| Index: experimental/Intersection/QuadraticIntersection.cpp
|
| diff --git a/experimental/Intersection/QuadraticIntersection.cpp b/experimental/Intersection/QuadraticIntersection.cpp
|
| deleted file mode 100644
|
| index 07b8ecf8f3ea4913bbff1a98eb9045aa60c77b8a..0000000000000000000000000000000000000000
|
| --- a/experimental/Intersection/QuadraticIntersection.cpp
|
| +++ /dev/null
|
| @@ -1,403 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -#include "CurveIntersection.h"
|
| -#include "Intersections.h"
|
| -#include "IntersectionUtilities.h"
|
| -#include "LineIntersection.h"
|
| -#include "LineUtilities.h"
|
| -#include "QuadraticLineSegments.h"
|
| -#include "QuadraticUtilities.h"
|
| -#include <algorithm> // for swap
|
| -
|
| -static const double tClipLimit = 0.8; // http://cagd.cs.byu.edu/~tom/papers/bezclip.pdf see Multiple intersections
|
| -
|
| -class QuadraticIntersections {
|
| -public:
|
| -
|
| -QuadraticIntersections(const Quadratic& q1, const Quadratic& q2, Intersections& i)
|
| - : quad1(q1)
|
| - , quad2(q2)
|
| - , intersections(i)
|
| - , depth(0)
|
| - , splits(0)
|
| - , coinMinT1(-1) {
|
| -}
|
| -
|
| -bool intersect() {
|
| - double minT1, minT2, maxT1, maxT2;
|
| - if (!bezier_clip(quad2, quad1, minT1, maxT1)) {
|
| - return false;
|
| - }
|
| - if (!bezier_clip(quad1, quad2, minT2, maxT2)) {
|
| - return false;
|
| - }
|
| - quad1Divisions = 1 / subDivisions(quad1);
|
| - quad2Divisions = 1 / subDivisions(quad2);
|
| - int split;
|
| - if (maxT1 - minT1 < maxT2 - minT2) {
|
| - intersections.swap();
|
| - minT2 = 0;
|
| - maxT2 = 1;
|
| - split = maxT1 - minT1 > tClipLimit;
|
| - } else {
|
| - minT1 = 0;
|
| - maxT1 = 1;
|
| - split = (maxT2 - minT2 > tClipLimit) << 1;
|
| - }
|
| - return chop(minT1, maxT1, minT2, maxT2, split);
|
| -}
|
| -
|
| -protected:
|
| -
|
| -bool intersect(double minT1, double maxT1, double minT2, double maxT2) {
|
| - bool t1IsLine = maxT1 - minT1 <= quad1Divisions;
|
| - bool t2IsLine = maxT2 - minT2 <= quad2Divisions;
|
| - if (t1IsLine | t2IsLine) {
|
| - return intersectAsLine(minT1, maxT1, minT2, maxT2, t1IsLine, t2IsLine);
|
| - }
|
| - Quadratic smaller, larger;
|
| - // FIXME: carry last subdivide and reduceOrder result with quad
|
| - sub_divide(quad1, minT1, maxT1, intersections.swapped() ? larger : smaller);
|
| - sub_divide(quad2, minT2, maxT2, intersections.swapped() ? smaller : larger);
|
| - double minT, maxT;
|
| - if (!bezier_clip(smaller, larger, minT, maxT)) {
|
| - if (approximately_equal(minT, maxT)) {
|
| - double smallT, largeT;
|
| - _Point q2pt, q1pt;
|
| - if (intersections.swapped()) {
|
| - largeT = interp(minT2, maxT2, minT);
|
| - xy_at_t(quad2, largeT, q2pt.x, q2pt.y);
|
| - xy_at_t(quad1, minT1, q1pt.x, q1pt.y);
|
| - if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) {
|
| - smallT = minT1;
|
| - } else {
|
| - xy_at_t(quad1, maxT1, q1pt.x, q1pt.y); // FIXME: debug code
|
| - SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y));
|
| - smallT = maxT1;
|
| - }
|
| - } else {
|
| - smallT = interp(minT1, maxT1, minT);
|
| - xy_at_t(quad1, smallT, q1pt.x, q1pt.y);
|
| - xy_at_t(quad2, minT2, q2pt.x, q2pt.y);
|
| - if (AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y)) {
|
| - largeT = minT2;
|
| - } else {
|
| - xy_at_t(quad2, maxT2, q2pt.x, q2pt.y); // FIXME: debug code
|
| - SkASSERT(AlmostEqualUlps(q2pt.x, q1pt.x) && AlmostEqualUlps(q2pt.y, q1pt.y));
|
| - largeT = maxT2;
|
| - }
|
| - }
|
| - intersections.add(smallT, largeT);
|
| - return true;
|
| - }
|
| - return false;
|
| - }
|
| - int split;
|
| - if (intersections.swapped()) {
|
| - double newMinT1 = interp(minT1, maxT1, minT);
|
| - double newMaxT1 = interp(minT1, maxT1, maxT);
|
| - split = (newMaxT1 - newMinT1 > (maxT1 - minT1) * tClipLimit) << 1;
|
| -#define VERBOSE 0
|
| -#if VERBOSE
|
| - printf("%s d=%d s=%d new1=(%g,%g) old1=(%g,%g) split=%d\n", __FUNCTION__, depth,
|
| - splits, newMinT1, newMaxT1, minT1, maxT1, split);
|
| -#endif
|
| - minT1 = newMinT1;
|
| - maxT1 = newMaxT1;
|
| - } else {
|
| - double newMinT2 = interp(minT2, maxT2, minT);
|
| - double newMaxT2 = interp(minT2, maxT2, maxT);
|
| - split = newMaxT2 - newMinT2 > (maxT2 - minT2) * tClipLimit;
|
| -#if VERBOSE
|
| - printf("%s d=%d s=%d new2=(%g,%g) old2=(%g,%g) split=%d\n", __FUNCTION__, depth,
|
| - splits, newMinT2, newMaxT2, minT2, maxT2, split);
|
| -#endif
|
| - minT2 = newMinT2;
|
| - maxT2 = newMaxT2;
|
| - }
|
| - return chop(minT1, maxT1, minT2, maxT2, split);
|
| -}
|
| -
|
| -bool intersectAsLine(double minT1, double maxT1, double minT2, double maxT2,
|
| - bool treat1AsLine, bool treat2AsLine)
|
| -{
|
| - _Line line1, line2;
|
| - if (intersections.swapped()) {
|
| - SkTSwap(treat1AsLine, treat2AsLine);
|
| - SkTSwap(minT1, minT2);
|
| - SkTSwap(maxT1, maxT2);
|
| - }
|
| - if (coinMinT1 >= 0) {
|
| - bool earlyExit;
|
| - if ((earlyExit = coinMaxT1 == minT1)) {
|
| - coinMaxT1 = maxT1;
|
| - }
|
| - if (coinMaxT2 == minT2) {
|
| - coinMaxT2 = maxT2;
|
| - return true;
|
| - }
|
| - if (earlyExit) {
|
| - return true;
|
| - }
|
| - coinMinT1 = -1;
|
| - }
|
| - // do line/quadratic or even line/line intersection instead
|
| - if (treat1AsLine) {
|
| - xy_at_t(quad1, minT1, line1[0].x, line1[0].y);
|
| - xy_at_t(quad1, maxT1, line1[1].x, line1[1].y);
|
| - }
|
| - if (treat2AsLine) {
|
| - xy_at_t(quad2, minT2, line2[0].x, line2[0].y);
|
| - xy_at_t(quad2, maxT2, line2[1].x, line2[1].y);
|
| - }
|
| - int pts;
|
| - double smallT1, largeT1, smallT2, largeT2;
|
| - if (treat1AsLine & treat2AsLine) {
|
| - double t1[2], t2[2];
|
| - pts = ::intersect(line1, line2, t1, t2);
|
| - if (pts == 2) {
|
| - smallT1 = interp(minT1, maxT1, t1[0]);
|
| - largeT1 = interp(minT2, maxT2, t2[0]);
|
| - smallT2 = interp(minT1, maxT1, t1[1]);
|
| - largeT2 = interp(minT2, maxT2, t2[1]);
|
| - intersections.addCoincident(smallT1, smallT2, largeT1, largeT2);
|
| - } else {
|
| - smallT1 = interp(minT1, maxT1, t1[0]);
|
| - largeT1 = interp(minT2, maxT2, t2[0]);
|
| - intersections.add(smallT1, largeT1);
|
| - }
|
| - } else {
|
| - Intersections lq;
|
| - pts = ::intersect(treat1AsLine ? quad2 : quad1,
|
| - treat1AsLine ? line1 : line2, lq);
|
| - if (pts == 2) { // if the line and edge are coincident treat differently
|
| - _Point midQuad, midLine;
|
| - double midQuadT = (lq.fT[0][0] + lq.fT[0][1]) / 2;
|
| - xy_at_t(treat1AsLine ? quad2 : quad1, midQuadT, midQuad.x, midQuad.y);
|
| - double lineT = t_at(treat1AsLine ? line1 : line2, midQuad);
|
| - xy_at_t(treat1AsLine ? line1 : line2, lineT, midLine.x, midLine.y);
|
| - if (AlmostEqualUlps(midQuad.x, midLine.x)
|
| - && AlmostEqualUlps(midQuad.y, midLine.y)) {
|
| - smallT1 = lq.fT[0][0];
|
| - largeT1 = lq.fT[1][0];
|
| - smallT2 = lq.fT[0][1];
|
| - largeT2 = lq.fT[1][1];
|
| - if (treat2AsLine) {
|
| - smallT1 = interp(minT1, maxT1, smallT1);
|
| - smallT2 = interp(minT1, maxT1, smallT2);
|
| - } else {
|
| - largeT1 = interp(minT2, maxT2, largeT1);
|
| - largeT2 = interp(minT2, maxT2, largeT2);
|
| - }
|
| - intersections.addCoincident(smallT1, smallT2, largeT1, largeT2);
|
| - goto setCoinMinMax;
|
| - }
|
| - }
|
| - for (int index = 0; index < pts; ++index) {
|
| - smallT1 = lq.fT[0][index];
|
| - largeT1 = lq.fT[1][index];
|
| - if (treat2AsLine) {
|
| - smallT1 = interp(minT1, maxT1, smallT1);
|
| - } else {
|
| - largeT1 = interp(minT2, maxT2, largeT1);
|
| - }
|
| - intersections.add(smallT1, largeT1);
|
| - }
|
| - }
|
| - if (pts > 0) {
|
| -setCoinMinMax:
|
| - coinMinT1 = minT1;
|
| - coinMaxT1 = maxT1;
|
| - coinMinT2 = minT2;
|
| - coinMaxT2 = maxT2;
|
| - }
|
| - return pts > 0;
|
| -}
|
| -
|
| -bool chop(double minT1, double maxT1, double minT2, double maxT2, int split) {
|
| - ++depth;
|
| - intersections.swap();
|
| - if (split) {
|
| - ++splits;
|
| - if (split & 2) {
|
| - double middle1 = (maxT1 + minT1) / 2;
|
| - intersect(minT1, middle1, minT2, maxT2);
|
| - intersect(middle1, maxT1, minT2, maxT2);
|
| - } else {
|
| - double middle2 = (maxT2 + minT2) / 2;
|
| - intersect(minT1, maxT1, minT2, middle2);
|
| - intersect(minT1, maxT1, middle2, maxT2);
|
| - }
|
| - --splits;
|
| - intersections.swap();
|
| - --depth;
|
| - return intersections.intersected();
|
| - }
|
| - bool result = intersect(minT1, maxT1, minT2, maxT2);
|
| - intersections.swap();
|
| - --depth;
|
| - return result;
|
| -}
|
| -
|
| -private:
|
| -
|
| -const Quadratic& quad1;
|
| -const Quadratic& quad2;
|
| -Intersections& intersections;
|
| -int depth;
|
| -int splits;
|
| -double quad1Divisions; // line segments to approximate original within error
|
| -double quad2Divisions;
|
| -double coinMinT1; // range of Ts where approximate line intersected curve
|
| -double coinMaxT1;
|
| -double coinMinT2;
|
| -double coinMaxT2;
|
| -};
|
| -
|
| -#include "LineParameters.h"
|
| -
|
| -static void hackToFixPartialCoincidence(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
|
| - // look to see if non-coincident data basically has unsortable tangents
|
| -
|
| - // look to see if a point between non-coincident data is on the curve
|
| - int cIndex;
|
| - for (int uIndex = 0; uIndex < i.fUsed; ) {
|
| - double bestDist1 = 1;
|
| - double bestDist2 = 1;
|
| - int closest1 = -1;
|
| - int closest2 = -1;
|
| - for (cIndex = 0; cIndex < i.fCoincidentUsed; ++cIndex) {
|
| - double dist = fabs(i.fT[0][uIndex] - i.fCoincidentT[0][cIndex]);
|
| - if (bestDist1 > dist) {
|
| - bestDist1 = dist;
|
| - closest1 = cIndex;
|
| - }
|
| - dist = fabs(i.fT[1][uIndex] - i.fCoincidentT[1][cIndex]);
|
| - if (bestDist2 > dist) {
|
| - bestDist2 = dist;
|
| - closest2 = cIndex;
|
| - }
|
| - }
|
| - _Line ends;
|
| - _Point mid;
|
| - double t1 = i.fT[0][uIndex];
|
| - xy_at_t(q1, t1, ends[0].x, ends[0].y);
|
| - xy_at_t(q1, i.fCoincidentT[0][closest1], ends[1].x, ends[1].y);
|
| - double midT = (t1 + i.fCoincidentT[0][closest1]) / 2;
|
| - xy_at_t(q1, midT, mid.x, mid.y);
|
| - LineParameters params;
|
| - params.lineEndPoints(ends);
|
| - double midDist = params.pointDistance(mid);
|
| - // Note that we prefer to always measure t error, which does not scale,
|
| - // instead of point error, which is scale dependent. FIXME
|
| - if (!approximately_zero(midDist)) {
|
| - ++uIndex;
|
| - continue;
|
| - }
|
| - double t2 = i.fT[1][uIndex];
|
| - xy_at_t(q2, t2, ends[0].x, ends[0].y);
|
| - xy_at_t(q2, i.fCoincidentT[1][closest2], ends[1].x, ends[1].y);
|
| - midT = (t2 + i.fCoincidentT[1][closest2]) / 2;
|
| - xy_at_t(q2, midT, mid.x, mid.y);
|
| - params.lineEndPoints(ends);
|
| - midDist = params.pointDistance(mid);
|
| - if (!approximately_zero(midDist)) {
|
| - ++uIndex;
|
| - continue;
|
| - }
|
| - // if both midpoints are close to the line, lengthen coincident span
|
| - int cEnd = closest1 ^ 1; // assume coincidence always travels in pairs
|
| - if (!between(i.fCoincidentT[0][cEnd], t1, i.fCoincidentT[0][closest1])) {
|
| - i.fCoincidentT[0][closest1] = t1;
|
| - }
|
| - cEnd = closest2 ^ 1;
|
| - if (!between(i.fCoincidentT[0][cEnd], t2, i.fCoincidentT[0][closest2])) {
|
| - i.fCoincidentT[0][closest2] = t2;
|
| - }
|
| - int remaining = --i.fUsed - uIndex;
|
| - if (remaining > 0) {
|
| - memmove(&i.fT[0][uIndex], &i.fT[0][uIndex + 1], sizeof(i.fT[0][0]) * remaining);
|
| - memmove(&i.fT[1][uIndex], &i.fT[1][uIndex + 1], sizeof(i.fT[1][0]) * remaining);
|
| - }
|
| - }
|
| - // if coincident data is subjectively a tiny span, replace it with a single point
|
| - for (cIndex = 0; cIndex < i.fCoincidentUsed; ) {
|
| - double start1 = i.fCoincidentT[0][cIndex];
|
| - double end1 = i.fCoincidentT[0][cIndex + 1];
|
| - _Line ends1;
|
| - xy_at_t(q1, start1, ends1[0].x, ends1[0].y);
|
| - xy_at_t(q1, end1, ends1[1].x, ends1[1].y);
|
| - if (!AlmostEqualUlps(ends1[0].x, ends1[1].x) || AlmostEqualUlps(ends1[0].y, ends1[1].y)) {
|
| - cIndex += 2;
|
| - continue;
|
| - }
|
| - double start2 = i.fCoincidentT[1][cIndex];
|
| - double end2 = i.fCoincidentT[1][cIndex + 1];
|
| - _Line ends2;
|
| - xy_at_t(q2, start2, ends2[0].x, ends2[0].y);
|
| - xy_at_t(q2, end2, ends2[1].x, ends2[1].y);
|
| - // again, approximately should be used with T values, not points FIXME
|
| - if (!AlmostEqualUlps(ends2[0].x, ends2[1].x) || AlmostEqualUlps(ends2[0].y, ends2[1].y)) {
|
| - cIndex += 2;
|
| - continue;
|
| - }
|
| - if (approximately_less_than_zero(start1) || approximately_less_than_zero(end1)) {
|
| - start1 = 0;
|
| - } else if (approximately_greater_than_one(start1) || approximately_greater_than_one(end1)) {
|
| - start1 = 1;
|
| - } else {
|
| - start1 = (start1 + end1) / 2;
|
| - }
|
| - if (approximately_less_than_zero(start2) || approximately_less_than_zero(end2)) {
|
| - start2 = 0;
|
| - } else if (approximately_greater_than_one(start2) || approximately_greater_than_one(end2)) {
|
| - start2 = 1;
|
| - } else {
|
| - start2 = (start2 + end2) / 2;
|
| - }
|
| - i.insert(start1, start2);
|
| - i.fCoincidentUsed -= 2;
|
| - int remaining = i.fCoincidentUsed - cIndex;
|
| - if (remaining > 0) {
|
| - memmove(&i.fCoincidentT[0][cIndex], &i.fCoincidentT[0][cIndex + 2], sizeof(i.fCoincidentT[0][0]) * remaining);
|
| - memmove(&i.fCoincidentT[1][cIndex], &i.fCoincidentT[1][cIndex + 2], sizeof(i.fCoincidentT[1][0]) * remaining);
|
| - }
|
| - }
|
| -}
|
| -
|
| -bool intersect(const Quadratic& q1, const Quadratic& q2, Intersections& i) {
|
| - if (implicit_matches(q1, q2)) {
|
| - // FIXME: compute T values
|
| - // compute the intersections of the ends to find the coincident span
|
| - bool useVertical = fabs(q1[0].x - q1[2].x) < fabs(q1[0].y - q1[2].y);
|
| - double t;
|
| - if ((t = axialIntersect(q1, q2[0], useVertical)) >= 0) {
|
| - i.addCoincident(t, 0);
|
| - }
|
| - if ((t = axialIntersect(q1, q2[2], useVertical)) >= 0) {
|
| - i.addCoincident(t, 1);
|
| - }
|
| - useVertical = fabs(q2[0].x - q2[2].x) < fabs(q2[0].y - q2[2].y);
|
| - if ((t = axialIntersect(q2, q1[0], useVertical)) >= 0) {
|
| - i.addCoincident(0, t);
|
| - }
|
| - if ((t = axialIntersect(q2, q1[2], useVertical)) >= 0) {
|
| - i.addCoincident(1, t);
|
| - }
|
| - SkASSERT(i.fCoincidentUsed <= 2);
|
| - return i.fCoincidentUsed > 0;
|
| - }
|
| - QuadraticIntersections q(q1, q2, i);
|
| - bool result = q.intersect();
|
| - // FIXME: partial coincidence detection is currently poor. For now, try
|
| - // to fix up the data after the fact. In the future, revisit the error
|
| - // term to try to avoid this kind of result in the first place.
|
| - if (i.fUsed && i.fCoincidentUsed) {
|
| - hackToFixPartialCoincidence(q1, q2, i);
|
| - }
|
| - return result;
|
| -}
|
|
|