| Index: src/core/SkTileGrid.cpp
|
| diff --git a/src/core/SkTileGrid.cpp b/src/core/SkTileGrid.cpp
|
| deleted file mode 100644
|
| index bbf3517c410c049ef4c7dd33361aa434b7516593..0000000000000000000000000000000000000000
|
| --- a/src/core/SkTileGrid.cpp
|
| +++ /dev/null
|
| @@ -1,188 +0,0 @@
|
| -/*
|
| - * Copyright 2012 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#include "SkTileGrid.h"
|
| -
|
| -SkTileGrid::SkTileGrid(int xTiles, int yTiles, const SkTileGridFactory::TileGridInfo& info)
|
| - : fXTiles(xTiles)
|
| - , fYTiles(yTiles)
|
| - , fInvWidth( SkScalarInvert(info.fTileInterval.width()))
|
| - , fInvHeight(SkScalarInvert(info.fTileInterval.height()))
|
| - , fMarginWidth (info.fMargin.fWidth +1) // Margin is offset by 1 as a provision for AA and
|
| - , fMarginHeight(info.fMargin.fHeight+1) // to cancel the outset applied by getClipDeviceBounds.
|
| - , fOffset(SkPoint::Make(info.fOffset.fX, info.fOffset.fY))
|
| - , fGridBounds(SkRect::MakeWH(xTiles * info.fTileInterval.width(),
|
| - yTiles * info.fTileInterval.height()))
|
| - , fTiles(SkNEW_ARRAY(SkTDArray<unsigned>, xTiles * yTiles)) {}
|
| -
|
| -SkTileGrid::~SkTileGrid() {
|
| - SkDELETE_ARRAY(fTiles);
|
| -}
|
| -
|
| -void SkTileGrid::reserve(int opCount) {
|
| - if (fXTiles * fYTiles == 0) {
|
| - return; // A tileless tile grid is nonsensical, but happens in at least cc_unittests.
|
| - }
|
| -
|
| - // If we assume every op we're about to try to insert() falls within our grid bounds,
|
| - // then every op has to hit at least one tile. In fact, a quick scan over our small
|
| - // SKP set shows that in the average SKP, each op hits two 256x256 tiles.
|
| -
|
| - // If we take those observations and further assume the ops are distributed evenly
|
| - // across the picture, we get this guess for number of ops per tile:
|
| - const int opsPerTileGuess = (2 * opCount) / (fXTiles * fYTiles);
|
| -
|
| - for (SkTDArray<unsigned>* tile = fTiles; tile != fTiles + (fXTiles * fYTiles); tile++) {
|
| - tile->setReserve(opsPerTileGuess);
|
| - }
|
| -
|
| - // In practice, this heuristic means we'll temporarily allocate about 30% more bytes
|
| - // than if we made no setReserve() calls, but time spent in insert() drops by about 50%.
|
| -}
|
| -
|
| -void SkTileGrid::shrinkToFit() {
|
| - for (SkTDArray<unsigned>* tile = fTiles; tile != fTiles + (fXTiles * fYTiles); tile++) {
|
| - tile->shrinkToFit();
|
| - }
|
| -}
|
| -
|
| -// Adjustments to user-provided bounds common to both insert() and search().
|
| -// Call this after making insert- or search- specific adjustments.
|
| -void SkTileGrid::commonAdjust(SkRect* rect) const {
|
| - // Apply our offset.
|
| - rect->offset(fOffset);
|
| -
|
| - // Scrunch the bounds in just a little to make the right and bottom edges
|
| - // exclusive. We want bounds of exactly one tile to hit exactly one tile.
|
| - rect->fRight -= SK_ScalarNearlyZero;
|
| - rect->fBottom -= SK_ScalarNearlyZero;
|
| -}
|
| -
|
| -// Convert user-space bounds to grid tiles they cover (LT and RB both inclusive).
|
| -void SkTileGrid::userToGrid(const SkRect& user, SkIRect* grid) const {
|
| - grid->fLeft = SkPin32(user.left() * fInvWidth , 0, fXTiles - 1);
|
| - grid->fTop = SkPin32(user.top() * fInvHeight, 0, fYTiles - 1);
|
| - grid->fRight = SkPin32(user.right() * fInvWidth , 0, fXTiles - 1);
|
| - grid->fBottom = SkPin32(user.bottom() * fInvHeight, 0, fYTiles - 1);
|
| -}
|
| -
|
| -void SkTileGrid::insert(SkAutoTMalloc<SkRect>* boundsArray, int N) {
|
| - this->reserve(N);
|
| -
|
| - for (int i = 0; i < N; i++) {
|
| - SkRect bounds = (*boundsArray)[i];
|
| - bounds.outset(fMarginWidth, fMarginHeight);
|
| - this->commonAdjust(&bounds);
|
| -
|
| - // TODO(mtklein): can we assert this instead to save an intersection in Release mode,
|
| - // or just allow out-of-bound insertions to insert anyway (clamped to nearest tile)?
|
| - if (!SkRect::Intersects(bounds, fGridBounds)) {
|
| - continue;
|
| - }
|
| -
|
| - SkIRect grid;
|
| - this->userToGrid(bounds, &grid);
|
| -
|
| - // This is just a loop over y then x. This compiles to a slightly faster and
|
| - // more compact loop than if we just did fTiles[y * fXTiles + x].push(i).
|
| - SkTDArray<unsigned>* row = &fTiles[grid.fTop * fXTiles + grid.fLeft];
|
| - for (int y = 0; y <= grid.fBottom - grid.fTop; y++) {
|
| - SkTDArray<unsigned>* tile = row;
|
| - for (int x = 0; x <= grid.fRight - grid.fLeft; x++) {
|
| - (tile++)->push(i);
|
| - }
|
| - row += fXTiles;
|
| - }
|
| - }
|
| - this->shrinkToFit();
|
| -}
|
| -
|
| -// Number of tiles for which data is allocated on the stack in
|
| -// SkTileGrid::search. If malloc becomes a bottleneck, we may consider
|
| -// increasing this number. Typical large web page, say 2k x 16k, would
|
| -// require 512 tiles of size 256 x 256 pixels.
|
| -static const int kStackAllocationTileCount = 1024;
|
| -
|
| -void SkTileGrid::search(const SkRect& originalQuery, SkTDArray<unsigned>* results) const {
|
| - // The inset counteracts the outset that applied in 'insert', which optimizes
|
| - // for lookups of size 'tileInterval + 2 * margin' (aligned with the tile grid).
|
| - SkRect query = originalQuery;
|
| - query.inset(fMarginWidth, fMarginHeight);
|
| - this->commonAdjust(&query);
|
| -
|
| - // The inset may have inverted the rectangle, so sort().
|
| - // TODO(mtklein): It looks like we only end up with inverted bounds in unit tests
|
| - // that make explicitly inverted queries, not from insetting. If we can drop support for
|
| - // unsorted bounds (i.e. we don't see them outside unit tests), I think we can drop this.
|
| - query.sort();
|
| -
|
| - // No intersection check. We optimize for queries that are in bounds.
|
| - // We're safe anyway: userToGrid() will clamp out-of-bounds queries to nearest tile.
|
| - SkIRect grid;
|
| - this->userToGrid(query, &grid);
|
| -
|
| - const int tilesHit = (grid.fRight - grid.fLeft + 1) * (grid.fBottom - grid.fTop + 1);
|
| - SkASSERT(tilesHit > 0);
|
| -
|
| - if (tilesHit == 1) {
|
| - // A performance shortcut. The merging code below would work fine here too.
|
| - *results = fTiles[grid.fTop * fXTiles + grid.fLeft];
|
| - return;
|
| - }
|
| -
|
| - // We've got to merge the data in many tiles into a single sorted and deduplicated stream.
|
| - // We do a simple k-way merge based on the value of opIndex.
|
| -
|
| - // Gather pointers to the starts and ends of the tiles to merge.
|
| - SkAutoSTArray<kStackAllocationTileCount, const unsigned*> starts(tilesHit), ends(tilesHit);
|
| - int i = 0;
|
| - for (int y = grid.fTop; y <= grid.fBottom; y++) {
|
| - for (int x = grid.fLeft; x <= grid.fRight; x++) {
|
| - starts[i] = fTiles[y * fXTiles + x].begin();
|
| - ends[i] = fTiles[y * fXTiles + x].end();
|
| - i++;
|
| - }
|
| - }
|
| -
|
| - // Merge tiles into results until they're fully consumed.
|
| - results->reset();
|
| - while (true) {
|
| - // The tiles themselves are already ordered, so the earliest op is at the front of some
|
| - // tile. It may be at the front of several, even all, tiles.
|
| - unsigned earliest = SK_MaxU32;
|
| - for (int i = 0; i < starts.count(); i++) {
|
| - if (starts[i] < ends[i]) {
|
| - earliest = SkTMin(earliest, *starts[i]);
|
| - }
|
| - }
|
| -
|
| - // If we didn't find an earliest op, there isn't anything left to merge.
|
| - if (SK_MaxU32 == earliest) {
|
| - return;
|
| - }
|
| -
|
| - // We did find an earliest op. Output it, and step forward every tile that contains it.
|
| - results->push(earliest);
|
| - for (int i = 0; i < starts.count(); i++) {
|
| - if (starts[i] < ends[i] && *starts[i] == earliest) {
|
| - starts[i]++;
|
| - }
|
| - }
|
| - }
|
| -}
|
| -
|
| -size_t SkTileGrid::bytesUsed() const {
|
| - size_t byteCount = sizeof(SkTileGrid);
|
| -
|
| - size_t opCount = 0;
|
| - for (int i = 0; i < fXTiles * fYTiles; i++) {
|
| - opCount += fTiles[i].reserved();
|
| - }
|
| - byteCount += opCount * sizeof(unsigned);
|
| -
|
| - return byteCount;
|
| -}
|
|
|