| Index: src/compiler/loop-analysis.cc
|
| diff --git a/src/compiler/loop-analysis.cc b/src/compiler/loop-analysis.cc
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..e1b703e22b8097ff26ced58ba53565c071d8a138
|
| --- /dev/null
|
| +++ b/src/compiler/loop-analysis.cc
|
| @@ -0,0 +1,411 @@
|
| +// Copyright 2013 the V8 project authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
| +
|
| +#include "src/compiler/graph.h"
|
| +#include "src/compiler/loop-analysis.h"
|
| +#include "src/compiler/node.h"
|
| +#include "src/compiler/node-properties-inl.h"
|
| +#include "src/zone.h"
|
| +
|
| +namespace v8 {
|
| +namespace internal {
|
| +namespace compiler {
|
| +
|
| +typedef uint32_t LoopMarks;
|
| +
|
| +
|
| +// TODO(titzer): don't assume entry edges have a particular index.
|
| +// TODO(titzer): use a BitMatrix to generalize this algorithm.
|
| +static const size_t kMaxLoops = 31;
|
| +static const int kAssumedLoopEntryIndex = 0; // assume loops are entered here.
|
| +static const LoopMarks kVisited = 1; // loop #0 is reserved.
|
| +
|
| +
|
| +// Temporary information for each node during marking.
|
| +struct NodeInfo {
|
| + Node* node;
|
| + NodeInfo* next; // link in chaining loop members
|
| + LoopMarks forward; // accumulated marks in the forward direction
|
| + LoopMarks backward; // accumulated marks in the backward direction
|
| + LoopMarks loop_mark; // loop mark for header nodes; encodes loop_num
|
| +
|
| + bool MarkBackward(LoopMarks bw) {
|
| + LoopMarks prev = backward;
|
| + LoopMarks next = backward | bw;
|
| + backward = next;
|
| + return prev != next;
|
| + }
|
| +
|
| + bool MarkForward(LoopMarks fw) {
|
| + LoopMarks prev = forward;
|
| + LoopMarks next = forward | fw;
|
| + forward = next;
|
| + return prev != next;
|
| + }
|
| +
|
| + bool IsInLoop(size_t loop_num) {
|
| + DCHECK(loop_num > 0 && loop_num <= 31);
|
| + return forward & backward & (1 << loop_num);
|
| + }
|
| +
|
| + bool IsLoopHeader() { return loop_mark != 0; }
|
| + bool IsInAnyLoop() { return (forward & backward) > kVisited; }
|
| +
|
| + bool IsInHeaderForLoop(size_t loop_num) {
|
| + DCHECK(loop_num > 0);
|
| + return loop_mark == (kVisited | (1 << loop_num));
|
| + }
|
| +};
|
| +
|
| +
|
| +// Temporary loop info needed during traversal and building the loop tree.
|
| +struct LoopInfo {
|
| + Node* header;
|
| + NodeInfo* header_list;
|
| + NodeInfo* body_list;
|
| + LoopTree::Loop* loop;
|
| +};
|
| +
|
| +
|
| +static const NodeInfo kEmptyNodeInfo = {nullptr, nullptr, 0, 0, 0};
|
| +
|
| +
|
| +// Encapsulation of the loop finding algorithm.
|
| +// -----------------------------------------------------------------------------
|
| +// Conceptually, the contents of a loop are those nodes that are "between" the
|
| +// loop header and the backedges of the loop. Graphs in the soup of nodes can
|
| +// form improper cycles, so standard loop finding algorithms that work on CFGs
|
| +// aren't sufficient. However, in valid TurboFan graphs, all cycles involve
|
| +// either a {Loop} node or a phi. The {Loop} node itself and its accompanying
|
| +// phis are treated together as a set referred to here as the loop header.
|
| +// This loop finding algorithm works by traversing the graph in two directions,
|
| +// first from nodes to their inputs, starting at {end}, then in the reverse
|
| +// direction, from nodes to their uses, starting at loop headers.
|
| +// 1 bit per loop per node per direction are required during the marking phase.
|
| +// To handle nested loops correctly, the algorithm must filter some reachability
|
| +// marks on edges into/out-of the loop header nodes.
|
| +class LoopFinderImpl {
|
| + public:
|
| + LoopFinderImpl(Graph* graph, LoopTree* loop_tree, Zone* zone)
|
| + : end_(graph->end()),
|
| + queue_(zone),
|
| + queued_(graph, 2),
|
| + info_(graph->NodeCount(), kEmptyNodeInfo, zone),
|
| + loops_(zone),
|
| + loop_tree_(loop_tree),
|
| + loops_found_(0) {}
|
| +
|
| + void Run() {
|
| + PropagateBackward();
|
| + PropagateForward();
|
| + FinishLoopTree();
|
| + }
|
| +
|
| + void Print() {
|
| + // Print out the results.
|
| + for (NodeInfo& ni : info_) {
|
| + if (ni.node == nullptr) continue;
|
| + for (size_t i = 1; i <= loops_.size(); i++) {
|
| + if (ni.IsInLoop(i)) {
|
| + PrintF("X");
|
| + } else if (ni.forward & (1 << i)) {
|
| + PrintF("/");
|
| + } else if (ni.backward & (1 << i)) {
|
| + PrintF("\\");
|
| + } else {
|
| + PrintF(" ");
|
| + }
|
| + }
|
| + PrintF(" #%d:%s\n", ni.node->id(), ni.node->op()->mnemonic());
|
| + }
|
| +
|
| + int i = 0;
|
| + for (LoopInfo& li : loops_) {
|
| + PrintF("Loop %d headed at #%d\n", i, li.header->id());
|
| + i++;
|
| + }
|
| +
|
| + for (LoopTree::Loop* loop : loop_tree_->outer_loops_) {
|
| + PrintLoop(loop);
|
| + }
|
| + }
|
| +
|
| + private:
|
| + Node* end_;
|
| + NodeDeque queue_;
|
| + NodeMarker<bool> queued_;
|
| + ZoneVector<NodeInfo> info_;
|
| + ZoneVector<LoopInfo> loops_;
|
| + LoopTree* loop_tree_;
|
| + size_t loops_found_;
|
| +
|
| + // Propagate marks backward from loop headers.
|
| + void PropagateBackward() {
|
| + PropagateBackward(end_, kVisited);
|
| +
|
| + while (!queue_.empty()) {
|
| + Node* node = queue_.front();
|
| + queue_.pop_front();
|
| + queued_.Set(node, false);
|
| +
|
| + // Setup loop headers first.
|
| + if (node->opcode() == IrOpcode::kLoop) {
|
| + // found the loop node first.
|
| + CreateLoopInfo(node);
|
| + } else if (node->opcode() == IrOpcode::kPhi ||
|
| + node->opcode() == IrOpcode::kEffectPhi) {
|
| + // found a phi first.
|
| + Node* merge = node->InputAt(node->InputCount() - 1);
|
| + if (merge->opcode() == IrOpcode::kLoop) CreateLoopInfo(merge);
|
| + }
|
| +
|
| + // Propagate reachability marks backwards from this node.
|
| + NodeInfo& ni = info(node);
|
| + if (ni.IsLoopHeader()) {
|
| + // Handle edges from loop header nodes specially.
|
| + for (int i = 0; i < node->InputCount(); i++) {
|
| + if (i == kAssumedLoopEntryIndex) {
|
| + // Don't propagate the loop mark backwards on the entry edge.
|
| + PropagateBackward(node->InputAt(0),
|
| + kVisited | (ni.backward & ~ni.loop_mark));
|
| + } else {
|
| + // Only propagate the loop mark on backedges.
|
| + PropagateBackward(node->InputAt(i), ni.loop_mark);
|
| + }
|
| + }
|
| + } else {
|
| + // Propagate all loop marks backwards for a normal node.
|
| + for (Node* const input : node->inputs()) {
|
| + PropagateBackward(input, ni.backward);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Make a new loop header for the given node.
|
| + void CreateLoopInfo(Node* node) {
|
| + NodeInfo& ni = info(node);
|
| + if (ni.IsLoopHeader()) return; // loop already set up.
|
| +
|
| + loops_found_++;
|
| + size_t loop_num = loops_.size() + 1;
|
| + CHECK(loops_found_ <= kMaxLoops); // TODO(titzer): don't crash.
|
| + // Create a new loop.
|
| + loops_.push_back({node, nullptr, nullptr, nullptr});
|
| + loop_tree_->NewLoop();
|
| + LoopMarks loop_mark = kVisited | (1 << loop_num);
|
| + ni.node = node;
|
| + ni.loop_mark = loop_mark;
|
| +
|
| + // Setup loop mark for phis attached to loop header.
|
| + for (Node* use : node->uses()) {
|
| + if (use->opcode() == IrOpcode::kPhi ||
|
| + use->opcode() == IrOpcode::kEffectPhi) {
|
| + info(use).loop_mark = loop_mark;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // Propagate marks forward from loops.
|
| + void PropagateForward() {
|
| + for (LoopInfo& li : loops_) {
|
| + queued_.Set(li.header, true);
|
| + queue_.push_back(li.header);
|
| + NodeInfo& ni = info(li.header);
|
| + ni.forward = ni.loop_mark;
|
| + }
|
| + // Propagate forward on paths that were backward reachable from backedges.
|
| + while (!queue_.empty()) {
|
| + Node* node = queue_.front();
|
| + queue_.pop_front();
|
| + queued_.Set(node, false);
|
| + NodeInfo& ni = info(node);
|
| + for (Edge edge : node->use_edges()) {
|
| + Node* use = edge.from();
|
| + NodeInfo& ui = info(use);
|
| + if (IsBackedge(use, ui, edge)) continue; // skip backedges.
|
| + LoopMarks both = ni.forward & ui.backward;
|
| + if (ui.MarkForward(both) && !queued_.Get(use)) {
|
| + queued_.Set(use, true);
|
| + queue_.push_back(use);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + bool IsBackedge(Node* use, NodeInfo& ui, Edge& edge) {
|
| + // TODO(titzer): checking for backedges here is ugly.
|
| + if (!ui.IsLoopHeader()) return false;
|
| + if (edge.index() == kAssumedLoopEntryIndex) return false;
|
| + if (use->opcode() == IrOpcode::kPhi ||
|
| + use->opcode() == IrOpcode::kEffectPhi) {
|
| + return !NodeProperties::IsControlEdge(edge);
|
| + }
|
| + return true;
|
| + }
|
| +
|
| + NodeInfo& info(Node* node) {
|
| + NodeInfo& i = info_[node->id()];
|
| + if (i.node == nullptr) i.node = node;
|
| + return i;
|
| + }
|
| +
|
| + void PropagateBackward(Node* node, LoopMarks marks) {
|
| + if (info(node).MarkBackward(marks) && !queued_.Get(node)) {
|
| + queue_.push_back(node);
|
| + queued_.Set(node, true);
|
| + }
|
| + }
|
| +
|
| + void FinishLoopTree() {
|
| + // Degenerate cases.
|
| + if (loops_.size() == 0) return;
|
| + if (loops_.size() == 1) return FinishSingleLoop();
|
| +
|
| + for (size_t i = 1; i <= loops_.size(); i++) ConnectLoopTree(i);
|
| +
|
| + size_t count = 0;
|
| + // Place the node into the innermost nested loop of which it is a member.
|
| + for (NodeInfo& ni : info_) {
|
| + if (ni.node == nullptr || !ni.IsInAnyLoop()) continue;
|
| +
|
| + LoopInfo* innermost = nullptr;
|
| + size_t index = 0;
|
| + for (size_t i = 1; i <= loops_.size(); i++) {
|
| + if (ni.IsInLoop(i)) {
|
| + LoopInfo* loop = &loops_[i - 1];
|
| + if (innermost == nullptr ||
|
| + loop->loop->depth_ > innermost->loop->depth_) {
|
| + innermost = loop;
|
| + index = i;
|
| + }
|
| + }
|
| + }
|
| + if (ni.IsInHeaderForLoop(index)) {
|
| + ni.next = innermost->header_list;
|
| + innermost->header_list = ∋
|
| + } else {
|
| + ni.next = innermost->body_list;
|
| + innermost->body_list = ∋
|
| + }
|
| + count++;
|
| + }
|
| +
|
| + // Serialize the node lists for loops into the loop tree.
|
| + loop_tree_->loop_nodes_.reserve(count);
|
| + for (LoopTree::Loop* loop : loop_tree_->outer_loops_) {
|
| + SerializeLoop(loop);
|
| + }
|
| + }
|
| +
|
| + // Handle the simpler case of a single loop (no checks for nesting necessary).
|
| + void FinishSingleLoop() {
|
| + DCHECK(loops_.size() == 1);
|
| + DCHECK(loop_tree_->all_loops_.size() == 1);
|
| +
|
| + // Place nodes into the loop header and body.
|
| + LoopInfo* li = &loops_[0];
|
| + li->loop = &loop_tree_->all_loops_[0];
|
| + loop_tree_->SetParent(nullptr, li->loop);
|
| + size_t count = 0;
|
| + for (NodeInfo& ni : info_) {
|
| + if (ni.node == nullptr || !ni.IsInAnyLoop()) continue;
|
| + DCHECK(ni.IsInLoop(1));
|
| + if (ni.IsInHeaderForLoop(1)) {
|
| + ni.next = li->header_list;
|
| + li->header_list = ∋
|
| + } else {
|
| + ni.next = li->body_list;
|
| + li->body_list = ∋
|
| + }
|
| + count++;
|
| + }
|
| +
|
| + // Serialize the node lists for the loop into the loop tree.
|
| + loop_tree_->loop_nodes_.reserve(count);
|
| + SerializeLoop(li->loop);
|
| + }
|
| +
|
| + // Recursively serialize the list of header nodes and body nodes
|
| + // so that nested loops occupy nested intervals.
|
| + void SerializeLoop(LoopTree::Loop* loop) {
|
| + size_t loop_num = loop_tree_->LoopNum(loop);
|
| + LoopInfo& li = loops_[loop_num - 1];
|
| +
|
| + // Serialize the header.
|
| + loop->header_start_ = static_cast<int>(loop_tree_->loop_nodes_.size());
|
| + for (NodeInfo* ni = li.header_list; ni != nullptr; ni = ni->next) {
|
| + loop_tree_->loop_nodes_.push_back(ni->node);
|
| + // TODO(titzer): lift loop count restriction.
|
| + loop_tree_->node_to_loop_num_[ni->node->id()] =
|
| + static_cast<uint8_t>(loop_num);
|
| + }
|
| +
|
| + // Serialize the body.
|
| + loop->body_start_ = static_cast<int>(loop_tree_->loop_nodes_.size());
|
| + for (NodeInfo* ni = li.body_list; ni != nullptr; ni = ni->next) {
|
| + loop_tree_->loop_nodes_.push_back(ni->node);
|
| + // TODO(titzer): lift loop count restriction.
|
| + loop_tree_->node_to_loop_num_[ni->node->id()] =
|
| + static_cast<uint8_t>(loop_num);
|
| + }
|
| +
|
| + // Serialize nested loops.
|
| + for (LoopTree::Loop* child : loop->children_) SerializeLoop(child);
|
| +
|
| + loop->body_end_ = static_cast<int>(loop_tree_->loop_nodes_.size());
|
| + }
|
| +
|
| + // Connect the LoopTree loops to their parents recursively.
|
| + LoopTree::Loop* ConnectLoopTree(size_t loop_num) {
|
| + LoopInfo& li = loops_[loop_num - 1];
|
| + if (li.loop != nullptr) return li.loop;
|
| +
|
| + NodeInfo& ni = info(li.header);
|
| + LoopTree::Loop* parent = nullptr;
|
| + for (size_t i = 1; i <= loops_.size(); i++) {
|
| + if (i == loop_num) continue;
|
| + if (ni.IsInLoop(i)) {
|
| + // recursively create potential parent loops first.
|
| + LoopTree::Loop* upper = ConnectLoopTree(i);
|
| + if (parent == nullptr || upper->depth_ > parent->depth_) {
|
| + parent = upper;
|
| + }
|
| + }
|
| + }
|
| + li.loop = &loop_tree_->all_loops_[loop_num - 1];
|
| + loop_tree_->SetParent(parent, li.loop);
|
| + return li.loop;
|
| + }
|
| +
|
| + void PrintLoop(LoopTree::Loop* loop) {
|
| + for (int i = 0; i < loop->depth_; i++) PrintF(" ");
|
| + PrintF("Loop depth = %d ", loop->depth_);
|
| + int i = loop->header_start_;
|
| + while (i < loop->body_start_) {
|
| + PrintF(" H#%d", loop_tree_->loop_nodes_[i++]->id());
|
| + }
|
| + while (i < loop->body_end_) {
|
| + PrintF(" B#%d", loop_tree_->loop_nodes_[i++]->id());
|
| + }
|
| + PrintF("\n");
|
| + for (LoopTree::Loop* child : loop->children_) PrintLoop(child);
|
| + }
|
| +};
|
| +
|
| +
|
| +LoopTree* LoopFinder::BuildLoopTree(Graph* graph, Zone* zone) {
|
| + LoopTree* loop_tree =
|
| + new (graph->zone()) LoopTree(graph->NodeCount(), graph->zone());
|
| + LoopFinderImpl finder(graph, loop_tree, zone);
|
| + finder.Run();
|
| + if (FLAG_trace_turbo_graph) {
|
| + finder.Print();
|
| + }
|
| + return loop_tree;
|
| +}
|
| +
|
| +} // namespace compiler
|
| +} // namespace internal
|
| +} // namespace v8
|
|
|