| Index: experimental/Intersection/QuarticRoot.cpp
|
| diff --git a/experimental/Intersection/QuarticRoot.cpp b/experimental/Intersection/QuarticRoot.cpp
|
| deleted file mode 100644
|
| index 46bb4f50247a2e670db7bbe2833360d9cffb18e8..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/QuarticRoot.cpp
|
| +++ /dev/null
|
| @@ -1,236 +0,0 @@
|
| -// from http://tog.acm.org/resources/GraphicsGems/gems/Roots3And4.c
|
| -/*
|
| - * Roots3And4.c
|
| - *
|
| - * Utility functions to find cubic and quartic roots,
|
| - * coefficients are passed like this:
|
| - *
|
| - * c[0] + c[1]*x + c[2]*x^2 + c[3]*x^3 + c[4]*x^4 = 0
|
| - *
|
| - * The functions return the number of non-complex roots and
|
| - * put the values into the s array.
|
| - *
|
| - * Author: Jochen Schwarze (schwarze@isa.de)
|
| - *
|
| - * Jan 26, 1990 Version for Graphics Gems
|
| - * Oct 11, 1990 Fixed sign problem for negative q's in SolveQuartic
|
| - * (reported by Mark Podlipec),
|
| - * Old-style function definitions,
|
| - * IsZero() as a macro
|
| - * Nov 23, 1990 Some systems do not declare acos() and cbrt() in
|
| - * <math.h>, though the functions exist in the library.
|
| - * If large coefficients are used, EQN_EPS should be
|
| - * reduced considerably (e.g. to 1E-30), results will be
|
| - * correct but multiple roots might be reported more
|
| - * than once.
|
| - */
|
| -
|
| -#include <math.h>
|
| -#include "CubicUtilities.h"
|
| -#include "QuadraticUtilities.h"
|
| -#include "QuarticRoot.h"
|
| -
|
| -int reducedQuarticRoots(const double t4, const double t3, const double t2, const double t1,
|
| - const double t0, const bool oneHint, double roots[4]) {
|
| -#ifdef SK_DEBUG
|
| - // create a string mathematica understands
|
| - // GDB set print repe 15 # if repeated digits is a bother
|
| - // set print elements 400 # if line doesn't fit
|
| - char str[1024];
|
| - bzero(str, sizeof(str));
|
| - sprintf(str, "Solve[%1.19g x^4 + %1.19g x^3 + %1.19g x^2 + %1.19g x + %1.19g == 0, x]",
|
| - t4, t3, t2, t1, t0);
|
| - mathematica_ize(str, sizeof(str));
|
| -#if ONE_OFF_DEBUG && ONE_OFF_DEBUG_MATHEMATICA
|
| - SkDebugf("%s\n", str);
|
| -#endif
|
| -#endif
|
| -#if 0 && SK_DEBUG
|
| - bool t4Or = approximately_zero_when_compared_to(t4, t0) // 0 is one root
|
| - || approximately_zero_when_compared_to(t4, t1)
|
| - || approximately_zero_when_compared_to(t4, t2);
|
| - bool t4And = approximately_zero_when_compared_to(t4, t0) // 0 is one root
|
| - && approximately_zero_when_compared_to(t4, t1)
|
| - && approximately_zero_when_compared_to(t4, t2);
|
| - if (t4Or != t4And) {
|
| - SkDebugf("%s t4 or and\n", __FUNCTION__);
|
| - }
|
| - bool t3Or = approximately_zero_when_compared_to(t3, t0)
|
| - || approximately_zero_when_compared_to(t3, t1)
|
| - || approximately_zero_when_compared_to(t3, t2);
|
| - bool t3And = approximately_zero_when_compared_to(t3, t0)
|
| - && approximately_zero_when_compared_to(t3, t1)
|
| - && approximately_zero_when_compared_to(t3, t2);
|
| - if (t3Or != t3And) {
|
| - SkDebugf("%s t3 or and\n", __FUNCTION__);
|
| - }
|
| - bool t0Or = approximately_zero_when_compared_to(t0, t1) // 0 is one root
|
| - && approximately_zero_when_compared_to(t0, t2)
|
| - && approximately_zero_when_compared_to(t0, t3)
|
| - && approximately_zero_when_compared_to(t0, t4);
|
| - bool t0And = approximately_zero_when_compared_to(t0, t1) // 0 is one root
|
| - && approximately_zero_when_compared_to(t0, t2)
|
| - && approximately_zero_when_compared_to(t0, t3)
|
| - && approximately_zero_when_compared_to(t0, t4);
|
| - if (t0Or != t0And) {
|
| - SkDebugf("%s t0 or and\n", __FUNCTION__);
|
| - }
|
| -#endif
|
| - if (approximately_zero_when_compared_to(t4, t0) // 0 is one root
|
| - && approximately_zero_when_compared_to(t4, t1)
|
| - && approximately_zero_when_compared_to(t4, t2)) {
|
| - if (approximately_zero_when_compared_to(t3, t0)
|
| - && approximately_zero_when_compared_to(t3, t1)
|
| - && approximately_zero_when_compared_to(t3, t2)) {
|
| - return quadraticRootsReal(t2, t1, t0, roots);
|
| - }
|
| - if (approximately_zero_when_compared_to(t4, t3)) {
|
| - return cubicRootsReal(t3, t2, t1, t0, roots);
|
| - }
|
| - }
|
| - if ((approximately_zero_when_compared_to(t0, t1) || approximately_zero(t1))// 0 is one root
|
| - // && approximately_zero_when_compared_to(t0, t2)
|
| - && approximately_zero_when_compared_to(t0, t3)
|
| - && approximately_zero_when_compared_to(t0, t4)) {
|
| - int num = cubicRootsReal(t4, t3, t2, t1, roots);
|
| - for (int i = 0; i < num; ++i) {
|
| - if (approximately_zero(roots[i])) {
|
| - return num;
|
| - }
|
| - }
|
| - roots[num++] = 0;
|
| - return num;
|
| - }
|
| - if (oneHint) {
|
| - SkASSERT(approximately_zero(t4 + t3 + t2 + t1 + t0)); // 1 is one root
|
| - int num = cubicRootsReal(t4, t4 + t3, -(t1 + t0), -t0, roots); // note that -C==A+B+D+E
|
| - for (int i = 0; i < num; ++i) {
|
| - if (approximately_equal(roots[i], 1)) {
|
| - return num;
|
| - }
|
| - }
|
| - roots[num++] = 1;
|
| - return num;
|
| - }
|
| - return -1;
|
| -}
|
| -
|
| -int quarticRootsReal(int firstCubicRoot, const double A, const double B, const double C,
|
| - const double D, const double E, double s[4]) {
|
| - double u, v;
|
| - /* normal form: x^4 + Ax^3 + Bx^2 + Cx + D = 0 */
|
| - const double invA = 1 / A;
|
| - const double a = B * invA;
|
| - const double b = C * invA;
|
| - const double c = D * invA;
|
| - const double d = E * invA;
|
| - /* substitute x = y - a/4 to eliminate cubic term:
|
| - x^4 + px^2 + qx + r = 0 */
|
| - const double a2 = a * a;
|
| - const double p = -3 * a2 / 8 + b;
|
| - const double q = a2 * a / 8 - a * b / 2 + c;
|
| - const double r = -3 * a2 * a2 / 256 + a2 * b / 16 - a * c / 4 + d;
|
| - int num;
|
| - if (approximately_zero(r)) {
|
| - /* no absolute term: y(y^3 + py + q) = 0 */
|
| - num = cubicRootsReal(1, 0, p, q, s);
|
| - s[num++] = 0;
|
| - } else {
|
| - /* solve the resolvent cubic ... */
|
| - double cubicRoots[3];
|
| - int roots = cubicRootsReal(1, -p / 2, -r, r * p / 2 - q * q / 8, cubicRoots);
|
| - int index;
|
| - #if 0 && SK_DEBUG // enable to verify that any cubic root is as good as any other
|
| - double tries[3][4];
|
| - int nums[3];
|
| - for (index = 0; index < roots; ++index) {
|
| - /* ... and take one real solution ... */
|
| - const double z = cubicRoots[index];
|
| - /* ... to build two quadric equations */
|
| - u = z * z - r;
|
| - v = 2 * z - p;
|
| - if (approximately_zero_squared(u)) {
|
| - u = 0;
|
| - } else if (u > 0) {
|
| - u = sqrt(u);
|
| - } else {
|
| - SkDebugf("%s u=%1.9g <0\n", __FUNCTION__, u);
|
| - continue;
|
| - }
|
| - if (approximately_zero_squared(v)) {
|
| - v = 0;
|
| - } else if (v > 0) {
|
| - v = sqrt(v);
|
| - } else {
|
| - SkDebugf("%s v=%1.9g <0\n", __FUNCTION__, v);
|
| - continue;
|
| - }
|
| - nums[index] = quadraticRootsReal(1, q < 0 ? -v : v, z - u, tries[index]);
|
| - nums[index] += quadraticRootsReal(1, q < 0 ? v : -v, z + u, tries[index] + nums[index]);
|
| - /* resubstitute */
|
| - const double sub = a / 4;
|
| - for (int i = 0; i < nums[index]; ++i) {
|
| - tries[index][i] -= sub;
|
| - }
|
| - }
|
| - for (index = 0; index < roots; ++index) {
|
| - SkDebugf("%s", __FUNCTION__);
|
| - for (int idx2 = 0; idx2 < nums[index]; ++idx2) {
|
| - SkDebugf(" %1.9g", tries[index][idx2]);
|
| - }
|
| - SkDebugf("\n");
|
| - }
|
| - #endif
|
| - /* ... and take one real solution ... */
|
| - double z;
|
| - num = 0;
|
| - int num2 = 0;
|
| - for (index = firstCubicRoot; index < roots; ++index) {
|
| - z = cubicRoots[index];
|
| - /* ... to build two quadric equations */
|
| - u = z * z - r;
|
| - v = 2 * z - p;
|
| - if (approximately_zero_squared(u)) {
|
| - u = 0;
|
| - } else if (u > 0) {
|
| - u = sqrt(u);
|
| - } else {
|
| - continue;
|
| - }
|
| - if (approximately_zero_squared(v)) {
|
| - v = 0;
|
| - } else if (v > 0) {
|
| - v = sqrt(v);
|
| - } else {
|
| - continue;
|
| - }
|
| - num = quadraticRootsReal(1, q < 0 ? -v : v, z - u, s);
|
| - num2 = quadraticRootsReal(1, q < 0 ? v : -v, z + u, s + num);
|
| - if (!((num | num2) & 1)) {
|
| - break; // prefer solutions without single quad roots
|
| - }
|
| - }
|
| - num += num2;
|
| - if (!num) {
|
| - return 0; // no valid cubic root
|
| - }
|
| - }
|
| - /* resubstitute */
|
| - const double sub = a / 4;
|
| - for (int i = 0; i < num; ++i) {
|
| - s[i] -= sub;
|
| - }
|
| - // eliminate duplicates
|
| - for (int i = 0; i < num - 1; ++i) {
|
| - for (int j = i + 1; j < num; ) {
|
| - if (AlmostEqualUlps(s[i], s[j])) {
|
| - if (j < --num) {
|
| - s[j] = s[num];
|
| - }
|
| - } else {
|
| - ++j;
|
| - }
|
| - }
|
| - }
|
| - return num;
|
| -}
|
|
|