| Index: experimental/Intersection/CubicParameterizationCode.cpp
|
| diff --git a/experimental/Intersection/CubicParameterizationCode.cpp b/experimental/Intersection/CubicParameterizationCode.cpp
|
| deleted file mode 100644
|
| index 7a7908e67f9a8fcc1a24613b0f6832a5d5bab3a0..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/CubicParameterizationCode.cpp
|
| +++ /dev/null
|
| @@ -1,405 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include <vector>
|
| -
|
| -/* Given:
|
| - * Resultant[a*t^3 + b*t^2 + c*t + d - x, e*t^3 + f*t^2 + g*t + h - y, t]
|
| - */
|
| -
|
| -const char result1[] =
|
| -"-d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g + "
|
| -" 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g - "
|
| -" b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h - "
|
| -" 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h + "
|
| -" a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h - "
|
| -" 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h + "
|
| -" a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 + "
|
| -" a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x - "
|
| -" 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x - "
|
| -" 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x + "
|
| -" b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x + "
|
| -" 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x + "
|
| -" 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x - "
|
| -" 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 + "
|
| -" 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 - "
|
| -" c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y - "
|
| -" 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y - "
|
| -" b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y - "
|
| -" 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y + "
|
| -" 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - "
|
| -" 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + "
|
| -" a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y - "
|
| -" 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 - "
|
| -" 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 + "
|
| -" 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3";
|
| -
|
| -const size_t len1 = sizeof(result1) - 1;
|
| -
|
| -/* Given:
|
| - * Expand[
|
| - * Det[{{a, b, c, (d - x), 0, 0},
|
| - * {0, a, b, c, (d - x), 0},
|
| - * {0, 0, a, b, c, (d - x)},
|
| - * {e, f, g, (h - y), 0, 0},
|
| - * {0, e, f, g, (h - y), 0},
|
| - * {0, 0, e, f, g, (h - y)}}]]
|
| - */
|
| - // result1 and result2 are the same. 102 factors:
|
| -const char result2[] =
|
| -"-d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g + "
|
| -" 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g - "
|
| -" b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h - "
|
| -" 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h + "
|
| -" a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h - "
|
| -" 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h + "
|
| -" a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 + "
|
| -" a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x - "
|
| -" 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x - "
|
| -" 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x + "
|
| -" b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x + "
|
| -" 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x + "
|
| -" 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x - "
|
| -" 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 + "
|
| -" 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 - "
|
| -" c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y - "
|
| -" 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y - "
|
| -" b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y - "
|
| -" 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y + "
|
| -" 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - "
|
| -" 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + "
|
| -" a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y - "
|
| -" 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 - "
|
| -" 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 + "
|
| -" 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3";
|
| -
|
| -const size_t len2 = sizeof(result2) - 1;
|
| -
|
| -/* Given: r1 = Resultant[
|
| - * a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x,
|
| - * e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, t]
|
| - * Collect[r1, {x, y}, Simplify]
|
| - * CForm[%]
|
| - * then use regex to replace Power\(([a-h]),3\) with \1*\1*\1
|
| - * and Power\(([a-h]),2\) with \1*\1
|
| - * yields:
|
| -
|
| -d*d*d*e*e*e - 3*d*d*(3*c*e*e*f + 3*b*e*(-3*f*f + 2*e*g) + a*(9*f*f*f - 9*e*f*g + e*e*h)) -
|
| - h*(27*c*c*c*e*e - 27*c*c*(3*b*e*f - 3*a*f*f + 2*a*e*g) +
|
| - h*(-27*b*b*b*e + 27*a*b*b*f - 9*a*a*b*g + a*a*a*h) +
|
| - 9*c*(9*b*b*e*g + a*b*(-9*f*g + 3*e*h) + a*a*(3*g*g - 2*f*h))) +
|
| - 3*d*(9*c*c*e*e*g + 9*b*b*e*(3*g*g - 2*f*h) + 3*a*b*(-9*f*g*g + 6*f*f*h + e*g*h) +
|
| - a*a*(9*g*g*g - 9*f*g*h + e*h*h) + 3*c*(3*b*e*(-3*f*g + e*h) + a*(9*f*f*g - 6*e*g*g - e*f*h)))
|
| -
|
| -- Power(e - 3*f + 3*g - h,3)*Power(x,3)
|
| -
|
| -+ 3*(6*b*d*d*e*e - d*d*d*e*e + 18*b*b*d*e*f - 18*b*d*d*e*f -
|
| - 9*b*d*d*f*f - 54*b*b*d*e*g + 12*b*d*d*e*g - 27*b*b*d*g*g - 18*b*b*b*e*h + 18*b*b*d*e*h +
|
| - 18*b*b*d*f*h + a*a*a*h*h - 9*b*b*b*h*h + 9*c*c*c*e*(e + 2*h) +
|
| - a*a*(-3*b*h*(2*g + h) + d*(-27*g*g + 9*g*h - h*(2*e + h) + 9*f*(g + h))) +
|
| - a*(9*b*b*h*(2*f + h) - 3*b*d*(6*f*f - 6*f*(3*g - 2*h) + g*(-9*g + h) + e*(g + h)) +
|
| - d*d*(e*e + 9*f*(3*f - g) + e*(-9*f - 9*g + 2*h))) -
|
| - 9*c*c*(d*e*(e + 2*g) + 3*b*(f*h + e*(f + h)) + a*(-3*f*f - 6*f*h + 2*(g*h + e*(g + h)))) +
|
| - 3*c*(d*d*e*(e + 2*f) + a*a*(3*g*g + 6*g*h - 2*h*(2*f + h)) + 9*b*b*(g*h + e*(g + h)) +
|
| - a*d*(-9*f*f - 18*f*g + 6*g*g + f*h + e*(f + 12*g + h)) +
|
| - b*(d*(-3*e*e + 9*f*g + e*(9*f + 9*g - 6*h)) + 3*a*(h*(2*e - 3*g + h) - 3*f*(g + h)))))*y
|
| -
|
| -- 3*(18*c*c*c*e - 18*c*c*d*e + 6*c*d*d*e - d*d*d*e + 3*c*d*d*f - 9*c*c*d*g + a*a*a*h + 9*c*c*c*h -
|
| - 9*b*b*b*(e + 2*h) - a*a*(d*(e - 9*f + 18*g - 7*h) + 3*c*(2*f - 6*g + h)) +
|
| - a*(-9*c*c*(2*e - 6*f + 2*g - h) + d*d*(-7*e + 18*f - 9*g + h) + 3*c*d*(7*e - 17*f + 3*g + h)) +
|
| - 9*b*b*(3*c*(e + g + h) + a*(f + 2*h) - d*(e - 2*(f - 3*g + h))) -
|
| - 3*b*(-(d*d*(e - 6*f + 2*g)) - 3*c*d*(e + 3*f + 3*g - h) + 9*c*c*(e + f + h) + a*a*(g + 2*h) +
|
| - a*(c*(-3*e + 9*f + 9*g + 3*h) + d*(e + 3*f - 17*g + 7*h))))*Power(y,2)
|
| -
|
| -+ Power(a - 3*b + 3*c - d,3)*Power(y,3)
|
| -
|
| -+ Power(x,2)*(-3*(-9*b*e*f*f + 9*a*f*f*f + 6*b*e*e*g - 9*a*e*f*g + 27*b*e*f*g - 27*a*f*f*g + 18*a*e*g*g - 54*b*e*g*g +
|
| - 27*a*f*g*g + 27*b*f*g*g - 18*a*g*g*g + a*e*e*h - 9*b*e*e*h + 3*a*e*f*h + 9*b*e*f*h + 9*a*f*f*h -
|
| - 18*b*f*f*h - 21*a*e*g*h + 51*b*e*g*h - 9*a*f*g*h - 27*b*f*g*h + 18*a*g*g*h + 7*a*e*h*h - 18*b*e*h*h - 3*a*f*h*h +
|
| - 18*b*f*h*h - 6*a*g*h*h - 3*b*g*h*h + a*h*h*h +
|
| - 3*c*(-9*f*f*(g - 2*h) + 3*g*g*h - f*h*(9*g + 2*h) + e*e*(f - 6*g + 6*h) +
|
| - e*(9*f*g + 6*g*g - 17*f*h - 3*g*h + 3*h*h)) -
|
| - d*(e*e*e + e*e*(-6*f - 3*g + 7*h) - 9*(2*f - g)*(f*f + g*g - f*(g + h)) +
|
| - e*(18*f*f + 9*g*g + 3*g*h + h*h - 3*f*(3*g + 7*h)))) )
|
| -
|
| -+ Power(x,2)*(3*(a - 3*b + 3*c - d)*Power(e - 3*f + 3*g - h,2)*y)
|
| -
|
| -+ x*(-3*(27*b*b*e*g*g - 27*a*b*f*g*g + 9*a*a*g*g*g - 18*b*b*e*f*h + 18*a*b*f*f*h + 3*a*b*e*g*h -
|
| - 27*b*b*e*g*h - 9*a*a*f*g*h + 27*a*b*f*g*h - 9*a*a*g*g*h + a*a*e*h*h - 9*a*b*e*h*h +
|
| - 27*b*b*e*h*h + 6*a*a*f*h*h - 18*a*b*f*h*h - 9*b*b*f*h*h + 3*a*a*g*h*h +
|
| - 6*a*b*g*h*h - a*a*h*h*h + 9*c*c*(e*e*(g - 3*h) - 3*f*f*h + e*(3*f + 2*g)*h) +
|
| - d*d*(e*e*e - 9*f*f*f + 9*e*f*(f + g) - e*e*(3*f + 6*g + h)) +
|
| - d*(-3*c*(-9*f*f*g + e*e*(2*f - 6*g - 3*h) + e*(9*f*g + 6*g*g + f*h)) +
|
| - a*(-18*f*f*f - 18*e*g*g + 18*g*g*g - 2*e*e*h + 3*e*g*h + 2*e*h*h + 9*f*f*(3*g + 2*h) +
|
| - 3*f*(6*e*g - 9*g*g - e*h - 6*g*h)) - 3*b*(9*f*g*g + e*e*(4*g - 3*h) - 6*f*f*h -
|
| - e*(6*f*f + g*(18*g + h) - 3*f*(3*g + 4*h)))) +
|
| - 3*c*(3*b*(e*e*h + 3*f*g*h - e*(3*f*g - 6*f*h + 6*g*h + h*h)) +
|
| - a*(9*f*f*(g - 2*h) + f*h*(-e + 9*g + 4*h) - 3*(2*g*g*h + e*(2*g*g - 4*g*h + h*h))))) )
|
| -
|
| -+ x*3*(-2*a*d*e*e - 7*d*d*e*e + 15*a*d*e*f + 21*d*d*e*f - 9*a*d*f*f - 18*d*d*f*f - 15*a*d*e*g -
|
| - 3*d*d*e*g - 9*a*a*f*g + 9*d*d*f*g + 18*a*a*g*g + 9*a*d*g*g + 2*a*a*e*h - 2*d*d*e*h +
|
| - 3*a*a*f*h + 15*a*d*f*h - 21*a*a*g*h - 15*a*d*g*h + 7*a*a*h*h + 2*a*d*h*h -
|
| - 9*c*c*(2*e*e + 3*f*f + 3*f*h - 2*g*h + e*(-3*f - 4*g + h)) +
|
| - 9*b*b*(3*g*g - 3*g*h + 2*h*(-2*f + h) + e*(-2*f + 3*g + h)) +
|
| - 3*b*(3*c*(e*e + 3*e*(f - 3*g) + (9*f - 3*g - h)*h) + a*(6*f*f + e*g - 9*f*g - 9*g*g - 5*e*h + 9*f*h + 14*g*h - 7*h*h) +
|
| - d*(-e*e + 12*f*f - 27*f*g + e*(-9*f + 20*g - 5*h) + g*(9*g + h))) +
|
| - 3*c*(a*(-(e*f) - 9*f*f + 27*f*g - 12*g*g + 5*e*h - 20*f*h + 9*g*h + h*h) +
|
| - d*(7*e*e + 9*f*f + 9*f*g - 6*g*g - f*h + e*(-14*f - 9*g + 5*h))))*y
|
| -
|
| -- x*3*Power(a - 3*b + 3*c - d,2)*(e - 3*f + 3*g - h)*Power(y,2)
|
| -
|
| -*/
|
| -
|
| -const int factors = 8;
|
| -
|
| -struct coeff {
|
| - int s; // constant and coefficient sign
|
| - int n[factors]; // 0 or power of a (1, 2, or 3) for a through h
|
| -};
|
| -
|
| -enum {
|
| - xxx_coeff,
|
| - xxy_coeff,
|
| - xyy_coeff,
|
| - yyy_coeff,
|
| - xx_coeff,
|
| - xy_coeff,
|
| - yy_coeff,
|
| - x_coeff,
|
| - y_coeff,
|
| - c_coeff,
|
| - coeff_count
|
| -};
|
| -
|
| -typedef std::vector<coeff> coeffs;
|
| -typedef std::vector<coeffs> n_coeffs;
|
| -
|
| -static char skipSpace(const char* str, size_t& index) {
|
| - do {
|
| - ++index;
|
| - } while (str[index] == ' ');
|
| - return str[index];
|
| -}
|
| -
|
| -static char backSkipSpace(const char* str, size_t& end) {
|
| - while (str[end - 1] == ' ') {
|
| - --end;
|
| - }
|
| - return str[end - 1];
|
| -}
|
| -
|
| -static void match(const char* str, size_t len, coeffs& co, const char pattern[]) {
|
| - size_t patternLen = strlen(pattern);
|
| - size_t index = 0;
|
| - while (index < len) {
|
| - char ch = str[index];
|
| - if (ch != '-' && ch != '+') {
|
| - printf("missing sign\n");
|
| - }
|
| - size_t end = index + 1;
|
| - while (str[end] != '+' && str[end] != '-' && ++end < len) {
|
| - ;
|
| - }
|
| - backSkipSpace(str, end);
|
| - size_t idx = index;
|
| - index = end;
|
| - skipSpace(str, index);
|
| - if (!strncmp(&str[end - patternLen], pattern, patternLen) == 0) {
|
| - continue;
|
| - }
|
| - size_t endCoeff = end - patternLen;
|
| - char last = backSkipSpace(str, endCoeff);
|
| - if (last == '2' || last == '3') {
|
| - last = str[endCoeff - 3]; // skip ^2
|
| - }
|
| - if (last == 'x' || last == 'y') {
|
| - continue;
|
| - }
|
| - coeff c;
|
| - c.s = str[idx] == '-' ? -1 : 1;
|
| - bzero(c.n, sizeof(c.n));
|
| - ch = skipSpace(str, idx);
|
| - if (ch >= '2' && ch <= '6') {
|
| - c.s *= ch - '0';
|
| - ch = skipSpace(str, idx);
|
| - }
|
| - while (idx < endCoeff) {
|
| - char x = str[idx];
|
| - if (x < 'a' || x > 'a' + factors) {
|
| - printf("expected factor\n");
|
| - }
|
| - idx++;
|
| - int pow = 1;
|
| - if (str[idx] == '^') {
|
| - idx++;
|
| - char exp = str[idx];
|
| - if (exp < '2' || exp > '3') {
|
| - printf("expected exponent\n");
|
| - }
|
| - pow = exp - '0';
|
| - }
|
| - skipSpace(str, idx);
|
| - c.n[x - 'a'] = pow;
|
| - }
|
| - co.push_back(c);
|
| - }
|
| -}
|
| -
|
| -void cubecode_test(int test);
|
| -
|
| -void cubecode_test(int test) {
|
| - const char* str = test ? result2 : result1;
|
| - size_t len = strlen(str);
|
| - n_coeffs c(coeff_count);
|
| - match(str, len, c[xxx_coeff], "x^3"); // 1 factor
|
| - match(str, len, c[xxy_coeff], "x^2 y"); // 1 factor
|
| - match(str, len, c[xyy_coeff], "x y^2"); // 1 factor
|
| - match(str, len, c[yyy_coeff], "y^3"); // 1 factor
|
| - match(str, len, c[xx_coeff], "x^2"); // 7 factors
|
| - match(str, len, c[xy_coeff], "x y"); // 8 factors
|
| - match(str, len, c[yy_coeff], "y^2"); // 7 factors
|
| - match(str, len, c[x_coeff], "x"); // 21 factors
|
| - match(str, len, c[y_coeff], "y"); // 21 factors
|
| - match(str, len, c[c_coeff], ""); // 34 factors : total 102
|
| -#define COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS 0
|
| -#define WRITE_AS_NONOPTIMIZED_C_CODE 0
|
| -#if COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS
|
| - int count[factors][factors][factors];
|
| - bzero(count, sizeof(count));
|
| -#endif
|
| -#if WRITE_AS_NONOPTIMIZED_C_CODE
|
| - printf("// start of generated code");
|
| -#endif
|
| - for (n_coeffs::iterator it = c.begin(); it < c.end(); ++it) {
|
| - coeffs& co = *it;
|
| -#if WRITE_AS_NONOPTIMIZED_C_CODE
|
| - printf("\nstatic double calc_%c(double a, double b, double c, double d,"
|
| - "\n double e, double f, double g, double h) {"
|
| - "\n return"
|
| - "\n ", 'A' + (it - c.begin()));
|
| - if (co[0].s > 0) {
|
| - printf(" ");
|
| - }
|
| - if (abs(co[0].s) == 1) {
|
| - printf(" ");
|
| - }
|
| -#endif
|
| - for (coeffs::iterator ct = co.begin(); ct < co.end(); ++ct) {
|
| - const coeff& cf = *ct;
|
| -#if WRITE_AS_NONOPTIMIZED_C_CODE
|
| - printf(" ");
|
| - bool firstFactor = false;
|
| - if (ct - co.begin() > 0 || cf.s < 0) {
|
| - printf("%c", cf.s < 0 ? '-' : '+');
|
| - }
|
| - if (ct - co.begin() > 0) {
|
| - printf(" ");
|
| - }
|
| - if (abs(cf.s) > 1) {
|
| - printf("%d * ", abs(cf.s));
|
| - } else {
|
| - if (ct - co.begin() > 0) {
|
| - printf(" ");
|
| - }
|
| - }
|
| -#endif
|
| - for (int x = 0; x < factors; ++x) {
|
| - if (cf.n[x] == 0) {
|
| - continue;
|
| - }
|
| -#if WRITE_AS_NONOPTIMIZED_C_CODE
|
| - for (int y = 0 ; y < cf.n[x]; ++y) {
|
| - if (y > 0 || firstFactor) {
|
| - printf(" * ");
|
| - }
|
| - printf("%c", 'a' + x);
|
| - }
|
| - firstFactor = true;
|
| -#endif
|
| -#if COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS
|
| - for (int y = x; y < factors; ++y) {
|
| - if (cf.n[y] == 0) {
|
| - continue;
|
| - }
|
| - if (x == y && cf.n[y] == 1) {
|
| - continue;
|
| - }
|
| - for (int z = y; z < factors; ++z) {
|
| - if (cf.n[z] == 0) {
|
| - continue;
|
| - }
|
| - if ((x == z || y == z) && cf.n[z] == 1) {
|
| - continue;
|
| - }
|
| - if (x == y && y == z && cf.n[z] == 2) {
|
| - continue;
|
| - }
|
| - count[x][y][z]++;
|
| - }
|
| - }
|
| -#endif
|
| - }
|
| -#if WRITE_AS_NONOPTIMIZED_C_CODE
|
| - if (ct + 1 < co.end()) {
|
| - printf("\n");
|
| - }
|
| -#endif
|
| - }
|
| -#if WRITE_AS_NONOPTIMIZED_C_CODE
|
| - printf(";\n}\n");
|
| -#endif
|
| - }
|
| -#if WRITE_AS_NONOPTIMIZED_C_CODE
|
| - printf("// end of generated code\n");
|
| -#endif
|
| -#if COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS
|
| - const int bestCount = 20;
|
| - int best[bestCount][4];
|
| - bzero(best, sizeof(best));
|
| - for (int x = 0; x < factors; ++x) {
|
| - for (int y = x; y < factors; ++y) {
|
| - for (int z = y; z < factors; ++z) {
|
| - if (!count[x][y][z]) {
|
| - continue;
|
| - }
|
| - for (int w = 0; w < bestCount; ++w) {
|
| - if (best[w][0] < count[x][y][z]) {
|
| - best[w][0] = count[x][y][z];
|
| - best[w][1] = x;
|
| - best[w][2] = y;
|
| - best[w][3] = z;
|
| - break;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - }
|
| - for (int w = 0; w < bestCount; ++w) {
|
| - printf("%c%c%c=%d\n", 'a' + best[w][1], 'a' + best[w][2],
|
| - 'a' + best[w][3], best[w][0]);
|
| - }
|
| -#endif
|
| -#if WRITE_AS_NONOPTIMIZED_C_CODE
|
| - printf("\n");
|
| -#endif
|
| -}
|
| -
|
| -/* results: variable triplets used 10 or more times:
|
| -aah=14
|
| -ade=14
|
| -aeh=14
|
| -dee=14
|
| -bce=13
|
| -beg=13
|
| -beh=12
|
| -bbe=11
|
| -bef=11
|
| -cee=11
|
| -cef=11
|
| -def=11
|
| -ceh=10
|
| -deg=10
|
| -*/
|
|
|