContainsIntercepts(); | |
| 4558 return fSegments[segIndex].addT(&other->fSegments[otherIndex], pt, newT)
; | |
| 4559 } | |
| 4560 | |
| 4561 int addSelfT(int segIndex, Contour* other, int otherIndex, const SkPoint& pt
, double& newT) { | |
| 4562 setContainsIntercepts(); | |
| 4563 return fSegments[segIndex].addSelfT(&other->fSegments[otherIndex], pt, n
ewT); | |
| 4564 } | |
| 4565 | |
| 4566 int addUnsortableT(int segIndex, Contour* other, int otherIndex, bool start, | |
| 4567 const SkPoint& pt, double& newT) { | |
| 4568 return fSegments[segIndex].addUnsortableT(&other->fSegments[otherIndex],
start, pt, newT); | |
| 4569 } | |
| 4570 | |
| 4571 const Bounds& bounds() const { | |
| 4572 return fBounds; | |
| 4573 } | |
| 4574 | |
| 4575 void complete() { | |
| 4576 setBounds(); | |
| 4577 fContainsIntercepts = false; | |
| 4578 } | |
| 4579 | |
| 4580 bool containsCubics() const { | |
| 4581 return fContainsCubics; | |
| 4582 } | |
| 4583 | |
| 4584 bool crosses(const Contour* crosser) const { | |
| 4585 for (int index = 0; index < fCrosses.count(); ++index) { | |
| 4586 if (fCrosses[index] == crosser) { | |
| 4587 return true; | |
| 4588 } | |
| 4589 } | |
| 4590 return false; | |
| 4591 } | |
| 4592 | |
| 4593 bool done() const { | |
| 4594 return fDone; | |
| 4595 } | |
| 4596 | |
| 4597 const SkPoint& end() const { | |
| 4598 const Segment& segment = fSegments.back(); | |
| 4599 return segment.pts()[segment.verb()]; | |
| 4600 } | |
| 4601 | |
| 4602 void findTooCloseToCall() { | |
| 4603 int segmentCount = fSegments.count(); | |
| 4604 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { | |
| 4605 fSegments[sIndex].findTooCloseToCall(); | |
| 4606 } | |
| 4607 } | |
| 4608 | |
| 4609 void fixOtherTIndex() { | |
| 4610 int segmentCount = fSegments.count(); | |
| 4611 for (int sIndex = 0; sIndex < segmentCount; ++sIndex) { | |
| 4612 fSegments[sIndex].fixOtherTIndex(); | |
| 4613 } | |
| 4614 } | |
| 4615 | |
| 4616 Segment* nonVerticalSegment(int& start, int& end) { | |
| 4617 int segmentCount = fSortedSegments.count(); | |
| 4618 SkASSERT(segmentCount > 0); | |
| 4619 for (int sortedIndex = fFirstSorted; sortedIndex < segmentCount; ++sorte
dIndex) { | |
| 4620 Segment* testSegment = fSortedSegments[sortedIndex]; | |
| 4621 if (testSegment->done()) { | |
| 4622 continue; | |
| 4623 } | |
| 4624 start = end = 0; | |
| 4625 while (testSegment->nextCandidate(start, end)) { | |
| 4626 if (!testSegment->isVertical(start, end)) { | |
| 4627 return testSegment; | |
| 4628 } | |
| 4629 } | |
| 4630 } | |
| 4631 return NULL; | |
| 4632 } | |
| 4633 | |
| 4634 bool operand() const { | |
| 4635 return fOperand; | |
| 4636 } | |
| 4637 | |
| 4638 void reset() { | |
| 4639 fSegments.reset(); | |
| 4640 fBounds.set(SK_ScalarMax, SK_ScalarMax, SK_ScalarMax, SK_ScalarMax); | |
| 4641 fContainsCurves = fContainsCubics = fContainsIntercepts = fDone = false; | |
| 4642 } | |
| 4643 | |
| 4644 void resolveCoincidence(SkTDArray<Contour*>& contourList) { | |
| 4645 int count = fCoincidences.count(); | |
| 4646 for (int index = 0; index < count; ++index) { | |
| 4647 Coincidence& coincidence = fCoincidences[index]; | |
| 4648 SkASSERT(coincidence.fContours[0] == this); | |
| 4649 int thisIndex = coincidence.fSegments[0]; | |
| 4650 Segment& thisOne = fSegments[thisIndex]; | |
| 4651 Contour* otherContour = coincidence.fContours[1]; | |
| 4652 int otherIndex = coincidence.fSegments[1]; | |
| 4653 Segment& other = otherContour->fSegments[otherIndex]; | |
| 4654 if ((thisOne.done() || other.done()) && thisOne.complete() && other.
complete()) { | |
| 4655 continue; | |
| 4656 } | |
| 4657 #if DEBUG_CONCIDENT | |
| 4658 thisOne.debugShowTs(); | |
| 4659 other.debugShowTs(); | |
| 4660 #endif | |
| 4661 double startT = coincidence.fTs[0][0]; | |
| 4662 double endT = coincidence.fTs[0][1]; | |
| 4663 bool cancelers = false; | |
| 4664 if (startT > endT) { | |
| 4665 SkTSwap<double>(startT, endT); | |
| 4666 cancelers ^= true; // FIXME: just assign true | |
| 4667 } | |
| 4668 SkASSERT(!approximately_negative(endT - startT)); | |
| 4669 double oStartT = coincidence.fTs[1][0]; | |
| 4670 double oEndT = coincidence.fTs[1][1]; | |
| 4671 if (oStartT > oEndT) { | |
| 4672 SkTSwap<double>(oStartT, oEndT); | |
| 4673 cancelers ^= true; | |
| 4674 } | |
| 4675 SkASSERT(!approximately_negative(oEndT - oStartT)); | |
| 4676 bool opp = fOperand ^ otherContour->fOperand; | |
| 4677 if (cancelers && !opp) { | |
| 4678 // make sure startT and endT have t entries | |
| 4679 if (startT > 0 || oEndT < 1 | |
| 4680 || thisOne.isMissing(startT) || other.isMissing(oEndT))
{ | |
| 4681 thisOne.addTPair(startT, other, oEndT, true, coincidence.fPt
s[0]); | |
| 4682 } | |
| 4683 if (oStartT > 0 || endT < 1 | |
| 4684 || thisOne.isMissing(endT) || other.isMissing(oStartT))
{ | |
| 4685 other.addTPair(oStartT, thisOne, endT, true, coincidence.fPt
s[1]); | |
| 4686 } | |
| 4687 if (!thisOne.done() && !other.done()) { | |
| 4688 thisOne.addTCancel(startT, endT, other, oStartT, oEndT); | |
| 4689 } | |
| 4690 } else { | |
| 4691 if (startT > 0 || oStartT > 0 | |
| 4692 || thisOne.isMissing(startT) || other.isMissing(oStartT)
) { | |
| 4693 thisOne.addTPair(startT, other, oStartT, true, coincidence.f
Pts[0]); | |
| 4694 } | |
| 4695 if (endT < 1 || oEndT < 1 | |
| 4696 || thisOne.isMissing(endT) || other.isMissing(oEndT)) { | |
| 4697 other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[
1]); | |
| 4698 } | |
| 4699 if (!thisOne.done() && !other.done()) { | |
| 4700 thisOne.addTCoincident(startT, endT, other, oStartT, oEndT); | |
| 4701 } | |
| 4702 } | |
| 4703 #if DEBUG_CONCIDENT | |
| 4704 thisOne.debugShowTs(); | |
| 4705 other.debugShowTs(); | |
| 4706 #endif | |
| 4707 #if DEBUG_SHOW_WINDING | |
| 4708 debugShowWindingValues(contourList); | |
| 4709 #endif | |
| 4710 } | |
| 4711 } | |
| 4712 | |
| 4713 // first pass, add missing T values | |
| 4714 // second pass, determine winding values of overlaps | |
| 4715 void addCoincidentPoints() { | |
| 4716 int count = fCoincidences.count(); | |
| 4717 for (int index = 0; index < count; ++index) { | |
| 4718 Coincidence& coincidence = fCoincidences[index]; | |
| 4719 SkASSERT(coincidence.fContours[0] == this); | |
| 4720 int thisIndex = coincidence.fSegments[0]; | |
| 4721 Segment& thisOne = fSegments[thisIndex]; | |
| 4722 Contour* otherContour = coincidence.fContours[1]; | |
| 4723 int otherIndex = coincidence.fSegments[1]; | |
| 4724 Segment& other = otherContour->fSegments[otherIndex]; | |
| 4725 if ((thisOne.done() || other.done()) && thisOne.complete() && other.
complete()) { | |
| 4726 // OPTIMIZATION: remove from array | |
| 4727 continue; | |
| 4728 } | |
| 4729 #if DEBUG_CONCIDENT | |
| 4730 thisOne.debugShowTs(); | |
| 4731 other.debugShowTs(); | |
| 4732 #endif | |
| 4733 double startT = coincidence.fTs[0][0]; | |
| 4734 double endT = coincidence.fTs[0][1]; | |
| 4735 bool cancelers; | |
| 4736 if ((cancelers = startT > endT)) { | |
| 4737 SkTSwap(startT, endT); | |
| 4738 SkTSwap(coincidence.fPts[0], coincidence.fPts[1]); | |
| 4739 } | |
| 4740 SkASSERT(!approximately_negative(endT - startT)); | |
| 4741 double oStartT = coincidence.fTs[1][0]; | |
| 4742 double oEndT = coincidence.fTs[1][1]; | |
| 4743 if (oStartT > oEndT) { | |
| 4744 SkTSwap<double>(oStartT, oEndT); | |
| 4745 cancelers ^= true; | |
| 4746 } | |
| 4747 SkASSERT(!approximately_negative(oEndT - oStartT)); | |
| 4748 bool opp = fOperand ^ otherContour->fOperand; | |
| 4749 if (cancelers && !opp) { | |
| 4750 // make sure startT and endT have t entries | |
| 4751 if (startT > 0 || oEndT < 1 | |
| 4752 || thisOne.isMissing(startT) || other.isMissing(oEndT))
{ | |
| 4753 thisOne.addTPair(startT, other, oEndT, true, coincidence.fPt
s[0]); | |
| 4754 } | |
| 4755 if (oStartT > 0 || endT < 1 | |
| 4756 || thisOne.isMissing(endT) || other.isMissing(oStartT))
{ | |
| 4757 other.addTPair(oStartT, thisOne, endT, true, coincidence.fPt
s[1]); | |
| 4758 } | |
| 4759 } else { | |
| 4760 if (startT > 0 || oStartT > 0 | |
| 4761 || thisOne.isMissing(startT) || other.isMissing(oStartT)
) { | |
| 4762 thisOne.addTPair(startT, other, oStartT, true, coincidence.f
Pts[0]); | |
| 4763 } | |
| 4764 if (endT < 1 || oEndT < 1 | |
| 4765 || thisOne.isMissing(endT) || other.isMissing(oEndT)) { | |
| 4766 other.addTPair(oEndT, thisOne, endT, true, coincidence.fPts[
1]); | |
| 4767 } | |
| 4768 } | |
| 4769 #if DEBUG_CONCIDENT | |
| 4770 thisOne.debugShowTs(); | |
| 4771 other.debugShowTs(); | |
| 4772 #endif | |
| 4773 } | |
| 4774 } | |
| 4775 | |
| 4776 void calcCoincidentWinding() { | |
| 4777 int count = fCoincidences.count(); | |
| 4778 for (int index = 0; index < count; ++index) { | |
| 4779 Coincidence& coincidence = fCoincidences[index]; | |
| 4780 SkASSERT(coincidence.fContours[0] == this); | |
| 4781 int thisIndex = coincidence.fSegments[0]; | |
| 4782 Segment& thisOne = fSegments[thisIndex]; | |
| 4783 if (thisOne.done()) { | |
| 4784 continue; | |
| 4785 } | |
| 4786 Contour* otherContour = coincidence.fContours[1]; | |
| 4787 int otherIndex = coincidence.fSegments[1]; | |
| 4788 Segment& other = otherContour->fSegments[otherIndex]; | |
| 4789 if (other.done()) { | |
| 4790 continue; | |
| 4791 } | |
| 4792 double startT = coincidence.fTs[0][0]; | |
| 4793 double endT = coincidence.fTs[0][1]; | |
| 4794 bool cancelers; | |
| 4795 if ((cancelers = startT > endT)) { | |
| 4796 SkTSwap<double>(startT, endT); | |
| 4797 } | |
| 4798 SkASSERT(!approximately_negative(endT - startT)); | |
| 4799 double oStartT = coincidence.fTs[1][0]; | |
| 4800 double oEndT = coincidence.fTs[1][1]; | |
| 4801 if (oStartT > oEndT) { | |
| 4802 SkTSwap<double>(oStartT, oEndT); | |
| 4803 cancelers ^= true; | |
| 4804 } | |
| 4805 SkASSERT(!approximately_negative(oEndT - oStartT)); | |
| 4806 bool opp = fOperand ^ otherContour->fOperand; | |
| 4807 if (cancelers && !opp) { | |
| 4808 // make sure startT and endT have t entries | |
| 4809 if (!thisOne.done() && !other.done()) { | |
| 4810 thisOne.addTCancel(startT, endT, other, oStartT, oEndT); | |
| 4811 } | |
| 4812 } else { | |
| 4813 if (!thisOne.done() && !other.done()) { | |
| 4814 thisOne.addTCoincident(startT, endT, other, oStartT, oEndT); | |
| 4815 } | |
| 4816 } | |
| 4817 #if DEBUG_CONCIDENT | |
| 4818 thisOne.debugShowTs(); | |
| 4819 other.debugShowTs(); | |
| 4820 #endif | |
| 4821 } | |
| 4822 } | |
| 4823 | |
| 4824 SkTArray<Segment>& segments() { | |
| 4825 return fSegments; | |
| 4826 } | |
| 4827 | |
| 4828 void setContainsIntercepts() { | |
| 4829 fContainsIntercepts = true; | |
| 4830 } | |
| 4831 | |
| 4832 void setOperand(bool isOp) { | |
| 4833 fOperand = isOp; | |
| 4834 } | |
| 4835 | |
| 4836 void setOppXor(bool isOppXor) { | |
| 4837 fOppXor = isOppXor; | |
| 4838 int segmentCount = fSegments.count(); | |
| 4839 for (int test = 0; test < segmentCount; ++test) { | |
| 4840 fSegments[test].setOppXor(isOppXor); | |
| 4841 } | |
| 4842 } | |
| 4843 | |
| 4844 void setXor(bool isXor) { | |
| 4845 fXor = isXor; | |
| 4846 } | |
| 4847 | |
| 4848 void sortSegments() { | |
| 4849 int segmentCount = fSegments.count(); | |
| 4850 fSortedSegments.setReserve(segmentCount); | |
| 4851 for (int test = 0; test < segmentCount; ++test) { | |
| 4852 *fSortedSegments.append() = &fSegments[test]; | |
| 4853 } | |
| 4854 QSort<Segment>(fSortedSegments.begin(), fSortedSegments.end() - 1); | |
| 4855 fFirstSorted = 0; | |
| 4856 } | |
| 4857 | |
| 4858 const SkPoint& start() const { | |
| 4859 return fSegments.front().pts()[0]; | |
| 4860 } | |
| 4861 | |
| 4862 void toPath(PathWrapper& path) const { | |
| 4863 int segmentCount = fSegments.count(); | |
| 4864 const SkPoint& pt = fSegments.front().pts()[0]; | |
| 4865 path.deferredMove(pt); | |
| 4866 for (int test = 0; test < segmentCount; ++test) { | |
| 4867 fSegments[test].addCurveTo(0, 1, path, true); | |
| 4868 } | |
| 4869 path.close(); | |
| 4870 } | |
| 4871 | |
| 4872 void toPartialBackward(PathWrapper& path) const { | |
| 4873 int segmentCount = fSegments.count(); | |
| 4874 for (int test = segmentCount - 1; test >= 0; --test) { | |
| 4875 fSegments[test].addCurveTo(1, 0, path, true); | |
| 4876 } | |
| 4877 } | |
| 4878 | |
| 4879 void toPartialForward(PathWrapper& path) const { | |
| 4880 int segmentCount = fSegments.count(); | |
| 4881 for (int test = 0; test < segmentCount; ++test) { | |
| 4882 fSegments[test].addCurveTo(0, 1, path, true); | |
| 4883 } | |
| 4884 } | |
| 4885 | |
| 4886 void topSortableSegment(const SkPoint& topLeft, SkPoint& bestXY, Segment*& t
opStart) { | |
| 4887 int segmentCount = fSortedSegments.count(); | |
| 4888 SkASSERT(segmentCount > 0); | |
| 4889 int sortedIndex = fFirstSorted; | |
| 4890 fDone = true; // may be cleared below | |
| 4891 for ( ; sortedIndex < segmentCount; ++sortedIndex) { | |
| 4892 Segment* testSegment = fSortedSegments[sortedIndex]; | |
| 4893 if (testSegment->done()) { | |
| 4894 if (sortedIndex == fFirstSorted) { | |
| 4895 ++fFirstSorted; | |
| 4896 } | |
| 4897 continue; | |
| 4898 } | |
| 4899 fDone = false; | |
| 4900 SkPoint testXY = testSegment->activeLeftTop(true, NULL); | |
| 4901 if (topStart) { | |
| 4902 if (testXY.fY < topLeft.fY) { | |
| 4903 continue; | |
| 4904 } | |
| 4905 if (testXY.fY == topLeft.fY && testXY.fX < topLeft.fX) { | |
| 4906 continue; | |
| 4907 } | |
| 4908 if (bestXY.fY < testXY.fY) { | |
| 4909 continue; | |
| 4910 } | |
| 4911 if (bestXY.fY == testXY.fY && bestXY.fX < testXY.fX) { | |
| 4912 continue; | |
| 4913 } | |
| 4914 } | |
| 4915 topStart = testSegment; | |
| 4916 bestXY = testXY; | |
| 4917 } | |
| 4918 } | |
| 4919 | |
| 4920 Segment* undoneSegment(int& start, int& end) { | |
| 4921 int segmentCount = fSegments.count(); | |
| 4922 for (int test = 0; test < segmentCount; ++test) { | |
| 4923 Segment* testSegment = &fSegments[test]; | |
| 4924 if (testSegment->done()) { | |
| 4925 continue; | |
| 4926 } | |
| 4927 testSegment->undoneSpan(start, end); | |
| 4928 return testSegment; | |
| 4929 } | |
| 4930 return NULL; | |
| 4931 } | |
| 4932 | |
| 4933 int updateSegment(int index, const SkPoint* pts) { | |
| 4934 Segment& segment = fSegments[index]; | |
| 4935 segment.updatePts(pts); | |
| 4936 return segment.verb() + 1; | |
| 4937 } | |
| 4938 | |
| 4939 #if DEBUG_TEST | |
| 4940 SkTArray<Segment>& debugSegments() { | |
| 4941 return fSegments; | |
| 4942 } | |
| 4943 #endif | |
| 4944 | |
| 4945 #if DEBUG_DUMP | |
| 4946 void dump() { | |
| 4947 int i; | |
| 4948 const char className[] = "Contour"; | |
| 4949 const int tab = 4; | |
| 4950 SkDebugf("%s %p (contour=%d)\n", className, this, fID); | |
| 4951 for (i = 0; i < fSegments.count(); ++i) { | |
| 4952 SkDebugf("%*s.fSegments[%d]:\n", tab + sizeof(className), | |
| 4953 className, i); | |
| 4954 fSegments[i].dump(); | |
| 4955 } | |
| 4956 SkDebugf("%*s.fBounds=(l:%1.9g, t:%1.9g r:%1.9g, b:%1.9g)\n", | |
| 4957 tab + sizeof(className), className, | |
| 4958 fBounds.fLeft, fBounds.fTop, | |
| 4959 fBounds.fRight, fBounds.fBottom); | |
| 4960 SkDebugf("%*s.fContainsIntercepts=%d\n", tab + sizeof(className), | |
| 4961 className, fContainsIntercepts); | |
| 4962 SkDebugf("%*s.fContainsCurves=%d\n", tab + sizeof(className), | |
| 4963 className, fContainsCurves); | |
| 4964 } | |
| 4965 #endif | |
| 4966 | |
| 4967 #if DEBUG_ACTIVE_SPANS | |
| 4968 void debugShowActiveSpans() { | |
| 4969 for (int index = 0; index < fSegments.count(); ++index) { | |
| 4970 fSegments[index].debugShowActiveSpans(); | |
| 4971 } | |
| 4972 } | |
| 4973 | |
| 4974 void validateActiveSpans() { | |
| 4975 for (int index = 0; index < fSegments.count(); ++index) { | |
| 4976 fSegments[index].validateActiveSpans(); | |
| 4977 } | |
| 4978 } | |
| 4979 #endif | |
| 4980 | |
| 4981 #if DEBUG_SHOW_WINDING | |
| 4982 int debugShowWindingValues(int totalSegments, int ofInterest) { | |
| 4983 int count = fSegments.count(); | |
| 4984 int sum = 0; | |
| 4985 for (int index = 0; index < count; ++index) { | |
| 4986 sum += fSegments[index].debugShowWindingValues(totalSegments, ofInte
rest); | |
| 4987 } | |
| 4988 // SkDebugf("%s sum=%d\n", __FUNCTION__, sum); | |
| 4989 return sum; | |
| 4990 } | |
| 4991 | |
| 4992 static void debugShowWindingValues(SkTDArray<Contour*>& contourList) { | |
| 4993 // int ofInterest = 1 << 1 | 1 << 5 | 1 << 9 | 1 << 13; | |
| 4994 // int ofInterest = 1 << 4 | 1 << 8 | 1 << 12 | 1 << 16; | |
| 4995 int ofInterest = 1 << 5 | 1 << 8; | |
| 4996 int total = 0; | |
| 4997 int index; | |
| 4998 for (index = 0; index < contourList.count(); ++index) { | |
| 4999 total += contourList[index]->segments().count(); | |
| 5000 } | |
| 5001 int sum = 0; | |
| 5002 for (index = 0; index < contourList.count(); ++index) { | |
| 5003 sum += contourList[index]->debugShowWindingValues(total, ofInterest)
; | |
| 5004 } | |
| 5005 // SkDebugf("%s total=%d\n", __FUNCTION__, sum); | |
| 5006 } | |
| 5007 #endif | |
| 5008 | |
| 5009 protected: | |
| 5010 void setBounds() { | |
| 5011 int count = fSegments.count(); | |
| 5012 if (count == 0) { | |
| 5013 SkDebugf("%s empty contour\n", __FUNCTION__); | |
| 5014 SkASSERT(0); | |
| 5015 // FIXME: delete empty contour? | |
| 5016 return; | |
| 5017 } | |
| 5018 fBounds = fSegments.front().bounds(); | |
| 5019 for (int index = 1; index < count; ++index) { | |
| 5020 fBounds.add(fSegments[index].bounds()); | |
| 5021 } | |
| 5022 } | |
| 5023 | |
| 5024 private: | |
| 5025 SkTArray<Segment> fSegments; | |
| 5026 SkTDArray<Segment*> fSortedSegments; | |
| 5027 int fFirstSorted; | |
| 5028 SkTDArray<Coincidence> fCoincidences; | |
| 5029 SkTDArray<const Contour*> fCrosses; | |
| 5030 Bounds fBounds; | |
| 5031 bool fContainsIntercepts; // FIXME: is this used by anybody? | |
| 5032 bool fContainsCubics; | |
| 5033 bool fContainsCurves; | |
| 5034 bool fDone; | |
| 5035 bool fOperand; // true for the second argument to a binary operator | |
| 5036 bool fXor; | |
| 5037 bool fOppXor; | |
| 5038 #if DEBUG_DUMP | |
| 5039 int fID; | |
| 5040 #endif | |
| 5041 }; | |
| 5042 | |
| 5043 class EdgeBuilder { | |
| 5044 public: | |
| 5045 | |
| 5046 EdgeBuilder(const PathWrapper& path, SkTArray<Contour>& contours) | |
| 5047 : fPath(path.nativePath()) | |
| 5048 , fContours(contours) | |
| 5049 { | |
| 5050 init(); | |
| 5051 } | |
| 5052 | |
| 5053 EdgeBuilder(const SkPath& path, SkTArray<Contour>& contours) | |
| 5054 : fPath(&path) | |
| 5055 , fContours(contours) | |
| 5056 { | |
| 5057 init(); | |
| 5058 } | |
| 5059 | |
| 5060 void init() { | |
| 5061 fCurrentContour = NULL; | |
| 5062 fOperand = false; | |
| 5063 fXorMask[0] = fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWi
nding_Mask; | |
| 5064 #if DEBUG_DUMP | |
| 5065 gContourID = 0; | |
| 5066 gSegmentID = 0; | |
| 5067 #endif | |
| 5068 fSecondHalf = preFetch(); | |
| 5069 } | |
| 5070 | |
| 5071 void addOperand(const SkPath& path) { | |
| 5072 SkASSERT(fPathVerbs.count() > 0 && fPathVerbs.end()[-1] == SkPath::kDone_Ver
b); | |
| 5073 fPathVerbs.pop(); | |
| 5074 fPath = &path; | |
| 5075 fXorMask[1] = (fPath->getFillType() & 1) ? kEvenOdd_Mask : kWinding_Mask; | |
| 5076 preFetch(); | |
| 5077 } | |
| 5078 | |
| 5079 void finish() { | |
| 5080 walk(); | |
| 5081 complete(); | |
| 5082 if (fCurrentContour && !fCurrentContour->segments().count()) { | |
| 5083 fContours.pop_back(); | |
| 5084 } | |
| 5085 // correct pointers in contours since fReducePts may have moved as it grew | |
| 5086 int cIndex = 0; | |
| 5087 int extraCount = fExtra.count(); | |
| 5088 SkASSERT(extraCount == 0 || fExtra[0] == -1); | |
| 5089 int eIndex = 0; | |
| 5090 int rIndex = 0; | |
| 5091 while (++eIndex < extraCount) { | |
| 5092 int offset = fExtra[eIndex]; | |
| 5093 if (offset < 0) { | |
| 5094 ++cIndex; | |
| 5095 continue; | |
| 5096 } | |
| 5097 fCurrentContour = &fContours[cIndex]; | |
| 5098 rIndex += fCurrentContour->updateSegment(offset - 1, | |
| 5099 &fReducePts[rIndex]); | |
| 5100 } | |
| 5101 fExtra.reset(); // we're done with this | |
| 5102 } | |
| 5103 | |
| 5104 ShapeOpMask xorMask() const { | |
| 5105 return fXorMask[fOperand]; | |
| 5106 } | |
| 5107 | |
| 5108 protected: | |
| 5109 | |
| 5110 void complete() { | |
| 5111 if (fCurrentContour && fCurrentContour->segments().count()) { | |
| 5112 fCurrentContour->complete(); | |
| 5113 fCurrentContour = NULL; | |
| 5114 } | |
| 5115 } | |
| 5116 | |
| 5117 // FIXME:remove once we can access path pts directly | |
| 5118 int preFetch() { | |
| 5119 SkPath::RawIter iter(*fPath); // FIXME: access path directly when allowed | |
| 5120 SkPoint pts[4]; | |
| 5121 SkPath::Verb verb; | |
| 5122 do { | |
| 5123 verb = iter.next(pts); | |
| 5124 *fPathVerbs.append() = verb; | |
| 5125 if (verb == SkPath::kMove_Verb) { | |
| 5126 *fPathPts.append() = pts[0]; | |
| 5127 } else if (verb >= SkPath::kLine_Verb && verb <= SkPath::kCubic_Verb) { | |
| 5128 fPathPts.append(verb, &pts[1]); | |
| 5129 } | |
| 5130 } while (verb != SkPath::kDone_Verb); | |
| 5131 return fPathVerbs.count() - 1; | |
| 5132 } | |
| 5133 | |
| 5134 void walk() { | |
| 5135 SkPath::Verb reducedVerb; | |
| 5136 uint8_t* verbPtr = fPathVerbs.begin(); | |
| 5137 uint8_t* endOfFirstHalf = &verbPtr[fSecondHalf]; | |
| 5138 const SkPoint* pointsPtr = fPathPts.begin(); | |
| 5139 const SkPoint* finalCurveStart = NULL; | |
| 5140 const SkPoint* finalCurveEnd = NULL; | |
| 5141 SkPath::Verb verb; | |
| 5142 while ((verb = (SkPath::Verb) *verbPtr++) != SkPath::kDone_Verb) { | |
| 5143 switch (verb) { | |
| 5144 case SkPath::kMove_Verb: | |
| 5145 complete(); | |
| 5146 if (!fCurrentContour) { | |
| 5147 fCurrentContour = fContours.push_back_n(1); | |
| 5148 fCurrentContour->setOperand(fOperand); | |
| 5149 fCurrentContour->setXor(fXorMask[fOperand] == kEvenOdd_Mask)
; | |
| 5150 *fExtra.append() = -1; // start new contour | |
| 5151 } | |
| 5152 finalCurveEnd = pointsPtr++; | |
| 5153 goto nextVerb; | |
| 5154 case SkPath::kLine_Verb: | |
| 5155 // skip degenerate points | |
| 5156 if (pointsPtr[-1].fX != pointsPtr[0].fX | |
| 5157 || pointsPtr[-1].fY != pointsPtr[0].fY) { | |
| 5158 fCurrentContour->addLine(&pointsPtr[-1]); | |
| 5159 } | |
| 5160 break; | |
| 5161 case SkPath::kQuad_Verb: | |
| 5162 | |
| 5163 reducedVerb = QuadReduceOrder(&pointsPtr[-1], fReducePts); | |
| 5164 if (reducedVerb == 0) { | |
| 5165 break; // skip degenerate points | |
| 5166 } | |
| 5167 if (reducedVerb == 1) { | |
| 5168 *fExtra.append() = | |
| 5169 fCurrentContour->addLine(fReducePts.end() - 2); | |
| 5170 break; | |
| 5171 } | |
| 5172 fCurrentContour->addQuad(&pointsPtr[-1]); | |
| 5173 break; | |
| 5174 case SkPath::kCubic_Verb: | |
| 5175 reducedVerb = CubicReduceOrder(&pointsPtr[-1], fReducePts); | |
| 5176 if (reducedVerb == 0) { | |
| 5177 break; // skip degenerate points | |
| 5178 } | |
| 5179 if (reducedVerb == 1) { | |
| 5180 *fExtra.append() = | |
| 5181 fCurrentContour->addLine(fReducePts.end() - 2); | |
| 5182 break; | |
| 5183 } | |
| 5184 if (reducedVerb == 2) { | |
| 5185 *fExtra.append() = | |
| 5186 fCurrentContour->addQuad(fReducePts.end() - 3); | |
| 5187 break; | |
| 5188 } | |
| 5189 fCurrentContour->addCubic(&pointsPtr[-1]); | |
| 5190 break; | |
| 5191 case SkPath::kClose_Verb: | |
| 5192 SkASSERT(fCurrentContour); | |
| 5193 if (finalCurveStart && finalCurveEnd | |
| 5194 && *finalCurveStart != *finalCurveEnd) { | |
| 5195 *fReducePts.append() = *finalCurveStart; | |
| 5196 *fReducePts.append() = *finalCurveEnd; | |
| 5197 *fExtra.append() = | |
| 5198 fCurrentContour->addLine(fReducePts.end() - 2); | |
| 5199 } | |
| 5200 complete(); | |
| 5201 goto nextVerb; | |
| 5202 default: | |
| 5203 SkDEBUGFAIL("bad verb"); | |
| 5204 return; | |
| 5205 } | |
| 5206 finalCurveStart = &pointsPtr[verb - 1]; | |
| 5207 pointsPtr += verb; | |
| 5208 SkASSERT(fCurrentContour); | |
| 5209 nextVerb: | |
| 5210 if (verbPtr == endOfFirstHalf) { | |
| 5211 fOperand = true; | |
| 5212 } | |
| 5213 } | |
| 5214 } | |
| 5215 | |
| 5216 private: | |
| 5217 const SkPath* fPath; | |
| 5218 SkTDArray<SkPoint> fPathPts; // FIXME: point directly to path pts instead | |
| 5219 SkTDArray<uint8_t> fPathVerbs; // FIXME: remove | |
| 5220 Contour* fCurrentContour; | |
| 5221 SkTArray<Contour>& fContours; | |
| 5222 SkTDArray<SkPoint> fReducePts; // segments created on the fly | |
| 5223 SkTDArray<int> fExtra; // -1 marks new contour, > 0 offsets into contour | |
| 5224 ShapeOpMask fXorMask[2]; | |
| 5225 int fSecondHalf; | |
| 5226 bool fOperand; | |
| 5227 }; | |
| 5228 | |
| 5229 class Work { | |
| 5230 public: | |
| 5231 enum SegmentType { | |
| 5232 kHorizontalLine_Segment = -1, | |
| 5233 kVerticalLine_Segment = 0, | |
| 5234 kLine_Segment = SkPath::kLine_Verb, | |
| 5235 kQuad_Segment = SkPath::kQuad_Verb, | |
| 5236 kCubic_Segment = SkPath::kCubic_Verb, | |
| 5237 }; | |
| 5238 | |
| 5239 void addCoincident(Work& other, const Intersections& ts, bool swap) { | |
| 5240 fContour->addCoincident(fIndex, other.fContour, other.fIndex, ts, swap); | |
| 5241 } | |
| 5242 | |
| 5243 // FIXME: does it make sense to write otherIndex now if we're going to | |
| 5244 // fix it up later? | |
| 5245 void addOtherT(int index, double otherT, int otherIndex) { | |
| 5246 fContour->addOtherT(fIndex, index, otherT, otherIndex); | |
| 5247 } | |
| 5248 | |
| 5249 // Avoid collapsing t values that are close to the same since | |
| 5250 // we walk ts to describe consecutive intersections. Since a pair of ts can | |
| 5251 // be nearly equal, any problems caused by this should be taken care | |
| 5252 // of later. | |
| 5253 // On the edge or out of range values are negative; add 2 to get end | |
| 5254 int addT(const Work& other, const SkPoint& pt, double& newT) { | |
| 5255 return fContour->addT(fIndex, other.fContour, other.fIndex, pt, newT); | |
| 5256 } | |
| 5257 | |
| 5258 int addSelfT(const Work& other, const SkPoint& pt, double& newT) { | |
| 5259 return fContour->addSelfT(fIndex, other.fContour, other.fIndex, pt, newT
); | |
| 5260 } | |
| 5261 | |
| 5262 int addUnsortableT(const Work& other, bool start, const SkPoint& pt, double&
newT) { | |
| 5263 return fContour->addUnsortableT(fIndex, other.fContour, other.fIndex, st
art, pt, newT); | |
| 5264 } | |
| 5265 | |
| 5266 bool advance() { | |
| 5267 return ++fIndex < fLast; | |
| 5268 } | |
| 5269 | |
| 5270 SkScalar bottom() const { | |
| 5271 return bounds().fBottom; | |
| 5272 } | |
| 5273 | |
| 5274 const Bounds& bounds() const { | |
| 5275 return fContour->segments()[fIndex].bounds(); | |
| 5276 } | |
| 5277 | |
| 5278 #if !APPROXIMATE_CUBICS | |
| 5279 const SkPoint* cubic() const { | |
| 5280 return fCubic; | |
| 5281 } | |
| 5282 #endif | |
| 5283 | |
| 5284 void init(Contour* contour) { | |
| 5285 fContour = contour; | |
| 5286 fIndex = 0; | |
| 5287 fLast = contour->segments().count(); | |
| 5288 } | |
| 5289 | |
| 5290 bool isAdjacent(const Work& next) { | |
| 5291 return fContour == next.fContour && fIndex + 1 == next.fIndex; | |
| 5292 } | |
| 5293 | |
| 5294 bool isFirstLast(const Work& next) { | |
| 5295 return fContour == next.fContour && fIndex == 0 | |
| 5296 && next.fIndex == fLast - 1; | |
| 5297 } | |
| 5298 | |
| 5299 SkScalar left() const { | |
| 5300 return bounds().fLeft; | |
| 5301 } | |
| 5302 | |
| 5303 #if !APPROXIMATE_CUBICS | |
| 5304 void promoteToCubic() { | |
| 5305 fCubic[0] = pts()[0]; | |
| 5306 fCubic[2] = pts()[1]; | |
| 5307 fCubic[3] = pts()[2]; | |
| 5308 fCubic[1].fX = (fCubic[0].fX + fCubic[2].fX * 2) / 3; | |
| 5309 fCubic[1].fY = (fCubic[0].fY + fCubic[2].fY * 2) / 3; | |
| 5310 fCubic[2].fX = (fCubic[3].fX + fCubic[2].fX * 2) / 3; | |
| 5311 fCubic[2].fY = (fCubic[3].fY + fCubic[2].fY * 2) / 3; | |
| 5312 } | |
| 5313 #endif | |
| 5314 | |
| 5315 const SkPoint* pts() const { | |
| 5316 return fContour->segments()[fIndex].pts(); | |
| 5317 } | |
| 5318 | |
| 5319 SkScalar right() const { | |
| 5320 return bounds().fRight; | |
| 5321 } | |
| 5322 | |
| 5323 ptrdiff_t segmentIndex() const { | |
| 5324 return fIndex; | |
| 5325 } | |
| 5326 | |
| 5327 SegmentType segmentType() const { | |
| 5328 const Segment& segment = fContour->segments()[fIndex]; | |
| 5329 SegmentType type = (SegmentType) segment.verb(); | |
| 5330 if (type != kLine_Segment) { | |
| 5331 return type; | |
| 5332 } | |
| 5333 if (segment.isHorizontal()) { | |
| 5334 return kHorizontalLine_Segment; | |
| 5335 } | |
| 5336 if (segment.isVertical()) { | |
| 5337 return kVerticalLine_Segment; | |
| 5338 } | |
| 5339 return kLine_Segment; | |
| 5340 } | |
| 5341 | |
| 5342 bool startAfter(const Work& after) { | |
| 5343 fIndex = after.fIndex; | |
| 5344 return advance(); | |
| 5345 } | |
| 5346 | |
| 5347 SkScalar top() const { | |
| 5348 return bounds().fTop; | |
| 5349 } | |
| 5350 | |
| 5351 SkPath::Verb verb() const { | |
| 5352 return fContour->segments()[fIndex].verb(); | |
| 5353 } | |
| 5354 | |
| 5355 SkScalar x() const { | |
| 5356 return bounds().fLeft; | |
| 5357 } | |
| 5358 | |
| 5359 bool xFlipped() const { | |
| 5360 return x() != pts()[0].fX; | |
| 5361 } | |
| 5362 | |
| 5363 SkScalar y() const { | |
| 5364 return bounds().fTop; | |
| 5365 } | |
| 5366 | |
| 5367 bool yFlipped() const { | |
| 5368 return y() != pts()[0].fY; | |
| 5369 } | |
| 5370 | |
| 5371 protected: | |
| 5372 Contour* fContour; | |
| 5373 #if !APPROXIMATE_CUBICS | |
| 5374 SkPoint fCubic[4]; | |
| 5375 #endif | |
| 5376 int fIndex; | |
| 5377 int fLast; | |
| 5378 }; | |
| 5379 | |
| 5380 #if DEBUG_ADD_INTERSECTING_TS | |
| 5381 | |
| 5382 static void debugShowLineIntersection(int pts, const Work& wt, const Work& wn, | |
| 5383 const Intersections& i) { | |
| 5384 SkASSERT(i.used() == pts); | |
| 5385 if (!pts) { | |
| 5386 SkDebugf("%s no intersect " LINE_DEBUG_STR " " LINE_DEBUG_STR "\n", | |
| 5387 __FUNCTION__, LINE_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts(
))); | |
| 5388 return; | |
| 5389 } | |
| 5390 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " LINE_DEBUG_STR " " PT_DEBUG_STR, __F
UNCTION__, | |
| 5391 i.fT[0][0], LINE_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | |
| 5392 if (pts == 2) { | |
| 5393 SkDebugf(" " T_DEBUG_STR(wtTs, 1) " " PT_DEBUG_STR, i.fT[0][1], PT_DEBUG
_DATA(i, 1)); | |
| 5394 } | |
| 5395 SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts()
)); | |
| 5396 if (pts == 2) { | |
| 5397 SkDebugf(" " T_DEBUG_STR(wnTs, 1), i.fT[1][1]); | |
| 5398 } | |
| 5399 SkDebugf("\n"); | |
| 5400 } | |
| 5401 | |
| 5402 static void debugShowQuadLineIntersection(int pts, const Work& wt, | |
| 5403 const Work& wn, const Intersections& i) { | |
| 5404 SkASSERT(i.used() == pts); | |
| 5405 if (!pts) { | |
| 5406 SkDebugf("%s no intersect " QUAD_DEBUG_STR " " LINE_DEBUG_STR "\n", | |
| 5407 __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts(
))); | |
| 5408 return; | |
| 5409 } | |
| 5410 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __F
UNCTION__, | |
| 5411 i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | |
| 5412 for (int n = 1; n < pts; ++n) { | |
| 5413 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBU
G_DATA(i, n)); | |
| 5414 } | |
| 5415 SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts()
)); | |
| 5416 for (int n = 1; n < pts; ++n) { | |
| 5417 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | |
| 5418 } | |
| 5419 SkDebugf("\n"); | |
| 5420 } | |
| 5421 | |
| 5422 static void debugShowQuadIntersection(int pts, const Work& wt, | |
| 5423 const Work& wn, const Intersections& i) { | |
| 5424 SkASSERT(i.used() == pts); | |
| 5425 if (!pts) { | |
| 5426 SkDebugf("%s no intersect " QUAD_DEBUG_STR " " QUAD_DEBUG_STR "\n", | |
| 5427 __FUNCTION__, QUAD_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts(
))); | |
| 5428 return; | |
| 5429 } | |
| 5430 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " QUAD_DEBUG_STR " " PT_DEBUG_STR, __F
UNCTION__, | |
| 5431 i.fT[0][0], QUAD_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | |
| 5432 for (int n = 1; n < pts; ++n) { | |
| 5433 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBU
G_DATA(i, n)); | |
| 5434 } | |
| 5435 SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts()
)); | |
| 5436 for (int n = 1; n < pts; ++n) { | |
| 5437 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | |
| 5438 } | |
| 5439 SkDebugf("\n"); | |
| 5440 } | |
| 5441 | |
| 5442 static void debugShowCubicLineIntersection(int pts, const Work& wt, | |
| 5443 const Work& wn, const Intersections& i) { | |
| 5444 SkASSERT(i.used() == pts); | |
| 5445 if (!pts) { | |
| 5446 SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " LINE_DEBUG_STR "\n", | |
| 5447 __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), LINE_DEBUG_DATA(wn.pts
())); | |
| 5448 return; | |
| 5449 } | |
| 5450 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __
FUNCTION__, | |
| 5451 i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | |
| 5452 for (int n = 1; n < pts; ++n) { | |
| 5453 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBU
G_DATA(i, n)); | |
| 5454 } | |
| 5455 SkDebugf(" wnTs[0]=%g " LINE_DEBUG_STR, i.fT[1][0], LINE_DEBUG_DATA(wn.pts()
)); | |
| 5456 for (int n = 1; n < pts; ++n) { | |
| 5457 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | |
| 5458 } | |
| 5459 SkDebugf("\n"); | |
| 5460 } | |
| 5461 | |
| 5462 static void debugShowCubicQuadIntersection(int pts, const Work& wt, | |
| 5463 const Work& wn, const Intersections& i) { | |
| 5464 SkASSERT(i.used() == pts); | |
| 5465 if (!pts) { | |
| 5466 SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " QUAD_DEBUG_STR "\n", | |
| 5467 __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), QUAD_DEBUG_DATA(wn.pts
())); | |
| 5468 return; | |
| 5469 } | |
| 5470 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __
FUNCTION__, | |
| 5471 i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | |
| 5472 for (int n = 1; n < pts; ++n) { | |
| 5473 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBU
G_DATA(i, n)); | |
| 5474 } | |
| 5475 SkDebugf(" wnTs[0]=%g " QUAD_DEBUG_STR, i.fT[1][0], QUAD_DEBUG_DATA(wn.pts()
)); | |
| 5476 for (int n = 1; n < pts; ++n) { | |
| 5477 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | |
| 5478 } | |
| 5479 SkDebugf("\n"); | |
| 5480 } | |
| 5481 | |
| 5482 static void debugShowCubicIntersection(int pts, const Work& wt, | |
| 5483 const Work& wn, const Intersections& i) { | |
| 5484 SkASSERT(i.used() == pts); | |
| 5485 if (!pts) { | |
| 5486 SkDebugf("%s no intersect " CUBIC_DEBUG_STR " " CUBIC_DEBUG_STR "\n", | |
| 5487 __FUNCTION__, CUBIC_DEBUG_DATA(wt.pts()), CUBIC_DEBUG_DATA(wn.pt
s())); | |
| 5488 return; | |
| 5489 } | |
| 5490 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __
FUNCTION__, | |
| 5491 i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | |
| 5492 for (int n = 1; n < pts; ++n) { | |
| 5493 SkDebugf(" " TX_DEBUG_STR(wtTs) " " PT_DEBUG_STR, n, i.fT[0][n], PT_DEBU
G_DATA(i, n)); | |
| 5494 } | |
| 5495 SkDebugf(" wnTs[0]=%g " CUBIC_DEBUG_STR, i.fT[1][0], CUBIC_DEBUG_DATA(wn.pts
())); | |
| 5496 for (int n = 1; n < pts; ++n) { | |
| 5497 SkDebugf(" " TX_DEBUG_STR(wnTs), n, i.fT[1][n]); | |
| 5498 } | |
| 5499 SkDebugf("\n"); | |
| 5500 } | |
| 5501 | |
| 5502 static void debugShowCubicIntersection(int pts, const Work& wt, const Intersecti
ons& i) { | |
| 5503 SkASSERT(i.used() == pts); | |
| 5504 if (!pts) { | |
| 5505 SkDebugf("%s no self intersect " CUBIC_DEBUG_STR "\n", __FUNCTION__, | |
| 5506 CUBIC_DEBUG_DATA(wt.pts())); | |
| 5507 return; | |
| 5508 } | |
| 5509 SkDebugf("%s " T_DEBUG_STR(wtTs, 0) " " CUBIC_DEBUG_STR " " PT_DEBUG_STR, __
FUNCTION__, | |
| 5510 i.fT[0][0], CUBIC_DEBUG_DATA(wt.pts()), PT_DEBUG_DATA(i, 0)); | |
| 5511 SkDebugf(" " T_DEBUG_STR(wtTs, 1), i.fT[1][0]); | |
| 5512 SkDebugf("\n"); | |
| 5513 } | |
| 5514 | |
| 5515 #else | |
| 5516 static void debugShowLineIntersection(int , const Work& , const Work& , const In
tersections& ) { | |
| 5517 } | |
| 5518 | |
| 5519 static void debugShowQuadLineIntersection(int , const Work& , const Work& , cons
t Intersections& ) { | |
| 5520 } | |
| 5521 | |
| 5522 static void debugShowQuadIntersection(int , const Work& , const Work& , const In
tersections& ) { | |
| 5523 } | |
| 5524 | |
| 5525 static void debugShowCubicLineIntersection(int , const Work& , const Work& , | |
| 5526 const Intersections& ) { | |
| 5527 } | |
| 5528 | |
| 5529 static void debugShowCubicQuadIntersection(int , const Work& , const Work& , | |
| 5530 const Intersections& ) { | |
| 5531 } | |
| 5532 | |
| 5533 static void debugShowCubicIntersection(int , const Work& , const Work& , const I
ntersections& ) { | |
| 5534 } | |
| 5535 | |
| 5536 static void debugShowCubicIntersection(int , const Work& , const Intersections&
) { | |
| 5537 } | |
| 5538 #endif | |
| 5539 | |
| 5540 static bool addIntersectTs(Contour* test, Contour* next) { | |
| 5541 | |
| 5542 if (test != next) { | |
| 5543 if (test->bounds().fBottom < next->bounds().fTop) { | |
| 5544 return false; | |
| 5545 } | |
| 5546 if (!Bounds::Intersects(test->bounds(), next->bounds())) { | |
| 5547 return true; | |
| 5548 } | |
| 5549 } | |
| 5550 Work wt; | |
| 5551 wt.init(test); | |
| 5552 bool foundCommonContour = test == next; | |
| 5553 do { | |
| 5554 Work wn; | |
| 5555 wn.init(next); | |
| 5556 if (test == next && !wn.startAfter(wt)) { | |
| 5557 continue; | |
| 5558 } | |
| 5559 do { | |
| 5560 if (!Bounds::Intersects(wt.bounds(), wn.bounds())) { | |
| 5561 continue; | |
| 5562 } | |
| 5563 int pts; | |
| 5564 Intersections ts; | |
| 5565 bool swap = false; | |
| 5566 switch (wt.segmentType()) { | |
| 5567 case Work::kHorizontalLine_Segment: | |
| 5568 swap = true; | |
| 5569 switch (wn.segmentType()) { | |
| 5570 case Work::kHorizontalLine_Segment: | |
| 5571 case Work::kVerticalLine_Segment: | |
| 5572 case Work::kLine_Segment: { | |
| 5573 pts = HLineIntersect(wn.pts(), wt.left(), | |
| 5574 wt.right(), wt.y(), wt.xFlipped(), ts); | |
| 5575 debugShowLineIntersection(pts, wt, wn, ts); | |
| 5576 break; | |
| 5577 } | |
| 5578 case Work::kQuad_Segment: { | |
| 5579 pts = HQuadIntersect(wn.pts(), wt.left(), | |
| 5580 wt.right(), wt.y(), wt.xFlipped(), ts); | |
| 5581 break; | |
| 5582 } | |
| 5583 case Work::kCubic_Segment: { | |
| 5584 pts = HCubicIntersect(wn.pts(), wt.left(), | |
| 5585 wt.right(), wt.y(), wt.xFlipped(), ts); | |
| 5586 debugShowCubicLineIntersection(pts, wn, wt, ts); | |
| 5587 break; | |
| 5588 } | |
| 5589 default: | |
| 5590 SkASSERT(0); | |
| 5591 } | |
| 5592 break; | |
| 5593 case Work::kVerticalLine_Segment: | |
| 5594 swap = true; | |
| 5595 switch (wn.segmentType()) { | |
| 5596 case Work::kHorizontalLine_Segment: | |
| 5597 case Work::kVerticalLine_Segment: | |
| 5598 case Work::kLine_Segment: { | |
| 5599 pts = VLineIntersect(wn.pts(), wt.top(), | |
| 5600 wt.bottom(), wt.x(), wt.yFlipped(), ts); | |
| 5601 debugShowLineIntersection(pts, wt, wn, ts); | |
| 5602 break; | |
| 5603 } | |
| 5604 case Work::kQuad_Segment: { | |
| 5605 pts = VQuadIntersect(wn.pts(), wt.top(), | |
| 5606 wt.bottom(), wt.x(), wt.yFlipped(), ts); | |
| 5607 break; | |
| 5608 } | |
| 5609 case Work::kCubic_Segment: { | |
| 5610 pts = VCubicIntersect(wn.pts(), wt.top(), | |
| 5611 wt.bottom(), wt.x(), wt.yFlipped(), ts); | |
| 5612 debugShowCubicLineIntersection(pts, wn, wt, ts); | |
| 5613 break; | |
| 5614 } | |
| 5615 default: | |
| 5616 SkASSERT(0); | |
| 5617 } | |
| 5618 break; | |
| 5619 case Work::kLine_Segment: | |
| 5620 switch (wn.segmentType()) { | |
| 5621 case Work::kHorizontalLine_Segment: | |
| 5622 pts = HLineIntersect(wt.pts(), wn.left(), | |
| 5623 wn.right(), wn.y(), wn.xFlipped(), ts); | |
| 5624 debugShowLineIntersection(pts, wt, wn, ts); | |
| 5625 break; | |
| 5626 case Work::kVerticalLine_Segment: | |
| 5627 pts = VLineIntersect(wt.pts(), wn.top(), | |
| 5628 wn.bottom(), wn.x(), wn.yFlipped(), ts); | |
| 5629 debugShowLineIntersection(pts, wt, wn, ts); | |
| 5630 break; | |
| 5631 case Work::kLine_Segment: { | |
| 5632 pts = LineIntersect(wt.pts(), wn.pts(), ts); | |
| 5633 debugShowLineIntersection(pts, wt, wn, ts); | |
| 5634 break; | |
| 5635 } | |
| 5636 case Work::kQuad_Segment: { | |
| 5637 swap = true; | |
| 5638 pts = QuadLineIntersect(wn.pts(), wt.pts(), ts); | |
| 5639 debugShowQuadLineIntersection(pts, wn, wt, ts); | |
| 5640 break; | |
| 5641 } | |
| 5642 case Work::kCubic_Segment: { | |
| 5643 swap = true; | |
| 5644 pts = CubicLineIntersect(wn.pts(), wt.pts(), ts); | |
| 5645 debugShowCubicLineIntersection(pts, wn, wt, ts); | |
| 5646 break; | |
| 5647 } | |
| 5648 default: | |
| 5649 SkASSERT(0); | |
| 5650 } | |
| 5651 break; | |
| 5652 case Work::kQuad_Segment: | |
| 5653 switch (wn.segmentType()) { | |
| 5654 case Work::kHorizontalLine_Segment: | |
| 5655 pts = HQuadIntersect(wt.pts(), wn.left(), | |
| 5656 wn.right(), wn.y(), wn.xFlipped(), ts); | |
| 5657 break; | |
| 5658 case Work::kVerticalLine_Segment: | |
| 5659 pts = VQuadIntersect(wt.pts(), wn.top(), | |
| 5660 wn.bottom(), wn.x(), wn.yFlipped(), ts); | |
| 5661 break; | |
| 5662 case Work::kLine_Segment: { | |
| 5663 pts = QuadLineIntersect(wt.pts(), wn.pts(), ts); | |
| 5664 debugShowQuadLineIntersection(pts, wt, wn, ts); | |
| 5665 break; | |
| 5666 } | |
| 5667 case Work::kQuad_Segment: { | |
| 5668 pts = QuadIntersect(wt.pts(), wn.pts(), ts); | |
| 5669 debugShowQuadIntersection(pts, wt, wn, ts); | |
| 5670 break; | |
| 5671 } | |
| 5672 case Work::kCubic_Segment: { | |
| 5673 #if APPROXIMATE_CUBICS | |
| 5674 swap = true; | |
| 5675 pts = CubicQuadIntersect(wn.pts(), wt.pts(), ts); | |
| 5676 debugShowCubicQuadIntersection(pts, wn, wt, ts); | |
| 5677 #else | |
| 5678 wt.promoteToCubic(); | |
| 5679 pts = CubicIntersect(wt.cubic(), wn.pts(), ts); | |
| 5680 debugShowCubicIntersection(pts, wt, wn, ts); | |
| 5681 #endif | |
| 5682 break; | |
| 5683 } | |
| 5684 default: | |
| 5685 SkASSERT(0); | |
| 5686 } | |
| 5687 break; | |
| 5688 case Work::kCubic_Segment: | |
| 5689 switch (wn.segmentType()) { | |
| 5690 case Work::kHorizontalLine_Segment: | |
| 5691 pts = HCubicIntersect(wt.pts(), wn.left(), | |
| 5692 wn.right(), wn.y(), wn.xFlipped(), ts); | |
| 5693 debugShowCubicLineIntersection(pts, wt, wn, ts); | |
| 5694 break; | |
| 5695 case Work::kVerticalLine_Segment: | |
| 5696 pts = VCubicIntersect(wt.pts(), wn.top(), | |
| 5697 wn.bottom(), wn.x(), wn.yFlipped(), ts); | |
| 5698 debugShowCubicLineIntersection(pts, wt, wn, ts); | |
| 5699 break; | |
| 5700 case Work::kLine_Segment: { | |
| 5701 pts = CubicLineIntersect(wt.pts(), wn.pts(), ts); | |
| 5702 debugShowCubicLineIntersection(pts, wt, wn, ts); | |
| 5703 break; | |
| 5704 } | |
| 5705 case Work::kQuad_Segment: { | |
| 5706 #if APPROXIMATE_CUBICS | |
| 5707 pts = CubicQuadIntersect(wt.pts(), wn.pts(), ts); | |
| 5708 debugShowCubicQuadIntersection(pts, wt, wn, ts); | |
| 5709 #else | |
| 5710 wn.promoteToCubic(); | |
| 5711 pts = CubicIntersect(wt.pts(), wn.cubic(), ts); | |
| 5712 debugShowCubicIntersection(pts, wt, wn, ts); | |
| 5713 #endif | |
| 5714 break; | |
| 5715 } | |
| 5716 case Work::kCubic_Segment: { | |
| 5717 pts = CubicIntersect(wt.pts(), wn.pts(), ts); | |
| 5718 debugShowCubicIntersection(pts, wt, wn, ts); | |
| 5719 break; | |
| 5720 } | |
| 5721 default: | |
| 5722 SkASSERT(0); | |
| 5723 } | |
| 5724 break; | |
| 5725 default: | |
| 5726 SkASSERT(0); | |
| 5727 } | |
| 5728 if (!foundCommonContour && pts > 0) { | |
| 5729 test->addCross(next); | |
| 5730 next->addCross(test); | |
| 5731 foundCommonContour = true; | |
| 5732 } | |
| 5733 // in addition to recording T values, record matching segment | |
| 5734 if (ts.unsortable()) { | |
| 5735 bool start = true; | |
| 5736 for (int pt = 0; pt < ts.used(); ++pt) { | |
| 5737 // FIXME: if unsortable, the other points to the original. T
his logic is | |
| 5738 // untested downstream. | |
| 5739 SkPoint point = ts.fPt[pt].asSkPoint(); | |
| 5740 int testTAt = wt.addUnsortableT(wt, start, point, ts.fT[swap
][pt]); | |
| 5741 wt.addOtherT(testTAt, ts.fT[swap][pt], testTAt); | |
| 5742 testTAt = wn.addUnsortableT(wn, start ^ ts.fFlip, point, ts.
fT[!swap][pt]); | |
| 5743 wn.addOtherT(testTAt, ts.fT[!swap][pt], testTAt); | |
| 5744 start ^= true; | |
| 5745 } | |
| 5746 continue; | |
| 5747 } | |
| 5748 if (pts == 2) { | |
| 5749 if (wn.segmentType() <= Work::kLine_Segment | |
| 5750 && wt.segmentType() <= Work::kLine_Segment) { | |
| 5751 wt.addCoincident(wn, ts, swap); | |
| 5752 continue; | |
| 5753 } | |
| 5754 if (wn.segmentType() >= Work::kQuad_Segment | |
| 5755 && wt.segmentType() >= Work::kQuad_Segment | |
| 5756 && ts.fIsCoincident[0]) { | |
| 5757 SkASSERT(ts.coincidentUsed() == 2); | |
| 5758 wt.addCoincident(wn, ts, swap); | |
| 5759 continue; | |
| 5760 } | |
| 5761 | |
| 5762 } | |
| 5763 for (int pt = 0; pt < pts; ++pt) { | |
| 5764 SkASSERT(ts.fT[0][pt] >= 0 && ts.fT[0][pt] <= 1); | |
| 5765 SkASSERT(ts.fT[1][pt] >= 0 && ts.fT[1][pt] <= 1); | |
| 5766 SkPoint point = ts.fPt[pt].asSkPoint(); | |
| 5767 int testTAt = wt.addT(wn, point, ts.fT[swap][pt]); | |
| 5768 int nextTAt = wn.addT(wt, point, ts.fT[!swap][pt]); | |
| 5769 wt.addOtherT(testTAt, ts.fT[!swap][pt ^ ts.fFlip], nextTAt); | |
| 5770 wn.addOtherT(nextTAt, ts.fT[swap][pt ^ ts.fFlip], testTAt); | |
| 5771 } | |
| 5772 } while (wn.advance()); | |
| 5773 } while (wt.advance()); | |
| 5774 return true; | |
| 5775 } | |
| 5776 | |
| 5777 static void addSelfIntersectTs(Contour* test) { | |
| 5778 Work wt; | |
| 5779 wt.init(test); | |
| 5780 do { | |
| 5781 if (wt.segmentType() != Work::kCubic_Segment) { | |
| 5782 continue; | |
| 5783 } | |
| 5784 Intersections ts; | |
| 5785 int pts = CubicIntersect(wt.pts(), ts); | |
| 5786 debugShowCubicIntersection(pts, wt, ts); | |
| 5787 if (!pts) { | |
| 5788 continue; | |
| 5789 } | |
| 5790 SkASSERT(pts == 1); | |
| 5791 SkASSERT(ts.fT[0][0] >= 0 && ts.fT[0][0] <= 1); | |
| 5792 SkASSERT(ts.fT[1][0] >= 0 && ts.fT[1][0] <= 1); | |
| 5793 SkPoint point = ts.fPt[0].asSkPoint(); | |
| 5794 int testTAt = wt.addSelfT(wt, point, ts.fT[0][0]); | |
| 5795 int nextTAt = wt.addT(wt, point, ts.fT[1][0]); | |
| 5796 wt.addOtherT(testTAt, ts.fT[1][0], nextTAt); | |
| 5797 wt.addOtherT(nextTAt, ts.fT[0][0], testTAt); | |
| 5798 } while (wt.advance()); | |
| 5799 } | |
| 5800 | |
| 5801 // resolve any coincident pairs found while intersecting, and | |
| 5802 // see if coincidence is formed by clipping non-concident segments | |
| 5803 static void coincidenceCheck(SkTDArray<Contour*>& contourList, int total) { | |
| 5804 int contourCount = contourList.count(); | |
| 5805 #if ONE_PASS_COINCIDENCE_CHECK | |
| 5806 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | |
| 5807 Contour* contour = contourList[cIndex]; | |
| 5808 contour->resolveCoincidence(contourList); | |
| 5809 } | |
| 5810 #else | |
| 5811 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | |
| 5812 Contour* contour = contourList[cIndex]; | |
| 5813 contour->addCoincidentPoints(); | |
| 5814 } | |
| 5815 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | |
| 5816 Contour* contour = contourList[cIndex]; | |
| 5817 contour->calcCoincidentWinding(); | |
| 5818 } | |
| 5819 #endif | |
| 5820 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | |
| 5821 Contour* contour = contourList[cIndex]; | |
| 5822 contour->findTooCloseToCall(); | |
| 5823 } | |
| 5824 } | |
| 5825 | |
| 5826 static int contourRangeCheckY(SkTDArray<Contour*>& contourList, Segment*& curre
nt, int& index, | |
| 5827 int& endIndex, double& bestHit, SkScalar& bestDx, bool& tryAgain, double
& mid, bool opp) { | |
| 5828 SkPoint basePt; | |
| 5829 double tAtMid = current->tAtMid(index, endIndex, mid); | |
| 5830 current->xyAtT(tAtMid, basePt); | |
| 5831 int contourCount = contourList.count(); | |
| 5832 SkScalar bestY = SK_ScalarMin; | |
| 5833 Segment* bestSeg = NULL; | |
| 5834 int bestTIndex; | |
| 5835 bool bestOpp; | |
| 5836 bool hitSomething = false; | |
| 5837 for (int cTest = 0; cTest < contourCount; ++cTest) { | |
| 5838 Contour* contour = contourList[cTest]; | |
| 5839 bool testOpp = contour->operand() ^ current->operand() ^ opp; | |
| 5840 if (basePt.fY < contour->bounds().fTop) { | |
| 5841 continue; | |
| 5842 } | |
| 5843 if (bestY > contour->bounds().fBottom) { | |
| 5844 continue; | |
| 5845 } | |
| 5846 int segmentCount = contour->segments().count(); | |
| 5847 for (int test = 0; test < segmentCount; ++test) { | |
| 5848 Segment* testSeg = &contour->segments()[test]; | |
| 5849 SkScalar testY = bestY; | |
| 5850 double testHit; | |
| 5851 int testTIndex = testSeg->crossedSpanY(basePt, testY, testHit, hitSo
mething, tAtMid, | |
| 5852 testOpp, testSeg == current); | |
| 5853 if (testTIndex < 0) { | |
| 5854 if (testTIndex == SK_MinS32) { | |
| 5855 hitSomething = true; | |
| 5856 bestSeg = NULL; | |
| 5857 goto abortContours; // vertical encountered, return and try
different point | |
| 5858 } | |
| 5859 continue; | |
| 5860 } | |
| 5861 if (testSeg == current && current->betweenTs(index, testHit, endInde
x)) { | |
| 5862 double baseT = current->t(index); | |
| 5863 double endT = current->t(endIndex); | |
| 5864 double newMid = (testHit - baseT) / (endT - baseT); | |
| 5865 #if DEBUG_WINDING | |
| 5866 SkPoint midXY, newXY; | |
| 5867 double midT = current->tAtMid(index, endIndex, mid); | |
| 5868 current->xyAtT(midT, midXY); | |
| 5869 double newMidT = current->tAtMid(index, endIndex, newMid); | |
| 5870 current->xyAtT(newMidT, newXY); | |
| 5871 SkDebugf("%s [%d] mid=%1.9g->%1.9g s=%1.9g (%1.9g,%1.9g) m=%1.9g
(%1.9g,%1.9g)" | |
| 5872 " n=%1.9g (%1.9g,%1.9g) e=%1.9g (%1.9g,%1.9g)\n", __FUNC
TION__, | |
| 5873 current->debugID(), mid, newMid, | |
| 5874 baseT, current->xAtT(index), current->yAtT(index), | |
| 5875 baseT + mid * (endT - baseT), midXY.fX, midXY.fY, | |
| 5876 baseT + newMid * (endT - baseT), newXY.fX, newXY.fY, | |
| 5877 endT, current->xAtT(endIndex), current->yAtT(endIndex)); | |
| 5878 #endif | |
| 5879 mid = newMid * 2; // calling loop with divide by 2 before contin
uing | |
| 5880 return SK_MinS32; | |
| 5881 } | |
| 5882 bestSeg = testSeg; | |
| 5883 bestHit = testHit; | |
| 5884 bestOpp = testOpp; | |
| 5885 bestTIndex = testTIndex; | |
| 5886 bestY = testY; | |
| 5887 } | |
| 5888 } | |
| 5889 abortContours: | |
| 5890 int result; | |
| 5891 if (!bestSeg) { | |
| 5892 result = hitSomething ? SK_MinS32 : 0; | |
| 5893 } else { | |
| 5894 if (bestSeg->windSum(bestTIndex) == SK_MinS32) { | |
| 5895 current = bestSeg; | |
| 5896 index = bestTIndex; | |
| 5897 endIndex = bestSeg->nextSpan(bestTIndex, 1); | |
| 5898 SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); | |
| 5899 tryAgain = true; | |
| 5900 return 0; | |
| 5901 } | |
| 5902 result = bestSeg->windingAtT(bestHit, bestTIndex, bestOpp, bestDx); | |
| 5903 SkASSERT(bestDx); | |
| 5904 } | |
| 5905 double baseT = current->t(index); | |
| 5906 double endT = current->t(endIndex); | |
| 5907 bestHit = baseT + mid * (endT - baseT); | |
| 5908 return result; | |
| 5909 } | |
| 5910 | |
| 5911 static Segment* findUndone(SkTDArray<Contour*>& contourList, int& start, int& en
d) { | |
| 5912 int contourCount = contourList.count(); | |
| 5913 Segment* result; | |
| 5914 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | |
| 5915 Contour* contour = contourList[cIndex]; | |
| 5916 result = contour->undoneSegment(start, end); | |
| 5917 if (result) { | |
| 5918 return result; | |
| 5919 } | |
| 5920 } | |
| 5921 return NULL; | |
| 5922 } | |
| 5923 | |
| 5924 #define OLD_FIND_CHASE 1 | |
| 5925 | |
| 5926 static Segment* findChase(SkTDArray<Span*>& chase, int& tIndex, int& endIndex) { | |
| 5927 while (chase.count()) { | |
| 5928 Span* span; | |
| 5929 chase.pop(&span); | |
| 5930 const Span& backPtr = span->fOther->span(span->fOtherIndex); | |
| 5931 Segment* segment = backPtr.fOther; | |
| 5932 tIndex = backPtr.fOtherIndex; | |
| 5933 SkTDArray<Angle> angles; | |
| 5934 int done = 0; | |
| 5935 if (segment->activeAngle(tIndex, done, angles)) { | |
| 5936 Angle* last = angles.end() - 1; | |
| 5937 tIndex = last->start(); | |
| 5938 endIndex = last->end(); | |
| 5939 #if TRY_ROTATE | |
| 5940 *chase.insert(0) = span; | |
| 5941 #else | |
| 5942 *chase.append() = span; | |
| 5943 #endif | |
| 5944 return last->segment(); | |
| 5945 } | |
| 5946 if (done == angles.count()) { | |
| 5947 continue; | |
| 5948 } | |
| 5949 SkTDArray<Angle*> sorted; | |
| 5950 bool sortable = Segment::SortAngles(angles, sorted); | |
| 5951 int angleCount = sorted.count(); | |
| 5952 #if DEBUG_SORT | |
| 5953 sorted[0]->segment()->debugShowSort(__FUNCTION__, sorted, 0, 0, 0); | |
| 5954 #endif | |
| 5955 if (!sortable) { | |
| 5956 continue; | |
| 5957 } | |
| 5958 // find first angle, initialize winding to computed fWindSum | |
| 5959 int firstIndex = -1; | |
| 5960 const Angle* angle; | |
| 5961 #if OLD_FIND_CHASE | |
| 5962 int winding; | |
| 5963 do { | |
| 5964 angle = sorted[++firstIndex]; | |
| 5965 segment = angle->segment(); | |
| 5966 winding = segment->windSum(angle); | |
| 5967 } while (winding == SK_MinS32); | |
| 5968 int spanWinding = segment->spanSign(angle->start(), angle->end()); | |
| 5969 #if DEBUG_WINDING | |
| 5970 SkDebugf("%s winding=%d spanWinding=%d\n", | |
| 5971 __FUNCTION__, winding, spanWinding); | |
| 5972 #endif | |
| 5973 // turn span winding into contour winding | |
| 5974 if (spanWinding * winding < 0) { | |
| 5975 winding += spanWinding; | |
| 5976 } | |
| 5977 #if DEBUG_SORT | |
| 5978 segment->debugShowSort(__FUNCTION__, sorted, firstIndex, winding, 0); | |
| 5979 #endif | |
| 5980 // we care about first sign and whether wind sum indicates this | |
| 5981 // edge is inside or outside. Maybe need to pass span winding | |
| 5982 // or first winding or something into this function? | |
| 5983 // advance to first undone angle, then return it and winding | |
| 5984 // (to set whether edges are active or not) | |
| 5985 int nextIndex = firstIndex + 1; | |
| 5986 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | |
| 5987 angle = sorted[firstIndex]; | |
| 5988 winding -= angle->segment()->spanSign(angle); | |
| 5989 #else | |
| 5990 do { | |
| 5991 angle = sorted[++firstIndex]; | |
| 5992 segment = angle->segment(); | |
| 5993 } while (segment->windSum(angle) == SK_MinS32); | |
| 5994 #if DEBUG_SORT | |
| 5995 segment->debugShowSort(__FUNCTION__, sorted, firstIndex); | |
| 5996 #endif | |
| 5997 int sumWinding = segment->updateWindingReverse(angle); | |
| 5998 int nextIndex = firstIndex + 1; | |
| 5999 int lastIndex = firstIndex != 0 ? firstIndex : angleCount; | |
| 6000 Segment* first = NULL; | |
| 6001 #endif | |
| 6002 do { | |
| 6003 SkASSERT(nextIndex != firstIndex); | |
| 6004 if (nextIndex == angleCount) { | |
| 6005 nextIndex = 0; | |
| 6006 } | |
| 6007 angle = sorted[nextIndex]; | |
| 6008 segment = angle->segment(); | |
| 6009 #if OLD_FIND_CHASE | |
| 6010 int maxWinding = winding; | |
| 6011 winding -= segment->spanSign(angle); | |
| 6012 #if DEBUG_SORT | |
| 6013 SkDebugf("%s id=%d maxWinding=%d winding=%d sign=%d\n", __FUNCTION__
, | |
| 6014 segment->debugID(), maxWinding, winding, angle->sign()); | |
| 6015 #endif | |
| 6016 tIndex = angle->start(); | |
| 6017 endIndex = angle->end(); | |
| 6018 int lesser = SkMin32(tIndex, endIndex); | |
| 6019 const Span& nextSpan = segment->span(lesser); | |
| 6020 if (!nextSpan.fDone) { | |
| 6021 #if 1 | |
| 6022 // FIXME: this be wrong? assign startWinding if edge is in | |
| 6023 // same direction. If the direction is opposite, winding to | |
| 6024 // assign is flipped sign or +/- 1? | |
| 6025 if (useInnerWinding(maxWinding, winding)) { | |
| 6026 maxWinding = winding; | |
| 6027 } | |
| 6028 segment->markAndChaseWinding(angle, maxWinding, 0); | |
| 6029 #endif | |
| 6030 break; | |
| 6031 } | |
| 6032 #else | |
| 6033 int start = angle->start(); | |
| 6034 int end = angle->end(); | |
| 6035 int maxWinding; | |
| 6036 segment->setUpWinding(start, end, maxWinding, sumWinding); | |
| 6037 if (!segment->done(angle)) { | |
| 6038 if (!first) { | |
| 6039 first = segment; | |
| 6040 tIndex = start; | |
| 6041 endIndex = end; | |
| 6042 } | |
| 6043 (void) segment->markAngle(maxWinding, sumWinding, true, angle); | |
| 6044 } | |
| 6045 #endif | |
| 6046 } while (++nextIndex != lastIndex); | |
| 6047 #if TRY_ROTATE | |
| 6048 *chase.insert(0) = span; | |
| 6049 #else | |
| 6050 *chase.append() = span; | |
| 6051 #endif | |
| 6052 return segment; | |
| 6053 } | |
| 6054 return NULL; | |
| 6055 } | |
| 6056 | |
| 6057 #if DEBUG_ACTIVE_SPANS | |
| 6058 static void debugShowActiveSpans(SkTDArray<Contour*>& contourList) { | |
| 6059 int index; | |
| 6060 for (index = 0; index < contourList.count(); ++ index) { | |
| 6061 contourList[index]->debugShowActiveSpans(); | |
| 6062 } | |
| 6063 for (index = 0; index < contourList.count(); ++ index) { | |
| 6064 contourList[index]->validateActiveSpans(); | |
| 6065 } | |
| 6066 } | |
| 6067 #endif | |
| 6068 | |
| 6069 static Segment* findSortableTop(SkTDArray<Contour*>& contourList, int& index, | |
| 6070 int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool only
Sortable) { | |
| 6071 Segment* result; | |
| 6072 do { | |
| 6073 SkPoint bestXY = {SK_ScalarMax, SK_ScalarMax}; | |
| 6074 int contourCount = contourList.count(); | |
| 6075 Segment* topStart = NULL; | |
| 6076 done = true; | |
| 6077 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | |
| 6078 Contour* contour = contourList[cIndex]; | |
| 6079 if (contour->done()) { | |
| 6080 continue; | |
| 6081 } | |
| 6082 const Bounds& bounds = contour->bounds(); | |
| 6083 if (bounds.fBottom < topLeft.fY) { | |
| 6084 done = false; | |
| 6085 continue; | |
| 6086 } | |
| 6087 if (bounds.fBottom == topLeft.fY && bounds.fRight < topLeft.fX) { | |
| 6088 done = false; | |
| 6089 continue; | |
| 6090 } | |
| 6091 contour->topSortableSegment(topLeft, bestXY, topStart); | |
| 6092 if (!contour->done()) { | |
| 6093 done = false; | |
| 6094 } | |
| 6095 } | |
| 6096 if (!topStart) { | |
| 6097 return NULL; | |
| 6098 } | |
| 6099 topLeft = bestXY; | |
| 6100 result = topStart->findTop(index, endIndex, unsortable, onlySortable); | |
| 6101 } while (!result); | |
| 6102 return result; | |
| 6103 } | |
| 6104 | |
| 6105 static int rightAngleWinding(SkTDArray<Contour*>& contourList, | |
| 6106 Segment*& current, int& index, int& endIndex, double& tHit, SkScalar& hi
tDx, bool& tryAgain, | |
| 6107 bool opp) { | |
| 6108 double test = 0.9; | |
| 6109 int contourWinding; | |
| 6110 do { | |
| 6111 contourWinding = contourRangeCheckY(contourList, current, index, endInde
x, tHit, hitDx, | |
| 6112 tryAgain, test, opp); | |
| 6113 if (contourWinding != SK_MinS32 || tryAgain) { | |
| 6114 return contourWinding; | |
| 6115 } | |
| 6116 test /= 2; | |
| 6117 } while (!approximately_negative(test)); | |
| 6118 SkASSERT(0); // should be OK to comment out, but interested when this hits | |
| 6119 return contourWinding; | |
| 6120 } | |
| 6121 | |
| 6122 static void skipVertical(SkTDArray<Contour*>& contourList, | |
| 6123 Segment*& current, int& index, int& endIndex) { | |
| 6124 if (!current->isVertical(index, endIndex)) { | |
| 6125 return; | |
| 6126 } | |
| 6127 int contourCount = contourList.count(); | |
| 6128 for (int cIndex = 0; cIndex < contourCount; ++cIndex) { | |
| 6129 Contour* contour = contourList[cIndex]; | |
| 6130 if (contour->done()) { | |
| 6131 continue; | |
| 6132 } | |
| 6133 current = contour->nonVerticalSegment(index, endIndex); | |
| 6134 if (current) { | |
| 6135 return; | |
| 6136 } | |
| 6137 } | |
| 6138 } | |
| 6139 | |
| 6140 static Segment* findSortableTop(SkTDArray<Contour*>& contourList, bool& firstCon
tour, int& index, | |
| 6141 int& endIndex, SkPoint& topLeft, bool& unsortable, bool& done, bool bina
ry) { | |
| 6142 Segment* current = findSortableTop(contourList, index, endIndex, topLeft, un
sortable, done, | |
| 6143 true); | |
| 6144 if (!current) { | |
| 6145 return NULL; | |
| 6146 } | |
| 6147 if (firstContour) { | |
| 6148 current->initWinding(index, endIndex); | |
| 6149 firstContour = false; | |
| 6150 return current; | |
| 6151 } | |
| 6152 int minIndex = SkMin32(index, endIndex); | |
| 6153 int sumWinding = current->windSum(minIndex); | |
| 6154 if (sumWinding != SK_MinS32) { | |
| 6155 return current; | |
| 6156 } | |
| 6157 sumWinding = current->computeSum(index, endIndex, binary); | |
| 6158 if (sumWinding != SK_MinS32) { | |
| 6159 return current; | |
| 6160 } | |
| 6161 int contourWinding; | |
| 6162 int oppContourWinding = 0; | |
| 6163 // the simple upward projection of the unresolved points hit unsortable angl
es | |
| 6164 // shoot rays at right angles to the segment to find its winding, ignoring a
ngle cases | |
| 6165 bool tryAgain; | |
| 6166 double tHit; | |
| 6167 SkScalar hitDx = 0; | |
| 6168 SkScalar hitOppDx = 0; | |
| 6169 do { | |
| 6170 // if current is vertical, find another candidate which is not | |
| 6171 // if only remaining candidates are vertical, then they can be marked do
ne | |
| 6172 SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); | |
| 6173 skipVertical(contourList, current, index, endIndex); | |
| 6174 SkASSERT(index != endIndex && index >= 0 && endIndex >= 0); | |
| 6175 tryAgain = false; | |
| 6176 contourWinding = rightAngleWinding(contourList, current, index, endIndex
, tHit, hitDx, | |
| 6177 tryAgain, false); | |
| 6178 if (tryAgain) { | |
| 6179 continue; | |
| 6180 } | |
| 6181 if (!binary) { | |
| 6182 break; | |
| 6183 } | |
| 6184 oppContourWinding = rightAngleWinding(contourList, current, index, endIn
dex, tHit, hitOppDx, | |
| 6185 tryAgain, true); | |
| 6186 } while (tryAgain); | |
| 6187 | |
| 6188 current->initWinding(index, endIndex, tHit, contourWinding, hitDx, oppContou
rWinding, hitOppDx); | |
| 6189 return current; | |
| 6190 } | |
| 6191 | |
| 6192 // rewrite that abandons keeping local track of winding | |
| 6193 static bool bridgeWinding(SkTDArray<Contour*>& contourList, PathWrapper& simple)
{ | |
| 6194 bool firstContour = true; | |
| 6195 bool unsortable = false; | |
| 6196 bool topUnsortable = false; | |
| 6197 SkPoint topLeft = {SK_ScalarMin, SK_ScalarMin}; | |
| 6198 do { | |
| 6199 int index, endIndex; | |
| 6200 bool topDone; | |
| 6201 Segment* current = findSortableTop(contourList, firstContour, index, end
Index, topLeft, | |
| 6202 topUnsortable, topDone, false); | |
| 6203 if (!current) { | |
| 6204 if (topUnsortable || !topDone) { | |
| 6205 topUnsortable = false; | |
| 6206 SkASSERT(topLeft.fX != SK_ScalarMin && topLeft.fY != SK_ScalarMi
n); | |
| 6207 topLeft.fX = topLeft.fY = SK_ScalarMin; | |
| 6208 continue; | |
| 6209 } | |
| 6210 break; | |
| 6211 } | |
| 6212 SkTDArray<Span*> chaseArray; | |
| 6213 do { | |
| 6214 if (current->activeWinding(index, endIndex)) { | |
| 6215 do { | |
| 6216 #if DEBUG_ACTIVE_SPANS | |
| 6217 if (!unsortable && current->done()) { | |
| 6218 debugShowActiveSpans(contourList); | |
| 6219 } | |
| 6220 #endif | |
| 6221 SkASSERT(unsortable || !current->done()); | |
| 6222 int nextStart = index; | |
| 6223 int nextEnd = endIndex; | |
| 6224 Segment* next = current->findNextWinding(chaseArray, nextSta
rt, nextEnd, | |
| 6225 unsortable); | |
| 6226 if (!next) { | |
| 6227 if (!unsortable && simple.hasMove() | |
| 6228 && current->verb() != SkPath::kLine_Verb | |
| 6229 && !simple.isClosed()) { | |
| 6230 current->addCurveTo(index, endIndex, simple, true); | |
| 6231 SkASSERT(simple.isClosed()); | |
| 6232 } | |
| 6233 break; | |
| 6234 } | |
| 6235 #if DEBUG_FLOW | |
| 6236 SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", _
_FUNCTION__, | |
| 6237 current->debugID(), current->xyAtT(index).fX, current->xyAtT
(index).fY, | |
| 6238 current->xyAtT(endIndex).fX, current->xyAtT(endIndex).fY); | |
| 6239 #endif | |
| 6240 current->addCurveTo(index, endIndex, simple, true); | |
| 6241 current = next; | |
| 6242 index = nextStart; | |
| 6243 endIndex = nextEnd; | |
| 6244 } while (!simple.isClosed() && (!unsortable | |
| 6245 || !current->done(SkMin32(index, endIndex)))); | |
| 6246 if (current->activeWinding(index, endIndex) && !simple.isClosed(
)) { | |
| 6247 SkASSERT(unsortable); | |
| 6248 int min = SkMin32(index, endIndex); | |
| 6249 if (!current->done(min)) { | |
| 6250 current->addCurveTo(index, endIndex, simple, true); | |
| 6251 current->markDoneUnary(min); | |
| 6252 } | |
| 6253 } | |
| 6254 simple.close(); | |
| 6255 } else { | |
| 6256 Span* last = current->markAndChaseDoneUnary(index, endIndex); | |
| 6257 if (last && !last->fLoop) { | |
| 6258 *chaseArray.append() = last; | |
| 6259 } | |
| 6260 } | |
| 6261 current = findChase(chaseArray, index, endIndex); | |
| 6262 #if DEBUG_ACTIVE_SPANS | |
| 6263 debugShowActiveSpans(contourList); | |
| 6264 #endif | |
| 6265 if (!current) { | |
| 6266 break; | |
| 6267 } | |
| 6268 } while (true); | |
| 6269 } while (true); | |
| 6270 return simple.someAssemblyRequired(); | |
| 6271 } | |
| 6272 | |
| 6273 // returns true if all edges were processed | |
| 6274 static bool bridgeXor(SkTDArray<Contour*>& contourList, PathWrapper& simple) { | |
| 6275 Segment* current; | |
| 6276 int start, end; | |
| 6277 bool unsortable = false; | |
| 6278 bool closable = true; | |
| 6279 while ((current = findUndone(contourList, start, end))) { | |
| 6280 do { | |
| 6281 #if DEBUG_ACTIVE_SPANS | |
| 6282 if (!unsortable && current->done()) { | |
| 6283 debugShowActiveSpans(contourList); | |
| 6284 } | |
| 6285 #endif | |
| 6286 SkASSERT(unsortable || !current->done()); | |
| 6287 int nextStart = start; | |
| 6288 int nextEnd = end; | |
| 6289 Segment* next = current->findNextXor(nextStart, nextEnd, unsortable)
; | |
| 6290 if (!next) { | |
| 6291 if (!unsortable && simple.hasMove() | |
| 6292 && current->verb() != SkPath::kLine_Verb | |
| 6293 && !simple.isClosed()) { | |
| 6294 current->addCurveTo(start, end, simple, true); | |
| 6295 SkASSERT(simple.isClosed()); | |
| 6296 } | |
| 6297 break; | |
| 6298 } | |
| 6299 #if DEBUG_FLOW | |
| 6300 SkDebugf("%s current id=%d from=(%1.9g,%1.9g) to=(%1.9g,%1.9g)\n", _
_FUNCTION__, | |
| 6301 current->debugID(), current->xyAtT(start).fX, current->xyAtT
(start).fY, | |
| 6302 current->xyAtT(end).fX, current->xyAtT(end).fY); | |
| 6303 #endif | |
| 6304 current->addCurveTo(start, end, simple, true); | |
| 6305 current = next; | |
| 6306 start = nextStart; | |
| 6307 end = nextEnd; | |
| 6308 } while (!simple.isClosed() && (!unsortable || !current->done(SkMin32(st
art, end)))); | |
| 6309 if (!simple.isClosed()) { | |
| 6310 SkASSERT(unsortable); | |
| 6311 int min = SkMin32(start, end); | |
| 6312 if (!current->done(min)) { | |
| 6313 current->addCurveTo(start, end, simple, true); | |
| 6314 current->markDone(min, 1); | |
| 6315 } | |
| 6316 closable = false; | |
| 6317 } | |
| 6318 simple.close(); | |
| 6319 #if DEBUG_ACTIVE_SPANS | |
| 6320 debugShowActiveSpans(contourList); | |
| 6321 #endif | |
| 6322 } | |
| 6323 return closable; | |
| 6324 } | |
| 6325 | |
| 6326 static void fixOtherTIndex(SkTDArray<Contour*>& contourList) { | |
| 6327 int contourCount = contourList.count(); | |
| 6328 for (int cTest = 0; cTest < contourCount; ++cTest) { | |
| 6329 Contour* contour = contourList[cTest]; | |
| 6330 contour->fixOtherTIndex(); | |
| 6331 } | |
| 6332 } | |
| 6333 | |
| 6334 static void sortSegments(SkTDArray<Contour*>& contourList) { | |
| 6335 int contourCount = contourList.count(); | |
| 6336 for (int cTest = 0; cTest < contourCount; ++cTest) { | |
| 6337 Contour* contour = contourList[cTest]; | |
| 6338 contour->sortSegments(); | |
| 6339 } | |
| 6340 } | |
| 6341 | |
| 6342 static void makeContourList(SkTArray<Contour>& contours, SkTDArray<Contour*>& li
st, | |
| 6343 bool evenOdd, bool oppEvenOdd) { | |
| 6344 int count = contours.count(); | |
| 6345 if (count == 0) { | |
| 6346 return; | |
| 6347 } | |
| 6348 for (int index = 0; index < count; ++index) { | |
| 6349 Contour& contour = contours[index]; | |
| 6350 contour.setOppXor(contour.operand() ? evenOdd : oppEvenOdd); | |
| 6351 *list.append() = &contour; | |
| 6352 } | |
| 6353 QSort<Contour>(list.begin(), list.end() - 1); | |
| 6354 } | |
| 6355 | |
| 6356 static bool approximatelyEqual(const SkPoint& a, const SkPoint& b) { | |
| 6357 return AlmostEqualUlps(a.fX, b.fX) && AlmostEqualUlps(a.fY, b.fY); | |
| 6358 } | |
| 6359 | |
| 6360 static bool lessThan(SkTDArray<double>& distances, const int one, const int two)
{ | |
| 6361 return distances[one] < distances[two]; | |
| 6362 } | |
| 6363 /* | |
| 6364 check start and end of each contour | |
| 6365 if not the same, record them | |
| 6366 match them up | |
| 6367 connect closest | |
| 6368 reassemble contour pieces into new path | |
| 6369 */ | |
| 6370 static void assemble(const PathWrapper& path, PathWrapper& simple) { | |
| 6371 #if DEBUG_PATH_CONSTRUCTION | |
| 6372 SkDebugf("%s\n", __FUNCTION__); | |
| 6373 #endif | |
| 6374 SkTArray<Contour> contours; | |
| 6375 EdgeBuilder builder(path, contours); | |
| 6376 builder.finish(); | |
| 6377 int count = contours.count(); | |
| 6378 int outer; | |
| 6379 SkTDArray<int> runs; // indices of partial contours | |
| 6380 for (outer = 0; outer < count; ++outer) { | |
| 6381 const Contour& eContour = contours[outer]; | |
| 6382 const SkPoint& eStart = eContour.start(); | |
| 6383 const SkPoint& eEnd = eContour.end(); | |
| 6384 #if DEBUG_ASSEMBLE | |
| 6385 SkDebugf("%s contour", __FUNCTION__); | |
| 6386 if (!approximatelyEqual(eStart, eEnd)) { | |
| 6387 SkDebugf("[%d]", runs.count()); | |
| 6388 } else { | |
| 6389 SkDebugf(" "); | |
| 6390 } | |
| 6391 SkDebugf(" start=(%1.9g,%1.9g) end=(%1.9g,%1.9g)\n", | |
| 6392 eStart.fX, eStart.fY, eEnd.fX, eEnd.fY); | |
| 6393 #endif | |
| 6394 if (approximatelyEqual(eStart, eEnd)) { | |
| 6395 eContour.toPath(simple); | |
| 6396 continue; | |
| 6397 } | |
| 6398 *runs.append() = outer; | |
| 6399 } | |
| 6400 count = runs.count(); | |
| 6401 if (count == 0) { | |
| 6402 return; | |
| 6403 } | |
| 6404 SkTDArray<int> sLink, eLink; | |
| 6405 sLink.setCount(count); | |
| 6406 eLink.setCount(count); | |
| 6407 int rIndex, iIndex; | |
| 6408 for (rIndex = 0; rIndex < count; ++rIndex) { | |
| 6409 sLink[rIndex] = eLink[rIndex] = SK_MaxS32; | |
| 6410 } | |
| 6411 SkTDArray<double> distances; | |
| 6412 const int ends = count * 2; // all starts and ends | |
| 6413 const int entries = (ends - 1) * count; // folded triangle : n * (n - 1) / 2 | |
| 6414 distances.setCount(entries); | |
| 6415 for (rIndex = 0; rIndex < ends - 1; ++rIndex) { | |
| 6416 outer = runs[rIndex >> 1]; | |
| 6417 const Contour& oContour = contours[outer]; | |
| 6418 const SkPoint& oPt = rIndex & 1 ? oContour.end() : oContour.start(); | |
| 6419 const int row = rIndex < count - 1 ? rIndex * ends : (ends - rIndex - 2) | |
| 6420 * ends - rIndex - 1; | |
| 6421 for (iIndex = rIndex + 1; iIndex < ends; ++iIndex) { | |
| 6422 int inner = runs[iIndex >> 1]; | |
| 6423 const Contour& iContour = contours[inner]; | |
| 6424 const SkPoint& iPt = iIndex & 1 ? iContour.end() : iContour.start(); | |
| 6425 double dx = iPt.fX - oPt.fX; | |
| 6426 double dy = iPt.fY - oPt.fY; | |
| 6427 double dist = dx * dx + dy * dy; | |
| 6428 distances[row + iIndex] = dist; // oStart distance from iStart | |
| 6429 } | |
| 6430 } | |
| 6431 SkTDArray<int> sortedDist; | |
| 6432 sortedDist.setCount(entries); | |
| 6433 for (rIndex = 0; rIndex < entries; ++rIndex) { | |
| 6434 sortedDist[rIndex] = rIndex; | |
| 6435 } | |
| 6436 QSort<SkTDArray<double>, int>(distances, sortedDist.begin(), sortedDist.end(
) - 1, lessThan); | |
| 6437 int remaining = count; // number of start/end pairs | |
| 6438 for (rIndex = 0; rIndex < entries; ++rIndex) { | |
| 6439 int pair = sortedDist[rIndex]; | |
| 6440 int row = pair / ends; | |
| 6441 int col = pair - row * ends; | |
| 6442 int thingOne = row < col ? row : ends - row - 2; | |
| 6443 int ndxOne = thingOne >> 1; | |
| 6444 bool endOne = thingOne & 1; | |
| 6445 int* linkOne = endOne ? eLink.begin() : sLink.begin(); | |
| 6446 if (linkOne[ndxOne] != SK_MaxS32) { | |
| 6447 continue; | |
| 6448 } | |
| 6449 int thingTwo = row < col ? col : ends - row + col - 1; | |
| 6450 int ndxTwo = thingTwo >> 1; | |
| 6451 bool endTwo = thingTwo & 1; | |
| 6452 int* linkTwo = endTwo ? eLink.begin() : sLink.begin(); | |
| 6453 if (linkTwo[ndxTwo] != SK_MaxS32) { | |
| 6454 continue; | |
| 6455 } | |
| 6456 SkASSERT(&linkOne[ndxOne] != &linkTwo[ndxTwo]); | |
| 6457 bool flip = endOne == endTwo; | |
| 6458 linkOne[ndxOne] = flip ? ~ndxTwo : ndxTwo; | |
| 6459 linkTwo[ndxTwo] = flip ? ~ndxOne : ndxOne; | |
| 6460 if (!--remaining) { | |
| 6461 break; | |
| 6462 } | |
| 6463 } | |
| 6464 SkASSERT(!remaining); | |
| 6465 #if DEBUG_ASSEMBLE | |
| 6466 for (rIndex = 0; rIndex < count; ++rIndex) { | |
| 6467 int s = sLink[rIndex]; | |
| 6468 int e = eLink[rIndex]; | |
| 6469 SkDebugf("%s %c%d <- s%d - e%d -> %c%d\n", __FUNCTION__, s < 0 ? 's' : '
e', | |
| 6470 s < 0 ? ~s : s, rIndex, rIndex, e < 0 ? 'e' : 's', e < 0 ? ~e :
e); | |
| 6471 } | |
| 6472 #endif | |
| 6473 rIndex = 0; | |
| 6474 do { | |
| 6475 bool forward = true; | |
| 6476 bool first = true; | |
| 6477 int sIndex = sLink[rIndex]; | |
| 6478 SkASSERT(sIndex != SK_MaxS32); | |
| 6479 sLink[rIndex] = SK_MaxS32; | |
| 6480 int eIndex; | |
| 6481 if (sIndex < 0) { | |
| 6482 eIndex = sLink[~sIndex]; | |
| 6483 sLink[~sIndex] = SK_MaxS32; | |
| 6484 } else { | |
| 6485 eIndex = eLink[sIndex]; | |
| 6486 eLink[sIndex] = SK_MaxS32; | |
| 6487 } | |
| 6488 SkASSERT(eIndex != SK_MaxS32); | |
| 6489 #if DEBUG_ASSEMBLE | |
| 6490 SkDebugf("%s sIndex=%c%d eIndex=%c%d\n", __FUNCTION__, sIndex < 0 ? 's'
: 'e', | |
| 6491 sIndex < 0 ? ~sIndex : sIndex, eIndex < 0 ? 's' : 'e', | |
| 6492 eIndex < 0 ? ~eIndex : eIndex); | |
| 6493 #endif | |
| 6494 do { | |
| 6495 outer = runs[rIndex]; | |
| 6496 const Contour& contour = contours[outer]; | |
| 6497 if (first) { | |
| 6498 first = false; | |
| 6499 const SkPoint* startPtr = &contour.start(); | |
| 6500 simple.deferredMove(startPtr[0]); | |
| 6501 } | |
| 6502 if (forward) { | |
| 6503 contour.toPartialForward(simple); | |
| 6504 } else { | |
| 6505 contour.toPartialBackward(simple); | |
| 6506 } | |
| 6507 #if DEBUG_ASSEMBLE | |
| 6508 SkDebugf("%s rIndex=%d eIndex=%s%d close=%d\n", __FUNCTION__, rIndex
, | |
| 6509 eIndex < 0 ? "~" : "", eIndex < 0 ? ~eIndex : eIndex, | |
| 6510 sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)); | |
| 6511 #endif | |
| 6512 if (sIndex == ((rIndex != eIndex) ^ forward ? eIndex : ~eIndex)) { | |
| 6513 simple.close(); | |
| 6514 break; | |
| 6515 } | |
| 6516 if (forward) { | |
| 6517 eIndex = eLink[rIndex]; | |
| 6518 SkASSERT(eIndex != SK_MaxS32); | |
| 6519 eLink[rIndex] = SK_MaxS32; | |
| 6520 if (eIndex >= 0) { | |
| 6521 SkASSERT(sLink[eIndex] == rIndex); | |
| 6522 sLink[eIndex] = SK_MaxS32; | |
| 6523 } else { | |
| 6524 SkASSERT(eLink[~eIndex] == ~rIndex); | |
| 6525 eLink[~eIndex] = SK_MaxS32; | |
| 6526 } | |
| 6527 } else { | |
| 6528 eIndex = sLink[rIndex]; | |
| 6529 SkASSERT(eIndex != SK_MaxS32); | |
| 6530 sLink[rIndex] = SK_MaxS32; | |
| 6531 if (eIndex >= 0) { | |
| 6532 SkASSERT(eLink[eIndex] == rIndex); | |
| 6533 eLink[eIndex] = SK_MaxS32; | |
| 6534 } else { | |
| 6535 SkASSERT(sLink[~eIndex] == ~rIndex); | |
| 6536 sLink[~eIndex] = SK_MaxS32; | |
| 6537 } | |
| 6538 } | |
| 6539 rIndex = eIndex; | |
| 6540 if (rIndex < 0) { | |
| 6541 forward ^= 1; | |
| 6542 rIndex = ~rIndex; | |
| 6543 } | |
| 6544 } while (true); | |
| 6545 for (rIndex = 0; rIndex < count; ++rIndex) { | |
| 6546 if (sLink[rIndex] != SK_MaxS32) { | |
| 6547 break; | |
| 6548 } | |
| 6549 } | |
| 6550 } while (rIndex < count); | |
| 6551 #if DEBUG_ASSEMBLE | |
| 6552 for (rIndex = 0; rIndex < count; ++rIndex) { | |
| 6553 SkASSERT(sLink[rIndex] == SK_MaxS32); | |
| 6554 SkASSERT(eLink[rIndex] == SK_MaxS32); | |
| 6555 } | |
| 6556 #endif | |
| 6557 } | |
| 6558 | |
| 6559 void simplifyx(const SkPath& path, SkPath& result) { | |
| 6560 #if DEBUG_SORT || DEBUG_SWAP_TOP | |
| 6561 gDebugSortCount = gDebugSortCountDefault; | |
| 6562 #endif | |
| 6563 // returns 1 for evenodd, -1 for winding, regardless of inverse-ness | |
| 6564 result.reset(); | |
| 6565 result.setFillType(SkPath::kEvenOdd_FillType); | |
| 6566 PathWrapper simple(result); | |
| 6567 | |
| 6568 // turn path into list of segments | |
| 6569 SkTArray<Contour> contours; | |
| 6570 EdgeBuilder builder(path, contours); | |
| 6571 builder.finish(); | |
| 6572 SkTDArray<Contour*> contourList; | |
| 6573 makeContourList(contours, contourList, false, false); | |
| 6574 Contour** currentPtr = contourList.begin(); | |
| 6575 if (!currentPtr) { | |
| 6576 return; | |
| 6577 } | |
| 6578 Contour** listEnd = contourList.end(); | |
| 6579 // find all intersections between segments | |
| 6580 do { | |
| 6581 Contour** nextPtr = currentPtr; | |
| 6582 Contour* current = *currentPtr++; | |
| 6583 if (current->containsCubics()) { | |
| 6584 addSelfIntersectTs(current); | |
| 6585 } | |
| 6586 Contour* next; | |
| 6587 do { | |
| 6588 next = *nextPtr++; | |
| 6589 } while (addIntersectTs(current, next) && nextPtr != listEnd); | |
| 6590 } while (currentPtr != listEnd); | |
| 6591 // eat through coincident edges | |
| 6592 coincidenceCheck(contourList, 0); | |
| 6593 fixOtherTIndex(contourList); | |
| 6594 sortSegments(contourList); | |
| 6595 #if DEBUG_ACTIVE_SPANS | |
| 6596 debugShowActiveSpans(contourList); | |
| 6597 #endif | |
| 6598 // construct closed contours | |
| 6599 if (builder.xorMask() == kWinding_Mask ? bridgeWinding(contourList, simple) | |
| 6600 : !bridgeXor(contourList, simple)) | |
| 6601 { // if some edges could not be resolved, assemble remaining fragments | |
| 6602 SkPath temp; | |
| 6603 temp.setFillType(SkPath::kEvenOdd_FillType); | |
| 6604 PathWrapper assembled(temp); | |
| 6605 assemble(simple, assembled); | |
| 6606 result = *assembled.nativePath(); | |
| 6607 } | |
| 6608 } | |
| OLD | NEW |