Index: src/core/SkTileGrid.cpp |
diff --git a/src/core/SkTileGrid.cpp b/src/core/SkTileGrid.cpp |
deleted file mode 100644 |
index bbf3517c410c049ef4c7dd33361aa434b7516593..0000000000000000000000000000000000000000 |
--- a/src/core/SkTileGrid.cpp |
+++ /dev/null |
@@ -1,188 +0,0 @@ |
-/* |
- * Copyright 2012 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "SkTileGrid.h" |
- |
-SkTileGrid::SkTileGrid(int xTiles, int yTiles, const SkTileGridFactory::TileGridInfo& info) |
- : fXTiles(xTiles) |
- , fYTiles(yTiles) |
- , fInvWidth( SkScalarInvert(info.fTileInterval.width())) |
- , fInvHeight(SkScalarInvert(info.fTileInterval.height())) |
- , fMarginWidth (info.fMargin.fWidth +1) // Margin is offset by 1 as a provision for AA and |
- , fMarginHeight(info.fMargin.fHeight+1) // to cancel the outset applied by getClipDeviceBounds. |
- , fOffset(SkPoint::Make(info.fOffset.fX, info.fOffset.fY)) |
- , fGridBounds(SkRect::MakeWH(xTiles * info.fTileInterval.width(), |
- yTiles * info.fTileInterval.height())) |
- , fTiles(SkNEW_ARRAY(SkTDArray<unsigned>, xTiles * yTiles)) {} |
- |
-SkTileGrid::~SkTileGrid() { |
- SkDELETE_ARRAY(fTiles); |
-} |
- |
-void SkTileGrid::reserve(int opCount) { |
- if (fXTiles * fYTiles == 0) { |
- return; // A tileless tile grid is nonsensical, but happens in at least cc_unittests. |
- } |
- |
- // If we assume every op we're about to try to insert() falls within our grid bounds, |
- // then every op has to hit at least one tile. In fact, a quick scan over our small |
- // SKP set shows that in the average SKP, each op hits two 256x256 tiles. |
- |
- // If we take those observations and further assume the ops are distributed evenly |
- // across the picture, we get this guess for number of ops per tile: |
- const int opsPerTileGuess = (2 * opCount) / (fXTiles * fYTiles); |
- |
- for (SkTDArray<unsigned>* tile = fTiles; tile != fTiles + (fXTiles * fYTiles); tile++) { |
- tile->setReserve(opsPerTileGuess); |
- } |
- |
- // In practice, this heuristic means we'll temporarily allocate about 30% more bytes |
- // than if we made no setReserve() calls, but time spent in insert() drops by about 50%. |
-} |
- |
-void SkTileGrid::shrinkToFit() { |
- for (SkTDArray<unsigned>* tile = fTiles; tile != fTiles + (fXTiles * fYTiles); tile++) { |
- tile->shrinkToFit(); |
- } |
-} |
- |
-// Adjustments to user-provided bounds common to both insert() and search(). |
-// Call this after making insert- or search- specific adjustments. |
-void SkTileGrid::commonAdjust(SkRect* rect) const { |
- // Apply our offset. |
- rect->offset(fOffset); |
- |
- // Scrunch the bounds in just a little to make the right and bottom edges |
- // exclusive. We want bounds of exactly one tile to hit exactly one tile. |
- rect->fRight -= SK_ScalarNearlyZero; |
- rect->fBottom -= SK_ScalarNearlyZero; |
-} |
- |
-// Convert user-space bounds to grid tiles they cover (LT and RB both inclusive). |
-void SkTileGrid::userToGrid(const SkRect& user, SkIRect* grid) const { |
- grid->fLeft = SkPin32(user.left() * fInvWidth , 0, fXTiles - 1); |
- grid->fTop = SkPin32(user.top() * fInvHeight, 0, fYTiles - 1); |
- grid->fRight = SkPin32(user.right() * fInvWidth , 0, fXTiles - 1); |
- grid->fBottom = SkPin32(user.bottom() * fInvHeight, 0, fYTiles - 1); |
-} |
- |
-void SkTileGrid::insert(SkAutoTMalloc<SkRect>* boundsArray, int N) { |
- this->reserve(N); |
- |
- for (int i = 0; i < N; i++) { |
- SkRect bounds = (*boundsArray)[i]; |
- bounds.outset(fMarginWidth, fMarginHeight); |
- this->commonAdjust(&bounds); |
- |
- // TODO(mtklein): can we assert this instead to save an intersection in Release mode, |
- // or just allow out-of-bound insertions to insert anyway (clamped to nearest tile)? |
- if (!SkRect::Intersects(bounds, fGridBounds)) { |
- continue; |
- } |
- |
- SkIRect grid; |
- this->userToGrid(bounds, &grid); |
- |
- // This is just a loop over y then x. This compiles to a slightly faster and |
- // more compact loop than if we just did fTiles[y * fXTiles + x].push(i). |
- SkTDArray<unsigned>* row = &fTiles[grid.fTop * fXTiles + grid.fLeft]; |
- for (int y = 0; y <= grid.fBottom - grid.fTop; y++) { |
- SkTDArray<unsigned>* tile = row; |
- for (int x = 0; x <= grid.fRight - grid.fLeft; x++) { |
- (tile++)->push(i); |
- } |
- row += fXTiles; |
- } |
- } |
- this->shrinkToFit(); |
-} |
- |
-// Number of tiles for which data is allocated on the stack in |
-// SkTileGrid::search. If malloc becomes a bottleneck, we may consider |
-// increasing this number. Typical large web page, say 2k x 16k, would |
-// require 512 tiles of size 256 x 256 pixels. |
-static const int kStackAllocationTileCount = 1024; |
- |
-void SkTileGrid::search(const SkRect& originalQuery, SkTDArray<unsigned>* results) const { |
- // The inset counteracts the outset that applied in 'insert', which optimizes |
- // for lookups of size 'tileInterval + 2 * margin' (aligned with the tile grid). |
- SkRect query = originalQuery; |
- query.inset(fMarginWidth, fMarginHeight); |
- this->commonAdjust(&query); |
- |
- // The inset may have inverted the rectangle, so sort(). |
- // TODO(mtklein): It looks like we only end up with inverted bounds in unit tests |
- // that make explicitly inverted queries, not from insetting. If we can drop support for |
- // unsorted bounds (i.e. we don't see them outside unit tests), I think we can drop this. |
- query.sort(); |
- |
- // No intersection check. We optimize for queries that are in bounds. |
- // We're safe anyway: userToGrid() will clamp out-of-bounds queries to nearest tile. |
- SkIRect grid; |
- this->userToGrid(query, &grid); |
- |
- const int tilesHit = (grid.fRight - grid.fLeft + 1) * (grid.fBottom - grid.fTop + 1); |
- SkASSERT(tilesHit > 0); |
- |
- if (tilesHit == 1) { |
- // A performance shortcut. The merging code below would work fine here too. |
- *results = fTiles[grid.fTop * fXTiles + grid.fLeft]; |
- return; |
- } |
- |
- // We've got to merge the data in many tiles into a single sorted and deduplicated stream. |
- // We do a simple k-way merge based on the value of opIndex. |
- |
- // Gather pointers to the starts and ends of the tiles to merge. |
- SkAutoSTArray<kStackAllocationTileCount, const unsigned*> starts(tilesHit), ends(tilesHit); |
- int i = 0; |
- for (int y = grid.fTop; y <= grid.fBottom; y++) { |
- for (int x = grid.fLeft; x <= grid.fRight; x++) { |
- starts[i] = fTiles[y * fXTiles + x].begin(); |
- ends[i] = fTiles[y * fXTiles + x].end(); |
- i++; |
- } |
- } |
- |
- // Merge tiles into results until they're fully consumed. |
- results->reset(); |
- while (true) { |
- // The tiles themselves are already ordered, so the earliest op is at the front of some |
- // tile. It may be at the front of several, even all, tiles. |
- unsigned earliest = SK_MaxU32; |
- for (int i = 0; i < starts.count(); i++) { |
- if (starts[i] < ends[i]) { |
- earliest = SkTMin(earliest, *starts[i]); |
- } |
- } |
- |
- // If we didn't find an earliest op, there isn't anything left to merge. |
- if (SK_MaxU32 == earliest) { |
- return; |
- } |
- |
- // We did find an earliest op. Output it, and step forward every tile that contains it. |
- results->push(earliest); |
- for (int i = 0; i < starts.count(); i++) { |
- if (starts[i] < ends[i] && *starts[i] == earliest) { |
- starts[i]++; |
- } |
- } |
- } |
-} |
- |
-size_t SkTileGrid::bytesUsed() const { |
- size_t byteCount = sizeof(SkTileGrid); |
- |
- size_t opCount = 0; |
- for (int i = 0; i < fXTiles * fYTiles; i++) { |
- opCount += fTiles[i].reserved(); |
- } |
- byteCount += opCount * sizeof(unsigned); |
- |
- return byteCount; |
-} |