Index: runtime/vm/regexp.cc |
diff --git a/runtime/vm/regexp.cc b/runtime/vm/regexp.cc |
index d33fd45134f25ab142f65eee1736494e16bd50b4..534e0c5072dc380457539422f1121bdecd81b0a8 100644 |
--- a/runtime/vm/regexp.cc |
+++ b/runtime/vm/regexp.cc |
@@ -4,66 +4,29 @@ |
#include "vm/regexp.h" |
-#include "vm/dart_entry.h" |
-#include "vm/regexp_assembler.h" |
-#include "vm/regexp_ast.h" |
-#include "vm/unibrow-inl.h" |
-#include "vm/unicode.h" |
-#include "vm/symbols.h" |
- |
-#define I (isolate()) |
-#define CI (compiler->isolate()) |
+// SNIP |
namespace dart { |
-DECLARE_FLAG(bool, trace_irregexp); |
- |
-// Default to generating optimized regexp code. |
-static const bool kRegexpOptimization = true; |
- |
-// More makes code generation slower, less makes V8 benchmark score lower. |
-static const intptr_t kMaxLookaheadForBoyerMoore = 8; |
- |
-ContainedInLattice AddRange(ContainedInLattice containment, |
- const intptr_t* ranges, |
- intptr_t ranges_length, |
- Interval new_range) { |
- ASSERT((ranges_length & 1) == 1); |
- ASSERT(ranges[ranges_length - 1] == Utf16::kMaxCodeUnit + 1); |
- if (containment == kLatticeUnknown) return containment; |
- bool inside = false; |
- intptr_t last = 0; |
- for (intptr_t i = 0; i < ranges_length; |
- inside = !inside, last = ranges[i], i++) { |
- // Consider the range from last to ranges[i]. |
- // We haven't got to the new range yet. |
- if (ranges[i] <= new_range.from()) continue; |
- // New range is wholly inside last-ranges[i]. Note that new_range.to() is |
- // inclusive, but the values in ranges are not. |
- if (last <= new_range.from() && new_range.to() < ranges[i]) { |
- return Combine(containment, inside ? kLatticeIn : kLatticeOut); |
- } |
- return kLatticeUnknown; |
- } |
- return containment; |
-} |
+// SNIP |
// ------------------------------------------------------------------- |
// Implementation of the Irregexp regular expression engine. |
// |
// The Irregexp regular expression engine is intended to be a complete |
-// implementation of ECMAScript regular expressions. It generates |
-// IR code that is subsequently compiled to native code. |
+// implementation of ECMAScript regular expressions. It generates either |
+// bytecodes or native code. |
// The Irregexp regexp engine is structured in three steps. |
-// 1) The parser generates an abstract syntax tree. See regexp_ast.cc. |
+// 1) The parser generates an abstract syntax tree. See ast.cc. |
// 2) From the AST a node network is created. The nodes are all |
// subclasses of RegExpNode. The nodes represent states when |
// executing a regular expression. Several optimizations are |
// performed on the node network. |
-// 3) From the nodes we generate IR instructions that can actually |
-// execute the regular expression (perform the search). The |
-// code generation step is described in more detail below. |
+// 3) From the nodes we generate either byte codes or native code |
+// that can actually execute the regular expression (perform |
+// the search). The code generation step is described in more |
+// detail below. |
// Code generation. |
// |
@@ -86,8 +49,8 @@ ContainedInLattice AddRange(ContainedInLattice containment, |
// These are used to implement the actions required on finding |
// a successful match or failing to find a match. |
// |
-// The code generated maintains some state as it runs. This consists of the |
-// following elements: |
+// The code generated (whether as byte codes or native code) maintains |
+// some state as it runs. This consists of the following elements: |
// |
// * The capture registers. Used for string captures. |
// * Other registers. Used for counters etc. |
@@ -197,24 +160,24 @@ ContainedInLattice AddRange(ContainedInLattice containment, |
// the event that code generation is requested for an identical trace. |
-void RegExpTree::AppendToText(RegExpText* text) { |
+void RegExpTree::AppendToText(RegExpText* text, Zone* zone) { |
UNREACHABLE(); |
} |
-void RegExpAtom::AppendToText(RegExpText* text) { |
- text->AddElement(TextElement::Atom(this)); |
+void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) { |
+ text->AddElement(TextElement::Atom(this), zone); |
} |
-void RegExpCharacterClass::AppendToText(RegExpText* text) { |
- text->AddElement(TextElement::CharClass(this)); |
+void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) { |
+ text->AddElement(TextElement::CharClass(this), zone); |
} |
-void RegExpText::AppendToText(RegExpText* text) { |
- for (intptr_t i = 0; i < elements()->length(); i++) |
- text->AddElement((*elements())[i]); |
+void RegExpText::AppendToText(RegExpText* text, Zone* zone) { |
+ for (int i = 0; i < elements()->length(); i++) |
+ text->AddElement(elements()->at(i), zone); |
} |
@@ -228,7 +191,7 @@ TextElement TextElement::CharClass(RegExpCharacterClass* char_class) { |
} |
-intptr_t TextElement::length() const { |
+int TextElement::length() const { |
switch (text_type()) { |
case ATOM: |
return atom()->length(); |
@@ -241,26 +204,36 @@ intptr_t TextElement::length() const { |
} |
-class FrequencyCollator : public ValueObject { |
+DispatchTable* ChoiceNode::GetTable(bool ignore_case) { |
+ if (table_ == NULL) { |
+ table_ = new(zone()) DispatchTable(zone()); |
+ DispatchTableConstructor cons(table_, ignore_case, zone()); |
+ cons.BuildTable(this); |
+ } |
+ return table_; |
+} |
+ |
+ |
+class FrequencyCollator { |
public: |
FrequencyCollator() : total_samples_(0) { |
- for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) { |
+ for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) { |
frequencies_[i] = CharacterFrequency(i); |
} |
} |
- void CountCharacter(intptr_t character) { |
- intptr_t index = (character & RegExpMacroAssembler::kTableMask); |
+ void CountCharacter(int character) { |
+ int index = (character & RegExpMacroAssembler::kTableMask); |
frequencies_[index].Increment(); |
total_samples_++; |
} |
// Does not measure in percent, but rather per-128 (the table size from the |
// regexp macro assembler). |
- intptr_t Frequency(intptr_t in_character) { |
- ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character); |
+ int Frequency(int in_character) { |
+ DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character); |
if (total_samples_ < 1) return 1; // Division by zero. |
- intptr_t freq_in_per128 = |
+ int freq_in_per128 = |
(frequencies_[in_character].counter() * 128) / total_samples_; |
return freq_in_per128; |
} |
@@ -269,91 +242,88 @@ class FrequencyCollator : public ValueObject { |
class CharacterFrequency { |
public: |
CharacterFrequency() : counter_(0), character_(-1) { } |
- explicit CharacterFrequency(intptr_t character) |
+ explicit CharacterFrequency(int character) |
: counter_(0), character_(character) { } |
void Increment() { counter_++; } |
- intptr_t counter() { return counter_; } |
- intptr_t character() { return character_; } |
+ int counter() { return counter_; } |
+ int character() { return character_; } |
private: |
- intptr_t counter_; |
- intptr_t character_; |
- |
- DISALLOW_ALLOCATION(); |
+ int counter_; |
+ int character_; |
}; |
private: |
CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize]; |
- intptr_t total_samples_; |
+ int total_samples_; |
}; |
-class RegExpCompiler : public ValueObject { |
+class RegExpCompiler { |
public: |
- RegExpCompiler(intptr_t capture_count, |
- bool ignore_case, |
- intptr_t specialization_cid); |
+ RegExpCompiler(int capture_count, bool ignore_case, bool is_one_byte, |
+ Zone* zone); |
- intptr_t AllocateRegister() { |
+ int AllocateRegister() { |
+ if (next_register_ >= RegExpMacroAssembler::kMaxRegister) { |
+ reg_exp_too_big_ = true; |
+ return next_register_; |
+ } |
return next_register_++; |
} |
- RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler, |
+ RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler, |
RegExpNode* start, |
- intptr_t capture_count, |
- const String& pattern); |
+ int capture_count, |
+ Handle<String> pattern); |
inline void AddWork(RegExpNode* node) { work_list_->Add(node); } |
- static const intptr_t kImplementationOffset = 0; |
- static const intptr_t kNumberOfRegistersOffset = 0; |
- static const intptr_t kCodeOffset = 1; |
+ static const int kImplementationOffset = 0; |
+ static const int kNumberOfRegistersOffset = 0; |
+ static const int kCodeOffset = 1; |
- IRRegExpMacroAssembler* macro_assembler() { return macro_assembler_; } |
+ RegExpMacroAssembler* macro_assembler() { return macro_assembler_; } |
EndNode* accept() { return accept_; } |
- static const intptr_t kMaxRecursion = 100; |
- inline intptr_t recursion_depth() { return recursion_depth_; } |
+ static const int kMaxRecursion = 100; |
+ inline int recursion_depth() { return recursion_depth_; } |
inline void IncrementRecursionDepth() { recursion_depth_++; } |
inline void DecrementRecursionDepth() { recursion_depth_--; } |
void SetRegExpTooBig() { reg_exp_too_big_ = true; } |
inline bool ignore_case() { return ignore_case_; } |
- inline bool one_byte() const { |
- return (specialization_cid_ == kOneByteStringCid || |
- specialization_cid_ == kExternalOneByteStringCid); |
- } |
- inline intptr_t specialization_cid() { return specialization_cid_; } |
+ inline bool one_byte() { return one_byte_; } |
FrequencyCollator* frequency_collator() { return &frequency_collator_; } |
- intptr_t current_expansion_factor() { return current_expansion_factor_; } |
- void set_current_expansion_factor(intptr_t value) { |
+ int current_expansion_factor() { return current_expansion_factor_; } |
+ void set_current_expansion_factor(int value) { |
current_expansion_factor_ = value; |
} |
- Isolate* isolate() const { return isolate_; } |
+ Zone* zone() const { return zone_; } |
- static const intptr_t kNoRegister = -1; |
+ static const int kNoRegister = -1; |
private: |
EndNode* accept_; |
- intptr_t next_register_; |
- ZoneGrowableArray<RegExpNode*>* work_list_; |
- intptr_t recursion_depth_; |
- IRRegExpMacroAssembler* macro_assembler_; |
+ int next_register_; |
+ List<RegExpNode*>* work_list_; |
+ int recursion_depth_; |
+ RegExpMacroAssembler* macro_assembler_; |
bool ignore_case_; |
- intptr_t specialization_cid_; |
+ bool one_byte_; |
bool reg_exp_too_big_; |
- intptr_t current_expansion_factor_; |
+ int current_expansion_factor_; |
FrequencyCollator frequency_collator_; |
- Isolate* isolate_; |
+ Zone* zone_; |
}; |
-class RecursionCheck : public ValueObject { |
+class RecursionCheck { |
public: |
explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) { |
compiler->IncrementRecursionDepth(); |
@@ -364,60 +334,84 @@ class RecursionCheck : public ValueObject { |
}; |
-static RegExpEngine::CompilationResult IrregexpRegExpTooBig() { |
- return RegExpEngine::CompilationResult("RegExp too big"); |
+static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) { |
+ return RegExpEngine::CompilationResult(isolate, "RegExp too big"); |
} |
// Attempts to compile the regexp using an Irregexp code generator. Returns |
// a fixed array or a null handle depending on whether it succeeded. |
-RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case, |
- intptr_t specialization_cid) |
+RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case, |
+ bool one_byte, Zone* zone) |
: next_register_(2 * (capture_count + 1)), |
work_list_(NULL), |
recursion_depth_(0), |
ignore_case_(ignore_case), |
- specialization_cid_(specialization_cid), |
+ one_byte_(one_byte), |
reg_exp_too_big_(false), |
current_expansion_factor_(1), |
- isolate_(Isolate::Current()) { |
- accept_ = new(I) EndNode(EndNode::ACCEPT, I); |
+ frequency_collator_(), |
+ zone_(zone) { |
+ accept_ = new(zone) EndNode(EndNode::ACCEPT, zone); |
+ DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister); |
} |
RegExpEngine::CompilationResult RegExpCompiler::Assemble( |
- IRRegExpMacroAssembler* macro_assembler, |
+ RegExpMacroAssembler* macro_assembler, |
RegExpNode* start, |
- intptr_t capture_count, |
- const String& pattern) { |
- static const bool use_slow_safe_regexp_compiler = false; |
+ int capture_count, |
+ Handle<String> pattern) { |
+ Heap* heap = pattern->GetHeap(); |
+ |
+ bool use_slow_safe_regexp_compiler = false; |
+ if (heap->total_regexp_code_generated() > |
+ RegExpImpl::kRegWxpCompiledLimit && |
+ heap->isolate()->memory_allocator()->SizeExecutable() > |
+ RegExpImpl::kRegExpExecutableMemoryLimit) { |
+ use_slow_safe_regexp_compiler = true; |
+ } |
macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler); |
- macro_assembler_ = macro_assembler; |
- ZoneGrowableArray<RegExpNode*> work_list(0); |
+#ifdef DEBUG |
+ if (FLAG_trace_regexp_assembler) |
+ macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler); |
+ else |
+#endif |
+ macro_assembler_ = macro_assembler; |
+ |
+ List <RegExpNode*> work_list(0); |
work_list_ = &work_list; |
- BlockLabel fail; |
+ Label fail; |
macro_assembler_->PushBacktrack(&fail); |
Trace new_trace; |
start->Emit(this, &new_trace); |
- macro_assembler_->BindBlock(&fail); |
+ macro_assembler_->Bind(&fail); |
macro_assembler_->Fail(); |
while (!work_list.is_empty()) { |
work_list.RemoveLast()->Emit(this, &new_trace); |
} |
- if (reg_exp_too_big_) return IrregexpRegExpTooBig(); |
- |
- macro_assembler->GenerateBacktrackBlock(); |
+ if (reg_exp_too_big_) return IrregexpRegExpTooBig(zone_->isolate()); |
- return RegExpEngine::CompilationResult(macro_assembler->backtrack_goto(), |
- macro_assembler->graph_entry(), |
- macro_assembler->num_blocks(), |
- macro_assembler->num_stack_locals()); |
+ Handle<HeapObject> code = macro_assembler_->GetCode(pattern); |
+ heap->IncreaseTotalRegexpCodeGenerated(code->Size()); |
+ work_list_ = NULL; |
+#ifdef DEBUG |
+ if (FLAG_print_code) { |
+ CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer()); |
+ OFStream os(trace_scope.file()); |
+ Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os); |
+ } |
+ if (FLAG_trace_regexp_assembler) { |
+ delete macro_assembler_; |
+ } |
+#endif |
+ return RegExpEngine::CompilationResult(*code, next_register_); |
} |
-bool Trace::DeferredAction::Mentions(intptr_t that) { |
+bool Trace::DeferredAction::Mentions(int that) { |
if (action_type() == ActionNode::CLEAR_CAPTURES) { |
Interval range = static_cast<DeferredClearCaptures*>(this)->range(); |
return range.Contains(that); |
@@ -427,7 +421,7 @@ bool Trace::DeferredAction::Mentions(intptr_t that) { |
} |
-bool Trace::mentions_reg(intptr_t reg) { |
+bool Trace::mentions_reg(int reg) { |
for (DeferredAction* action = actions_; |
action != NULL; |
action = action->next()) { |
@@ -438,8 +432,8 @@ bool Trace::mentions_reg(intptr_t reg) { |
} |
-bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) { |
- ASSERT(*cp_offset == 0); |
+bool Trace::GetStoredPosition(int reg, int* cp_offset) { |
+ DCHECK_EQ(0, *cp_offset); |
for (DeferredAction* action = actions_; |
action != NULL; |
action = action->next()) { |
@@ -456,22 +450,19 @@ bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) { |
} |
-// This is called as we come into a loop choice node and some other tricky |
-// nodes. It normalizes the state of the code generator to ensure we can |
-// generate generic code. |
-intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers, |
- Isolate* isolate) { |
- intptr_t max_register = RegExpCompiler::kNoRegister; |
+int Trace::FindAffectedRegisters(OutSet* affected_registers, |
+ Zone* zone) { |
+ int max_register = RegExpCompiler::kNoRegister; |
for (DeferredAction* action = actions_; |
action != NULL; |
action = action->next()) { |
if (action->action_type() == ActionNode::CLEAR_CAPTURES) { |
Interval range = static_cast<DeferredClearCaptures*>(action)->range(); |
- for (intptr_t i = range.from(); i <= range.to(); i++) |
- affected_registers->Set(i, isolate); |
+ for (int i = range.from(); i <= range.to(); i++) |
+ affected_registers->Set(i, zone); |
if (range.to() > max_register) max_register = range.to(); |
} else { |
- affected_registers->Set(action->reg(), isolate); |
+ affected_registers->Set(action->reg(), zone); |
if (action->reg() > max_register) max_register = action->reg(); |
} |
} |
@@ -480,14 +471,14 @@ intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers, |
void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, |
- intptr_t max_register, |
+ int max_register, |
const OutSet& registers_to_pop, |
const OutSet& registers_to_clear) { |
- for (intptr_t reg = max_register; reg >= 0; reg--) { |
+ for (int reg = max_register; reg >= 0; reg--) { |
if (registers_to_pop.Get(reg)) { |
assembler->PopRegister(reg); |
} else if (registers_to_clear.Get(reg)) { |
- intptr_t clear_to = reg; |
+ int clear_to = reg; |
while (reg > 0 && registers_to_clear.Get(reg - 1)) { |
reg--; |
} |
@@ -498,12 +489,18 @@ void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler, |
void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
- intptr_t max_register, |
+ int max_register, |
const OutSet& affected_registers, |
OutSet* registers_to_pop, |
OutSet* registers_to_clear, |
- Isolate* isolate) { |
- for (intptr_t reg = 0; reg <= max_register; reg++) { |
+ Zone* zone) { |
+ // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1. |
+ const int push_limit = (assembler->stack_limit_slack() + 1) / 2; |
+ |
+ // Count pushes performed to force a stack limit check occasionally. |
+ int pushes = 0; |
+ |
+ for (int reg = 0; reg <= max_register; reg++) { |
if (!affected_registers.Get(reg)) { |
continue; |
} |
@@ -514,10 +511,10 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR }; |
DeferredActionUndoType undo_action = IGNORE; |
- intptr_t value = 0; |
+ int value = 0; |
bool absolute = false; |
bool clear = false; |
- intptr_t store_position = -1; |
+ int store_position = -1; |
// This is a little tricky because we are scanning the actions in reverse |
// historical order (newest first). |
for (DeferredAction* action = actions_; |
@@ -538,16 +535,16 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
// we can set undo_action to IGNORE if we know there is no value to |
// restore. |
undo_action = RESTORE; |
- ASSERT(store_position == -1); |
- ASSERT(!clear); |
+ DCHECK_EQ(store_position, -1); |
+ DCHECK(!clear); |
break; |
} |
case ActionNode::INCREMENT_REGISTER: |
if (!absolute) { |
value++; |
} |
- ASSERT(store_position == -1); |
- ASSERT(!clear); |
+ DCHECK_EQ(store_position, -1); |
+ DCHECK(!clear); |
undo_action = RESTORE; |
break; |
case ActionNode::STORE_POSITION: { |
@@ -569,8 +566,8 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
} else { |
undo_action = pc->is_capture() ? CLEAR : RESTORE; |
} |
- ASSERT(!absolute); |
- ASSERT(value == 0); |
+ DCHECK(!absolute); |
+ DCHECK_EQ(value, 0); |
break; |
} |
case ActionNode::CLEAR_CAPTURES: { |
@@ -581,8 +578,8 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
clear = true; |
} |
undo_action = RESTORE; |
- ASSERT(!absolute); |
- ASSERT(value == 0); |
+ DCHECK(!absolute); |
+ DCHECK_EQ(value, 0); |
break; |
} |
default: |
@@ -593,10 +590,18 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
} |
// Prepare for the undo-action (e.g., push if it's going to be popped). |
if (undo_action == RESTORE) { |
- assembler->PushRegister(reg); |
- registers_to_pop->Set(reg, isolate); |
+ pushes++; |
+ RegExpMacroAssembler::StackCheckFlag stack_check = |
+ RegExpMacroAssembler::kNoStackLimitCheck; |
+ if (pushes == push_limit) { |
+ stack_check = RegExpMacroAssembler::kCheckStackLimit; |
+ pushes = 0; |
+ } |
+ |
+ assembler->PushRegister(reg, stack_check); |
+ registers_to_pop->Set(reg, zone); |
} else if (undo_action == CLEAR) { |
- registers_to_clear->Set(reg, isolate); |
+ registers_to_clear->Set(reg, zone); |
} |
// Perform the chronologically last action (or accumulated increment) |
// for the register. |
@@ -619,7 +624,7 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler, |
void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { |
RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
- ASSERT(!is_trivial()); |
+ DCHECK(!is_trivial()); |
if (actions_ == NULL && backtrack() == NULL) { |
// Here we just have some deferred cp advances to fix and we are back to |
@@ -642,7 +647,8 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { |
assembler->PushCurrentPosition(); |
} |
- intptr_t max_register = FindAffectedRegisters(&affected_registers, CI); |
+ int max_register = FindAffectedRegisters(&affected_registers, |
+ compiler->zone()); |
OutSet registers_to_pop; |
OutSet registers_to_clear; |
PerformDeferredActions(assembler, |
@@ -650,19 +656,19 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) { |
affected_registers, |
®isters_to_pop, |
®isters_to_clear, |
- CI); |
+ compiler->zone()); |
if (cp_offset_ != 0) { |
assembler->AdvanceCurrentPosition(cp_offset_); |
} |
// Create a new trivial state and generate the node with that. |
- BlockLabel undo; |
+ Label undo; |
assembler->PushBacktrack(&undo); |
Trace new_state; |
successor->Emit(compiler, &new_state); |
// On backtrack we need to restore state. |
- assembler->BindBlock(&undo); |
+ assembler->Bind(&undo); |
RestoreAffectedRegisters(assembler, |
max_register, |
registers_to_pop, |
@@ -681,10 +687,10 @@ void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) { |
// Omit flushing the trace. We discard the entire stack frame anyway. |
- if (!label()->IsBound()) { |
+ if (!label()->is_bound()) { |
// We are completely independent of the trace, since we ignore it, |
// so this code can be used as the generic version. |
- assembler->BindBlock(label()); |
+ assembler->Bind(label()); |
} |
// Throw away everything on the backtrack stack since the start |
@@ -709,8 +715,8 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
return; |
} |
RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
- if (!label()->IsBound()) { |
- assembler->BindBlock(label()); |
+ if (!label()->is_bound()) { |
+ assembler->Bind(label()); |
} |
switch (action_) { |
case ACCEPT: |
@@ -727,38 +733,37 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
} |
-void GuardedAlternative::AddGuard(Guard* guard, Isolate* isolate) { |
+void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) { |
if (guards_ == NULL) |
- guards_ = new(isolate) ZoneGrowableArray<Guard*>(1); |
- guards_->Add(guard); |
+ guards_ = new(zone) ZoneList<Guard*>(1, zone); |
+ guards_->Add(guard, zone); |
} |
-ActionNode* ActionNode::SetRegister(intptr_t reg, |
- intptr_t val, |
+ActionNode* ActionNode::SetRegister(int reg, |
+ int val, |
RegExpNode* on_success) { |
ActionNode* result = |
- new(on_success->isolate()) ActionNode(SET_REGISTER, on_success); |
+ new(on_success->zone()) ActionNode(SET_REGISTER, on_success); |
result->data_.u_store_register.reg = reg; |
result->data_.u_store_register.value = val; |
return result; |
} |
-ActionNode* ActionNode::IncrementRegister(intptr_t reg, |
- RegExpNode* on_success) { |
+ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) { |
ActionNode* result = |
- new(on_success->isolate()) ActionNode(INCREMENT_REGISTER, on_success); |
+ new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success); |
result->data_.u_increment_register.reg = reg; |
return result; |
} |
-ActionNode* ActionNode::StorePosition(intptr_t reg, |
+ActionNode* ActionNode::StorePosition(int reg, |
bool is_capture, |
RegExpNode* on_success) { |
ActionNode* result = |
- new(on_success->isolate()) ActionNode(STORE_POSITION, on_success); |
+ new(on_success->zone()) ActionNode(STORE_POSITION, on_success); |
result->data_.u_position_register.reg = reg; |
result->data_.u_position_register.is_capture = is_capture; |
return result; |
@@ -768,32 +773,31 @@ ActionNode* ActionNode::StorePosition(intptr_t reg, |
ActionNode* ActionNode::ClearCaptures(Interval range, |
RegExpNode* on_success) { |
ActionNode* result = |
- new(on_success->isolate()) ActionNode(CLEAR_CAPTURES, on_success); |
+ new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success); |
result->data_.u_clear_captures.range_from = range.from(); |
result->data_.u_clear_captures.range_to = range.to(); |
return result; |
} |
-ActionNode* ActionNode::BeginSubmatch(intptr_t stack_reg, |
- intptr_t position_reg, |
+ActionNode* ActionNode::BeginSubmatch(int stack_reg, |
+ int position_reg, |
RegExpNode* on_success) { |
ActionNode* result = |
- new(on_success->isolate()) ActionNode(BEGIN_SUBMATCH, on_success); |
+ new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success); |
result->data_.u_submatch.stack_pointer_register = stack_reg; |
result->data_.u_submatch.current_position_register = position_reg; |
return result; |
} |
-ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg, |
- intptr_t position_reg, |
- intptr_t clear_register_count, |
- intptr_t clear_register_from, |
+ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg, |
+ int position_reg, |
+ int clear_register_count, |
+ int clear_register_from, |
RegExpNode* on_success) { |
ActionNode* result = |
- new(on_success->isolate()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, |
- on_success); |
+ new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success); |
result->data_.u_submatch.stack_pointer_register = stack_reg; |
result->data_.u_submatch.current_position_register = position_reg; |
result->data_.u_submatch.clear_register_count = clear_register_count; |
@@ -802,12 +806,12 @@ ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg, |
} |
-ActionNode* ActionNode::EmptyMatchCheck(intptr_t start_register, |
- intptr_t repetition_register, |
- intptr_t repetition_limit, |
+ActionNode* ActionNode::EmptyMatchCheck(int start_register, |
+ int repetition_register, |
+ int repetition_limit, |
RegExpNode* on_success) { |
ActionNode* result = |
- new(on_success->isolate()) ActionNode(EMPTY_MATCH_CHECK, on_success); |
+ new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success); |
result->data_.u_empty_match_check.start_register = start_register; |
result->data_.u_empty_match_check.repetition_register = repetition_register; |
result->data_.u_empty_match_check.repetition_limit = repetition_limit; |
@@ -837,13 +841,13 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, |
Trace* trace) { |
switch (guard->op()) { |
case Guard::LT: |
- ASSERT(!trace->mentions_reg(guard->reg())); |
+ DCHECK(!trace->mentions_reg(guard->reg())); |
macro_assembler->IfRegisterGE(guard->reg(), |
guard->value(), |
trace->backtrack()); |
break; |
case Guard::GEQ: |
- ASSERT(!trace->mentions_reg(guard->reg())); |
+ DCHECK(!trace->mentions_reg(guard->reg())); |
macro_assembler->IfRegisterLT(guard->reg(), |
guard->value(), |
trace->backtrack()); |
@@ -854,18 +858,18 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler, |
// Returns the number of characters in the equivalence class, omitting those |
// that cannot occur in the source string because it is ASCII. |
-static intptr_t GetCaseIndependentLetters(uint16_t character, |
- bool one_byte_subject, |
- int32_t* letters) { |
- unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize; |
- intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters); |
+static int GetCaseIndependentLetters(Isolate* isolate, uc16 character, |
+ bool one_byte_subject, |
+ unibrow::uchar* letters) { |
+ int length = |
+ isolate->jsregexp_uncanonicalize()->get(character, '\0', letters); |
// Unibrow returns 0 or 1 for characters where case independence is |
// trivial. |
if (length == 0) { |
letters[0] = character; |
length = 1; |
} |
- if (!one_byte_subject || character <= Symbols::kMaxOneCharCodeSymbol) { |
+ if (!one_byte_subject || character <= String::kMaxOneByteCharCode) { |
return length; |
} |
@@ -879,9 +883,9 @@ static intptr_t GetCaseIndependentLetters(uint16_t character, |
static inline bool EmitSimpleCharacter(Isolate* isolate, |
RegExpCompiler* compiler, |
- uint16_t c, |
- BlockLabel* on_failure, |
- intptr_t cp_offset, |
+ uc16 c, |
+ Label* on_failure, |
+ int cp_offset, |
bool check, |
bool preloaded) { |
RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
@@ -902,15 +906,15 @@ static inline bool EmitSimpleCharacter(Isolate* isolate, |
// independent matches. |
static inline bool EmitAtomNonLetter(Isolate* isolate, |
RegExpCompiler* compiler, |
- uint16_t c, |
- BlockLabel* on_failure, |
- intptr_t cp_offset, |
+ uc16 c, |
+ Label* on_failure, |
+ int cp_offset, |
bool check, |
bool preloaded) { |
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
bool one_byte = compiler->one_byte(); |
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
- intptr_t length = GetCaseIndependentLetters(c, one_byte, chars); |
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
+ int length = GetCaseIndependentLetters(isolate, c, one_byte, chars); |
if (length < 1) { |
// This can't match. Must be an one-byte subject and a non-one-byte |
// character. We do not need to do anything since the one-byte pass |
@@ -920,7 +924,7 @@ static inline bool EmitAtomNonLetter(Isolate* isolate, |
bool checked = false; |
// We handle the length > 1 case in a later pass. |
if (length == 1) { |
- if (one_byte && c > Symbols::kMaxOneCharCodeSymbol) { |
+ if (one_byte && c > String::kMaxOneByteCharCodeU) { |
// Can't match - see above. |
return false; // Bounds not checked. |
} |
@@ -935,34 +939,32 @@ static inline bool EmitAtomNonLetter(Isolate* isolate, |
static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, |
- bool one_byte, |
- uint16_t c1, |
- uint16_t c2, |
- BlockLabel* on_failure) { |
- uint16_t char_mask; |
+ bool one_byte, uc16 c1, uc16 c2, |
+ Label* on_failure) { |
+ uc16 char_mask; |
if (one_byte) { |
- char_mask = Symbols::kMaxOneCharCodeSymbol; |
+ char_mask = String::kMaxOneByteCharCode; |
} else { |
- char_mask = Utf16::kMaxCodeUnit; |
+ char_mask = String::kMaxUtf16CodeUnit; |
} |
- uint16_t exor = c1 ^ c2; |
+ uc16 exor = c1 ^ c2; |
// Check whether exor has only one bit set. |
if (((exor - 1) & exor) == 0) { |
// If c1 and c2 differ only by one bit. |
// Ecma262UnCanonicalize always gives the highest number last. |
- ASSERT(c2 > c1); |
- uint16_t mask = char_mask ^ exor; |
+ DCHECK(c2 > c1); |
+ uc16 mask = char_mask ^ exor; |
macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure); |
return true; |
} |
- ASSERT(c2 > c1); |
- uint16_t diff = c2 - c1; |
+ DCHECK(c2 > c1); |
+ uc16 diff = c2 - c1; |
if (((diff - 1) & diff) == 0 && c1 >= diff) { |
// If the characters differ by 2^n but don't differ by one bit then |
// subtract the difference from the found character, then do the or |
// trick. We avoid the theoretical case where negative numbers are |
// involved in order to simplify code generation. |
- uint16_t mask = char_mask ^ diff; |
+ uc16 mask = char_mask ^ diff; |
macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff, |
diff, |
mask, |
@@ -975,9 +977,9 @@ static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler, |
typedef bool EmitCharacterFunction(Isolate* isolate, |
RegExpCompiler* compiler, |
- uint16_t c, |
- BlockLabel* on_failure, |
- intptr_t cp_offset, |
+ uc16 c, |
+ Label* on_failure, |
+ int cp_offset, |
bool check, |
bool preloaded); |
@@ -985,34 +987,31 @@ typedef bool EmitCharacterFunction(Isolate* isolate, |
// matches. |
static inline bool EmitAtomLetter(Isolate* isolate, |
RegExpCompiler* compiler, |
- uint16_t c, |
- BlockLabel* on_failure, |
- intptr_t cp_offset, |
+ uc16 c, |
+ Label* on_failure, |
+ int cp_offset, |
bool check, |
bool preloaded) { |
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
bool one_byte = compiler->one_byte(); |
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
- intptr_t length = GetCaseIndependentLetters(c, one_byte, chars); |
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
+ int length = GetCaseIndependentLetters(isolate, c, one_byte, chars); |
if (length <= 1) return false; |
// We may not need to check against the end of the input string |
// if this character lies before a character that matched. |
if (!preloaded) { |
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check); |
} |
- BlockLabel ok; |
- ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); |
+ Label ok; |
+ DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4); |
switch (length) { |
case 2: { |
- if (ShortCutEmitCharacterPair(macro_assembler, |
- one_byte, |
- chars[0], |
- chars[1], |
- on_failure)) { |
+ if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0], |
+ chars[1], on_failure)) { |
} else { |
macro_assembler->CheckCharacter(chars[0], &ok); |
macro_assembler->CheckNotCharacter(chars[1], on_failure); |
- macro_assembler->BindBlock(&ok); |
+ macro_assembler->Bind(&ok); |
} |
break; |
} |
@@ -1023,7 +1022,7 @@ static inline bool EmitAtomLetter(Isolate* isolate, |
macro_assembler->CheckCharacter(chars[0], &ok); |
macro_assembler->CheckCharacter(chars[1], &ok); |
macro_assembler->CheckNotCharacter(chars[2], on_failure); |
- macro_assembler->BindBlock(&ok); |
+ macro_assembler->Bind(&ok); |
break; |
default: |
UNREACHABLE(); |
@@ -1034,10 +1033,10 @@ static inline bool EmitAtomLetter(Isolate* isolate, |
static void EmitBoundaryTest(RegExpMacroAssembler* masm, |
- intptr_t border, |
- BlockLabel* fall_through, |
- BlockLabel* above_or_equal, |
- BlockLabel* below) { |
+ int border, |
+ Label* fall_through, |
+ Label* above_or_equal, |
+ Label* below) { |
if (below != fall_through) { |
masm->CheckCharacterLT(border, below); |
if (above_or_equal != fall_through) masm->GoTo(above_or_equal); |
@@ -1048,11 +1047,11 @@ static void EmitBoundaryTest(RegExpMacroAssembler* masm, |
static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, |
- intptr_t first, |
- intptr_t last, |
- BlockLabel* fall_through, |
- BlockLabel* in_range, |
- BlockLabel* out_of_range) { |
+ int first, |
+ int last, |
+ Label* fall_through, |
+ Label* in_range, |
+ Label* out_of_range) { |
if (in_range == fall_through) { |
if (first == last) { |
masm->CheckNotCharacter(first, out_of_range); |
@@ -1074,28 +1073,29 @@ static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm, |
// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd. |
static void EmitUseLookupTable( |
RegExpMacroAssembler* masm, |
- ZoneGrowableArray<int>* ranges, |
- intptr_t start_index, |
- intptr_t end_index, |
- intptr_t min_char, |
- BlockLabel* fall_through, |
- BlockLabel* even_label, |
- BlockLabel* odd_label) { |
- static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
- static const intptr_t kMask = RegExpMacroAssembler::kTableMask; |
- |
- intptr_t base = (min_char & ~kMask); |
+ ZoneList<int>* ranges, |
+ int start_index, |
+ int end_index, |
+ int min_char, |
+ Label* fall_through, |
+ Label* even_label, |
+ Label* odd_label) { |
+ static const int kSize = RegExpMacroAssembler::kTableSize; |
+ static const int kMask = RegExpMacroAssembler::kTableMask; |
+ |
+ int base = (min_char & ~kMask); |
+ USE(base); |
// Assert that everything is on one kTableSize page. |
- for (intptr_t i = start_index; i <= end_index; i++) { |
- ASSERT((ranges->At(i) & ~kMask) == base); |
+ for (int i = start_index; i <= end_index; i++) { |
+ DCHECK_EQ(ranges->at(i) & ~kMask, base); |
} |
- ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base); |
+ DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base); |
char templ[kSize]; |
- BlockLabel* on_bit_set; |
- BlockLabel* on_bit_clear; |
- intptr_t bit; |
+ Label* on_bit_set; |
+ Label* on_bit_clear; |
+ int bit; |
if (even_label == fall_through) { |
on_bit_set = odd_label; |
on_bit_clear = even_label; |
@@ -1105,27 +1105,25 @@ static void EmitUseLookupTable( |
on_bit_clear = odd_label; |
bit = 0; |
} |
- for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize; |
- i++) { |
+ for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) { |
templ[i] = bit; |
} |
- intptr_t j = 0; |
+ int j = 0; |
bit ^= 1; |
- for (intptr_t i = start_index; i < end_index; i++) { |
- for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) { |
+ for (int i = start_index; i < end_index; i++) { |
+ for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) { |
templ[j] = bit; |
} |
bit ^= 1; |
} |
- for (intptr_t i = j; i < kSize; i++) { |
+ for (int i = j; i < kSize; i++) { |
templ[i] = bit; |
} |
+ Factory* factory = masm->zone()->isolate()->factory(); |
// TODO(erikcorry): Cache these. |
- const TypedData& ba = TypedData::ZoneHandle( |
- masm->isolate(), |
- TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld)); |
- for (intptr_t i = 0; i < kSize; i++) { |
- ba.SetUint8(i, templ[i]); |
+ Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED); |
+ for (int i = 0; i < kSize; i++) { |
+ ba->set(i, templ[i]); |
} |
masm->CheckBitInTable(ba, on_bit_set); |
if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear); |
@@ -1133,52 +1131,52 @@ static void EmitUseLookupTable( |
static void CutOutRange(RegExpMacroAssembler* masm, |
- ZoneGrowableArray<int>* ranges, |
- intptr_t start_index, |
- intptr_t end_index, |
- intptr_t cut_index, |
- BlockLabel* even_label, |
- BlockLabel* odd_label) { |
+ ZoneList<int>* ranges, |
+ int start_index, |
+ int end_index, |
+ int cut_index, |
+ Label* even_label, |
+ Label* odd_label) { |
bool odd = (((cut_index - start_index) & 1) == 1); |
- BlockLabel* in_range_label = odd ? odd_label : even_label; |
- BlockLabel dummy; |
+ Label* in_range_label = odd ? odd_label : even_label; |
+ Label dummy; |
EmitDoubleBoundaryTest(masm, |
- ranges->At(cut_index), |
- ranges->At(cut_index + 1) - 1, |
+ ranges->at(cut_index), |
+ ranges->at(cut_index + 1) - 1, |
&dummy, |
in_range_label, |
&dummy); |
- ASSERT(!dummy.IsLinked()); |
+ DCHECK(!dummy.is_linked()); |
// Cut out the single range by rewriting the array. This creates a new |
// range that is a merger of the two ranges on either side of the one we |
// are cutting out. The oddity of the labels is preserved. |
- for (intptr_t j = cut_index; j > start_index; j--) { |
- (*ranges)[j] = ranges->At(j - 1); |
+ for (int j = cut_index; j > start_index; j--) { |
+ ranges->at(j) = ranges->at(j - 1); |
} |
- for (intptr_t j = cut_index + 1; j < end_index; j++) { |
- (*ranges)[j] = ranges->At(j + 1); |
+ for (int j = cut_index + 1; j < end_index; j++) { |
+ ranges->at(j) = ranges->at(j + 1); |
} |
} |
// Unicode case. Split the search space into kSize spaces that are handled |
// with recursion. |
-static void SplitSearchSpace(ZoneGrowableArray<int>* ranges, |
- intptr_t start_index, |
- intptr_t end_index, |
- intptr_t* new_start_index, |
- intptr_t* new_end_index, |
- intptr_t* border) { |
- static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
- static const intptr_t kMask = RegExpMacroAssembler::kTableMask; |
- |
- intptr_t first = ranges->At(start_index); |
- intptr_t last = ranges->At(end_index) - 1; |
+static void SplitSearchSpace(ZoneList<int>* ranges, |
+ int start_index, |
+ int end_index, |
+ int* new_start_index, |
+ int* new_end_index, |
+ int* border) { |
+ static const int kSize = RegExpMacroAssembler::kTableSize; |
+ static const int kMask = RegExpMacroAssembler::kTableMask; |
+ |
+ int first = ranges->at(start_index); |
+ int last = ranges->at(end_index) - 1; |
*new_start_index = start_index; |
- *border = (ranges->At(start_index) & ~kMask) + kSize; |
+ *border = (ranges->at(start_index) & ~kMask) + kSize; |
while (*new_start_index < end_index) { |
- if (ranges->At(*new_start_index) > *border) break; |
+ if (ranges->at(*new_start_index) > *border) break; |
(*new_start_index)++; |
} |
// new_start_index is the index of the first edge that is beyond the |
@@ -1192,21 +1190,20 @@ static void SplitSearchSpace(ZoneGrowableArray<int>* ranges, |
// 128-character space can take up a lot of space in the ranges array if, |
// for example, we only want to match every second character (eg. the lower |
// case characters on some Unicode pages). |
- intptr_t binary_chop_index = (end_index + start_index) / 2; |
+ int binary_chop_index = (end_index + start_index) / 2; |
// The first test ensures that we get to the code that handles the Latin1 |
// range with a single not-taken branch, speeding up this important |
// character range (even non-Latin1 charset-based text has spaces and |
// punctuation). |
- if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // Latin1 case. |
+ if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case. |
end_index - start_index > (*new_start_index - start_index) * 2 && |
- last - first > kSize * 2 && |
- binary_chop_index > *new_start_index && |
- ranges->At(binary_chop_index) >= first + 2 * kSize) { |
- intptr_t scan_forward_for_section_border = binary_chop_index;; |
- intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1; |
+ last - first > kSize * 2 && binary_chop_index > *new_start_index && |
+ ranges->at(binary_chop_index) >= first + 2 * kSize) { |
+ int scan_forward_for_section_border = binary_chop_index;; |
+ int new_border = (ranges->at(binary_chop_index) | kMask) + 1; |
while (scan_forward_for_section_border < end_index) { |
- if (ranges->At(scan_forward_for_section_border) > new_border) { |
+ if (ranges->at(scan_forward_for_section_border) > new_border) { |
*new_start_index = scan_forward_for_section_border; |
*border = new_border; |
break; |
@@ -1215,13 +1212,13 @@ static void SplitSearchSpace(ZoneGrowableArray<int>* ranges, |
} |
} |
- ASSERT(*new_start_index > start_index); |
+ DCHECK(*new_start_index > start_index); |
*new_end_index = *new_start_index - 1; |
- if (ranges->At(*new_end_index) == *border) { |
+ if (ranges->at(*new_end_index) == *border) { |
(*new_end_index)--; |
} |
- if (*border >= ranges->At(end_index)) { |
- *border = ranges->At(end_index); |
+ if (*border >= ranges->at(end_index)) { |
+ *border = ranges->at(end_index); |
*new_start_index = end_index; // Won't be used. |
*new_end_index = end_index - 1; |
} |
@@ -1235,18 +1232,18 @@ static void SplitSearchSpace(ZoneGrowableArray<int>* ranges, |
// Either label can be NULL indicating backtracking. Either label can also be |
// equal to the fall_through label. |
static void GenerateBranches(RegExpMacroAssembler* masm, |
- ZoneGrowableArray<int>* ranges, |
- intptr_t start_index, |
- intptr_t end_index, |
- uint16_t min_char, |
- uint16_t max_char, |
- BlockLabel* fall_through, |
- BlockLabel* even_label, |
- BlockLabel* odd_label) { |
- intptr_t first = ranges->At(start_index); |
- intptr_t last = ranges->At(end_index) - 1; |
- |
- ASSERT(min_char < first); |
+ ZoneList<int>* ranges, |
+ int start_index, |
+ int end_index, |
+ uc16 min_char, |
+ uc16 max_char, |
+ Label* fall_through, |
+ Label* even_label, |
+ Label* odd_label) { |
+ int first = ranges->at(start_index); |
+ int last = ranges->at(end_index) - 1; |
+ |
+ DCHECK_LT(min_char, first); |
// Just need to test if the character is before or on-or-after |
// a particular character. |
@@ -1268,10 +1265,10 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
if (end_index - start_index <= 6) { |
// It is faster to test for individual characters, so we look for those |
// first, then try arbitrary ranges in the second round. |
- static intptr_t kNoCutIndex = -1; |
- intptr_t cut = kNoCutIndex; |
- for (intptr_t i = start_index; i < end_index; i++) { |
- if (ranges->At(i) == ranges->At(i + 1) - 1) { |
+ static int kNoCutIndex = -1; |
+ int cut = kNoCutIndex; |
+ for (int i = start_index; i < end_index; i++) { |
+ if (ranges->at(i) == ranges->at(i + 1) - 1) { |
cut = i; |
break; |
} |
@@ -1279,7 +1276,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
if (cut == kNoCutIndex) cut = start_index; |
CutOutRange( |
masm, ranges, start_index, end_index, cut, even_label, odd_label); |
- ASSERT(end_index - start_index >= 2); |
+ DCHECK_GE(end_index - start_index, 2); |
GenerateBranches(masm, |
ranges, |
start_index + 1, |
@@ -1294,7 +1291,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
// If there are a lot of intervals in the regexp, then we will use tables to |
// determine whether the character is inside or outside the character class. |
- static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits; |
+ static const int kBits = RegExpMacroAssembler::kTableSizeBits; |
if ((max_char >> kBits) == (min_char >> kBits)) { |
EmitUseLookupTable(masm, |
@@ -1322,9 +1319,9 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
return; |
} |
- intptr_t new_start_index = 0; |
- intptr_t new_end_index = 0; |
- intptr_t border = 0; |
+ int new_start_index = 0; |
+ int new_end_index = 0; |
+ int border = 0; |
SplitSearchSpace(ranges, |
start_index, |
@@ -1333,34 +1330,34 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
&new_end_index, |
&border); |
- BlockLabel handle_rest; |
- BlockLabel* above = &handle_rest; |
+ Label handle_rest; |
+ Label* above = &handle_rest; |
if (border == last + 1) { |
// We didn't find any section that started after the limit, so everything |
// above the border is one of the terminal labels. |
above = (end_index & 1) != (start_index & 1) ? odd_label : even_label; |
- ASSERT(new_end_index == end_index - 1); |
+ DCHECK(new_end_index == end_index - 1); |
} |
- ASSERT(start_index <= new_end_index); |
- ASSERT(new_start_index <= end_index); |
- ASSERT(start_index < new_start_index); |
- ASSERT(new_end_index < end_index); |
- ASSERT(new_end_index + 1 == new_start_index || |
+ DCHECK_LE(start_index, new_end_index); |
+ DCHECK_LE(new_start_index, end_index); |
+ DCHECK_LT(start_index, new_start_index); |
+ DCHECK_LT(new_end_index, end_index); |
+ DCHECK(new_end_index + 1 == new_start_index || |
(new_end_index + 2 == new_start_index && |
- border == ranges->At(new_end_index + 1))); |
- ASSERT(min_char < border - 1); |
- ASSERT(border < max_char); |
- ASSERT(ranges->At(new_end_index) < border); |
- ASSERT(border < ranges->At(new_start_index) || |
- (border == ranges->At(new_start_index) && |
+ border == ranges->at(new_end_index + 1))); |
+ DCHECK_LT(min_char, border - 1); |
+ DCHECK_LT(border, max_char); |
+ DCHECK_LT(ranges->at(new_end_index), border); |
+ DCHECK(border < ranges->at(new_start_index) || |
+ (border == ranges->at(new_start_index) && |
new_start_index == end_index && |
new_end_index == end_index - 1 && |
border == last + 1)); |
- ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1)); |
+ DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1)); |
masm->CheckCharacterGT(border - 1, above); |
- BlockLabel dummy; |
+ Label dummy; |
GenerateBranches(masm, |
ranges, |
start_index, |
@@ -1370,9 +1367,8 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
&dummy, |
even_label, |
odd_label); |
- |
- if (handle_rest.IsLinked()) { |
- masm->BindBlock(&handle_rest); |
+ if (handle_rest.is_linked()) { |
+ masm->Bind(&handle_rest); |
bool flip = (new_start_index & 1) != (start_index & 1); |
GenerateBranches(masm, |
ranges, |
@@ -1388,30 +1384,26 @@ static void GenerateBranches(RegExpMacroAssembler* masm, |
static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
- RegExpCharacterClass* cc, |
- bool one_byte, |
- BlockLabel* on_failure, |
- intptr_t cp_offset, |
- bool check_offset, |
- bool preloaded, |
- Isolate* isolate) { |
- ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
+ RegExpCharacterClass* cc, bool one_byte, |
+ Label* on_failure, int cp_offset, bool check_offset, |
+ bool preloaded, Zone* zone) { |
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone); |
if (!CharacterRange::IsCanonical(ranges)) { |
CharacterRange::Canonicalize(ranges); |
} |
- intptr_t max_char; |
+ int max_char; |
if (one_byte) { |
- max_char = Symbols::kMaxOneCharCodeSymbol; |
+ max_char = String::kMaxOneByteCharCode; |
} else { |
- max_char = Utf16::kMaxCodeUnit; |
+ max_char = String::kMaxUtf16CodeUnit; |
} |
- intptr_t range_count = ranges->length(); |
+ int range_count = ranges->length(); |
- intptr_t last_valid_range = range_count - 1; |
+ int last_valid_range = range_count - 1; |
while (last_valid_range >= 0) { |
- CharacterRange& range = (*ranges)[last_valid_range]; |
+ CharacterRange& range = ranges->at(last_valid_range); |
if (range.from() <= max_char) { |
break; |
} |
@@ -1429,7 +1421,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
} |
if (last_valid_range == 0 && |
- ranges->At(0).IsEverything(max_char)) { |
+ ranges->at(0).IsEverything(max_char)) { |
if (cc->is_negated()) { |
macro_assembler->GoTo(on_failure); |
} else { |
@@ -1442,7 +1434,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
} |
if (last_valid_range == 0 && |
!cc->is_negated() && |
- ranges->At(0).IsEverything(max_char)) { |
+ ranges->at(0).IsEverything(max_char)) { |
// This is a common case hit by non-anchored expressions. |
if (check_offset) { |
macro_assembler->CheckPosition(cp_offset, on_failure); |
@@ -1454,7 +1446,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset); |
} |
- if (cc->is_standard() && |
+ if (cc->is_standard(zone) && |
macro_assembler->CheckSpecialCharacterClass(cc->standard_type(), |
on_failure)) { |
return; |
@@ -1467,27 +1459,27 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
// entry at zero which goes to the failure label, but if there |
// was already one there we fall through for success on that entry. |
// Subsequent entries have alternating meaning (success/failure). |
- ZoneGrowableArray<int>* range_boundaries = |
- new(isolate) ZoneGrowableArray<int>(last_valid_range); |
+ ZoneList<int>* range_boundaries = |
+ new(zone) ZoneList<int>(last_valid_range, zone); |
bool zeroth_entry_is_failure = !cc->is_negated(); |
- for (intptr_t i = 0; i <= last_valid_range; i++) { |
- CharacterRange& range = (*ranges)[i]; |
+ for (int i = 0; i <= last_valid_range; i++) { |
+ CharacterRange& range = ranges->at(i); |
if (range.from() == 0) { |
- ASSERT(i == 0); |
+ DCHECK_EQ(i, 0); |
zeroth_entry_is_failure = !zeroth_entry_is_failure; |
} else { |
- range_boundaries->Add(range.from()); |
+ range_boundaries->Add(range.from(), zone); |
} |
- range_boundaries->Add(range.to() + 1); |
+ range_boundaries->Add(range.to() + 1, zone); |
} |
- intptr_t end_index = range_boundaries->length() - 1; |
- if (range_boundaries->At(end_index) > max_char) { |
+ int end_index = range_boundaries->length() - 1; |
+ if (range_boundaries->at(end_index) > max_char) { |
end_index--; |
} |
- BlockLabel fall_through; |
+ Label fall_through; |
GenerateBranches(macro_assembler, |
range_boundaries, |
0, // start_index. |
@@ -1497,7 +1489,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler, |
&fall_through, |
zeroth_entry_is_failure ? &fall_through : on_failure, |
zeroth_entry_is_failure ? on_failure : &fall_through); |
- macro_assembler->BindBlock(&fall_through); |
+ macro_assembler->Bind(&fall_through); |
} |
@@ -1514,7 +1506,7 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, |
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
if (trace->is_trivial()) { |
- if (label_.IsBound()) { |
+ if (label_.is_bound()) { |
// We are being asked to generate a generic version, but that's already |
// been done so just go to it. |
macro_assembler->GoTo(&label_); |
@@ -1528,14 +1520,14 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, |
return DONE; |
} |
// Generate generic version of the node and bind the label for later use. |
- macro_assembler->BindBlock(&label_); |
+ macro_assembler->Bind(&label_); |
return CONTINUE; |
} |
// We are being asked to make a non-generic version. Keep track of how many |
// non-generic versions we generate so as not to overdo it. |
trace_count_++; |
- if (kRegexpOptimization && |
+ if (FLAG_regexp_optimization && |
trace_count_ < kMaxCopiesCodeGenerated && |
compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) { |
return CONTINUE; |
@@ -1549,9 +1541,9 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler, |
} |
-intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find, |
- intptr_t budget, |
- bool not_at_start) { |
+int ActionNode::EatsAtLeast(int still_to_find, |
+ int budget, |
+ bool not_at_start) { |
if (budget <= 0) return 0; |
if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input! |
return on_success()->EatsAtLeast(still_to_find, |
@@ -1560,8 +1552,8 @@ intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find, |
} |
-void ActionNode::FillInBMInfo(intptr_t offset, |
- intptr_t budget, |
+void ActionNode::FillInBMInfo(int offset, |
+ int budget, |
BoyerMooreLookahead* bm, |
bool not_at_start) { |
if (action_type_ == BEGIN_SUBMATCH) { |
@@ -1573,9 +1565,9 @@ void ActionNode::FillInBMInfo(intptr_t offset, |
} |
-intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find, |
- intptr_t budget, |
- bool not_at_start) { |
+int AssertionNode::EatsAtLeast(int still_to_find, |
+ int budget, |
+ bool not_at_start) { |
if (budget <= 0) return 0; |
// If we know we are not at the start and we are asked "how many characters |
// will you match if you succeed?" then we can answer anything since false |
@@ -1589,8 +1581,8 @@ intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find, |
} |
-void AssertionNode::FillInBMInfo(intptr_t offset, |
- intptr_t budget, |
+void AssertionNode::FillInBMInfo(int offset, |
+ int budget, |
BoyerMooreLookahead* bm, |
bool not_at_start) { |
// Match the behaviour of EatsAtLeast on this node. |
@@ -1600,9 +1592,9 @@ void AssertionNode::FillInBMInfo(intptr_t offset, |
} |
-intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find, |
- intptr_t budget, |
- bool not_at_start) { |
+int BackReferenceNode::EatsAtLeast(int still_to_find, |
+ int budget, |
+ bool not_at_start) { |
if (budget <= 0) return 0; |
return on_success()->EatsAtLeast(still_to_find, |
budget - 1, |
@@ -1610,10 +1602,10 @@ intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find, |
} |
-intptr_t TextNode::EatsAtLeast(intptr_t still_to_find, |
- intptr_t budget, |
- bool not_at_start) { |
- intptr_t answer = Length(); |
+int TextNode::EatsAtLeast(int still_to_find, |
+ int budget, |
+ bool not_at_start) { |
+ int answer = Length(); |
if (answer >= still_to_find) return answer; |
if (budget <= 0) return answer; |
// We are not at start after this node so we set the last argument to 'true'. |
@@ -1623,13 +1615,13 @@ intptr_t TextNode::EatsAtLeast(intptr_t still_to_find, |
} |
-intptr_t NegativeLookaheadChoiceNode::EatsAtLeast(intptr_t still_to_find, |
- intptr_t budget, |
- bool not_at_start) { |
+int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find, |
+ int budget, |
+ bool not_at_start) { |
if (budget <= 0) return 0; |
// Alternative 0 is the negative lookahead, alternative 1 is what comes |
// afterwards. |
- RegExpNode* node = (*alternatives_)[1].node(); |
+ RegExpNode* node = alternatives_->at(1).node(); |
return node->EatsAtLeast(still_to_find, budget - 1, not_at_start); |
} |
@@ -1637,27 +1629,27 @@ intptr_t NegativeLookaheadChoiceNode::EatsAtLeast(intptr_t still_to_find, |
void NegativeLookaheadChoiceNode::GetQuickCheckDetails( |
QuickCheckDetails* details, |
RegExpCompiler* compiler, |
- intptr_t filled_in, |
+ int filled_in, |
bool not_at_start) { |
// Alternative 0 is the negative lookahead, alternative 1 is what comes |
// afterwards. |
- RegExpNode* node = (*alternatives_)[1].node(); |
+ RegExpNode* node = alternatives_->at(1).node(); |
return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start); |
} |
-intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find, |
- intptr_t budget, |
- RegExpNode* ignore_this_node, |
- bool not_at_start) { |
+int ChoiceNode::EatsAtLeastHelper(int still_to_find, |
+ int budget, |
+ RegExpNode* ignore_this_node, |
+ bool not_at_start) { |
if (budget <= 0) return 0; |
- intptr_t min = 100; |
- intptr_t choice_count = alternatives_->length(); |
+ int min = 100; |
+ int choice_count = alternatives_->length(); |
budget = (budget - 1) / choice_count; |
- for (intptr_t i = 0; i < choice_count; i++) { |
- RegExpNode* node = (*alternatives_)[i].node(); |
+ for (int i = 0; i < choice_count; i++) { |
+ RegExpNode* node = alternatives_->at(i).node(); |
if (node == ignore_this_node) continue; |
- intptr_t node_eats_at_least = |
+ int node_eats_at_least = |
node->EatsAtLeast(still_to_find, budget, not_at_start); |
if (node_eats_at_least < min) min = node_eats_at_least; |
if (min == 0) return 0; |
@@ -1666,9 +1658,9 @@ intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find, |
} |
-intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find, |
- intptr_t budget, |
- bool not_at_start) { |
+int LoopChoiceNode::EatsAtLeast(int still_to_find, |
+ int budget, |
+ bool not_at_start) { |
return EatsAtLeastHelper(still_to_find, |
budget - 1, |
loop_node_, |
@@ -1676,9 +1668,9 @@ intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find, |
} |
-intptr_t ChoiceNode::EatsAtLeast(intptr_t still_to_find, |
- intptr_t budget, |
- bool not_at_start) { |
+int ChoiceNode::EatsAtLeast(int still_to_find, |
+ int budget, |
+ bool not_at_start) { |
return EatsAtLeastHelper(still_to_find, |
budget, |
NULL, |
@@ -1701,16 +1693,16 @@ bool QuickCheckDetails::Rationalize(bool asc) { |
bool found_useful_op = false; |
uint32_t char_mask; |
if (asc) { |
- char_mask = Symbols::kMaxOneCharCodeSymbol; |
+ char_mask = String::kMaxOneByteCharCode; |
} else { |
- char_mask = Utf16::kMaxCodeUnit; |
+ char_mask = String::kMaxUtf16CodeUnit; |
} |
mask_ = 0; |
value_ = 0; |
- intptr_t char_shift = 0; |
- for (intptr_t i = 0; i < characters_; i++) { |
+ int char_shift = 0; |
+ for (int i = 0; i < characters_; i++) { |
Position* pos = &positions_[i]; |
- if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) { |
+ if ((pos->mask & String::kMaxOneByteCharCode) != 0) { |
found_useful_op = true; |
} |
mask_ |= (pos->mask & char_mask) << char_shift; |
@@ -1725,7 +1717,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
Trace* bounds_check_trace, |
Trace* trace, |
bool preload_has_checked_bounds, |
- BlockLabel* on_possible_success, |
+ Label* on_possible_success, |
QuickCheckDetails* details, |
bool fall_through_on_failure) { |
if (details->characters() == 0) return false; |
@@ -1733,7 +1725,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE); |
if (details->cannot_match()) return false; |
if (!details->Rationalize(compiler->one_byte())) return false; |
- ASSERT(details->characters() == 1 || |
+ DCHECK(details->characters() == 1 || |
compiler->macro_assembler()->CanReadUnaligned()); |
uint32_t mask = details->mask(); |
uint32_t value = details->value(); |
@@ -1741,7 +1733,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
if (trace->characters_preloaded() != details->characters()) { |
- ASSERT(trace->cp_offset() == bounds_check_trace->cp_offset()); |
+ DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset()); |
// We are attempting to preload the minimum number of characters |
// any choice would eat, so if the bounds check fails, then none of the |
// choices can succeed, so we can just immediately backtrack, rather |
@@ -1760,9 +1752,9 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
// load so the value is already masked down. |
uint32_t char_mask; |
if (compiler->one_byte()) { |
- char_mask = Symbols::kMaxOneCharCodeSymbol; |
+ char_mask = String::kMaxOneByteCharCode; |
} else { |
- char_mask = Utf16::kMaxCodeUnit; |
+ char_mask = String::kMaxUtf16CodeUnit; |
} |
if ((mask & char_mask) == char_mask) need_mask = false; |
mask &= char_mask; |
@@ -1805,32 +1797,28 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler, |
// generating a quick check. |
void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
RegExpCompiler* compiler, |
- intptr_t characters_filled_in, |
+ int characters_filled_in, |
bool not_at_start) { |
-#if defined(__GNUC__) |
- // TODO(zerny): Make the combination code byte-order independent. |
- ASSERT(details->characters() == 1 || |
- (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__)); |
-#endif |
- ASSERT(characters_filled_in < details->characters()); |
- intptr_t characters = details->characters(); |
- intptr_t char_mask; |
+ Isolate* isolate = compiler->macro_assembler()->zone()->isolate(); |
+ DCHECK(characters_filled_in < details->characters()); |
+ int characters = details->characters(); |
+ int char_mask; |
if (compiler->one_byte()) { |
- char_mask = Symbols::kMaxOneCharCodeSymbol; |
+ char_mask = String::kMaxOneByteCharCode; |
} else { |
- char_mask = Utf16::kMaxCodeUnit; |
+ char_mask = String::kMaxUtf16CodeUnit; |
} |
- for (intptr_t k = 0; k < elms_->length(); k++) { |
- TextElement elm = elms_->At(k); |
+ for (int k = 0; k < elms_->length(); k++) { |
+ TextElement elm = elms_->at(k); |
if (elm.text_type() == TextElement::ATOM) { |
- ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
- for (intptr_t i = 0; i < characters && i < quarks->length(); i++) { |
+ Vector<const uc16> quarks = elm.atom()->data(); |
+ for (int i = 0; i < characters && i < quarks.length(); i++) { |
QuickCheckDetails::Position* pos = |
details->positions(characters_filled_in); |
- uint16_t c = quarks->At(i); |
+ uc16 c = quarks[i]; |
if (c > char_mask) { |
// If we expect a non-Latin1 character from an one-byte string, |
- // there is no way we can match. Not even case independent |
+ // there is no way we can match. Not even case-independent |
// matching can turn an Latin1 character into non-Latin1 or |
// vice versa. |
// TODO(dcarney): issue 3550. Verify that this works as expected. |
@@ -1840,10 +1828,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
return; |
} |
if (compiler->ignore_case()) { |
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
- intptr_t length = |
- GetCaseIndependentLetters(c, compiler->one_byte(), chars); |
- ASSERT(length != 0); // Can only happen if c > char_mask (see above). |
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
+ int length = GetCaseIndependentLetters(isolate, c, |
+ compiler->one_byte(), chars); |
+ DCHECK(length != 0); // Can only happen if c > char_mask (see above). |
if (length == 1) { |
// This letter has no case equivalents, so it's nice and simple |
// and the mask-compare will determine definitely whether we have |
@@ -1854,7 +1842,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
} else { |
uint32_t common_bits = char_mask; |
uint32_t bits = chars[0]; |
- for (intptr_t j = 1; j < length; j++) { |
+ for (int j = 1; j < length; j++) { |
uint32_t differing_bits = ((chars[j] & common_bits) ^ bits); |
common_bits ^= differing_bits; |
bits &= common_bits; |
@@ -1879,7 +1867,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
pos->determines_perfectly = true; |
} |
characters_filled_in++; |
- ASSERT(characters_filled_in <= details->characters()); |
+ DCHECK(characters_filled_in <= details->characters()); |
if (characters_filled_in == details->characters()) { |
return; |
} |
@@ -1888,7 +1876,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
QuickCheckDetails::Position* pos = |
details->positions(characters_filled_in); |
RegExpCharacterClass* tree = elm.char_class(); |
- ZoneGrowableArray<CharacterRange>* ranges = tree->ranges(); |
+ ZoneList<CharacterRange>* ranges = tree->ranges(zone()); |
if (tree->is_negated()) { |
// A quick check uses multi-character mask and compare. There is no |
// useful way to incorporate a negative char class into this scheme |
@@ -1897,8 +1885,8 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
pos->mask = 0; |
pos->value = 0; |
} else { |
- intptr_t first_range = 0; |
- while (ranges->At(first_range).from() > char_mask) { |
+ int first_range = 0; |
+ while (ranges->at(first_range).from() > char_mask) { |
first_range++; |
if (first_range == ranges->length()) { |
details->set_cannot_match(); |
@@ -1906,9 +1894,9 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
return; |
} |
} |
- CharacterRange range = ranges->At(first_range); |
- uint16_t from = range.from(); |
- uint16_t to = range.to(); |
+ CharacterRange range = ranges->at(first_range); |
+ uc16 from = range.from(); |
+ uc16 to = range.to(); |
if (to > char_mask) { |
to = char_mask; |
} |
@@ -1921,10 +1909,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
} |
uint32_t common_bits = ~SmearBitsRight(differing_bits); |
uint32_t bits = (from & common_bits); |
- for (intptr_t i = first_range + 1; i < ranges->length(); i++) { |
- CharacterRange range = ranges->At(i); |
- uint16_t from = range.from(); |
- uint16_t to = range.to(); |
+ for (int i = first_range + 1; i < ranges->length(); i++) { |
+ CharacterRange range = ranges->at(i); |
+ uc16 from = range.from(); |
+ uc16 to = range.to(); |
if (from > char_mask) continue; |
if (to > char_mask) to = char_mask; |
// Here we are combining more ranges into the mask and compare |
@@ -1945,13 +1933,13 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details, |
pos->value = bits; |
} |
characters_filled_in++; |
- ASSERT(characters_filled_in <= details->characters()); |
+ DCHECK(characters_filled_in <= details->characters()); |
if (characters_filled_in == details->characters()) { |
return; |
} |
} |
} |
- ASSERT(characters_filled_in != details->characters()); |
+ DCHECK(characters_filled_in != details->characters()); |
if (!details->cannot_match()) { |
on_success()-> GetQuickCheckDetails(details, |
compiler, |
@@ -1971,16 +1959,16 @@ void QuickCheckDetails::Clear() { |
} |
-void QuickCheckDetails::Advance(intptr_t by, bool one_byte) { |
- ASSERT(by >= 0); |
+void QuickCheckDetails::Advance(int by, bool one_byte) { |
+ DCHECK(by >= 0); |
if (by >= characters_) { |
Clear(); |
return; |
} |
- for (intptr_t i = 0; i < characters_ - by; i++) { |
+ for (int i = 0; i < characters_ - by; i++) { |
positions_[i] = positions_[by + i]; |
} |
- for (intptr_t i = characters_ - by; i < characters_; i++) { |
+ for (int i = characters_ - by; i < characters_; i++) { |
positions_[i].mask = 0; |
positions_[i].value = 0; |
positions_[i].determines_perfectly = false; |
@@ -1992,8 +1980,8 @@ void QuickCheckDetails::Advance(intptr_t by, bool one_byte) { |
} |
-void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) { |
- ASSERT(characters_ == other->characters_); |
+void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) { |
+ DCHECK(characters_ == other->characters_); |
if (other->cannot_match_) { |
return; |
} |
@@ -2001,7 +1989,7 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) { |
*this = *other; |
return; |
} |
- for (intptr_t i = from_index; i < characters_; i++) { |
+ for (int i = from_index; i < characters_; i++) { |
QuickCheckDetails::Position* pos = positions(i); |
QuickCheckDetails::Position* other_pos = other->positions(i); |
if (pos->mask != other_pos->mask || |
@@ -2014,17 +2002,17 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) { |
pos->mask &= other_pos->mask; |
pos->value &= pos->mask; |
other_pos->value &= pos->mask; |
- uint16_t differing_bits = (pos->value ^ other_pos->value); |
+ uc16 differing_bits = (pos->value ^ other_pos->value); |
pos->mask &= ~differing_bits; |
pos->value &= pos->mask; |
} |
} |
-class VisitMarker : public ValueObject { |
+class VisitMarker { |
public: |
explicit VisitMarker(NodeInfo* info) : info_(info) { |
- ASSERT(!info->visited); |
+ DCHECK(!info->visited); |
info->visited = true; |
} |
~VisitMarker() { |
@@ -2035,16 +2023,16 @@ class VisitMarker : public ValueObject { |
}; |
-RegExpNode* SeqRegExpNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
+RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) { |
if (info()->replacement_calculated) return replacement(); |
if (depth < 0) return this; |
- ASSERT(!info()->visited); |
+ DCHECK(!info()->visited); |
VisitMarker marker(info()); |
return FilterSuccessor(depth - 1, ignore_case); |
} |
-RegExpNode* SeqRegExpNode::FilterSuccessor(intptr_t depth, bool ignore_case) { |
+RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) { |
RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case); |
if (next == NULL) return set_replacement(NULL); |
on_success_ = next; |
@@ -2060,74 +2048,58 @@ static inline bool RangeContainsLatin1Equivalents(CharacterRange range) { |
} |
-static bool RangesContainLatin1Equivalents( |
- ZoneGrowableArray<CharacterRange>* ranges) { |
- for (intptr_t i = 0; i < ranges->length(); i++) { |
+static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) { |
+ for (int i = 0; i < ranges->length(); i++) { |
// TODO(dcarney): this could be a lot more efficient. |
- if (RangeContainsLatin1Equivalents(ranges->At(i))) return true; |
+ if (RangeContainsLatin1Equivalents(ranges->at(i))) return true; |
} |
return false; |
} |
-static uint16_t ConvertNonLatin1ToLatin1(uint16_t c) { |
- ASSERT(c > Symbols::kMaxOneCharCodeSymbol); |
- switch (c) { |
- // This are equivalent characters in unicode. |
- case 0x39c: |
- case 0x3bc: |
- return 0xb5; |
- // This is an uppercase of a Latin-1 character |
- // outside of Latin-1. |
- case 0x178: |
- return 0xff; |
- } |
- return 0; |
-} |
- |
- |
-RegExpNode* TextNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
+RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) { |
if (info()->replacement_calculated) return replacement(); |
if (depth < 0) return this; |
- ASSERT(!info()->visited); |
+ DCHECK(!info()->visited); |
VisitMarker marker(info()); |
- intptr_t element_count = elms_->length(); |
- for (intptr_t i = 0; i < element_count; i++) { |
- TextElement elm = elms_->At(i); |
+ int element_count = elms_->length(); |
+ for (int i = 0; i < element_count; i++) { |
+ TextElement elm = elms_->at(i); |
if (elm.text_type() == TextElement::ATOM) { |
- ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
- for (intptr_t j = 0; j < quarks->length(); j++) { |
- uint16_t c = quarks->At(j); |
- if (c <= Symbols::kMaxOneCharCodeSymbol) continue; |
+ Vector<const uc16> quarks = elm.atom()->data(); |
+ for (int j = 0; j < quarks.length(); j++) { |
+ uint16_t c = quarks[j]; |
+ if (c <= String::kMaxOneByteCharCode) continue; |
if (!ignore_case) return set_replacement(NULL); |
// Here, we need to check for characters whose upper and lower cases |
// are outside the Latin-1 range. |
- uint16_t converted = ConvertNonLatin1ToLatin1(c); |
+ uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c); |
// Character is outside Latin-1 completely |
if (converted == 0) return set_replacement(NULL); |
// Convert quark to Latin-1 in place. |
- (*quarks)[0] = converted; |
+ uint16_t* copy = const_cast<uint16_t*>(quarks.start()); |
+ copy[j] = converted; |
} |
} else { |
- ASSERT(elm.text_type() == TextElement::CHAR_CLASS); |
+ DCHECK(elm.text_type() == TextElement::CHAR_CLASS); |
RegExpCharacterClass* cc = elm.char_class(); |
- ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone()); |
if (!CharacterRange::IsCanonical(ranges)) { |
CharacterRange::Canonicalize(ranges); |
} |
// Now they are in order so we only need to look at the first. |
- intptr_t range_count = ranges->length(); |
+ int range_count = ranges->length(); |
if (cc->is_negated()) { |
if (range_count != 0 && |
- ranges->At(0).from() == 0 && |
- ranges->At(0).to() >= Symbols::kMaxOneCharCodeSymbol) { |
+ ranges->at(0).from() == 0 && |
+ ranges->at(0).to() >= String::kMaxOneByteCharCode) { |
// This will be handled in a later filter. |
if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; |
return set_replacement(NULL); |
} |
} else { |
if (range_count == 0 || |
- ranges->At(0).from() > Symbols::kMaxOneCharCodeSymbol) { |
+ ranges->at(0).from() > String::kMaxOneByteCharCode) { |
// This will be handled in a later filter. |
if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue; |
return set_replacement(NULL); |
@@ -2139,7 +2111,7 @@ RegExpNode* TextNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
} |
-RegExpNode* LoopChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
+RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) { |
if (info()->replacement_calculated) return replacement(); |
if (depth < 0) return this; |
if (info()->visited) return this; |
@@ -2157,30 +2129,30 @@ RegExpNode* LoopChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
} |
-RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
+RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) { |
if (info()->replacement_calculated) return replacement(); |
if (depth < 0) return this; |
if (info()->visited) return this; |
VisitMarker marker(info()); |
- intptr_t choice_count = alternatives_->length(); |
+ int choice_count = alternatives_->length(); |
- for (intptr_t i = 0; i < choice_count; i++) { |
- GuardedAlternative alternative = alternatives_->At(i); |
+ for (int i = 0; i < choice_count; i++) { |
+ GuardedAlternative alternative = alternatives_->at(i); |
if (alternative.guards() != NULL && alternative.guards()->length() != 0) { |
set_replacement(this); |
return this; |
} |
} |
- intptr_t surviving = 0; |
+ int surviving = 0; |
RegExpNode* survivor = NULL; |
- for (intptr_t i = 0; i < choice_count; i++) { |
- GuardedAlternative alternative = alternatives_->At(i); |
+ for (int i = 0; i < choice_count; i++) { |
+ GuardedAlternative alternative = alternatives_->at(i); |
RegExpNode* replacement = |
alternative.node()->FilterOneByte(depth - 1, ignore_case); |
- ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK. |
+ DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK. |
if (replacement != NULL) { |
- (*alternatives_)[i].set_node(replacement); |
+ alternatives_->at(i).set_node(replacement); |
surviving++; |
survivor = replacement; |
} |
@@ -2193,14 +2165,14 @@ RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
} |
// Only some of the nodes survived the filtering. We need to rebuild the |
// alternatives list. |
- ZoneGrowableArray<GuardedAlternative>* new_alternatives = |
- new(I) ZoneGrowableArray<GuardedAlternative>(surviving); |
- for (intptr_t i = 0; i < choice_count; i++) { |
+ ZoneList<GuardedAlternative>* new_alternatives = |
+ new(zone()) ZoneList<GuardedAlternative>(surviving, zone()); |
+ for (int i = 0; i < choice_count; i++) { |
RegExpNode* replacement = |
- (*alternatives_)[i].node()->FilterOneByte(depth - 1, ignore_case); |
+ alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case); |
if (replacement != NULL) { |
- (*alternatives_)[i].set_node(replacement); |
- new_alternatives->Add((*alternatives_)[i]); |
+ alternatives_->at(i).set_node(replacement); |
+ new_alternatives->Add(alternatives_->at(i), zone()); |
} |
} |
alternatives_ = new_alternatives; |
@@ -2208,7 +2180,7 @@ RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) { |
} |
-RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(intptr_t depth, |
+RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth, |
bool ignore_case) { |
if (info()->replacement_calculated) return replacement(); |
if (depth < 0) return this; |
@@ -2216,24 +2188,24 @@ RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(intptr_t depth, |
VisitMarker marker(info()); |
// Alternative 0 is the negative lookahead, alternative 1 is what comes |
// afterwards. |
- RegExpNode* node = (*alternatives_)[1].node(); |
+ RegExpNode* node = alternatives_->at(1).node(); |
RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case); |
if (replacement == NULL) return set_replacement(NULL); |
- (*alternatives_)[1].set_node(replacement); |
+ alternatives_->at(1).set_node(replacement); |
- RegExpNode* neg_node = (*alternatives_)[0].node(); |
+ RegExpNode* neg_node = alternatives_->at(0).node(); |
RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case); |
// If the negative lookahead is always going to fail then |
// we don't need to check it. |
if (neg_replacement == NULL) return set_replacement(replacement); |
- (*alternatives_)[0].set_node(neg_replacement); |
+ alternatives_->at(0).set_node(neg_replacement); |
return set_replacement(this); |
} |
void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
RegExpCompiler* compiler, |
- intptr_t characters_filled_in, |
+ int characters_filled_in, |
bool not_at_start) { |
if (body_can_be_zero_length_ || info()->visited) return; |
VisitMarker marker(info()); |
@@ -2244,8 +2216,8 @@ void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
} |
-void LoopChoiceNode::FillInBMInfo(intptr_t offset, |
- intptr_t budget, |
+void LoopChoiceNode::FillInBMInfo(int offset, |
+ int budget, |
BoyerMooreLookahead* bm, |
bool not_at_start) { |
if (body_can_be_zero_length_ || budget <= 0) { |
@@ -2260,18 +2232,18 @@ void LoopChoiceNode::FillInBMInfo(intptr_t offset, |
void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
RegExpCompiler* compiler, |
- intptr_t characters_filled_in, |
+ int characters_filled_in, |
bool not_at_start) { |
not_at_start = (not_at_start || not_at_start_); |
- intptr_t choice_count = alternatives_->length(); |
- ASSERT(choice_count > 0); |
- (*alternatives_)[0].node()->GetQuickCheckDetails(details, |
+ int choice_count = alternatives_->length(); |
+ DCHECK(choice_count > 0); |
+ alternatives_->at(0).node()->GetQuickCheckDetails(details, |
compiler, |
characters_filled_in, |
not_at_start); |
- for (intptr_t i = 1; i < choice_count; i++) { |
+ for (int i = 1; i < choice_count; i++) { |
QuickCheckDetails new_details(details->characters()); |
- RegExpNode* node = (*alternatives_)[i].node(); |
+ RegExpNode* node = alternatives_->at(i).node(); |
node->GetQuickCheckDetails(&new_details, compiler, |
characters_filled_in, |
not_at_start); |
@@ -2283,8 +2255,8 @@ void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details, |
// Check for [0-9A-Z_a-z]. |
static void EmitWordCheck(RegExpMacroAssembler* assembler, |
- BlockLabel* word, |
- BlockLabel* non_word, |
+ Label* word, |
+ Label* non_word, |
bool fall_through_on_word) { |
if (assembler->CheckSpecialCharacterClass( |
fall_through_on_word ? 'w' : 'W', |
@@ -2317,7 +2289,7 @@ static void EmitHat(RegExpCompiler* compiler, |
Trace new_trace(*trace); |
new_trace.InvalidateCurrentCharacter(); |
- BlockLabel ok; |
+ Label ok; |
if (new_trace.cp_offset() == 0) { |
// The start of input counts as a newline in this context, so skip to |
// ok if we are at the start. |
@@ -2337,7 +2309,7 @@ static void EmitHat(RegExpCompiler* compiler, |
assembler->CheckCharacter('\n', &ok); |
assembler->CheckNotCharacter('\r', new_trace.backtrack()); |
} |
- assembler->BindBlock(&ok); |
+ assembler->Bind(&ok); |
on_success->Emit(compiler, &new_trace); |
} |
@@ -2349,14 +2321,13 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { |
bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE); |
BoyerMooreLookahead* lookahead = bm_info(not_at_start); |
if (lookahead == NULL) { |
- intptr_t eats_at_least = |
- Utils::Minimum(kMaxLookaheadForBoyerMoore, |
- EatsAtLeast(kMaxLookaheadForBoyerMoore, |
- kRecursionBudget, |
- not_at_start)); |
+ int eats_at_least = |
+ Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore, |
+ kRecursionBudget, |
+ not_at_start)); |
if (eats_at_least >= 1) { |
BoyerMooreLookahead* bm = |
- new(I) BoyerMooreLookahead(eats_at_least, compiler, I); |
+ new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone()); |
FillInBMInfo(0, kRecursionBudget, bm, not_at_start); |
if (bm->at(0)->is_non_word()) |
next_is_word_character = Trace::FALSE_VALUE; |
@@ -2370,31 +2341,26 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) { |
} |
bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY); |
if (next_is_word_character == Trace::UNKNOWN) { |
- BlockLabel before_non_word; |
- BlockLabel before_word; |
+ Label before_non_word; |
+ Label before_word; |
if (trace->characters_preloaded() != 1) { |
assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word); |
} |
// Fall through on non-word. |
EmitWordCheck(assembler, &before_word, &before_non_word, false); |
// Next character is not a word character. |
- assembler->BindBlock(&before_non_word); |
- BlockLabel ok; |
- // Backtrack on \B (non-boundary check) if previous is a word, |
- // since we know next *is not* a word and this would be a boundary. |
+ assembler->Bind(&before_non_word); |
+ Label ok; |
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); |
+ assembler->GoTo(&ok); |
- if (!assembler->IsClosed()) { |
- assembler->GoTo(&ok); |
- } |
- |
- assembler->BindBlock(&before_word); |
+ assembler->Bind(&before_word); |
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); |
- assembler->BindBlock(&ok); |
+ assembler->Bind(&ok); |
} else if (next_is_word_character == Trace::TRUE_VALUE) { |
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord); |
} else { |
- ASSERT(next_is_word_character == Trace::FALSE_VALUE); |
+ DCHECK(next_is_word_character == Trace::FALSE_VALUE); |
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord); |
} |
} |
@@ -2408,14 +2374,14 @@ void AssertionNode::BacktrackIfPrevious( |
Trace new_trace(*trace); |
new_trace.InvalidateCurrentCharacter(); |
- BlockLabel fall_through, dummy; |
+ Label fall_through, dummy; |
- BlockLabel* non_word = backtrack_if_previous == kIsNonWord ? |
- new_trace.backtrack() : |
- &fall_through; |
- BlockLabel* word = backtrack_if_previous == kIsNonWord ? |
- &fall_through : |
- new_trace.backtrack(); |
+ Label* non_word = backtrack_if_previous == kIsNonWord ? |
+ new_trace.backtrack() : |
+ &fall_through; |
+ Label* word = backtrack_if_previous == kIsNonWord ? |
+ &fall_through : |
+ new_trace.backtrack(); |
if (new_trace.cp_offset() == 0) { |
// The start of input counts as a non-word character, so the question is |
@@ -2427,14 +2393,14 @@ void AssertionNode::BacktrackIfPrevious( |
assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false); |
EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord); |
- assembler->BindBlock(&fall_through); |
+ assembler->Bind(&fall_through); |
on_success()->Emit(compiler, &new_trace); |
} |
void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details, |
RegExpCompiler* compiler, |
- intptr_t filled_in, |
+ int filled_in, |
bool not_at_start) { |
if (assertion_type_ == AT_START && not_at_start) { |
details->set_cannot_match(); |
@@ -2451,10 +2417,10 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
switch (assertion_type_) { |
case AT_END: { |
- BlockLabel ok; |
+ Label ok; |
assembler->CheckPosition(trace->cp_offset(), &ok); |
assembler->GoTo(trace->backtrack()); |
- assembler->BindBlock(&ok); |
+ assembler->Bind(&ok); |
break; |
} |
case AT_START: { |
@@ -2484,14 +2450,14 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
} |
-static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) { |
+static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) { |
if (quick_check == NULL) return false; |
if (offset >= quick_check->characters()) return false; |
return quick_check->positions(offset)->determines_perfectly; |
} |
-static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) { |
+static void UpdateBoundsCheck(int index, int* checked_up_to) { |
if (index > *checked_up_to) { |
*checked_up_to = index; |
} |
@@ -2532,25 +2498,26 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler, |
bool preloaded, |
Trace* trace, |
bool first_element_checked, |
- intptr_t* checked_up_to) { |
+ int* checked_up_to) { |
RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
+ Isolate* isolate = assembler->zone()->isolate(); |
bool one_byte = compiler->one_byte(); |
- BlockLabel* backtrack = trace->backtrack(); |
+ Label* backtrack = trace->backtrack(); |
QuickCheckDetails* quick_check = trace->quick_check_performed(); |
- intptr_t element_count = elms_->length(); |
- for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) { |
- TextElement elm = elms_->At(i); |
- intptr_t cp_offset = trace->cp_offset() + elm.cp_offset(); |
+ int element_count = elms_->length(); |
+ for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) { |
+ TextElement elm = elms_->at(i); |
+ int cp_offset = trace->cp_offset() + elm.cp_offset(); |
if (elm.text_type() == TextElement::ATOM) { |
- ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data(); |
- for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) { |
+ Vector<const uc16> quarks = elm.atom()->data(); |
+ for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) { |
if (first_element_checked && i == 0 && j == 0) continue; |
if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue; |
EmitCharacterFunction* emit_function = NULL; |
switch (pass) { |
case NON_LATIN1_MATCH: |
- ASSERT(one_byte); |
- if (quarks->At(j) > Symbols::kMaxOneCharCodeSymbol) { |
+ DCHECK(one_byte); |
+ if (quarks[j] > String::kMaxOneByteCharCode) { |
assembler->GoTo(backtrack); |
return; |
} |
@@ -2568,9 +2535,9 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler, |
break; |
} |
if (emit_function != NULL) { |
- bool bound_checked = emit_function(I, |
+ bool bound_checked = emit_function(isolate, |
compiler, |
- quarks->At(j), |
+ quarks[j], |
backtrack, |
cp_offset + j, |
*checked_up_to < cp_offset + j, |
@@ -2579,19 +2546,13 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler, |
} |
} |
} else { |
- ASSERT(elm.text_type() == TextElement::CHAR_CLASS); |
+ DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type()); |
if (pass == CHARACTER_CLASS_MATCH) { |
if (first_element_checked && i == 0) continue; |
if (DeterminedAlready(quick_check, elm.cp_offset())) continue; |
RegExpCharacterClass* cc = elm.char_class(); |
- EmitCharClass(assembler, |
- cc, |
- one_byte, |
- backtrack, |
- cp_offset, |
- *checked_up_to < cp_offset, |
- preloaded, |
- I); |
+ EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset, |
+ *checked_up_to < cp_offset, preloaded, zone()); |
UpdateBoundsCheck(cp_offset, checked_up_to); |
} |
} |
@@ -2599,15 +2560,15 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler, |
} |
-intptr_t TextNode::Length() { |
- TextElement elm = elms_->Last(); |
- ASSERT(elm.cp_offset() >= 0); |
+int TextNode::Length() { |
+ TextElement elm = elms_->last(); |
+ DCHECK(elm.cp_offset() >= 0); |
return elm.cp_offset() + elm.length(); |
} |
-bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) { |
- TextEmitPassType pass = static_cast<TextEmitPassType>(intptr_t_pass); |
+bool TextNode::SkipPass(int int_pass, bool ignore_case) { |
+ TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass); |
if (ignore_case) { |
return pass == SIMPLE_CHARACTER_MATCH; |
} else { |
@@ -2625,7 +2586,7 @@ bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) { |
void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
LimitResult limit_result = LimitVersions(compiler, trace); |
if (limit_result == DONE) return; |
- ASSERT(limit_result == CONTINUE); |
+ DCHECK(limit_result == CONTINUE); |
if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) { |
compiler->SetRegExpTooBig(); |
@@ -2633,18 +2594,18 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
} |
if (compiler->one_byte()) { |
- intptr_t dummy = 0; |
+ int dummy = 0; |
TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy); |
} |
bool first_elt_done = false; |
- intptr_t bound_checked_to = trace->cp_offset() - 1; |
+ int bound_checked_to = trace->cp_offset() - 1; |
bound_checked_to += trace->bound_checked_up_to(); |
// If a character is preloaded into the current character register then |
// check that now. |
if (trace->characters_preloaded() == 1) { |
- for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) { |
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { |
if (!SkipPass(pass, compiler->ignore_case())) { |
TextEmitPass(compiler, |
static_cast<TextEmitPassType>(pass), |
@@ -2657,7 +2618,7 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
first_elt_done = true; |
} |
- for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) { |
+ for (int pass = kFirstRealPass; pass <= kLastPass; pass++) { |
if (!SkipPass(pass, compiler->ignore_case())) { |
TextEmitPass(compiler, |
static_cast<TextEmitPassType>(pass), |
@@ -2681,9 +2642,8 @@ void Trace::InvalidateCurrentCharacter() { |
} |
-void Trace::AdvanceCurrentPositionInTrace(intptr_t by, |
- RegExpCompiler* compiler) { |
- ASSERT(by > 0); |
+void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) { |
+ DCHECK(by > 0); |
// We don't have an instruction for shifting the current character register |
// down or for using a shifted value for anything so lets just forget that |
// we preloaded any characters into it. |
@@ -2697,32 +2657,31 @@ void Trace::AdvanceCurrentPositionInTrace(intptr_t by, |
compiler->SetRegExpTooBig(); |
cp_offset_ = 0; |
} |
- bound_checked_up_to_ = Utils::Maximum(static_cast<intptr_t>(0), |
- bound_checked_up_to_ - by); |
+ bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by); |
} |
void TextNode::MakeCaseIndependent(bool is_one_byte) { |
- intptr_t element_count = elms_->length(); |
- for (intptr_t i = 0; i < element_count; i++) { |
- TextElement elm = elms_->At(i); |
+ int element_count = elms_->length(); |
+ for (int i = 0; i < element_count; i++) { |
+ TextElement elm = elms_->at(i); |
if (elm.text_type() == TextElement::CHAR_CLASS) { |
RegExpCharacterClass* cc = elm.char_class(); |
// None of the standard character classes is different in the case |
// independent case and it slows us down if we don't know that. |
- if (cc->is_standard()) continue; |
- ZoneGrowableArray<CharacterRange>* ranges = cc->ranges(); |
- intptr_t range_count = ranges->length(); |
- for (intptr_t j = 0; j < range_count; j++) { |
- (*ranges)[j].AddCaseEquivalents(ranges, is_one_byte, I); |
+ if (cc->is_standard(zone())) continue; |
+ ZoneList<CharacterRange>* ranges = cc->ranges(zone()); |
+ int range_count = ranges->length(); |
+ for (int j = 0; j < range_count; j++) { |
+ ranges->at(j).AddCaseEquivalents(ranges, is_one_byte, zone()); |
} |
} |
} |
} |
-intptr_t TextNode::GreedyLoopTextLength() { |
- TextElement elm = elms_->At(elms_->length() - 1); |
+int TextNode::GreedyLoopTextLength() { |
+ TextElement elm = elms_->at(elms_->length() - 1); |
return elm.cp_offset() + elm.length(); |
} |
@@ -2730,10 +2689,10 @@ intptr_t TextNode::GreedyLoopTextLength() { |
RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( |
RegExpCompiler* compiler) { |
if (elms_->length() != 1) return NULL; |
- TextElement elm = elms_->At(0); |
+ TextElement elm = elms_->at(0); |
if (elm.text_type() != TextElement::CHAR_CLASS) return NULL; |
RegExpCharacterClass* node = elm.char_class(); |
- ZoneGrowableArray<CharacterRange>* ranges = node->ranges(); |
+ ZoneList<CharacterRange>* ranges = node->ranges(zone()); |
if (!CharacterRange::IsCanonical(ranges)) { |
CharacterRange::Canonicalize(ranges); |
} |
@@ -2743,11 +2702,11 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( |
if (ranges->length() != 1) return NULL; |
uint32_t max_char; |
if (compiler->one_byte()) { |
- max_char = Symbols::kMaxOneCharCodeSymbol; |
+ max_char = String::kMaxOneByteCharCode; |
} else { |
- max_char = Utf16::kMaxCodeUnit; |
+ max_char = String::kMaxUtf16CodeUnit; |
} |
- return ranges->At(0).IsEverything(max_char) ? on_success() : NULL; |
+ return ranges->at(0).IsEverything(max_char) ? on_success() : NULL; |
} |
@@ -2755,18 +2714,18 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode( |
// this alternative and back to this choice node. If there are variable |
// length nodes or other complications in the way then return a sentinel |
// value indicating that a greedy loop cannot be constructed. |
-intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative( |
+int ChoiceNode::GreedyLoopTextLengthForAlternative( |
GuardedAlternative* alternative) { |
- intptr_t length = 0; |
+ int length = 0; |
RegExpNode* node = alternative->node(); |
// Later we will generate code for all these text nodes using recursion |
// so we have to limit the max number. |
- intptr_t recursion_depth = 0; |
+ int recursion_depth = 0; |
while (node != this) { |
if (recursion_depth++ > RegExpCompiler::kMaxRecursion) { |
return kNodeIsTooComplexForGreedyLoops; |
} |
- intptr_t node_length = node->GreedyLoopTextLength(); |
+ int node_length = node->GreedyLoopTextLength(); |
if (node_length == kNodeIsTooComplexForGreedyLoops) { |
return kNodeIsTooComplexForGreedyLoops; |
} |
@@ -2779,14 +2738,14 @@ intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative( |
void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) { |
- ASSERT(loop_node_ == NULL); |
+ DCHECK_EQ(loop_node_, NULL); |
AddAlternative(alt); |
loop_node_ = alt.node(); |
} |
void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) { |
- ASSERT(continue_node_ == NULL); |
+ DCHECK_EQ(continue_node_, NULL); |
AddAlternative(alt); |
continue_node_ = alt.node(); |
} |
@@ -2796,17 +2755,17 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
if (trace->stop_node() == this) { |
// Back edge of greedy optimized loop node graph. |
- intptr_t text_length = |
- GreedyLoopTextLengthForAlternative(&((*alternatives_)[0])); |
- ASSERT(text_length != kNodeIsTooComplexForGreedyLoops); |
+ int text_length = |
+ GreedyLoopTextLengthForAlternative(&(alternatives_->at(0))); |
+ DCHECK(text_length != kNodeIsTooComplexForGreedyLoops); |
// Update the counter-based backtracking info on the stack. This is an |
// optimization for greedy loops (see below). |
- ASSERT(trace->cp_offset() == text_length); |
+ DCHECK(trace->cp_offset() == text_length); |
macro_assembler->AdvanceCurrentPosition(text_length); |
macro_assembler->GoTo(trace->loop_label()); |
return; |
} |
- ASSERT(trace->stop_node() == NULL); |
+ DCHECK(trace->stop_node() == NULL); |
if (!trace->is_trivial()) { |
trace->Flush(compiler, this); |
return; |
@@ -2815,10 +2774,9 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
} |
-intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, |
- intptr_t eats_at_least) { |
- intptr_t preload_characters = Utils::Minimum(static_cast<intptr_t>(4), |
- eats_at_least); |
+int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, |
+ int eats_at_least) { |
+ int preload_characters = Min(4, eats_at_least); |
if (compiler->macro_assembler()->CanReadUnaligned()) { |
bool one_byte = compiler->one_byte(); |
if (one_byte) { |
@@ -2837,17 +2795,18 @@ intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler, |
} |
-// This structure is used when generating the alternatives in a choice node. It |
+// This class is used when generating the alternatives in a choice node. It |
// records the way the alternative is being code generated. |
-struct AlternativeGeneration { |
+class AlternativeGeneration: public Malloced { |
+ public: |
AlternativeGeneration() |
: possible_success(), |
expects_preload(false), |
after(), |
quick_check_details() { } |
- BlockLabel possible_success; |
+ Label possible_success; |
bool expects_preload; |
- BlockLabel after; |
+ Label after; |
QuickCheckDetails quick_check_details; |
}; |
@@ -2856,57 +2815,55 @@ struct AlternativeGeneration { |
// size then it is on the stack, otherwise the excess is on the heap. |
class AlternativeGenerationList { |
public: |
- explicit AlternativeGenerationList(intptr_t count) |
- : alt_gens_(count) { |
- for (intptr_t i = 0; i < count && i < kAFew; i++) { |
- alt_gens_.Add(a_few_alt_gens_ + i); |
+ AlternativeGenerationList(int count, Zone* zone) |
+ : alt_gens_(count, zone) { |
+ for (int i = 0; i < count && i < kAFew; i++) { |
+ alt_gens_.Add(a_few_alt_gens_ + i, zone); |
} |
- for (intptr_t i = kAFew; i < count; i++) { |
- alt_gens_.Add(new AlternativeGeneration()); |
+ for (int i = kAFew; i < count; i++) { |
+ alt_gens_.Add(new AlternativeGeneration(), zone); |
} |
} |
~AlternativeGenerationList() { |
- for (intptr_t i = kAFew; i < alt_gens_.length(); i++) { |
+ for (int i = kAFew; i < alt_gens_.length(); i++) { |
delete alt_gens_[i]; |
alt_gens_[i] = NULL; |
} |
} |
- AlternativeGeneration* at(intptr_t i) { |
+ AlternativeGeneration* at(int i) { |
return alt_gens_[i]; |
} |
private: |
- static const intptr_t kAFew = 10; |
- GrowableArray<AlternativeGeneration*> alt_gens_; |
+ static const int kAFew = 10; |
+ ZoneList<AlternativeGeneration*> alt_gens_; |
AlternativeGeneration a_few_alt_gens_[kAFew]; |
- |
- DISALLOW_ALLOCATION(); |
}; |
-// The '2' variant is inclusive from and exclusive to. |
+// The '2' variant is has inclusive from and exclusive to. |
// This covers \s as defined in ECMA-262 5.1, 15.10.2.12, |
// which include WhiteSpace (7.2) or LineTerminator (7.3) values. |
-static const intptr_t kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, |
+static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1, |
0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B, |
0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001, |
0xFEFF, 0xFF00, 0x10000 }; |
-static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges); |
-static const intptr_t kWordRanges[] = { |
+static const int kSpaceRangeCount = arraysize(kSpaceRanges); |
+ |
+static const int kWordRanges[] = { |
'0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 }; |
-static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges); |
-static const intptr_t kDigitRanges[] = { '0', '9' + 1, 0x10000 }; |
-static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges); |
-static const intptr_t kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 }; |
-static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges); |
-static const intptr_t kLineTerminatorRanges[] = { |
- 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 }; |
-static const intptr_t kLineTerminatorRangeCount = |
- ARRAY_SIZE(kLineTerminatorRanges); |
- |
- |
-void BoyerMoorePositionInfo::Set(intptr_t character) { |
+static const int kWordRangeCount = arraysize(kWordRanges); |
+static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 }; |
+static const int kDigitRangeCount = arraysize(kDigitRanges); |
+static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 }; |
+static const int kSurrogateRangeCount = arraysize(kSurrogateRanges); |
+static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E, |
+ 0x2028, 0x202A, 0x10000 }; |
+static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges); |
+ |
+ |
+void BoyerMoorePositionInfo::Set(int character) { |
SetInterval(Interval(character, character)); |
} |
@@ -2920,15 +2877,15 @@ void BoyerMoorePositionInfo::SetInterval(const Interval& interval) { |
if (interval.to() - interval.from() >= kMapSize - 1) { |
if (map_count_ != kMapSize) { |
map_count_ = kMapSize; |
- for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true; |
+ for (int i = 0; i < kMapSize; i++) map_->at(i) = true; |
} |
return; |
} |
- for (intptr_t i = interval.from(); i <= interval.to(); i++) { |
- intptr_t mod_character = (i & kMask); |
- if (!map_->At(mod_character)) { |
+ for (int i = interval.from(); i <= interval.to(); i++) { |
+ int mod_character = (i & kMask); |
+ if (!map_->at(mod_character)) { |
map_count_++; |
- (*map_)[mod_character] = true; |
+ map_->at(mod_character) = true; |
} |
if (map_count_ == kMapSize) return; |
} |
@@ -2939,23 +2896,23 @@ void BoyerMoorePositionInfo::SetAll() { |
s_ = w_ = d_ = kLatticeUnknown; |
if (map_count_ != kMapSize) { |
map_count_ = kMapSize; |
- for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true; |
+ for (int i = 0; i < kMapSize; i++) map_->at(i) = true; |
} |
} |
BoyerMooreLookahead::BoyerMooreLookahead( |
- intptr_t length, RegExpCompiler* compiler, Isolate* isolate) |
+ int length, RegExpCompiler* compiler, Zone* zone) |
: length_(length), |
compiler_(compiler) { |
if (compiler->one_byte()) { |
- max_char_ = Symbols::kMaxOneCharCodeSymbol; |
+ max_char_ = String::kMaxOneByteCharCode; |
} else { |
- max_char_ = Utf16::kMaxCodeUnit; |
+ max_char_ = String::kMaxUtf16CodeUnit; |
} |
- bitmaps_ = new(isolate) ZoneGrowableArray<BoyerMoorePositionInfo*>(length); |
- for (intptr_t i = 0; i < length; i++) { |
- bitmaps_->Add(new(isolate) BoyerMoorePositionInfo(isolate)); |
+ bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone); |
+ for (int i = 0; i < length; i++) { |
+ bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone); |
} |
} |
@@ -2963,12 +2920,12 @@ BoyerMooreLookahead::BoyerMooreLookahead( |
// Find the longest range of lookahead that has the fewest number of different |
// characters that can occur at a given position. Since we are optimizing two |
// different parameters at once this is a tradeoff. |
-bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) { |
- intptr_t biggest_points = 0; |
+bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) { |
+ int biggest_points = 0; |
// If more than 32 characters out of 128 can occur it is unlikely that we can |
// be lucky enough to step forwards much of the time. |
- const intptr_t kMaxMax = 32; |
- for (intptr_t max_number_of_chars = 4; |
+ const int kMaxMax = 32; |
+ for (int max_number_of_chars = 4; |
max_number_of_chars < kMaxMax; |
max_number_of_chars *= 2) { |
biggest_points = |
@@ -2985,26 +2942,23 @@ bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) { |
// of points as the product of width-of-the-range and |
// probability-of-finding-one-of-the-characters, where the probability is |
// calculated using the frequency distribution of the sample subject string. |
-intptr_t BoyerMooreLookahead::FindBestInterval( |
- intptr_t max_number_of_chars, |
- intptr_t old_biggest_points, |
- intptr_t* from, |
- intptr_t* to) { |
- intptr_t biggest_points = old_biggest_points; |
- static const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
- for (intptr_t i = 0; i < length_; ) { |
+int BoyerMooreLookahead::FindBestInterval( |
+ int max_number_of_chars, int old_biggest_points, int* from, int* to) { |
+ int biggest_points = old_biggest_points; |
+ static const int kSize = RegExpMacroAssembler::kTableSize; |
+ for (int i = 0; i < length_; ) { |
while (i < length_ && Count(i) > max_number_of_chars) i++; |
if (i == length_) break; |
- intptr_t remembered_from = i; |
+ int remembered_from = i; |
bool union_map[kSize]; |
- for (intptr_t j = 0; j < kSize; j++) union_map[j] = false; |
+ for (int j = 0; j < kSize; j++) union_map[j] = false; |
while (i < length_ && Count(i) <= max_number_of_chars) { |
- BoyerMoorePositionInfo* map = bitmaps_->At(i); |
- for (intptr_t j = 0; j < kSize; j++) union_map[j] |= map->at(j); |
+ BoyerMoorePositionInfo* map = bitmaps_->at(i); |
+ for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j); |
i++; |
} |
- intptr_t frequency = 0; |
- for (intptr_t j = 0; j < kSize; j++) { |
+ int frequency = 0; |
+ for (int j = 0; j < kSize; j++) { |
if (union_map[j]) { |
// Add 1 to the frequency to give a small per-character boost for |
// the cases where our sampling is not good enough and many |
@@ -3019,13 +2973,13 @@ intptr_t BoyerMooreLookahead::FindBestInterval( |
// dividing by 2 we switch off the skipping if the probability of skipping |
// is less than 50%. This is because the multibyte mask-and-compare |
// skipping in quickcheck is more likely to do well on this case. |
- bool in_quickcheck_range = ((i - remembered_from < 4) || |
- (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2)); |
+ bool in_quickcheck_range = |
+ ((i - remembered_from < 4) || |
+ (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2)); |
// Called 'probability' but it is only a rough estimate and can actually |
// be outside the 0-kSize range. |
- intptr_t probability = |
- (in_quickcheck_range ? kSize / 2 : kSize) - frequency; |
- intptr_t points = (i - remembered_from) * probability; |
+ int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency; |
+ int points = (i - remembered_from) * probability; |
if (points > biggest_points) { |
*from = remembered_from; |
*to = i - 1; |
@@ -3041,25 +2995,24 @@ intptr_t BoyerMooreLookahead::FindBestInterval( |
// max_lookahead (inclusive) measured from the current position. If the |
// character at max_lookahead offset is not one of these characters, then we |
// can safely skip forwards by the number of characters in the range. |
-intptr_t BoyerMooreLookahead::GetSkipTable( |
- intptr_t min_lookahead, |
- intptr_t max_lookahead, |
- const TypedData& boolean_skip_table) { |
- const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
+int BoyerMooreLookahead::GetSkipTable(int min_lookahead, |
+ int max_lookahead, |
+ Handle<ByteArray> boolean_skip_table) { |
+ const int kSize = RegExpMacroAssembler::kTableSize; |
- const intptr_t kSkipArrayEntry = 0; |
- const intptr_t kDontSkipArrayEntry = 1; |
+ const int kSkipArrayEntry = 0; |
+ const int kDontSkipArrayEntry = 1; |
- for (intptr_t i = 0; i < kSize; i++) { |
- boolean_skip_table.SetUint8(i, kSkipArrayEntry); |
+ for (int i = 0; i < kSize; i++) { |
+ boolean_skip_table->set(i, kSkipArrayEntry); |
} |
- intptr_t skip = max_lookahead + 1 - min_lookahead; |
+ int skip = max_lookahead + 1 - min_lookahead; |
- for (intptr_t i = max_lookahead; i >= min_lookahead; i--) { |
- BoyerMoorePositionInfo* map = bitmaps_->At(i); |
- for (intptr_t j = 0; j < kSize; j++) { |
+ for (int i = max_lookahead; i >= min_lookahead; i--) { |
+ BoyerMoorePositionInfo* map = bitmaps_->at(i); |
+ for (int j = 0; j < kSize; j++) { |
if (map->at(j)) { |
- boolean_skip_table.SetUint8(j, kDontSkipArrayEntry); |
+ boolean_skip_table->set(j, kDontSkipArrayEntry); |
} |
} |
} |
@@ -3070,23 +3023,23 @@ intptr_t BoyerMooreLookahead::GetSkipTable( |
// See comment above on the implementation of GetSkipTable. |
void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
- const intptr_t kSize = RegExpMacroAssembler::kTableSize; |
+ const int kSize = RegExpMacroAssembler::kTableSize; |
- intptr_t min_lookahead = 0; |
- intptr_t max_lookahead = 0; |
+ int min_lookahead = 0; |
+ int max_lookahead = 0; |
if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return; |
bool found_single_character = false; |
- intptr_t single_character = 0; |
- for (intptr_t i = max_lookahead; i >= min_lookahead; i--) { |
- BoyerMoorePositionInfo* map = bitmaps_->At(i); |
+ int single_character = 0; |
+ for (int i = max_lookahead; i >= min_lookahead; i--) { |
+ BoyerMoorePositionInfo* map = bitmaps_->at(i); |
if (map->map_count() > 1 || |
(found_single_character && map->map_count() != 0)) { |
found_single_character = false; |
break; |
} |
- for (intptr_t j = 0; j < kSize; j++) { |
+ for (int j = 0; j < kSize; j++) { |
if (map->at(j)) { |
found_single_character = true; |
single_character = j; |
@@ -3095,7 +3048,7 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
} |
} |
- intptr_t lookahead_width = max_lookahead + 1 - min_lookahead; |
+ int lookahead_width = max_lookahead + 1 - min_lookahead; |
if (found_single_character && lookahead_width == 1 && max_lookahead < 3) { |
// The mask-compare can probably handle this better. |
@@ -3103,8 +3056,8 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
} |
if (found_single_character) { |
- BlockLabel cont, again; |
- masm->BindBlock(&again); |
+ Label cont, again; |
+ masm->Bind(&again); |
masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
if (max_char_ > kSize) { |
masm->CheckCharacterAfterAnd(single_character, |
@@ -3115,27 +3068,23 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) { |
} |
masm->AdvanceCurrentPosition(lookahead_width); |
masm->GoTo(&again); |
- masm->BindBlock(&cont); |
+ masm->Bind(&cont); |
return; |
} |
- const TypedData& boolean_skip_table = TypedData::ZoneHandle( |
- compiler_->isolate(), |
- TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld)); |
- intptr_t skip_distance = GetSkipTable( |
+ Factory* factory = masm->zone()->isolate()->factory(); |
+ Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED); |
+ int skip_distance = GetSkipTable( |
min_lookahead, max_lookahead, boolean_skip_table); |
- ASSERT(skip_distance != 0); |
+ DCHECK(skip_distance != 0); |
- BlockLabel cont, again; |
- |
- masm->BindBlock(&again); |
+ Label cont, again; |
+ masm->Bind(&again); |
masm->LoadCurrentCharacter(max_lookahead, &cont, true); |
masm->CheckBitInTable(boolean_skip_table, &cont); |
masm->AdvanceCurrentPosition(skip_distance); |
masm->GoTo(&again); |
- masm->BindBlock(&cont); |
- |
- return; |
+ masm->Bind(&cont); |
} |
@@ -3221,13 +3170,13 @@ GreedyLoopState::GreedyLoopState(bool not_at_start) { |
void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) { |
#ifdef DEBUG |
- intptr_t choice_count = alternatives_->length(); |
- for (intptr_t i = 0; i < choice_count - 1; i++) { |
- GuardedAlternative alternative = alternatives_->At(i); |
- ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
- intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
- for (intptr_t j = 0; j < guard_count; j++) { |
- ASSERT(!trace->mentions_reg(guards->At(j)->reg())); |
+ int choice_count = alternatives_->length(); |
+ for (int i = 0; i < choice_count - 1; i++) { |
+ GuardedAlternative alternative = alternatives_->at(i); |
+ ZoneList<Guard*>* guards = alternative.guards(); |
+ int guard_count = (guards == NULL) ? 0 : guards->length(); |
+ for (int j = 0; j < guard_count; j++) { |
+ DCHECK(!trace->mentions_reg(guards->at(j)->reg())); |
} |
} |
#endif |
@@ -3253,13 +3202,13 @@ void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler, |
void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
- intptr_t choice_count = alternatives_->length(); |
+ int choice_count = alternatives_->length(); |
AssertGuardsMentionRegisters(trace); |
LimitResult limit_result = LimitVersions(compiler, trace); |
if (limit_result == DONE) return; |
- ASSERT(limit_result == CONTINUE); |
+ DCHECK(limit_result == CONTINUE); |
// For loop nodes we already flushed (see LoopChoiceNode::Emit), but for |
// other choice nodes we only flush if we are out of code size budget. |
@@ -3274,9 +3223,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
preload.init(); |
GreedyLoopState greedy_loop_state(not_at_start()); |
- intptr_t text_length = |
- GreedyLoopTextLengthForAlternative(&((*alternatives_)[0])); |
- AlternativeGenerationList alt_gens(choice_count); |
+ int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0)); |
+ AlternativeGenerationList alt_gens(choice_count, zone()); |
if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) { |
trace = EmitGreedyLoop(compiler, |
@@ -3288,8 +3236,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
} else { |
// TODO(erikcorry): Delete this. We don't need this label, but it makes us |
// match the traces produced pre-cleanup. |
- BlockLabel second_choice; |
- compiler->macro_assembler()->BindBlock(&second_choice); |
+ Label second_choice; |
+ compiler->macro_assembler()->Bind(&second_choice); |
preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace); |
@@ -3303,8 +3251,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
// At this point we need to generate slow checks for the alternatives where |
// the quick check was inlined. We can recognize these because the associated |
// label was bound. |
- intptr_t new_flush_budget = trace->flush_budget() / choice_count; |
- for (intptr_t i = 0; i < choice_count; i++) { |
+ int new_flush_budget = trace->flush_budget() / choice_count; |
+ for (int i = 0; i < choice_count; i++) { |
AlternativeGeneration* alt_gen = alt_gens.at(i); |
Trace new_trace(*trace); |
// If there are actions to be flushed we have to limit how many times |
@@ -3317,19 +3265,20 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload; |
EmitOutOfLineContinuation(compiler, |
&new_trace, |
- alternatives_->At(i), |
+ alternatives_->at(i), |
alt_gen, |
preload.preload_characters_, |
next_expects_preload); |
} |
} |
+ |
Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, |
Trace* trace, |
AlternativeGenerationList* alt_gens, |
PreloadState* preload, |
GreedyLoopState* greedy_loop_state, |
- intptr_t text_length) { |
+ int text_length) { |
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
// Here we have special handling for greedy loops containing only text nodes |
// and other simple nodes. These are handled by pushing the current |
@@ -3338,21 +3287,21 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, |
// and check it against the pushed value. This avoids pushing backtrack |
// information for each iteration of the loop, which could take up a lot of |
// space. |
- ASSERT(trace->stop_node() == NULL); |
+ DCHECK(trace->stop_node() == NULL); |
macro_assembler->PushCurrentPosition(); |
- BlockLabel greedy_match_failed; |
+ Label greedy_match_failed; |
Trace greedy_match_trace; |
if (not_at_start()) greedy_match_trace.set_at_start(false); |
greedy_match_trace.set_backtrack(&greedy_match_failed); |
- BlockLabel loop_label; |
- macro_assembler->BindBlock(&loop_label); |
+ Label loop_label; |
+ macro_assembler->Bind(&loop_label); |
greedy_match_trace.set_stop_node(this); |
greedy_match_trace.set_loop_label(&loop_label); |
- (*alternatives_)[0].node()->Emit(compiler, &greedy_match_trace); |
- macro_assembler->BindBlock(&greedy_match_failed); |
+ alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace); |
+ macro_assembler->Bind(&greedy_match_failed); |
- BlockLabel second_choice; // For use in greedy matches. |
- macro_assembler->BindBlock(&second_choice); |
+ Label second_choice; // For use in greedy matches. |
+ macro_assembler->Bind(&second_choice); |
Trace* new_trace = greedy_loop_state->counter_backtrack_trace(); |
@@ -3362,7 +3311,7 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, |
new_trace, |
preload); |
- macro_assembler->BindBlock(greedy_loop_state->label()); |
+ macro_assembler->Bind(greedy_loop_state->label()); |
// If we have unwound to the bottom then backtrack. |
macro_assembler->CheckGreedyLoop(trace->backtrack()); |
// Otherwise try the second priority at an earlier position. |
@@ -3371,13 +3320,12 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler, |
return new_trace; |
} |
- |
-intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
- Trace* trace) { |
- intptr_t eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized; |
+int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
+ Trace* trace) { |
+ int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized; |
if (alternatives_->length() != 2) return eats_at_least; |
- GuardedAlternative alt1 = alternatives_->At(1); |
+ GuardedAlternative alt1 = alternatives_->at(1); |
if (alt1.guards() != NULL && alt1.guards()->length() != 0) { |
return eats_at_least; |
} |
@@ -3392,7 +3340,7 @@ intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
// loop. That also implies that there are no preloaded characters, which is |
// good, because it means we won't be violating any assumptions by |
// overwriting those characters with new load instructions. |
- ASSERT(trace->is_trivial()); |
+ DCHECK(trace->is_trivial()); |
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
// At this point we know that we are at a non-greedy loop that will eat |
@@ -3404,13 +3352,15 @@ intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
// small alternation. |
BoyerMooreLookahead* bm = bm_info(false); |
if (bm == NULL) { |
- eats_at_least = Utils::Minimum(kMaxLookaheadForBoyerMoore, |
+ eats_at_least = Min(kMaxLookaheadForBoyerMoore, |
EatsAtLeast(kMaxLookaheadForBoyerMoore, |
kRecursionBudget, |
false)); |
if (eats_at_least >= 1) { |
- bm = new(I) BoyerMooreLookahead(eats_at_least, compiler, I); |
- GuardedAlternative alt0 = alternatives_->At(0); |
+ bm = new(zone()) BoyerMooreLookahead(eats_at_least, |
+ compiler, |
+ zone()); |
+ GuardedAlternative alt0 = alternatives_->at(0); |
alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, false); |
} |
} |
@@ -3423,7 +3373,7 @@ intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler, |
void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
AlternativeGenerationList* alt_gens, |
- intptr_t first_choice, |
+ int first_choice, |
Trace* trace, |
PreloadState* preload) { |
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
@@ -3431,18 +3381,18 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
// For now we just call all choices one after the other. The idea ultimately |
// is to use the Dispatch table to try only the relevant ones. |
- intptr_t choice_count = alternatives_->length(); |
+ int choice_count = alternatives_->length(); |
- intptr_t new_flush_budget = trace->flush_budget() / choice_count; |
+ int new_flush_budget = trace->flush_budget() / choice_count; |
- for (intptr_t i = first_choice; i < choice_count; i++) { |
+ for (int i = first_choice; i < choice_count; i++) { |
bool is_last = i == choice_count - 1; |
bool fall_through_on_failure = !is_last; |
- GuardedAlternative alternative = alternatives_->At(i); |
+ GuardedAlternative alternative = alternatives_->at(i); |
AlternativeGeneration* alt_gen = alt_gens->at(i); |
alt_gen->quick_check_details.set_characters(preload->preload_characters_); |
- ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
- intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
+ ZoneList<Guard*>* guards = alternative.guards(); |
+ int guard_count = (guards == NULL) ? 0 : guards->length(); |
Trace new_trace(*trace); |
new_trace.set_characters_preloaded(preload->preload_is_current_ ? |
preload->preload_characters_ : |
@@ -3457,7 +3407,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
} |
alt_gen->expects_preload = preload->preload_is_current_; |
bool generate_full_check_inline = false; |
- if (kRegexpOptimization && |
+ if (FLAG_regexp_optimization && |
try_to_emit_quick_check_for_alternative(i == 0) && |
alternative.node()->EmitQuickCheck(compiler, |
trace, |
@@ -3472,7 +3422,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
// If we generated the quick check to fall through on possible success, |
// we now need to generate the full check inline. |
if (!fall_through_on_failure) { |
- macro_assembler->BindBlock(&alt_gen->possible_success); |
+ macro_assembler->Bind(&alt_gen->possible_success); |
new_trace.set_quick_check_performed(&alt_gen->quick_check_details); |
new_trace.set_characters_preloaded(preload->preload_characters_); |
new_trace.set_bound_checked_up_to(preload->preload_characters_); |
@@ -3499,13 +3449,13 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler, |
if (new_trace.actions() != NULL) { |
new_trace.set_flush_budget(new_flush_budget); |
} |
- for (intptr_t j = 0; j < guard_count; j++) { |
- GenerateGuard(macro_assembler, guards->At(j), &new_trace); |
+ for (int j = 0; j < guard_count; j++) { |
+ GenerateGuard(macro_assembler, guards->at(j), &new_trace); |
} |
alternative.node()->Emit(compiler, &new_trace); |
preload->preload_is_current_ = false; |
} |
- macro_assembler->BindBlock(&alt_gen->after); |
+ macro_assembler->Bind(&alt_gen->after); |
} |
} |
@@ -3514,26 +3464,26 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, |
Trace* trace, |
GuardedAlternative alternative, |
AlternativeGeneration* alt_gen, |
- intptr_t preload_characters, |
+ int preload_characters, |
bool next_expects_preload) { |
- if (!alt_gen->possible_success.IsLinked()) return; |
+ if (!alt_gen->possible_success.is_linked()) return; |
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler(); |
- macro_assembler->BindBlock(&alt_gen->possible_success); |
+ macro_assembler->Bind(&alt_gen->possible_success); |
Trace out_of_line_trace(*trace); |
out_of_line_trace.set_characters_preloaded(preload_characters); |
out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details); |
if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE); |
- ZoneGrowableArray<Guard*>* guards = alternative.guards(); |
- intptr_t guard_count = (guards == NULL) ? 0 : guards->length(); |
+ ZoneList<Guard*>* guards = alternative.guards(); |
+ int guard_count = (guards == NULL) ? 0 : guards->length(); |
if (next_expects_preload) { |
- BlockLabel reload_current_char; |
+ Label reload_current_char; |
out_of_line_trace.set_backtrack(&reload_current_char); |
- for (intptr_t j = 0; j < guard_count; j++) { |
- GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace); |
+ for (int j = 0; j < guard_count; j++) { |
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); |
} |
alternative.node()->Emit(compiler, &out_of_line_trace); |
- macro_assembler->BindBlock(&reload_current_char); |
+ macro_assembler->Bind(&reload_current_char); |
// Reload the current character, since the next quick check expects that. |
// We don't need to check bounds here because we only get into this |
// code through a quick check which already did the checked load. |
@@ -3544,8 +3494,8 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler, |
macro_assembler->GoTo(&(alt_gen->after)); |
} else { |
out_of_line_trace.set_backtrack(&(alt_gen->after)); |
- for (intptr_t j = 0; j < guard_count; j++) { |
- GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace); |
+ for (int j = 0; j < guard_count; j++) { |
+ GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace); |
} |
alternative.node()->Emit(compiler, &out_of_line_trace); |
} |
@@ -3556,7 +3506,7 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
RegExpMacroAssembler* assembler = compiler->macro_assembler(); |
LimitResult limit_result = LimitVersions(compiler, trace); |
if (limit_result == DONE) return; |
- ASSERT(limit_result == CONTINUE); |
+ DCHECK(limit_result == CONTINUE); |
RecursionCheck rc(compiler); |
@@ -3608,9 +3558,9 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
} |
break; |
case EMPTY_MATCH_CHECK: { |
- intptr_t start_pos_reg = data_.u_empty_match_check.start_register; |
- intptr_t stored_pos = 0; |
- intptr_t rep_reg = data_.u_empty_match_check.repetition_register; |
+ int start_pos_reg = data_.u_empty_match_check.start_register; |
+ int stored_pos = 0; |
+ int rep_reg = data_.u_empty_match_check.repetition_register; |
bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister); |
bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos); |
if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) { |
@@ -3624,18 +3574,18 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
} else if (!trace->is_trivial()) { |
trace->Flush(compiler, this); |
} else { |
- BlockLabel skip_empty_check; |
+ Label skip_empty_check; |
// If we have a minimum number of repetitions we check the current |
// number first and skip the empty check if it's not enough. |
if (has_minimum) { |
- intptr_t limit = data_.u_empty_match_check.repetition_limit; |
+ int limit = data_.u_empty_match_check.repetition_limit; |
assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check); |
} |
// If the match is empty we bail out, otherwise we fall through |
// to the on-success continuation. |
assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register, |
trace->backtrack()); |
- assembler->BindBlock(&skip_empty_check); |
+ assembler->Bind(&skip_empty_check); |
on_success()->Emit(compiler, trace); |
} |
break; |
@@ -3649,23 +3599,22 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
data_.u_submatch.current_position_register); |
assembler->ReadStackPointerFromRegister( |
data_.u_submatch.stack_pointer_register); |
- intptr_t clear_register_count = data_.u_submatch.clear_register_count; |
+ int clear_register_count = data_.u_submatch.clear_register_count; |
if (clear_register_count == 0) { |
on_success()->Emit(compiler, trace); |
return; |
} |
- intptr_t clear_registers_from = data_.u_submatch.clear_register_from; |
- BlockLabel clear_registers_backtrack; |
+ int clear_registers_from = data_.u_submatch.clear_register_from; |
+ Label clear_registers_backtrack; |
Trace new_trace = *trace; |
new_trace.set_backtrack(&clear_registers_backtrack); |
on_success()->Emit(compiler, &new_trace); |
- assembler->BindBlock(&clear_registers_backtrack); |
- intptr_t clear_registers_to = |
- clear_registers_from + clear_register_count - 1; |
+ assembler->Bind(&clear_registers_backtrack); |
+ int clear_registers_to = clear_registers_from + clear_register_count - 1; |
assembler->ClearRegisters(clear_registers_from, clear_registers_to); |
- ASSERT(trace->backtrack() == NULL); |
+ DCHECK(trace->backtrack() == NULL); |
assembler->Backtrack(); |
return; |
} |
@@ -3684,11 +3633,11 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
LimitResult limit_result = LimitVersions(compiler, trace); |
if (limit_result == DONE) return; |
- ASSERT(limit_result == CONTINUE); |
+ DCHECK(limit_result == CONTINUE); |
RecursionCheck rc(compiler); |
- ASSERT(start_reg_ + 1 == end_reg_); |
+ DCHECK_EQ(start_reg_ + 1, end_reg_); |
if (compiler->ignore_case()) { |
assembler->CheckNotBackReferenceIgnoreCase(start_reg_, |
trace->backtrack()); |
@@ -3708,8 +3657,9 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) { |
class DotPrinter: public NodeVisitor { |
public: |
- explicit DotPrinter(bool ignore_case) |
- : ignore_case_(ignore_case) {} |
+ DotPrinter(OStream& os, bool ignore_case) // NOLINT |
+ : os_(os), |
+ ignore_case_(ignore_case) {} |
void PrintNode(const char* label, RegExpNode* node); |
void Visit(RegExpNode* node); |
void PrintAttributes(RegExpNode* from); |
@@ -3719,28 +3669,29 @@ class DotPrinter: public NodeVisitor { |
FOR_EACH_NODE_TYPE(DECLARE_VISIT) |
#undef DECLARE_VISIT |
private: |
+ OStream& os_; |
bool ignore_case_; |
}; |
void DotPrinter::PrintNode(const char* label, RegExpNode* node) { |
- OS::Print("digraph G {\n graph [label=\""); |
- for (intptr_t i = 0; label[i]; i++) { |
+ os_ << "digraph G {\n graph [label=\""; |
+ for (int i = 0; label[i]; i++) { |
switch (label[i]) { |
case '\\': |
- OS::Print("\\\\"); |
+ os_ << "\\\\"; |
break; |
case '"': |
- OS::Print("\""); |
+ os_ << "\""; |
break; |
default: |
- OS::Print("%c", label[i]); |
+ os_ << label[i]; |
break; |
} |
} |
- OS::Print("\"];\n"); |
+ os_ << "\"];\n"; |
Visit(node); |
- OS::Print("}\n"); |
+ os_ << "}" << endl; |
} |
@@ -3752,194 +3703,292 @@ void DotPrinter::Visit(RegExpNode* node) { |
void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) { |
- OS::Print(" n%p -> n%p [style=dotted];\n", from, on_failure); |
+ os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n"; |
Visit(on_failure); |
} |
-class AttributePrinter : public ValueObject { |
+class TableEntryBodyPrinter { |
public: |
- AttributePrinter() : first_(true) {} |
+ TableEntryBodyPrinter(OStream& os, ChoiceNode* choice) // NOLINT |
+ : os_(os), |
+ choice_(choice) {} |
+ void Call(uc16 from, DispatchTable::Entry entry) { |
+ OutSet* out_set = entry.out_set(); |
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { |
+ if (out_set->Get(i)) { |
+ os_ << " n" << choice() << ":s" << from << "o" << i << " -> n" |
+ << choice()->alternatives()->at(i).node() << ";\n"; |
+ } |
+ } |
+ } |
+ private: |
+ ChoiceNode* choice() { return choice_; } |
+ OStream& os_; |
+ ChoiceNode* choice_; |
+}; |
+ |
+ |
+class TableEntryHeaderPrinter { |
+ public: |
+ explicit TableEntryHeaderPrinter(OStream& os) // NOLINT |
+ : first_(true), |
+ os_(os) {} |
+ void Call(uc16 from, DispatchTable::Entry entry) { |
+ if (first_) { |
+ first_ = false; |
+ } else { |
+ os_ << "|"; |
+ } |
+ os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{"; |
+ OutSet* out_set = entry.out_set(); |
+ int priority = 0; |
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { |
+ if (out_set->Get(i)) { |
+ if (priority > 0) os_ << "|"; |
+ os_ << "<s" << from << "o" << i << "> " << priority; |
+ priority++; |
+ } |
+ } |
+ os_ << "}}"; |
+ } |
+ |
+ private: |
+ bool first_; |
+ OStream& os_; |
+}; |
+ |
+ |
+class AttributePrinter { |
+ public: |
+ explicit AttributePrinter(OStream& os) // NOLINT |
+ : os_(os), |
+ first_(true) {} |
void PrintSeparator() { |
if (first_) { |
first_ = false; |
} else { |
- OS::Print("|"); |
+ os_ << "|"; |
} |
} |
void PrintBit(const char* name, bool value) { |
if (!value) return; |
PrintSeparator(); |
- OS::Print("{%s}", name); |
+ os_ << "{" << name << "}"; |
} |
- void PrintPositive(const char* name, intptr_t value) { |
+ void PrintPositive(const char* name, int value) { |
if (value < 0) return; |
PrintSeparator(); |
- OS::Print("{%s|%" Pd "}", name, value); |
+ os_ << "{" << name << "|" << value << "}"; |
} |
private: |
+ OStream& os_; |
bool first_; |
}; |
void DotPrinter::PrintAttributes(RegExpNode* that) { |
- OS::Print(" a%p [shape=Mrecord, color=grey, fontcolor=grey, " |
- "margin=0.1, fontsize=10, label=\"{", that); |
- AttributePrinter printer; |
+ os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, " |
+ << "margin=0.1, fontsize=10, label=\"{"; |
+ AttributePrinter printer(os_); |
NodeInfo* info = that->info(); |
printer.PrintBit("NI", info->follows_newline_interest); |
printer.PrintBit("WI", info->follows_word_interest); |
printer.PrintBit("SI", info->follows_start_interest); |
- BlockLabel* label = that->label(); |
- if (label->IsBound()) |
- printer.PrintPositive("@", label->Position()); |
- OS::Print("}\"];\n" |
- " a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n", |
- that, that); |
+ Label* label = that->label(); |
+ if (label->is_bound()) |
+ printer.PrintPositive("@", label->pos()); |
+ os_ << "}\"];\n" |
+ << " a" << that << " -> n" << that |
+ << " [style=dashed, color=grey, arrowhead=none];\n"; |
} |
+static const bool kPrintDispatchTable = false; |
void DotPrinter::VisitChoice(ChoiceNode* that) { |
- OS::Print(" n%p [shape=Mrecord, label=\"?\"];\n", that); |
- for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
- GuardedAlternative alt = that->alternatives()->At(i); |
- OS::Print(" n%p -> n%p", that, alt.node()); |
+ if (kPrintDispatchTable) { |
+ os_ << " n" << that << " [shape=Mrecord, label=\""; |
+ TableEntryHeaderPrinter header_printer(os_); |
+ that->GetTable(ignore_case_)->ForEach(&header_printer); |
+ os_ << "\"]\n"; |
+ PrintAttributes(that); |
+ TableEntryBodyPrinter body_printer(os_, that); |
+ that->GetTable(ignore_case_)->ForEach(&body_printer); |
+ } else { |
+ os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n"; |
+ for (int i = 0; i < that->alternatives()->length(); i++) { |
+ GuardedAlternative alt = that->alternatives()->at(i); |
+ os_ << " n" << that << " -> n" << alt.node(); |
+ } |
} |
- for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
- GuardedAlternative alt = that->alternatives()->At(i); |
+ for (int i = 0; i < that->alternatives()->length(); i++) { |
+ GuardedAlternative alt = that->alternatives()->at(i); |
alt.node()->Accept(this); |
} |
} |
void DotPrinter::VisitText(TextNode* that) { |
- OS::Print(" n%p [label=\"", that); |
- for (intptr_t i = 0; i < that->elements()->length(); i++) { |
- if (i > 0) OS::Print(" "); |
- TextElement elm = that->elements()->At(i); |
+ Zone* zone = that->zone(); |
+ os_ << " n" << that << " [label=\""; |
+ for (int i = 0; i < that->elements()->length(); i++) { |
+ if (i > 0) os_ << " "; |
+ TextElement elm = that->elements()->at(i); |
switch (elm.text_type()) { |
case TextElement::ATOM: { |
- ZoneGrowableArray<uint16_t>* data = elm.atom()->data(); |
- for (intptr_t i = 0; i < data->length(); i++) { |
- OS::Print("%c", static_cast<char>(data->At(i))); |
+ Vector<const uc16> data = elm.atom()->data(); |
+ for (int i = 0; i < data.length(); i++) { |
+ os_ << static_cast<char>(data[i]); |
} |
break; |
} |
case TextElement::CHAR_CLASS: { |
RegExpCharacterClass* node = elm.char_class(); |
- OS::Print("["); |
- if (node->is_negated()) OS::Print("^"); |
- for (intptr_t j = 0; j < node->ranges()->length(); j++) { |
- CharacterRange range = node->ranges()->At(j); |
- PrintUtf16(range.from()); |
- OS::Print("-"); |
- PrintUtf16(range.to()); |
+ os_ << "["; |
+ if (node->is_negated()) os_ << "^"; |
+ for (int j = 0; j < node->ranges(zone)->length(); j++) { |
+ CharacterRange range = node->ranges(zone)->at(j); |
+ os_ << AsUC16(range.from()) << "-" << AsUC16(range.to()); |
} |
- OS::Print("]"); |
+ os_ << "]"; |
break; |
} |
default: |
UNREACHABLE(); |
} |
} |
- OS::Print("\", shape=box, peripheries=2];\n"); |
+ os_ << "\", shape=box, peripheries=2];\n"; |
PrintAttributes(that); |
- OS::Print(" n%p -> n%p;\n", that, that->on_success()); |
+ os_ << " n" << that << " -> n" << that->on_success() << ";\n"; |
Visit(that->on_success()); |
} |
void DotPrinter::VisitBackReference(BackReferenceNode* that) { |
- OS::Print(" n%p [label=\"$%" Pd "..$%" Pd "\", shape=doubleoctagon];\n", |
- that, that->start_register(), that->end_register()); |
+ os_ << " n" << that << " [label=\"$" << that->start_register() << "..$" |
+ << that->end_register() << "\", shape=doubleoctagon];\n"; |
PrintAttributes(that); |
- OS::Print(" n%p -> n%p;\n", that, that->on_success()); |
+ os_ << " n" << that << " -> n" << that->on_success() << ";\n"; |
Visit(that->on_success()); |
} |
void DotPrinter::VisitEnd(EndNode* that) { |
- OS::Print(" n%p [style=bold, shape=point];\n", that); |
+ os_ << " n" << that << " [style=bold, shape=point];\n"; |
PrintAttributes(that); |
} |
void DotPrinter::VisitAssertion(AssertionNode* that) { |
- OS::Print(" n%p [", that); |
+ os_ << " n" << that << " ["; |
switch (that->assertion_type()) { |
case AssertionNode::AT_END: |
- OS::Print("label=\"$\", shape=septagon"); |
+ os_ << "label=\"$\", shape=septagon"; |
break; |
case AssertionNode::AT_START: |
- OS::Print("label=\"^\", shape=septagon"); |
+ os_ << "label=\"^\", shape=septagon"; |
break; |
case AssertionNode::AT_BOUNDARY: |
- OS::Print("label=\"\\b\", shape=septagon"); |
+ os_ << "label=\"\\b\", shape=septagon"; |
break; |
case AssertionNode::AT_NON_BOUNDARY: |
- OS::Print("label=\"\\B\", shape=septagon"); |
+ os_ << "label=\"\\B\", shape=septagon"; |
break; |
case AssertionNode::AFTER_NEWLINE: |
- OS::Print("label=\"(?<=\\n)\", shape=septagon"); |
+ os_ << "label=\"(?<=\\n)\", shape=septagon"; |
break; |
} |
- OS::Print("];\n"); |
+ os_ << "];\n"; |
PrintAttributes(that); |
RegExpNode* successor = that->on_success(); |
- OS::Print(" n%p -> n%p;\n", that, successor); |
+ os_ << " n" << that << " -> n" << successor << ";\n"; |
Visit(successor); |
} |
void DotPrinter::VisitAction(ActionNode* that) { |
- OS::Print(" n%p [", that); |
+ os_ << " n" << that << " ["; |
switch (that->action_type_) { |
case ActionNode::SET_REGISTER: |
- OS::Print("label=\"$%" Pd ":=%" Pd "\", shape=octagon", |
- that->data_.u_store_register.reg, |
- that->data_.u_store_register.value); |
+ os_ << "label=\"$" << that->data_.u_store_register.reg |
+ << ":=" << that->data_.u_store_register.value << "\", shape=octagon"; |
break; |
case ActionNode::INCREMENT_REGISTER: |
- OS::Print("label=\"$%" Pd "++\", shape=octagon", |
- that->data_.u_increment_register.reg); |
+ os_ << "label=\"$" << that->data_.u_increment_register.reg |
+ << "++\", shape=octagon"; |
break; |
case ActionNode::STORE_POSITION: |
- OS::Print("label=\"$%" Pd ":=$pos\", shape=octagon", |
- that->data_.u_position_register.reg); |
+ os_ << "label=\"$" << that->data_.u_position_register.reg |
+ << ":=$pos\", shape=octagon"; |
break; |
case ActionNode::BEGIN_SUBMATCH: |
- OS::Print("label=\"$%" Pd ":=$pos,begin\", shape=septagon", |
- that->data_.u_submatch.current_position_register); |
+ os_ << "label=\"$" << that->data_.u_submatch.current_position_register |
+ << ":=$pos,begin\", shape=septagon"; |
break; |
case ActionNode::POSITIVE_SUBMATCH_SUCCESS: |
- OS::Print("label=\"escape\", shape=septagon"); |
+ os_ << "label=\"escape\", shape=septagon"; |
break; |
case ActionNode::EMPTY_MATCH_CHECK: |
- OS::Print("label=\"$%" Pd "=$pos?,$%" Pd "<%" Pd "?\", shape=septagon", |
- that->data_.u_empty_match_check.start_register, |
- that->data_.u_empty_match_check.repetition_register, |
- that->data_.u_empty_match_check.repetition_limit); |
+ os_ << "label=\"$" << that->data_.u_empty_match_check.start_register |
+ << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register |
+ << "<" << that->data_.u_empty_match_check.repetition_limit |
+ << "?\", shape=septagon"; |
break; |
case ActionNode::CLEAR_CAPTURES: { |
- OS::Print("label=\"clear $%" Pd " to $%" Pd "\", shape=septagon", |
- that->data_.u_clear_captures.range_from, |
- that->data_.u_clear_captures.range_to); |
+ os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from |
+ << " to $" << that->data_.u_clear_captures.range_to |
+ << "\", shape=septagon"; |
break; |
} |
} |
- OS::Print("];\n"); |
+ os_ << "];\n"; |
PrintAttributes(that); |
RegExpNode* successor = that->on_success(); |
- OS::Print(" n%p -> n%p;\n", that, successor); |
+ os_ << " n" << that << " -> n" << successor << ";\n"; |
Visit(successor); |
} |
+class DispatchTableDumper { |
+ public: |
+ explicit DispatchTableDumper(OStream& os) : os_(os) {} |
+ void Call(uc16 key, DispatchTable::Entry entry); |
+ private: |
+ OStream& os_; |
+}; |
+ |
+ |
+void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) { |
+ os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {"; |
+ OutSet* set = entry.out_set(); |
+ bool first = true; |
+ for (unsigned i = 0; i < OutSet::kFirstLimit; i++) { |
+ if (set->Get(i)) { |
+ if (first) { |
+ first = false; |
+ } else { |
+ os_ << ", "; |
+ } |
+ os_ << i; |
+ } |
+ } |
+ os_ << "}\n"; |
+} |
+ |
+ |
+void DispatchTable::Dump() { |
+ OFStream os(stderr); |
+ DispatchTableDumper dumper(os); |
+ tree()->ForEach(&dumper); |
+} |
+ |
+ |
void RegExpEngine::DotPrint(const char* label, |
RegExpNode* node, |
bool ignore_case) { |
- DotPrinter printer(ignore_case); |
+ OFStream os(stdout); |
+ DotPrinter printer(os, ignore_case); |
printer.PrintNode(label, node); |
} |
@@ -3952,44 +4001,39 @@ void RegExpEngine::DotPrint(const char* label, |
RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler, |
RegExpNode* on_success) { |
- ZoneGrowableArray<TextElement>* elms = |
- new(CI) ZoneGrowableArray<TextElement>(1); |
- elms->Add(TextElement::Atom(this)); |
- return new(CI) TextNode(elms, on_success); |
+ ZoneList<TextElement>* elms = |
+ new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone()); |
+ elms->Add(TextElement::Atom(this), compiler->zone()); |
+ return new(compiler->zone()) TextNode(elms, on_success); |
} |
RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler, |
RegExpNode* on_success) { |
- ZoneGrowableArray<TextElement>* elms = |
- new(CI) ZoneGrowableArray<TextElement>(1); |
- for (intptr_t i = 0; i < elements()->length(); i++) { |
- elms->Add(elements()->At(i)); |
- } |
- return new(CI) TextNode(elms, on_success); |
+ return new(compiler->zone()) TextNode(elements(), on_success); |
} |
-static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges, |
- const intptr_t* special_class, |
- intptr_t length) { |
+static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges, |
+ const int* special_class, |
+ int length) { |
length--; // Remove final 0x10000. |
- ASSERT(special_class[length] == 0x10000); |
- ASSERT(ranges->length() != 0); |
- ASSERT(length != 0); |
- ASSERT(special_class[0] != 0); |
+ DCHECK(special_class[length] == 0x10000); |
+ DCHECK(ranges->length() != 0); |
+ DCHECK(length != 0); |
+ DCHECK(special_class[0] != 0); |
if (ranges->length() != (length >> 1) + 1) { |
return false; |
} |
- CharacterRange range = ranges->At(0); |
+ CharacterRange range = ranges->at(0); |
if (range.from() != 0) { |
return false; |
} |
- for (intptr_t i = 0; i < length; i += 2) { |
+ for (int i = 0; i < length; i += 2) { |
if (special_class[i] != (range.to() + 1)) { |
return false; |
} |
- range = ranges->At((i >> 1) + 1); |
+ range = ranges->at((i >> 1) + 1); |
if (special_class[i+1] != range.from()) { |
return false; |
} |
@@ -4001,16 +4045,16 @@ static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges, |
} |
-static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges, |
- const intptr_t* special_class, |
- intptr_t length) { |
+static bool CompareRanges(ZoneList<CharacterRange>* ranges, |
+ const int* special_class, |
+ int length) { |
length--; // Remove final 0x10000. |
- ASSERT(special_class[length] == 0x10000); |
+ DCHECK(special_class[length] == 0x10000); |
if (ranges->length() * 2 != length) { |
return false; |
} |
- for (intptr_t i = 0; i < length; i += 2) { |
- CharacterRange range = ranges->At(i >> 1); |
+ for (int i = 0; i < length; i += 2) { |
+ CharacterRange range = ranges->at(i >> 1); |
if (range.from() != special_class[i] || |
range.to() != special_class[i + 1] - 1) { |
return false; |
@@ -4020,7 +4064,7 @@ static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges, |
} |
-bool RegExpCharacterClass::is_standard() { |
+bool RegExpCharacterClass::is_standard(Zone* zone) { |
// TODO(lrn): Remove need for this function, by not throwing away information |
// along the way. |
if (is_negated_) { |
@@ -4029,31 +4073,31 @@ bool RegExpCharacterClass::is_standard() { |
if (set_.is_standard()) { |
return true; |
} |
- if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) { |
+ if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { |
set_.set_standard_set_type('s'); |
return true; |
} |
- if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) { |
+ if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) { |
set_.set_standard_set_type('S'); |
return true; |
} |
- if (CompareInverseRanges(set_.ranges(), |
+ if (CompareInverseRanges(set_.ranges(zone), |
kLineTerminatorRanges, |
kLineTerminatorRangeCount)) { |
set_.set_standard_set_type('.'); |
return true; |
} |
- if (CompareRanges(set_.ranges(), |
+ if (CompareRanges(set_.ranges(zone), |
kLineTerminatorRanges, |
kLineTerminatorRangeCount)) { |
set_.set_standard_set_type('n'); |
return true; |
} |
- if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) { |
+ if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { |
set_.set_standard_set_type('w'); |
return true; |
} |
- if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) { |
+ if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) { |
set_.set_standard_set_type('W'); |
return true; |
} |
@@ -4063,18 +4107,18 @@ bool RegExpCharacterClass::is_standard() { |
RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler, |
RegExpNode* on_success) { |
- return new(CI) TextNode(this, on_success); |
+ return new(compiler->zone()) TextNode(this, on_success); |
} |
RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler, |
RegExpNode* on_success) { |
- ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives(); |
- intptr_t length = alternatives->length(); |
+ ZoneList<RegExpTree*>* alternatives = this->alternatives(); |
+ int length = alternatives->length(); |
ChoiceNode* result = |
- new(CI) ChoiceNode(length, CI); |
- for (intptr_t i = 0; i < length; i++) { |
- GuardedAlternative alternative(alternatives->At(i)->ToNode(compiler, |
+ new(compiler->zone()) ChoiceNode(length, compiler->zone()); |
+ for (int i = 0; i < length; i++) { |
+ GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler, |
on_success)); |
result->AddAlternative(alternative); |
} |
@@ -4095,21 +4139,21 @@ RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler, |
// Scoped object to keep track of how much we unroll quantifier loops in the |
// regexp graph generator. |
-class RegExpExpansionLimiter : public ValueObject { |
+class RegExpExpansionLimiter { |
public: |
- static const intptr_t kMaxExpansionFactor = 6; |
- RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor) |
+ static const int kMaxExpansionFactor = 6; |
+ RegExpExpansionLimiter(RegExpCompiler* compiler, int factor) |
: compiler_(compiler), |
saved_expansion_factor_(compiler->current_expansion_factor()), |
ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) { |
- ASSERT(factor > 0); |
+ DCHECK(factor > 0); |
if (ok_to_expand_) { |
if (factor > kMaxExpansionFactor) { |
// Avoid integer overflow of the current expansion factor. |
ok_to_expand_ = false; |
compiler->set_current_expansion_factor(kMaxExpansionFactor + 1); |
} else { |
- intptr_t new_factor = saved_expansion_factor_ * factor; |
+ int new_factor = saved_expansion_factor_ * factor; |
ok_to_expand_ = (new_factor <= kMaxExpansionFactor); |
compiler->set_current_expansion_factor(new_factor); |
} |
@@ -4124,15 +4168,15 @@ class RegExpExpansionLimiter : public ValueObject { |
private: |
RegExpCompiler* compiler_; |
- intptr_t saved_expansion_factor_; |
+ int saved_expansion_factor_; |
bool ok_to_expand_; |
DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter); |
}; |
-RegExpNode* RegExpQuantifier::ToNode(intptr_t min, |
- intptr_t max, |
+RegExpNode* RegExpQuantifier::ToNode(int min, |
+ int max, |
bool is_greedy, |
RegExpTree* body, |
RegExpCompiler* compiler, |
@@ -4158,27 +4202,25 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min, |
// simpler since we don't need to make the special zero length match check |
// from step 2.1. If the min and max are small we can unroll a little in |
// this case. |
- // Unroll (foo)+ and (foo){3,} |
- static const intptr_t kMaxUnrolledMinMatches = 3; |
- // Unroll (foo)? and (foo){x,3} |
- static const intptr_t kMaxUnrolledMaxMatches = 3; |
+ static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,} |
+ static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3} |
if (max == 0) return on_success; // This can happen due to recursion. |
bool body_can_be_empty = (body->min_match() == 0); |
- intptr_t body_start_reg = RegExpCompiler::kNoRegister; |
+ int body_start_reg = RegExpCompiler::kNoRegister; |
Interval capture_registers = body->CaptureRegisters(); |
bool needs_capture_clearing = !capture_registers.is_empty(); |
- Isolate* isolate = compiler->isolate(); |
+ Zone* zone = compiler->zone(); |
if (body_can_be_empty) { |
body_start_reg = compiler->AllocateRegister(); |
- } else if (kRegexpOptimization && !needs_capture_clearing) { |
+ } else if (FLAG_regexp_optimization && !needs_capture_clearing) { |
// Only unroll if there are no captures and the body can't be |
// empty. |
{ |
RegExpExpansionLimiter limiter( |
compiler, min + ((max != min) ? 1 : 0)); |
if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) { |
- intptr_t new_max = (max == kInfinity) ? max : max - min; |
+ int new_max = (max == kInfinity) ? max : max - min; |
// Recurse once to get the loop or optional matches after the fixed |
// ones. |
RegExpNode* answer = ToNode( |
@@ -4186,20 +4228,20 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min, |
// Unroll the forced matches from 0 to min. This can cause chains of |
// TextNodes (which the parser does not generate). These should be |
// combined if it turns out they hinder good code generation. |
- for (intptr_t i = 0; i < min; i++) { |
+ for (int i = 0; i < min; i++) { |
answer = body->ToNode(compiler, answer); |
} |
return answer; |
} |
} |
if (max <= kMaxUnrolledMaxMatches && min == 0) { |
- ASSERT(max > 0); // Due to the 'if' above. |
+ DCHECK(max > 0); // Due to the 'if' above. |
RegExpExpansionLimiter limiter(compiler, max); |
if (limiter.ok_to_expand()) { |
// Unroll the optional matches up to max. |
RegExpNode* answer = on_success; |
- for (intptr_t i = 0; i < max; i++) { |
- ChoiceNode* alternation = new(isolate) ChoiceNode(2, isolate); |
+ for (int i = 0; i < max; i++) { |
+ ChoiceNode* alternation = new(zone) ChoiceNode(2, zone); |
if (is_greedy) { |
alternation->AddAlternative( |
GuardedAlternative(body->ToNode(compiler, answer))); |
@@ -4219,11 +4261,11 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min, |
bool has_min = min > 0; |
bool has_max = max < RegExpTree::kInfinity; |
bool needs_counter = has_min || has_max; |
- intptr_t reg_ctr = needs_counter |
+ int reg_ctr = needs_counter |
? compiler->AllocateRegister() |
: RegExpCompiler::kNoRegister; |
- LoopChoiceNode* center = new(isolate) LoopChoiceNode(body->min_match() == 0, |
- isolate); |
+ LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0, |
+ zone); |
if (not_at_start) center->set_not_at_start(); |
RegExpNode* loop_return = needs_counter |
? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center)) |
@@ -4249,13 +4291,13 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min, |
GuardedAlternative body_alt(body_node); |
if (has_max) { |
Guard* body_guard = |
- new(isolate) Guard(reg_ctr, Guard::LT, max); |
- body_alt.AddGuard(body_guard, isolate); |
+ new(zone) Guard(reg_ctr, Guard::LT, max); |
+ body_alt.AddGuard(body_guard, zone); |
} |
GuardedAlternative rest_alt(on_success); |
if (has_min) { |
- Guard* rest_guard = new(isolate) Guard(reg_ctr, Guard::GEQ, min); |
- rest_alt.AddGuard(rest_guard, isolate); |
+ Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min); |
+ rest_alt.AddGuard(rest_guard, zone); |
} |
if (is_greedy) { |
center->AddLoopAlternative(body_alt); |
@@ -4274,6 +4316,9 @@ RegExpNode* RegExpQuantifier::ToNode(intptr_t min, |
RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, |
RegExpNode* on_success) { |
+ NodeInfo info; |
+ Zone* zone = compiler->zone(); |
+ |
switch (assertion_type()) { |
case START_OF_LINE: |
return AssertionNode::AfterNewline(on_success); |
@@ -4289,16 +4334,16 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, |
// Compile $ in multiline regexps as an alternation with a positive |
// lookahead in one side and an end-of-input on the other side. |
// We need two registers for the lookahead. |
- intptr_t stack_pointer_register = compiler->AllocateRegister(); |
- intptr_t position_register = compiler->AllocateRegister(); |
+ int stack_pointer_register = compiler->AllocateRegister(); |
+ int position_register = compiler->AllocateRegister(); |
// The ChoiceNode to distinguish between a newline and end-of-input. |
- ChoiceNode* result = new ChoiceNode(2, on_success->isolate()); |
+ ChoiceNode* result = new(zone) ChoiceNode(2, zone); |
// Create a newline atom. |
- ZoneGrowableArray<CharacterRange>* newline_ranges = |
- new ZoneGrowableArray<CharacterRange>(3); |
- CharacterRange::AddClassEscape('n', newline_ranges); |
- RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n'); |
- TextNode* newline_matcher = new TextNode( |
+ ZoneList<CharacterRange>* newline_ranges = |
+ new(zone) ZoneList<CharacterRange>(3, zone); |
+ CharacterRange::AddClassEscape('n', newline_ranges, zone); |
+ RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n'); |
+ TextNode* newline_matcher = new(zone) TextNode( |
newline_atom, |
ActionNode::PositiveSubmatchSuccess(stack_pointer_register, |
position_register, |
@@ -4326,7 +4371,7 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler, |
RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler, |
RegExpNode* on_success) { |
- return new(CI) |
+ return new(compiler->zone()) |
BackReferenceNode(RegExpCapture::StartRegister(index()), |
RegExpCapture::EndRegister(index()), |
on_success); |
@@ -4341,13 +4386,13 @@ RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler, |
RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler, |
RegExpNode* on_success) { |
- intptr_t stack_pointer_register = compiler->AllocateRegister(); |
- intptr_t position_register = compiler->AllocateRegister(); |
+ int stack_pointer_register = compiler->AllocateRegister(); |
+ int position_register = compiler->AllocateRegister(); |
- const intptr_t registers_per_capture = 2; |
- const intptr_t register_of_first_capture = 2; |
- intptr_t register_count = capture_count_ * registers_per_capture; |
- intptr_t register_start = |
+ const int registers_per_capture = 2; |
+ const int register_of_first_capture = 2; |
+ int register_count = capture_count_ * registers_per_capture; |
+ int register_start = |
register_of_first_capture + capture_from_ * registers_per_capture; |
RegExpNode* success; |
@@ -4374,19 +4419,20 @@ RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler, |
// for a negative lookahead. The NegativeLookaheadChoiceNode is a special |
// ChoiceNode that knows to ignore the first exit when calculating quick |
// checks. |
+ Zone* zone = compiler->zone(); |
GuardedAlternative body_alt( |
body()->ToNode( |
compiler, |
- success = new(CI) NegativeSubmatchSuccess(stack_pointer_register, |
- position_register, |
- register_count, |
- register_start, |
- CI))); |
+ success = new(zone) NegativeSubmatchSuccess(stack_pointer_register, |
+ position_register, |
+ register_count, |
+ register_start, |
+ zone))); |
ChoiceNode* choice_node = |
- new(CI) NegativeLookaheadChoiceNode(body_alt, |
- GuardedAlternative(on_success), |
- CI); |
+ new(zone) NegativeLookaheadChoiceNode(body_alt, |
+ GuardedAlternative(on_success), |
+ zone); |
return ActionNode::BeginSubmatch(stack_pointer_register, |
position_register, |
choice_node); |
@@ -4401,11 +4447,11 @@ RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler, |
RegExpNode* RegExpCapture::ToNode(RegExpTree* body, |
- intptr_t index, |
+ int index, |
RegExpCompiler* compiler, |
RegExpNode* on_success) { |
- intptr_t start_reg = RegExpCapture::StartRegister(index); |
- intptr_t end_reg = RegExpCapture::EndRegister(index); |
+ int start_reg = RegExpCapture::StartRegister(index); |
+ int end_reg = RegExpCapture::EndRegister(index); |
RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success); |
RegExpNode* body_node = body->ToNode(compiler, store_end); |
return ActionNode::StorePosition(start_reg, true, body_node); |
@@ -4414,83 +4460,88 @@ RegExpNode* RegExpCapture::ToNode(RegExpTree* body, |
RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler, |
RegExpNode* on_success) { |
- ZoneGrowableArray<RegExpTree*>* children = nodes(); |
+ ZoneList<RegExpTree*>* children = nodes(); |
RegExpNode* current = on_success; |
- for (intptr_t i = children->length() - 1; i >= 0; i--) { |
- current = children->At(i)->ToNode(compiler, current); |
+ for (int i = children->length() - 1; i >= 0; i--) { |
+ current = children->at(i)->ToNode(compiler, current); |
} |
return current; |
} |
-static void AddClass(const intptr_t* elmv, |
- intptr_t elmc, |
- ZoneGrowableArray<CharacterRange>* ranges) { |
+static void AddClass(const int* elmv, |
+ int elmc, |
+ ZoneList<CharacterRange>* ranges, |
+ Zone* zone) { |
elmc--; |
- ASSERT(elmv[elmc] == 0x10000); |
- for (intptr_t i = 0; i < elmc; i += 2) { |
- ASSERT(elmv[i] < elmv[i + 1]); |
- ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1)); |
+ DCHECK(elmv[elmc] == 0x10000); |
+ for (int i = 0; i < elmc; i += 2) { |
+ DCHECK(elmv[i] < elmv[i + 1]); |
+ ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone); |
} |
} |
-static void AddClassNegated(const intptr_t *elmv, |
- intptr_t elmc, |
- ZoneGrowableArray<CharacterRange>* ranges) { |
+static void AddClassNegated(const int *elmv, |
+ int elmc, |
+ ZoneList<CharacterRange>* ranges, |
+ Zone* zone) { |
elmc--; |
- ASSERT(elmv[elmc] == 0x10000); |
- ASSERT(elmv[0] != 0x0000); |
- ASSERT(elmv[elmc-1] != Utf16::kMaxCodeUnit); |
- uint16_t last = 0x0000; |
- for (intptr_t i = 0; i < elmc; i += 2) { |
- ASSERT(last <= elmv[i] - 1); |
- ASSERT(elmv[i] < elmv[i + 1]); |
- ranges->Add(CharacterRange(last, elmv[i] - 1)); |
+ DCHECK(elmv[elmc] == 0x10000); |
+ DCHECK(elmv[0] != 0x0000); |
+ DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit); |
+ uc16 last = 0x0000; |
+ for (int i = 0; i < elmc; i += 2) { |
+ DCHECK(last <= elmv[i] - 1); |
+ DCHECK(elmv[i] < elmv[i + 1]); |
+ ranges->Add(CharacterRange(last, elmv[i] - 1), zone); |
last = elmv[i + 1]; |
} |
- ranges->Add(CharacterRange(last, Utf16::kMaxCodeUnit)); |
+ ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone); |
} |
-void CharacterRange::AddClassEscape(uint16_t type, |
- ZoneGrowableArray<CharacterRange>* ranges) { |
+void CharacterRange::AddClassEscape(uc16 type, |
+ ZoneList<CharacterRange>* ranges, |
+ Zone* zone) { |
switch (type) { |
case 's': |
- AddClass(kSpaceRanges, kSpaceRangeCount, ranges); |
+ AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone); |
break; |
case 'S': |
- AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges); |
+ AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone); |
break; |
case 'w': |
- AddClass(kWordRanges, kWordRangeCount, ranges); |
+ AddClass(kWordRanges, kWordRangeCount, ranges, zone); |
break; |
case 'W': |
- AddClassNegated(kWordRanges, kWordRangeCount, ranges); |
+ AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone); |
break; |
case 'd': |
- AddClass(kDigitRanges, kDigitRangeCount, ranges); |
+ AddClass(kDigitRanges, kDigitRangeCount, ranges, zone); |
break; |
case 'D': |
- AddClassNegated(kDigitRanges, kDigitRangeCount, ranges); |
+ AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone); |
break; |
case '.': |
AddClassNegated(kLineTerminatorRanges, |
kLineTerminatorRangeCount, |
- ranges); |
+ ranges, |
+ zone); |
break; |
// This is not a character range as defined by the spec but a |
// convenient shorthand for a character class that matches any |
// character. |
case '*': |
- ranges->Add(CharacterRange::Everything()); |
+ ranges->Add(CharacterRange::Everything(), zone); |
break; |
// This is the set of characters matched by the $ and ^ symbols |
// in multiline mode. |
case 'n': |
AddClass(kLineTerminatorRanges, |
kLineTerminatorRangeCount, |
- ranges); |
+ ranges, |
+ zone); |
break; |
default: |
UNREACHABLE(); |
@@ -4498,29 +4549,77 @@ void CharacterRange::AddClassEscape(uint16_t type, |
} |
-void CharacterRange::AddCaseEquivalents( |
- ZoneGrowableArray<CharacterRange>* ranges, |
- bool is_one_byte, |
- Isolate* isolate) { |
- uint16_t bottom = from(); |
- uint16_t top = to(); |
- if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) { |
- if (bottom > Symbols::kMaxOneCharCodeSymbol) return; |
- if (top > Symbols::kMaxOneCharCodeSymbol) { |
- top = Symbols::kMaxOneCharCodeSymbol; |
- } |
+Vector<const int> CharacterRange::GetWordBounds() { |
+ return Vector<const int>(kWordRanges, kWordRangeCount - 1); |
+} |
+ |
+ |
+class CharacterRangeSplitter { |
+ public: |
+ CharacterRangeSplitter(ZoneList<CharacterRange>** included, |
+ ZoneList<CharacterRange>** excluded, |
+ Zone* zone) |
+ : included_(included), |
+ excluded_(excluded), |
+ zone_(zone) { } |
+ void Call(uc16 from, DispatchTable::Entry entry); |
+ |
+ static const int kInBase = 0; |
+ static const int kInOverlay = 1; |
+ |
+ private: |
+ ZoneList<CharacterRange>** included_; |
+ ZoneList<CharacterRange>** excluded_; |
+ Zone* zone_; |
+}; |
+ |
+ |
+void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) { |
+ if (!entry.out_set()->Get(kInBase)) return; |
+ ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay) |
+ ? included_ |
+ : excluded_; |
+ if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_); |
+ (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_); |
+} |
+ |
+ |
+void CharacterRange::Split(ZoneList<CharacterRange>* base, |
+ Vector<const int> overlay, |
+ ZoneList<CharacterRange>** included, |
+ ZoneList<CharacterRange>** excluded, |
+ Zone* zone) { |
+ DCHECK_EQ(NULL, *included); |
+ DCHECK_EQ(NULL, *excluded); |
+ DispatchTable table(zone); |
+ for (int i = 0; i < base->length(); i++) |
+ table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone); |
+ for (int i = 0; i < overlay.length(); i += 2) { |
+ table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1), |
+ CharacterRangeSplitter::kInOverlay, zone); |
} |
+ CharacterRangeSplitter callback(included, excluded, zone); |
+ table.ForEach(&callback); |
+} |
+ |
- unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize; |
- unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange; |
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
+void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges, |
+ bool is_one_byte, Zone* zone) { |
+ Isolate* isolate = zone->isolate(); |
+ uc16 bottom = from(); |
+ uc16 top = to(); |
+ if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) { |
+ if (bottom > String::kMaxOneByteCharCode) return; |
+ if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode; |
+ } |
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
if (top == bottom) { |
// If this is a singleton we just expand the one character. |
- intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars); // NOLINT |
- for (intptr_t i = 0; i < length; i++) { |
- uint32_t chr = chars[i]; |
+ int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars); |
+ for (int i = 0; i < length; i++) { |
+ uc32 chr = chars[i]; |
if (chr != bottom) { |
- ranges->Add(CharacterRange::Singleton(chars[i])); |
+ ranges->Add(CharacterRange::Singleton(chars[i]), zone); |
} |
} |
} else { |
@@ -4542,25 +4641,25 @@ void CharacterRange::AddCaseEquivalents( |
// completely contained in a block we do this for all the blocks |
// covered by the range (handling characters that is not in a block |
// as a "singleton block"). |
- int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
- intptr_t pos = bottom; |
+ unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
+ int pos = bottom; |
while (pos <= top) { |
- intptr_t length = jsregexp_canonrange.get(pos, '\0', range); |
- uint16_t block_end; |
+ int length = isolate->jsregexp_canonrange()->get(pos, '\0', range); |
+ uc16 block_end; |
if (length == 0) { |
block_end = pos; |
} else { |
- ASSERT(length == 1); |
+ DCHECK_EQ(1, length); |
block_end = range[0]; |
} |
- intptr_t end = (block_end > top) ? top : block_end; |
- length = jsregexp_uncanonicalize.get(block_end, '\0', range); // NOLINT |
- for (intptr_t i = 0; i < length; i++) { |
- uint32_t c = range[i]; |
- uint16_t range_from = c - (block_end - pos); |
- uint16_t range_to = c - (block_end - end); |
+ int end = (block_end > top) ? top : block_end; |
+ length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range); |
+ for (int i = 0; i < length; i++) { |
+ uc32 c = range[i]; |
+ uc16 range_from = c - (block_end - pos); |
+ uc16 range_to = c - (block_end - end); |
if (!(bottom <= range_from && range_to <= top)) { |
- ranges->Add(CharacterRange(range_from, range_to)); |
+ ranges->Add(CharacterRange(range_from, range_to), zone); |
} |
} |
pos = end + 1; |
@@ -4569,13 +4668,13 @@ void CharacterRange::AddCaseEquivalents( |
} |
-bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) { |
- ASSERT(ranges != NULL); |
- intptr_t n = ranges->length(); |
+bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) { |
+ DCHECK_NOT_NULL(ranges); |
+ int n = ranges->length(); |
if (n <= 1) return true; |
- intptr_t max = ranges->At(0).to(); |
- for (intptr_t i = 1; i < n; i++) { |
- CharacterRange next_range = ranges->At(i); |
+ int max = ranges->at(0).to(); |
+ for (int i = 1; i < n; i++) { |
+ CharacterRange next_range = ranges->at(i); |
if (next_range.from() <= max + 1) return false; |
max = next_range.to(); |
} |
@@ -4583,49 +4682,48 @@ bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) { |
} |
-ZoneGrowableArray<CharacterRange>* CharacterSet::ranges() { |
+ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) { |
if (ranges_ == NULL) { |
- ranges_ = new ZoneGrowableArray<CharacterRange>(2); |
- CharacterRange::AddClassEscape(standard_set_type_, ranges_); |
+ ranges_ = new(zone) ZoneList<CharacterRange>(2, zone); |
+ CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone); |
} |
return ranges_; |
} |
-// Move a number of elements in a zone array to another position |
-// in the same array. Handles overlapping source and target areas. |
-static void MoveRanges(ZoneGrowableArray<CharacterRange>* list, |
- intptr_t from, |
- intptr_t to, |
- intptr_t count) { |
+// Move a number of elements in a zonelist to another position |
+// in the same list. Handles overlapping source and target areas. |
+static void MoveRanges(ZoneList<CharacterRange>* list, |
+ int from, |
+ int to, |
+ int count) { |
// Ranges are potentially overlapping. |
if (from < to) { |
- for (intptr_t i = count - 1; i >= 0; i--) { |
- (*list)[to + i] = list->At(from + i); |
+ for (int i = count - 1; i >= 0; i--) { |
+ list->at(to + i) = list->at(from + i); |
} |
} else { |
- for (intptr_t i = 0; i < count; i++) { |
- (*list)[to + i] = list->At(from + i); |
+ for (int i = 0; i < count; i++) { |
+ list->at(to + i) = list->at(from + i); |
} |
} |
} |
-static intptr_t InsertRangeInCanonicalList( |
- ZoneGrowableArray<CharacterRange>* list, |
- intptr_t count, |
- CharacterRange insert) { |
+static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list, |
+ int count, |
+ CharacterRange insert) { |
// Inserts a range into list[0..count[, which must be sorted |
// by from value and non-overlapping and non-adjacent, using at most |
// list[0..count] for the result. Returns the number of resulting |
// canonicalized ranges. Inserting a range may collapse existing ranges into |
// fewer ranges, so the return value can be anything in the range 1..count+1. |
- uint16_t from = insert.from(); |
- uint16_t to = insert.to(); |
- intptr_t start_pos = 0; |
- intptr_t end_pos = count; |
- for (intptr_t i = count - 1; i >= 0; i--) { |
- CharacterRange current = list->At(i); |
+ uc16 from = insert.from(); |
+ uc16 to = insert.to(); |
+ int start_pos = 0; |
+ int end_pos = count; |
+ for (int i = count - 1; i >= 0; i--) { |
+ CharacterRange current = list->at(i); |
if (current.from() > to + 1) { |
end_pos = i; |
} else if (current.to() + 1 < from) { |
@@ -4646,26 +4744,26 @@ static intptr_t InsertRangeInCanonicalList( |
if (start_pos < count) { |
MoveRanges(list, start_pos, start_pos + 1, count - start_pos); |
} |
- (*list)[start_pos] = insert; |
+ list->at(start_pos) = insert; |
return count + 1; |
} |
if (start_pos + 1 == end_pos) { |
// Replace single existing range at position start_pos. |
- CharacterRange to_replace = list->At(start_pos); |
- intptr_t new_from = Utils::Minimum(to_replace.from(), from); |
- intptr_t new_to = Utils::Maximum(to_replace.to(), to); |
- (*list)[start_pos] = CharacterRange(new_from, new_to); |
+ CharacterRange to_replace = list->at(start_pos); |
+ int new_from = Min(to_replace.from(), from); |
+ int new_to = Max(to_replace.to(), to); |
+ list->at(start_pos) = CharacterRange(new_from, new_to); |
return count; |
} |
// Replace a number of existing ranges from start_pos to end_pos - 1. |
// Move the remaining ranges down. |
- intptr_t new_from = Utils::Minimum(list->At(start_pos).from(), from); |
- intptr_t new_to = Utils::Maximum(list->At(end_pos - 1).to(), to); |
+ int new_from = Min(list->at(start_pos).from(), from); |
+ int new_to = Max(list->at(end_pos - 1).to(), to); |
if (end_pos < count) { |
MoveRanges(list, end_pos, start_pos + 1, count - end_pos); |
} |
- (*list)[start_pos] = CharacterRange(new_from, new_to); |
+ list->at(start_pos) = CharacterRange(new_from, new_to); |
return count - (end_pos - start_pos) + 1; |
} |
@@ -4678,16 +4776,15 @@ void CharacterSet::Canonicalize() { |
} |
-void CharacterRange::Canonicalize( |
- ZoneGrowableArray<CharacterRange>* character_ranges) { |
+void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) { |
if (character_ranges->length() <= 1) return; |
// Check whether ranges are already canonical (increasing, non-overlapping, |
// non-adjacent). |
- intptr_t n = character_ranges->length(); |
- intptr_t max = character_ranges->At(0).to(); |
- intptr_t i = 1; |
+ int n = character_ranges->length(); |
+ int max = character_ranges->at(0).to(); |
+ int i = 1; |
while (i < n) { |
- CharacterRange current = character_ranges->At(i); |
+ CharacterRange current = character_ranges->at(i); |
if (current.from() <= max + 1) { |
break; |
} |
@@ -4702,39 +4799,41 @@ void CharacterRange::Canonicalize( |
// list, in order). |
// Notice that inserting a range can reduce the number of ranges in the |
// result due to combining of adjacent and overlapping ranges. |
- intptr_t read = i; // Range to insert. |
- intptr_t num_canonical = i; // Length of canonicalized part of list. |
+ int read = i; // Range to insert. |
+ int num_canonical = i; // Length of canonicalized part of list. |
do { |
num_canonical = InsertRangeInCanonicalList(character_ranges, |
num_canonical, |
- character_ranges->At(read)); |
+ character_ranges->at(read)); |
read++; |
} while (read < n); |
- character_ranges->TruncateTo(num_canonical); |
+ character_ranges->Rewind(num_canonical); |
- ASSERT(CharacterRange::IsCanonical(character_ranges)); |
+ DCHECK(CharacterRange::IsCanonical(character_ranges)); |
} |
-void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges, |
- ZoneGrowableArray<CharacterRange>* negated_ranges) { |
- ASSERT(CharacterRange::IsCanonical(ranges)); |
- ASSERT(negated_ranges->length() == 0); |
- intptr_t range_count = ranges->length(); |
- uint16_t from = 0; |
- intptr_t i = 0; |
- if (range_count > 0 && ranges->At(0).from() == 0) { |
- from = ranges->At(0).to(); |
+void CharacterRange::Negate(ZoneList<CharacterRange>* ranges, |
+ ZoneList<CharacterRange>* negated_ranges, |
+ Zone* zone) { |
+ DCHECK(CharacterRange::IsCanonical(ranges)); |
+ DCHECK_EQ(0, negated_ranges->length()); |
+ int range_count = ranges->length(); |
+ uc16 from = 0; |
+ int i = 0; |
+ if (range_count > 0 && ranges->at(0).from() == 0) { |
+ from = ranges->at(0).to(); |
i = 1; |
} |
while (i < range_count) { |
- CharacterRange range = ranges->At(i); |
- negated_ranges->Add(CharacterRange(from + 1, range.from() - 1)); |
+ CharacterRange range = ranges->at(i); |
+ negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone); |
from = range.to(); |
i++; |
} |
- if (from < Utf16::kMaxCodeUnit) { |
- negated_ranges->Add(CharacterRange(from + 1, Utf16::kMaxCodeUnit)); |
+ if (from < String::kMaxUtf16CodeUnit) { |
+ negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit), |
+ zone); |
} |
} |
@@ -4743,29 +4842,33 @@ void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges, |
// Splay tree |
-// Workaround for the fact that ZoneGrowableArray does not have contains(). |
-static bool ArrayContains(ZoneGrowableArray<unsigned>* array, |
- unsigned value) { |
- for (intptr_t i = 0; i < array->length(); i++) { |
- if (array->At(i) == value) { |
- return true; |
+OutSet* OutSet::Extend(unsigned value, Zone* zone) { |
+ if (Get(value)) |
+ return this; |
+ if (successors(zone) != NULL) { |
+ for (int i = 0; i < successors(zone)->length(); i++) { |
+ OutSet* successor = successors(zone)->at(i); |
+ if (successor->Get(value)) |
+ return successor; |
} |
+ } else { |
+ successors_ = new(zone) ZoneList<OutSet*>(2, zone); |
} |
- return false; |
+ OutSet* result = new(zone) OutSet(first_, remaining_); |
+ result->Set(value, zone); |
+ successors(zone)->Add(result, zone); |
+ return result; |
} |
-void OutSet::Set(unsigned value, Isolate* isolate) { |
+void OutSet::Set(unsigned value, Zone *zone) { |
if (value < kFirstLimit) { |
first_ |= (1 << value); |
} else { |
if (remaining_ == NULL) |
- remaining_ = new(isolate) ZoneGrowableArray<unsigned>(1); |
- |
- bool remaining_contains_value = ArrayContains(remaining_, value); |
- if (remaining_->is_empty() || !remaining_contains_value) { |
- remaining_->Add(value); |
- } |
+ remaining_ = new(zone) ZoneList<unsigned>(1, zone); |
+ if (remaining_->is_empty() || !remaining_->Contains(value)) |
+ remaining_->Add(value, zone); |
} |
} |
@@ -4776,16 +4879,125 @@ bool OutSet::Get(unsigned value) const { |
} else if (remaining_ == NULL) { |
return false; |
} else { |
- return ArrayContains(remaining_, value); |
+ return remaining_->Contains(value); |
} |
} |
+const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar; |
+ |
+ |
+void DispatchTable::AddRange(CharacterRange full_range, int value, |
+ Zone* zone) { |
+ CharacterRange current = full_range; |
+ if (tree()->is_empty()) { |
+ // If this is the first range we just insert into the table. |
+ ZoneSplayTree<Config>::Locator loc; |
+ DCHECK_RESULT(tree()->Insert(current.from(), &loc)); |
+ loc.set_value(Entry(current.from(), current.to(), |
+ empty()->Extend(value, zone))); |
+ return; |
+ } |
+ // First see if there is a range to the left of this one that |
+ // overlaps. |
+ ZoneSplayTree<Config>::Locator loc; |
+ if (tree()->FindGreatestLessThan(current.from(), &loc)) { |
+ Entry* entry = &loc.value(); |
+ // If we've found a range that overlaps with this one, and it |
+ // starts strictly to the left of this one, we have to fix it |
+ // because the following code only handles ranges that start on |
+ // or after the start point of the range we're adding. |
+ if (entry->from() < current.from() && entry->to() >= current.from()) { |
+ // Snap the overlapping range in half around the start point of |
+ // the range we're adding. |
+ CharacterRange left(entry->from(), current.from() - 1); |
+ CharacterRange right(current.from(), entry->to()); |
+ // The left part of the overlapping range doesn't overlap. |
+ // Truncate the whole entry to be just the left part. |
+ entry->set_to(left.to()); |
+ // The right part is the one that overlaps. We add this part |
+ // to the map and let the next step deal with merging it with |
+ // the range we're adding. |
+ ZoneSplayTree<Config>::Locator loc; |
+ DCHECK_RESULT(tree()->Insert(right.from(), &loc)); |
+ loc.set_value(Entry(right.from(), |
+ right.to(), |
+ entry->out_set())); |
+ } |
+ } |
+ while (current.is_valid()) { |
+ if (tree()->FindLeastGreaterThan(current.from(), &loc) && |
+ (loc.value().from() <= current.to()) && |
+ (loc.value().to() >= current.from())) { |
+ Entry* entry = &loc.value(); |
+ // We have overlap. If there is space between the start point of |
+ // the range we're adding and where the overlapping range starts |
+ // then we have to add a range covering just that space. |
+ if (current.from() < entry->from()) { |
+ ZoneSplayTree<Config>::Locator ins; |
+ DCHECK_RESULT(tree()->Insert(current.from(), &ins)); |
+ ins.set_value(Entry(current.from(), |
+ entry->from() - 1, |
+ empty()->Extend(value, zone))); |
+ current.set_from(entry->from()); |
+ } |
+ DCHECK_EQ(current.from(), entry->from()); |
+ // If the overlapping range extends beyond the one we want to add |
+ // we have to snap the right part off and add it separately. |
+ if (entry->to() > current.to()) { |
+ ZoneSplayTree<Config>::Locator ins; |
+ DCHECK_RESULT(tree()->Insert(current.to() + 1, &ins)); |
+ ins.set_value(Entry(current.to() + 1, |
+ entry->to(), |
+ entry->out_set())); |
+ entry->set_to(current.to()); |
+ } |
+ DCHECK(entry->to() <= current.to()); |
+ // The overlapping range is now completely contained by the range |
+ // we're adding so we can just update it and move the start point |
+ // of the range we're adding just past it. |
+ entry->AddValue(value, zone); |
+ // Bail out if the last interval ended at 0xFFFF since otherwise |
+ // adding 1 will wrap around to 0. |
+ if (entry->to() == String::kMaxUtf16CodeUnit) |
+ break; |
+ DCHECK(entry->to() + 1 > current.from()); |
+ current.set_from(entry->to() + 1); |
+ } else { |
+ // There is no overlap so we can just add the range |
+ ZoneSplayTree<Config>::Locator ins; |
+ DCHECK_RESULT(tree()->Insert(current.from(), &ins)); |
+ ins.set_value(Entry(current.from(), |
+ current.to(), |
+ empty()->Extend(value, zone))); |
+ break; |
+ } |
+ } |
+} |
+ |
+ |
+OutSet* DispatchTable::Get(uc16 value) { |
+ ZoneSplayTree<Config>::Locator loc; |
+ if (!tree()->FindGreatestLessThan(value, &loc)) |
+ return empty(); |
+ Entry* entry = &loc.value(); |
+ if (value <= entry->to()) |
+ return entry->out_set(); |
+ else |
+ return empty(); |
+} |
+ |
+ |
// ------------------------------------------------------------------- |
// Analysis |
void Analysis::EnsureAnalyzed(RegExpNode* that) { |
+ StackLimitCheck check(that->zone()->isolate()); |
+ if (check.HasOverflowed()) { |
+ fail("Stack overflow"); |
+ return; |
+ } |
if (that->info()->been_analyzed || that->info()->being_analyzed) |
return; |
that->info()->being_analyzed = true; |
@@ -4801,12 +5013,12 @@ void Analysis::VisitEnd(EndNode* that) { |
void TextNode::CalculateOffsets() { |
- intptr_t element_count = elements()->length(); |
+ int element_count = elements()->length(); |
// Set up the offsets of the elements relative to the start. This is a fixed |
// quantity since a TextNode can only contain fixed-width things. |
- intptr_t cp_offset = 0; |
- for (intptr_t i = 0; i < element_count; i++) { |
- TextElement& elm = (*elements())[i]; |
+ int cp_offset = 0; |
+ for (int i = 0; i < element_count; i++) { |
+ TextElement& elm = elements()->at(i); |
elm.set_cp_offset(cp_offset); |
cp_offset += elm.length(); |
} |
@@ -4837,8 +5049,8 @@ void Analysis::VisitAction(ActionNode* that) { |
void Analysis::VisitChoice(ChoiceNode* that) { |
NodeInfo* info = that->info(); |
- for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
- RegExpNode* node = (*that->alternatives())[i].node(); |
+ for (int i = 0; i < that->alternatives()->length(); i++) { |
+ RegExpNode* node = that->alternatives()->at(i).node(); |
EnsureAnalyzed(node); |
if (has_failed()) return; |
// Anything the following nodes need to know has to be known by |
@@ -4850,8 +5062,8 @@ void Analysis::VisitChoice(ChoiceNode* that) { |
void Analysis::VisitLoopChoice(LoopChoiceNode* that) { |
NodeInfo* info = that->info(); |
- for (intptr_t i = 0; i < that->alternatives()->length(); i++) { |
- RegExpNode* node = (*that->alternatives())[i].node(); |
+ for (int i = 0; i < that->alternatives()->length(); i++) { |
+ RegExpNode* node = that->alternatives()->at(i).node(); |
if (node != that->loop_node()) { |
EnsureAnalyzed(node); |
if (has_failed()) return; |
@@ -4877,8 +5089,8 @@ void Analysis::VisitAssertion(AssertionNode* that) { |
} |
-void BackReferenceNode::FillInBMInfo(intptr_t offset, |
- intptr_t budget, |
+void BackReferenceNode::FillInBMInfo(int offset, |
+ int budget, |
BoyerMooreLookahead* bm, |
bool not_at_start) { |
// Working out the set of characters that a backreference can match is too |
@@ -4888,18 +5100,18 @@ void BackReferenceNode::FillInBMInfo(intptr_t offset, |
} |
-COMPILE_ASSERT(BoyerMoorePositionInfo::kMapSize == |
- RegExpMacroAssembler::kTableSize); |
+STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize == |
+ RegExpMacroAssembler::kTableSize); |
-void ChoiceNode::FillInBMInfo(intptr_t offset, |
- intptr_t budget, |
+void ChoiceNode::FillInBMInfo(int offset, |
+ int budget, |
BoyerMooreLookahead* bm, |
bool not_at_start) { |
- ZoneGrowableArray<GuardedAlternative>* alts = alternatives(); |
+ ZoneList<GuardedAlternative>* alts = alternatives(); |
budget = (budget - 1) / alts->length(); |
- for (intptr_t i = 0; i < alts->length(); i++) { |
- GuardedAlternative& alt = (*alts)[i]; |
+ for (int i = 0; i < alts->length(); i++) { |
+ GuardedAlternative& alt = alts->at(i); |
if (alt.guards() != NULL && alt.guards()->length() != 0) { |
bm->SetRest(offset); // Give up trying to fill in info. |
SaveBMInfo(bm, not_at_start, offset); |
@@ -4911,34 +5123,35 @@ void ChoiceNode::FillInBMInfo(intptr_t offset, |
} |
-void TextNode::FillInBMInfo(intptr_t initial_offset, |
- intptr_t budget, |
+void TextNode::FillInBMInfo(int initial_offset, |
+ int budget, |
BoyerMooreLookahead* bm, |
bool not_at_start) { |
if (initial_offset >= bm->length()) return; |
- intptr_t offset = initial_offset; |
- intptr_t max_char = bm->max_char(); |
- for (intptr_t i = 0; i < elements()->length(); i++) { |
+ int offset = initial_offset; |
+ int max_char = bm->max_char(); |
+ for (int i = 0; i < elements()->length(); i++) { |
if (offset >= bm->length()) { |
if (initial_offset == 0) set_bm_info(not_at_start, bm); |
return; |
} |
- TextElement text = elements()->At(i); |
+ TextElement text = elements()->at(i); |
if (text.text_type() == TextElement::ATOM) { |
RegExpAtom* atom = text.atom(); |
- for (intptr_t j = 0; j < atom->length(); j++, offset++) { |
+ for (int j = 0; j < atom->length(); j++, offset++) { |
if (offset >= bm->length()) { |
if (initial_offset == 0) set_bm_info(not_at_start, bm); |
return; |
} |
- uint16_t character = atom->data()->At(j); |
+ uc16 character = atom->data()[j]; |
if (bm->compiler()->ignore_case()) { |
- int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
- intptr_t length = GetCaseIndependentLetters( |
+ unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth]; |
+ int length = GetCaseIndependentLetters( |
+ Isolate::Current(), |
character, |
- bm->max_char() == Symbols::kMaxOneCharCodeSymbol, |
+ bm->max_char() == String::kMaxOneByteCharCode, |
chars); |
- for (intptr_t j = 0; j < length; j++) { |
+ for (int j = 0; j < length; j++) { |
bm->Set(offset, chars[j]); |
} |
} else { |
@@ -4946,17 +5159,16 @@ void TextNode::FillInBMInfo(intptr_t initial_offset, |
} |
} |
} else { |
- ASSERT(text.text_type() == TextElement::CHAR_CLASS); |
+ DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type()); |
RegExpCharacterClass* char_class = text.char_class(); |
- ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges(); |
+ ZoneList<CharacterRange>* ranges = char_class->ranges(zone()); |
if (char_class->is_negated()) { |
bm->SetAll(offset); |
} else { |
- for (intptr_t k = 0; k < ranges->length(); k++) { |
- CharacterRange& range = (*ranges)[k]; |
+ for (int k = 0; k < ranges->length(); k++) { |
+ CharacterRange& range = ranges->at(k); |
if (range.from() > max_char) continue; |
- intptr_t to = Utils::Minimum(max_char, |
- static_cast<intptr_t>(range.to())); |
+ int to = Min(max_char, static_cast<int>(range.to())); |
bm->SetInterval(offset, Interval(range.from(), to)); |
} |
} |
@@ -4975,54 +5187,159 @@ void TextNode::FillInBMInfo(intptr_t initial_offset, |
} |
+// ------------------------------------------------------------------- |
+// Dispatch table construction |
+ |
+ |
+void DispatchTableConstructor::VisitEnd(EndNode* that) { |
+ AddRange(CharacterRange::Everything()); |
+} |
+ |
+ |
+void DispatchTableConstructor::BuildTable(ChoiceNode* node) { |
+ node->set_being_calculated(true); |
+ ZoneList<GuardedAlternative>* alternatives = node->alternatives(); |
+ for (int i = 0; i < alternatives->length(); i++) { |
+ set_choice_index(i); |
+ alternatives->at(i).node()->Accept(this); |
+ } |
+ node->set_being_calculated(false); |
+} |
+ |
+ |
+class AddDispatchRange { |
+ public: |
+ explicit AddDispatchRange(DispatchTableConstructor* constructor) |
+ : constructor_(constructor) { } |
+ void Call(uc32 from, DispatchTable::Entry entry); |
+ private: |
+ DispatchTableConstructor* constructor_; |
+}; |
+ |
+ |
+void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) { |
+ CharacterRange range(from, entry.to()); |
+ constructor_->AddRange(range); |
+} |
+ |
+ |
+void DispatchTableConstructor::VisitChoice(ChoiceNode* node) { |
+ if (node->being_calculated()) |
+ return; |
+ DispatchTable* table = node->GetTable(ignore_case_); |
+ AddDispatchRange adder(this); |
+ table->ForEach(&adder); |
+} |
+ |
+ |
+void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) { |
+ // TODO(160): Find the node that we refer back to and propagate its start |
+ // set back to here. For now we just accept anything. |
+ AddRange(CharacterRange::Everything()); |
+} |
+ |
+ |
+void DispatchTableConstructor::VisitAssertion(AssertionNode* that) { |
+ RegExpNode* target = that->on_success(); |
+ target->Accept(this); |
+} |
+ |
+ |
+static int CompareRangeByFrom(const CharacterRange* a, |
+ const CharacterRange* b) { |
+ return Compare<uc16>(a->from(), b->from()); |
+} |
+ |
+ |
+void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) { |
+ ranges->Sort(CompareRangeByFrom); |
+ uc16 last = 0; |
+ for (int i = 0; i < ranges->length(); i++) { |
+ CharacterRange range = ranges->at(i); |
+ if (last < range.from()) |
+ AddRange(CharacterRange(last, range.from() - 1)); |
+ if (range.to() >= last) { |
+ if (range.to() == String::kMaxUtf16CodeUnit) { |
+ return; |
+ } else { |
+ last = range.to() + 1; |
+ } |
+ } |
+ } |
+ AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit)); |
+} |
+ |
+ |
+void DispatchTableConstructor::VisitText(TextNode* that) { |
+ TextElement elm = that->elements()->at(0); |
+ switch (elm.text_type()) { |
+ case TextElement::ATOM: { |
+ uc16 c = elm.atom()->data()[0]; |
+ AddRange(CharacterRange(c, c)); |
+ break; |
+ } |
+ case TextElement::CHAR_CLASS: { |
+ RegExpCharacterClass* tree = elm.char_class(); |
+ ZoneList<CharacterRange>* ranges = tree->ranges(that->zone()); |
+ if (tree->is_negated()) { |
+ AddInverse(ranges); |
+ } else { |
+ for (int i = 0; i < ranges->length(); i++) |
+ AddRange(ranges->at(i)); |
+ } |
+ break; |
+ } |
+ default: { |
+ UNIMPLEMENTED(); |
+ } |
+ } |
+} |
+ |
+ |
+void DispatchTableConstructor::VisitAction(ActionNode* that) { |
+ RegExpNode* target = that->on_success(); |
+ target->Accept(this); |
+} |
+ |
+ |
RegExpEngine::CompilationResult RegExpEngine::Compile( |
- RegExpCompileData* data, |
- const ParsedFunction* parsed_function, |
- const ZoneGrowableArray<const ICData*>& ic_data_array) { |
- Isolate* isolate = Isolate::Current(); |
- |
- const Function& function = parsed_function->function(); |
- const intptr_t specialization_cid = function.regexp_cid(); |
- const bool is_one_byte = (specialization_cid == kOneByteStringCid || |
- specialization_cid == kExternalOneByteStringCid); |
- JSRegExp& regexp = JSRegExp::Handle(isolate, function.regexp()); |
- const String& pattern = String::Handle(isolate, regexp.pattern()); |
- |
- ASSERT(!regexp.IsNull()); |
- ASSERT(!pattern.IsNull()); |
- |
- const bool ignore_case = regexp.is_ignore_case(); |
- const bool is_global = regexp.is_global(); |
- |
- RegExpCompiler compiler(data->capture_count, ignore_case, specialization_cid); |
- |
- // TODO(zerny): Frequency sampling is currently disabled because of several |
- // issues. We do not want to store subject strings in the regexp object since |
- // they might be long and we should not prevent their garbage collection. |
- // Passing them to this function explicitly does not help, since we must |
- // generate exactly the same IR for both the unoptimizing and optimizing |
- // pipelines (otherwise it gets confused when i.e. deopt id's differ). |
- // An option would be to store sampling results in the regexp object, but |
- // I'm not sure the performance gains are relevant enough. |
+ RegExpCompileData* data, bool ignore_case, bool is_global, |
+ bool is_multiline, bool is_sticky, Handle<String> pattern, |
+ Handle<String> sample_subject, bool is_one_byte, Zone* zone) { |
+ if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) { |
+ return IrregexpRegExpTooBig(zone->isolate()); |
+ } |
+ RegExpCompiler compiler(data->capture_count, ignore_case, is_one_byte, zone); |
+ |
+ // Sample some characters from the middle of the string. |
+ static const int kSampleSize = 128; |
+ |
+ sample_subject = String::Flatten(sample_subject); |
+ int chars_sampled = 0; |
+ int half_way = (sample_subject->length() - kSampleSize) / 2; |
+ for (int i = Max(0, half_way); |
+ i < sample_subject->length() && chars_sampled < kSampleSize; |
+ i++, chars_sampled++) { |
+ compiler.frequency_collator()->CountCharacter(sample_subject->Get(i)); |
+ } |
// Wrap the body of the regexp in capture #0. |
RegExpNode* captured_body = RegExpCapture::ToNode(data->tree, |
0, |
&compiler, |
compiler.accept()); |
- |
RegExpNode* node = captured_body; |
bool is_end_anchored = data->tree->IsAnchoredAtEnd(); |
bool is_start_anchored = data->tree->IsAnchoredAtStart(); |
- intptr_t max_length = data->tree->max_match(); |
- if (!is_start_anchored) { |
+ int max_length = data->tree->max_match(); |
+ if (!is_start_anchored && !is_sticky) { |
// Add a .*? at the beginning, outside the body capture, unless |
- // this expression is anchored at the beginning. |
+ // this expression is anchored at the beginning or sticky. |
RegExpNode* loop_node = |
RegExpQuantifier::ToNode(0, |
RegExpTree::kInfinity, |
false, |
- new(isolate) RegExpCharacterClass('*'), |
+ new(zone) RegExpCharacterClass('*'), |
&compiler, |
captured_body, |
data->contains_anchor); |
@@ -5030,11 +5347,10 @@ RegExpEngine::CompilationResult RegExpEngine::Compile( |
if (data->contains_anchor) { |
// Unroll loop once, to take care of the case that might start |
// at the start of input. |
- ChoiceNode* first_step_node = new(isolate) ChoiceNode(2, isolate); |
+ ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone); |
first_step_node->AddAlternative(GuardedAlternative(captured_body)); |
first_step_node->AddAlternative(GuardedAlternative( |
- new(isolate) TextNode( |
- new(isolate) RegExpCharacterClass('*'), loop_node))); |
+ new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node))); |
node = first_step_node; |
} else { |
node = loop_node; |
@@ -5049,124 +5365,74 @@ RegExpEngine::CompilationResult RegExpEngine::Compile( |
} |
} |
- if (node == NULL) node = new(isolate) EndNode(EndNode::BACKTRACK, isolate); |
+ if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone); |
data->node = node; |
Analysis analysis(ignore_case, is_one_byte); |
analysis.EnsureAnalyzed(node); |
if (analysis.has_failed()) { |
const char* error_message = analysis.error_message(); |
- return CompilationResult(error_message); |
+ return CompilationResult(zone->isolate(), error_message); |
} |
+ // Create the correct assembler for the architecture. |
+#ifndef V8_INTERPRETED_REGEXP |
// Native regexp implementation. |
- IRRegExpMacroAssembler* macro_assembler = |
- new(isolate) IRRegExpMacroAssembler(specialization_cid, |
- data->capture_count, |
- parsed_function, |
- ic_data_array, |
- isolate); |
+ NativeRegExpMacroAssembler::Mode mode = |
+ is_one_byte ? NativeRegExpMacroAssembler::LATIN1 |
+ : NativeRegExpMacroAssembler::UC16; |
+ |
+#if V8_TARGET_ARCH_IA32 |
+ RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2, |
+ zone); |
+#elif V8_TARGET_ARCH_X64 |
+ RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2, |
+ zone); |
+#elif V8_TARGET_ARCH_ARM |
+ RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2, |
+ zone); |
+#elif V8_TARGET_ARCH_ARM64 |
+ RegExpMacroAssemblerARM64 macro_assembler(mode, (data->capture_count + 1) * 2, |
+ zone); |
+#elif V8_TARGET_ARCH_MIPS |
+ RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2, |
+ zone); |
+#elif V8_TARGET_ARCH_MIPS64 |
+ RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2, |
+ zone); |
+#elif V8_TARGET_ARCH_X87 |
+ RegExpMacroAssemblerX87 macro_assembler(mode, (data->capture_count + 1) * 2, |
+ zone); |
+#else |
+#error "Unsupported architecture" |
+#endif |
+ |
+#else // V8_INTERPRETED_REGEXP |
+ // Interpreted regexp implementation. |
+ EmbeddedVector<byte, 1024> codes; |
+ RegExpMacroAssemblerIrregexp macro_assembler(codes, zone); |
+#endif // V8_INTERPRETED_REGEXP |
// Inserted here, instead of in Assembler, because it depends on information |
// in the AST that isn't replicated in the Node structure. |
- static const intptr_t kMaxBacksearchLimit = 1024; |
+ static const int kMaxBacksearchLimit = 1024; |
if (is_end_anchored && |
!is_start_anchored && |
max_length < kMaxBacksearchLimit) { |
- macro_assembler->SetCurrentPositionFromEnd(max_length); |
+ macro_assembler.SetCurrentPositionFromEnd(max_length); |
} |
if (is_global) { |
- macro_assembler->set_global_mode( |
+ macro_assembler.set_global_mode( |
(data->tree->min_match() > 0) |
? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK |
: RegExpMacroAssembler::GLOBAL); |
} |
- RegExpEngine::CompilationResult result = |
- compiler.Assemble(macro_assembler, |
- node, |
- data->capture_count, |
- pattern); |
- |
- if (FLAG_trace_irregexp) { |
- macro_assembler->PrintBlocks(); |
- } |
- |
- return result; |
+ return compiler.Assemble(¯o_assembler, |
+ node, |
+ data->capture_count, |
+ pattern); |
} |
- |
-static void CreateSpecializedFunction(Isolate* isolate, |
- const JSRegExp& regexp, |
- intptr_t specialization_cid, |
- const Object& owner) { |
- const intptr_t kParamCount = RegExpMacroAssembler::kParamCount; |
- |
- Function& fn = Function::Handle(isolate, Function::New( |
- Symbols::IrregExp(), |
- RawFunction::kIrregexpFunction, |
- true, // Static. |
- false, // Not const. |
- false, // Not abstract. |
- false, // Not external. |
- false, // Not native. |
- owner, |
- 0)); // No token position. |
- |
- // TODO(zerny): Share these arrays between all irregexp functions. |
- fn.set_num_fixed_parameters(kParamCount); |
- fn.set_parameter_types(Array::Handle(isolate, Array::New(kParamCount, |
- Heap::kOld))); |
- fn.set_parameter_names(Array::Handle(isolate, Array::New(kParamCount, |
- Heap::kOld))); |
- fn.SetParameterTypeAt(0, Type::Handle(isolate, Type::DynamicType())); |
- fn.SetParameterNameAt(0, Symbols::string_param()); |
- fn.SetParameterTypeAt(1, Type::Handle(isolate, Type::DynamicType())); |
- fn.SetParameterNameAt(1, Symbols::start_index_param()); |
- fn.set_result_type(Type::Handle(isolate, Type::ArrayType())); |
- |
- // Cache the result. |
- regexp.set_function(specialization_cid, fn); |
- |
- fn.set_regexp(regexp); |
- fn.set_regexp_cid(specialization_cid); |
- |
- // The function is compiled lazily during the first call. |
-} |
- |
- |
-RawJSRegExp* RegExpEngine::CreateJSRegExp(Isolate* isolate, |
- const String& pattern, |
- bool multi_line, |
- bool ignore_case) { |
- const JSRegExp& regexp = JSRegExp::Handle(JSRegExp::New(0)); |
- |
- regexp.set_pattern(pattern); |
- |
- if (multi_line) { |
- regexp.set_is_multi_line(); |
- } |
- if (ignore_case) { |
- regexp.set_is_ignore_case(); |
- } |
- |
- // TODO(zerny): We might want to use normal string searching algorithms |
- // for simple patterns. |
- regexp.set_is_complex(); |
- regexp.set_is_global(); // All dart regexps are global. |
- |
- const Library& lib = Library::Handle(isolate, Library::CoreLibrary()); |
- const Class& owner = Class::Handle( |
- isolate, lib.LookupClass(Symbols::RegExp())); |
- |
- CreateSpecializedFunction(isolate, regexp, kOneByteStringCid, owner); |
- CreateSpecializedFunction(isolate, regexp, kTwoByteStringCid, owner); |
- CreateSpecializedFunction(isolate, regexp, kExternalOneByteStringCid, owner); |
- CreateSpecializedFunction(isolate, regexp, kExternalTwoByteStringCid, owner); |
- |
- return regexp.raw(); |
-} |
- |
- |
} // namespace dart |