| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 * Copyright 2012 Google Inc. | |
| 3 * | |
| 4 * Use of this source code is governed by a BSD-style license that can be | |
| 5 * found in the LICENSE file. | |
| 6 */ | |
| 7 #include <vector> | |
| 8 | |
| 9 /* Given: | |
| 10 * Resultant[a*t^3 + b*t^2 + c*t + d - x, e*t^3 + f*t^2 + g*t + h - y, t] | |
| 11 */ | |
| 12 | |
| 13 const char result1[] = | |
| 14 "-d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g + " | |
| 15 " 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g - " | |
| 16 " b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h - " | |
| 17 " 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h + " | |
| 18 " a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h - " | |
| 19 " 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h + " | |
| 20 " a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 + " | |
| 21 " a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x - " | |
| 22 " 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x - " | |
| 23 " 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x + " | |
| 24 " b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x + " | |
| 25 " 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x + " | |
| 26 " 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x - " | |
| 27 " 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 + " | |
| 28 " 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 - " | |
| 29 " c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y - " | |
| 30 " 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y - " | |
| 31 " b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y - " | |
| 32 " 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y + " | |
| 33 " 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - " | |
| 34 " 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + " | |
| 35 " a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y - " | |
| 36 " 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 - " | |
| 37 " 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 + " | |
| 38 " 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3"; | |
| 39 | |
| 40 const size_t len1 = sizeof(result1) - 1; | |
| 41 | |
| 42 /* Given: | |
| 43 * Expand[ | |
| 44 * Det[{{a, b, c, (d - x), 0, 0}, | |
| 45 * {0, a, b, c, (d - x), 0}, | |
| 46 * {0, 0, a, b, c, (d - x)}, | |
| 47 * {e, f, g, (h - y), 0, 0}, | |
| 48 * {0, e, f, g, (h - y), 0}, | |
| 49 * {0, 0, e, f, g, (h - y)}}]] | |
| 50 */ | |
| 51 // result1 and result2 are the same. 102 factors: | |
| 52 const char result2[] = | |
| 53 "-d^3 e^3 + c d^2 e^2 f - b d^2 e f^2 + a d^2 f^3 - c^2 d e^2 g +
" | |
| 54 " 2 b d^2 e^2 g + b c d e f g - 3 a d^2 e f g - a c d f^2 g - " | |
| 55 " b^2 d e g^2 + 2 a c d e g^2 + a b d f g^2 - a^2 d g^3 + c^3 e^2 h - " | |
| 56 " 3 b c d e^2 h + 3 a d^2 e^2 h - b c^2 e f h + 2 b^2 d e f h + " | |
| 57 " a c d e f h + a c^2 f^2 h - 2 a b d f^2 h + b^2 c e g h - " | |
| 58 " 2 a c^2 e g h - a b d e g h - a b c f g h + 3 a^2 d f g h + " | |
| 59 " a^2 c g^2 h - b^3 e h^2 + 3 a b c e h^2 - 3 a^2 d e h^2 + " | |
| 60 " a b^2 f h^2 - 2 a^2 c f h^2 - a^2 b g h^2 + a^3 h^3 + 3 d^2 e^3 x -
" | |
| 61 " 2 c d e^2 f x + 2 b d e f^2 x - 2 a d f^3 x + c^2 e^2 g x - " | |
| 62 " 4 b d e^2 g x - b c e f g x + 6 a d e f g x + a c f^2 g x + " | |
| 63 " b^2 e g^2 x - 2 a c e g^2 x - a b f g^2 x + a^2 g^3 x + " | |
| 64 " 3 b c e^2 h x - 6 a d e^2 h x - 2 b^2 e f h x - a c e f h x + " | |
| 65 " 2 a b f^2 h x + a b e g h x - 3 a^2 f g h x + 3 a^2 e h^2 x - " | |
| 66 " 3 d e^3 x^2 + c e^2 f x^2 - b e f^2 x^2 + a f^3 x^2 + " | |
| 67 " 2 b e^2 g x^2 - 3 a e f g x^2 + 3 a e^2 h x^2 + e^3 x^3 - " | |
| 68 " c^3 e^2 y + 3 b c d e^2 y - 3 a d^2 e^2 y + b c^2 e f y - " | |
| 69 " 2 b^2 d e f y - a c d e f y - a c^2 f^2 y + 2 a b d f^2 y - " | |
| 70 " b^2 c e g y + 2 a c^2 e g y + a b d e g y + a b c f g y - " | |
| 71 " 3 a^2 d f g y - a^2 c g^2 y + 2 b^3 e h y - 6 a b c e h y + " | |
| 72 " 6 a^2 d e h y - 2 a b^2 f h y + 4 a^2 c f h y + 2 a^2 b g h y - " | |
| 73 " 3 a^3 h^2 y - 3 b c e^2 x y + 6 a d e^2 x y + 2 b^2 e f x y + " | |
| 74 " a c e f x y - 2 a b f^2 x y - a b e g x y + 3 a^2 f g x y - " | |
| 75 " 6 a^2 e h x y - 3 a e^2 x^2 y - b^3 e y^2 + 3 a b c e y^2 - " | |
| 76 " 3 a^2 d e y^2 + a b^2 f y^2 - 2 a^2 c f y^2 - a^2 b g y^2 + " | |
| 77 " 3 a^3 h y^2 + 3 a^2 e x y^2 - a^3 y^3"; | |
| 78 | |
| 79 const size_t len2 = sizeof(result2) - 1; | |
| 80 | |
| 81 /* Given: r1 = Resultant[ | |
| 82 * a*(1 - t)^3 + 3*b*(1 - t)^2*t + 3*c*(1 - t)*t^2 + d*t^3 - x, | |
| 83 * e*(1 - t)^3 + 3*f*(1 - t)^2*t + 3*g*(1 - t)*t^2 + h*t^3 - y, t] | |
| 84 * Collect[r1, {x, y}, Simplify] | |
| 85 * CForm[%] | |
| 86 * then use regex to replace Power\(([a-h]),3\) with \1*\1*\1 | |
| 87 * and Power\(([a-h]),2\) with \1*\1 | |
| 88 * yields: | |
| 89 | |
| 90 d*d*d*e*e*e - 3*d*d*(3*c*e*e*f + 3*b*e*(-3*f*f + 2*e*g) + a*(9*f*f*f - 9*e*f*g +
e*e*h)) - | |
| 91 h*(27*c*c*c*e*e - 27*c*c*(3*b*e*f - 3*a*f*f + 2*a*e*g) + | |
| 92 h*(-27*b*b*b*e + 27*a*b*b*f - 9*a*a*b*g + a*a*a*h) + | |
| 93 9*c*(9*b*b*e*g + a*b*(-9*f*g + 3*e*h) + a*a*(3*g*g - 2*f*h))) + | |
| 94 3*d*(9*c*c*e*e*g + 9*b*b*e*(3*g*g - 2*f*h) + 3*a*b*(-9*f*g*g + 6*f*f*h + e*g*
h) + | |
| 95 a*a*(9*g*g*g - 9*f*g*h + e*h*h) + 3*c*(3*b*e*(-3*f*g + e*h) + a*(9*f*f*g -
6*e*g*g - e*f*h))) | |
| 96 | |
| 97 - Power(e - 3*f + 3*g - h,3)*Power(x,3) | |
| 98 | |
| 99 + 3*(6*b*d*d*e*e - d*d*d*e*e + 18*b*b*d*e*f - 18*b*d*d*e*f - | |
| 100 9*b*d*d*f*f - 54*b*b*d*e*g + 12*b*d*d*e*g - 27*b*b*d*g*g - 18*b*b*b*e*h +
18*b*b*d*e*h + | |
| 101 18*b*b*d*f*h + a*a*a*h*h - 9*b*b*b*h*h + 9*c*c*c*e*(e + 2*h) + | |
| 102 a*a*(-3*b*h*(2*g + h) + d*(-27*g*g + 9*g*h - h*(2*e + h) + 9*f*(g + h))) + | |
| 103 a*(9*b*b*h*(2*f + h) - 3*b*d*(6*f*f - 6*f*(3*g - 2*h) + g*(-9*g + h) + e*(
g + h)) + | |
| 104 d*d*(e*e + 9*f*(3*f - g) + e*(-9*f - 9*g + 2*h))) - | |
| 105 9*c*c*(d*e*(e + 2*g) + 3*b*(f*h + e*(f + h)) + a*(-3*f*f - 6*f*h + 2*(g*h
+ e*(g + h)))) + | |
| 106 3*c*(d*d*e*(e + 2*f) + a*a*(3*g*g + 6*g*h - 2*h*(2*f + h)) + 9*b*b*(g*h +
e*(g + h)) + | |
| 107 a*d*(-9*f*f - 18*f*g + 6*g*g + f*h + e*(f + 12*g + h)) + | |
| 108 b*(d*(-3*e*e + 9*f*g + e*(9*f + 9*g - 6*h)) + 3*a*(h*(2*e - 3*g + h) -
3*f*(g + h)))))*y | |
| 109 | |
| 110 - 3*(18*c*c*c*e - 18*c*c*d*e + 6*c*d*d*e - d*d*d*e + 3*c*d*d*f - 9*c*c*d*g + a*a
*a*h + 9*c*c*c*h - | |
| 111 9*b*b*b*(e + 2*h) - a*a*(d*(e - 9*f + 18*g - 7*h) + 3*c*(2*f - 6*g + h)) + | |
| 112 a*(-9*c*c*(2*e - 6*f + 2*g - h) + d*d*(-7*e + 18*f - 9*g + h) + 3*c*d*(7*e
- 17*f + 3*g + h)) + | |
| 113 9*b*b*(3*c*(e + g + h) + a*(f + 2*h) - d*(e - 2*(f - 3*g + h))) - | |
| 114 3*b*(-(d*d*(e - 6*f + 2*g)) - 3*c*d*(e + 3*f + 3*g - h) + 9*c*c*(e + f + h
) + a*a*(g + 2*h) + | |
| 115 a*(c*(-3*e + 9*f + 9*g + 3*h) + d*(e + 3*f - 17*g + 7*h))))*Power(y,2) | |
| 116 | |
| 117 + Power(a - 3*b + 3*c - d,3)*Power(y,3) | |
| 118 | |
| 119 + Power(x,2)*(-3*(-9*b*e*f*f + 9*a*f*f*f + 6*b*e*e*g - 9*a*e*f*g + 27*b*e*f*g -
27*a*f*f*g + 18*a*e*g*g - 54*b*e*g*g + | |
| 120 27*a*f*g*g + 27*b*f*g*g - 18*a*g*g*g + a*e*e*h - 9*b*e*e*h + 3*a*e*f*h
+ 9*b*e*f*h + 9*a*f*f*h - | |
| 121 18*b*f*f*h - 21*a*e*g*h + 51*b*e*g*h - 9*a*f*g*h - 27*b*f*g*h + 18*a*g*
g*h + 7*a*e*h*h - 18*b*e*h*h - 3*a*f*h*h + | |
| 122 18*b*f*h*h - 6*a*g*h*h - 3*b*g*h*h + a*h*h*h + | |
| 123 3*c*(-9*f*f*(g - 2*h) + 3*g*g*h - f*h*(9*g + 2*h) + e*e*(f - 6*g + 6*h)
+ | |
| 124 e*(9*f*g + 6*g*g - 17*f*h - 3*g*h + 3*h*h)) - | |
| 125 d*(e*e*e + e*e*(-6*f - 3*g + 7*h) - 9*(2*f - g)*(f*f + g*g - f*(g + h))
+ | |
| 126 e*(18*f*f + 9*g*g + 3*g*h + h*h - 3*f*(3*g + 7*h)))) ) | |
| 127 | |
| 128 + Power(x,2)*(3*(a - 3*b + 3*c - d)*Power(e - 3*f + 3*g - h,2)*y) | |
| 129 | |
| 130 + x*(-3*(27*b*b*e*g*g - 27*a*b*f*g*g + 9*a*a*g*g*g - 18*b*b*e*f*h + 18*a*b*f*f*h
+ 3*a*b*e*g*h - | |
| 131 27*b*b*e*g*h - 9*a*a*f*g*h + 27*a*b*f*g*h - 9*a*a*g*g*h + a*a*e*h*h - 9
*a*b*e*h*h + | |
| 132 27*b*b*e*h*h + 6*a*a*f*h*h - 18*a*b*f*h*h - 9*b*b*f*h*h + 3*a*a*g*h*h + | |
| 133 6*a*b*g*h*h - a*a*h*h*h + 9*c*c*(e*e*(g - 3*h) - 3*f*f*h + e*(3*f + 2*g
)*h) + | |
| 134 d*d*(e*e*e - 9*f*f*f + 9*e*f*(f + g) - e*e*(3*f + 6*g + h)) + | |
| 135 d*(-3*c*(-9*f*f*g + e*e*(2*f - 6*g - 3*h) + e*(9*f*g + 6*g*g + f*h)) + | |
| 136 a*(-18*f*f*f - 18*e*g*g + 18*g*g*g - 2*e*e*h + 3*e*g*h + 2*e*h*h + 9
*f*f*(3*g + 2*h) + | |
| 137 3*f*(6*e*g - 9*g*g - e*h - 6*g*h)) - 3*b*(9*f*g*g + e*e*(4*g - 3*
h) - 6*f*f*h - | |
| 138 e*(6*f*f + g*(18*g + h) - 3*f*(3*g + 4*h)))) + | |
| 139 3*c*(3*b*(e*e*h + 3*f*g*h - e*(3*f*g - 6*f*h + 6*g*h + h*h)) + | |
| 140 a*(9*f*f*(g - 2*h) + f*h*(-e + 9*g + 4*h) - 3*(2*g*g*h + e*(2*g*g -
4*g*h + h*h))))) ) | |
| 141 | |
| 142 + x*3*(-2*a*d*e*e - 7*d*d*e*e + 15*a*d*e*f + 21*d*d*e*f - 9*a*d*f*f - 18*d*d*f*f
- 15*a*d*e*g - | |
| 143 3*d*d*e*g - 9*a*a*f*g + 9*d*d*f*g + 18*a*a*g*g + 9*a*d*g*g + 2*a*a*e*h
- 2*d*d*e*h + | |
| 144 3*a*a*f*h + 15*a*d*f*h - 21*a*a*g*h - 15*a*d*g*h + 7*a*a*h*h + 2*a*d*h*
h - | |
| 145 9*c*c*(2*e*e + 3*f*f + 3*f*h - 2*g*h + e*(-3*f - 4*g + h)) + | |
| 146 9*b*b*(3*g*g - 3*g*h + 2*h*(-2*f + h) + e*(-2*f + 3*g + h)) + | |
| 147 3*b*(3*c*(e*e + 3*e*(f - 3*g) + (9*f - 3*g - h)*h) + a*(6*f*f + e*g - 9
*f*g - 9*g*g - 5*e*h + 9*f*h + 14*g*h - 7*h*h) + | |
| 148 d*(-e*e + 12*f*f - 27*f*g + e*(-9*f + 20*g - 5*h) + g*(9*g + h))) + | |
| 149 3*c*(a*(-(e*f) - 9*f*f + 27*f*g - 12*g*g + 5*e*h - 20*f*h + 9*g*h + h*h
) + | |
| 150 d*(7*e*e + 9*f*f + 9*f*g - 6*g*g - f*h + e*(-14*f - 9*g + 5*h))))*y | |
| 151 | |
| 152 - x*3*Power(a - 3*b + 3*c - d,2)*(e - 3*f + 3*g - h)*Power(y,2) | |
| 153 | |
| 154 */ | |
| 155 | |
| 156 const int factors = 8; | |
| 157 | |
| 158 struct coeff { | |
| 159 int s; // constant and coefficient sign | |
| 160 int n[factors]; // 0 or power of a (1, 2, or 3) for a through h | |
| 161 }; | |
| 162 | |
| 163 enum { | |
| 164 xxx_coeff, | |
| 165 xxy_coeff, | |
| 166 xyy_coeff, | |
| 167 yyy_coeff, | |
| 168 xx_coeff, | |
| 169 xy_coeff, | |
| 170 yy_coeff, | |
| 171 x_coeff, | |
| 172 y_coeff, | |
| 173 c_coeff, | |
| 174 coeff_count | |
| 175 }; | |
| 176 | |
| 177 typedef std::vector<coeff> coeffs; | |
| 178 typedef std::vector<coeffs> n_coeffs; | |
| 179 | |
| 180 static char skipSpace(const char* str, size_t& index) { | |
| 181 do { | |
| 182 ++index; | |
| 183 } while (str[index] == ' '); | |
| 184 return str[index]; | |
| 185 } | |
| 186 | |
| 187 static char backSkipSpace(const char* str, size_t& end) { | |
| 188 while (str[end - 1] == ' ') { | |
| 189 --end; | |
| 190 } | |
| 191 return str[end - 1]; | |
| 192 } | |
| 193 | |
| 194 static void match(const char* str, size_t len, coeffs& co, const char pattern[])
{ | |
| 195 size_t patternLen = strlen(pattern); | |
| 196 size_t index = 0; | |
| 197 while (index < len) { | |
| 198 char ch = str[index]; | |
| 199 if (ch != '-' && ch != '+') { | |
| 200 printf("missing sign\n"); | |
| 201 } | |
| 202 size_t end = index + 1; | |
| 203 while (str[end] != '+' && str[end] != '-' && ++end < len) { | |
| 204 ; | |
| 205 } | |
| 206 backSkipSpace(str, end); | |
| 207 size_t idx = index; | |
| 208 index = end; | |
| 209 skipSpace(str, index); | |
| 210 if (!strncmp(&str[end - patternLen], pattern, patternLen) == 0) { | |
| 211 continue; | |
| 212 } | |
| 213 size_t endCoeff = end - patternLen; | |
| 214 char last = backSkipSpace(str, endCoeff); | |
| 215 if (last == '2' || last == '3') { | |
| 216 last = str[endCoeff - 3]; // skip ^2 | |
| 217 } | |
| 218 if (last == 'x' || last == 'y') { | |
| 219 continue; | |
| 220 } | |
| 221 coeff c; | |
| 222 c.s = str[idx] == '-' ? -1 : 1; | |
| 223 bzero(c.n, sizeof(c.n)); | |
| 224 ch = skipSpace(str, idx); | |
| 225 if (ch >= '2' && ch <= '6') { | |
| 226 c.s *= ch - '0'; | |
| 227 ch = skipSpace(str, idx); | |
| 228 } | |
| 229 while (idx < endCoeff) { | |
| 230 char x = str[idx]; | |
| 231 if (x < 'a' || x > 'a' + factors) { | |
| 232 printf("expected factor\n"); | |
| 233 } | |
| 234 idx++; | |
| 235 int pow = 1; | |
| 236 if (str[idx] == '^') { | |
| 237 idx++; | |
| 238 char exp = str[idx]; | |
| 239 if (exp < '2' || exp > '3') { | |
| 240 printf("expected exponent\n"); | |
| 241 } | |
| 242 pow = exp - '0'; | |
| 243 } | |
| 244 skipSpace(str, idx); | |
| 245 c.n[x - 'a'] = pow; | |
| 246 } | |
| 247 co.push_back(c); | |
| 248 } | |
| 249 } | |
| 250 | |
| 251 void cubecode_test(int test); | |
| 252 | |
| 253 void cubecode_test(int test) { | |
| 254 const char* str = test ? result2 : result1; | |
| 255 size_t len = strlen(str); | |
| 256 n_coeffs c(coeff_count); | |
| 257 match(str, len, c[xxx_coeff], "x^3"); // 1 factor | |
| 258 match(str, len, c[xxy_coeff], "x^2 y"); // 1 factor | |
| 259 match(str, len, c[xyy_coeff], "x y^2"); // 1 factor | |
| 260 match(str, len, c[yyy_coeff], "y^3"); // 1 factor | |
| 261 match(str, len, c[xx_coeff], "x^2"); // 7 factors | |
| 262 match(str, len, c[xy_coeff], "x y"); // 8 factors | |
| 263 match(str, len, c[yy_coeff], "y^2"); // 7 factors | |
| 264 match(str, len, c[x_coeff], "x"); // 21 factors | |
| 265 match(str, len, c[y_coeff], "y"); // 21 factors | |
| 266 match(str, len, c[c_coeff], ""); // 34 factors : total 102 | |
| 267 #define COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS 0 | |
| 268 #define WRITE_AS_NONOPTIMIZED_C_CODE 0 | |
| 269 #if COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS | |
| 270 int count[factors][factors][factors]; | |
| 271 bzero(count, sizeof(count)); | |
| 272 #endif | |
| 273 #if WRITE_AS_NONOPTIMIZED_C_CODE | |
| 274 printf("// start of generated code"); | |
| 275 #endif | |
| 276 for (n_coeffs::iterator it = c.begin(); it < c.end(); ++it) { | |
| 277 coeffs& co = *it; | |
| 278 #if WRITE_AS_NONOPTIMIZED_C_CODE | |
| 279 printf("\nstatic double calc_%c(double a, double b, double c, double d," | |
| 280 "\n double e, double f, double g, double h) {
" | |
| 281 "\n return" | |
| 282 "\n ", 'A' + (it - c.begin())); | |
| 283 if (co[0].s > 0) { | |
| 284 printf(" "); | |
| 285 } | |
| 286 if (abs(co[0].s) == 1) { | |
| 287 printf(" "); | |
| 288 } | |
| 289 #endif | |
| 290 for (coeffs::iterator ct = co.begin(); ct < co.end(); ++ct) { | |
| 291 const coeff& cf = *ct; | |
| 292 #if WRITE_AS_NONOPTIMIZED_C_CODE | |
| 293 printf(" "); | |
| 294 bool firstFactor = false; | |
| 295 if (ct - co.begin() > 0 || cf.s < 0) { | |
| 296 printf("%c", cf.s < 0 ? '-' : '+'); | |
| 297 } | |
| 298 if (ct - co.begin() > 0) { | |
| 299 printf(" "); | |
| 300 } | |
| 301 if (abs(cf.s) > 1) { | |
| 302 printf("%d * ", abs(cf.s)); | |
| 303 } else { | |
| 304 if (ct - co.begin() > 0) { | |
| 305 printf(" "); | |
| 306 } | |
| 307 } | |
| 308 #endif | |
| 309 for (int x = 0; x < factors; ++x) { | |
| 310 if (cf.n[x] == 0) { | |
| 311 continue; | |
| 312 } | |
| 313 #if WRITE_AS_NONOPTIMIZED_C_CODE | |
| 314 for (int y = 0 ; y < cf.n[x]; ++y) { | |
| 315 if (y > 0 || firstFactor) { | |
| 316 printf(" * "); | |
| 317 } | |
| 318 printf("%c", 'a' + x); | |
| 319 } | |
| 320 firstFactor = true; | |
| 321 #endif | |
| 322 #if COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS | |
| 323 for (int y = x; y < factors; ++y) { | |
| 324 if (cf.n[y] == 0) { | |
| 325 continue; | |
| 326 } | |
| 327 if (x == y && cf.n[y] == 1) { | |
| 328 continue; | |
| 329 } | |
| 330 for (int z = y; z < factors; ++z) { | |
| 331 if (cf.n[z] == 0) { | |
| 332 continue; | |
| 333 } | |
| 334 if ((x == z || y == z) && cf.n[z] == 1) { | |
| 335 continue; | |
| 336 } | |
| 337 if (x == y && y == z && cf.n[z] == 2) { | |
| 338 continue; | |
| 339 } | |
| 340 count[x][y][z]++; | |
| 341 } | |
| 342 } | |
| 343 #endif | |
| 344 } | |
| 345 #if WRITE_AS_NONOPTIMIZED_C_CODE | |
| 346 if (ct + 1 < co.end()) { | |
| 347 printf("\n"); | |
| 348 } | |
| 349 #endif | |
| 350 } | |
| 351 #if WRITE_AS_NONOPTIMIZED_C_CODE | |
| 352 printf(";\n}\n"); | |
| 353 #endif | |
| 354 } | |
| 355 #if WRITE_AS_NONOPTIMIZED_C_CODE | |
| 356 printf("// end of generated code\n"); | |
| 357 #endif | |
| 358 #if COMPUTE_MOST_FREQUENT_EXPRESSION_TRIPLETS | |
| 359 const int bestCount = 20; | |
| 360 int best[bestCount][4]; | |
| 361 bzero(best, sizeof(best)); | |
| 362 for (int x = 0; x < factors; ++x) { | |
| 363 for (int y = x; y < factors; ++y) { | |
| 364 for (int z = y; z < factors; ++z) { | |
| 365 if (!count[x][y][z]) { | |
| 366 continue; | |
| 367 } | |
| 368 for (int w = 0; w < bestCount; ++w) { | |
| 369 if (best[w][0] < count[x][y][z]) { | |
| 370 best[w][0] = count[x][y][z]; | |
| 371 best[w][1] = x; | |
| 372 best[w][2] = y; | |
| 373 best[w][3] = z; | |
| 374 break; | |
| 375 } | |
| 376 } | |
| 377 } | |
| 378 } | |
| 379 } | |
| 380 for (int w = 0; w < bestCount; ++w) { | |
| 381 printf("%c%c%c=%d\n", 'a' + best[w][1], 'a' + best[w][2], | |
| 382 'a' + best[w][3], best[w][0]); | |
| 383 } | |
| 384 #endif | |
| 385 #if WRITE_AS_NONOPTIMIZED_C_CODE | |
| 386 printf("\n"); | |
| 387 #endif | |
| 388 } | |
| 389 | |
| 390 /* results: variable triplets used 10 or more times: | |
| 391 aah=14 | |
| 392 ade=14 | |
| 393 aeh=14 | |
| 394 dee=14 | |
| 395 bce=13 | |
| 396 beg=13 | |
| 397 beh=12 | |
| 398 bbe=11 | |
| 399 bef=11 | |
| 400 cee=11 | |
| 401 cef=11 | |
| 402 def=11 | |
| 403 ceh=10 | |
| 404 deg=10 | |
| 405 */ | |
| OLD | NEW |