Index: src/gpu/GrGeometryProcessor.h |
diff --git a/src/gpu/GrGeometryProcessor.h b/src/gpu/GrGeometryProcessor.h |
index 7481515577f387a2c922133811cff072ca1dd2f3..f3ae800b8030404edd9f3047b9ff2e9e32423d68 100644 |
--- a/src/gpu/GrGeometryProcessor.h |
+++ b/src/gpu/GrGeometryProcessor.h |
@@ -14,6 +14,36 @@ |
#include "GrShaderVar.h" |
/* |
+ * The GrPrimitiveProcessor represents some kind of geometric primitive. This includes the shape |
+ * of the primitive and the inherent color of the primitive. The GrPrimitiveProcessor is |
+ * responsible for providing a color and coverage input into the Ganesh rendering pipeline. Through |
+ * optimization, Ganesh may decide a different color, no color, and / or no coverage are required |
+ * from the GrPrimitiveProcessor, so the GrPrimitiveProcessor must be able to support this |
+ * functionality. We also use the GrPrimitiveProcessor to make batching decisions. |
+ * |
+ * There are two feedback loops between the GrFragmentProcessors, the GrXferProcessor, and the |
+ * GrPrimitiveProcessor. These loops run on the CPU and compute any invariant components which |
+ * might be useful for correctness / optimization decisions. The GrPrimitiveProcessor seeds these |
+ * loops, one with initial color and one with initial coverage, in its |
+ * onComputeInvariantColor / Coverage calls. These seed values are processed by the subsequent |
+ * stages of the rendering pipeline and the output is then fed back into the GrPrimitiveProcessor in |
+ * the initBatchTracker call, where the GrPrimitiveProcessor can then initialize the GrBatchTracker |
+ * struct with the appropriate values. |
+ * |
+ * We are evolving this system to move towards generating geometric meshes and their associated |
+ * vertex data after we have batched and reordered draws. This system, known as 'deferred geometry' |
+ * will allow the GrPrimitiveProcessor much greater control over how data is transmitted to shaders. |
+ * |
+ * In a deferred geometry world, the GrPrimitiveProcessor can always 'batch' To do this, each |
+ * primitive type is associated with one GrPrimitiveProcessor, who has complete control of how |
+ * it draws. Each primitive draw will bundle all required data to perform the draw, and these |
+ * bundles of data will be owned by an instance of the associated GrPrimitiveProcessor. Bundles |
+ * can be updated alongside the GrBatchTracker struct itself, ultimately allowing the |
+ * GrPrimitiveProcessor complete control of how it gets data into the fragment shader as long as |
+ * it emits the appropriate color, or none at all, as directed. |
+ */ |
+ |
+/* |
* A struct for tracking batching decisions. While this lives on GrOptState, it is managed |
* entirely by the derived classes of the GP. |
*/ |
@@ -21,18 +51,18 @@ class GrBatchTracker { |
public: |
template <typename T> const T& cast() const { |
SkASSERT(sizeof(T) <= kMaxSize); |
- return *reinterpret_cast<const T*>(fData); |
+ return *reinterpret_cast<const T*>(fData.get()); |
} |
template <typename T> T* cast() { |
SkASSERT(sizeof(T) <= kMaxSize); |
- return reinterpret_cast<T*>(fData); |
+ return reinterpret_cast<T*>(fData.get()); |
} |
static const size_t kMaxSize = 32; |
private: |
- uint8_t fData[kMaxSize]; |
+ SkAlignedSStorage<kMaxSize> fData; |
}; |
class GrGLCaps; |
@@ -41,58 +71,105 @@ class GrOptDrawState; |
struct GrInitInvariantOutput; |
+ |
+/* |
+ * This enum is shared by GrPrimitiveProcessors and GrGLPrimitiveProcessors to coordinate shaders |
+ * with vertex attributes / uniforms. |
+ */ |
+enum GrGPInput { |
+ kAllOnes_GrGPInput, |
+ kAttribute_GrGPInput, |
+ kUniform_GrGPInput, |
+ kIgnored_GrGPInput, |
+}; |
+ |
/* |
- * GrGeometryProcessors and GrPathProcessors may effect invariantColor |
+ * GrPrimitiveProcessor defines an interface which all subclasses must implement. All |
+ * GrPrimitiveProcessors must proivide seed color and coverage for the Ganesh color / coverage |
+ * pipelines, and they must provide some notion of equality |
*/ |
class GrPrimitiveProcessor : public GrProcessor { |
public: |
- // TODO GPs and PPs have to provide an initial coverage because the coverage invariant code is |
- // broken right now |
- virtual uint8_t coverage() const = 0; |
+ /* |
+ * This struct allows the optstate to communicate requirements to the GrPrimitiveProcessor. |
+ */ |
+ struct InitBT { |
+ bool fColorIgnored; |
+ bool fCoverageIgnored; |
+ GrColor fOverrideColor; |
+ }; |
+ |
+ virtual void initBatchTracker(GrBatchTracker*, const InitBT&) const = 0; |
+ |
+ virtual bool canMakeEqual(const GrBatchTracker& mine, |
+ const GrPrimitiveProcessor& that, |
+ const GrBatchTracker& theirs) const = 0; |
+ |
+ /* |
+ * We always call canMakeEqual before makeEqual so there is no need to do any kind of equality |
+ * testing here |
+ * TODO make this pure virtual when primProcs can actually use it |
+ */ |
+ virtual void makeEqual(GrBatchTracker*, const GrBatchTracker&) const {} |
+ |
virtual void getInvariantOutputColor(GrInitInvariantOutput* out) const = 0; |
virtual void getInvariantOutputCoverage(GrInitInvariantOutput* out) const = 0; |
+ /** |
+ * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this geometry |
+ * processor's GL backend implementation. |
+ */ |
+ virtual void getGLProcessorKey(const GrBatchTracker& bt, |
+ const GrGLCaps& caps, |
+ GrProcessorKeyBuilder* b) const = 0; |
+ |
+ |
+ /** Returns a new instance of the appropriate *GL* implementation class |
+ for the given GrProcessor; caller is responsible for deleting |
+ the object. */ |
+ virtual GrGLGeometryProcessor* createGLInstance(const GrBatchTracker& bt) const = 0; |
+ |
+protected: |
+ /* |
+ * CanCombineOutput will return true if two draws are 'batchable' from a color perspective. |
+ * TODO remove this when GPs can upgrade to attribute color |
+ */ |
+ static bool CanCombineOutput(GrGPInput left, GrColor lColor, GrGPInput right, GrColor rColor) { |
+ if (left != right) { |
+ return false; |
+ } |
+ |
+ if (kUniform_GrGPInput == left && lColor != rColor) { |
+ return false; |
+ } |
+ |
+ return true; |
+ } |
+ |
private: |
typedef GrProcessor INHERITED; |
}; |
/** |
- * A GrGeometryProcessor is used to perform computation in the vertex shader and |
- * add support for custom vertex attributes. A GrGemeotryProcessor is typically |
- * tied to the code that does a specific type of high-level primitive rendering |
- * (e.g. anti-aliased circle rendering). The GrGeometryProcessor used for a draw is |
- * specified using GrDrawState. There can only be one geometry processor active for |
- * a draw. The custom vertex attributes required by the geometry processor must be |
- * added to the vertex attribute array specified on the GrDrawState. |
- * GrGeometryProcessor subclasses should be immutable after construction. |
+ * A GrGeometryProcessor is a flexible method for rendering a primitive. The GrGeometryProcessor |
+ * has complete control over vertex attributes and uniforms(aside from the render target) but it |
+ * must obey the same contract as any GrPrimitiveProcessor, specifically it must emit a color and |
+ * coverage into the fragment shader. Where this color and coverage come from is completely the |
+ * responsibility of the GrGeometryProcessor. |
*/ |
class GrGeometryProcessor : public GrPrimitiveProcessor { |
public: |
// TODO the Hint can be handled in a much more clean way when we have deferred geometry or |
// atleast bundles |
- GrGeometryProcessor(GrColor color, bool opaqueVertexColors = false, uint8_t coverage = 0xff) |
+ GrGeometryProcessor(GrColor color, bool opaqueVertexColors = false) |
: fVertexStride(0) |
, fColor(color) |
- , fCoverage(coverage) |
, fOpaqueVertexColors(opaqueVertexColors) |
, fWillUseGeoShader(false) |
, fHasVertexColor(false) |
- , fHasVertexCoverage(false) |
, fHasLocalCoords(false) {} |
- /** |
- * Sets a unique key on the GrProcessorKeyBuilder that is directly associated with this geometry |
- * processor's GL backend implementation. |
- */ |
- virtual void getGLProcessorKey(const GrBatchTracker& bt, |
- const GrGLCaps& caps, |
- GrProcessorKeyBuilder* b) const = 0; |
- |
- |
- /** Returns a new instance of the appropriate *GL* implementation class |
- for the given GrProcessor; caller is responsible for deleting |
- the object. */ |
- virtual GrGLGeometryProcessor* createGLInstance(const GrBatchTracker& bt) const = 0; |
+ virtual const char* name() const = 0; |
/* |
* This is a safeguard to prevent GPs from going beyond platform specific attribute limits. |
@@ -121,61 +198,87 @@ public: |
bool willUseGeoShader() const { return fWillUseGeoShader; } |
- /** Returns true if this and other processor conservatively draw identically. It can only return |
- true when the two prcoessors are of the same subclass (i.e. they return the same object from |
- from getFactory()). |
- A return value of true from isEqual() should not be used to test whether the processors |
- would generate the same shader code. To test for identical code generation use the |
- processors' keys computed by the GrBackendEffectFactory. */ |
- bool isEqual(const GrGeometryProcessor& that) const { |
+ /* |
+ * In an ideal world, two GrGeometryProcessors with the same class id and texture accesses |
+ * would ALWAYS be able to batch together. If two GrGeometryProcesosrs are the same then we |
+ * will only keep one of them. The remaining GrGeometryProcessor then updates its |
+ * GrBatchTracker to incorporate the draw information from the GrGeometryProcessor we discard. |
+ * Any bundles associated with the discarded GrGeometryProcessor will be attached to the |
+ * remaining GrGeometryProcessor. |
+ */ |
+ bool canMakeEqual(const GrBatchTracker& mine, |
+ const GrPrimitiveProcessor& that, |
+ const GrBatchTracker& theirs) const SK_OVERRIDE { |
if (this->classID() != that.classID() || !this->hasSameTextureAccesses(that)) { |
return false; |
} |
// TODO remove the hint |
- if (fHasVertexColor && fOpaqueVertexColors != that.fOpaqueVertexColors) { |
+ const GrGeometryProcessor& other = that.cast<GrGeometryProcessor>(); |
+ if (fHasVertexColor && fOpaqueVertexColors != other.fOpaqueVertexColors) { |
return false; |
} |
- if (!fHasVertexColor && this->color() != that.color()) { |
+ // TODO this equality test should really be broken up, some of this can live on the batch |
+ // tracker test and some of this should be in bundles |
+ if (!this->onIsEqual(other)) { |
return false; |
} |
- // TODO this is fragile, most gps set their coverage to 0xff so this is okay. In the long |
- // term this should move to subclasses which set explicit coverage |
- if (!fHasVertexCoverage && this->coverage() != that.coverage()) { |
- return false; |
- } |
- return this->onIsEqual(that); |
+ return this->onCanMakeEqual(mine, theirs); |
} |
- struct InitBT { |
- bool fOutputColor; |
- bool fOutputCoverage; |
- GrColor fColor; |
- GrColor fCoverage; |
- }; |
- |
- virtual void initBatchTracker(GrBatchTracker*, const InitBT&) const {} |
- |
+ |
+ // TODO we can remove color from the GrGeometryProcessor base class once we have bundles of |
+ // primitive data |
GrColor color() const { return fColor; } |
- uint8_t coverage() const SK_OVERRIDE { return fCoverage; } |
- // TODO this is a total hack until the gp can own whether or not it uses uniform |
- // color / coverage |
+ // TODO this is a total hack until the gp can do deferred geometry |
bool hasVertexColor() const { return fHasVertexColor; } |
- bool hasVertexCoverage() const { return fHasVertexCoverage; } |
+ |
+ // TODO this is a total hack until gp can setup and manage local coords |
bool hasLocalCoords() const { return fHasLocalCoords; } |
void getInvariantOutputColor(GrInitInvariantOutput* out) const SK_OVERRIDE; |
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE; |
protected: |
+ /* |
+ * An optional simple helper function to determine by what means the GrGeometryProcessor should |
+ * use to provide color. If we are given an override color(ie the given overridecolor is NOT |
+ * GrColor_ILLEGAL) then we must always emit that color(currently overrides are only supported |
+ * via uniform, but with deferred Geometry we could use attributes). Otherwise, if our color is |
+ * ignored then we should not emit a color. Lastly, if we don't have vertex colors then we must |
+ * emit a color via uniform |
+ * TODO this function changes quite a bit with deferred geometry. There the GrGeometryProcessor |
+ * can upload a new color via attribute if needed. |
+ */ |
+ static GrGPInput GetColorInputType(GrColor* color, GrColor primitiveColor, const InitBT& init, |
+ bool hasVertexColor) { |
+ if (init.fColorIgnored) { |
+ *color = GrColor_ILLEGAL; |
+ return kIgnored_GrGPInput; |
+ } else if (GrColor_ILLEGAL != init.fOverrideColor) { |
+ *color = init.fOverrideColor; |
+ return kUniform_GrGPInput; |
+ } |
+ |
+ *color = primitiveColor; |
+ if (hasVertexColor) { |
+ return kAttribute_GrGPInput; |
+ } else { |
+ return kUniform_GrGPInput; |
+ } |
+ } |
+ |
/** |
* Subclasses call this from their constructor to register vertex attributes. Attributes |
* will be padded to the nearest 4 bytes for performance reasons. |
* TODO After deferred geometry, we should do all of this inline in GenerateGeometry alongside |
- * the struct used to actually populate the attributes |
+ * the struct used to actually populate the attributes. This is all extremely fragile, vertex |
+ * attributes have to be added in the order they will appear in the struct which maps memory. |
+ * The processor key should reflect the vertex attributes, or there lack thereof in the |
+ * GrGeometryProcessor. |
*/ |
const GrAttribute& addVertexAttrib(const GrAttribute& attribute) { |
fVertexStride += attribute.fOffset; |
@@ -186,23 +289,22 @@ protected: |
// TODO hack see above |
void setHasVertexColor() { fHasVertexColor = true; } |
- void setHasVertexCoverage() { fHasVertexCoverage = true; } |
void setHasLocalCoords() { fHasLocalCoords = true; } |
virtual void onGetInvariantOutputColor(GrInitInvariantOutput*) const {} |
virtual void onGetInvariantOutputCoverage(GrInitInvariantOutput*) const = 0; |
private: |
+ virtual bool onCanMakeEqual(const GrBatchTracker& mine, const GrBatchTracker& theirs) const = 0; |
+ // TODO delete this when we have more advanced equality testing via bundles and the BT |
virtual bool onIsEqual(const GrGeometryProcessor&) const = 0; |
SkSTArray<kMaxVertexAttribs, GrAttribute, true> fAttribs; |
size_t fVertexStride; |
GrColor fColor; |
- uint8_t fCoverage; |
bool fOpaqueVertexColors; |
bool fWillUseGeoShader; |
bool fHasVertexColor; |
- bool fHasVertexCoverage; |
bool fHasLocalCoords; |
typedef GrProcessor INHERITED; |
@@ -217,14 +319,28 @@ public: |
static GrPathProcessor* Create(GrColor color) { |
return SkNEW_ARGS(GrPathProcessor, (color)); |
} |
+ |
+ void initBatchTracker(GrBatchTracker*, const InitBT&) const SK_OVERRIDE; |
+ |
+ bool canMakeEqual(const GrBatchTracker& mine, |
+ const GrPrimitiveProcessor& that, |
+ const GrBatchTracker& theirs) const SK_OVERRIDE; |
const char* name() const SK_OVERRIDE { return "PathProcessor"; } |
- uint8_t coverage() const SK_OVERRIDE { return 0xff; } |
+ |
+ GrColor color() const { return fColor; } |
+ |
void getInvariantOutputColor(GrInitInvariantOutput* out) const SK_OVERRIDE; |
void getInvariantOutputCoverage(GrInitInvariantOutput* out) const SK_OVERRIDE; |
+ virtual void getGLProcessorKey(const GrBatchTracker& bt, |
+ const GrGLCaps& caps, |
+ GrProcessorKeyBuilder* b) const SK_OVERRIDE; |
+ |
+ virtual GrGLGeometryProcessor* createGLInstance(const GrBatchTracker& bt) const SK_OVERRIDE; |
+ |
private: |
- GrPathProcessor(GrColor color) : fColor(color) {} |
+ GrPathProcessor(GrColor color); |
GrColor fColor; |
typedef GrProcessor INHERITED; |