Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(53)

Unified Diff: runtime/vm/regexp.cc

Issue 754383002: Revert "Integrate the Irregexp Regular Expression Engine." (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: Created 6 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « runtime/vm/regexp.h ('k') | runtime/vm/regexp_assembler.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: runtime/vm/regexp.cc
diff --git a/runtime/vm/regexp.cc b/runtime/vm/regexp.cc
index d33fd45134f25ab142f65eee1736494e16bd50b4..534e0c5072dc380457539422f1121bdecd81b0a8 100644
--- a/runtime/vm/regexp.cc
+++ b/runtime/vm/regexp.cc
@@ -4,66 +4,29 @@
#include "vm/regexp.h"
-#include "vm/dart_entry.h"
-#include "vm/regexp_assembler.h"
-#include "vm/regexp_ast.h"
-#include "vm/unibrow-inl.h"
-#include "vm/unicode.h"
-#include "vm/symbols.h"
-
-#define I (isolate())
-#define CI (compiler->isolate())
+// SNIP
namespace dart {
-DECLARE_FLAG(bool, trace_irregexp);
-
-// Default to generating optimized regexp code.
-static const bool kRegexpOptimization = true;
-
-// More makes code generation slower, less makes V8 benchmark score lower.
-static const intptr_t kMaxLookaheadForBoyerMoore = 8;
-
-ContainedInLattice AddRange(ContainedInLattice containment,
- const intptr_t* ranges,
- intptr_t ranges_length,
- Interval new_range) {
- ASSERT((ranges_length & 1) == 1);
- ASSERT(ranges[ranges_length - 1] == Utf16::kMaxCodeUnit + 1);
- if (containment == kLatticeUnknown) return containment;
- bool inside = false;
- intptr_t last = 0;
- for (intptr_t i = 0; i < ranges_length;
- inside = !inside, last = ranges[i], i++) {
- // Consider the range from last to ranges[i].
- // We haven't got to the new range yet.
- if (ranges[i] <= new_range.from()) continue;
- // New range is wholly inside last-ranges[i]. Note that new_range.to() is
- // inclusive, but the values in ranges are not.
- if (last <= new_range.from() && new_range.to() < ranges[i]) {
- return Combine(containment, inside ? kLatticeIn : kLatticeOut);
- }
- return kLatticeUnknown;
- }
- return containment;
-}
+// SNIP
// -------------------------------------------------------------------
// Implementation of the Irregexp regular expression engine.
//
// The Irregexp regular expression engine is intended to be a complete
-// implementation of ECMAScript regular expressions. It generates
-// IR code that is subsequently compiled to native code.
+// implementation of ECMAScript regular expressions. It generates either
+// bytecodes or native code.
// The Irregexp regexp engine is structured in three steps.
-// 1) The parser generates an abstract syntax tree. See regexp_ast.cc.
+// 1) The parser generates an abstract syntax tree. See ast.cc.
// 2) From the AST a node network is created. The nodes are all
// subclasses of RegExpNode. The nodes represent states when
// executing a regular expression. Several optimizations are
// performed on the node network.
-// 3) From the nodes we generate IR instructions that can actually
-// execute the regular expression (perform the search). The
-// code generation step is described in more detail below.
+// 3) From the nodes we generate either byte codes or native code
+// that can actually execute the regular expression (perform
+// the search). The code generation step is described in more
+// detail below.
// Code generation.
//
@@ -86,8 +49,8 @@ ContainedInLattice AddRange(ContainedInLattice containment,
// These are used to implement the actions required on finding
// a successful match or failing to find a match.
//
-// The code generated maintains some state as it runs. This consists of the
-// following elements:
+// The code generated (whether as byte codes or native code) maintains
+// some state as it runs. This consists of the following elements:
//
// * The capture registers. Used for string captures.
// * Other registers. Used for counters etc.
@@ -197,24 +160,24 @@ ContainedInLattice AddRange(ContainedInLattice containment,
// the event that code generation is requested for an identical trace.
-void RegExpTree::AppendToText(RegExpText* text) {
+void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
UNREACHABLE();
}
-void RegExpAtom::AppendToText(RegExpText* text) {
- text->AddElement(TextElement::Atom(this));
+void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
+ text->AddElement(TextElement::Atom(this), zone);
}
-void RegExpCharacterClass::AppendToText(RegExpText* text) {
- text->AddElement(TextElement::CharClass(this));
+void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
+ text->AddElement(TextElement::CharClass(this), zone);
}
-void RegExpText::AppendToText(RegExpText* text) {
- for (intptr_t i = 0; i < elements()->length(); i++)
- text->AddElement((*elements())[i]);
+void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
+ for (int i = 0; i < elements()->length(); i++)
+ text->AddElement(elements()->at(i), zone);
}
@@ -228,7 +191,7 @@ TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
}
-intptr_t TextElement::length() const {
+int TextElement::length() const {
switch (text_type()) {
case ATOM:
return atom()->length();
@@ -241,26 +204,36 @@ intptr_t TextElement::length() const {
}
-class FrequencyCollator : public ValueObject {
+DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
+ if (table_ == NULL) {
+ table_ = new(zone()) DispatchTable(zone());
+ DispatchTableConstructor cons(table_, ignore_case, zone());
+ cons.BuildTable(this);
+ }
+ return table_;
+}
+
+
+class FrequencyCollator {
public:
FrequencyCollator() : total_samples_(0) {
- for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
+ for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
frequencies_[i] = CharacterFrequency(i);
}
}
- void CountCharacter(intptr_t character) {
- intptr_t index = (character & RegExpMacroAssembler::kTableMask);
+ void CountCharacter(int character) {
+ int index = (character & RegExpMacroAssembler::kTableMask);
frequencies_[index].Increment();
total_samples_++;
}
// Does not measure in percent, but rather per-128 (the table size from the
// regexp macro assembler).
- intptr_t Frequency(intptr_t in_character) {
- ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character);
+ int Frequency(int in_character) {
+ DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
if (total_samples_ < 1) return 1; // Division by zero.
- intptr_t freq_in_per128 =
+ int freq_in_per128 =
(frequencies_[in_character].counter() * 128) / total_samples_;
return freq_in_per128;
}
@@ -269,91 +242,88 @@ class FrequencyCollator : public ValueObject {
class CharacterFrequency {
public:
CharacterFrequency() : counter_(0), character_(-1) { }
- explicit CharacterFrequency(intptr_t character)
+ explicit CharacterFrequency(int character)
: counter_(0), character_(character) { }
void Increment() { counter_++; }
- intptr_t counter() { return counter_; }
- intptr_t character() { return character_; }
+ int counter() { return counter_; }
+ int character() { return character_; }
private:
- intptr_t counter_;
- intptr_t character_;
-
- DISALLOW_ALLOCATION();
+ int counter_;
+ int character_;
};
private:
CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
- intptr_t total_samples_;
+ int total_samples_;
};
-class RegExpCompiler : public ValueObject {
+class RegExpCompiler {
public:
- RegExpCompiler(intptr_t capture_count,
- bool ignore_case,
- intptr_t specialization_cid);
+ RegExpCompiler(int capture_count, bool ignore_case, bool is_one_byte,
+ Zone* zone);
- intptr_t AllocateRegister() {
+ int AllocateRegister() {
+ if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
+ reg_exp_too_big_ = true;
+ return next_register_;
+ }
return next_register_++;
}
- RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler,
+ RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
RegExpNode* start,
- intptr_t capture_count,
- const String& pattern);
+ int capture_count,
+ Handle<String> pattern);
inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
- static const intptr_t kImplementationOffset = 0;
- static const intptr_t kNumberOfRegistersOffset = 0;
- static const intptr_t kCodeOffset = 1;
+ static const int kImplementationOffset = 0;
+ static const int kNumberOfRegistersOffset = 0;
+ static const int kCodeOffset = 1;
- IRRegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
+ RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
EndNode* accept() { return accept_; }
- static const intptr_t kMaxRecursion = 100;
- inline intptr_t recursion_depth() { return recursion_depth_; }
+ static const int kMaxRecursion = 100;
+ inline int recursion_depth() { return recursion_depth_; }
inline void IncrementRecursionDepth() { recursion_depth_++; }
inline void DecrementRecursionDepth() { recursion_depth_--; }
void SetRegExpTooBig() { reg_exp_too_big_ = true; }
inline bool ignore_case() { return ignore_case_; }
- inline bool one_byte() const {
- return (specialization_cid_ == kOneByteStringCid ||
- specialization_cid_ == kExternalOneByteStringCid);
- }
- inline intptr_t specialization_cid() { return specialization_cid_; }
+ inline bool one_byte() { return one_byte_; }
FrequencyCollator* frequency_collator() { return &frequency_collator_; }
- intptr_t current_expansion_factor() { return current_expansion_factor_; }
- void set_current_expansion_factor(intptr_t value) {
+ int current_expansion_factor() { return current_expansion_factor_; }
+ void set_current_expansion_factor(int value) {
current_expansion_factor_ = value;
}
- Isolate* isolate() const { return isolate_; }
+ Zone* zone() const { return zone_; }
- static const intptr_t kNoRegister = -1;
+ static const int kNoRegister = -1;
private:
EndNode* accept_;
- intptr_t next_register_;
- ZoneGrowableArray<RegExpNode*>* work_list_;
- intptr_t recursion_depth_;
- IRRegExpMacroAssembler* macro_assembler_;
+ int next_register_;
+ List<RegExpNode*>* work_list_;
+ int recursion_depth_;
+ RegExpMacroAssembler* macro_assembler_;
bool ignore_case_;
- intptr_t specialization_cid_;
+ bool one_byte_;
bool reg_exp_too_big_;
- intptr_t current_expansion_factor_;
+ int current_expansion_factor_;
FrequencyCollator frequency_collator_;
- Isolate* isolate_;
+ Zone* zone_;
};
-class RecursionCheck : public ValueObject {
+class RecursionCheck {
public:
explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
compiler->IncrementRecursionDepth();
@@ -364,60 +334,84 @@ class RecursionCheck : public ValueObject {
};
-static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
- return RegExpEngine::CompilationResult("RegExp too big");
+static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
+ return RegExpEngine::CompilationResult(isolate, "RegExp too big");
}
// Attempts to compile the regexp using an Irregexp code generator. Returns
// a fixed array or a null handle depending on whether it succeeded.
-RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case,
- intptr_t specialization_cid)
+RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case,
+ bool one_byte, Zone* zone)
: next_register_(2 * (capture_count + 1)),
work_list_(NULL),
recursion_depth_(0),
ignore_case_(ignore_case),
- specialization_cid_(specialization_cid),
+ one_byte_(one_byte),
reg_exp_too_big_(false),
current_expansion_factor_(1),
- isolate_(Isolate::Current()) {
- accept_ = new(I) EndNode(EndNode::ACCEPT, I);
+ frequency_collator_(),
+ zone_(zone) {
+ accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
+ DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
}
RegExpEngine::CompilationResult RegExpCompiler::Assemble(
- IRRegExpMacroAssembler* macro_assembler,
+ RegExpMacroAssembler* macro_assembler,
RegExpNode* start,
- intptr_t capture_count,
- const String& pattern) {
- static const bool use_slow_safe_regexp_compiler = false;
+ int capture_count,
+ Handle<String> pattern) {
+ Heap* heap = pattern->GetHeap();
+
+ bool use_slow_safe_regexp_compiler = false;
+ if (heap->total_regexp_code_generated() >
+ RegExpImpl::kRegWxpCompiledLimit &&
+ heap->isolate()->memory_allocator()->SizeExecutable() >
+ RegExpImpl::kRegExpExecutableMemoryLimit) {
+ use_slow_safe_regexp_compiler = true;
+ }
macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler);
- macro_assembler_ = macro_assembler;
- ZoneGrowableArray<RegExpNode*> work_list(0);
+#ifdef DEBUG
+ if (FLAG_trace_regexp_assembler)
+ macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler);
+ else
+#endif
+ macro_assembler_ = macro_assembler;
+
+ List <RegExpNode*> work_list(0);
work_list_ = &work_list;
- BlockLabel fail;
+ Label fail;
macro_assembler_->PushBacktrack(&fail);
Trace new_trace;
start->Emit(this, &new_trace);
- macro_assembler_->BindBlock(&fail);
+ macro_assembler_->Bind(&fail);
macro_assembler_->Fail();
while (!work_list.is_empty()) {
work_list.RemoveLast()->Emit(this, &new_trace);
}
- if (reg_exp_too_big_) return IrregexpRegExpTooBig();
-
- macro_assembler->GenerateBacktrackBlock();
+ if (reg_exp_too_big_) return IrregexpRegExpTooBig(zone_->isolate());
- return RegExpEngine::CompilationResult(macro_assembler->backtrack_goto(),
- macro_assembler->graph_entry(),
- macro_assembler->num_blocks(),
- macro_assembler->num_stack_locals());
+ Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
+ heap->IncreaseTotalRegexpCodeGenerated(code->Size());
+ work_list_ = NULL;
+#ifdef DEBUG
+ if (FLAG_print_code) {
+ CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
+ OFStream os(trace_scope.file());
+ Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
+ }
+ if (FLAG_trace_regexp_assembler) {
+ delete macro_assembler_;
+ }
+#endif
+ return RegExpEngine::CompilationResult(*code, next_register_);
}
-bool Trace::DeferredAction::Mentions(intptr_t that) {
+bool Trace::DeferredAction::Mentions(int that) {
if (action_type() == ActionNode::CLEAR_CAPTURES) {
Interval range = static_cast<DeferredClearCaptures*>(this)->range();
return range.Contains(that);
@@ -427,7 +421,7 @@ bool Trace::DeferredAction::Mentions(intptr_t that) {
}
-bool Trace::mentions_reg(intptr_t reg) {
+bool Trace::mentions_reg(int reg) {
for (DeferredAction* action = actions_;
action != NULL;
action = action->next()) {
@@ -438,8 +432,8 @@ bool Trace::mentions_reg(intptr_t reg) {
}
-bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) {
- ASSERT(*cp_offset == 0);
+bool Trace::GetStoredPosition(int reg, int* cp_offset) {
+ DCHECK_EQ(0, *cp_offset);
for (DeferredAction* action = actions_;
action != NULL;
action = action->next()) {
@@ -456,22 +450,19 @@ bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) {
}
-// This is called as we come into a loop choice node and some other tricky
-// nodes. It normalizes the state of the code generator to ensure we can
-// generate generic code.
-intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers,
- Isolate* isolate) {
- intptr_t max_register = RegExpCompiler::kNoRegister;
+int Trace::FindAffectedRegisters(OutSet* affected_registers,
+ Zone* zone) {
+ int max_register = RegExpCompiler::kNoRegister;
for (DeferredAction* action = actions_;
action != NULL;
action = action->next()) {
if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
Interval range = static_cast<DeferredClearCaptures*>(action)->range();
- for (intptr_t i = range.from(); i <= range.to(); i++)
- affected_registers->Set(i, isolate);
+ for (int i = range.from(); i <= range.to(); i++)
+ affected_registers->Set(i, zone);
if (range.to() > max_register) max_register = range.to();
} else {
- affected_registers->Set(action->reg(), isolate);
+ affected_registers->Set(action->reg(), zone);
if (action->reg() > max_register) max_register = action->reg();
}
}
@@ -480,14 +471,14 @@ intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers,
void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
- intptr_t max_register,
+ int max_register,
const OutSet& registers_to_pop,
const OutSet& registers_to_clear) {
- for (intptr_t reg = max_register; reg >= 0; reg--) {
+ for (int reg = max_register; reg >= 0; reg--) {
if (registers_to_pop.Get(reg)) {
assembler->PopRegister(reg);
} else if (registers_to_clear.Get(reg)) {
- intptr_t clear_to = reg;
+ int clear_to = reg;
while (reg > 0 && registers_to_clear.Get(reg - 1)) {
reg--;
}
@@ -498,12 +489,18 @@ void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
- intptr_t max_register,
+ int max_register,
const OutSet& affected_registers,
OutSet* registers_to_pop,
OutSet* registers_to_clear,
- Isolate* isolate) {
- for (intptr_t reg = 0; reg <= max_register; reg++) {
+ Zone* zone) {
+ // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
+ const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
+
+ // Count pushes performed to force a stack limit check occasionally.
+ int pushes = 0;
+
+ for (int reg = 0; reg <= max_register; reg++) {
if (!affected_registers.Get(reg)) {
continue;
}
@@ -514,10 +511,10 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
DeferredActionUndoType undo_action = IGNORE;
- intptr_t value = 0;
+ int value = 0;
bool absolute = false;
bool clear = false;
- intptr_t store_position = -1;
+ int store_position = -1;
// This is a little tricky because we are scanning the actions in reverse
// historical order (newest first).
for (DeferredAction* action = actions_;
@@ -538,16 +535,16 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
// we can set undo_action to IGNORE if we know there is no value to
// restore.
undo_action = RESTORE;
- ASSERT(store_position == -1);
- ASSERT(!clear);
+ DCHECK_EQ(store_position, -1);
+ DCHECK(!clear);
break;
}
case ActionNode::INCREMENT_REGISTER:
if (!absolute) {
value++;
}
- ASSERT(store_position == -1);
- ASSERT(!clear);
+ DCHECK_EQ(store_position, -1);
+ DCHECK(!clear);
undo_action = RESTORE;
break;
case ActionNode::STORE_POSITION: {
@@ -569,8 +566,8 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
} else {
undo_action = pc->is_capture() ? CLEAR : RESTORE;
}
- ASSERT(!absolute);
- ASSERT(value == 0);
+ DCHECK(!absolute);
+ DCHECK_EQ(value, 0);
break;
}
case ActionNode::CLEAR_CAPTURES: {
@@ -581,8 +578,8 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
clear = true;
}
undo_action = RESTORE;
- ASSERT(!absolute);
- ASSERT(value == 0);
+ DCHECK(!absolute);
+ DCHECK_EQ(value, 0);
break;
}
default:
@@ -593,10 +590,18 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
}
// Prepare for the undo-action (e.g., push if it's going to be popped).
if (undo_action == RESTORE) {
- assembler->PushRegister(reg);
- registers_to_pop->Set(reg, isolate);
+ pushes++;
+ RegExpMacroAssembler::StackCheckFlag stack_check =
+ RegExpMacroAssembler::kNoStackLimitCheck;
+ if (pushes == push_limit) {
+ stack_check = RegExpMacroAssembler::kCheckStackLimit;
+ pushes = 0;
+ }
+
+ assembler->PushRegister(reg, stack_check);
+ registers_to_pop->Set(reg, zone);
} else if (undo_action == CLEAR) {
- registers_to_clear->Set(reg, isolate);
+ registers_to_clear->Set(reg, zone);
}
// Perform the chronologically last action (or accumulated increment)
// for the register.
@@ -619,7 +624,7 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
- ASSERT(!is_trivial());
+ DCHECK(!is_trivial());
if (actions_ == NULL && backtrack() == NULL) {
// Here we just have some deferred cp advances to fix and we are back to
@@ -642,7 +647,8 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
assembler->PushCurrentPosition();
}
- intptr_t max_register = FindAffectedRegisters(&affected_registers, CI);
+ int max_register = FindAffectedRegisters(&affected_registers,
+ compiler->zone());
OutSet registers_to_pop;
OutSet registers_to_clear;
PerformDeferredActions(assembler,
@@ -650,19 +656,19 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
affected_registers,
&registers_to_pop,
&registers_to_clear,
- CI);
+ compiler->zone());
if (cp_offset_ != 0) {
assembler->AdvanceCurrentPosition(cp_offset_);
}
// Create a new trivial state and generate the node with that.
- BlockLabel undo;
+ Label undo;
assembler->PushBacktrack(&undo);
Trace new_state;
successor->Emit(compiler, &new_state);
// On backtrack we need to restore state.
- assembler->BindBlock(&undo);
+ assembler->Bind(&undo);
RestoreAffectedRegisters(assembler,
max_register,
registers_to_pop,
@@ -681,10 +687,10 @@ void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
// Omit flushing the trace. We discard the entire stack frame anyway.
- if (!label()->IsBound()) {
+ if (!label()->is_bound()) {
// We are completely independent of the trace, since we ignore it,
// so this code can be used as the generic version.
- assembler->BindBlock(label());
+ assembler->Bind(label());
}
// Throw away everything on the backtrack stack since the start
@@ -709,8 +715,8 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
return;
}
RegExpMacroAssembler* assembler = compiler->macro_assembler();
- if (!label()->IsBound()) {
- assembler->BindBlock(label());
+ if (!label()->is_bound()) {
+ assembler->Bind(label());
}
switch (action_) {
case ACCEPT:
@@ -727,38 +733,37 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
-void GuardedAlternative::AddGuard(Guard* guard, Isolate* isolate) {
+void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
if (guards_ == NULL)
- guards_ = new(isolate) ZoneGrowableArray<Guard*>(1);
- guards_->Add(guard);
+ guards_ = new(zone) ZoneList<Guard*>(1, zone);
+ guards_->Add(guard, zone);
}
-ActionNode* ActionNode::SetRegister(intptr_t reg,
- intptr_t val,
+ActionNode* ActionNode::SetRegister(int reg,
+ int val,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->isolate()) ActionNode(SET_REGISTER, on_success);
+ new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
result->data_.u_store_register.reg = reg;
result->data_.u_store_register.value = val;
return result;
}
-ActionNode* ActionNode::IncrementRegister(intptr_t reg,
- RegExpNode* on_success) {
+ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
ActionNode* result =
- new(on_success->isolate()) ActionNode(INCREMENT_REGISTER, on_success);
+ new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
result->data_.u_increment_register.reg = reg;
return result;
}
-ActionNode* ActionNode::StorePosition(intptr_t reg,
+ActionNode* ActionNode::StorePosition(int reg,
bool is_capture,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->isolate()) ActionNode(STORE_POSITION, on_success);
+ new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
result->data_.u_position_register.reg = reg;
result->data_.u_position_register.is_capture = is_capture;
return result;
@@ -768,32 +773,31 @@ ActionNode* ActionNode::StorePosition(intptr_t reg,
ActionNode* ActionNode::ClearCaptures(Interval range,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->isolate()) ActionNode(CLEAR_CAPTURES, on_success);
+ new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
result->data_.u_clear_captures.range_from = range.from();
result->data_.u_clear_captures.range_to = range.to();
return result;
}
-ActionNode* ActionNode::BeginSubmatch(intptr_t stack_reg,
- intptr_t position_reg,
+ActionNode* ActionNode::BeginSubmatch(int stack_reg,
+ int position_reg,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->isolate()) ActionNode(BEGIN_SUBMATCH, on_success);
+ new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
result->data_.u_submatch.stack_pointer_register = stack_reg;
result->data_.u_submatch.current_position_register = position_reg;
return result;
}
-ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg,
- intptr_t position_reg,
- intptr_t clear_register_count,
- intptr_t clear_register_from,
+ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
+ int position_reg,
+ int clear_register_count,
+ int clear_register_from,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->isolate()) ActionNode(POSITIVE_SUBMATCH_SUCCESS,
- on_success);
+ new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
result->data_.u_submatch.stack_pointer_register = stack_reg;
result->data_.u_submatch.current_position_register = position_reg;
result->data_.u_submatch.clear_register_count = clear_register_count;
@@ -802,12 +806,12 @@ ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg,
}
-ActionNode* ActionNode::EmptyMatchCheck(intptr_t start_register,
- intptr_t repetition_register,
- intptr_t repetition_limit,
+ActionNode* ActionNode::EmptyMatchCheck(int start_register,
+ int repetition_register,
+ int repetition_limit,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->isolate()) ActionNode(EMPTY_MATCH_CHECK, on_success);
+ new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
result->data_.u_empty_match_check.start_register = start_register;
result->data_.u_empty_match_check.repetition_register = repetition_register;
result->data_.u_empty_match_check.repetition_limit = repetition_limit;
@@ -837,13 +841,13 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
Trace* trace) {
switch (guard->op()) {
case Guard::LT:
- ASSERT(!trace->mentions_reg(guard->reg()));
+ DCHECK(!trace->mentions_reg(guard->reg()));
macro_assembler->IfRegisterGE(guard->reg(),
guard->value(),
trace->backtrack());
break;
case Guard::GEQ:
- ASSERT(!trace->mentions_reg(guard->reg()));
+ DCHECK(!trace->mentions_reg(guard->reg()));
macro_assembler->IfRegisterLT(guard->reg(),
guard->value(),
trace->backtrack());
@@ -854,18 +858,18 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
// Returns the number of characters in the equivalence class, omitting those
// that cannot occur in the source string because it is ASCII.
-static intptr_t GetCaseIndependentLetters(uint16_t character,
- bool one_byte_subject,
- int32_t* letters) {
- unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
- intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters);
+static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
+ bool one_byte_subject,
+ unibrow::uchar* letters) {
+ int length =
+ isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
// Unibrow returns 0 or 1 for characters where case independence is
// trivial.
if (length == 0) {
letters[0] = character;
length = 1;
}
- if (!one_byte_subject || character <= Symbols::kMaxOneCharCodeSymbol) {
+ if (!one_byte_subject || character <= String::kMaxOneByteCharCode) {
return length;
}
@@ -879,9 +883,9 @@ static intptr_t GetCaseIndependentLetters(uint16_t character,
static inline bool EmitSimpleCharacter(Isolate* isolate,
RegExpCompiler* compiler,
- uint16_t c,
- BlockLabel* on_failure,
- intptr_t cp_offset,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
bool check,
bool preloaded) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
@@ -902,15 +906,15 @@ static inline bool EmitSimpleCharacter(Isolate* isolate,
// independent matches.
static inline bool EmitAtomNonLetter(Isolate* isolate,
RegExpCompiler* compiler,
- uint16_t c,
- BlockLabel* on_failure,
- intptr_t cp_offset,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
bool check,
bool preloaded) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
bool one_byte = compiler->one_byte();
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- intptr_t length = GetCaseIndependentLetters(c, one_byte, chars);
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
if (length < 1) {
// This can't match. Must be an one-byte subject and a non-one-byte
// character. We do not need to do anything since the one-byte pass
@@ -920,7 +924,7 @@ static inline bool EmitAtomNonLetter(Isolate* isolate,
bool checked = false;
// We handle the length > 1 case in a later pass.
if (length == 1) {
- if (one_byte && c > Symbols::kMaxOneCharCodeSymbol) {
+ if (one_byte && c > String::kMaxOneByteCharCodeU) {
// Can't match - see above.
return false; // Bounds not checked.
}
@@ -935,34 +939,32 @@ static inline bool EmitAtomNonLetter(Isolate* isolate,
static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
- bool one_byte,
- uint16_t c1,
- uint16_t c2,
- BlockLabel* on_failure) {
- uint16_t char_mask;
+ bool one_byte, uc16 c1, uc16 c2,
+ Label* on_failure) {
+ uc16 char_mask;
if (one_byte) {
- char_mask = Symbols::kMaxOneCharCodeSymbol;
+ char_mask = String::kMaxOneByteCharCode;
} else {
- char_mask = Utf16::kMaxCodeUnit;
+ char_mask = String::kMaxUtf16CodeUnit;
}
- uint16_t exor = c1 ^ c2;
+ uc16 exor = c1 ^ c2;
// Check whether exor has only one bit set.
if (((exor - 1) & exor) == 0) {
// If c1 and c2 differ only by one bit.
// Ecma262UnCanonicalize always gives the highest number last.
- ASSERT(c2 > c1);
- uint16_t mask = char_mask ^ exor;
+ DCHECK(c2 > c1);
+ uc16 mask = char_mask ^ exor;
macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
return true;
}
- ASSERT(c2 > c1);
- uint16_t diff = c2 - c1;
+ DCHECK(c2 > c1);
+ uc16 diff = c2 - c1;
if (((diff - 1) & diff) == 0 && c1 >= diff) {
// If the characters differ by 2^n but don't differ by one bit then
// subtract the difference from the found character, then do the or
// trick. We avoid the theoretical case where negative numbers are
// involved in order to simplify code generation.
- uint16_t mask = char_mask ^ diff;
+ uc16 mask = char_mask ^ diff;
macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
diff,
mask,
@@ -975,9 +977,9 @@ static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
typedef bool EmitCharacterFunction(Isolate* isolate,
RegExpCompiler* compiler,
- uint16_t c,
- BlockLabel* on_failure,
- intptr_t cp_offset,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
bool check,
bool preloaded);
@@ -985,34 +987,31 @@ typedef bool EmitCharacterFunction(Isolate* isolate,
// matches.
static inline bool EmitAtomLetter(Isolate* isolate,
RegExpCompiler* compiler,
- uint16_t c,
- BlockLabel* on_failure,
- intptr_t cp_offset,
+ uc16 c,
+ Label* on_failure,
+ int cp_offset,
bool check,
bool preloaded) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
bool one_byte = compiler->one_byte();
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- intptr_t length = GetCaseIndependentLetters(c, one_byte, chars);
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
if (length <= 1) return false;
// We may not need to check against the end of the input string
// if this character lies before a character that matched.
if (!preloaded) {
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
}
- BlockLabel ok;
- ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
+ Label ok;
+ DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
switch (length) {
case 2: {
- if (ShortCutEmitCharacterPair(macro_assembler,
- one_byte,
- chars[0],
- chars[1],
- on_failure)) {
+ if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
+ chars[1], on_failure)) {
} else {
macro_assembler->CheckCharacter(chars[0], &ok);
macro_assembler->CheckNotCharacter(chars[1], on_failure);
- macro_assembler->BindBlock(&ok);
+ macro_assembler->Bind(&ok);
}
break;
}
@@ -1023,7 +1022,7 @@ static inline bool EmitAtomLetter(Isolate* isolate,
macro_assembler->CheckCharacter(chars[0], &ok);
macro_assembler->CheckCharacter(chars[1], &ok);
macro_assembler->CheckNotCharacter(chars[2], on_failure);
- macro_assembler->BindBlock(&ok);
+ macro_assembler->Bind(&ok);
break;
default:
UNREACHABLE();
@@ -1034,10 +1033,10 @@ static inline bool EmitAtomLetter(Isolate* isolate,
static void EmitBoundaryTest(RegExpMacroAssembler* masm,
- intptr_t border,
- BlockLabel* fall_through,
- BlockLabel* above_or_equal,
- BlockLabel* below) {
+ int border,
+ Label* fall_through,
+ Label* above_or_equal,
+ Label* below) {
if (below != fall_through) {
masm->CheckCharacterLT(border, below);
if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
@@ -1048,11 +1047,11 @@ static void EmitBoundaryTest(RegExpMacroAssembler* masm,
static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
- intptr_t first,
- intptr_t last,
- BlockLabel* fall_through,
- BlockLabel* in_range,
- BlockLabel* out_of_range) {
+ int first,
+ int last,
+ Label* fall_through,
+ Label* in_range,
+ Label* out_of_range) {
if (in_range == fall_through) {
if (first == last) {
masm->CheckNotCharacter(first, out_of_range);
@@ -1074,28 +1073,29 @@ static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
static void EmitUseLookupTable(
RegExpMacroAssembler* masm,
- ZoneGrowableArray<int>* ranges,
- intptr_t start_index,
- intptr_t end_index,
- intptr_t min_char,
- BlockLabel* fall_through,
- BlockLabel* even_label,
- BlockLabel* odd_label) {
- static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
- static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
-
- intptr_t base = (min_char & ~kMask);
+ ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ int min_char,
+ Label* fall_through,
+ Label* even_label,
+ Label* odd_label) {
+ static const int kSize = RegExpMacroAssembler::kTableSize;
+ static const int kMask = RegExpMacroAssembler::kTableMask;
+
+ int base = (min_char & ~kMask);
+ USE(base);
// Assert that everything is on one kTableSize page.
- for (intptr_t i = start_index; i <= end_index; i++) {
- ASSERT((ranges->At(i) & ~kMask) == base);
+ for (int i = start_index; i <= end_index; i++) {
+ DCHECK_EQ(ranges->at(i) & ~kMask, base);
}
- ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base);
+ DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
char templ[kSize];
- BlockLabel* on_bit_set;
- BlockLabel* on_bit_clear;
- intptr_t bit;
+ Label* on_bit_set;
+ Label* on_bit_clear;
+ int bit;
if (even_label == fall_through) {
on_bit_set = odd_label;
on_bit_clear = even_label;
@@ -1105,27 +1105,25 @@ static void EmitUseLookupTable(
on_bit_clear = odd_label;
bit = 0;
}
- for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize;
- i++) {
+ for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
templ[i] = bit;
}
- intptr_t j = 0;
+ int j = 0;
bit ^= 1;
- for (intptr_t i = start_index; i < end_index; i++) {
- for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) {
+ for (int i = start_index; i < end_index; i++) {
+ for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
templ[j] = bit;
}
bit ^= 1;
}
- for (intptr_t i = j; i < kSize; i++) {
+ for (int i = j; i < kSize; i++) {
templ[i] = bit;
}
+ Factory* factory = masm->zone()->isolate()->factory();
// TODO(erikcorry): Cache these.
- const TypedData& ba = TypedData::ZoneHandle(
- masm->isolate(),
- TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
- for (intptr_t i = 0; i < kSize; i++) {
- ba.SetUint8(i, templ[i]);
+ Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
+ for (int i = 0; i < kSize; i++) {
+ ba->set(i, templ[i]);
}
masm->CheckBitInTable(ba, on_bit_set);
if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
@@ -1133,52 +1131,52 @@ static void EmitUseLookupTable(
static void CutOutRange(RegExpMacroAssembler* masm,
- ZoneGrowableArray<int>* ranges,
- intptr_t start_index,
- intptr_t end_index,
- intptr_t cut_index,
- BlockLabel* even_label,
- BlockLabel* odd_label) {
+ ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ int cut_index,
+ Label* even_label,
+ Label* odd_label) {
bool odd = (((cut_index - start_index) & 1) == 1);
- BlockLabel* in_range_label = odd ? odd_label : even_label;
- BlockLabel dummy;
+ Label* in_range_label = odd ? odd_label : even_label;
+ Label dummy;
EmitDoubleBoundaryTest(masm,
- ranges->At(cut_index),
- ranges->At(cut_index + 1) - 1,
+ ranges->at(cut_index),
+ ranges->at(cut_index + 1) - 1,
&dummy,
in_range_label,
&dummy);
- ASSERT(!dummy.IsLinked());
+ DCHECK(!dummy.is_linked());
// Cut out the single range by rewriting the array. This creates a new
// range that is a merger of the two ranges on either side of the one we
// are cutting out. The oddity of the labels is preserved.
- for (intptr_t j = cut_index; j > start_index; j--) {
- (*ranges)[j] = ranges->At(j - 1);
+ for (int j = cut_index; j > start_index; j--) {
+ ranges->at(j) = ranges->at(j - 1);
}
- for (intptr_t j = cut_index + 1; j < end_index; j++) {
- (*ranges)[j] = ranges->At(j + 1);
+ for (int j = cut_index + 1; j < end_index; j++) {
+ ranges->at(j) = ranges->at(j + 1);
}
}
// Unicode case. Split the search space into kSize spaces that are handled
// with recursion.
-static void SplitSearchSpace(ZoneGrowableArray<int>* ranges,
- intptr_t start_index,
- intptr_t end_index,
- intptr_t* new_start_index,
- intptr_t* new_end_index,
- intptr_t* border) {
- static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
- static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
-
- intptr_t first = ranges->At(start_index);
- intptr_t last = ranges->At(end_index) - 1;
+static void SplitSearchSpace(ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ int* new_start_index,
+ int* new_end_index,
+ int* border) {
+ static const int kSize = RegExpMacroAssembler::kTableSize;
+ static const int kMask = RegExpMacroAssembler::kTableMask;
+
+ int first = ranges->at(start_index);
+ int last = ranges->at(end_index) - 1;
*new_start_index = start_index;
- *border = (ranges->At(start_index) & ~kMask) + kSize;
+ *border = (ranges->at(start_index) & ~kMask) + kSize;
while (*new_start_index < end_index) {
- if (ranges->At(*new_start_index) > *border) break;
+ if (ranges->at(*new_start_index) > *border) break;
(*new_start_index)++;
}
// new_start_index is the index of the first edge that is beyond the
@@ -1192,21 +1190,20 @@ static void SplitSearchSpace(ZoneGrowableArray<int>* ranges,
// 128-character space can take up a lot of space in the ranges array if,
// for example, we only want to match every second character (eg. the lower
// case characters on some Unicode pages).
- intptr_t binary_chop_index = (end_index + start_index) / 2;
+ int binary_chop_index = (end_index + start_index) / 2;
// The first test ensures that we get to the code that handles the Latin1
// range with a single not-taken branch, speeding up this important
// character range (even non-Latin1 charset-based text has spaces and
// punctuation).
- if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // Latin1 case.
+ if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case.
end_index - start_index > (*new_start_index - start_index) * 2 &&
- last - first > kSize * 2 &&
- binary_chop_index > *new_start_index &&
- ranges->At(binary_chop_index) >= first + 2 * kSize) {
- intptr_t scan_forward_for_section_border = binary_chop_index;;
- intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1;
+ last - first > kSize * 2 && binary_chop_index > *new_start_index &&
+ ranges->at(binary_chop_index) >= first + 2 * kSize) {
+ int scan_forward_for_section_border = binary_chop_index;;
+ int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
while (scan_forward_for_section_border < end_index) {
- if (ranges->At(scan_forward_for_section_border) > new_border) {
+ if (ranges->at(scan_forward_for_section_border) > new_border) {
*new_start_index = scan_forward_for_section_border;
*border = new_border;
break;
@@ -1215,13 +1212,13 @@ static void SplitSearchSpace(ZoneGrowableArray<int>* ranges,
}
}
- ASSERT(*new_start_index > start_index);
+ DCHECK(*new_start_index > start_index);
*new_end_index = *new_start_index - 1;
- if (ranges->At(*new_end_index) == *border) {
+ if (ranges->at(*new_end_index) == *border) {
(*new_end_index)--;
}
- if (*border >= ranges->At(end_index)) {
- *border = ranges->At(end_index);
+ if (*border >= ranges->at(end_index)) {
+ *border = ranges->at(end_index);
*new_start_index = end_index; // Won't be used.
*new_end_index = end_index - 1;
}
@@ -1235,18 +1232,18 @@ static void SplitSearchSpace(ZoneGrowableArray<int>* ranges,
// Either label can be NULL indicating backtracking. Either label can also be
// equal to the fall_through label.
static void GenerateBranches(RegExpMacroAssembler* masm,
- ZoneGrowableArray<int>* ranges,
- intptr_t start_index,
- intptr_t end_index,
- uint16_t min_char,
- uint16_t max_char,
- BlockLabel* fall_through,
- BlockLabel* even_label,
- BlockLabel* odd_label) {
- intptr_t first = ranges->At(start_index);
- intptr_t last = ranges->At(end_index) - 1;
-
- ASSERT(min_char < first);
+ ZoneList<int>* ranges,
+ int start_index,
+ int end_index,
+ uc16 min_char,
+ uc16 max_char,
+ Label* fall_through,
+ Label* even_label,
+ Label* odd_label) {
+ int first = ranges->at(start_index);
+ int last = ranges->at(end_index) - 1;
+
+ DCHECK_LT(min_char, first);
// Just need to test if the character is before or on-or-after
// a particular character.
@@ -1268,10 +1265,10 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
if (end_index - start_index <= 6) {
// It is faster to test for individual characters, so we look for those
// first, then try arbitrary ranges in the second round.
- static intptr_t kNoCutIndex = -1;
- intptr_t cut = kNoCutIndex;
- for (intptr_t i = start_index; i < end_index; i++) {
- if (ranges->At(i) == ranges->At(i + 1) - 1) {
+ static int kNoCutIndex = -1;
+ int cut = kNoCutIndex;
+ for (int i = start_index; i < end_index; i++) {
+ if (ranges->at(i) == ranges->at(i + 1) - 1) {
cut = i;
break;
}
@@ -1279,7 +1276,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
if (cut == kNoCutIndex) cut = start_index;
CutOutRange(
masm, ranges, start_index, end_index, cut, even_label, odd_label);
- ASSERT(end_index - start_index >= 2);
+ DCHECK_GE(end_index - start_index, 2);
GenerateBranches(masm,
ranges,
start_index + 1,
@@ -1294,7 +1291,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
// If there are a lot of intervals in the regexp, then we will use tables to
// determine whether the character is inside or outside the character class.
- static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits;
+ static const int kBits = RegExpMacroAssembler::kTableSizeBits;
if ((max_char >> kBits) == (min_char >> kBits)) {
EmitUseLookupTable(masm,
@@ -1322,9 +1319,9 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
return;
}
- intptr_t new_start_index = 0;
- intptr_t new_end_index = 0;
- intptr_t border = 0;
+ int new_start_index = 0;
+ int new_end_index = 0;
+ int border = 0;
SplitSearchSpace(ranges,
start_index,
@@ -1333,34 +1330,34 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
&new_end_index,
&border);
- BlockLabel handle_rest;
- BlockLabel* above = &handle_rest;
+ Label handle_rest;
+ Label* above = &handle_rest;
if (border == last + 1) {
// We didn't find any section that started after the limit, so everything
// above the border is one of the terminal labels.
above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
- ASSERT(new_end_index == end_index - 1);
+ DCHECK(new_end_index == end_index - 1);
}
- ASSERT(start_index <= new_end_index);
- ASSERT(new_start_index <= end_index);
- ASSERT(start_index < new_start_index);
- ASSERT(new_end_index < end_index);
- ASSERT(new_end_index + 1 == new_start_index ||
+ DCHECK_LE(start_index, new_end_index);
+ DCHECK_LE(new_start_index, end_index);
+ DCHECK_LT(start_index, new_start_index);
+ DCHECK_LT(new_end_index, end_index);
+ DCHECK(new_end_index + 1 == new_start_index ||
(new_end_index + 2 == new_start_index &&
- border == ranges->At(new_end_index + 1)));
- ASSERT(min_char < border - 1);
- ASSERT(border < max_char);
- ASSERT(ranges->At(new_end_index) < border);
- ASSERT(border < ranges->At(new_start_index) ||
- (border == ranges->At(new_start_index) &&
+ border == ranges->at(new_end_index + 1)));
+ DCHECK_LT(min_char, border - 1);
+ DCHECK_LT(border, max_char);
+ DCHECK_LT(ranges->at(new_end_index), border);
+ DCHECK(border < ranges->at(new_start_index) ||
+ (border == ranges->at(new_start_index) &&
new_start_index == end_index &&
new_end_index == end_index - 1 &&
border == last + 1));
- ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1));
+ DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
masm->CheckCharacterGT(border - 1, above);
- BlockLabel dummy;
+ Label dummy;
GenerateBranches(masm,
ranges,
start_index,
@@ -1370,9 +1367,8 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
&dummy,
even_label,
odd_label);
-
- if (handle_rest.IsLinked()) {
- masm->BindBlock(&handle_rest);
+ if (handle_rest.is_linked()) {
+ masm->Bind(&handle_rest);
bool flip = (new_start_index & 1) != (start_index & 1);
GenerateBranches(masm,
ranges,
@@ -1388,30 +1384,26 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
- RegExpCharacterClass* cc,
- bool one_byte,
- BlockLabel* on_failure,
- intptr_t cp_offset,
- bool check_offset,
- bool preloaded,
- Isolate* isolate) {
- ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
+ RegExpCharacterClass* cc, bool one_byte,
+ Label* on_failure, int cp_offset, bool check_offset,
+ bool preloaded, Zone* zone) {
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone);
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
- intptr_t max_char;
+ int max_char;
if (one_byte) {
- max_char = Symbols::kMaxOneCharCodeSymbol;
+ max_char = String::kMaxOneByteCharCode;
} else {
- max_char = Utf16::kMaxCodeUnit;
+ max_char = String::kMaxUtf16CodeUnit;
}
- intptr_t range_count = ranges->length();
+ int range_count = ranges->length();
- intptr_t last_valid_range = range_count - 1;
+ int last_valid_range = range_count - 1;
while (last_valid_range >= 0) {
- CharacterRange& range = (*ranges)[last_valid_range];
+ CharacterRange& range = ranges->at(last_valid_range);
if (range.from() <= max_char) {
break;
}
@@ -1429,7 +1421,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
}
if (last_valid_range == 0 &&
- ranges->At(0).IsEverything(max_char)) {
+ ranges->at(0).IsEverything(max_char)) {
if (cc->is_negated()) {
macro_assembler->GoTo(on_failure);
} else {
@@ -1442,7 +1434,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
}
if (last_valid_range == 0 &&
!cc->is_negated() &&
- ranges->At(0).IsEverything(max_char)) {
+ ranges->at(0).IsEverything(max_char)) {
// This is a common case hit by non-anchored expressions.
if (check_offset) {
macro_assembler->CheckPosition(cp_offset, on_failure);
@@ -1454,7 +1446,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
}
- if (cc->is_standard() &&
+ if (cc->is_standard(zone) &&
macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
on_failure)) {
return;
@@ -1467,27 +1459,27 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
// entry at zero which goes to the failure label, but if there
// was already one there we fall through for success on that entry.
// Subsequent entries have alternating meaning (success/failure).
- ZoneGrowableArray<int>* range_boundaries =
- new(isolate) ZoneGrowableArray<int>(last_valid_range);
+ ZoneList<int>* range_boundaries =
+ new(zone) ZoneList<int>(last_valid_range, zone);
bool zeroth_entry_is_failure = !cc->is_negated();
- for (intptr_t i = 0; i <= last_valid_range; i++) {
- CharacterRange& range = (*ranges)[i];
+ for (int i = 0; i <= last_valid_range; i++) {
+ CharacterRange& range = ranges->at(i);
if (range.from() == 0) {
- ASSERT(i == 0);
+ DCHECK_EQ(i, 0);
zeroth_entry_is_failure = !zeroth_entry_is_failure;
} else {
- range_boundaries->Add(range.from());
+ range_boundaries->Add(range.from(), zone);
}
- range_boundaries->Add(range.to() + 1);
+ range_boundaries->Add(range.to() + 1, zone);
}
- intptr_t end_index = range_boundaries->length() - 1;
- if (range_boundaries->At(end_index) > max_char) {
+ int end_index = range_boundaries->length() - 1;
+ if (range_boundaries->at(end_index) > max_char) {
end_index--;
}
- BlockLabel fall_through;
+ Label fall_through;
GenerateBranches(macro_assembler,
range_boundaries,
0, // start_index.
@@ -1497,7 +1489,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
&fall_through,
zeroth_entry_is_failure ? &fall_through : on_failure,
zeroth_entry_is_failure ? on_failure : &fall_through);
- macro_assembler->BindBlock(&fall_through);
+ macro_assembler->Bind(&fall_through);
}
@@ -1514,7 +1506,7 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
if (trace->is_trivial()) {
- if (label_.IsBound()) {
+ if (label_.is_bound()) {
// We are being asked to generate a generic version, but that's already
// been done so just go to it.
macro_assembler->GoTo(&label_);
@@ -1528,14 +1520,14 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
return DONE;
}
// Generate generic version of the node and bind the label for later use.
- macro_assembler->BindBlock(&label_);
+ macro_assembler->Bind(&label_);
return CONTINUE;
}
// We are being asked to make a non-generic version. Keep track of how many
// non-generic versions we generate so as not to overdo it.
trace_count_++;
- if (kRegexpOptimization &&
+ if (FLAG_regexp_optimization &&
trace_count_ < kMaxCopiesCodeGenerated &&
compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
return CONTINUE;
@@ -1549,9 +1541,9 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
}
-intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find,
- intptr_t budget,
- bool not_at_start) {
+int ActionNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
if (budget <= 0) return 0;
if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
return on_success()->EatsAtLeast(still_to_find,
@@ -1560,8 +1552,8 @@ intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find,
}
-void ActionNode::FillInBMInfo(intptr_t offset,
- intptr_t budget,
+void ActionNode::FillInBMInfo(int offset,
+ int budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
if (action_type_ == BEGIN_SUBMATCH) {
@@ -1573,9 +1565,9 @@ void ActionNode::FillInBMInfo(intptr_t offset,
}
-intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find,
- intptr_t budget,
- bool not_at_start) {
+int AssertionNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
if (budget <= 0) return 0;
// If we know we are not at the start and we are asked "how many characters
// will you match if you succeed?" then we can answer anything since false
@@ -1589,8 +1581,8 @@ intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find,
}
-void AssertionNode::FillInBMInfo(intptr_t offset,
- intptr_t budget,
+void AssertionNode::FillInBMInfo(int offset,
+ int budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
// Match the behaviour of EatsAtLeast on this node.
@@ -1600,9 +1592,9 @@ void AssertionNode::FillInBMInfo(intptr_t offset,
}
-intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find,
- intptr_t budget,
- bool not_at_start) {
+int BackReferenceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
if (budget <= 0) return 0;
return on_success()->EatsAtLeast(still_to_find,
budget - 1,
@@ -1610,10 +1602,10 @@ intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find,
}
-intptr_t TextNode::EatsAtLeast(intptr_t still_to_find,
- intptr_t budget,
- bool not_at_start) {
- intptr_t answer = Length();
+int TextNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
+ int answer = Length();
if (answer >= still_to_find) return answer;
if (budget <= 0) return answer;
// We are not at start after this node so we set the last argument to 'true'.
@@ -1623,13 +1615,13 @@ intptr_t TextNode::EatsAtLeast(intptr_t still_to_find,
}
-intptr_t NegativeLookaheadChoiceNode::EatsAtLeast(intptr_t still_to_find,
- intptr_t budget,
- bool not_at_start) {
+int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
if (budget <= 0) return 0;
// Alternative 0 is the negative lookahead, alternative 1 is what comes
// afterwards.
- RegExpNode* node = (*alternatives_)[1].node();
+ RegExpNode* node = alternatives_->at(1).node();
return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
}
@@ -1637,27 +1629,27 @@ intptr_t NegativeLookaheadChoiceNode::EatsAtLeast(intptr_t still_to_find,
void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
QuickCheckDetails* details,
RegExpCompiler* compiler,
- intptr_t filled_in,
+ int filled_in,
bool not_at_start) {
// Alternative 0 is the negative lookahead, alternative 1 is what comes
// afterwards.
- RegExpNode* node = (*alternatives_)[1].node();
+ RegExpNode* node = alternatives_->at(1).node();
return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
}
-intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find,
- intptr_t budget,
- RegExpNode* ignore_this_node,
- bool not_at_start) {
+int ChoiceNode::EatsAtLeastHelper(int still_to_find,
+ int budget,
+ RegExpNode* ignore_this_node,
+ bool not_at_start) {
if (budget <= 0) return 0;
- intptr_t min = 100;
- intptr_t choice_count = alternatives_->length();
+ int min = 100;
+ int choice_count = alternatives_->length();
budget = (budget - 1) / choice_count;
- for (intptr_t i = 0; i < choice_count; i++) {
- RegExpNode* node = (*alternatives_)[i].node();
+ for (int i = 0; i < choice_count; i++) {
+ RegExpNode* node = alternatives_->at(i).node();
if (node == ignore_this_node) continue;
- intptr_t node_eats_at_least =
+ int node_eats_at_least =
node->EatsAtLeast(still_to_find, budget, not_at_start);
if (node_eats_at_least < min) min = node_eats_at_least;
if (min == 0) return 0;
@@ -1666,9 +1658,9 @@ intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find,
}
-intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find,
- intptr_t budget,
- bool not_at_start) {
+int LoopChoiceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
return EatsAtLeastHelper(still_to_find,
budget - 1,
loop_node_,
@@ -1676,9 +1668,9 @@ intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find,
}
-intptr_t ChoiceNode::EatsAtLeast(intptr_t still_to_find,
- intptr_t budget,
- bool not_at_start) {
+int ChoiceNode::EatsAtLeast(int still_to_find,
+ int budget,
+ bool not_at_start) {
return EatsAtLeastHelper(still_to_find,
budget,
NULL,
@@ -1701,16 +1693,16 @@ bool QuickCheckDetails::Rationalize(bool asc) {
bool found_useful_op = false;
uint32_t char_mask;
if (asc) {
- char_mask = Symbols::kMaxOneCharCodeSymbol;
+ char_mask = String::kMaxOneByteCharCode;
} else {
- char_mask = Utf16::kMaxCodeUnit;
+ char_mask = String::kMaxUtf16CodeUnit;
}
mask_ = 0;
value_ = 0;
- intptr_t char_shift = 0;
- for (intptr_t i = 0; i < characters_; i++) {
+ int char_shift = 0;
+ for (int i = 0; i < characters_; i++) {
Position* pos = &positions_[i];
- if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) {
+ if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
found_useful_op = true;
}
mask_ |= (pos->mask & char_mask) << char_shift;
@@ -1725,7 +1717,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
Trace* bounds_check_trace,
Trace* trace,
bool preload_has_checked_bounds,
- BlockLabel* on_possible_success,
+ Label* on_possible_success,
QuickCheckDetails* details,
bool fall_through_on_failure) {
if (details->characters() == 0) return false;
@@ -1733,7 +1725,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
if (details->cannot_match()) return false;
if (!details->Rationalize(compiler->one_byte())) return false;
- ASSERT(details->characters() == 1 ||
+ DCHECK(details->characters() == 1 ||
compiler->macro_assembler()->CanReadUnaligned());
uint32_t mask = details->mask();
uint32_t value = details->value();
@@ -1741,7 +1733,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
RegExpMacroAssembler* assembler = compiler->macro_assembler();
if (trace->characters_preloaded() != details->characters()) {
- ASSERT(trace->cp_offset() == bounds_check_trace->cp_offset());
+ DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
// We are attempting to preload the minimum number of characters
// any choice would eat, so if the bounds check fails, then none of the
// choices can succeed, so we can just immediately backtrack, rather
@@ -1760,9 +1752,9 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
// load so the value is already masked down.
uint32_t char_mask;
if (compiler->one_byte()) {
- char_mask = Symbols::kMaxOneCharCodeSymbol;
+ char_mask = String::kMaxOneByteCharCode;
} else {
- char_mask = Utf16::kMaxCodeUnit;
+ char_mask = String::kMaxUtf16CodeUnit;
}
if ((mask & char_mask) == char_mask) need_mask = false;
mask &= char_mask;
@@ -1805,32 +1797,28 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
// generating a quick check.
void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
- intptr_t characters_filled_in,
+ int characters_filled_in,
bool not_at_start) {
-#if defined(__GNUC__)
- // TODO(zerny): Make the combination code byte-order independent.
- ASSERT(details->characters() == 1 ||
- (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__));
-#endif
- ASSERT(characters_filled_in < details->characters());
- intptr_t characters = details->characters();
- intptr_t char_mask;
+ Isolate* isolate = compiler->macro_assembler()->zone()->isolate();
+ DCHECK(characters_filled_in < details->characters());
+ int characters = details->characters();
+ int char_mask;
if (compiler->one_byte()) {
- char_mask = Symbols::kMaxOneCharCodeSymbol;
+ char_mask = String::kMaxOneByteCharCode;
} else {
- char_mask = Utf16::kMaxCodeUnit;
+ char_mask = String::kMaxUtf16CodeUnit;
}
- for (intptr_t k = 0; k < elms_->length(); k++) {
- TextElement elm = elms_->At(k);
+ for (int k = 0; k < elms_->length(); k++) {
+ TextElement elm = elms_->at(k);
if (elm.text_type() == TextElement::ATOM) {
- ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
- for (intptr_t i = 0; i < characters && i < quarks->length(); i++) {
+ Vector<const uc16> quarks = elm.atom()->data();
+ for (int i = 0; i < characters && i < quarks.length(); i++) {
QuickCheckDetails::Position* pos =
details->positions(characters_filled_in);
- uint16_t c = quarks->At(i);
+ uc16 c = quarks[i];
if (c > char_mask) {
// If we expect a non-Latin1 character from an one-byte string,
- // there is no way we can match. Not even case independent
+ // there is no way we can match. Not even case-independent
// matching can turn an Latin1 character into non-Latin1 or
// vice versa.
// TODO(dcarney): issue 3550. Verify that this works as expected.
@@ -1840,10 +1828,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
return;
}
if (compiler->ignore_case()) {
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- intptr_t length =
- GetCaseIndependentLetters(c, compiler->one_byte(), chars);
- ASSERT(length != 0); // Can only happen if c > char_mask (see above).
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(isolate, c,
+ compiler->one_byte(), chars);
+ DCHECK(length != 0); // Can only happen if c > char_mask (see above).
if (length == 1) {
// This letter has no case equivalents, so it's nice and simple
// and the mask-compare will determine definitely whether we have
@@ -1854,7 +1842,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
} else {
uint32_t common_bits = char_mask;
uint32_t bits = chars[0];
- for (intptr_t j = 1; j < length; j++) {
+ for (int j = 1; j < length; j++) {
uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
common_bits ^= differing_bits;
bits &= common_bits;
@@ -1879,7 +1867,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
pos->determines_perfectly = true;
}
characters_filled_in++;
- ASSERT(characters_filled_in <= details->characters());
+ DCHECK(characters_filled_in <= details->characters());
if (characters_filled_in == details->characters()) {
return;
}
@@ -1888,7 +1876,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
QuickCheckDetails::Position* pos =
details->positions(characters_filled_in);
RegExpCharacterClass* tree = elm.char_class();
- ZoneGrowableArray<CharacterRange>* ranges = tree->ranges();
+ ZoneList<CharacterRange>* ranges = tree->ranges(zone());
if (tree->is_negated()) {
// A quick check uses multi-character mask and compare. There is no
// useful way to incorporate a negative char class into this scheme
@@ -1897,8 +1885,8 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
pos->mask = 0;
pos->value = 0;
} else {
- intptr_t first_range = 0;
- while (ranges->At(first_range).from() > char_mask) {
+ int first_range = 0;
+ while (ranges->at(first_range).from() > char_mask) {
first_range++;
if (first_range == ranges->length()) {
details->set_cannot_match();
@@ -1906,9 +1894,9 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
return;
}
}
- CharacterRange range = ranges->At(first_range);
- uint16_t from = range.from();
- uint16_t to = range.to();
+ CharacterRange range = ranges->at(first_range);
+ uc16 from = range.from();
+ uc16 to = range.to();
if (to > char_mask) {
to = char_mask;
}
@@ -1921,10 +1909,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
}
uint32_t common_bits = ~SmearBitsRight(differing_bits);
uint32_t bits = (from & common_bits);
- for (intptr_t i = first_range + 1; i < ranges->length(); i++) {
- CharacterRange range = ranges->At(i);
- uint16_t from = range.from();
- uint16_t to = range.to();
+ for (int i = first_range + 1; i < ranges->length(); i++) {
+ CharacterRange range = ranges->at(i);
+ uc16 from = range.from();
+ uc16 to = range.to();
if (from > char_mask) continue;
if (to > char_mask) to = char_mask;
// Here we are combining more ranges into the mask and compare
@@ -1945,13 +1933,13 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
pos->value = bits;
}
characters_filled_in++;
- ASSERT(characters_filled_in <= details->characters());
+ DCHECK(characters_filled_in <= details->characters());
if (characters_filled_in == details->characters()) {
return;
}
}
}
- ASSERT(characters_filled_in != details->characters());
+ DCHECK(characters_filled_in != details->characters());
if (!details->cannot_match()) {
on_success()-> GetQuickCheckDetails(details,
compiler,
@@ -1971,16 +1959,16 @@ void QuickCheckDetails::Clear() {
}
-void QuickCheckDetails::Advance(intptr_t by, bool one_byte) {
- ASSERT(by >= 0);
+void QuickCheckDetails::Advance(int by, bool one_byte) {
+ DCHECK(by >= 0);
if (by >= characters_) {
Clear();
return;
}
- for (intptr_t i = 0; i < characters_ - by; i++) {
+ for (int i = 0; i < characters_ - by; i++) {
positions_[i] = positions_[by + i];
}
- for (intptr_t i = characters_ - by; i < characters_; i++) {
+ for (int i = characters_ - by; i < characters_; i++) {
positions_[i].mask = 0;
positions_[i].value = 0;
positions_[i].determines_perfectly = false;
@@ -1992,8 +1980,8 @@ void QuickCheckDetails::Advance(intptr_t by, bool one_byte) {
}
-void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) {
- ASSERT(characters_ == other->characters_);
+void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
+ DCHECK(characters_ == other->characters_);
if (other->cannot_match_) {
return;
}
@@ -2001,7 +1989,7 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) {
*this = *other;
return;
}
- for (intptr_t i = from_index; i < characters_; i++) {
+ for (int i = from_index; i < characters_; i++) {
QuickCheckDetails::Position* pos = positions(i);
QuickCheckDetails::Position* other_pos = other->positions(i);
if (pos->mask != other_pos->mask ||
@@ -2014,17 +2002,17 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) {
pos->mask &= other_pos->mask;
pos->value &= pos->mask;
other_pos->value &= pos->mask;
- uint16_t differing_bits = (pos->value ^ other_pos->value);
+ uc16 differing_bits = (pos->value ^ other_pos->value);
pos->mask &= ~differing_bits;
pos->value &= pos->mask;
}
}
-class VisitMarker : public ValueObject {
+class VisitMarker {
public:
explicit VisitMarker(NodeInfo* info) : info_(info) {
- ASSERT(!info->visited);
+ DCHECK(!info->visited);
info->visited = true;
}
~VisitMarker() {
@@ -2035,16 +2023,16 @@ class VisitMarker : public ValueObject {
};
-RegExpNode* SeqRegExpNode::FilterOneByte(intptr_t depth, bool ignore_case) {
+RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
- ASSERT(!info()->visited);
+ DCHECK(!info()->visited);
VisitMarker marker(info());
return FilterSuccessor(depth - 1, ignore_case);
}
-RegExpNode* SeqRegExpNode::FilterSuccessor(intptr_t depth, bool ignore_case) {
+RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
if (next == NULL) return set_replacement(NULL);
on_success_ = next;
@@ -2060,74 +2048,58 @@ static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
}
-static bool RangesContainLatin1Equivalents(
- ZoneGrowableArray<CharacterRange>* ranges) {
- for (intptr_t i = 0; i < ranges->length(); i++) {
+static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
+ for (int i = 0; i < ranges->length(); i++) {
// TODO(dcarney): this could be a lot more efficient.
- if (RangeContainsLatin1Equivalents(ranges->At(i))) return true;
+ if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
}
return false;
}
-static uint16_t ConvertNonLatin1ToLatin1(uint16_t c) {
- ASSERT(c > Symbols::kMaxOneCharCodeSymbol);
- switch (c) {
- // This are equivalent characters in unicode.
- case 0x39c:
- case 0x3bc:
- return 0xb5;
- // This is an uppercase of a Latin-1 character
- // outside of Latin-1.
- case 0x178:
- return 0xff;
- }
- return 0;
-}
-
-
-RegExpNode* TextNode::FilterOneByte(intptr_t depth, bool ignore_case) {
+RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
- ASSERT(!info()->visited);
+ DCHECK(!info()->visited);
VisitMarker marker(info());
- intptr_t element_count = elms_->length();
- for (intptr_t i = 0; i < element_count; i++) {
- TextElement elm = elms_->At(i);
+ int element_count = elms_->length();
+ for (int i = 0; i < element_count; i++) {
+ TextElement elm = elms_->at(i);
if (elm.text_type() == TextElement::ATOM) {
- ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
- for (intptr_t j = 0; j < quarks->length(); j++) {
- uint16_t c = quarks->At(j);
- if (c <= Symbols::kMaxOneCharCodeSymbol) continue;
+ Vector<const uc16> quarks = elm.atom()->data();
+ for (int j = 0; j < quarks.length(); j++) {
+ uint16_t c = quarks[j];
+ if (c <= String::kMaxOneByteCharCode) continue;
if (!ignore_case) return set_replacement(NULL);
// Here, we need to check for characters whose upper and lower cases
// are outside the Latin-1 range.
- uint16_t converted = ConvertNonLatin1ToLatin1(c);
+ uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
// Character is outside Latin-1 completely
if (converted == 0) return set_replacement(NULL);
// Convert quark to Latin-1 in place.
- (*quarks)[0] = converted;
+ uint16_t* copy = const_cast<uint16_t*>(quarks.start());
+ copy[j] = converted;
}
} else {
- ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
+ DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
RegExpCharacterClass* cc = elm.char_class();
- ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone());
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
// Now they are in order so we only need to look at the first.
- intptr_t range_count = ranges->length();
+ int range_count = ranges->length();
if (cc->is_negated()) {
if (range_count != 0 &&
- ranges->At(0).from() == 0 &&
- ranges->At(0).to() >= Symbols::kMaxOneCharCodeSymbol) {
+ ranges->at(0).from() == 0 &&
+ ranges->at(0).to() >= String::kMaxOneByteCharCode) {
// This will be handled in a later filter.
if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
return set_replacement(NULL);
}
} else {
if (range_count == 0 ||
- ranges->At(0).from() > Symbols::kMaxOneCharCodeSymbol) {
+ ranges->at(0).from() > String::kMaxOneByteCharCode) {
// This will be handled in a later filter.
if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
return set_replacement(NULL);
@@ -2139,7 +2111,7 @@ RegExpNode* TextNode::FilterOneByte(intptr_t depth, bool ignore_case) {
}
-RegExpNode* LoopChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) {
+RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
if (info()->visited) return this;
@@ -2157,30 +2129,30 @@ RegExpNode* LoopChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) {
}
-RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) {
+RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
if (info()->visited) return this;
VisitMarker marker(info());
- intptr_t choice_count = alternatives_->length();
+ int choice_count = alternatives_->length();
- for (intptr_t i = 0; i < choice_count; i++) {
- GuardedAlternative alternative = alternatives_->At(i);
+ for (int i = 0; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
set_replacement(this);
return this;
}
}
- intptr_t surviving = 0;
+ int surviving = 0;
RegExpNode* survivor = NULL;
- for (intptr_t i = 0; i < choice_count; i++) {
- GuardedAlternative alternative = alternatives_->At(i);
+ for (int i = 0; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
RegExpNode* replacement =
alternative.node()->FilterOneByte(depth - 1, ignore_case);
- ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK.
+ DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK.
if (replacement != NULL) {
- (*alternatives_)[i].set_node(replacement);
+ alternatives_->at(i).set_node(replacement);
surviving++;
survivor = replacement;
}
@@ -2193,14 +2165,14 @@ RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) {
}
// Only some of the nodes survived the filtering. We need to rebuild the
// alternatives list.
- ZoneGrowableArray<GuardedAlternative>* new_alternatives =
- new(I) ZoneGrowableArray<GuardedAlternative>(surviving);
- for (intptr_t i = 0; i < choice_count; i++) {
+ ZoneList<GuardedAlternative>* new_alternatives =
+ new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
+ for (int i = 0; i < choice_count; i++) {
RegExpNode* replacement =
- (*alternatives_)[i].node()->FilterOneByte(depth - 1, ignore_case);
+ alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
if (replacement != NULL) {
- (*alternatives_)[i].set_node(replacement);
- new_alternatives->Add((*alternatives_)[i]);
+ alternatives_->at(i).set_node(replacement);
+ new_alternatives->Add(alternatives_->at(i), zone());
}
}
alternatives_ = new_alternatives;
@@ -2208,7 +2180,7 @@ RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) {
}
-RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(intptr_t depth,
+RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
@@ -2216,24 +2188,24 @@ RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(intptr_t depth,
VisitMarker marker(info());
// Alternative 0 is the negative lookahead, alternative 1 is what comes
// afterwards.
- RegExpNode* node = (*alternatives_)[1].node();
+ RegExpNode* node = alternatives_->at(1).node();
RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
if (replacement == NULL) return set_replacement(NULL);
- (*alternatives_)[1].set_node(replacement);
+ alternatives_->at(1).set_node(replacement);
- RegExpNode* neg_node = (*alternatives_)[0].node();
+ RegExpNode* neg_node = alternatives_->at(0).node();
RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
// If the negative lookahead is always going to fail then
// we don't need to check it.
if (neg_replacement == NULL) return set_replacement(replacement);
- (*alternatives_)[0].set_node(neg_replacement);
+ alternatives_->at(0).set_node(neg_replacement);
return set_replacement(this);
}
void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
- intptr_t characters_filled_in,
+ int characters_filled_in,
bool not_at_start) {
if (body_can_be_zero_length_ || info()->visited) return;
VisitMarker marker(info());
@@ -2244,8 +2216,8 @@ void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
}
-void LoopChoiceNode::FillInBMInfo(intptr_t offset,
- intptr_t budget,
+void LoopChoiceNode::FillInBMInfo(int offset,
+ int budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
if (body_can_be_zero_length_ || budget <= 0) {
@@ -2260,18 +2232,18 @@ void LoopChoiceNode::FillInBMInfo(intptr_t offset,
void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
- intptr_t characters_filled_in,
+ int characters_filled_in,
bool not_at_start) {
not_at_start = (not_at_start || not_at_start_);
- intptr_t choice_count = alternatives_->length();
- ASSERT(choice_count > 0);
- (*alternatives_)[0].node()->GetQuickCheckDetails(details,
+ int choice_count = alternatives_->length();
+ DCHECK(choice_count > 0);
+ alternatives_->at(0).node()->GetQuickCheckDetails(details,
compiler,
characters_filled_in,
not_at_start);
- for (intptr_t i = 1; i < choice_count; i++) {
+ for (int i = 1; i < choice_count; i++) {
QuickCheckDetails new_details(details->characters());
- RegExpNode* node = (*alternatives_)[i].node();
+ RegExpNode* node = alternatives_->at(i).node();
node->GetQuickCheckDetails(&new_details, compiler,
characters_filled_in,
not_at_start);
@@ -2283,8 +2255,8 @@ void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
// Check for [0-9A-Z_a-z].
static void EmitWordCheck(RegExpMacroAssembler* assembler,
- BlockLabel* word,
- BlockLabel* non_word,
+ Label* word,
+ Label* non_word,
bool fall_through_on_word) {
if (assembler->CheckSpecialCharacterClass(
fall_through_on_word ? 'w' : 'W',
@@ -2317,7 +2289,7 @@ static void EmitHat(RegExpCompiler* compiler,
Trace new_trace(*trace);
new_trace.InvalidateCurrentCharacter();
- BlockLabel ok;
+ Label ok;
if (new_trace.cp_offset() == 0) {
// The start of input counts as a newline in this context, so skip to
// ok if we are at the start.
@@ -2337,7 +2309,7 @@ static void EmitHat(RegExpCompiler* compiler,
assembler->CheckCharacter('\n', &ok);
assembler->CheckNotCharacter('\r', new_trace.backtrack());
}
- assembler->BindBlock(&ok);
+ assembler->Bind(&ok);
on_success->Emit(compiler, &new_trace);
}
@@ -2349,14 +2321,13 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
BoyerMooreLookahead* lookahead = bm_info(not_at_start);
if (lookahead == NULL) {
- intptr_t eats_at_least =
- Utils::Minimum(kMaxLookaheadForBoyerMoore,
- EatsAtLeast(kMaxLookaheadForBoyerMoore,
- kRecursionBudget,
- not_at_start));
+ int eats_at_least =
+ Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
+ kRecursionBudget,
+ not_at_start));
if (eats_at_least >= 1) {
BoyerMooreLookahead* bm =
- new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
+ new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
if (bm->at(0)->is_non_word())
next_is_word_character = Trace::FALSE_VALUE;
@@ -2370,31 +2341,26 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
}
bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
if (next_is_word_character == Trace::UNKNOWN) {
- BlockLabel before_non_word;
- BlockLabel before_word;
+ Label before_non_word;
+ Label before_word;
if (trace->characters_preloaded() != 1) {
assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
}
// Fall through on non-word.
EmitWordCheck(assembler, &before_word, &before_non_word, false);
// Next character is not a word character.
- assembler->BindBlock(&before_non_word);
- BlockLabel ok;
- // Backtrack on \B (non-boundary check) if previous is a word,
- // since we know next *is not* a word and this would be a boundary.
+ assembler->Bind(&before_non_word);
+ Label ok;
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
+ assembler->GoTo(&ok);
- if (!assembler->IsClosed()) {
- assembler->GoTo(&ok);
- }
-
- assembler->BindBlock(&before_word);
+ assembler->Bind(&before_word);
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
- assembler->BindBlock(&ok);
+ assembler->Bind(&ok);
} else if (next_is_word_character == Trace::TRUE_VALUE) {
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
} else {
- ASSERT(next_is_word_character == Trace::FALSE_VALUE);
+ DCHECK(next_is_word_character == Trace::FALSE_VALUE);
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
}
}
@@ -2408,14 +2374,14 @@ void AssertionNode::BacktrackIfPrevious(
Trace new_trace(*trace);
new_trace.InvalidateCurrentCharacter();
- BlockLabel fall_through, dummy;
+ Label fall_through, dummy;
- BlockLabel* non_word = backtrack_if_previous == kIsNonWord ?
- new_trace.backtrack() :
- &fall_through;
- BlockLabel* word = backtrack_if_previous == kIsNonWord ?
- &fall_through :
- new_trace.backtrack();
+ Label* non_word = backtrack_if_previous == kIsNonWord ?
+ new_trace.backtrack() :
+ &fall_through;
+ Label* word = backtrack_if_previous == kIsNonWord ?
+ &fall_through :
+ new_trace.backtrack();
if (new_trace.cp_offset() == 0) {
// The start of input counts as a non-word character, so the question is
@@ -2427,14 +2393,14 @@ void AssertionNode::BacktrackIfPrevious(
assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
- assembler->BindBlock(&fall_through);
+ assembler->Bind(&fall_through);
on_success()->Emit(compiler, &new_trace);
}
void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
- intptr_t filled_in,
+ int filled_in,
bool not_at_start) {
if (assertion_type_ == AT_START && not_at_start) {
details->set_cannot_match();
@@ -2451,10 +2417,10 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
switch (assertion_type_) {
case AT_END: {
- BlockLabel ok;
+ Label ok;
assembler->CheckPosition(trace->cp_offset(), &ok);
assembler->GoTo(trace->backtrack());
- assembler->BindBlock(&ok);
+ assembler->Bind(&ok);
break;
}
case AT_START: {
@@ -2484,14 +2450,14 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
-static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) {
+static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
if (quick_check == NULL) return false;
if (offset >= quick_check->characters()) return false;
return quick_check->positions(offset)->determines_perfectly;
}
-static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) {
+static void UpdateBoundsCheck(int index, int* checked_up_to) {
if (index > *checked_up_to) {
*checked_up_to = index;
}
@@ -2532,25 +2498,26 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
bool preloaded,
Trace* trace,
bool first_element_checked,
- intptr_t* checked_up_to) {
+ int* checked_up_to) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
+ Isolate* isolate = assembler->zone()->isolate();
bool one_byte = compiler->one_byte();
- BlockLabel* backtrack = trace->backtrack();
+ Label* backtrack = trace->backtrack();
QuickCheckDetails* quick_check = trace->quick_check_performed();
- intptr_t element_count = elms_->length();
- for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
- TextElement elm = elms_->At(i);
- intptr_t cp_offset = trace->cp_offset() + elm.cp_offset();
+ int element_count = elms_->length();
+ for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
+ TextElement elm = elms_->at(i);
+ int cp_offset = trace->cp_offset() + elm.cp_offset();
if (elm.text_type() == TextElement::ATOM) {
- ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
- for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) {
+ Vector<const uc16> quarks = elm.atom()->data();
+ for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
if (first_element_checked && i == 0 && j == 0) continue;
if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
EmitCharacterFunction* emit_function = NULL;
switch (pass) {
case NON_LATIN1_MATCH:
- ASSERT(one_byte);
- if (quarks->At(j) > Symbols::kMaxOneCharCodeSymbol) {
+ DCHECK(one_byte);
+ if (quarks[j] > String::kMaxOneByteCharCode) {
assembler->GoTo(backtrack);
return;
}
@@ -2568,9 +2535,9 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
break;
}
if (emit_function != NULL) {
- bool bound_checked = emit_function(I,
+ bool bound_checked = emit_function(isolate,
compiler,
- quarks->At(j),
+ quarks[j],
backtrack,
cp_offset + j,
*checked_up_to < cp_offset + j,
@@ -2579,19 +2546,13 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
}
}
} else {
- ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
+ DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
if (pass == CHARACTER_CLASS_MATCH) {
if (first_element_checked && i == 0) continue;
if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
RegExpCharacterClass* cc = elm.char_class();
- EmitCharClass(assembler,
- cc,
- one_byte,
- backtrack,
- cp_offset,
- *checked_up_to < cp_offset,
- preloaded,
- I);
+ EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
+ *checked_up_to < cp_offset, preloaded, zone());
UpdateBoundsCheck(cp_offset, checked_up_to);
}
}
@@ -2599,15 +2560,15 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
}
-intptr_t TextNode::Length() {
- TextElement elm = elms_->Last();
- ASSERT(elm.cp_offset() >= 0);
+int TextNode::Length() {
+ TextElement elm = elms_->last();
+ DCHECK(elm.cp_offset() >= 0);
return elm.cp_offset() + elm.length();
}
-bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) {
- TextEmitPassType pass = static_cast<TextEmitPassType>(intptr_t_pass);
+bool TextNode::SkipPass(int int_pass, bool ignore_case) {
+ TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
if (ignore_case) {
return pass == SIMPLE_CHARACTER_MATCH;
} else {
@@ -2625,7 +2586,7 @@ bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) {
void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
- ASSERT(limit_result == CONTINUE);
+ DCHECK(limit_result == CONTINUE);
if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
compiler->SetRegExpTooBig();
@@ -2633,18 +2594,18 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
if (compiler->one_byte()) {
- intptr_t dummy = 0;
+ int dummy = 0;
TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
}
bool first_elt_done = false;
- intptr_t bound_checked_to = trace->cp_offset() - 1;
+ int bound_checked_to = trace->cp_offset() - 1;
bound_checked_to += trace->bound_checked_up_to();
// If a character is preloaded into the current character register then
// check that now.
if (trace->characters_preloaded() == 1) {
- for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
if (!SkipPass(pass, compiler->ignore_case())) {
TextEmitPass(compiler,
static_cast<TextEmitPassType>(pass),
@@ -2657,7 +2618,7 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
first_elt_done = true;
}
- for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
if (!SkipPass(pass, compiler->ignore_case())) {
TextEmitPass(compiler,
static_cast<TextEmitPassType>(pass),
@@ -2681,9 +2642,8 @@ void Trace::InvalidateCurrentCharacter() {
}
-void Trace::AdvanceCurrentPositionInTrace(intptr_t by,
- RegExpCompiler* compiler) {
- ASSERT(by > 0);
+void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
+ DCHECK(by > 0);
// We don't have an instruction for shifting the current character register
// down or for using a shifted value for anything so lets just forget that
// we preloaded any characters into it.
@@ -2697,32 +2657,31 @@ void Trace::AdvanceCurrentPositionInTrace(intptr_t by,
compiler->SetRegExpTooBig();
cp_offset_ = 0;
}
- bound_checked_up_to_ = Utils::Maximum(static_cast<intptr_t>(0),
- bound_checked_up_to_ - by);
+ bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
}
void TextNode::MakeCaseIndependent(bool is_one_byte) {
- intptr_t element_count = elms_->length();
- for (intptr_t i = 0; i < element_count; i++) {
- TextElement elm = elms_->At(i);
+ int element_count = elms_->length();
+ for (int i = 0; i < element_count; i++) {
+ TextElement elm = elms_->at(i);
if (elm.text_type() == TextElement::CHAR_CLASS) {
RegExpCharacterClass* cc = elm.char_class();
// None of the standard character classes is different in the case
// independent case and it slows us down if we don't know that.
- if (cc->is_standard()) continue;
- ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
- intptr_t range_count = ranges->length();
- for (intptr_t j = 0; j < range_count; j++) {
- (*ranges)[j].AddCaseEquivalents(ranges, is_one_byte, I);
+ if (cc->is_standard(zone())) continue;
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone());
+ int range_count = ranges->length();
+ for (int j = 0; j < range_count; j++) {
+ ranges->at(j).AddCaseEquivalents(ranges, is_one_byte, zone());
}
}
}
}
-intptr_t TextNode::GreedyLoopTextLength() {
- TextElement elm = elms_->At(elms_->length() - 1);
+int TextNode::GreedyLoopTextLength() {
+ TextElement elm = elms_->at(elms_->length() - 1);
return elm.cp_offset() + elm.length();
}
@@ -2730,10 +2689,10 @@ intptr_t TextNode::GreedyLoopTextLength() {
RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
RegExpCompiler* compiler) {
if (elms_->length() != 1) return NULL;
- TextElement elm = elms_->At(0);
+ TextElement elm = elms_->at(0);
if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
RegExpCharacterClass* node = elm.char_class();
- ZoneGrowableArray<CharacterRange>* ranges = node->ranges();
+ ZoneList<CharacterRange>* ranges = node->ranges(zone());
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
@@ -2743,11 +2702,11 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
if (ranges->length() != 1) return NULL;
uint32_t max_char;
if (compiler->one_byte()) {
- max_char = Symbols::kMaxOneCharCodeSymbol;
+ max_char = String::kMaxOneByteCharCode;
} else {
- max_char = Utf16::kMaxCodeUnit;
+ max_char = String::kMaxUtf16CodeUnit;
}
- return ranges->At(0).IsEverything(max_char) ? on_success() : NULL;
+ return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
}
@@ -2755,18 +2714,18 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
// this alternative and back to this choice node. If there are variable
// length nodes or other complications in the way then return a sentinel
// value indicating that a greedy loop cannot be constructed.
-intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative(
+int ChoiceNode::GreedyLoopTextLengthForAlternative(
GuardedAlternative* alternative) {
- intptr_t length = 0;
+ int length = 0;
RegExpNode* node = alternative->node();
// Later we will generate code for all these text nodes using recursion
// so we have to limit the max number.
- intptr_t recursion_depth = 0;
+ int recursion_depth = 0;
while (node != this) {
if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
return kNodeIsTooComplexForGreedyLoops;
}
- intptr_t node_length = node->GreedyLoopTextLength();
+ int node_length = node->GreedyLoopTextLength();
if (node_length == kNodeIsTooComplexForGreedyLoops) {
return kNodeIsTooComplexForGreedyLoops;
}
@@ -2779,14 +2738,14 @@ intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative(
void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
- ASSERT(loop_node_ == NULL);
+ DCHECK_EQ(loop_node_, NULL);
AddAlternative(alt);
loop_node_ = alt.node();
}
void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
- ASSERT(continue_node_ == NULL);
+ DCHECK_EQ(continue_node_, NULL);
AddAlternative(alt);
continue_node_ = alt.node();
}
@@ -2796,17 +2755,17 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
if (trace->stop_node() == this) {
// Back edge of greedy optimized loop node graph.
- intptr_t text_length =
- GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
- ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
+ int text_length =
+ GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
+ DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
// Update the counter-based backtracking info on the stack. This is an
// optimization for greedy loops (see below).
- ASSERT(trace->cp_offset() == text_length);
+ DCHECK(trace->cp_offset() == text_length);
macro_assembler->AdvanceCurrentPosition(text_length);
macro_assembler->GoTo(trace->loop_label());
return;
}
- ASSERT(trace->stop_node() == NULL);
+ DCHECK(trace->stop_node() == NULL);
if (!trace->is_trivial()) {
trace->Flush(compiler, this);
return;
@@ -2815,10 +2774,9 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
-intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
- intptr_t eats_at_least) {
- intptr_t preload_characters = Utils::Minimum(static_cast<intptr_t>(4),
- eats_at_least);
+int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
+ int eats_at_least) {
+ int preload_characters = Min(4, eats_at_least);
if (compiler->macro_assembler()->CanReadUnaligned()) {
bool one_byte = compiler->one_byte();
if (one_byte) {
@@ -2837,17 +2795,18 @@ intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
}
-// This structure is used when generating the alternatives in a choice node. It
+// This class is used when generating the alternatives in a choice node. It
// records the way the alternative is being code generated.
-struct AlternativeGeneration {
+class AlternativeGeneration: public Malloced {
+ public:
AlternativeGeneration()
: possible_success(),
expects_preload(false),
after(),
quick_check_details() { }
- BlockLabel possible_success;
+ Label possible_success;
bool expects_preload;
- BlockLabel after;
+ Label after;
QuickCheckDetails quick_check_details;
};
@@ -2856,57 +2815,55 @@ struct AlternativeGeneration {
// size then it is on the stack, otherwise the excess is on the heap.
class AlternativeGenerationList {
public:
- explicit AlternativeGenerationList(intptr_t count)
- : alt_gens_(count) {
- for (intptr_t i = 0; i < count && i < kAFew; i++) {
- alt_gens_.Add(a_few_alt_gens_ + i);
+ AlternativeGenerationList(int count, Zone* zone)
+ : alt_gens_(count, zone) {
+ for (int i = 0; i < count && i < kAFew; i++) {
+ alt_gens_.Add(a_few_alt_gens_ + i, zone);
}
- for (intptr_t i = kAFew; i < count; i++) {
- alt_gens_.Add(new AlternativeGeneration());
+ for (int i = kAFew; i < count; i++) {
+ alt_gens_.Add(new AlternativeGeneration(), zone);
}
}
~AlternativeGenerationList() {
- for (intptr_t i = kAFew; i < alt_gens_.length(); i++) {
+ for (int i = kAFew; i < alt_gens_.length(); i++) {
delete alt_gens_[i];
alt_gens_[i] = NULL;
}
}
- AlternativeGeneration* at(intptr_t i) {
+ AlternativeGeneration* at(int i) {
return alt_gens_[i];
}
private:
- static const intptr_t kAFew = 10;
- GrowableArray<AlternativeGeneration*> alt_gens_;
+ static const int kAFew = 10;
+ ZoneList<AlternativeGeneration*> alt_gens_;
AlternativeGeneration a_few_alt_gens_[kAFew];
-
- DISALLOW_ALLOCATION();
};
-// The '2' variant is inclusive from and exclusive to.
+// The '2' variant is has inclusive from and exclusive to.
// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
-static const intptr_t kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
+static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
0xFEFF, 0xFF00, 0x10000 };
-static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges);
-static const intptr_t kWordRanges[] = {
+static const int kSpaceRangeCount = arraysize(kSpaceRanges);
+
+static const int kWordRanges[] = {
'0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
-static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges);
-static const intptr_t kDigitRanges[] = { '0', '9' + 1, 0x10000 };
-static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges);
-static const intptr_t kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
-static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges);
-static const intptr_t kLineTerminatorRanges[] = {
- 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 };
-static const intptr_t kLineTerminatorRangeCount =
- ARRAY_SIZE(kLineTerminatorRanges);
-
-
-void BoyerMoorePositionInfo::Set(intptr_t character) {
+static const int kWordRangeCount = arraysize(kWordRanges);
+static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
+static const int kDigitRangeCount = arraysize(kDigitRanges);
+static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
+static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
+static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
+ 0x2028, 0x202A, 0x10000 };
+static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
+
+
+void BoyerMoorePositionInfo::Set(int character) {
SetInterval(Interval(character, character));
}
@@ -2920,15 +2877,15 @@ void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
if (interval.to() - interval.from() >= kMapSize - 1) {
if (map_count_ != kMapSize) {
map_count_ = kMapSize;
- for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
+ for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
}
return;
}
- for (intptr_t i = interval.from(); i <= interval.to(); i++) {
- intptr_t mod_character = (i & kMask);
- if (!map_->At(mod_character)) {
+ for (int i = interval.from(); i <= interval.to(); i++) {
+ int mod_character = (i & kMask);
+ if (!map_->at(mod_character)) {
map_count_++;
- (*map_)[mod_character] = true;
+ map_->at(mod_character) = true;
}
if (map_count_ == kMapSize) return;
}
@@ -2939,23 +2896,23 @@ void BoyerMoorePositionInfo::SetAll() {
s_ = w_ = d_ = kLatticeUnknown;
if (map_count_ != kMapSize) {
map_count_ = kMapSize;
- for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
+ for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
}
}
BoyerMooreLookahead::BoyerMooreLookahead(
- intptr_t length, RegExpCompiler* compiler, Isolate* isolate)
+ int length, RegExpCompiler* compiler, Zone* zone)
: length_(length),
compiler_(compiler) {
if (compiler->one_byte()) {
- max_char_ = Symbols::kMaxOneCharCodeSymbol;
+ max_char_ = String::kMaxOneByteCharCode;
} else {
- max_char_ = Utf16::kMaxCodeUnit;
+ max_char_ = String::kMaxUtf16CodeUnit;
}
- bitmaps_ = new(isolate) ZoneGrowableArray<BoyerMoorePositionInfo*>(length);
- for (intptr_t i = 0; i < length; i++) {
- bitmaps_->Add(new(isolate) BoyerMoorePositionInfo(isolate));
+ bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
+ for (int i = 0; i < length; i++) {
+ bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
}
}
@@ -2963,12 +2920,12 @@ BoyerMooreLookahead::BoyerMooreLookahead(
// Find the longest range of lookahead that has the fewest number of different
// characters that can occur at a given position. Since we are optimizing two
// different parameters at once this is a tradeoff.
-bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) {
- intptr_t biggest_points = 0;
+bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
+ int biggest_points = 0;
// If more than 32 characters out of 128 can occur it is unlikely that we can
// be lucky enough to step forwards much of the time.
- const intptr_t kMaxMax = 32;
- for (intptr_t max_number_of_chars = 4;
+ const int kMaxMax = 32;
+ for (int max_number_of_chars = 4;
max_number_of_chars < kMaxMax;
max_number_of_chars *= 2) {
biggest_points =
@@ -2985,26 +2942,23 @@ bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) {
// of points as the product of width-of-the-range and
// probability-of-finding-one-of-the-characters, where the probability is
// calculated using the frequency distribution of the sample subject string.
-intptr_t BoyerMooreLookahead::FindBestInterval(
- intptr_t max_number_of_chars,
- intptr_t old_biggest_points,
- intptr_t* from,
- intptr_t* to) {
- intptr_t biggest_points = old_biggest_points;
- static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
- for (intptr_t i = 0; i < length_; ) {
+int BoyerMooreLookahead::FindBestInterval(
+ int max_number_of_chars, int old_biggest_points, int* from, int* to) {
+ int biggest_points = old_biggest_points;
+ static const int kSize = RegExpMacroAssembler::kTableSize;
+ for (int i = 0; i < length_; ) {
while (i < length_ && Count(i) > max_number_of_chars) i++;
if (i == length_) break;
- intptr_t remembered_from = i;
+ int remembered_from = i;
bool union_map[kSize];
- for (intptr_t j = 0; j < kSize; j++) union_map[j] = false;
+ for (int j = 0; j < kSize; j++) union_map[j] = false;
while (i < length_ && Count(i) <= max_number_of_chars) {
- BoyerMoorePositionInfo* map = bitmaps_->At(i);
- for (intptr_t j = 0; j < kSize; j++) union_map[j] |= map->at(j);
+ BoyerMoorePositionInfo* map = bitmaps_->at(i);
+ for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
i++;
}
- intptr_t frequency = 0;
- for (intptr_t j = 0; j < kSize; j++) {
+ int frequency = 0;
+ for (int j = 0; j < kSize; j++) {
if (union_map[j]) {
// Add 1 to the frequency to give a small per-character boost for
// the cases where our sampling is not good enough and many
@@ -3019,13 +2973,13 @@ intptr_t BoyerMooreLookahead::FindBestInterval(
// dividing by 2 we switch off the skipping if the probability of skipping
// is less than 50%. This is because the multibyte mask-and-compare
// skipping in quickcheck is more likely to do well on this case.
- bool in_quickcheck_range = ((i - remembered_from < 4) ||
- (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
+ bool in_quickcheck_range =
+ ((i - remembered_from < 4) ||
+ (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
// Called 'probability' but it is only a rough estimate and can actually
// be outside the 0-kSize range.
- intptr_t probability =
- (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
- intptr_t points = (i - remembered_from) * probability;
+ int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
+ int points = (i - remembered_from) * probability;
if (points > biggest_points) {
*from = remembered_from;
*to = i - 1;
@@ -3041,25 +2995,24 @@ intptr_t BoyerMooreLookahead::FindBestInterval(
// max_lookahead (inclusive) measured from the current position. If the
// character at max_lookahead offset is not one of these characters, then we
// can safely skip forwards by the number of characters in the range.
-intptr_t BoyerMooreLookahead::GetSkipTable(
- intptr_t min_lookahead,
- intptr_t max_lookahead,
- const TypedData& boolean_skip_table) {
- const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
+ int max_lookahead,
+ Handle<ByteArray> boolean_skip_table) {
+ const int kSize = RegExpMacroAssembler::kTableSize;
- const intptr_t kSkipArrayEntry = 0;
- const intptr_t kDontSkipArrayEntry = 1;
+ const int kSkipArrayEntry = 0;
+ const int kDontSkipArrayEntry = 1;
- for (intptr_t i = 0; i < kSize; i++) {
- boolean_skip_table.SetUint8(i, kSkipArrayEntry);
+ for (int i = 0; i < kSize; i++) {
+ boolean_skip_table->set(i, kSkipArrayEntry);
}
- intptr_t skip = max_lookahead + 1 - min_lookahead;
+ int skip = max_lookahead + 1 - min_lookahead;
- for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
- BoyerMoorePositionInfo* map = bitmaps_->At(i);
- for (intptr_t j = 0; j < kSize; j++) {
+ for (int i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->at(i);
+ for (int j = 0; j < kSize; j++) {
if (map->at(j)) {
- boolean_skip_table.SetUint8(j, kDontSkipArrayEntry);
+ boolean_skip_table->set(j, kDontSkipArrayEntry);
}
}
}
@@ -3070,23 +3023,23 @@ intptr_t BoyerMooreLookahead::GetSkipTable(
// See comment above on the implementation of GetSkipTable.
void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
- const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+ const int kSize = RegExpMacroAssembler::kTableSize;
- intptr_t min_lookahead = 0;
- intptr_t max_lookahead = 0;
+ int min_lookahead = 0;
+ int max_lookahead = 0;
if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
bool found_single_character = false;
- intptr_t single_character = 0;
- for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
- BoyerMoorePositionInfo* map = bitmaps_->At(i);
+ int single_character = 0;
+ for (int i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->at(i);
if (map->map_count() > 1 ||
(found_single_character && map->map_count() != 0)) {
found_single_character = false;
break;
}
- for (intptr_t j = 0; j < kSize; j++) {
+ for (int j = 0; j < kSize; j++) {
if (map->at(j)) {
found_single_character = true;
single_character = j;
@@ -3095,7 +3048,7 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
}
}
- intptr_t lookahead_width = max_lookahead + 1 - min_lookahead;
+ int lookahead_width = max_lookahead + 1 - min_lookahead;
if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
// The mask-compare can probably handle this better.
@@ -3103,8 +3056,8 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
}
if (found_single_character) {
- BlockLabel cont, again;
- masm->BindBlock(&again);
+ Label cont, again;
+ masm->Bind(&again);
masm->LoadCurrentCharacter(max_lookahead, &cont, true);
if (max_char_ > kSize) {
masm->CheckCharacterAfterAnd(single_character,
@@ -3115,27 +3068,23 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
}
masm->AdvanceCurrentPosition(lookahead_width);
masm->GoTo(&again);
- masm->BindBlock(&cont);
+ masm->Bind(&cont);
return;
}
- const TypedData& boolean_skip_table = TypedData::ZoneHandle(
- compiler_->isolate(),
- TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
- intptr_t skip_distance = GetSkipTable(
+ Factory* factory = masm->zone()->isolate()->factory();
+ Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
+ int skip_distance = GetSkipTable(
min_lookahead, max_lookahead, boolean_skip_table);
- ASSERT(skip_distance != 0);
+ DCHECK(skip_distance != 0);
- BlockLabel cont, again;
-
- masm->BindBlock(&again);
+ Label cont, again;
+ masm->Bind(&again);
masm->LoadCurrentCharacter(max_lookahead, &cont, true);
masm->CheckBitInTable(boolean_skip_table, &cont);
masm->AdvanceCurrentPosition(skip_distance);
masm->GoTo(&again);
- masm->BindBlock(&cont);
-
- return;
+ masm->Bind(&cont);
}
@@ -3221,13 +3170,13 @@ GreedyLoopState::GreedyLoopState(bool not_at_start) {
void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
#ifdef DEBUG
- intptr_t choice_count = alternatives_->length();
- for (intptr_t i = 0; i < choice_count - 1; i++) {
- GuardedAlternative alternative = alternatives_->At(i);
- ZoneGrowableArray<Guard*>* guards = alternative.guards();
- intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
- for (intptr_t j = 0; j < guard_count; j++) {
- ASSERT(!trace->mentions_reg(guards->At(j)->reg()));
+ int choice_count = alternatives_->length();
+ for (int i = 0; i < choice_count - 1; i++) {
+ GuardedAlternative alternative = alternatives_->at(i);
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
+ for (int j = 0; j < guard_count; j++) {
+ DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
}
}
#endif
@@ -3253,13 +3202,13 @@ void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- intptr_t choice_count = alternatives_->length();
+ int choice_count = alternatives_->length();
AssertGuardsMentionRegisters(trace);
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
- ASSERT(limit_result == CONTINUE);
+ DCHECK(limit_result == CONTINUE);
// For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
// other choice nodes we only flush if we are out of code size budget.
@@ -3274,9 +3223,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
preload.init();
GreedyLoopState greedy_loop_state(not_at_start());
- intptr_t text_length =
- GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
- AlternativeGenerationList alt_gens(choice_count);
+ int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
+ AlternativeGenerationList alt_gens(choice_count, zone());
if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
trace = EmitGreedyLoop(compiler,
@@ -3288,8 +3236,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
} else {
// TODO(erikcorry): Delete this. We don't need this label, but it makes us
// match the traces produced pre-cleanup.
- BlockLabel second_choice;
- compiler->macro_assembler()->BindBlock(&second_choice);
+ Label second_choice;
+ compiler->macro_assembler()->Bind(&second_choice);
preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
@@ -3303,8 +3251,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
// At this point we need to generate slow checks for the alternatives where
// the quick check was inlined. We can recognize these because the associated
// label was bound.
- intptr_t new_flush_budget = trace->flush_budget() / choice_count;
- for (intptr_t i = 0; i < choice_count; i++) {
+ int new_flush_budget = trace->flush_budget() / choice_count;
+ for (int i = 0; i < choice_count; i++) {
AlternativeGeneration* alt_gen = alt_gens.at(i);
Trace new_trace(*trace);
// If there are actions to be flushed we have to limit how many times
@@ -3317,19 +3265,20 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
EmitOutOfLineContinuation(compiler,
&new_trace,
- alternatives_->At(i),
+ alternatives_->at(i),
alt_gen,
preload.preload_characters_,
next_expects_preload);
}
}
+
Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
Trace* trace,
AlternativeGenerationList* alt_gens,
PreloadState* preload,
GreedyLoopState* greedy_loop_state,
- intptr_t text_length) {
+ int text_length) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
// Here we have special handling for greedy loops containing only text nodes
// and other simple nodes. These are handled by pushing the current
@@ -3338,21 +3287,21 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
// and check it against the pushed value. This avoids pushing backtrack
// information for each iteration of the loop, which could take up a lot of
// space.
- ASSERT(trace->stop_node() == NULL);
+ DCHECK(trace->stop_node() == NULL);
macro_assembler->PushCurrentPosition();
- BlockLabel greedy_match_failed;
+ Label greedy_match_failed;
Trace greedy_match_trace;
if (not_at_start()) greedy_match_trace.set_at_start(false);
greedy_match_trace.set_backtrack(&greedy_match_failed);
- BlockLabel loop_label;
- macro_assembler->BindBlock(&loop_label);
+ Label loop_label;
+ macro_assembler->Bind(&loop_label);
greedy_match_trace.set_stop_node(this);
greedy_match_trace.set_loop_label(&loop_label);
- (*alternatives_)[0].node()->Emit(compiler, &greedy_match_trace);
- macro_assembler->BindBlock(&greedy_match_failed);
+ alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
+ macro_assembler->Bind(&greedy_match_failed);
- BlockLabel second_choice; // For use in greedy matches.
- macro_assembler->BindBlock(&second_choice);
+ Label second_choice; // For use in greedy matches.
+ macro_assembler->Bind(&second_choice);
Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
@@ -3362,7 +3311,7 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
new_trace,
preload);
- macro_assembler->BindBlock(greedy_loop_state->label());
+ macro_assembler->Bind(greedy_loop_state->label());
// If we have unwound to the bottom then backtrack.
macro_assembler->CheckGreedyLoop(trace->backtrack());
// Otherwise try the second priority at an earlier position.
@@ -3371,13 +3320,12 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
return new_trace;
}
-
-intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
- Trace* trace) {
- intptr_t eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
+int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
+ Trace* trace) {
+ int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
if (alternatives_->length() != 2) return eats_at_least;
- GuardedAlternative alt1 = alternatives_->At(1);
+ GuardedAlternative alt1 = alternatives_->at(1);
if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
return eats_at_least;
}
@@ -3392,7 +3340,7 @@ intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
// loop. That also implies that there are no preloaded characters, which is
// good, because it means we won't be violating any assumptions by
// overwriting those characters with new load instructions.
- ASSERT(trace->is_trivial());
+ DCHECK(trace->is_trivial());
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
// At this point we know that we are at a non-greedy loop that will eat
@@ -3404,13 +3352,15 @@ intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
// small alternation.
BoyerMooreLookahead* bm = bm_info(false);
if (bm == NULL) {
- eats_at_least = Utils::Minimum(kMaxLookaheadForBoyerMoore,
+ eats_at_least = Min(kMaxLookaheadForBoyerMoore,
EatsAtLeast(kMaxLookaheadForBoyerMoore,
kRecursionBudget,
false));
if (eats_at_least >= 1) {
- bm = new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
- GuardedAlternative alt0 = alternatives_->At(0);
+ bm = new(zone()) BoyerMooreLookahead(eats_at_least,
+ compiler,
+ zone());
+ GuardedAlternative alt0 = alternatives_->at(0);
alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, false);
}
}
@@ -3423,7 +3373,7 @@ intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
AlternativeGenerationList* alt_gens,
- intptr_t first_choice,
+ int first_choice,
Trace* trace,
PreloadState* preload) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
@@ -3431,18 +3381,18 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
// For now we just call all choices one after the other. The idea ultimately
// is to use the Dispatch table to try only the relevant ones.
- intptr_t choice_count = alternatives_->length();
+ int choice_count = alternatives_->length();
- intptr_t new_flush_budget = trace->flush_budget() / choice_count;
+ int new_flush_budget = trace->flush_budget() / choice_count;
- for (intptr_t i = first_choice; i < choice_count; i++) {
+ for (int i = first_choice; i < choice_count; i++) {
bool is_last = i == choice_count - 1;
bool fall_through_on_failure = !is_last;
- GuardedAlternative alternative = alternatives_->At(i);
+ GuardedAlternative alternative = alternatives_->at(i);
AlternativeGeneration* alt_gen = alt_gens->at(i);
alt_gen->quick_check_details.set_characters(preload->preload_characters_);
- ZoneGrowableArray<Guard*>* guards = alternative.guards();
- intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
Trace new_trace(*trace);
new_trace.set_characters_preloaded(preload->preload_is_current_ ?
preload->preload_characters_ :
@@ -3457,7 +3407,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
}
alt_gen->expects_preload = preload->preload_is_current_;
bool generate_full_check_inline = false;
- if (kRegexpOptimization &&
+ if (FLAG_regexp_optimization &&
try_to_emit_quick_check_for_alternative(i == 0) &&
alternative.node()->EmitQuickCheck(compiler,
trace,
@@ -3472,7 +3422,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
// If we generated the quick check to fall through on possible success,
// we now need to generate the full check inline.
if (!fall_through_on_failure) {
- macro_assembler->BindBlock(&alt_gen->possible_success);
+ macro_assembler->Bind(&alt_gen->possible_success);
new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
new_trace.set_characters_preloaded(preload->preload_characters_);
new_trace.set_bound_checked_up_to(preload->preload_characters_);
@@ -3499,13 +3449,13 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
if (new_trace.actions() != NULL) {
new_trace.set_flush_budget(new_flush_budget);
}
- for (intptr_t j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->At(j), &new_trace);
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &new_trace);
}
alternative.node()->Emit(compiler, &new_trace);
preload->preload_is_current_ = false;
}
- macro_assembler->BindBlock(&alt_gen->after);
+ macro_assembler->Bind(&alt_gen->after);
}
}
@@ -3514,26 +3464,26 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
Trace* trace,
GuardedAlternative alternative,
AlternativeGeneration* alt_gen,
- intptr_t preload_characters,
+ int preload_characters,
bool next_expects_preload) {
- if (!alt_gen->possible_success.IsLinked()) return;
+ if (!alt_gen->possible_success.is_linked()) return;
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- macro_assembler->BindBlock(&alt_gen->possible_success);
+ macro_assembler->Bind(&alt_gen->possible_success);
Trace out_of_line_trace(*trace);
out_of_line_trace.set_characters_preloaded(preload_characters);
out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
- ZoneGrowableArray<Guard*>* guards = alternative.guards();
- intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
+ ZoneList<Guard*>* guards = alternative.guards();
+ int guard_count = (guards == NULL) ? 0 : guards->length();
if (next_expects_preload) {
- BlockLabel reload_current_char;
+ Label reload_current_char;
out_of_line_trace.set_backtrack(&reload_current_char);
- for (intptr_t j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
}
alternative.node()->Emit(compiler, &out_of_line_trace);
- macro_assembler->BindBlock(&reload_current_char);
+ macro_assembler->Bind(&reload_current_char);
// Reload the current character, since the next quick check expects that.
// We don't need to check bounds here because we only get into this
// code through a quick check which already did the checked load.
@@ -3544,8 +3494,8 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
macro_assembler->GoTo(&(alt_gen->after));
} else {
out_of_line_trace.set_backtrack(&(alt_gen->after));
- for (intptr_t j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
+ for (int j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
}
alternative.node()->Emit(compiler, &out_of_line_trace);
}
@@ -3556,7 +3506,7 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
- ASSERT(limit_result == CONTINUE);
+ DCHECK(limit_result == CONTINUE);
RecursionCheck rc(compiler);
@@ -3608,9 +3558,9 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
break;
case EMPTY_MATCH_CHECK: {
- intptr_t start_pos_reg = data_.u_empty_match_check.start_register;
- intptr_t stored_pos = 0;
- intptr_t rep_reg = data_.u_empty_match_check.repetition_register;
+ int start_pos_reg = data_.u_empty_match_check.start_register;
+ int stored_pos = 0;
+ int rep_reg = data_.u_empty_match_check.repetition_register;
bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
@@ -3624,18 +3574,18 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
} else if (!trace->is_trivial()) {
trace->Flush(compiler, this);
} else {
- BlockLabel skip_empty_check;
+ Label skip_empty_check;
// If we have a minimum number of repetitions we check the current
// number first and skip the empty check if it's not enough.
if (has_minimum) {
- intptr_t limit = data_.u_empty_match_check.repetition_limit;
+ int limit = data_.u_empty_match_check.repetition_limit;
assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
}
// If the match is empty we bail out, otherwise we fall through
// to the on-success continuation.
assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
trace->backtrack());
- assembler->BindBlock(&skip_empty_check);
+ assembler->Bind(&skip_empty_check);
on_success()->Emit(compiler, trace);
}
break;
@@ -3649,23 +3599,22 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
data_.u_submatch.current_position_register);
assembler->ReadStackPointerFromRegister(
data_.u_submatch.stack_pointer_register);
- intptr_t clear_register_count = data_.u_submatch.clear_register_count;
+ int clear_register_count = data_.u_submatch.clear_register_count;
if (clear_register_count == 0) {
on_success()->Emit(compiler, trace);
return;
}
- intptr_t clear_registers_from = data_.u_submatch.clear_register_from;
- BlockLabel clear_registers_backtrack;
+ int clear_registers_from = data_.u_submatch.clear_register_from;
+ Label clear_registers_backtrack;
Trace new_trace = *trace;
new_trace.set_backtrack(&clear_registers_backtrack);
on_success()->Emit(compiler, &new_trace);
- assembler->BindBlock(&clear_registers_backtrack);
- intptr_t clear_registers_to =
- clear_registers_from + clear_register_count - 1;
+ assembler->Bind(&clear_registers_backtrack);
+ int clear_registers_to = clear_registers_from + clear_register_count - 1;
assembler->ClearRegisters(clear_registers_from, clear_registers_to);
- ASSERT(trace->backtrack() == NULL);
+ DCHECK(trace->backtrack() == NULL);
assembler->Backtrack();
return;
}
@@ -3684,11 +3633,11 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
- ASSERT(limit_result == CONTINUE);
+ DCHECK(limit_result == CONTINUE);
RecursionCheck rc(compiler);
- ASSERT(start_reg_ + 1 == end_reg_);
+ DCHECK_EQ(start_reg_ + 1, end_reg_);
if (compiler->ignore_case()) {
assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
trace->backtrack());
@@ -3708,8 +3657,9 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
class DotPrinter: public NodeVisitor {
public:
- explicit DotPrinter(bool ignore_case)
- : ignore_case_(ignore_case) {}
+ DotPrinter(OStream& os, bool ignore_case) // NOLINT
+ : os_(os),
+ ignore_case_(ignore_case) {}
void PrintNode(const char* label, RegExpNode* node);
void Visit(RegExpNode* node);
void PrintAttributes(RegExpNode* from);
@@ -3719,28 +3669,29 @@ class DotPrinter: public NodeVisitor {
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
#undef DECLARE_VISIT
private:
+ OStream& os_;
bool ignore_case_;
};
void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
- OS::Print("digraph G {\n graph [label=\"");
- for (intptr_t i = 0; label[i]; i++) {
+ os_ << "digraph G {\n graph [label=\"";
+ for (int i = 0; label[i]; i++) {
switch (label[i]) {
case '\\':
- OS::Print("\\\\");
+ os_ << "\\\\";
break;
case '"':
- OS::Print("\"");
+ os_ << "\"";
break;
default:
- OS::Print("%c", label[i]);
+ os_ << label[i];
break;
}
}
- OS::Print("\"];\n");
+ os_ << "\"];\n";
Visit(node);
- OS::Print("}\n");
+ os_ << "}" << endl;
}
@@ -3752,194 +3703,292 @@ void DotPrinter::Visit(RegExpNode* node) {
void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
- OS::Print(" n%p -> n%p [style=dotted];\n", from, on_failure);
+ os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n";
Visit(on_failure);
}
-class AttributePrinter : public ValueObject {
+class TableEntryBodyPrinter {
public:
- AttributePrinter() : first_(true) {}
+ TableEntryBodyPrinter(OStream& os, ChoiceNode* choice) // NOLINT
+ : os_(os),
+ choice_(choice) {}
+ void Call(uc16 from, DispatchTable::Entry entry) {
+ OutSet* out_set = entry.out_set();
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (out_set->Get(i)) {
+ os_ << " n" << choice() << ":s" << from << "o" << i << " -> n"
+ << choice()->alternatives()->at(i).node() << ";\n";
+ }
+ }
+ }
+ private:
+ ChoiceNode* choice() { return choice_; }
+ OStream& os_;
+ ChoiceNode* choice_;
+};
+
+
+class TableEntryHeaderPrinter {
+ public:
+ explicit TableEntryHeaderPrinter(OStream& os) // NOLINT
+ : first_(true),
+ os_(os) {}
+ void Call(uc16 from, DispatchTable::Entry entry) {
+ if (first_) {
+ first_ = false;
+ } else {
+ os_ << "|";
+ }
+ os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
+ OutSet* out_set = entry.out_set();
+ int priority = 0;
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (out_set->Get(i)) {
+ if (priority > 0) os_ << "|";
+ os_ << "<s" << from << "o" << i << "> " << priority;
+ priority++;
+ }
+ }
+ os_ << "}}";
+ }
+
+ private:
+ bool first_;
+ OStream& os_;
+};
+
+
+class AttributePrinter {
+ public:
+ explicit AttributePrinter(OStream& os) // NOLINT
+ : os_(os),
+ first_(true) {}
void PrintSeparator() {
if (first_) {
first_ = false;
} else {
- OS::Print("|");
+ os_ << "|";
}
}
void PrintBit(const char* name, bool value) {
if (!value) return;
PrintSeparator();
- OS::Print("{%s}", name);
+ os_ << "{" << name << "}";
}
- void PrintPositive(const char* name, intptr_t value) {
+ void PrintPositive(const char* name, int value) {
if (value < 0) return;
PrintSeparator();
- OS::Print("{%s|%" Pd "}", name, value);
+ os_ << "{" << name << "|" << value << "}";
}
private:
+ OStream& os_;
bool first_;
};
void DotPrinter::PrintAttributes(RegExpNode* that) {
- OS::Print(" a%p [shape=Mrecord, color=grey, fontcolor=grey, "
- "margin=0.1, fontsize=10, label=\"{", that);
- AttributePrinter printer;
+ os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
+ << "margin=0.1, fontsize=10, label=\"{";
+ AttributePrinter printer(os_);
NodeInfo* info = that->info();
printer.PrintBit("NI", info->follows_newline_interest);
printer.PrintBit("WI", info->follows_word_interest);
printer.PrintBit("SI", info->follows_start_interest);
- BlockLabel* label = that->label();
- if (label->IsBound())
- printer.PrintPositive("@", label->Position());
- OS::Print("}\"];\n"
- " a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n",
- that, that);
+ Label* label = that->label();
+ if (label->is_bound())
+ printer.PrintPositive("@", label->pos());
+ os_ << "}\"];\n"
+ << " a" << that << " -> n" << that
+ << " [style=dashed, color=grey, arrowhead=none];\n";
}
+static const bool kPrintDispatchTable = false;
void DotPrinter::VisitChoice(ChoiceNode* that) {
- OS::Print(" n%p [shape=Mrecord, label=\"?\"];\n", that);
- for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
- GuardedAlternative alt = that->alternatives()->At(i);
- OS::Print(" n%p -> n%p", that, alt.node());
+ if (kPrintDispatchTable) {
+ os_ << " n" << that << " [shape=Mrecord, label=\"";
+ TableEntryHeaderPrinter header_printer(os_);
+ that->GetTable(ignore_case_)->ForEach(&header_printer);
+ os_ << "\"]\n";
+ PrintAttributes(that);
+ TableEntryBodyPrinter body_printer(os_, that);
+ that->GetTable(ignore_case_)->ForEach(&body_printer);
+ } else {
+ os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n";
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->at(i);
+ os_ << " n" << that << " -> n" << alt.node();
+ }
}
- for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
- GuardedAlternative alt = that->alternatives()->At(i);
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->at(i);
alt.node()->Accept(this);
}
}
void DotPrinter::VisitText(TextNode* that) {
- OS::Print(" n%p [label=\"", that);
- for (intptr_t i = 0; i < that->elements()->length(); i++) {
- if (i > 0) OS::Print(" ");
- TextElement elm = that->elements()->At(i);
+ Zone* zone = that->zone();
+ os_ << " n" << that << " [label=\"";
+ for (int i = 0; i < that->elements()->length(); i++) {
+ if (i > 0) os_ << " ";
+ TextElement elm = that->elements()->at(i);
switch (elm.text_type()) {
case TextElement::ATOM: {
- ZoneGrowableArray<uint16_t>* data = elm.atom()->data();
- for (intptr_t i = 0; i < data->length(); i++) {
- OS::Print("%c", static_cast<char>(data->At(i)));
+ Vector<const uc16> data = elm.atom()->data();
+ for (int i = 0; i < data.length(); i++) {
+ os_ << static_cast<char>(data[i]);
}
break;
}
case TextElement::CHAR_CLASS: {
RegExpCharacterClass* node = elm.char_class();
- OS::Print("[");
- if (node->is_negated()) OS::Print("^");
- for (intptr_t j = 0; j < node->ranges()->length(); j++) {
- CharacterRange range = node->ranges()->At(j);
- PrintUtf16(range.from());
- OS::Print("-");
- PrintUtf16(range.to());
+ os_ << "[";
+ if (node->is_negated()) os_ << "^";
+ for (int j = 0; j < node->ranges(zone)->length(); j++) {
+ CharacterRange range = node->ranges(zone)->at(j);
+ os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
}
- OS::Print("]");
+ os_ << "]";
break;
}
default:
UNREACHABLE();
}
}
- OS::Print("\", shape=box, peripheries=2];\n");
+ os_ << "\", shape=box, peripheries=2];\n";
PrintAttributes(that);
- OS::Print(" n%p -> n%p;\n", that, that->on_success());
+ os_ << " n" << that << " -> n" << that->on_success() << ";\n";
Visit(that->on_success());
}
void DotPrinter::VisitBackReference(BackReferenceNode* that) {
- OS::Print(" n%p [label=\"$%" Pd "..$%" Pd "\", shape=doubleoctagon];\n",
- that, that->start_register(), that->end_register());
+ os_ << " n" << that << " [label=\"$" << that->start_register() << "..$"
+ << that->end_register() << "\", shape=doubleoctagon];\n";
PrintAttributes(that);
- OS::Print(" n%p -> n%p;\n", that, that->on_success());
+ os_ << " n" << that << " -> n" << that->on_success() << ";\n";
Visit(that->on_success());
}
void DotPrinter::VisitEnd(EndNode* that) {
- OS::Print(" n%p [style=bold, shape=point];\n", that);
+ os_ << " n" << that << " [style=bold, shape=point];\n";
PrintAttributes(that);
}
void DotPrinter::VisitAssertion(AssertionNode* that) {
- OS::Print(" n%p [", that);
+ os_ << " n" << that << " [";
switch (that->assertion_type()) {
case AssertionNode::AT_END:
- OS::Print("label=\"$\", shape=septagon");
+ os_ << "label=\"$\", shape=septagon";
break;
case AssertionNode::AT_START:
- OS::Print("label=\"^\", shape=septagon");
+ os_ << "label=\"^\", shape=septagon";
break;
case AssertionNode::AT_BOUNDARY:
- OS::Print("label=\"\\b\", shape=septagon");
+ os_ << "label=\"\\b\", shape=septagon";
break;
case AssertionNode::AT_NON_BOUNDARY:
- OS::Print("label=\"\\B\", shape=septagon");
+ os_ << "label=\"\\B\", shape=septagon";
break;
case AssertionNode::AFTER_NEWLINE:
- OS::Print("label=\"(?<=\\n)\", shape=septagon");
+ os_ << "label=\"(?<=\\n)\", shape=septagon";
break;
}
- OS::Print("];\n");
+ os_ << "];\n";
PrintAttributes(that);
RegExpNode* successor = that->on_success();
- OS::Print(" n%p -> n%p;\n", that, successor);
+ os_ << " n" << that << " -> n" << successor << ";\n";
Visit(successor);
}
void DotPrinter::VisitAction(ActionNode* that) {
- OS::Print(" n%p [", that);
+ os_ << " n" << that << " [";
switch (that->action_type_) {
case ActionNode::SET_REGISTER:
- OS::Print("label=\"$%" Pd ":=%" Pd "\", shape=octagon",
- that->data_.u_store_register.reg,
- that->data_.u_store_register.value);
+ os_ << "label=\"$" << that->data_.u_store_register.reg
+ << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
break;
case ActionNode::INCREMENT_REGISTER:
- OS::Print("label=\"$%" Pd "++\", shape=octagon",
- that->data_.u_increment_register.reg);
+ os_ << "label=\"$" << that->data_.u_increment_register.reg
+ << "++\", shape=octagon";
break;
case ActionNode::STORE_POSITION:
- OS::Print("label=\"$%" Pd ":=$pos\", shape=octagon",
- that->data_.u_position_register.reg);
+ os_ << "label=\"$" << that->data_.u_position_register.reg
+ << ":=$pos\", shape=octagon";
break;
case ActionNode::BEGIN_SUBMATCH:
- OS::Print("label=\"$%" Pd ":=$pos,begin\", shape=septagon",
- that->data_.u_submatch.current_position_register);
+ os_ << "label=\"$" << that->data_.u_submatch.current_position_register
+ << ":=$pos,begin\", shape=septagon";
break;
case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
- OS::Print("label=\"escape\", shape=septagon");
+ os_ << "label=\"escape\", shape=septagon";
break;
case ActionNode::EMPTY_MATCH_CHECK:
- OS::Print("label=\"$%" Pd "=$pos?,$%" Pd "<%" Pd "?\", shape=septagon",
- that->data_.u_empty_match_check.start_register,
- that->data_.u_empty_match_check.repetition_register,
- that->data_.u_empty_match_check.repetition_limit);
+ os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
+ << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
+ << "<" << that->data_.u_empty_match_check.repetition_limit
+ << "?\", shape=septagon";
break;
case ActionNode::CLEAR_CAPTURES: {
- OS::Print("label=\"clear $%" Pd " to $%" Pd "\", shape=septagon",
- that->data_.u_clear_captures.range_from,
- that->data_.u_clear_captures.range_to);
+ os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
+ << " to $" << that->data_.u_clear_captures.range_to
+ << "\", shape=septagon";
break;
}
}
- OS::Print("];\n");
+ os_ << "];\n";
PrintAttributes(that);
RegExpNode* successor = that->on_success();
- OS::Print(" n%p -> n%p;\n", that, successor);
+ os_ << " n" << that << " -> n" << successor << ";\n";
Visit(successor);
}
+class DispatchTableDumper {
+ public:
+ explicit DispatchTableDumper(OStream& os) : os_(os) {}
+ void Call(uc16 key, DispatchTable::Entry entry);
+ private:
+ OStream& os_;
+};
+
+
+void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
+ os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
+ OutSet* set = entry.out_set();
+ bool first = true;
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
+ if (set->Get(i)) {
+ if (first) {
+ first = false;
+ } else {
+ os_ << ", ";
+ }
+ os_ << i;
+ }
+ }
+ os_ << "}\n";
+}
+
+
+void DispatchTable::Dump() {
+ OFStream os(stderr);
+ DispatchTableDumper dumper(os);
+ tree()->ForEach(&dumper);
+}
+
+
void RegExpEngine::DotPrint(const char* label,
RegExpNode* node,
bool ignore_case) {
- DotPrinter printer(ignore_case);
+ OFStream os(stdout);
+ DotPrinter printer(os, ignore_case);
printer.PrintNode(label, node);
}
@@ -3952,44 +4001,39 @@ void RegExpEngine::DotPrint(const char* label,
RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- ZoneGrowableArray<TextElement>* elms =
- new(CI) ZoneGrowableArray<TextElement>(1);
- elms->Add(TextElement::Atom(this));
- return new(CI) TextNode(elms, on_success);
+ ZoneList<TextElement>* elms =
+ new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
+ elms->Add(TextElement::Atom(this), compiler->zone());
+ return new(compiler->zone()) TextNode(elms, on_success);
}
RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- ZoneGrowableArray<TextElement>* elms =
- new(CI) ZoneGrowableArray<TextElement>(1);
- for (intptr_t i = 0; i < elements()->length(); i++) {
- elms->Add(elements()->At(i));
- }
- return new(CI) TextNode(elms, on_success);
+ return new(compiler->zone()) TextNode(elements(), on_success);
}
-static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges,
- const intptr_t* special_class,
- intptr_t length) {
+static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
+ const int* special_class,
+ int length) {
length--; // Remove final 0x10000.
- ASSERT(special_class[length] == 0x10000);
- ASSERT(ranges->length() != 0);
- ASSERT(length != 0);
- ASSERT(special_class[0] != 0);
+ DCHECK(special_class[length] == 0x10000);
+ DCHECK(ranges->length() != 0);
+ DCHECK(length != 0);
+ DCHECK(special_class[0] != 0);
if (ranges->length() != (length >> 1) + 1) {
return false;
}
- CharacterRange range = ranges->At(0);
+ CharacterRange range = ranges->at(0);
if (range.from() != 0) {
return false;
}
- for (intptr_t i = 0; i < length; i += 2) {
+ for (int i = 0; i < length; i += 2) {
if (special_class[i] != (range.to() + 1)) {
return false;
}
- range = ranges->At((i >> 1) + 1);
+ range = ranges->at((i >> 1) + 1);
if (special_class[i+1] != range.from()) {
return false;
}
@@ -4001,16 +4045,16 @@ static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges,
}
-static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges,
- const intptr_t* special_class,
- intptr_t length) {
+static bool CompareRanges(ZoneList<CharacterRange>* ranges,
+ const int* special_class,
+ int length) {
length--; // Remove final 0x10000.
- ASSERT(special_class[length] == 0x10000);
+ DCHECK(special_class[length] == 0x10000);
if (ranges->length() * 2 != length) {
return false;
}
- for (intptr_t i = 0; i < length; i += 2) {
- CharacterRange range = ranges->At(i >> 1);
+ for (int i = 0; i < length; i += 2) {
+ CharacterRange range = ranges->at(i >> 1);
if (range.from() != special_class[i] ||
range.to() != special_class[i + 1] - 1) {
return false;
@@ -4020,7 +4064,7 @@ static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges,
}
-bool RegExpCharacterClass::is_standard() {
+bool RegExpCharacterClass::is_standard(Zone* zone) {
// TODO(lrn): Remove need for this function, by not throwing away information
// along the way.
if (is_negated_) {
@@ -4029,31 +4073,31 @@ bool RegExpCharacterClass::is_standard() {
if (set_.is_standard()) {
return true;
}
- if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
+ if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
set_.set_standard_set_type('s');
return true;
}
- if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
+ if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
set_.set_standard_set_type('S');
return true;
}
- if (CompareInverseRanges(set_.ranges(),
+ if (CompareInverseRanges(set_.ranges(zone),
kLineTerminatorRanges,
kLineTerminatorRangeCount)) {
set_.set_standard_set_type('.');
return true;
}
- if (CompareRanges(set_.ranges(),
+ if (CompareRanges(set_.ranges(zone),
kLineTerminatorRanges,
kLineTerminatorRangeCount)) {
set_.set_standard_set_type('n');
return true;
}
- if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
+ if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
set_.set_standard_set_type('w');
return true;
}
- if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
+ if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
set_.set_standard_set_type('W');
return true;
}
@@ -4063,18 +4107,18 @@ bool RegExpCharacterClass::is_standard() {
RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- return new(CI) TextNode(this, on_success);
+ return new(compiler->zone()) TextNode(this, on_success);
}
RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives();
- intptr_t length = alternatives->length();
+ ZoneList<RegExpTree*>* alternatives = this->alternatives();
+ int length = alternatives->length();
ChoiceNode* result =
- new(CI) ChoiceNode(length, CI);
- for (intptr_t i = 0; i < length; i++) {
- GuardedAlternative alternative(alternatives->At(i)->ToNode(compiler,
+ new(compiler->zone()) ChoiceNode(length, compiler->zone());
+ for (int i = 0; i < length; i++) {
+ GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
on_success));
result->AddAlternative(alternative);
}
@@ -4095,21 +4139,21 @@ RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
// Scoped object to keep track of how much we unroll quantifier loops in the
// regexp graph generator.
-class RegExpExpansionLimiter : public ValueObject {
+class RegExpExpansionLimiter {
public:
- static const intptr_t kMaxExpansionFactor = 6;
- RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor)
+ static const int kMaxExpansionFactor = 6;
+ RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
: compiler_(compiler),
saved_expansion_factor_(compiler->current_expansion_factor()),
ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
- ASSERT(factor > 0);
+ DCHECK(factor > 0);
if (ok_to_expand_) {
if (factor > kMaxExpansionFactor) {
// Avoid integer overflow of the current expansion factor.
ok_to_expand_ = false;
compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
} else {
- intptr_t new_factor = saved_expansion_factor_ * factor;
+ int new_factor = saved_expansion_factor_ * factor;
ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
compiler->set_current_expansion_factor(new_factor);
}
@@ -4124,15 +4168,15 @@ class RegExpExpansionLimiter : public ValueObject {
private:
RegExpCompiler* compiler_;
- intptr_t saved_expansion_factor_;
+ int saved_expansion_factor_;
bool ok_to_expand_;
DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
};
-RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
- intptr_t max,
+RegExpNode* RegExpQuantifier::ToNode(int min,
+ int max,
bool is_greedy,
RegExpTree* body,
RegExpCompiler* compiler,
@@ -4158,27 +4202,25 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
// simpler since we don't need to make the special zero length match check
// from step 2.1. If the min and max are small we can unroll a little in
// this case.
- // Unroll (foo)+ and (foo){3,}
- static const intptr_t kMaxUnrolledMinMatches = 3;
- // Unroll (foo)? and (foo){x,3}
- static const intptr_t kMaxUnrolledMaxMatches = 3;
+ static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
+ static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
if (max == 0) return on_success; // This can happen due to recursion.
bool body_can_be_empty = (body->min_match() == 0);
- intptr_t body_start_reg = RegExpCompiler::kNoRegister;
+ int body_start_reg = RegExpCompiler::kNoRegister;
Interval capture_registers = body->CaptureRegisters();
bool needs_capture_clearing = !capture_registers.is_empty();
- Isolate* isolate = compiler->isolate();
+ Zone* zone = compiler->zone();
if (body_can_be_empty) {
body_start_reg = compiler->AllocateRegister();
- } else if (kRegexpOptimization && !needs_capture_clearing) {
+ } else if (FLAG_regexp_optimization && !needs_capture_clearing) {
// Only unroll if there are no captures and the body can't be
// empty.
{
RegExpExpansionLimiter limiter(
compiler, min + ((max != min) ? 1 : 0));
if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
- intptr_t new_max = (max == kInfinity) ? max : max - min;
+ int new_max = (max == kInfinity) ? max : max - min;
// Recurse once to get the loop or optional matches after the fixed
// ones.
RegExpNode* answer = ToNode(
@@ -4186,20 +4228,20 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
// Unroll the forced matches from 0 to min. This can cause chains of
// TextNodes (which the parser does not generate). These should be
// combined if it turns out they hinder good code generation.
- for (intptr_t i = 0; i < min; i++) {
+ for (int i = 0; i < min; i++) {
answer = body->ToNode(compiler, answer);
}
return answer;
}
}
if (max <= kMaxUnrolledMaxMatches && min == 0) {
- ASSERT(max > 0); // Due to the 'if' above.
+ DCHECK(max > 0); // Due to the 'if' above.
RegExpExpansionLimiter limiter(compiler, max);
if (limiter.ok_to_expand()) {
// Unroll the optional matches up to max.
RegExpNode* answer = on_success;
- for (intptr_t i = 0; i < max; i++) {
- ChoiceNode* alternation = new(isolate) ChoiceNode(2, isolate);
+ for (int i = 0; i < max; i++) {
+ ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
if (is_greedy) {
alternation->AddAlternative(
GuardedAlternative(body->ToNode(compiler, answer)));
@@ -4219,11 +4261,11 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
bool has_min = min > 0;
bool has_max = max < RegExpTree::kInfinity;
bool needs_counter = has_min || has_max;
- intptr_t reg_ctr = needs_counter
+ int reg_ctr = needs_counter
? compiler->AllocateRegister()
: RegExpCompiler::kNoRegister;
- LoopChoiceNode* center = new(isolate) LoopChoiceNode(body->min_match() == 0,
- isolate);
+ LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0,
+ zone);
if (not_at_start) center->set_not_at_start();
RegExpNode* loop_return = needs_counter
? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
@@ -4249,13 +4291,13 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
GuardedAlternative body_alt(body_node);
if (has_max) {
Guard* body_guard =
- new(isolate) Guard(reg_ctr, Guard::LT, max);
- body_alt.AddGuard(body_guard, isolate);
+ new(zone) Guard(reg_ctr, Guard::LT, max);
+ body_alt.AddGuard(body_guard, zone);
}
GuardedAlternative rest_alt(on_success);
if (has_min) {
- Guard* rest_guard = new(isolate) Guard(reg_ctr, Guard::GEQ, min);
- rest_alt.AddGuard(rest_guard, isolate);
+ Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
+ rest_alt.AddGuard(rest_guard, zone);
}
if (is_greedy) {
center->AddLoopAlternative(body_alt);
@@ -4274,6 +4316,9 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
+ NodeInfo info;
+ Zone* zone = compiler->zone();
+
switch (assertion_type()) {
case START_OF_LINE:
return AssertionNode::AfterNewline(on_success);
@@ -4289,16 +4334,16 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
// Compile $ in multiline regexps as an alternation with a positive
// lookahead in one side and an end-of-input on the other side.
// We need two registers for the lookahead.
- intptr_t stack_pointer_register = compiler->AllocateRegister();
- intptr_t position_register = compiler->AllocateRegister();
+ int stack_pointer_register = compiler->AllocateRegister();
+ int position_register = compiler->AllocateRegister();
// The ChoiceNode to distinguish between a newline and end-of-input.
- ChoiceNode* result = new ChoiceNode(2, on_success->isolate());
+ ChoiceNode* result = new(zone) ChoiceNode(2, zone);
// Create a newline atom.
- ZoneGrowableArray<CharacterRange>* newline_ranges =
- new ZoneGrowableArray<CharacterRange>(3);
- CharacterRange::AddClassEscape('n', newline_ranges);
- RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n');
- TextNode* newline_matcher = new TextNode(
+ ZoneList<CharacterRange>* newline_ranges =
+ new(zone) ZoneList<CharacterRange>(3, zone);
+ CharacterRange::AddClassEscape('n', newline_ranges, zone);
+ RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n');
+ TextNode* newline_matcher = new(zone) TextNode(
newline_atom,
ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
position_register,
@@ -4326,7 +4371,7 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- return new(CI)
+ return new(compiler->zone())
BackReferenceNode(RegExpCapture::StartRegister(index()),
RegExpCapture::EndRegister(index()),
on_success);
@@ -4341,13 +4386,13 @@ RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- intptr_t stack_pointer_register = compiler->AllocateRegister();
- intptr_t position_register = compiler->AllocateRegister();
+ int stack_pointer_register = compiler->AllocateRegister();
+ int position_register = compiler->AllocateRegister();
- const intptr_t registers_per_capture = 2;
- const intptr_t register_of_first_capture = 2;
- intptr_t register_count = capture_count_ * registers_per_capture;
- intptr_t register_start =
+ const int registers_per_capture = 2;
+ const int register_of_first_capture = 2;
+ int register_count = capture_count_ * registers_per_capture;
+ int register_start =
register_of_first_capture + capture_from_ * registers_per_capture;
RegExpNode* success;
@@ -4374,19 +4419,20 @@ RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
// for a negative lookahead. The NegativeLookaheadChoiceNode is a special
// ChoiceNode that knows to ignore the first exit when calculating quick
// checks.
+ Zone* zone = compiler->zone();
GuardedAlternative body_alt(
body()->ToNode(
compiler,
- success = new(CI) NegativeSubmatchSuccess(stack_pointer_register,
- position_register,
- register_count,
- register_start,
- CI)));
+ success = new(zone) NegativeSubmatchSuccess(stack_pointer_register,
+ position_register,
+ register_count,
+ register_start,
+ zone)));
ChoiceNode* choice_node =
- new(CI) NegativeLookaheadChoiceNode(body_alt,
- GuardedAlternative(on_success),
- CI);
+ new(zone) NegativeLookaheadChoiceNode(body_alt,
+ GuardedAlternative(on_success),
+ zone);
return ActionNode::BeginSubmatch(stack_pointer_register,
position_register,
choice_node);
@@ -4401,11 +4447,11 @@ RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
- intptr_t index,
+ int index,
RegExpCompiler* compiler,
RegExpNode* on_success) {
- intptr_t start_reg = RegExpCapture::StartRegister(index);
- intptr_t end_reg = RegExpCapture::EndRegister(index);
+ int start_reg = RegExpCapture::StartRegister(index);
+ int end_reg = RegExpCapture::EndRegister(index);
RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
RegExpNode* body_node = body->ToNode(compiler, store_end);
return ActionNode::StorePosition(start_reg, true, body_node);
@@ -4414,83 +4460,88 @@ RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- ZoneGrowableArray<RegExpTree*>* children = nodes();
+ ZoneList<RegExpTree*>* children = nodes();
RegExpNode* current = on_success;
- for (intptr_t i = children->length() - 1; i >= 0; i--) {
- current = children->At(i)->ToNode(compiler, current);
+ for (int i = children->length() - 1; i >= 0; i--) {
+ current = children->at(i)->ToNode(compiler, current);
}
return current;
}
-static void AddClass(const intptr_t* elmv,
- intptr_t elmc,
- ZoneGrowableArray<CharacterRange>* ranges) {
+static void AddClass(const int* elmv,
+ int elmc,
+ ZoneList<CharacterRange>* ranges,
+ Zone* zone) {
elmc--;
- ASSERT(elmv[elmc] == 0x10000);
- for (intptr_t i = 0; i < elmc; i += 2) {
- ASSERT(elmv[i] < elmv[i + 1]);
- ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1));
+ DCHECK(elmv[elmc] == 0x10000);
+ for (int i = 0; i < elmc; i += 2) {
+ DCHECK(elmv[i] < elmv[i + 1]);
+ ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
}
}
-static void AddClassNegated(const intptr_t *elmv,
- intptr_t elmc,
- ZoneGrowableArray<CharacterRange>* ranges) {
+static void AddClassNegated(const int *elmv,
+ int elmc,
+ ZoneList<CharacterRange>* ranges,
+ Zone* zone) {
elmc--;
- ASSERT(elmv[elmc] == 0x10000);
- ASSERT(elmv[0] != 0x0000);
- ASSERT(elmv[elmc-1] != Utf16::kMaxCodeUnit);
- uint16_t last = 0x0000;
- for (intptr_t i = 0; i < elmc; i += 2) {
- ASSERT(last <= elmv[i] - 1);
- ASSERT(elmv[i] < elmv[i + 1]);
- ranges->Add(CharacterRange(last, elmv[i] - 1));
+ DCHECK(elmv[elmc] == 0x10000);
+ DCHECK(elmv[0] != 0x0000);
+ DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
+ uc16 last = 0x0000;
+ for (int i = 0; i < elmc; i += 2) {
+ DCHECK(last <= elmv[i] - 1);
+ DCHECK(elmv[i] < elmv[i + 1]);
+ ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
last = elmv[i + 1];
}
- ranges->Add(CharacterRange(last, Utf16::kMaxCodeUnit));
+ ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
}
-void CharacterRange::AddClassEscape(uint16_t type,
- ZoneGrowableArray<CharacterRange>* ranges) {
+void CharacterRange::AddClassEscape(uc16 type,
+ ZoneList<CharacterRange>* ranges,
+ Zone* zone) {
switch (type) {
case 's':
- AddClass(kSpaceRanges, kSpaceRangeCount, ranges);
+ AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
break;
case 'S':
- AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges);
+ AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
break;
case 'w':
- AddClass(kWordRanges, kWordRangeCount, ranges);
+ AddClass(kWordRanges, kWordRangeCount, ranges, zone);
break;
case 'W':
- AddClassNegated(kWordRanges, kWordRangeCount, ranges);
+ AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
break;
case 'd':
- AddClass(kDigitRanges, kDigitRangeCount, ranges);
+ AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
break;
case 'D':
- AddClassNegated(kDigitRanges, kDigitRangeCount, ranges);
+ AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
break;
case '.':
AddClassNegated(kLineTerminatorRanges,
kLineTerminatorRangeCount,
- ranges);
+ ranges,
+ zone);
break;
// This is not a character range as defined by the spec but a
// convenient shorthand for a character class that matches any
// character.
case '*':
- ranges->Add(CharacterRange::Everything());
+ ranges->Add(CharacterRange::Everything(), zone);
break;
// This is the set of characters matched by the $ and ^ symbols
// in multiline mode.
case 'n':
AddClass(kLineTerminatorRanges,
kLineTerminatorRangeCount,
- ranges);
+ ranges,
+ zone);
break;
default:
UNREACHABLE();
@@ -4498,29 +4549,77 @@ void CharacterRange::AddClassEscape(uint16_t type,
}
-void CharacterRange::AddCaseEquivalents(
- ZoneGrowableArray<CharacterRange>* ranges,
- bool is_one_byte,
- Isolate* isolate) {
- uint16_t bottom = from();
- uint16_t top = to();
- if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
- if (bottom > Symbols::kMaxOneCharCodeSymbol) return;
- if (top > Symbols::kMaxOneCharCodeSymbol) {
- top = Symbols::kMaxOneCharCodeSymbol;
- }
+Vector<const int> CharacterRange::GetWordBounds() {
+ return Vector<const int>(kWordRanges, kWordRangeCount - 1);
+}
+
+
+class CharacterRangeSplitter {
+ public:
+ CharacterRangeSplitter(ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded,
+ Zone* zone)
+ : included_(included),
+ excluded_(excluded),
+ zone_(zone) { }
+ void Call(uc16 from, DispatchTable::Entry entry);
+
+ static const int kInBase = 0;
+ static const int kInOverlay = 1;
+
+ private:
+ ZoneList<CharacterRange>** included_;
+ ZoneList<CharacterRange>** excluded_;
+ Zone* zone_;
+};
+
+
+void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
+ if (!entry.out_set()->Get(kInBase)) return;
+ ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
+ ? included_
+ : excluded_;
+ if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
+ (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
+}
+
+
+void CharacterRange::Split(ZoneList<CharacterRange>* base,
+ Vector<const int> overlay,
+ ZoneList<CharacterRange>** included,
+ ZoneList<CharacterRange>** excluded,
+ Zone* zone) {
+ DCHECK_EQ(NULL, *included);
+ DCHECK_EQ(NULL, *excluded);
+ DispatchTable table(zone);
+ for (int i = 0; i < base->length(); i++)
+ table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
+ for (int i = 0; i < overlay.length(); i += 2) {
+ table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
+ CharacterRangeSplitter::kInOverlay, zone);
}
+ CharacterRangeSplitter callback(included, excluded, zone);
+ table.ForEach(&callback);
+}
+
- unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
- unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange;
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
+ bool is_one_byte, Zone* zone) {
+ Isolate* isolate = zone->isolate();
+ uc16 bottom = from();
+ uc16 top = to();
+ if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
+ if (bottom > String::kMaxOneByteCharCode) return;
+ if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
+ }
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
if (top == bottom) {
// If this is a singleton we just expand the one character.
- intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars); // NOLINT
- for (intptr_t i = 0; i < length; i++) {
- uint32_t chr = chars[i];
+ int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
+ for (int i = 0; i < length; i++) {
+ uc32 chr = chars[i];
if (chr != bottom) {
- ranges->Add(CharacterRange::Singleton(chars[i]));
+ ranges->Add(CharacterRange::Singleton(chars[i]), zone);
}
}
} else {
@@ -4542,25 +4641,25 @@ void CharacterRange::AddCaseEquivalents(
// completely contained in a block we do this for all the blocks
// covered by the range (handling characters that is not in a block
// as a "singleton block").
- int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- intptr_t pos = bottom;
+ unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int pos = bottom;
while (pos <= top) {
- intptr_t length = jsregexp_canonrange.get(pos, '\0', range);
- uint16_t block_end;
+ int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
+ uc16 block_end;
if (length == 0) {
block_end = pos;
} else {
- ASSERT(length == 1);
+ DCHECK_EQ(1, length);
block_end = range[0];
}
- intptr_t end = (block_end > top) ? top : block_end;
- length = jsregexp_uncanonicalize.get(block_end, '\0', range); // NOLINT
- for (intptr_t i = 0; i < length; i++) {
- uint32_t c = range[i];
- uint16_t range_from = c - (block_end - pos);
- uint16_t range_to = c - (block_end - end);
+ int end = (block_end > top) ? top : block_end;
+ length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
+ for (int i = 0; i < length; i++) {
+ uc32 c = range[i];
+ uc16 range_from = c - (block_end - pos);
+ uc16 range_to = c - (block_end - end);
if (!(bottom <= range_from && range_to <= top)) {
- ranges->Add(CharacterRange(range_from, range_to));
+ ranges->Add(CharacterRange(range_from, range_to), zone);
}
}
pos = end + 1;
@@ -4569,13 +4668,13 @@ void CharacterRange::AddCaseEquivalents(
}
-bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) {
- ASSERT(ranges != NULL);
- intptr_t n = ranges->length();
+bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
+ DCHECK_NOT_NULL(ranges);
+ int n = ranges->length();
if (n <= 1) return true;
- intptr_t max = ranges->At(0).to();
- for (intptr_t i = 1; i < n; i++) {
- CharacterRange next_range = ranges->At(i);
+ int max = ranges->at(0).to();
+ for (int i = 1; i < n; i++) {
+ CharacterRange next_range = ranges->at(i);
if (next_range.from() <= max + 1) return false;
max = next_range.to();
}
@@ -4583,49 +4682,48 @@ bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) {
}
-ZoneGrowableArray<CharacterRange>* CharacterSet::ranges() {
+ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
if (ranges_ == NULL) {
- ranges_ = new ZoneGrowableArray<CharacterRange>(2);
- CharacterRange::AddClassEscape(standard_set_type_, ranges_);
+ ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
+ CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
}
return ranges_;
}
-// Move a number of elements in a zone array to another position
-// in the same array. Handles overlapping source and target areas.
-static void MoveRanges(ZoneGrowableArray<CharacterRange>* list,
- intptr_t from,
- intptr_t to,
- intptr_t count) {
+// Move a number of elements in a zonelist to another position
+// in the same list. Handles overlapping source and target areas.
+static void MoveRanges(ZoneList<CharacterRange>* list,
+ int from,
+ int to,
+ int count) {
// Ranges are potentially overlapping.
if (from < to) {
- for (intptr_t i = count - 1; i >= 0; i--) {
- (*list)[to + i] = list->At(from + i);
+ for (int i = count - 1; i >= 0; i--) {
+ list->at(to + i) = list->at(from + i);
}
} else {
- for (intptr_t i = 0; i < count; i++) {
- (*list)[to + i] = list->At(from + i);
+ for (int i = 0; i < count; i++) {
+ list->at(to + i) = list->at(from + i);
}
}
}
-static intptr_t InsertRangeInCanonicalList(
- ZoneGrowableArray<CharacterRange>* list,
- intptr_t count,
- CharacterRange insert) {
+static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
+ int count,
+ CharacterRange insert) {
// Inserts a range into list[0..count[, which must be sorted
// by from value and non-overlapping and non-adjacent, using at most
// list[0..count] for the result. Returns the number of resulting
// canonicalized ranges. Inserting a range may collapse existing ranges into
// fewer ranges, so the return value can be anything in the range 1..count+1.
- uint16_t from = insert.from();
- uint16_t to = insert.to();
- intptr_t start_pos = 0;
- intptr_t end_pos = count;
- for (intptr_t i = count - 1; i >= 0; i--) {
- CharacterRange current = list->At(i);
+ uc16 from = insert.from();
+ uc16 to = insert.to();
+ int start_pos = 0;
+ int end_pos = count;
+ for (int i = count - 1; i >= 0; i--) {
+ CharacterRange current = list->at(i);
if (current.from() > to + 1) {
end_pos = i;
} else if (current.to() + 1 < from) {
@@ -4646,26 +4744,26 @@ static intptr_t InsertRangeInCanonicalList(
if (start_pos < count) {
MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
}
- (*list)[start_pos] = insert;
+ list->at(start_pos) = insert;
return count + 1;
}
if (start_pos + 1 == end_pos) {
// Replace single existing range at position start_pos.
- CharacterRange to_replace = list->At(start_pos);
- intptr_t new_from = Utils::Minimum(to_replace.from(), from);
- intptr_t new_to = Utils::Maximum(to_replace.to(), to);
- (*list)[start_pos] = CharacterRange(new_from, new_to);
+ CharacterRange to_replace = list->at(start_pos);
+ int new_from = Min(to_replace.from(), from);
+ int new_to = Max(to_replace.to(), to);
+ list->at(start_pos) = CharacterRange(new_from, new_to);
return count;
}
// Replace a number of existing ranges from start_pos to end_pos - 1.
// Move the remaining ranges down.
- intptr_t new_from = Utils::Minimum(list->At(start_pos).from(), from);
- intptr_t new_to = Utils::Maximum(list->At(end_pos - 1).to(), to);
+ int new_from = Min(list->at(start_pos).from(), from);
+ int new_to = Max(list->at(end_pos - 1).to(), to);
if (end_pos < count) {
MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
}
- (*list)[start_pos] = CharacterRange(new_from, new_to);
+ list->at(start_pos) = CharacterRange(new_from, new_to);
return count - (end_pos - start_pos) + 1;
}
@@ -4678,16 +4776,15 @@ void CharacterSet::Canonicalize() {
}
-void CharacterRange::Canonicalize(
- ZoneGrowableArray<CharacterRange>* character_ranges) {
+void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
if (character_ranges->length() <= 1) return;
// Check whether ranges are already canonical (increasing, non-overlapping,
// non-adjacent).
- intptr_t n = character_ranges->length();
- intptr_t max = character_ranges->At(0).to();
- intptr_t i = 1;
+ int n = character_ranges->length();
+ int max = character_ranges->at(0).to();
+ int i = 1;
while (i < n) {
- CharacterRange current = character_ranges->At(i);
+ CharacterRange current = character_ranges->at(i);
if (current.from() <= max + 1) {
break;
}
@@ -4702,39 +4799,41 @@ void CharacterRange::Canonicalize(
// list, in order).
// Notice that inserting a range can reduce the number of ranges in the
// result due to combining of adjacent and overlapping ranges.
- intptr_t read = i; // Range to insert.
- intptr_t num_canonical = i; // Length of canonicalized part of list.
+ int read = i; // Range to insert.
+ int num_canonical = i; // Length of canonicalized part of list.
do {
num_canonical = InsertRangeInCanonicalList(character_ranges,
num_canonical,
- character_ranges->At(read));
+ character_ranges->at(read));
read++;
} while (read < n);
- character_ranges->TruncateTo(num_canonical);
+ character_ranges->Rewind(num_canonical);
- ASSERT(CharacterRange::IsCanonical(character_ranges));
+ DCHECK(CharacterRange::IsCanonical(character_ranges));
}
-void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges,
- ZoneGrowableArray<CharacterRange>* negated_ranges) {
- ASSERT(CharacterRange::IsCanonical(ranges));
- ASSERT(negated_ranges->length() == 0);
- intptr_t range_count = ranges->length();
- uint16_t from = 0;
- intptr_t i = 0;
- if (range_count > 0 && ranges->At(0).from() == 0) {
- from = ranges->At(0).to();
+void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
+ ZoneList<CharacterRange>* negated_ranges,
+ Zone* zone) {
+ DCHECK(CharacterRange::IsCanonical(ranges));
+ DCHECK_EQ(0, negated_ranges->length());
+ int range_count = ranges->length();
+ uc16 from = 0;
+ int i = 0;
+ if (range_count > 0 && ranges->at(0).from() == 0) {
+ from = ranges->at(0).to();
i = 1;
}
while (i < range_count) {
- CharacterRange range = ranges->At(i);
- negated_ranges->Add(CharacterRange(from + 1, range.from() - 1));
+ CharacterRange range = ranges->at(i);
+ negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone);
from = range.to();
i++;
}
- if (from < Utf16::kMaxCodeUnit) {
- negated_ranges->Add(CharacterRange(from + 1, Utf16::kMaxCodeUnit));
+ if (from < String::kMaxUtf16CodeUnit) {
+ negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
+ zone);
}
}
@@ -4743,29 +4842,33 @@ void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges,
// Splay tree
-// Workaround for the fact that ZoneGrowableArray does not have contains().
-static bool ArrayContains(ZoneGrowableArray<unsigned>* array,
- unsigned value) {
- for (intptr_t i = 0; i < array->length(); i++) {
- if (array->At(i) == value) {
- return true;
+OutSet* OutSet::Extend(unsigned value, Zone* zone) {
+ if (Get(value))
+ return this;
+ if (successors(zone) != NULL) {
+ for (int i = 0; i < successors(zone)->length(); i++) {
+ OutSet* successor = successors(zone)->at(i);
+ if (successor->Get(value))
+ return successor;
}
+ } else {
+ successors_ = new(zone) ZoneList<OutSet*>(2, zone);
}
- return false;
+ OutSet* result = new(zone) OutSet(first_, remaining_);
+ result->Set(value, zone);
+ successors(zone)->Add(result, zone);
+ return result;
}
-void OutSet::Set(unsigned value, Isolate* isolate) {
+void OutSet::Set(unsigned value, Zone *zone) {
if (value < kFirstLimit) {
first_ |= (1 << value);
} else {
if (remaining_ == NULL)
- remaining_ = new(isolate) ZoneGrowableArray<unsigned>(1);
-
- bool remaining_contains_value = ArrayContains(remaining_, value);
- if (remaining_->is_empty() || !remaining_contains_value) {
- remaining_->Add(value);
- }
+ remaining_ = new(zone) ZoneList<unsigned>(1, zone);
+ if (remaining_->is_empty() || !remaining_->Contains(value))
+ remaining_->Add(value, zone);
}
}
@@ -4776,16 +4879,125 @@ bool OutSet::Get(unsigned value) const {
} else if (remaining_ == NULL) {
return false;
} else {
- return ArrayContains(remaining_, value);
+ return remaining_->Contains(value);
}
}
+const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
+
+
+void DispatchTable::AddRange(CharacterRange full_range, int value,
+ Zone* zone) {
+ CharacterRange current = full_range;
+ if (tree()->is_empty()) {
+ // If this is the first range we just insert into the table.
+ ZoneSplayTree<Config>::Locator loc;
+ DCHECK_RESULT(tree()->Insert(current.from(), &loc));
+ loc.set_value(Entry(current.from(), current.to(),
+ empty()->Extend(value, zone)));
+ return;
+ }
+ // First see if there is a range to the left of this one that
+ // overlaps.
+ ZoneSplayTree<Config>::Locator loc;
+ if (tree()->FindGreatestLessThan(current.from(), &loc)) {
+ Entry* entry = &loc.value();
+ // If we've found a range that overlaps with this one, and it
+ // starts strictly to the left of this one, we have to fix it
+ // because the following code only handles ranges that start on
+ // or after the start point of the range we're adding.
+ if (entry->from() < current.from() && entry->to() >= current.from()) {
+ // Snap the overlapping range in half around the start point of
+ // the range we're adding.
+ CharacterRange left(entry->from(), current.from() - 1);
+ CharacterRange right(current.from(), entry->to());
+ // The left part of the overlapping range doesn't overlap.
+ // Truncate the whole entry to be just the left part.
+ entry->set_to(left.to());
+ // The right part is the one that overlaps. We add this part
+ // to the map and let the next step deal with merging it with
+ // the range we're adding.
+ ZoneSplayTree<Config>::Locator loc;
+ DCHECK_RESULT(tree()->Insert(right.from(), &loc));
+ loc.set_value(Entry(right.from(),
+ right.to(),
+ entry->out_set()));
+ }
+ }
+ while (current.is_valid()) {
+ if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
+ (loc.value().from() <= current.to()) &&
+ (loc.value().to() >= current.from())) {
+ Entry* entry = &loc.value();
+ // We have overlap. If there is space between the start point of
+ // the range we're adding and where the overlapping range starts
+ // then we have to add a range covering just that space.
+ if (current.from() < entry->from()) {
+ ZoneSplayTree<Config>::Locator ins;
+ DCHECK_RESULT(tree()->Insert(current.from(), &ins));
+ ins.set_value(Entry(current.from(),
+ entry->from() - 1,
+ empty()->Extend(value, zone)));
+ current.set_from(entry->from());
+ }
+ DCHECK_EQ(current.from(), entry->from());
+ // If the overlapping range extends beyond the one we want to add
+ // we have to snap the right part off and add it separately.
+ if (entry->to() > current.to()) {
+ ZoneSplayTree<Config>::Locator ins;
+ DCHECK_RESULT(tree()->Insert(current.to() + 1, &ins));
+ ins.set_value(Entry(current.to() + 1,
+ entry->to(),
+ entry->out_set()));
+ entry->set_to(current.to());
+ }
+ DCHECK(entry->to() <= current.to());
+ // The overlapping range is now completely contained by the range
+ // we're adding so we can just update it and move the start point
+ // of the range we're adding just past it.
+ entry->AddValue(value, zone);
+ // Bail out if the last interval ended at 0xFFFF since otherwise
+ // adding 1 will wrap around to 0.
+ if (entry->to() == String::kMaxUtf16CodeUnit)
+ break;
+ DCHECK(entry->to() + 1 > current.from());
+ current.set_from(entry->to() + 1);
+ } else {
+ // There is no overlap so we can just add the range
+ ZoneSplayTree<Config>::Locator ins;
+ DCHECK_RESULT(tree()->Insert(current.from(), &ins));
+ ins.set_value(Entry(current.from(),
+ current.to(),
+ empty()->Extend(value, zone)));
+ break;
+ }
+ }
+}
+
+
+OutSet* DispatchTable::Get(uc16 value) {
+ ZoneSplayTree<Config>::Locator loc;
+ if (!tree()->FindGreatestLessThan(value, &loc))
+ return empty();
+ Entry* entry = &loc.value();
+ if (value <= entry->to())
+ return entry->out_set();
+ else
+ return empty();
+}
+
+
// -------------------------------------------------------------------
// Analysis
void Analysis::EnsureAnalyzed(RegExpNode* that) {
+ StackLimitCheck check(that->zone()->isolate());
+ if (check.HasOverflowed()) {
+ fail("Stack overflow");
+ return;
+ }
if (that->info()->been_analyzed || that->info()->being_analyzed)
return;
that->info()->being_analyzed = true;
@@ -4801,12 +5013,12 @@ void Analysis::VisitEnd(EndNode* that) {
void TextNode::CalculateOffsets() {
- intptr_t element_count = elements()->length();
+ int element_count = elements()->length();
// Set up the offsets of the elements relative to the start. This is a fixed
// quantity since a TextNode can only contain fixed-width things.
- intptr_t cp_offset = 0;
- for (intptr_t i = 0; i < element_count; i++) {
- TextElement& elm = (*elements())[i];
+ int cp_offset = 0;
+ for (int i = 0; i < element_count; i++) {
+ TextElement& elm = elements()->at(i);
elm.set_cp_offset(cp_offset);
cp_offset += elm.length();
}
@@ -4837,8 +5049,8 @@ void Analysis::VisitAction(ActionNode* that) {
void Analysis::VisitChoice(ChoiceNode* that) {
NodeInfo* info = that->info();
- for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
- RegExpNode* node = (*that->alternatives())[i].node();
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = that->alternatives()->at(i).node();
EnsureAnalyzed(node);
if (has_failed()) return;
// Anything the following nodes need to know has to be known by
@@ -4850,8 +5062,8 @@ void Analysis::VisitChoice(ChoiceNode* that) {
void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
NodeInfo* info = that->info();
- for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
- RegExpNode* node = (*that->alternatives())[i].node();
+ for (int i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = that->alternatives()->at(i).node();
if (node != that->loop_node()) {
EnsureAnalyzed(node);
if (has_failed()) return;
@@ -4877,8 +5089,8 @@ void Analysis::VisitAssertion(AssertionNode* that) {
}
-void BackReferenceNode::FillInBMInfo(intptr_t offset,
- intptr_t budget,
+void BackReferenceNode::FillInBMInfo(int offset,
+ int budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
// Working out the set of characters that a backreference can match is too
@@ -4888,18 +5100,18 @@ void BackReferenceNode::FillInBMInfo(intptr_t offset,
}
-COMPILE_ASSERT(BoyerMoorePositionInfo::kMapSize ==
- RegExpMacroAssembler::kTableSize);
+STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
+ RegExpMacroAssembler::kTableSize);
-void ChoiceNode::FillInBMInfo(intptr_t offset,
- intptr_t budget,
+void ChoiceNode::FillInBMInfo(int offset,
+ int budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
- ZoneGrowableArray<GuardedAlternative>* alts = alternatives();
+ ZoneList<GuardedAlternative>* alts = alternatives();
budget = (budget - 1) / alts->length();
- for (intptr_t i = 0; i < alts->length(); i++) {
- GuardedAlternative& alt = (*alts)[i];
+ for (int i = 0; i < alts->length(); i++) {
+ GuardedAlternative& alt = alts->at(i);
if (alt.guards() != NULL && alt.guards()->length() != 0) {
bm->SetRest(offset); // Give up trying to fill in info.
SaveBMInfo(bm, not_at_start, offset);
@@ -4911,34 +5123,35 @@ void ChoiceNode::FillInBMInfo(intptr_t offset,
}
-void TextNode::FillInBMInfo(intptr_t initial_offset,
- intptr_t budget,
+void TextNode::FillInBMInfo(int initial_offset,
+ int budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
if (initial_offset >= bm->length()) return;
- intptr_t offset = initial_offset;
- intptr_t max_char = bm->max_char();
- for (intptr_t i = 0; i < elements()->length(); i++) {
+ int offset = initial_offset;
+ int max_char = bm->max_char();
+ for (int i = 0; i < elements()->length(); i++) {
if (offset >= bm->length()) {
if (initial_offset == 0) set_bm_info(not_at_start, bm);
return;
}
- TextElement text = elements()->At(i);
+ TextElement text = elements()->at(i);
if (text.text_type() == TextElement::ATOM) {
RegExpAtom* atom = text.atom();
- for (intptr_t j = 0; j < atom->length(); j++, offset++) {
+ for (int j = 0; j < atom->length(); j++, offset++) {
if (offset >= bm->length()) {
if (initial_offset == 0) set_bm_info(not_at_start, bm);
return;
}
- uint16_t character = atom->data()->At(j);
+ uc16 character = atom->data()[j];
if (bm->compiler()->ignore_case()) {
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- intptr_t length = GetCaseIndependentLetters(
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ int length = GetCaseIndependentLetters(
+ Isolate::Current(),
character,
- bm->max_char() == Symbols::kMaxOneCharCodeSymbol,
+ bm->max_char() == String::kMaxOneByteCharCode,
chars);
- for (intptr_t j = 0; j < length; j++) {
+ for (int j = 0; j < length; j++) {
bm->Set(offset, chars[j]);
}
} else {
@@ -4946,17 +5159,16 @@ void TextNode::FillInBMInfo(intptr_t initial_offset,
}
}
} else {
- ASSERT(text.text_type() == TextElement::CHAR_CLASS);
+ DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
RegExpCharacterClass* char_class = text.char_class();
- ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges();
+ ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
if (char_class->is_negated()) {
bm->SetAll(offset);
} else {
- for (intptr_t k = 0; k < ranges->length(); k++) {
- CharacterRange& range = (*ranges)[k];
+ for (int k = 0; k < ranges->length(); k++) {
+ CharacterRange& range = ranges->at(k);
if (range.from() > max_char) continue;
- intptr_t to = Utils::Minimum(max_char,
- static_cast<intptr_t>(range.to()));
+ int to = Min(max_char, static_cast<int>(range.to()));
bm->SetInterval(offset, Interval(range.from(), to));
}
}
@@ -4975,54 +5187,159 @@ void TextNode::FillInBMInfo(intptr_t initial_offset,
}
+// -------------------------------------------------------------------
+// Dispatch table construction
+
+
+void DispatchTableConstructor::VisitEnd(EndNode* that) {
+ AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
+ node->set_being_calculated(true);
+ ZoneList<GuardedAlternative>* alternatives = node->alternatives();
+ for (int i = 0; i < alternatives->length(); i++) {
+ set_choice_index(i);
+ alternatives->at(i).node()->Accept(this);
+ }
+ node->set_being_calculated(false);
+}
+
+
+class AddDispatchRange {
+ public:
+ explicit AddDispatchRange(DispatchTableConstructor* constructor)
+ : constructor_(constructor) { }
+ void Call(uc32 from, DispatchTable::Entry entry);
+ private:
+ DispatchTableConstructor* constructor_;
+};
+
+
+void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
+ CharacterRange range(from, entry.to());
+ constructor_->AddRange(range);
+}
+
+
+void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
+ if (node->being_calculated())
+ return;
+ DispatchTable* table = node->GetTable(ignore_case_);
+ AddDispatchRange adder(this);
+ table->ForEach(&adder);
+}
+
+
+void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
+ // TODO(160): Find the node that we refer back to and propagate its start
+ // set back to here. For now we just accept anything.
+ AddRange(CharacterRange::Everything());
+}
+
+
+void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
+ RegExpNode* target = that->on_success();
+ target->Accept(this);
+}
+
+
+static int CompareRangeByFrom(const CharacterRange* a,
+ const CharacterRange* b) {
+ return Compare<uc16>(a->from(), b->from());
+}
+
+
+void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
+ ranges->Sort(CompareRangeByFrom);
+ uc16 last = 0;
+ for (int i = 0; i < ranges->length(); i++) {
+ CharacterRange range = ranges->at(i);
+ if (last < range.from())
+ AddRange(CharacterRange(last, range.from() - 1));
+ if (range.to() >= last) {
+ if (range.to() == String::kMaxUtf16CodeUnit) {
+ return;
+ } else {
+ last = range.to() + 1;
+ }
+ }
+ }
+ AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit));
+}
+
+
+void DispatchTableConstructor::VisitText(TextNode* that) {
+ TextElement elm = that->elements()->at(0);
+ switch (elm.text_type()) {
+ case TextElement::ATOM: {
+ uc16 c = elm.atom()->data()[0];
+ AddRange(CharacterRange(c, c));
+ break;
+ }
+ case TextElement::CHAR_CLASS: {
+ RegExpCharacterClass* tree = elm.char_class();
+ ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
+ if (tree->is_negated()) {
+ AddInverse(ranges);
+ } else {
+ for (int i = 0; i < ranges->length(); i++)
+ AddRange(ranges->at(i));
+ }
+ break;
+ }
+ default: {
+ UNIMPLEMENTED();
+ }
+ }
+}
+
+
+void DispatchTableConstructor::VisitAction(ActionNode* that) {
+ RegExpNode* target = that->on_success();
+ target->Accept(this);
+}
+
+
RegExpEngine::CompilationResult RegExpEngine::Compile(
- RegExpCompileData* data,
- const ParsedFunction* parsed_function,
- const ZoneGrowableArray<const ICData*>& ic_data_array) {
- Isolate* isolate = Isolate::Current();
-
- const Function& function = parsed_function->function();
- const intptr_t specialization_cid = function.regexp_cid();
- const bool is_one_byte = (specialization_cid == kOneByteStringCid ||
- specialization_cid == kExternalOneByteStringCid);
- JSRegExp& regexp = JSRegExp::Handle(isolate, function.regexp());
- const String& pattern = String::Handle(isolate, regexp.pattern());
-
- ASSERT(!regexp.IsNull());
- ASSERT(!pattern.IsNull());
-
- const bool ignore_case = regexp.is_ignore_case();
- const bool is_global = regexp.is_global();
-
- RegExpCompiler compiler(data->capture_count, ignore_case, specialization_cid);
-
- // TODO(zerny): Frequency sampling is currently disabled because of several
- // issues. We do not want to store subject strings in the regexp object since
- // they might be long and we should not prevent their garbage collection.
- // Passing them to this function explicitly does not help, since we must
- // generate exactly the same IR for both the unoptimizing and optimizing
- // pipelines (otherwise it gets confused when i.e. deopt id's differ).
- // An option would be to store sampling results in the regexp object, but
- // I'm not sure the performance gains are relevant enough.
+ RegExpCompileData* data, bool ignore_case, bool is_global,
+ bool is_multiline, bool is_sticky, Handle<String> pattern,
+ Handle<String> sample_subject, bool is_one_byte, Zone* zone) {
+ if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
+ return IrregexpRegExpTooBig(zone->isolate());
+ }
+ RegExpCompiler compiler(data->capture_count, ignore_case, is_one_byte, zone);
+
+ // Sample some characters from the middle of the string.
+ static const int kSampleSize = 128;
+
+ sample_subject = String::Flatten(sample_subject);
+ int chars_sampled = 0;
+ int half_way = (sample_subject->length() - kSampleSize) / 2;
+ for (int i = Max(0, half_way);
+ i < sample_subject->length() && chars_sampled < kSampleSize;
+ i++, chars_sampled++) {
+ compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
+ }
// Wrap the body of the regexp in capture #0.
RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
0,
&compiler,
compiler.accept());
-
RegExpNode* node = captured_body;
bool is_end_anchored = data->tree->IsAnchoredAtEnd();
bool is_start_anchored = data->tree->IsAnchoredAtStart();
- intptr_t max_length = data->tree->max_match();
- if (!is_start_anchored) {
+ int max_length = data->tree->max_match();
+ if (!is_start_anchored && !is_sticky) {
// Add a .*? at the beginning, outside the body capture, unless
- // this expression is anchored at the beginning.
+ // this expression is anchored at the beginning or sticky.
RegExpNode* loop_node =
RegExpQuantifier::ToNode(0,
RegExpTree::kInfinity,
false,
- new(isolate) RegExpCharacterClass('*'),
+ new(zone) RegExpCharacterClass('*'),
&compiler,
captured_body,
data->contains_anchor);
@@ -5030,11 +5347,10 @@ RegExpEngine::CompilationResult RegExpEngine::Compile(
if (data->contains_anchor) {
// Unroll loop once, to take care of the case that might start
// at the start of input.
- ChoiceNode* first_step_node = new(isolate) ChoiceNode(2, isolate);
+ ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
first_step_node->AddAlternative(GuardedAlternative(captured_body));
first_step_node->AddAlternative(GuardedAlternative(
- new(isolate) TextNode(
- new(isolate) RegExpCharacterClass('*'), loop_node)));
+ new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node)));
node = first_step_node;
} else {
node = loop_node;
@@ -5049,124 +5365,74 @@ RegExpEngine::CompilationResult RegExpEngine::Compile(
}
}
- if (node == NULL) node = new(isolate) EndNode(EndNode::BACKTRACK, isolate);
+ if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
data->node = node;
Analysis analysis(ignore_case, is_one_byte);
analysis.EnsureAnalyzed(node);
if (analysis.has_failed()) {
const char* error_message = analysis.error_message();
- return CompilationResult(error_message);
+ return CompilationResult(zone->isolate(), error_message);
}
+ // Create the correct assembler for the architecture.
+#ifndef V8_INTERPRETED_REGEXP
// Native regexp implementation.
- IRRegExpMacroAssembler* macro_assembler =
- new(isolate) IRRegExpMacroAssembler(specialization_cid,
- data->capture_count,
- parsed_function,
- ic_data_array,
- isolate);
+ NativeRegExpMacroAssembler::Mode mode =
+ is_one_byte ? NativeRegExpMacroAssembler::LATIN1
+ : NativeRegExpMacroAssembler::UC16;
+
+#if V8_TARGET_ARCH_IA32
+ RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_X64
+ RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_ARM
+ RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_ARM64
+ RegExpMacroAssemblerARM64 macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_MIPS
+ RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_MIPS64
+ RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#elif V8_TARGET_ARCH_X87
+ RegExpMacroAssemblerX87 macro_assembler(mode, (data->capture_count + 1) * 2,
+ zone);
+#else
+#error "Unsupported architecture"
+#endif
+
+#else // V8_INTERPRETED_REGEXP
+ // Interpreted regexp implementation.
+ EmbeddedVector<byte, 1024> codes;
+ RegExpMacroAssemblerIrregexp macro_assembler(codes, zone);
+#endif // V8_INTERPRETED_REGEXP
// Inserted here, instead of in Assembler, because it depends on information
// in the AST that isn't replicated in the Node structure.
- static const intptr_t kMaxBacksearchLimit = 1024;
+ static const int kMaxBacksearchLimit = 1024;
if (is_end_anchored &&
!is_start_anchored &&
max_length < kMaxBacksearchLimit) {
- macro_assembler->SetCurrentPositionFromEnd(max_length);
+ macro_assembler.SetCurrentPositionFromEnd(max_length);
}
if (is_global) {
- macro_assembler->set_global_mode(
+ macro_assembler.set_global_mode(
(data->tree->min_match() > 0)
? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
: RegExpMacroAssembler::GLOBAL);
}
- RegExpEngine::CompilationResult result =
- compiler.Assemble(macro_assembler,
- node,
- data->capture_count,
- pattern);
-
- if (FLAG_trace_irregexp) {
- macro_assembler->PrintBlocks();
- }
-
- return result;
+ return compiler.Assemble(&macro_assembler,
+ node,
+ data->capture_count,
+ pattern);
}
-
-static void CreateSpecializedFunction(Isolate* isolate,
- const JSRegExp& regexp,
- intptr_t specialization_cid,
- const Object& owner) {
- const intptr_t kParamCount = RegExpMacroAssembler::kParamCount;
-
- Function& fn = Function::Handle(isolate, Function::New(
- Symbols::IrregExp(),
- RawFunction::kIrregexpFunction,
- true, // Static.
- false, // Not const.
- false, // Not abstract.
- false, // Not external.
- false, // Not native.
- owner,
- 0)); // No token position.
-
- // TODO(zerny): Share these arrays between all irregexp functions.
- fn.set_num_fixed_parameters(kParamCount);
- fn.set_parameter_types(Array::Handle(isolate, Array::New(kParamCount,
- Heap::kOld)));
- fn.set_parameter_names(Array::Handle(isolate, Array::New(kParamCount,
- Heap::kOld)));
- fn.SetParameterTypeAt(0, Type::Handle(isolate, Type::DynamicType()));
- fn.SetParameterNameAt(0, Symbols::string_param());
- fn.SetParameterTypeAt(1, Type::Handle(isolate, Type::DynamicType()));
- fn.SetParameterNameAt(1, Symbols::start_index_param());
- fn.set_result_type(Type::Handle(isolate, Type::ArrayType()));
-
- // Cache the result.
- regexp.set_function(specialization_cid, fn);
-
- fn.set_regexp(regexp);
- fn.set_regexp_cid(specialization_cid);
-
- // The function is compiled lazily during the first call.
-}
-
-
-RawJSRegExp* RegExpEngine::CreateJSRegExp(Isolate* isolate,
- const String& pattern,
- bool multi_line,
- bool ignore_case) {
- const JSRegExp& regexp = JSRegExp::Handle(JSRegExp::New(0));
-
- regexp.set_pattern(pattern);
-
- if (multi_line) {
- regexp.set_is_multi_line();
- }
- if (ignore_case) {
- regexp.set_is_ignore_case();
- }
-
- // TODO(zerny): We might want to use normal string searching algorithms
- // for simple patterns.
- regexp.set_is_complex();
- regexp.set_is_global(); // All dart regexps are global.
-
- const Library& lib = Library::Handle(isolate, Library::CoreLibrary());
- const Class& owner = Class::Handle(
- isolate, lib.LookupClass(Symbols::RegExp()));
-
- CreateSpecializedFunction(isolate, regexp, kOneByteStringCid, owner);
- CreateSpecializedFunction(isolate, regexp, kTwoByteStringCid, owner);
- CreateSpecializedFunction(isolate, regexp, kExternalOneByteStringCid, owner);
- CreateSpecializedFunction(isolate, regexp, kExternalTwoByteStringCid, owner);
-
- return regexp.raw();
-}
-
-
} // namespace dart
« no previous file with comments | « runtime/vm/regexp.h ('k') | runtime/vm/regexp_assembler.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698