OLD | NEW |
(Empty) | |
| 1 // Copyright 2013 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #include "src/compiler/graph.h" |
| 6 #include "src/compiler/loop-analysis.h" |
| 7 #include "src/compiler/node.h" |
| 8 #include "src/compiler/node-properties-inl.h" |
| 9 #include "src/zone.h" |
| 10 |
| 11 namespace v8 { |
| 12 namespace internal { |
| 13 namespace compiler { |
| 14 |
| 15 typedef uint32_t LoopMarks; |
| 16 |
| 17 |
| 18 // TODO(titzer): don't assume entry edges have a particular index. |
| 19 // TODO(titzer): use a BitMatrix to generalize this algorithm. |
| 20 static const size_t kMaxLoops = 31; |
| 21 static const int kAssumedLoopEntryIndex = 0; // assume loops are entered here. |
| 22 static const LoopMarks kVisited = 1; // loop #0 is reserved. |
| 23 |
| 24 |
| 25 // Temporary information for each node during marking. |
| 26 struct NodeInfo { |
| 27 Node* node; |
| 28 NodeInfo* next; // link in chaining loop members |
| 29 LoopMarks forward; // accumulated marks in the forward direction |
| 30 LoopMarks backward; // accumulated marks in the backward direction |
| 31 LoopMarks loop_mark; // loop mark for header nodes; encodes loop_num |
| 32 |
| 33 bool MarkBackward(LoopMarks bw) { |
| 34 LoopMarks prev = backward; |
| 35 LoopMarks next = backward | bw; |
| 36 backward = next; |
| 37 return prev != next; |
| 38 } |
| 39 |
| 40 bool MarkForward(LoopMarks fw) { |
| 41 LoopMarks prev = forward; |
| 42 LoopMarks next = forward | fw; |
| 43 forward = next; |
| 44 return prev != next; |
| 45 } |
| 46 |
| 47 bool IsInLoop(size_t loop_num) { |
| 48 DCHECK(loop_num > 0 && loop_num <= 31); |
| 49 return forward & backward & (1 << loop_num); |
| 50 } |
| 51 |
| 52 bool IsLoopHeader() { return loop_mark != 0; } |
| 53 bool IsInAnyLoop() { return (forward & backward) > kVisited; } |
| 54 |
| 55 bool IsInHeaderForLoop(size_t loop_num) { |
| 56 DCHECK(loop_num > 0); |
| 57 return loop_mark == (kVisited | (1 << loop_num)); |
| 58 } |
| 59 }; |
| 60 |
| 61 |
| 62 // Temporary loop info needed during traversal and building the loop tree. |
| 63 struct LoopInfo { |
| 64 Node* header; |
| 65 NodeInfo* header_list; |
| 66 NodeInfo* body_list; |
| 67 LoopTree::Loop* loop; |
| 68 }; |
| 69 |
| 70 |
| 71 static const NodeInfo kEmptyNodeInfo = {nullptr, nullptr, 0, 0, 0}; |
| 72 |
| 73 |
| 74 // Encapsulation of the loop finding algorithm. |
| 75 // ----------------------------------------------------------------------------- |
| 76 // Conceptually, the contents of a loop are those nodes that are "between" the |
| 77 // loop header and the backedges of the loop. Graphs in the soup of nodes can |
| 78 // form improper cycles, so standard loop finding algorithms that work on CFGs |
| 79 // aren't sufficient. However, in valid TurboFan graphs, all cycles involve |
| 80 // either a {Loop} node or a phi. The {Loop} node itself and its accompanying |
| 81 // phis are treated together as a set referred to here as the loop header. |
| 82 // This loop finding algorithm works by traversing the graph in two directions, |
| 83 // first from nodes to their inputs, starting at {end}, then in the reverse |
| 84 // direction, from nodes to their uses, starting at loop headers. |
| 85 // 1 bit per loop per node per direction are required during the marking phase. |
| 86 // To handle nested loops correctly, the algorithm must filter some reachability |
| 87 // marks on edges into/out-of the loop header nodes. |
| 88 class LoopFinderImpl { |
| 89 public: |
| 90 LoopFinderImpl(Graph* graph, LoopTree* loop_tree, Zone* zone) |
| 91 : end_(graph->end()), |
| 92 queue_(zone), |
| 93 queued_(graph, 2), |
| 94 info_(graph->NodeCount(), kEmptyNodeInfo, zone), |
| 95 loops_(zone), |
| 96 loop_tree_(loop_tree), |
| 97 loops_found_(0) {} |
| 98 |
| 99 void Run() { |
| 100 PropagateBackward(); |
| 101 PropagateForward(); |
| 102 FinishLoopTree(); |
| 103 } |
| 104 |
| 105 void Print() { |
| 106 // Print out the results. |
| 107 for (NodeInfo& ni : info_) { |
| 108 if (ni.node == nullptr) continue; |
| 109 for (size_t i = 1; i <= loops_.size(); i++) { |
| 110 if (ni.IsInLoop(i)) { |
| 111 PrintF("X"); |
| 112 } else if (ni.forward & (1 << i)) { |
| 113 PrintF("/"); |
| 114 } else if (ni.backward & (1 << i)) { |
| 115 PrintF("\\"); |
| 116 } else { |
| 117 PrintF(" "); |
| 118 } |
| 119 } |
| 120 PrintF(" #%d:%s\n", ni.node->id(), ni.node->op()->mnemonic()); |
| 121 } |
| 122 |
| 123 int i = 0; |
| 124 for (LoopInfo& li : loops_) { |
| 125 PrintF("Loop %d headed at #%d\n", i, li.header->id()); |
| 126 i++; |
| 127 } |
| 128 |
| 129 for (LoopTree::Loop* loop : loop_tree_->outer_loops_) { |
| 130 PrintLoop(loop); |
| 131 } |
| 132 } |
| 133 |
| 134 private: |
| 135 Node* end_; |
| 136 NodeDeque queue_; |
| 137 NodeMarker<bool> queued_; |
| 138 ZoneVector<NodeInfo> info_; |
| 139 ZoneVector<LoopInfo> loops_; |
| 140 LoopTree* loop_tree_; |
| 141 size_t loops_found_; |
| 142 |
| 143 // Propagate marks backward from loop headers. |
| 144 void PropagateBackward() { |
| 145 PropagateBackward(end_, kVisited); |
| 146 |
| 147 while (!queue_.empty()) { |
| 148 Node* node = queue_.front(); |
| 149 queue_.pop_front(); |
| 150 queued_.Set(node, false); |
| 151 |
| 152 // Setup loop headers first. |
| 153 if (node->opcode() == IrOpcode::kLoop) { |
| 154 // found the loop node first. |
| 155 CreateLoopInfo(node); |
| 156 } else if (node->opcode() == IrOpcode::kPhi || |
| 157 node->opcode() == IrOpcode::kEffectPhi) { |
| 158 // found a phi first. |
| 159 Node* merge = node->InputAt(node->InputCount() - 1); |
| 160 if (merge->opcode() == IrOpcode::kLoop) CreateLoopInfo(merge); |
| 161 } |
| 162 |
| 163 // Propagate reachability marks backwards from this node. |
| 164 NodeInfo& ni = info(node); |
| 165 if (ni.IsLoopHeader()) { |
| 166 // Handle edges from loop header nodes specially. |
| 167 for (int i = 0; i < node->InputCount(); i++) { |
| 168 if (i == kAssumedLoopEntryIndex) { |
| 169 // Don't propagate the loop mark backwards on the entry edge. |
| 170 PropagateBackward(node->InputAt(0), |
| 171 kVisited | (ni.backward & ~ni.loop_mark)); |
| 172 } else { |
| 173 // Only propagate the loop mark on backedges. |
| 174 PropagateBackward(node->InputAt(i), ni.loop_mark); |
| 175 } |
| 176 } |
| 177 } else { |
| 178 // Propagate all loop marks backwards for a normal node. |
| 179 for (Node* const input : node->inputs()) { |
| 180 PropagateBackward(input, ni.backward); |
| 181 } |
| 182 } |
| 183 } |
| 184 } |
| 185 |
| 186 // Make a new loop header for the given node. |
| 187 void CreateLoopInfo(Node* node) { |
| 188 NodeInfo& ni = info(node); |
| 189 if (ni.IsLoopHeader()) return; // loop already set up. |
| 190 |
| 191 loops_found_++; |
| 192 size_t loop_num = loops_.size() + 1; |
| 193 CHECK(loops_found_ <= kMaxLoops); // TODO(titzer): don't crash. |
| 194 // Create a new loop. |
| 195 loops_.push_back({node, nullptr, nullptr, nullptr}); |
| 196 loop_tree_->NewLoop(); |
| 197 LoopMarks loop_mark = kVisited | (1 << loop_num); |
| 198 ni.node = node; |
| 199 ni.loop_mark = loop_mark; |
| 200 |
| 201 // Setup loop mark for phis attached to loop header. |
| 202 for (Node* use : node->uses()) { |
| 203 if (use->opcode() == IrOpcode::kPhi || |
| 204 use->opcode() == IrOpcode::kEffectPhi) { |
| 205 info(use).loop_mark = loop_mark; |
| 206 } |
| 207 } |
| 208 } |
| 209 |
| 210 // Propagate marks forward from loops. |
| 211 void PropagateForward() { |
| 212 for (LoopInfo& li : loops_) { |
| 213 queued_.Set(li.header, true); |
| 214 queue_.push_back(li.header); |
| 215 NodeInfo& ni = info(li.header); |
| 216 ni.forward = ni.loop_mark; |
| 217 } |
| 218 // Propagate forward on paths that were backward reachable from backedges. |
| 219 while (!queue_.empty()) { |
| 220 Node* node = queue_.front(); |
| 221 queue_.pop_front(); |
| 222 queued_.Set(node, false); |
| 223 NodeInfo& ni = info(node); |
| 224 for (Edge edge : node->use_edges()) { |
| 225 Node* use = edge.from(); |
| 226 NodeInfo& ui = info(use); |
| 227 if (IsBackedge(use, ui, edge)) continue; // skip backedges. |
| 228 LoopMarks both = ni.forward & ui.backward; |
| 229 if (ui.MarkForward(both) && !queued_.Get(use)) { |
| 230 queued_.Set(use, true); |
| 231 queue_.push_back(use); |
| 232 } |
| 233 } |
| 234 } |
| 235 } |
| 236 |
| 237 bool IsBackedge(Node* use, NodeInfo& ui, Edge& edge) { |
| 238 // TODO(titzer): checking for backedges here is ugly. |
| 239 if (!ui.IsLoopHeader()) return false; |
| 240 if (edge.index() == kAssumedLoopEntryIndex) return false; |
| 241 if (use->opcode() == IrOpcode::kPhi || |
| 242 use->opcode() == IrOpcode::kEffectPhi) { |
| 243 return !NodeProperties::IsControlEdge(edge); |
| 244 } |
| 245 return true; |
| 246 } |
| 247 |
| 248 NodeInfo& info(Node* node) { |
| 249 NodeInfo& i = info_[node->id()]; |
| 250 if (i.node == nullptr) i.node = node; |
| 251 return i; |
| 252 } |
| 253 |
| 254 void PropagateBackward(Node* node, LoopMarks marks) { |
| 255 if (info(node).MarkBackward(marks) && !queued_.Get(node)) { |
| 256 queue_.push_back(node); |
| 257 queued_.Set(node, true); |
| 258 } |
| 259 } |
| 260 |
| 261 void FinishLoopTree() { |
| 262 // Degenerate cases. |
| 263 if (loops_.size() == 0) return; |
| 264 if (loops_.size() == 1) return FinishSingleLoop(); |
| 265 |
| 266 for (size_t i = 1; i <= loops_.size(); i++) ConnectLoopTree(i); |
| 267 |
| 268 size_t count = 0; |
| 269 // Place the node into the innermost nested loop of which it is a member. |
| 270 for (NodeInfo& ni : info_) { |
| 271 if (ni.node == nullptr || !ni.IsInAnyLoop()) continue; |
| 272 |
| 273 LoopInfo* innermost = nullptr; |
| 274 size_t index = 0; |
| 275 for (size_t i = 1; i <= loops_.size(); i++) { |
| 276 if (ni.IsInLoop(i)) { |
| 277 LoopInfo* loop = &loops_[i - 1]; |
| 278 if (innermost == nullptr || |
| 279 loop->loop->depth_ > innermost->loop->depth_) { |
| 280 innermost = loop; |
| 281 index = i; |
| 282 } |
| 283 } |
| 284 } |
| 285 if (ni.IsInHeaderForLoop(index)) { |
| 286 ni.next = innermost->header_list; |
| 287 innermost->header_list = ∋ |
| 288 } else { |
| 289 ni.next = innermost->body_list; |
| 290 innermost->body_list = ∋ |
| 291 } |
| 292 count++; |
| 293 } |
| 294 |
| 295 // Serialize the node lists for loops into the loop tree. |
| 296 loop_tree_->loop_nodes_.reserve(count); |
| 297 for (LoopTree::Loop* loop : loop_tree_->outer_loops_) { |
| 298 SerializeLoop(loop); |
| 299 } |
| 300 } |
| 301 |
| 302 // Handle the simpler case of a single loop (no checks for nesting necessary). |
| 303 void FinishSingleLoop() { |
| 304 DCHECK(loops_.size() == 1); |
| 305 DCHECK(loop_tree_->all_loops_.size() == 1); |
| 306 |
| 307 // Place nodes into the loop header and body. |
| 308 LoopInfo* li = &loops_[0]; |
| 309 li->loop = &loop_tree_->all_loops_[0]; |
| 310 loop_tree_->SetParent(nullptr, li->loop); |
| 311 size_t count = 0; |
| 312 for (NodeInfo& ni : info_) { |
| 313 if (ni.node == nullptr || !ni.IsInAnyLoop()) continue; |
| 314 DCHECK(ni.IsInLoop(1)); |
| 315 if (ni.IsInHeaderForLoop(1)) { |
| 316 ni.next = li->header_list; |
| 317 li->header_list = ∋ |
| 318 } else { |
| 319 ni.next = li->body_list; |
| 320 li->body_list = ∋ |
| 321 } |
| 322 count++; |
| 323 } |
| 324 |
| 325 // Serialize the node lists for the loop into the loop tree. |
| 326 loop_tree_->loop_nodes_.reserve(count); |
| 327 SerializeLoop(li->loop); |
| 328 } |
| 329 |
| 330 // Recursively serialize the list of header nodes and body nodes |
| 331 // so that nested loops occupy nested intervals. |
| 332 void SerializeLoop(LoopTree::Loop* loop) { |
| 333 size_t loop_num = loop_tree_->LoopNum(loop); |
| 334 LoopInfo& li = loops_[loop_num - 1]; |
| 335 |
| 336 // Serialize the header. |
| 337 loop->header_start_ = static_cast<int>(loop_tree_->loop_nodes_.size()); |
| 338 for (NodeInfo* ni = li.header_list; ni != nullptr; ni = ni->next) { |
| 339 loop_tree_->loop_nodes_.push_back(ni->node); |
| 340 // TODO(titzer): lift loop count restriction. |
| 341 loop_tree_->node_to_loop_num_[ni->node->id()] = |
| 342 static_cast<uint8_t>(loop_num); |
| 343 } |
| 344 |
| 345 // Serialize the body. |
| 346 loop->body_start_ = static_cast<int>(loop_tree_->loop_nodes_.size()); |
| 347 for (NodeInfo* ni = li.body_list; ni != nullptr; ni = ni->next) { |
| 348 loop_tree_->loop_nodes_.push_back(ni->node); |
| 349 // TODO(titzer): lift loop count restriction. |
| 350 loop_tree_->node_to_loop_num_[ni->node->id()] = |
| 351 static_cast<uint8_t>(loop_num); |
| 352 } |
| 353 |
| 354 // Serialize nested loops. |
| 355 for (LoopTree::Loop* child : loop->children_) SerializeLoop(child); |
| 356 |
| 357 loop->body_end_ = static_cast<int>(loop_tree_->loop_nodes_.size()); |
| 358 } |
| 359 |
| 360 // Connect the LoopTree loops to their parents recursively. |
| 361 LoopTree::Loop* ConnectLoopTree(size_t loop_num) { |
| 362 LoopInfo& li = loops_[loop_num - 1]; |
| 363 if (li.loop != nullptr) return li.loop; |
| 364 |
| 365 NodeInfo& ni = info(li.header); |
| 366 LoopTree::Loop* parent = nullptr; |
| 367 for (size_t i = 1; i <= loops_.size(); i++) { |
| 368 if (i == loop_num) continue; |
| 369 if (ni.IsInLoop(i)) { |
| 370 // recursively create potential parent loops first. |
| 371 LoopTree::Loop* upper = ConnectLoopTree(i); |
| 372 if (parent == nullptr || upper->depth_ > parent->depth_) { |
| 373 parent = upper; |
| 374 } |
| 375 } |
| 376 } |
| 377 li.loop = &loop_tree_->all_loops_[loop_num - 1]; |
| 378 loop_tree_->SetParent(parent, li.loop); |
| 379 return li.loop; |
| 380 } |
| 381 |
| 382 void PrintLoop(LoopTree::Loop* loop) { |
| 383 for (int i = 0; i < loop->depth_; i++) PrintF(" "); |
| 384 PrintF("Loop depth = %d ", loop->depth_); |
| 385 int i = loop->header_start_; |
| 386 while (i < loop->body_start_) { |
| 387 PrintF(" H#%d", loop_tree_->loop_nodes_[i++]->id()); |
| 388 } |
| 389 while (i < loop->body_end_) { |
| 390 PrintF(" B#%d", loop_tree_->loop_nodes_[i++]->id()); |
| 391 } |
| 392 PrintF("\n"); |
| 393 for (LoopTree::Loop* child : loop->children_) PrintLoop(child); |
| 394 } |
| 395 }; |
| 396 |
| 397 |
| 398 LoopTree* LoopFinder::BuildLoopTree(Graph* graph, Zone* zone) { |
| 399 LoopTree* loop_tree = |
| 400 new (graph->zone()) LoopTree(graph->NodeCount(), graph->zone()); |
| 401 LoopFinderImpl finder(graph, loop_tree, zone); |
| 402 finder.Run(); |
| 403 if (FLAG_trace_turbo_graph) { |
| 404 finder.Print(); |
| 405 } |
| 406 return loop_tree; |
| 407 } |
| 408 |
| 409 } // namespace compiler |
| 410 } // namespace internal |
| 411 } // namespace v8 |
OLD | NEW |