Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(247)

Unified Diff: runtime/vm/regexp.cc

Issue 744853003: Integrate the Irregexp Regular Expression Engine. (Closed) Base URL: https://dart.googlecode.com/svn/branches/bleeding_edge/dart
Patch Set: fix clang and win build Created 6 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « runtime/vm/regexp.h ('k') | runtime/vm/regexp_assembler.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: runtime/vm/regexp.cc
diff --git a/runtime/vm/regexp.cc b/runtime/vm/regexp.cc
index 534e0c5072dc380457539422f1121bdecd81b0a8..edb9d26e3a3b9b67eb114f5f770ad51a34de2145 100644
--- a/runtime/vm/regexp.cc
+++ b/runtime/vm/regexp.cc
@@ -4,29 +4,66 @@
#include "vm/regexp.h"
-// SNIP
+#include "vm/dart_entry.h"
+#include "vm/regexp_assembler.h"
+#include "vm/regexp_ast.h"
+#include "vm/unibrow-inl.h"
+#include "vm/unicode.h"
+#include "vm/symbols.h"
+
+#define I (isolate())
+#define CI (compiler->isolate())
namespace dart {
-// SNIP
+DECLARE_FLAG(bool, trace_irregexp);
+
+// Default to generating optimized regexp code.
+static const bool kRegexpOptimization = true;
+
+// More makes code generation slower, less makes V8 benchmark score lower.
+static const intptr_t kMaxLookaheadForBoyerMoore = 8;
+
+ContainedInLattice AddRange(ContainedInLattice containment,
+ const intptr_t* ranges,
+ intptr_t ranges_length,
+ Interval new_range) {
+ ASSERT((ranges_length & 1) == 1);
+ ASSERT(ranges[ranges_length - 1] == Utf16::kMaxCodeUnit + 1);
+ if (containment == kLatticeUnknown) return containment;
+ bool inside = false;
+ intptr_t last = 0;
+ for (intptr_t i = 0; i < ranges_length;
+ inside = !inside, last = ranges[i], i++) {
+ // Consider the range from last to ranges[i].
+ // We haven't got to the new range yet.
+ if (ranges[i] <= new_range.from()) continue;
+ // New range is wholly inside last-ranges[i]. Note that new_range.to() is
+ // inclusive, but the values in ranges are not.
+ if (last <= new_range.from() && new_range.to() < ranges[i]) {
+ return Combine(containment, inside ? kLatticeIn : kLatticeOut);
+ }
+ return kLatticeUnknown;
+ }
+ return containment;
+}
// -------------------------------------------------------------------
// Implementation of the Irregexp regular expression engine.
//
// The Irregexp regular expression engine is intended to be a complete
-// implementation of ECMAScript regular expressions. It generates either
-// bytecodes or native code.
+// implementation of ECMAScript regular expressions. It generates
+// IR code that is subsequently compiled to native code.
// The Irregexp regexp engine is structured in three steps.
-// 1) The parser generates an abstract syntax tree. See ast.cc.
+// 1) The parser generates an abstract syntax tree. See regexp_ast.cc.
// 2) From the AST a node network is created. The nodes are all
// subclasses of RegExpNode. The nodes represent states when
// executing a regular expression. Several optimizations are
// performed on the node network.
-// 3) From the nodes we generate either byte codes or native code
-// that can actually execute the regular expression (perform
-// the search). The code generation step is described in more
-// detail below.
+// 3) From the nodes we generate IR instructions that can actually
+// execute the regular expression (perform the search). The
+// code generation step is described in more detail below.
// Code generation.
//
@@ -49,8 +86,8 @@ namespace dart {
// These are used to implement the actions required on finding
// a successful match or failing to find a match.
//
-// The code generated (whether as byte codes or native code) maintains
-// some state as it runs. This consists of the following elements:
+// The code generated maintains some state as it runs. This consists of the
+// following elements:
//
// * The capture registers. Used for string captures.
// * Other registers. Used for counters etc.
@@ -160,24 +197,24 @@ namespace dart {
// the event that code generation is requested for an identical trace.
-void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
+void RegExpTree::AppendToText(RegExpText* text) {
UNREACHABLE();
}
-void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
- text->AddElement(TextElement::Atom(this), zone);
+void RegExpAtom::AppendToText(RegExpText* text) {
+ text->AddElement(TextElement::Atom(this));
}
-void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
- text->AddElement(TextElement::CharClass(this), zone);
+void RegExpCharacterClass::AppendToText(RegExpText* text) {
+ text->AddElement(TextElement::CharClass(this));
}
-void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
- for (int i = 0; i < elements()->length(); i++)
- text->AddElement(elements()->at(i), zone);
+void RegExpText::AppendToText(RegExpText* text) {
+ for (intptr_t i = 0; i < elements()->length(); i++)
+ text->AddElement((*elements())[i]);
}
@@ -191,7 +228,7 @@ TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
}
-int TextElement::length() const {
+intptr_t TextElement::length() const {
switch (text_type()) {
case ATOM:
return atom()->length();
@@ -204,36 +241,26 @@ int TextElement::length() const {
}
-DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
- if (table_ == NULL) {
- table_ = new(zone()) DispatchTable(zone());
- DispatchTableConstructor cons(table_, ignore_case, zone());
- cons.BuildTable(this);
- }
- return table_;
-}
-
-
-class FrequencyCollator {
+class FrequencyCollator : public ValueObject {
public:
FrequencyCollator() : total_samples_(0) {
- for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
+ for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
frequencies_[i] = CharacterFrequency(i);
}
}
- void CountCharacter(int character) {
- int index = (character & RegExpMacroAssembler::kTableMask);
+ void CountCharacter(intptr_t character) {
+ intptr_t index = (character & RegExpMacroAssembler::kTableMask);
frequencies_[index].Increment();
total_samples_++;
}
// Does not measure in percent, but rather per-128 (the table size from the
// regexp macro assembler).
- int Frequency(int in_character) {
- DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
+ intptr_t Frequency(intptr_t in_character) {
+ ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character);
if (total_samples_ < 1) return 1; // Division by zero.
- int freq_in_per128 =
+ intptr_t freq_in_per128 =
(frequencies_[in_character].counter() * 128) / total_samples_;
return freq_in_per128;
}
@@ -242,88 +269,91 @@ class FrequencyCollator {
class CharacterFrequency {
public:
CharacterFrequency() : counter_(0), character_(-1) { }
- explicit CharacterFrequency(int character)
+ explicit CharacterFrequency(intptr_t character)
: counter_(0), character_(character) { }
void Increment() { counter_++; }
- int counter() { return counter_; }
- int character() { return character_; }
+ intptr_t counter() { return counter_; }
+ intptr_t character() { return character_; }
private:
- int counter_;
- int character_;
+ intptr_t counter_;
+ intptr_t character_;
+
+ DISALLOW_ALLOCATION();
};
private:
CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
- int total_samples_;
+ intptr_t total_samples_;
};
-class RegExpCompiler {
+class RegExpCompiler : public ValueObject {
public:
- RegExpCompiler(int capture_count, bool ignore_case, bool is_one_byte,
- Zone* zone);
+ RegExpCompiler(intptr_t capture_count,
+ bool ignore_case,
+ intptr_t specialization_cid);
- int AllocateRegister() {
- if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
- reg_exp_too_big_ = true;
- return next_register_;
- }
+ intptr_t AllocateRegister() {
return next_register_++;
}
- RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
+ RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler,
RegExpNode* start,
- int capture_count,
- Handle<String> pattern);
+ intptr_t capture_count,
+ const String& pattern);
inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
- static const int kImplementationOffset = 0;
- static const int kNumberOfRegistersOffset = 0;
- static const int kCodeOffset = 1;
+ static const intptr_t kImplementationOffset = 0;
+ static const intptr_t kNumberOfRegistersOffset = 0;
+ static const intptr_t kCodeOffset = 1;
- RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
+ IRRegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
EndNode* accept() { return accept_; }
- static const int kMaxRecursion = 100;
- inline int recursion_depth() { return recursion_depth_; }
+ static const intptr_t kMaxRecursion = 100;
+ inline intptr_t recursion_depth() { return recursion_depth_; }
inline void IncrementRecursionDepth() { recursion_depth_++; }
inline void DecrementRecursionDepth() { recursion_depth_--; }
void SetRegExpTooBig() { reg_exp_too_big_ = true; }
inline bool ignore_case() { return ignore_case_; }
- inline bool one_byte() { return one_byte_; }
+ inline bool one_byte() const {
+ return (specialization_cid_ == kOneByteStringCid ||
+ specialization_cid_ == kExternalOneByteStringCid);
+ }
+ inline intptr_t specialization_cid() { return specialization_cid_; }
FrequencyCollator* frequency_collator() { return &frequency_collator_; }
- int current_expansion_factor() { return current_expansion_factor_; }
- void set_current_expansion_factor(int value) {
+ intptr_t current_expansion_factor() { return current_expansion_factor_; }
+ void set_current_expansion_factor(intptr_t value) {
current_expansion_factor_ = value;
}
- Zone* zone() const { return zone_; }
+ Isolate* isolate() const { return isolate_; }
- static const int kNoRegister = -1;
+ static const intptr_t kNoRegister = -1;
private:
EndNode* accept_;
- int next_register_;
- List<RegExpNode*>* work_list_;
- int recursion_depth_;
- RegExpMacroAssembler* macro_assembler_;
+ intptr_t next_register_;
+ ZoneGrowableArray<RegExpNode*>* work_list_;
+ intptr_t recursion_depth_;
+ IRRegExpMacroAssembler* macro_assembler_;
bool ignore_case_;
- bool one_byte_;
+ intptr_t specialization_cid_;
bool reg_exp_too_big_;
- int current_expansion_factor_;
+ intptr_t current_expansion_factor_;
FrequencyCollator frequency_collator_;
- Zone* zone_;
+ Isolate* isolate_;
};
-class RecursionCheck {
+class RecursionCheck : public ValueObject {
public:
explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
compiler->IncrementRecursionDepth();
@@ -334,84 +364,60 @@ class RecursionCheck {
};
-static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
- return RegExpEngine::CompilationResult(isolate, "RegExp too big");
+static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
+ return RegExpEngine::CompilationResult("RegExp too big");
}
// Attempts to compile the regexp using an Irregexp code generator. Returns
// a fixed array or a null handle depending on whether it succeeded.
-RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case,
- bool one_byte, Zone* zone)
+RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case,
+ intptr_t specialization_cid)
: next_register_(2 * (capture_count + 1)),
work_list_(NULL),
recursion_depth_(0),
ignore_case_(ignore_case),
- one_byte_(one_byte),
+ specialization_cid_(specialization_cid),
reg_exp_too_big_(false),
current_expansion_factor_(1),
- frequency_collator_(),
- zone_(zone) {
- accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
- DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
+ isolate_(Isolate::Current()) {
+ accept_ = new(I) EndNode(EndNode::ACCEPT, I);
}
RegExpEngine::CompilationResult RegExpCompiler::Assemble(
- RegExpMacroAssembler* macro_assembler,
+ IRRegExpMacroAssembler* macro_assembler,
RegExpNode* start,
- int capture_count,
- Handle<String> pattern) {
- Heap* heap = pattern->GetHeap();
-
- bool use_slow_safe_regexp_compiler = false;
- if (heap->total_regexp_code_generated() >
- RegExpImpl::kRegWxpCompiledLimit &&
- heap->isolate()->memory_allocator()->SizeExecutable() >
- RegExpImpl::kRegExpExecutableMemoryLimit) {
- use_slow_safe_regexp_compiler = true;
- }
+ intptr_t capture_count,
+ const String& pattern) {
+ static const bool use_slow_safe_regexp_compiler = false;
macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler);
+ macro_assembler_ = macro_assembler;
-#ifdef DEBUG
- if (FLAG_trace_regexp_assembler)
- macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler);
- else
-#endif
- macro_assembler_ = macro_assembler;
-
- List <RegExpNode*> work_list(0);
+ ZoneGrowableArray<RegExpNode*> work_list(0);
work_list_ = &work_list;
- Label fail;
+ BlockLabel fail;
macro_assembler_->PushBacktrack(&fail);
Trace new_trace;
start->Emit(this, &new_trace);
- macro_assembler_->Bind(&fail);
+ macro_assembler_->BindBlock(&fail);
macro_assembler_->Fail();
while (!work_list.is_empty()) {
work_list.RemoveLast()->Emit(this, &new_trace);
}
- if (reg_exp_too_big_) return IrregexpRegExpTooBig(zone_->isolate());
+ if (reg_exp_too_big_) return IrregexpRegExpTooBig();
- Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
- heap->IncreaseTotalRegexpCodeGenerated(code->Size());
- work_list_ = NULL;
-#ifdef DEBUG
- if (FLAG_print_code) {
- CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
- OFStream os(trace_scope.file());
- Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
- }
- if (FLAG_trace_regexp_assembler) {
- delete macro_assembler_;
- }
-#endif
- return RegExpEngine::CompilationResult(*code, next_register_);
+ macro_assembler->GenerateBacktrackBlock();
+
+ return RegExpEngine::CompilationResult(macro_assembler->backtrack_goto(),
+ macro_assembler->graph_entry(),
+ macro_assembler->num_blocks(),
+ macro_assembler->num_stack_locals());
}
-bool Trace::DeferredAction::Mentions(int that) {
+bool Trace::DeferredAction::Mentions(intptr_t that) {
if (action_type() == ActionNode::CLEAR_CAPTURES) {
Interval range = static_cast<DeferredClearCaptures*>(this)->range();
return range.Contains(that);
@@ -421,7 +427,7 @@ bool Trace::DeferredAction::Mentions(int that) {
}
-bool Trace::mentions_reg(int reg) {
+bool Trace::mentions_reg(intptr_t reg) {
for (DeferredAction* action = actions_;
action != NULL;
action = action->next()) {
@@ -432,8 +438,8 @@ bool Trace::mentions_reg(int reg) {
}
-bool Trace::GetStoredPosition(int reg, int* cp_offset) {
- DCHECK_EQ(0, *cp_offset);
+bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) {
+ ASSERT(*cp_offset == 0);
for (DeferredAction* action = actions_;
action != NULL;
action = action->next()) {
@@ -450,19 +456,22 @@ bool Trace::GetStoredPosition(int reg, int* cp_offset) {
}
-int Trace::FindAffectedRegisters(OutSet* affected_registers,
- Zone* zone) {
- int max_register = RegExpCompiler::kNoRegister;
+// This is called as we come into a loop choice node and some other tricky
+// nodes. It normalizes the state of the code generator to ensure we can
+// generate generic code.
+intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers,
+ Isolate* isolate) {
+ intptr_t max_register = RegExpCompiler::kNoRegister;
for (DeferredAction* action = actions_;
action != NULL;
action = action->next()) {
if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
Interval range = static_cast<DeferredClearCaptures*>(action)->range();
- for (int i = range.from(); i <= range.to(); i++)
- affected_registers->Set(i, zone);
+ for (intptr_t i = range.from(); i <= range.to(); i++)
+ affected_registers->Set(i, isolate);
if (range.to() > max_register) max_register = range.to();
} else {
- affected_registers->Set(action->reg(), zone);
+ affected_registers->Set(action->reg(), isolate);
if (action->reg() > max_register) max_register = action->reg();
}
}
@@ -471,14 +480,14 @@ int Trace::FindAffectedRegisters(OutSet* affected_registers,
void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
- int max_register,
+ intptr_t max_register,
const OutSet& registers_to_pop,
const OutSet& registers_to_clear) {
- for (int reg = max_register; reg >= 0; reg--) {
+ for (intptr_t reg = max_register; reg >= 0; reg--) {
if (registers_to_pop.Get(reg)) {
assembler->PopRegister(reg);
} else if (registers_to_clear.Get(reg)) {
- int clear_to = reg;
+ intptr_t clear_to = reg;
while (reg > 0 && registers_to_clear.Get(reg - 1)) {
reg--;
}
@@ -489,18 +498,12 @@ void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
- int max_register,
+ intptr_t max_register,
const OutSet& affected_registers,
OutSet* registers_to_pop,
OutSet* registers_to_clear,
- Zone* zone) {
- // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
- const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
-
- // Count pushes performed to force a stack limit check occasionally.
- int pushes = 0;
-
- for (int reg = 0; reg <= max_register; reg++) {
+ Isolate* isolate) {
+ for (intptr_t reg = 0; reg <= max_register; reg++) {
if (!affected_registers.Get(reg)) {
continue;
}
@@ -508,13 +511,13 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
// The chronologically first deferred action in the trace
// is used to infer the action needed to restore a register
// to its previous state (or not, if it's safe to ignore it).
- enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
- DeferredActionUndoType undo_action = IGNORE;
+ enum DeferredActionUndoType { ACTION_IGNORE, ACTION_RESTORE, ACTION_CLEAR };
+ DeferredActionUndoType undo_action = ACTION_IGNORE;
- int value = 0;
+ intptr_t value = 0;
bool absolute = false;
bool clear = false;
- int store_position = -1;
+ intptr_t store_position = -1;
// This is a little tricky because we are scanning the actions in reverse
// historical order (newest first).
for (DeferredAction* action = actions_;
@@ -531,21 +534,21 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
}
// SET_REGISTER is currently only used for newly introduced loop
// counters. They can have a significant previous value if they
- // occour in a loop. TODO(lrn): Propagate this information, so
- // we can set undo_action to IGNORE if we know there is no value to
- // restore.
- undo_action = RESTORE;
- DCHECK_EQ(store_position, -1);
- DCHECK(!clear);
+ // occour in a loop. TODO(lrn): Propagate this information, so we
+ // can set undo_action to ACTION_IGNORE if we know there is no
+ // value to restore.
+ undo_action = ACTION_RESTORE;
+ ASSERT(store_position == -1);
+ ASSERT(!clear);
break;
}
case ActionNode::INCREMENT_REGISTER:
if (!absolute) {
value++;
}
- DCHECK_EQ(store_position, -1);
- DCHECK(!clear);
- undo_action = RESTORE;
+ ASSERT(store_position == -1);
+ ASSERT(!clear);
+ undo_action = ACTION_RESTORE;
break;
case ActionNode::STORE_POSITION: {
Trace::DeferredCapture* pc =
@@ -562,12 +565,12 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
// always set correctly if we succeed. There is no
// need to undo a setting on backtrack, because we
// will set it again or fail.
- undo_action = IGNORE;
+ undo_action = ACTION_IGNORE;
} else {
- undo_action = pc->is_capture() ? CLEAR : RESTORE;
+ undo_action = pc->is_capture() ? ACTION_CLEAR : ACTION_RESTORE;
}
- DCHECK(!absolute);
- DCHECK_EQ(value, 0);
+ ASSERT(!absolute);
+ ASSERT(value == 0);
break;
}
case ActionNode::CLEAR_CAPTURES: {
@@ -577,9 +580,9 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
if (store_position == -1) {
clear = true;
}
- undo_action = RESTORE;
- DCHECK(!absolute);
- DCHECK_EQ(value, 0);
+ undo_action = ACTION_RESTORE;
+ ASSERT(!absolute);
+ ASSERT(value == 0);
break;
}
default:
@@ -589,19 +592,11 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
}
}
// Prepare for the undo-action (e.g., push if it's going to be popped).
- if (undo_action == RESTORE) {
- pushes++;
- RegExpMacroAssembler::StackCheckFlag stack_check =
- RegExpMacroAssembler::kNoStackLimitCheck;
- if (pushes == push_limit) {
- stack_check = RegExpMacroAssembler::kCheckStackLimit;
- pushes = 0;
- }
-
- assembler->PushRegister(reg, stack_check);
- registers_to_pop->Set(reg, zone);
- } else if (undo_action == CLEAR) {
- registers_to_clear->Set(reg, zone);
+ if (undo_action == ACTION_RESTORE) {
+ assembler->PushRegister(reg);
+ registers_to_pop->Set(reg, isolate);
+ } else if (undo_action == ACTION_CLEAR) {
+ registers_to_clear->Set(reg, isolate);
}
// Perform the chronologically last action (or accumulated increment)
// for the register.
@@ -624,7 +619,7 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
- DCHECK(!is_trivial());
+ ASSERT(!is_trivial());
if (actions_ == NULL && backtrack() == NULL) {
// Here we just have some deferred cp advances to fix and we are back to
@@ -647,8 +642,7 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
assembler->PushCurrentPosition();
}
- int max_register = FindAffectedRegisters(&affected_registers,
- compiler->zone());
+ intptr_t max_register = FindAffectedRegisters(&affected_registers, CI);
OutSet registers_to_pop;
OutSet registers_to_clear;
PerformDeferredActions(assembler,
@@ -656,19 +650,19 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
affected_registers,
&registers_to_pop,
&registers_to_clear,
- compiler->zone());
+ CI);
if (cp_offset_ != 0) {
assembler->AdvanceCurrentPosition(cp_offset_);
}
// Create a new trivial state and generate the node with that.
- Label undo;
+ BlockLabel undo;
assembler->PushBacktrack(&undo);
Trace new_state;
successor->Emit(compiler, &new_state);
// On backtrack we need to restore state.
- assembler->Bind(&undo);
+ assembler->BindBlock(&undo);
RestoreAffectedRegisters(assembler,
max_register,
registers_to_pop,
@@ -687,10 +681,10 @@ void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
// Omit flushing the trace. We discard the entire stack frame anyway.
- if (!label()->is_bound()) {
+ if (!label()->IsBound()) {
// We are completely independent of the trace, since we ignore it,
// so this code can be used as the generic version.
- assembler->Bind(label());
+ assembler->BindBlock(label());
}
// Throw away everything on the backtrack stack since the start
@@ -715,8 +709,8 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
return;
}
RegExpMacroAssembler* assembler = compiler->macro_assembler();
- if (!label()->is_bound()) {
- assembler->Bind(label());
+ if (!label()->IsBound()) {
+ assembler->BindBlock(label());
}
switch (action_) {
case ACCEPT:
@@ -733,37 +727,38 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
-void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
+void GuardedAlternative::AddGuard(Guard* guard, Isolate* isolate) {
if (guards_ == NULL)
- guards_ = new(zone) ZoneList<Guard*>(1, zone);
- guards_->Add(guard, zone);
+ guards_ = new(isolate) ZoneGrowableArray<Guard*>(1);
+ guards_->Add(guard);
}
-ActionNode* ActionNode::SetRegister(int reg,
- int val,
+ActionNode* ActionNode::SetRegister(intptr_t reg,
+ intptr_t val,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
+ new(on_success->isolate()) ActionNode(SET_REGISTER, on_success);
result->data_.u_store_register.reg = reg;
result->data_.u_store_register.value = val;
return result;
}
-ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
+ActionNode* ActionNode::IncrementRegister(intptr_t reg,
+ RegExpNode* on_success) {
ActionNode* result =
- new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
+ new(on_success->isolate()) ActionNode(INCREMENT_REGISTER, on_success);
result->data_.u_increment_register.reg = reg;
return result;
}
-ActionNode* ActionNode::StorePosition(int reg,
+ActionNode* ActionNode::StorePosition(intptr_t reg,
bool is_capture,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
+ new(on_success->isolate()) ActionNode(STORE_POSITION, on_success);
result->data_.u_position_register.reg = reg;
result->data_.u_position_register.is_capture = is_capture;
return result;
@@ -773,31 +768,32 @@ ActionNode* ActionNode::StorePosition(int reg,
ActionNode* ActionNode::ClearCaptures(Interval range,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
+ new(on_success->isolate()) ActionNode(CLEAR_CAPTURES, on_success);
result->data_.u_clear_captures.range_from = range.from();
result->data_.u_clear_captures.range_to = range.to();
return result;
}
-ActionNode* ActionNode::BeginSubmatch(int stack_reg,
- int position_reg,
+ActionNode* ActionNode::BeginSubmatch(intptr_t stack_reg,
+ intptr_t position_reg,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
+ new(on_success->isolate()) ActionNode(BEGIN_SUBMATCH, on_success);
result->data_.u_submatch.stack_pointer_register = stack_reg;
result->data_.u_submatch.current_position_register = position_reg;
return result;
}
-ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
- int position_reg,
- int clear_register_count,
- int clear_register_from,
+ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg,
+ intptr_t position_reg,
+ intptr_t clear_register_count,
+ intptr_t clear_register_from,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
+ new(on_success->isolate()) ActionNode(POSITIVE_SUBMATCH_SUCCESS,
+ on_success);
result->data_.u_submatch.stack_pointer_register = stack_reg;
result->data_.u_submatch.current_position_register = position_reg;
result->data_.u_submatch.clear_register_count = clear_register_count;
@@ -806,12 +802,12 @@ ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
}
-ActionNode* ActionNode::EmptyMatchCheck(int start_register,
- int repetition_register,
- int repetition_limit,
+ActionNode* ActionNode::EmptyMatchCheck(intptr_t start_register,
+ intptr_t repetition_register,
+ intptr_t repetition_limit,
RegExpNode* on_success) {
ActionNode* result =
- new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
+ new(on_success->isolate()) ActionNode(EMPTY_MATCH_CHECK, on_success);
result->data_.u_empty_match_check.start_register = start_register;
result->data_.u_empty_match_check.repetition_register = repetition_register;
result->data_.u_empty_match_check.repetition_limit = repetition_limit;
@@ -841,13 +837,13 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
Trace* trace) {
switch (guard->op()) {
case Guard::LT:
- DCHECK(!trace->mentions_reg(guard->reg()));
+ ASSERT(!trace->mentions_reg(guard->reg()));
macro_assembler->IfRegisterGE(guard->reg(),
guard->value(),
trace->backtrack());
break;
case Guard::GEQ:
- DCHECK(!trace->mentions_reg(guard->reg()));
+ ASSERT(!trace->mentions_reg(guard->reg()));
macro_assembler->IfRegisterLT(guard->reg(),
guard->value(),
trace->backtrack());
@@ -858,18 +854,18 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
// Returns the number of characters in the equivalence class, omitting those
// that cannot occur in the source string because it is ASCII.
-static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
- bool one_byte_subject,
- unibrow::uchar* letters) {
- int length =
- isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
+static intptr_t GetCaseIndependentLetters(uint16_t character,
+ bool one_byte_subject,
+ int32_t* letters) {
+ unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
+ intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters);
// Unibrow returns 0 or 1 for characters where case independence is
// trivial.
if (length == 0) {
letters[0] = character;
length = 1;
}
- if (!one_byte_subject || character <= String::kMaxOneByteCharCode) {
+ if (!one_byte_subject || character <= Symbols::kMaxOneCharCodeSymbol) {
return length;
}
@@ -883,9 +879,9 @@ static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
static inline bool EmitSimpleCharacter(Isolate* isolate,
RegExpCompiler* compiler,
- uc16 c,
- Label* on_failure,
- int cp_offset,
+ uint16_t c,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
bool check,
bool preloaded) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
@@ -906,15 +902,15 @@ static inline bool EmitSimpleCharacter(Isolate* isolate,
// independent matches.
static inline bool EmitAtomNonLetter(Isolate* isolate,
RegExpCompiler* compiler,
- uc16 c,
- Label* on_failure,
- int cp_offset,
+ uint16_t c,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
bool check,
bool preloaded) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
bool one_byte = compiler->one_byte();
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t length = GetCaseIndependentLetters(c, one_byte, chars);
if (length < 1) {
// This can't match. Must be an one-byte subject and a non-one-byte
// character. We do not need to do anything since the one-byte pass
@@ -924,7 +920,7 @@ static inline bool EmitAtomNonLetter(Isolate* isolate,
bool checked = false;
// We handle the length > 1 case in a later pass.
if (length == 1) {
- if (one_byte && c > String::kMaxOneByteCharCodeU) {
+ if (one_byte && c > Symbols::kMaxOneCharCodeSymbol) {
// Can't match - see above.
return false; // Bounds not checked.
}
@@ -939,32 +935,34 @@ static inline bool EmitAtomNonLetter(Isolate* isolate,
static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
- bool one_byte, uc16 c1, uc16 c2,
- Label* on_failure) {
- uc16 char_mask;
+ bool one_byte,
+ uint16_t c1,
+ uint16_t c2,
+ BlockLabel* on_failure) {
+ uint16_t char_mask;
if (one_byte) {
- char_mask = String::kMaxOneByteCharCode;
+ char_mask = Symbols::kMaxOneCharCodeSymbol;
} else {
- char_mask = String::kMaxUtf16CodeUnit;
+ char_mask = Utf16::kMaxCodeUnit;
}
- uc16 exor = c1 ^ c2;
+ uint16_t exor = c1 ^ c2;
// Check whether exor has only one bit set.
if (((exor - 1) & exor) == 0) {
// If c1 and c2 differ only by one bit.
// Ecma262UnCanonicalize always gives the highest number last.
- DCHECK(c2 > c1);
- uc16 mask = char_mask ^ exor;
+ ASSERT(c2 > c1);
+ uint16_t mask = char_mask ^ exor;
macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
return true;
}
- DCHECK(c2 > c1);
- uc16 diff = c2 - c1;
+ ASSERT(c2 > c1);
+ uint16_t diff = c2 - c1;
if (((diff - 1) & diff) == 0 && c1 >= diff) {
// If the characters differ by 2^n but don't differ by one bit then
// subtract the difference from the found character, then do the or
// trick. We avoid the theoretical case where negative numbers are
// involved in order to simplify code generation.
- uc16 mask = char_mask ^ diff;
+ uint16_t mask = char_mask ^ diff;
macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
diff,
mask,
@@ -977,9 +975,9 @@ static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
typedef bool EmitCharacterFunction(Isolate* isolate,
RegExpCompiler* compiler,
- uc16 c,
- Label* on_failure,
- int cp_offset,
+ uint16_t c,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
bool check,
bool preloaded);
@@ -987,31 +985,34 @@ typedef bool EmitCharacterFunction(Isolate* isolate,
// matches.
static inline bool EmitAtomLetter(Isolate* isolate,
RegExpCompiler* compiler,
- uc16 c,
- Label* on_failure,
- int cp_offset,
+ uint16_t c,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
bool check,
bool preloaded) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
bool one_byte = compiler->one_byte();
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t length = GetCaseIndependentLetters(c, one_byte, chars);
if (length <= 1) return false;
// We may not need to check against the end of the input string
// if this character lies before a character that matched.
if (!preloaded) {
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
}
- Label ok;
- DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
+ BlockLabel ok;
+ ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
switch (length) {
case 2: {
- if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
- chars[1], on_failure)) {
+ if (ShortCutEmitCharacterPair(macro_assembler,
+ one_byte,
+ chars[0],
+ chars[1],
+ on_failure)) {
} else {
macro_assembler->CheckCharacter(chars[0], &ok);
macro_assembler->CheckNotCharacter(chars[1], on_failure);
- macro_assembler->Bind(&ok);
+ macro_assembler->BindBlock(&ok);
}
break;
}
@@ -1022,7 +1023,7 @@ static inline bool EmitAtomLetter(Isolate* isolate,
macro_assembler->CheckCharacter(chars[0], &ok);
macro_assembler->CheckCharacter(chars[1], &ok);
macro_assembler->CheckNotCharacter(chars[2], on_failure);
- macro_assembler->Bind(&ok);
+ macro_assembler->BindBlock(&ok);
break;
default:
UNREACHABLE();
@@ -1033,10 +1034,10 @@ static inline bool EmitAtomLetter(Isolate* isolate,
static void EmitBoundaryTest(RegExpMacroAssembler* masm,
- int border,
- Label* fall_through,
- Label* above_or_equal,
- Label* below) {
+ intptr_t border,
+ BlockLabel* fall_through,
+ BlockLabel* above_or_equal,
+ BlockLabel* below) {
if (below != fall_through) {
masm->CheckCharacterLT(border, below);
if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
@@ -1047,11 +1048,11 @@ static void EmitBoundaryTest(RegExpMacroAssembler* masm,
static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
- int first,
- int last,
- Label* fall_through,
- Label* in_range,
- Label* out_of_range) {
+ intptr_t first,
+ intptr_t last,
+ BlockLabel* fall_through,
+ BlockLabel* in_range,
+ BlockLabel* out_of_range) {
if (in_range == fall_through) {
if (first == last) {
masm->CheckNotCharacter(first, out_of_range);
@@ -1073,29 +1074,28 @@ static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
// odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
static void EmitUseLookupTable(
RegExpMacroAssembler* masm,
- ZoneList<int>* ranges,
- int start_index,
- int end_index,
- int min_char,
- Label* fall_through,
- Label* even_label,
- Label* odd_label) {
- static const int kSize = RegExpMacroAssembler::kTableSize;
- static const int kMask = RegExpMacroAssembler::kTableMask;
-
- int base = (min_char & ~kMask);
- USE(base);
+ ZoneGrowableArray<int>* ranges,
+ intptr_t start_index,
+ intptr_t end_index,
+ intptr_t min_char,
+ BlockLabel* fall_through,
+ BlockLabel* even_label,
+ BlockLabel* odd_label) {
+ static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+ static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
+
+ intptr_t base = (min_char & ~kMask);
// Assert that everything is on one kTableSize page.
- for (int i = start_index; i <= end_index; i++) {
- DCHECK_EQ(ranges->at(i) & ~kMask, base);
+ for (intptr_t i = start_index; i <= end_index; i++) {
+ ASSERT((ranges->At(i) & ~kMask) == base);
}
- DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
+ ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base);
char templ[kSize];
- Label* on_bit_set;
- Label* on_bit_clear;
- int bit;
+ BlockLabel* on_bit_set;
+ BlockLabel* on_bit_clear;
+ intptr_t bit;
if (even_label == fall_through) {
on_bit_set = odd_label;
on_bit_clear = even_label;
@@ -1105,25 +1105,27 @@ static void EmitUseLookupTable(
on_bit_clear = odd_label;
bit = 0;
}
- for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
+ for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize;
+ i++) {
templ[i] = bit;
}
- int j = 0;
+ intptr_t j = 0;
bit ^= 1;
- for (int i = start_index; i < end_index; i++) {
- for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
+ for (intptr_t i = start_index; i < end_index; i++) {
+ for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) {
templ[j] = bit;
}
bit ^= 1;
}
- for (int i = j; i < kSize; i++) {
+ for (intptr_t i = j; i < kSize; i++) {
templ[i] = bit;
}
- Factory* factory = masm->zone()->isolate()->factory();
// TODO(erikcorry): Cache these.
- Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
- for (int i = 0; i < kSize; i++) {
- ba->set(i, templ[i]);
+ const TypedData& ba = TypedData::ZoneHandle(
+ masm->isolate(),
+ TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
+ for (intptr_t i = 0; i < kSize; i++) {
+ ba.SetUint8(i, templ[i]);
}
masm->CheckBitInTable(ba, on_bit_set);
if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
@@ -1131,52 +1133,52 @@ static void EmitUseLookupTable(
static void CutOutRange(RegExpMacroAssembler* masm,
- ZoneList<int>* ranges,
- int start_index,
- int end_index,
- int cut_index,
- Label* even_label,
- Label* odd_label) {
+ ZoneGrowableArray<int>* ranges,
+ intptr_t start_index,
+ intptr_t end_index,
+ intptr_t cut_index,
+ BlockLabel* even_label,
+ BlockLabel* odd_label) {
bool odd = (((cut_index - start_index) & 1) == 1);
- Label* in_range_label = odd ? odd_label : even_label;
- Label dummy;
+ BlockLabel* in_range_label = odd ? odd_label : even_label;
+ BlockLabel dummy;
EmitDoubleBoundaryTest(masm,
- ranges->at(cut_index),
- ranges->at(cut_index + 1) - 1,
+ ranges->At(cut_index),
+ ranges->At(cut_index + 1) - 1,
&dummy,
in_range_label,
&dummy);
- DCHECK(!dummy.is_linked());
+ ASSERT(!dummy.IsLinked());
// Cut out the single range by rewriting the array. This creates a new
// range that is a merger of the two ranges on either side of the one we
// are cutting out. The oddity of the labels is preserved.
- for (int j = cut_index; j > start_index; j--) {
- ranges->at(j) = ranges->at(j - 1);
+ for (intptr_t j = cut_index; j > start_index; j--) {
+ (*ranges)[j] = ranges->At(j - 1);
}
- for (int j = cut_index + 1; j < end_index; j++) {
- ranges->at(j) = ranges->at(j + 1);
+ for (intptr_t j = cut_index + 1; j < end_index; j++) {
+ (*ranges)[j] = ranges->At(j + 1);
}
}
// Unicode case. Split the search space into kSize spaces that are handled
// with recursion.
-static void SplitSearchSpace(ZoneList<int>* ranges,
- int start_index,
- int end_index,
- int* new_start_index,
- int* new_end_index,
- int* border) {
- static const int kSize = RegExpMacroAssembler::kTableSize;
- static const int kMask = RegExpMacroAssembler::kTableMask;
-
- int first = ranges->at(start_index);
- int last = ranges->at(end_index) - 1;
+static void SplitSearchSpace(ZoneGrowableArray<int>* ranges,
+ intptr_t start_index,
+ intptr_t end_index,
+ intptr_t* new_start_index,
+ intptr_t* new_end_index,
+ intptr_t* border) {
+ static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+ static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
+
+ intptr_t first = ranges->At(start_index);
+ intptr_t last = ranges->At(end_index) - 1;
*new_start_index = start_index;
- *border = (ranges->at(start_index) & ~kMask) + kSize;
+ *border = (ranges->At(start_index) & ~kMask) + kSize;
while (*new_start_index < end_index) {
- if (ranges->at(*new_start_index) > *border) break;
+ if (ranges->At(*new_start_index) > *border) break;
(*new_start_index)++;
}
// new_start_index is the index of the first edge that is beyond the
@@ -1190,20 +1192,21 @@ static void SplitSearchSpace(ZoneList<int>* ranges,
// 128-character space can take up a lot of space in the ranges array if,
// for example, we only want to match every second character (eg. the lower
// case characters on some Unicode pages).
- int binary_chop_index = (end_index + start_index) / 2;
+ intptr_t binary_chop_index = (end_index + start_index) / 2;
// The first test ensures that we get to the code that handles the Latin1
// range with a single not-taken branch, speeding up this important
// character range (even non-Latin1 charset-based text has spaces and
// punctuation).
- if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case.
+ if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // Latin1 case.
end_index - start_index > (*new_start_index - start_index) * 2 &&
- last - first > kSize * 2 && binary_chop_index > *new_start_index &&
- ranges->at(binary_chop_index) >= first + 2 * kSize) {
- int scan_forward_for_section_border = binary_chop_index;;
- int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
+ last - first > kSize * 2 &&
+ binary_chop_index > *new_start_index &&
+ ranges->At(binary_chop_index) >= first + 2 * kSize) {
+ intptr_t scan_forward_for_section_border = binary_chop_index;;
+ intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1;
while (scan_forward_for_section_border < end_index) {
- if (ranges->at(scan_forward_for_section_border) > new_border) {
+ if (ranges->At(scan_forward_for_section_border) > new_border) {
*new_start_index = scan_forward_for_section_border;
*border = new_border;
break;
@@ -1212,13 +1215,13 @@ static void SplitSearchSpace(ZoneList<int>* ranges,
}
}
- DCHECK(*new_start_index > start_index);
+ ASSERT(*new_start_index > start_index);
*new_end_index = *new_start_index - 1;
- if (ranges->at(*new_end_index) == *border) {
+ if (ranges->At(*new_end_index) == *border) {
(*new_end_index)--;
}
- if (*border >= ranges->at(end_index)) {
- *border = ranges->at(end_index);
+ if (*border >= ranges->At(end_index)) {
+ *border = ranges->At(end_index);
*new_start_index = end_index; // Won't be used.
*new_end_index = end_index - 1;
}
@@ -1232,18 +1235,18 @@ static void SplitSearchSpace(ZoneList<int>* ranges,
// Either label can be NULL indicating backtracking. Either label can also be
// equal to the fall_through label.
static void GenerateBranches(RegExpMacroAssembler* masm,
- ZoneList<int>* ranges,
- int start_index,
- int end_index,
- uc16 min_char,
- uc16 max_char,
- Label* fall_through,
- Label* even_label,
- Label* odd_label) {
- int first = ranges->at(start_index);
- int last = ranges->at(end_index) - 1;
-
- DCHECK_LT(min_char, first);
+ ZoneGrowableArray<int>* ranges,
+ intptr_t start_index,
+ intptr_t end_index,
+ uint16_t min_char,
+ uint16_t max_char,
+ BlockLabel* fall_through,
+ BlockLabel* even_label,
+ BlockLabel* odd_label) {
+ intptr_t first = ranges->At(start_index);
+ intptr_t last = ranges->At(end_index) - 1;
+
+ ASSERT(min_char < first);
// Just need to test if the character is before or on-or-after
// a particular character.
@@ -1265,10 +1268,10 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
if (end_index - start_index <= 6) {
// It is faster to test for individual characters, so we look for those
// first, then try arbitrary ranges in the second round.
- static int kNoCutIndex = -1;
- int cut = kNoCutIndex;
- for (int i = start_index; i < end_index; i++) {
- if (ranges->at(i) == ranges->at(i + 1) - 1) {
+ static intptr_t kNoCutIndex = -1;
+ intptr_t cut = kNoCutIndex;
+ for (intptr_t i = start_index; i < end_index; i++) {
+ if (ranges->At(i) == ranges->At(i + 1) - 1) {
cut = i;
break;
}
@@ -1276,7 +1279,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
if (cut == kNoCutIndex) cut = start_index;
CutOutRange(
masm, ranges, start_index, end_index, cut, even_label, odd_label);
- DCHECK_GE(end_index - start_index, 2);
+ ASSERT(end_index - start_index >= 2);
GenerateBranches(masm,
ranges,
start_index + 1,
@@ -1291,7 +1294,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
// If there are a lot of intervals in the regexp, then we will use tables to
// determine whether the character is inside or outside the character class.
- static const int kBits = RegExpMacroAssembler::kTableSizeBits;
+ static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits;
if ((max_char >> kBits) == (min_char >> kBits)) {
EmitUseLookupTable(masm,
@@ -1319,9 +1322,9 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
return;
}
- int new_start_index = 0;
- int new_end_index = 0;
- int border = 0;
+ intptr_t new_start_index = 0;
+ intptr_t new_end_index = 0;
+ intptr_t border = 0;
SplitSearchSpace(ranges,
start_index,
@@ -1330,34 +1333,34 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
&new_end_index,
&border);
- Label handle_rest;
- Label* above = &handle_rest;
+ BlockLabel handle_rest;
+ BlockLabel* above = &handle_rest;
if (border == last + 1) {
// We didn't find any section that started after the limit, so everything
// above the border is one of the terminal labels.
above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
- DCHECK(new_end_index == end_index - 1);
+ ASSERT(new_end_index == end_index - 1);
}
- DCHECK_LE(start_index, new_end_index);
- DCHECK_LE(new_start_index, end_index);
- DCHECK_LT(start_index, new_start_index);
- DCHECK_LT(new_end_index, end_index);
- DCHECK(new_end_index + 1 == new_start_index ||
+ ASSERT(start_index <= new_end_index);
+ ASSERT(new_start_index <= end_index);
+ ASSERT(start_index < new_start_index);
+ ASSERT(new_end_index < end_index);
+ ASSERT(new_end_index + 1 == new_start_index ||
(new_end_index + 2 == new_start_index &&
- border == ranges->at(new_end_index + 1)));
- DCHECK_LT(min_char, border - 1);
- DCHECK_LT(border, max_char);
- DCHECK_LT(ranges->at(new_end_index), border);
- DCHECK(border < ranges->at(new_start_index) ||
- (border == ranges->at(new_start_index) &&
+ border == ranges->At(new_end_index + 1)));
+ ASSERT(min_char < border - 1);
+ ASSERT(border < max_char);
+ ASSERT(ranges->At(new_end_index) < border);
+ ASSERT(border < ranges->At(new_start_index) ||
+ (border == ranges->At(new_start_index) &&
new_start_index == end_index &&
new_end_index == end_index - 1 &&
border == last + 1));
- DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
+ ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1));
masm->CheckCharacterGT(border - 1, above);
- Label dummy;
+ BlockLabel dummy;
GenerateBranches(masm,
ranges,
start_index,
@@ -1367,8 +1370,9 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
&dummy,
even_label,
odd_label);
- if (handle_rest.is_linked()) {
- masm->Bind(&handle_rest);
+
+ if (handle_rest.IsLinked()) {
+ masm->BindBlock(&handle_rest);
bool flip = (new_start_index & 1) != (start_index & 1);
GenerateBranches(masm,
ranges,
@@ -1384,26 +1388,30 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
- RegExpCharacterClass* cc, bool one_byte,
- Label* on_failure, int cp_offset, bool check_offset,
- bool preloaded, Zone* zone) {
- ZoneList<CharacterRange>* ranges = cc->ranges(zone);
+ RegExpCharacterClass* cc,
+ bool one_byte,
+ BlockLabel* on_failure,
+ intptr_t cp_offset,
+ bool check_offset,
+ bool preloaded,
+ Isolate* isolate) {
+ ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
- int max_char;
+ intptr_t max_char;
if (one_byte) {
- max_char = String::kMaxOneByteCharCode;
+ max_char = Symbols::kMaxOneCharCodeSymbol;
} else {
- max_char = String::kMaxUtf16CodeUnit;
+ max_char = Utf16::kMaxCodeUnit;
}
- int range_count = ranges->length();
+ intptr_t range_count = ranges->length();
- int last_valid_range = range_count - 1;
+ intptr_t last_valid_range = range_count - 1;
while (last_valid_range >= 0) {
- CharacterRange& range = ranges->at(last_valid_range);
+ CharacterRange& range = (*ranges)[last_valid_range];
if (range.from() <= max_char) {
break;
}
@@ -1421,7 +1429,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
}
if (last_valid_range == 0 &&
- ranges->at(0).IsEverything(max_char)) {
+ ranges->At(0).IsEverything(max_char)) {
if (cc->is_negated()) {
macro_assembler->GoTo(on_failure);
} else {
@@ -1434,7 +1442,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
}
if (last_valid_range == 0 &&
!cc->is_negated() &&
- ranges->at(0).IsEverything(max_char)) {
+ ranges->At(0).IsEverything(max_char)) {
// This is a common case hit by non-anchored expressions.
if (check_offset) {
macro_assembler->CheckPosition(cp_offset, on_failure);
@@ -1446,7 +1454,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
}
- if (cc->is_standard(zone) &&
+ if (cc->is_standard() &&
macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
on_failure)) {
return;
@@ -1459,27 +1467,27 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
// entry at zero which goes to the failure label, but if there
// was already one there we fall through for success on that entry.
// Subsequent entries have alternating meaning (success/failure).
- ZoneList<int>* range_boundaries =
- new(zone) ZoneList<int>(last_valid_range, zone);
+ ZoneGrowableArray<int>* range_boundaries =
+ new(isolate) ZoneGrowableArray<int>(last_valid_range);
bool zeroth_entry_is_failure = !cc->is_negated();
- for (int i = 0; i <= last_valid_range; i++) {
- CharacterRange& range = ranges->at(i);
+ for (intptr_t i = 0; i <= last_valid_range; i++) {
+ CharacterRange& range = (*ranges)[i];
if (range.from() == 0) {
- DCHECK_EQ(i, 0);
+ ASSERT(i == 0);
zeroth_entry_is_failure = !zeroth_entry_is_failure;
} else {
- range_boundaries->Add(range.from(), zone);
+ range_boundaries->Add(range.from());
}
- range_boundaries->Add(range.to() + 1, zone);
+ range_boundaries->Add(range.to() + 1);
}
- int end_index = range_boundaries->length() - 1;
- if (range_boundaries->at(end_index) > max_char) {
+ intptr_t end_index = range_boundaries->length() - 1;
+ if (range_boundaries->At(end_index) > max_char) {
end_index--;
}
- Label fall_through;
+ BlockLabel fall_through;
GenerateBranches(macro_assembler,
range_boundaries,
0, // start_index.
@@ -1489,7 +1497,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
&fall_through,
zeroth_entry_is_failure ? &fall_through : on_failure,
zeroth_entry_is_failure ? on_failure : &fall_through);
- macro_assembler->Bind(&fall_through);
+ macro_assembler->BindBlock(&fall_through);
}
@@ -1506,7 +1514,7 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
if (trace->is_trivial()) {
- if (label_.is_bound()) {
+ if (label_.IsBound()) {
// We are being asked to generate a generic version, but that's already
// been done so just go to it.
macro_assembler->GoTo(&label_);
@@ -1520,14 +1528,14 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
return DONE;
}
// Generate generic version of the node and bind the label for later use.
- macro_assembler->Bind(&label_);
+ macro_assembler->BindBlock(&label_);
return CONTINUE;
}
// We are being asked to make a non-generic version. Keep track of how many
// non-generic versions we generate so as not to overdo it.
trace_count_++;
- if (FLAG_regexp_optimization &&
+ if (kRegexpOptimization &&
trace_count_ < kMaxCopiesCodeGenerated &&
compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
return CONTINUE;
@@ -1541,9 +1549,9 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
}
-int ActionNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
+intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find,
+ intptr_t budget,
+ bool not_at_start) {
if (budget <= 0) return 0;
if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
return on_success()->EatsAtLeast(still_to_find,
@@ -1552,8 +1560,8 @@ int ActionNode::EatsAtLeast(int still_to_find,
}
-void ActionNode::FillInBMInfo(int offset,
- int budget,
+void ActionNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
if (action_type_ == BEGIN_SUBMATCH) {
@@ -1565,9 +1573,9 @@ void ActionNode::FillInBMInfo(int offset,
}
-int AssertionNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
+intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find,
+ intptr_t budget,
+ bool not_at_start) {
if (budget <= 0) return 0;
// If we know we are not at the start and we are asked "how many characters
// will you match if you succeed?" then we can answer anything since false
@@ -1581,8 +1589,8 @@ int AssertionNode::EatsAtLeast(int still_to_find,
}
-void AssertionNode::FillInBMInfo(int offset,
- int budget,
+void AssertionNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
// Match the behaviour of EatsAtLeast on this node.
@@ -1592,9 +1600,9 @@ void AssertionNode::FillInBMInfo(int offset,
}
-int BackReferenceNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
+intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find,
+ intptr_t budget,
+ bool not_at_start) {
if (budget <= 0) return 0;
return on_success()->EatsAtLeast(still_to_find,
budget - 1,
@@ -1602,10 +1610,10 @@ int BackReferenceNode::EatsAtLeast(int still_to_find,
}
-int TextNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
- int answer = Length();
+intptr_t TextNode::EatsAtLeast(intptr_t still_to_find,
+ intptr_t budget,
+ bool not_at_start) {
+ intptr_t answer = Length();
if (answer >= still_to_find) return answer;
if (budget <= 0) return answer;
// We are not at start after this node so we set the last argument to 'true'.
@@ -1615,13 +1623,13 @@ int TextNode::EatsAtLeast(int still_to_find,
}
-int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
+intptr_t NegativeLookaheadChoiceNode::EatsAtLeast(intptr_t still_to_find,
+ intptr_t budget,
+ bool not_at_start) {
if (budget <= 0) return 0;
// Alternative 0 is the negative lookahead, alternative 1 is what comes
// afterwards.
- RegExpNode* node = alternatives_->at(1).node();
+ RegExpNode* node = (*alternatives_)[1].node();
return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
}
@@ -1629,27 +1637,27 @@ int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
QuickCheckDetails* details,
RegExpCompiler* compiler,
- int filled_in,
+ intptr_t filled_in,
bool not_at_start) {
// Alternative 0 is the negative lookahead, alternative 1 is what comes
// afterwards.
- RegExpNode* node = alternatives_->at(1).node();
+ RegExpNode* node = (*alternatives_)[1].node();
return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
}
-int ChoiceNode::EatsAtLeastHelper(int still_to_find,
- int budget,
- RegExpNode* ignore_this_node,
- bool not_at_start) {
+intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find,
+ intptr_t budget,
+ RegExpNode* ignore_this_node,
+ bool not_at_start) {
if (budget <= 0) return 0;
- int min = 100;
- int choice_count = alternatives_->length();
+ intptr_t min = 100;
+ intptr_t choice_count = alternatives_->length();
budget = (budget - 1) / choice_count;
- for (int i = 0; i < choice_count; i++) {
- RegExpNode* node = alternatives_->at(i).node();
+ for (intptr_t i = 0; i < choice_count; i++) {
+ RegExpNode* node = (*alternatives_)[i].node();
if (node == ignore_this_node) continue;
- int node_eats_at_least =
+ intptr_t node_eats_at_least =
node->EatsAtLeast(still_to_find, budget, not_at_start);
if (node_eats_at_least < min) min = node_eats_at_least;
if (min == 0) return 0;
@@ -1658,9 +1666,9 @@ int ChoiceNode::EatsAtLeastHelper(int still_to_find,
}
-int LoopChoiceNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
+intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find,
+ intptr_t budget,
+ bool not_at_start) {
return EatsAtLeastHelper(still_to_find,
budget - 1,
loop_node_,
@@ -1668,9 +1676,9 @@ int LoopChoiceNode::EatsAtLeast(int still_to_find,
}
-int ChoiceNode::EatsAtLeast(int still_to_find,
- int budget,
- bool not_at_start) {
+intptr_t ChoiceNode::EatsAtLeast(intptr_t still_to_find,
+ intptr_t budget,
+ bool not_at_start) {
return EatsAtLeastHelper(still_to_find,
budget,
NULL,
@@ -1693,16 +1701,16 @@ bool QuickCheckDetails::Rationalize(bool asc) {
bool found_useful_op = false;
uint32_t char_mask;
if (asc) {
- char_mask = String::kMaxOneByteCharCode;
+ char_mask = Symbols::kMaxOneCharCodeSymbol;
} else {
- char_mask = String::kMaxUtf16CodeUnit;
+ char_mask = Utf16::kMaxCodeUnit;
}
mask_ = 0;
value_ = 0;
- int char_shift = 0;
- for (int i = 0; i < characters_; i++) {
+ intptr_t char_shift = 0;
+ for (intptr_t i = 0; i < characters_; i++) {
Position* pos = &positions_[i];
- if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
+ if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) {
found_useful_op = true;
}
mask_ |= (pos->mask & char_mask) << char_shift;
@@ -1717,7 +1725,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
Trace* bounds_check_trace,
Trace* trace,
bool preload_has_checked_bounds,
- Label* on_possible_success,
+ BlockLabel* on_possible_success,
QuickCheckDetails* details,
bool fall_through_on_failure) {
if (details->characters() == 0) return false;
@@ -1725,7 +1733,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
if (details->cannot_match()) return false;
if (!details->Rationalize(compiler->one_byte())) return false;
- DCHECK(details->characters() == 1 ||
+ ASSERT(details->characters() == 1 ||
compiler->macro_assembler()->CanReadUnaligned());
uint32_t mask = details->mask();
uint32_t value = details->value();
@@ -1733,7 +1741,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
RegExpMacroAssembler* assembler = compiler->macro_assembler();
if (trace->characters_preloaded() != details->characters()) {
- DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
+ ASSERT(trace->cp_offset() == bounds_check_trace->cp_offset());
// We are attempting to preload the minimum number of characters
// any choice would eat, so if the bounds check fails, then none of the
// choices can succeed, so we can just immediately backtrack, rather
@@ -1752,9 +1760,9 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
// load so the value is already masked down.
uint32_t char_mask;
if (compiler->one_byte()) {
- char_mask = String::kMaxOneByteCharCode;
+ char_mask = Symbols::kMaxOneCharCodeSymbol;
} else {
- char_mask = String::kMaxUtf16CodeUnit;
+ char_mask = Utf16::kMaxCodeUnit;
}
if ((mask & char_mask) == char_mask) need_mask = false;
mask &= char_mask;
@@ -1797,28 +1805,32 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
// generating a quick check.
void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
- int characters_filled_in,
+ intptr_t characters_filled_in,
bool not_at_start) {
- Isolate* isolate = compiler->macro_assembler()->zone()->isolate();
- DCHECK(characters_filled_in < details->characters());
- int characters = details->characters();
- int char_mask;
+#if defined(__GNUC__)
+ // TODO(zerny): Make the combination code byte-order independent.
+ ASSERT(details->characters() == 1 ||
+ (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__));
+#endif
+ ASSERT(characters_filled_in < details->characters());
+ intptr_t characters = details->characters();
+ intptr_t char_mask;
if (compiler->one_byte()) {
- char_mask = String::kMaxOneByteCharCode;
+ char_mask = Symbols::kMaxOneCharCodeSymbol;
} else {
- char_mask = String::kMaxUtf16CodeUnit;
+ char_mask = Utf16::kMaxCodeUnit;
}
- for (int k = 0; k < elms_->length(); k++) {
- TextElement elm = elms_->at(k);
+ for (intptr_t k = 0; k < elms_->length(); k++) {
+ TextElement elm = elms_->At(k);
if (elm.text_type() == TextElement::ATOM) {
- Vector<const uc16> quarks = elm.atom()->data();
- for (int i = 0; i < characters && i < quarks.length(); i++) {
+ ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
+ for (intptr_t i = 0; i < characters && i < quarks->length(); i++) {
QuickCheckDetails::Position* pos =
details->positions(characters_filled_in);
- uc16 c = quarks[i];
+ uint16_t c = quarks->At(i);
if (c > char_mask) {
// If we expect a non-Latin1 character from an one-byte string,
- // there is no way we can match. Not even case-independent
+ // there is no way we can match. Not even case independent
// matching can turn an Latin1 character into non-Latin1 or
// vice versa.
// TODO(dcarney): issue 3550. Verify that this works as expected.
@@ -1828,10 +1840,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
return;
}
if (compiler->ignore_case()) {
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int length = GetCaseIndependentLetters(isolate, c,
- compiler->one_byte(), chars);
- DCHECK(length != 0); // Can only happen if c > char_mask (see above).
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t length =
+ GetCaseIndependentLetters(c, compiler->one_byte(), chars);
+ ASSERT(length != 0); // Can only happen if c > char_mask (see above).
if (length == 1) {
// This letter has no case equivalents, so it's nice and simple
// and the mask-compare will determine definitely whether we have
@@ -1842,7 +1854,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
} else {
uint32_t common_bits = char_mask;
uint32_t bits = chars[0];
- for (int j = 1; j < length; j++) {
+ for (intptr_t j = 1; j < length; j++) {
uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
common_bits ^= differing_bits;
bits &= common_bits;
@@ -1867,7 +1879,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
pos->determines_perfectly = true;
}
characters_filled_in++;
- DCHECK(characters_filled_in <= details->characters());
+ ASSERT(characters_filled_in <= details->characters());
if (characters_filled_in == details->characters()) {
return;
}
@@ -1876,7 +1888,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
QuickCheckDetails::Position* pos =
details->positions(characters_filled_in);
RegExpCharacterClass* tree = elm.char_class();
- ZoneList<CharacterRange>* ranges = tree->ranges(zone());
+ ZoneGrowableArray<CharacterRange>* ranges = tree->ranges();
if (tree->is_negated()) {
// A quick check uses multi-character mask and compare. There is no
// useful way to incorporate a negative char class into this scheme
@@ -1885,8 +1897,8 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
pos->mask = 0;
pos->value = 0;
} else {
- int first_range = 0;
- while (ranges->at(first_range).from() > char_mask) {
+ intptr_t first_range = 0;
+ while (ranges->At(first_range).from() > char_mask) {
first_range++;
if (first_range == ranges->length()) {
details->set_cannot_match();
@@ -1894,9 +1906,9 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
return;
}
}
- CharacterRange range = ranges->at(first_range);
- uc16 from = range.from();
- uc16 to = range.to();
+ CharacterRange range = ranges->At(first_range);
+ uint16_t from = range.from();
+ uint16_t to = range.to();
if (to > char_mask) {
to = char_mask;
}
@@ -1909,10 +1921,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
}
uint32_t common_bits = ~SmearBitsRight(differing_bits);
uint32_t bits = (from & common_bits);
- for (int i = first_range + 1; i < ranges->length(); i++) {
- CharacterRange range = ranges->at(i);
- uc16 from = range.from();
- uc16 to = range.to();
+ for (intptr_t i = first_range + 1; i < ranges->length(); i++) {
+ CharacterRange range = ranges->At(i);
+ uint16_t from = range.from();
+ uint16_t to = range.to();
if (from > char_mask) continue;
if (to > char_mask) to = char_mask;
// Here we are combining more ranges into the mask and compare
@@ -1933,13 +1945,13 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
pos->value = bits;
}
characters_filled_in++;
- DCHECK(characters_filled_in <= details->characters());
+ ASSERT(characters_filled_in <= details->characters());
if (characters_filled_in == details->characters()) {
return;
}
}
}
- DCHECK(characters_filled_in != details->characters());
+ ASSERT(characters_filled_in != details->characters());
if (!details->cannot_match()) {
on_success()-> GetQuickCheckDetails(details,
compiler,
@@ -1959,16 +1971,16 @@ void QuickCheckDetails::Clear() {
}
-void QuickCheckDetails::Advance(int by, bool one_byte) {
- DCHECK(by >= 0);
+void QuickCheckDetails::Advance(intptr_t by, bool one_byte) {
+ ASSERT(by >= 0);
if (by >= characters_) {
Clear();
return;
}
- for (int i = 0; i < characters_ - by; i++) {
+ for (intptr_t i = 0; i < characters_ - by; i++) {
positions_[i] = positions_[by + i];
}
- for (int i = characters_ - by; i < characters_; i++) {
+ for (intptr_t i = characters_ - by; i < characters_; i++) {
positions_[i].mask = 0;
positions_[i].value = 0;
positions_[i].determines_perfectly = false;
@@ -1980,8 +1992,8 @@ void QuickCheckDetails::Advance(int by, bool one_byte) {
}
-void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
- DCHECK(characters_ == other->characters_);
+void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) {
+ ASSERT(characters_ == other->characters_);
if (other->cannot_match_) {
return;
}
@@ -1989,7 +2001,7 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
*this = *other;
return;
}
- for (int i = from_index; i < characters_; i++) {
+ for (intptr_t i = from_index; i < characters_; i++) {
QuickCheckDetails::Position* pos = positions(i);
QuickCheckDetails::Position* other_pos = other->positions(i);
if (pos->mask != other_pos->mask ||
@@ -2002,17 +2014,17 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
pos->mask &= other_pos->mask;
pos->value &= pos->mask;
other_pos->value &= pos->mask;
- uc16 differing_bits = (pos->value ^ other_pos->value);
+ uint16_t differing_bits = (pos->value ^ other_pos->value);
pos->mask &= ~differing_bits;
pos->value &= pos->mask;
}
}
-class VisitMarker {
+class VisitMarker : public ValueObject {
public:
explicit VisitMarker(NodeInfo* info) : info_(info) {
- DCHECK(!info->visited);
+ ASSERT(!info->visited);
info->visited = true;
}
~VisitMarker() {
@@ -2023,16 +2035,16 @@ class VisitMarker {
};
-RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
+RegExpNode* SeqRegExpNode::FilterOneByte(intptr_t depth, bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
- DCHECK(!info()->visited);
+ ASSERT(!info()->visited);
VisitMarker marker(info());
return FilterSuccessor(depth - 1, ignore_case);
}
-RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
+RegExpNode* SeqRegExpNode::FilterSuccessor(intptr_t depth, bool ignore_case) {
RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
if (next == NULL) return set_replacement(NULL);
on_success_ = next;
@@ -2048,58 +2060,74 @@ static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
}
-static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
- for (int i = 0; i < ranges->length(); i++) {
+static bool RangesContainLatin1Equivalents(
+ ZoneGrowableArray<CharacterRange>* ranges) {
+ for (intptr_t i = 0; i < ranges->length(); i++) {
// TODO(dcarney): this could be a lot more efficient.
- if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
+ if (RangeContainsLatin1Equivalents(ranges->At(i))) return true;
}
return false;
}
-RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
+static uint16_t ConvertNonLatin1ToLatin1(uint16_t c) {
+ ASSERT(c > Symbols::kMaxOneCharCodeSymbol);
+ switch (c) {
+ // This are equivalent characters in unicode.
+ case 0x39c:
+ case 0x3bc:
+ return 0xb5;
+ // This is an uppercase of a Latin-1 character
+ // outside of Latin-1.
+ case 0x178:
+ return 0xff;
+ }
+ return 0;
+}
+
+
+RegExpNode* TextNode::FilterOneByte(intptr_t depth, bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
- DCHECK(!info()->visited);
+ ASSERT(!info()->visited);
VisitMarker marker(info());
- int element_count = elms_->length();
- for (int i = 0; i < element_count; i++) {
- TextElement elm = elms_->at(i);
+ intptr_t element_count = elms_->length();
+ for (intptr_t i = 0; i < element_count; i++) {
+ TextElement elm = elms_->At(i);
if (elm.text_type() == TextElement::ATOM) {
- Vector<const uc16> quarks = elm.atom()->data();
- for (int j = 0; j < quarks.length(); j++) {
- uint16_t c = quarks[j];
- if (c <= String::kMaxOneByteCharCode) continue;
+ ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
+ for (intptr_t j = 0; j < quarks->length(); j++) {
+ uint16_t c = quarks->At(j);
+ if (c <= Symbols::kMaxOneCharCodeSymbol) continue;
if (!ignore_case) return set_replacement(NULL);
// Here, we need to check for characters whose upper and lower cases
// are outside the Latin-1 range.
- uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
+ uint16_t converted = ConvertNonLatin1ToLatin1(c);
// Character is outside Latin-1 completely
if (converted == 0) return set_replacement(NULL);
// Convert quark to Latin-1 in place.
- uint16_t* copy = const_cast<uint16_t*>(quarks.start());
- copy[j] = converted;
+ (*quarks)[0] = converted;
}
} else {
- DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
+ ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
RegExpCharacterClass* cc = elm.char_class();
- ZoneList<CharacterRange>* ranges = cc->ranges(zone());
+ ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
// Now they are in order so we only need to look at the first.
- int range_count = ranges->length();
+ intptr_t range_count = ranges->length();
if (cc->is_negated()) {
if (range_count != 0 &&
- ranges->at(0).from() == 0 &&
- ranges->at(0).to() >= String::kMaxOneByteCharCode) {
+ ranges->At(0).from() == 0 &&
+ ranges->At(0).to() >= Symbols::kMaxOneCharCodeSymbol) {
// This will be handled in a later filter.
if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
return set_replacement(NULL);
}
} else {
if (range_count == 0 ||
- ranges->at(0).from() > String::kMaxOneByteCharCode) {
+ ranges->At(0).from() > Symbols::kMaxOneCharCodeSymbol) {
// This will be handled in a later filter.
if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
return set_replacement(NULL);
@@ -2111,7 +2139,7 @@ RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
}
-RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
+RegExpNode* LoopChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
if (info()->visited) return this;
@@ -2129,30 +2157,30 @@ RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
}
-RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
+RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
if (info()->visited) return this;
VisitMarker marker(info());
- int choice_count = alternatives_->length();
+ intptr_t choice_count = alternatives_->length();
- for (int i = 0; i < choice_count; i++) {
- GuardedAlternative alternative = alternatives_->at(i);
+ for (intptr_t i = 0; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->At(i);
if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
set_replacement(this);
return this;
}
}
- int surviving = 0;
+ intptr_t surviving = 0;
RegExpNode* survivor = NULL;
- for (int i = 0; i < choice_count; i++) {
- GuardedAlternative alternative = alternatives_->at(i);
+ for (intptr_t i = 0; i < choice_count; i++) {
+ GuardedAlternative alternative = alternatives_->At(i);
RegExpNode* replacement =
alternative.node()->FilterOneByte(depth - 1, ignore_case);
- DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK.
+ ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK.
if (replacement != NULL) {
- alternatives_->at(i).set_node(replacement);
+ (*alternatives_)[i].set_node(replacement);
surviving++;
survivor = replacement;
}
@@ -2165,14 +2193,14 @@ RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
}
// Only some of the nodes survived the filtering. We need to rebuild the
// alternatives list.
- ZoneList<GuardedAlternative>* new_alternatives =
- new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
- for (int i = 0; i < choice_count; i++) {
+ ZoneGrowableArray<GuardedAlternative>* new_alternatives =
+ new(I) ZoneGrowableArray<GuardedAlternative>(surviving);
+ for (intptr_t i = 0; i < choice_count; i++) {
RegExpNode* replacement =
- alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
+ (*alternatives_)[i].node()->FilterOneByte(depth - 1, ignore_case);
if (replacement != NULL) {
- alternatives_->at(i).set_node(replacement);
- new_alternatives->Add(alternatives_->at(i), zone());
+ (*alternatives_)[i].set_node(replacement);
+ new_alternatives->Add((*alternatives_)[i]);
}
}
alternatives_ = new_alternatives;
@@ -2180,7 +2208,7 @@ RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
}
-RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
+RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(intptr_t depth,
bool ignore_case) {
if (info()->replacement_calculated) return replacement();
if (depth < 0) return this;
@@ -2188,24 +2216,24 @@ RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
VisitMarker marker(info());
// Alternative 0 is the negative lookahead, alternative 1 is what comes
// afterwards.
- RegExpNode* node = alternatives_->at(1).node();
+ RegExpNode* node = (*alternatives_)[1].node();
RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
if (replacement == NULL) return set_replacement(NULL);
- alternatives_->at(1).set_node(replacement);
+ (*alternatives_)[1].set_node(replacement);
- RegExpNode* neg_node = alternatives_->at(0).node();
+ RegExpNode* neg_node = (*alternatives_)[0].node();
RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
// If the negative lookahead is always going to fail then
// we don't need to check it.
if (neg_replacement == NULL) return set_replacement(replacement);
- alternatives_->at(0).set_node(neg_replacement);
+ (*alternatives_)[0].set_node(neg_replacement);
return set_replacement(this);
}
void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
- int characters_filled_in,
+ intptr_t characters_filled_in,
bool not_at_start) {
if (body_can_be_zero_length_ || info()->visited) return;
VisitMarker marker(info());
@@ -2216,8 +2244,8 @@ void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
}
-void LoopChoiceNode::FillInBMInfo(int offset,
- int budget,
+void LoopChoiceNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
if (body_can_be_zero_length_ || budget <= 0) {
@@ -2232,18 +2260,18 @@ void LoopChoiceNode::FillInBMInfo(int offset,
void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
- int characters_filled_in,
+ intptr_t characters_filled_in,
bool not_at_start) {
not_at_start = (not_at_start || not_at_start_);
- int choice_count = alternatives_->length();
- DCHECK(choice_count > 0);
- alternatives_->at(0).node()->GetQuickCheckDetails(details,
+ intptr_t choice_count = alternatives_->length();
+ ASSERT(choice_count > 0);
+ (*alternatives_)[0].node()->GetQuickCheckDetails(details,
compiler,
characters_filled_in,
not_at_start);
- for (int i = 1; i < choice_count; i++) {
+ for (intptr_t i = 1; i < choice_count; i++) {
QuickCheckDetails new_details(details->characters());
- RegExpNode* node = alternatives_->at(i).node();
+ RegExpNode* node = (*alternatives_)[i].node();
node->GetQuickCheckDetails(&new_details, compiler,
characters_filled_in,
not_at_start);
@@ -2255,8 +2283,8 @@ void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
// Check for [0-9A-Z_a-z].
static void EmitWordCheck(RegExpMacroAssembler* assembler,
- Label* word,
- Label* non_word,
+ BlockLabel* word,
+ BlockLabel* non_word,
bool fall_through_on_word) {
if (assembler->CheckSpecialCharacterClass(
fall_through_on_word ? 'w' : 'W',
@@ -2289,7 +2317,7 @@ static void EmitHat(RegExpCompiler* compiler,
Trace new_trace(*trace);
new_trace.InvalidateCurrentCharacter();
- Label ok;
+ BlockLabel ok;
if (new_trace.cp_offset() == 0) {
// The start of input counts as a newline in this context, so skip to
// ok if we are at the start.
@@ -2309,7 +2337,7 @@ static void EmitHat(RegExpCompiler* compiler,
assembler->CheckCharacter('\n', &ok);
assembler->CheckNotCharacter('\r', new_trace.backtrack());
}
- assembler->Bind(&ok);
+ assembler->BindBlock(&ok);
on_success->Emit(compiler, &new_trace);
}
@@ -2321,13 +2349,14 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
BoyerMooreLookahead* lookahead = bm_info(not_at_start);
if (lookahead == NULL) {
- int eats_at_least =
- Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
- kRecursionBudget,
- not_at_start));
+ intptr_t eats_at_least =
+ Utils::Minimum(kMaxLookaheadForBoyerMoore,
+ EatsAtLeast(kMaxLookaheadForBoyerMoore,
+ kRecursionBudget,
+ not_at_start));
if (eats_at_least >= 1) {
BoyerMooreLookahead* bm =
- new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
+ new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
if (bm->at(0)->is_non_word())
next_is_word_character = Trace::FALSE_VALUE;
@@ -2341,26 +2370,31 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
}
bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
if (next_is_word_character == Trace::UNKNOWN) {
- Label before_non_word;
- Label before_word;
+ BlockLabel before_non_word;
+ BlockLabel before_word;
if (trace->characters_preloaded() != 1) {
assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
}
// Fall through on non-word.
EmitWordCheck(assembler, &before_word, &before_non_word, false);
// Next character is not a word character.
- assembler->Bind(&before_non_word);
- Label ok;
+ assembler->BindBlock(&before_non_word);
+ BlockLabel ok;
+ // Backtrack on \B (non-boundary check) if previous is a word,
+ // since we know next *is not* a word and this would be a boundary.
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
- assembler->GoTo(&ok);
- assembler->Bind(&before_word);
+ if (!assembler->IsClosed()) {
+ assembler->GoTo(&ok);
+ }
+
+ assembler->BindBlock(&before_word);
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
- assembler->Bind(&ok);
+ assembler->BindBlock(&ok);
} else if (next_is_word_character == Trace::TRUE_VALUE) {
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
} else {
- DCHECK(next_is_word_character == Trace::FALSE_VALUE);
+ ASSERT(next_is_word_character == Trace::FALSE_VALUE);
BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
}
}
@@ -2374,14 +2408,14 @@ void AssertionNode::BacktrackIfPrevious(
Trace new_trace(*trace);
new_trace.InvalidateCurrentCharacter();
- Label fall_through, dummy;
+ BlockLabel fall_through, dummy;
- Label* non_word = backtrack_if_previous == kIsNonWord ?
- new_trace.backtrack() :
- &fall_through;
- Label* word = backtrack_if_previous == kIsNonWord ?
- &fall_through :
- new_trace.backtrack();
+ BlockLabel* non_word = backtrack_if_previous == kIsNonWord ?
+ new_trace.backtrack() :
+ &fall_through;
+ BlockLabel* word = backtrack_if_previous == kIsNonWord ?
+ &fall_through :
+ new_trace.backtrack();
if (new_trace.cp_offset() == 0) {
// The start of input counts as a non-word character, so the question is
@@ -2393,14 +2427,14 @@ void AssertionNode::BacktrackIfPrevious(
assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
- assembler->Bind(&fall_through);
+ assembler->BindBlock(&fall_through);
on_success()->Emit(compiler, &new_trace);
}
void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
RegExpCompiler* compiler,
- int filled_in,
+ intptr_t filled_in,
bool not_at_start) {
if (assertion_type_ == AT_START && not_at_start) {
details->set_cannot_match();
@@ -2417,10 +2451,10 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
switch (assertion_type_) {
case AT_END: {
- Label ok;
+ BlockLabel ok;
assembler->CheckPosition(trace->cp_offset(), &ok);
assembler->GoTo(trace->backtrack());
- assembler->Bind(&ok);
+ assembler->BindBlock(&ok);
break;
}
case AT_START: {
@@ -2450,14 +2484,14 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
-static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
+static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) {
if (quick_check == NULL) return false;
if (offset >= quick_check->characters()) return false;
return quick_check->positions(offset)->determines_perfectly;
}
-static void UpdateBoundsCheck(int index, int* checked_up_to) {
+static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) {
if (index > *checked_up_to) {
*checked_up_to = index;
}
@@ -2498,26 +2532,25 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
bool preloaded,
Trace* trace,
bool first_element_checked,
- int* checked_up_to) {
+ intptr_t* checked_up_to) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
- Isolate* isolate = assembler->zone()->isolate();
bool one_byte = compiler->one_byte();
- Label* backtrack = trace->backtrack();
+ BlockLabel* backtrack = trace->backtrack();
QuickCheckDetails* quick_check = trace->quick_check_performed();
- int element_count = elms_->length();
- for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
- TextElement elm = elms_->at(i);
- int cp_offset = trace->cp_offset() + elm.cp_offset();
+ intptr_t element_count = elms_->length();
+ for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
+ TextElement elm = elms_->At(i);
+ intptr_t cp_offset = trace->cp_offset() + elm.cp_offset();
if (elm.text_type() == TextElement::ATOM) {
- Vector<const uc16> quarks = elm.atom()->data();
- for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
+ ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
+ for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) {
if (first_element_checked && i == 0 && j == 0) continue;
if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
EmitCharacterFunction* emit_function = NULL;
switch (pass) {
case NON_LATIN1_MATCH:
- DCHECK(one_byte);
- if (quarks[j] > String::kMaxOneByteCharCode) {
+ ASSERT(one_byte);
+ if (quarks->At(j) > Symbols::kMaxOneCharCodeSymbol) {
assembler->GoTo(backtrack);
return;
}
@@ -2535,9 +2568,9 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
break;
}
if (emit_function != NULL) {
- bool bound_checked = emit_function(isolate,
+ bool bound_checked = emit_function(I,
compiler,
- quarks[j],
+ quarks->At(j),
backtrack,
cp_offset + j,
*checked_up_to < cp_offset + j,
@@ -2546,13 +2579,19 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
}
}
} else {
- DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
+ ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
if (pass == CHARACTER_CLASS_MATCH) {
if (first_element_checked && i == 0) continue;
if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
RegExpCharacterClass* cc = elm.char_class();
- EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
- *checked_up_to < cp_offset, preloaded, zone());
+ EmitCharClass(assembler,
+ cc,
+ one_byte,
+ backtrack,
+ cp_offset,
+ *checked_up_to < cp_offset,
+ preloaded,
+ I);
UpdateBoundsCheck(cp_offset, checked_up_to);
}
}
@@ -2560,15 +2599,15 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
}
-int TextNode::Length() {
- TextElement elm = elms_->last();
- DCHECK(elm.cp_offset() >= 0);
+intptr_t TextNode::Length() {
+ TextElement elm = elms_->Last();
+ ASSERT(elm.cp_offset() >= 0);
return elm.cp_offset() + elm.length();
}
-bool TextNode::SkipPass(int int_pass, bool ignore_case) {
- TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
+bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) {
+ TextEmitPassType pass = static_cast<TextEmitPassType>(intptr_t_pass);
if (ignore_case) {
return pass == SIMPLE_CHARACTER_MATCH;
} else {
@@ -2586,7 +2625,7 @@ bool TextNode::SkipPass(int int_pass, bool ignore_case) {
void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
+ ASSERT(limit_result == CONTINUE);
if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
compiler->SetRegExpTooBig();
@@ -2594,18 +2633,18 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
if (compiler->one_byte()) {
- int dummy = 0;
+ intptr_t dummy = 0;
TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
}
bool first_elt_done = false;
- int bound_checked_to = trace->cp_offset() - 1;
+ intptr_t bound_checked_to = trace->cp_offset() - 1;
bound_checked_to += trace->bound_checked_up_to();
// If a character is preloaded into the current character register then
// check that now.
if (trace->characters_preloaded() == 1) {
- for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
if (!SkipPass(pass, compiler->ignore_case())) {
TextEmitPass(compiler,
static_cast<TextEmitPassType>(pass),
@@ -2618,7 +2657,7 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
first_elt_done = true;
}
- for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
+ for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
if (!SkipPass(pass, compiler->ignore_case())) {
TextEmitPass(compiler,
static_cast<TextEmitPassType>(pass),
@@ -2642,8 +2681,9 @@ void Trace::InvalidateCurrentCharacter() {
}
-void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
- DCHECK(by > 0);
+void Trace::AdvanceCurrentPositionInTrace(intptr_t by,
+ RegExpCompiler* compiler) {
+ ASSERT(by > 0);
// We don't have an instruction for shifting the current character register
// down or for using a shifted value for anything so lets just forget that
// we preloaded any characters into it.
@@ -2657,31 +2697,32 @@ void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
compiler->SetRegExpTooBig();
cp_offset_ = 0;
}
- bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
+ bound_checked_up_to_ = Utils::Maximum(static_cast<intptr_t>(0),
+ bound_checked_up_to_ - by);
}
void TextNode::MakeCaseIndependent(bool is_one_byte) {
- int element_count = elms_->length();
- for (int i = 0; i < element_count; i++) {
- TextElement elm = elms_->at(i);
+ intptr_t element_count = elms_->length();
+ for (intptr_t i = 0; i < element_count; i++) {
+ TextElement elm = elms_->At(i);
if (elm.text_type() == TextElement::CHAR_CLASS) {
RegExpCharacterClass* cc = elm.char_class();
// None of the standard character classes is different in the case
// independent case and it slows us down if we don't know that.
- if (cc->is_standard(zone())) continue;
- ZoneList<CharacterRange>* ranges = cc->ranges(zone());
- int range_count = ranges->length();
- for (int j = 0; j < range_count; j++) {
- ranges->at(j).AddCaseEquivalents(ranges, is_one_byte, zone());
+ if (cc->is_standard()) continue;
+ ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
+ intptr_t range_count = ranges->length();
+ for (intptr_t j = 0; j < range_count; j++) {
+ (*ranges)[j].AddCaseEquivalents(ranges, is_one_byte, I);
}
}
}
}
-int TextNode::GreedyLoopTextLength() {
- TextElement elm = elms_->at(elms_->length() - 1);
+intptr_t TextNode::GreedyLoopTextLength() {
+ TextElement elm = elms_->At(elms_->length() - 1);
return elm.cp_offset() + elm.length();
}
@@ -2689,10 +2730,10 @@ int TextNode::GreedyLoopTextLength() {
RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
RegExpCompiler* compiler) {
if (elms_->length() != 1) return NULL;
- TextElement elm = elms_->at(0);
+ TextElement elm = elms_->At(0);
if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
RegExpCharacterClass* node = elm.char_class();
- ZoneList<CharacterRange>* ranges = node->ranges(zone());
+ ZoneGrowableArray<CharacterRange>* ranges = node->ranges();
if (!CharacterRange::IsCanonical(ranges)) {
CharacterRange::Canonicalize(ranges);
}
@@ -2702,11 +2743,11 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
if (ranges->length() != 1) return NULL;
uint32_t max_char;
if (compiler->one_byte()) {
- max_char = String::kMaxOneByteCharCode;
+ max_char = Symbols::kMaxOneCharCodeSymbol;
} else {
- max_char = String::kMaxUtf16CodeUnit;
+ max_char = Utf16::kMaxCodeUnit;
}
- return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
+ return ranges->At(0).IsEverything(max_char) ? on_success() : NULL;
}
@@ -2714,18 +2755,18 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
// this alternative and back to this choice node. If there are variable
// length nodes or other complications in the way then return a sentinel
// value indicating that a greedy loop cannot be constructed.
-int ChoiceNode::GreedyLoopTextLengthForAlternative(
+intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative(
GuardedAlternative* alternative) {
- int length = 0;
+ intptr_t length = 0;
RegExpNode* node = alternative->node();
// Later we will generate code for all these text nodes using recursion
// so we have to limit the max number.
- int recursion_depth = 0;
+ intptr_t recursion_depth = 0;
while (node != this) {
if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
return kNodeIsTooComplexForGreedyLoops;
}
- int node_length = node->GreedyLoopTextLength();
+ intptr_t node_length = node->GreedyLoopTextLength();
if (node_length == kNodeIsTooComplexForGreedyLoops) {
return kNodeIsTooComplexForGreedyLoops;
}
@@ -2738,14 +2779,14 @@ int ChoiceNode::GreedyLoopTextLengthForAlternative(
void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
- DCHECK_EQ(loop_node_, NULL);
+ ASSERT(loop_node_ == NULL);
AddAlternative(alt);
loop_node_ = alt.node();
}
void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
- DCHECK_EQ(continue_node_, NULL);
+ ASSERT(continue_node_ == NULL);
AddAlternative(alt);
continue_node_ = alt.node();
}
@@ -2755,17 +2796,17 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
if (trace->stop_node() == this) {
// Back edge of greedy optimized loop node graph.
- int text_length =
- GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
- DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
+ intptr_t text_length =
+ GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
+ ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
// Update the counter-based backtracking info on the stack. This is an
// optimization for greedy loops (see below).
- DCHECK(trace->cp_offset() == text_length);
+ ASSERT(trace->cp_offset() == text_length);
macro_assembler->AdvanceCurrentPosition(text_length);
macro_assembler->GoTo(trace->loop_label());
return;
}
- DCHECK(trace->stop_node() == NULL);
+ ASSERT(trace->stop_node() == NULL);
if (!trace->is_trivial()) {
trace->Flush(compiler, this);
return;
@@ -2774,9 +2815,10 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
-int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
- int eats_at_least) {
- int preload_characters = Min(4, eats_at_least);
+intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
+ intptr_t eats_at_least) {
+ intptr_t preload_characters = Utils::Minimum(static_cast<intptr_t>(4),
+ eats_at_least);
if (compiler->macro_assembler()->CanReadUnaligned()) {
bool one_byte = compiler->one_byte();
if (one_byte) {
@@ -2795,18 +2837,17 @@ int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
}
-// This class is used when generating the alternatives in a choice node. It
+// This structure is used when generating the alternatives in a choice node. It
// records the way the alternative is being code generated.
-class AlternativeGeneration: public Malloced {
- public:
+struct AlternativeGeneration {
AlternativeGeneration()
: possible_success(),
expects_preload(false),
after(),
quick_check_details() { }
- Label possible_success;
+ BlockLabel possible_success;
bool expects_preload;
- Label after;
+ BlockLabel after;
QuickCheckDetails quick_check_details;
};
@@ -2815,55 +2856,57 @@ class AlternativeGeneration: public Malloced {
// size then it is on the stack, otherwise the excess is on the heap.
class AlternativeGenerationList {
public:
- AlternativeGenerationList(int count, Zone* zone)
- : alt_gens_(count, zone) {
- for (int i = 0; i < count && i < kAFew; i++) {
- alt_gens_.Add(a_few_alt_gens_ + i, zone);
+ explicit AlternativeGenerationList(intptr_t count)
+ : alt_gens_(count) {
+ for (intptr_t i = 0; i < count && i < kAFew; i++) {
+ alt_gens_.Add(a_few_alt_gens_ + i);
}
- for (int i = kAFew; i < count; i++) {
- alt_gens_.Add(new AlternativeGeneration(), zone);
+ for (intptr_t i = kAFew; i < count; i++) {
+ alt_gens_.Add(new AlternativeGeneration());
}
}
~AlternativeGenerationList() {
- for (int i = kAFew; i < alt_gens_.length(); i++) {
+ for (intptr_t i = kAFew; i < alt_gens_.length(); i++) {
delete alt_gens_[i];
alt_gens_[i] = NULL;
}
}
- AlternativeGeneration* at(int i) {
+ AlternativeGeneration* at(intptr_t i) {
return alt_gens_[i];
}
private:
- static const int kAFew = 10;
- ZoneList<AlternativeGeneration*> alt_gens_;
+ static const intptr_t kAFew = 10;
+ GrowableArray<AlternativeGeneration*> alt_gens_;
AlternativeGeneration a_few_alt_gens_[kAFew];
+
+ DISALLOW_ALLOCATION();
};
-// The '2' variant is has inclusive from and exclusive to.
+// The '2' variant is inclusive from and exclusive to.
// This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
// which include WhiteSpace (7.2) or LineTerminator (7.3) values.
-static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
+static const intptr_t kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
0xFEFF, 0xFF00, 0x10000 };
-static const int kSpaceRangeCount = arraysize(kSpaceRanges);
-
-static const int kWordRanges[] = {
+static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges);
+static const intptr_t kWordRanges[] = {
'0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
-static const int kWordRangeCount = arraysize(kWordRanges);
-static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
-static const int kDigitRangeCount = arraysize(kDigitRanges);
-static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
-static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
-static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
- 0x2028, 0x202A, 0x10000 };
-static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
-
-
-void BoyerMoorePositionInfo::Set(int character) {
+static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges);
+static const intptr_t kDigitRanges[] = { '0', '9' + 1, 0x10000 };
+static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges);
+static const intptr_t kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
+static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges);
+static const intptr_t kLineTerminatorRanges[] = {
+ 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 };
+static const intptr_t kLineTerminatorRangeCount =
+ ARRAY_SIZE(kLineTerminatorRanges);
+
+
+void BoyerMoorePositionInfo::Set(intptr_t character) {
SetInterval(Interval(character, character));
}
@@ -2877,15 +2920,15 @@ void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
if (interval.to() - interval.from() >= kMapSize - 1) {
if (map_count_ != kMapSize) {
map_count_ = kMapSize;
- for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
+ for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
}
return;
}
- for (int i = interval.from(); i <= interval.to(); i++) {
- int mod_character = (i & kMask);
- if (!map_->at(mod_character)) {
+ for (intptr_t i = interval.from(); i <= interval.to(); i++) {
+ intptr_t mod_character = (i & kMask);
+ if (!map_->At(mod_character)) {
map_count_++;
- map_->at(mod_character) = true;
+ (*map_)[mod_character] = true;
}
if (map_count_ == kMapSize) return;
}
@@ -2896,23 +2939,23 @@ void BoyerMoorePositionInfo::SetAll() {
s_ = w_ = d_ = kLatticeUnknown;
if (map_count_ != kMapSize) {
map_count_ = kMapSize;
- for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
+ for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
}
}
BoyerMooreLookahead::BoyerMooreLookahead(
- int length, RegExpCompiler* compiler, Zone* zone)
+ intptr_t length, RegExpCompiler* compiler, Isolate* isolate)
: length_(length),
compiler_(compiler) {
if (compiler->one_byte()) {
- max_char_ = String::kMaxOneByteCharCode;
+ max_char_ = Symbols::kMaxOneCharCodeSymbol;
} else {
- max_char_ = String::kMaxUtf16CodeUnit;
+ max_char_ = Utf16::kMaxCodeUnit;
}
- bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
- for (int i = 0; i < length; i++) {
- bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
+ bitmaps_ = new(isolate) ZoneGrowableArray<BoyerMoorePositionInfo*>(length);
+ for (intptr_t i = 0; i < length; i++) {
+ bitmaps_->Add(new(isolate) BoyerMoorePositionInfo(isolate));
}
}
@@ -2920,12 +2963,12 @@ BoyerMooreLookahead::BoyerMooreLookahead(
// Find the longest range of lookahead that has the fewest number of different
// characters that can occur at a given position. Since we are optimizing two
// different parameters at once this is a tradeoff.
-bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
- int biggest_points = 0;
+bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) {
+ intptr_t biggest_points = 0;
// If more than 32 characters out of 128 can occur it is unlikely that we can
// be lucky enough to step forwards much of the time.
- const int kMaxMax = 32;
- for (int max_number_of_chars = 4;
+ const intptr_t kMaxMax = 32;
+ for (intptr_t max_number_of_chars = 4;
max_number_of_chars < kMaxMax;
max_number_of_chars *= 2) {
biggest_points =
@@ -2942,23 +2985,26 @@ bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
// of points as the product of width-of-the-range and
// probability-of-finding-one-of-the-characters, where the probability is
// calculated using the frequency distribution of the sample subject string.
-int BoyerMooreLookahead::FindBestInterval(
- int max_number_of_chars, int old_biggest_points, int* from, int* to) {
- int biggest_points = old_biggest_points;
- static const int kSize = RegExpMacroAssembler::kTableSize;
- for (int i = 0; i < length_; ) {
+intptr_t BoyerMooreLookahead::FindBestInterval(
+ intptr_t max_number_of_chars,
+ intptr_t old_biggest_points,
+ intptr_t* from,
+ intptr_t* to) {
+ intptr_t biggest_points = old_biggest_points;
+ static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
+ for (intptr_t i = 0; i < length_; ) {
while (i < length_ && Count(i) > max_number_of_chars) i++;
if (i == length_) break;
- int remembered_from = i;
+ intptr_t remembered_from = i;
bool union_map[kSize];
- for (int j = 0; j < kSize; j++) union_map[j] = false;
+ for (intptr_t j = 0; j < kSize; j++) union_map[j] = false;
while (i < length_ && Count(i) <= max_number_of_chars) {
- BoyerMoorePositionInfo* map = bitmaps_->at(i);
- for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
+ BoyerMoorePositionInfo* map = bitmaps_->At(i);
+ for (intptr_t j = 0; j < kSize; j++) union_map[j] |= map->at(j);
i++;
}
- int frequency = 0;
- for (int j = 0; j < kSize; j++) {
+ intptr_t frequency = 0;
+ for (intptr_t j = 0; j < kSize; j++) {
if (union_map[j]) {
// Add 1 to the frequency to give a small per-character boost for
// the cases where our sampling is not good enough and many
@@ -2973,13 +3019,13 @@ int BoyerMooreLookahead::FindBestInterval(
// dividing by 2 we switch off the skipping if the probability of skipping
// is less than 50%. This is because the multibyte mask-and-compare
// skipping in quickcheck is more likely to do well on this case.
- bool in_quickcheck_range =
- ((i - remembered_from < 4) ||
- (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
+ bool in_quickcheck_range = ((i - remembered_from < 4) ||
+ (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
// Called 'probability' but it is only a rough estimate and can actually
// be outside the 0-kSize range.
- int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
- int points = (i - remembered_from) * probability;
+ intptr_t probability =
+ (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
+ intptr_t points = (i - remembered_from) * probability;
if (points > biggest_points) {
*from = remembered_from;
*to = i - 1;
@@ -2995,24 +3041,25 @@ int BoyerMooreLookahead::FindBestInterval(
// max_lookahead (inclusive) measured from the current position. If the
// character at max_lookahead offset is not one of these characters, then we
// can safely skip forwards by the number of characters in the range.
-int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
- int max_lookahead,
- Handle<ByteArray> boolean_skip_table) {
- const int kSize = RegExpMacroAssembler::kTableSize;
+intptr_t BoyerMooreLookahead::GetSkipTable(
+ intptr_t min_lookahead,
+ intptr_t max_lookahead,
+ const TypedData& boolean_skip_table) {
+ const intptr_t kSize = RegExpMacroAssembler::kTableSize;
- const int kSkipArrayEntry = 0;
- const int kDontSkipArrayEntry = 1;
+ const intptr_t kSkipArrayEntry = 0;
+ const intptr_t kDontSkipArrayEntry = 1;
- for (int i = 0; i < kSize; i++) {
- boolean_skip_table->set(i, kSkipArrayEntry);
+ for (intptr_t i = 0; i < kSize; i++) {
+ boolean_skip_table.SetUint8(i, kSkipArrayEntry);
}
- int skip = max_lookahead + 1 - min_lookahead;
+ intptr_t skip = max_lookahead + 1 - min_lookahead;
- for (int i = max_lookahead; i >= min_lookahead; i--) {
- BoyerMoorePositionInfo* map = bitmaps_->at(i);
- for (int j = 0; j < kSize; j++) {
+ for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->At(i);
+ for (intptr_t j = 0; j < kSize; j++) {
if (map->at(j)) {
- boolean_skip_table->set(j, kDontSkipArrayEntry);
+ boolean_skip_table.SetUint8(j, kDontSkipArrayEntry);
}
}
}
@@ -3023,23 +3070,23 @@ int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
// See comment above on the implementation of GetSkipTable.
void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
- const int kSize = RegExpMacroAssembler::kTableSize;
+ const intptr_t kSize = RegExpMacroAssembler::kTableSize;
- int min_lookahead = 0;
- int max_lookahead = 0;
+ intptr_t min_lookahead = 0;
+ intptr_t max_lookahead = 0;
if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
bool found_single_character = false;
- int single_character = 0;
- for (int i = max_lookahead; i >= min_lookahead; i--) {
- BoyerMoorePositionInfo* map = bitmaps_->at(i);
+ intptr_t single_character = 0;
+ for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
+ BoyerMoorePositionInfo* map = bitmaps_->At(i);
if (map->map_count() > 1 ||
(found_single_character && map->map_count() != 0)) {
found_single_character = false;
break;
}
- for (int j = 0; j < kSize; j++) {
+ for (intptr_t j = 0; j < kSize; j++) {
if (map->at(j)) {
found_single_character = true;
single_character = j;
@@ -3048,7 +3095,7 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
}
}
- int lookahead_width = max_lookahead + 1 - min_lookahead;
+ intptr_t lookahead_width = max_lookahead + 1 - min_lookahead;
if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
// The mask-compare can probably handle this better.
@@ -3056,8 +3103,8 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
}
if (found_single_character) {
- Label cont, again;
- masm->Bind(&again);
+ BlockLabel cont, again;
+ masm->BindBlock(&again);
masm->LoadCurrentCharacter(max_lookahead, &cont, true);
if (max_char_ > kSize) {
masm->CheckCharacterAfterAnd(single_character,
@@ -3068,23 +3115,27 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
}
masm->AdvanceCurrentPosition(lookahead_width);
masm->GoTo(&again);
- masm->Bind(&cont);
+ masm->BindBlock(&cont);
return;
}
- Factory* factory = masm->zone()->isolate()->factory();
- Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
- int skip_distance = GetSkipTable(
+ const TypedData& boolean_skip_table = TypedData::ZoneHandle(
+ compiler_->isolate(),
+ TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
+ intptr_t skip_distance = GetSkipTable(
min_lookahead, max_lookahead, boolean_skip_table);
- DCHECK(skip_distance != 0);
+ ASSERT(skip_distance != 0);
- Label cont, again;
- masm->Bind(&again);
+ BlockLabel cont, again;
+
+ masm->BindBlock(&again);
masm->LoadCurrentCharacter(max_lookahead, &cont, true);
masm->CheckBitInTable(boolean_skip_table, &cont);
masm->AdvanceCurrentPosition(skip_distance);
masm->GoTo(&again);
- masm->Bind(&cont);
+ masm->BindBlock(&cont);
+
+ return;
}
@@ -3170,13 +3221,13 @@ GreedyLoopState::GreedyLoopState(bool not_at_start) {
void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
#ifdef DEBUG
- int choice_count = alternatives_->length();
- for (int i = 0; i < choice_count - 1; i++) {
- GuardedAlternative alternative = alternatives_->at(i);
- ZoneList<Guard*>* guards = alternative.guards();
- int guard_count = (guards == NULL) ? 0 : guards->length();
- for (int j = 0; j < guard_count; j++) {
- DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
+ intptr_t choice_count = alternatives_->length();
+ for (intptr_t i = 0; i < choice_count - 1; i++) {
+ GuardedAlternative alternative = alternatives_->At(i);
+ ZoneGrowableArray<Guard*>* guards = alternative.guards();
+ intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
+ for (intptr_t j = 0; j < guard_count; j++) {
+ ASSERT(!trace->mentions_reg(guards->At(j)->reg()));
}
}
#endif
@@ -3202,13 +3253,13 @@ void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
- int choice_count = alternatives_->length();
+ intptr_t choice_count = alternatives_->length();
AssertGuardsMentionRegisters(trace);
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
+ ASSERT(limit_result == CONTINUE);
// For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
// other choice nodes we only flush if we are out of code size budget.
@@ -3223,8 +3274,9 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
preload.init();
GreedyLoopState greedy_loop_state(not_at_start());
- int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
- AlternativeGenerationList alt_gens(choice_count, zone());
+ intptr_t text_length =
+ GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
+ AlternativeGenerationList alt_gens(choice_count);
if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
trace = EmitGreedyLoop(compiler,
@@ -3236,8 +3288,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
} else {
// TODO(erikcorry): Delete this. We don't need this label, but it makes us
// match the traces produced pre-cleanup.
- Label second_choice;
- compiler->macro_assembler()->Bind(&second_choice);
+ BlockLabel second_choice;
+ compiler->macro_assembler()->BindBlock(&second_choice);
preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
@@ -3251,8 +3303,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
// At this point we need to generate slow checks for the alternatives where
// the quick check was inlined. We can recognize these because the associated
// label was bound.
- int new_flush_budget = trace->flush_budget() / choice_count;
- for (int i = 0; i < choice_count; i++) {
+ intptr_t new_flush_budget = trace->flush_budget() / choice_count;
+ for (intptr_t i = 0; i < choice_count; i++) {
AlternativeGeneration* alt_gen = alt_gens.at(i);
Trace new_trace(*trace);
// If there are actions to be flushed we have to limit how many times
@@ -3265,20 +3317,19 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
EmitOutOfLineContinuation(compiler,
&new_trace,
- alternatives_->at(i),
+ alternatives_->At(i),
alt_gen,
preload.preload_characters_,
next_expects_preload);
}
}
-
Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
Trace* trace,
AlternativeGenerationList* alt_gens,
PreloadState* preload,
GreedyLoopState* greedy_loop_state,
- int text_length) {
+ intptr_t text_length) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
// Here we have special handling for greedy loops containing only text nodes
// and other simple nodes. These are handled by pushing the current
@@ -3287,21 +3338,21 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
// and check it against the pushed value. This avoids pushing backtrack
// information for each iteration of the loop, which could take up a lot of
// space.
- DCHECK(trace->stop_node() == NULL);
+ ASSERT(trace->stop_node() == NULL);
macro_assembler->PushCurrentPosition();
- Label greedy_match_failed;
+ BlockLabel greedy_match_failed;
Trace greedy_match_trace;
if (not_at_start()) greedy_match_trace.set_at_start(false);
greedy_match_trace.set_backtrack(&greedy_match_failed);
- Label loop_label;
- macro_assembler->Bind(&loop_label);
+ BlockLabel loop_label;
+ macro_assembler->BindBlock(&loop_label);
greedy_match_trace.set_stop_node(this);
greedy_match_trace.set_loop_label(&loop_label);
- alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
- macro_assembler->Bind(&greedy_match_failed);
+ (*alternatives_)[0].node()->Emit(compiler, &greedy_match_trace);
+ macro_assembler->BindBlock(&greedy_match_failed);
- Label second_choice; // For use in greedy matches.
- macro_assembler->Bind(&second_choice);
+ BlockLabel second_choice; // For use in greedy matches.
+ macro_assembler->BindBlock(&second_choice);
Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
@@ -3311,7 +3362,7 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
new_trace,
preload);
- macro_assembler->Bind(greedy_loop_state->label());
+ macro_assembler->BindBlock(greedy_loop_state->label());
// If we have unwound to the bottom then backtrack.
macro_assembler->CheckGreedyLoop(trace->backtrack());
// Otherwise try the second priority at an earlier position.
@@ -3320,12 +3371,13 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
return new_trace;
}
-int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
- Trace* trace) {
- int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
+
+intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
+ Trace* trace) {
+ intptr_t eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
if (alternatives_->length() != 2) return eats_at_least;
- GuardedAlternative alt1 = alternatives_->at(1);
+ GuardedAlternative alt1 = alternatives_->At(1);
if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
return eats_at_least;
}
@@ -3340,7 +3392,7 @@ int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
// loop. That also implies that there are no preloaded characters, which is
// good, because it means we won't be violating any assumptions by
// overwriting those characters with new load instructions.
- DCHECK(trace->is_trivial());
+ ASSERT(trace->is_trivial());
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
// At this point we know that we are at a non-greedy loop that will eat
@@ -3352,15 +3404,13 @@ int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
// small alternation.
BoyerMooreLookahead* bm = bm_info(false);
if (bm == NULL) {
- eats_at_least = Min(kMaxLookaheadForBoyerMoore,
+ eats_at_least = Utils::Minimum(kMaxLookaheadForBoyerMoore,
EatsAtLeast(kMaxLookaheadForBoyerMoore,
kRecursionBudget,
false));
if (eats_at_least >= 1) {
- bm = new(zone()) BoyerMooreLookahead(eats_at_least,
- compiler,
- zone());
- GuardedAlternative alt0 = alternatives_->at(0);
+ bm = new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
+ GuardedAlternative alt0 = alternatives_->At(0);
alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, false);
}
}
@@ -3373,7 +3423,7 @@ int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
AlternativeGenerationList* alt_gens,
- int first_choice,
+ intptr_t first_choice,
Trace* trace,
PreloadState* preload) {
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
@@ -3381,18 +3431,18 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
// For now we just call all choices one after the other. The idea ultimately
// is to use the Dispatch table to try only the relevant ones.
- int choice_count = alternatives_->length();
+ intptr_t choice_count = alternatives_->length();
- int new_flush_budget = trace->flush_budget() / choice_count;
+ intptr_t new_flush_budget = trace->flush_budget() / choice_count;
- for (int i = first_choice; i < choice_count; i++) {
+ for (intptr_t i = first_choice; i < choice_count; i++) {
bool is_last = i == choice_count - 1;
bool fall_through_on_failure = !is_last;
- GuardedAlternative alternative = alternatives_->at(i);
+ GuardedAlternative alternative = alternatives_->At(i);
AlternativeGeneration* alt_gen = alt_gens->at(i);
alt_gen->quick_check_details.set_characters(preload->preload_characters_);
- ZoneList<Guard*>* guards = alternative.guards();
- int guard_count = (guards == NULL) ? 0 : guards->length();
+ ZoneGrowableArray<Guard*>* guards = alternative.guards();
+ intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
Trace new_trace(*trace);
new_trace.set_characters_preloaded(preload->preload_is_current_ ?
preload->preload_characters_ :
@@ -3407,7 +3457,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
}
alt_gen->expects_preload = preload->preload_is_current_;
bool generate_full_check_inline = false;
- if (FLAG_regexp_optimization &&
+ if (kRegexpOptimization &&
try_to_emit_quick_check_for_alternative(i == 0) &&
alternative.node()->EmitQuickCheck(compiler,
trace,
@@ -3422,7 +3472,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
// If we generated the quick check to fall through on possible success,
// we now need to generate the full check inline.
if (!fall_through_on_failure) {
- macro_assembler->Bind(&alt_gen->possible_success);
+ macro_assembler->BindBlock(&alt_gen->possible_success);
new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
new_trace.set_characters_preloaded(preload->preload_characters_);
new_trace.set_bound_checked_up_to(preload->preload_characters_);
@@ -3449,13 +3499,13 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
if (new_trace.actions() != NULL) {
new_trace.set_flush_budget(new_flush_budget);
}
- for (int j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->at(j), &new_trace);
+ for (intptr_t j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->At(j), &new_trace);
}
alternative.node()->Emit(compiler, &new_trace);
preload->preload_is_current_ = false;
}
- macro_assembler->Bind(&alt_gen->after);
+ macro_assembler->BindBlock(&alt_gen->after);
}
}
@@ -3464,26 +3514,26 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
Trace* trace,
GuardedAlternative alternative,
AlternativeGeneration* alt_gen,
- int preload_characters,
+ intptr_t preload_characters,
bool next_expects_preload) {
- if (!alt_gen->possible_success.is_linked()) return;
+ if (!alt_gen->possible_success.IsLinked()) return;
RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
- macro_assembler->Bind(&alt_gen->possible_success);
+ macro_assembler->BindBlock(&alt_gen->possible_success);
Trace out_of_line_trace(*trace);
out_of_line_trace.set_characters_preloaded(preload_characters);
out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
- ZoneList<Guard*>* guards = alternative.guards();
- int guard_count = (guards == NULL) ? 0 : guards->length();
+ ZoneGrowableArray<Guard*>* guards = alternative.guards();
+ intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
if (next_expects_preload) {
- Label reload_current_char;
+ BlockLabel reload_current_char;
out_of_line_trace.set_backtrack(&reload_current_char);
- for (int j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+ for (intptr_t j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
}
alternative.node()->Emit(compiler, &out_of_line_trace);
- macro_assembler->Bind(&reload_current_char);
+ macro_assembler->BindBlock(&reload_current_char);
// Reload the current character, since the next quick check expects that.
// We don't need to check bounds here because we only get into this
// code through a quick check which already did the checked load.
@@ -3494,8 +3544,8 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
macro_assembler->GoTo(&(alt_gen->after));
} else {
out_of_line_trace.set_backtrack(&(alt_gen->after));
- for (int j = 0; j < guard_count; j++) {
- GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
+ for (intptr_t j = 0; j < guard_count; j++) {
+ GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
}
alternative.node()->Emit(compiler, &out_of_line_trace);
}
@@ -3506,7 +3556,7 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
RegExpMacroAssembler* assembler = compiler->macro_assembler();
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
+ ASSERT(limit_result == CONTINUE);
RecursionCheck rc(compiler);
@@ -3558,9 +3608,9 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
}
break;
case EMPTY_MATCH_CHECK: {
- int start_pos_reg = data_.u_empty_match_check.start_register;
- int stored_pos = 0;
- int rep_reg = data_.u_empty_match_check.repetition_register;
+ intptr_t start_pos_reg = data_.u_empty_match_check.start_register;
+ intptr_t stored_pos = 0;
+ intptr_t rep_reg = data_.u_empty_match_check.repetition_register;
bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
@@ -3574,18 +3624,18 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
} else if (!trace->is_trivial()) {
trace->Flush(compiler, this);
} else {
- Label skip_empty_check;
+ BlockLabel skip_empty_check;
// If we have a minimum number of repetitions we check the current
// number first and skip the empty check if it's not enough.
if (has_minimum) {
- int limit = data_.u_empty_match_check.repetition_limit;
+ intptr_t limit = data_.u_empty_match_check.repetition_limit;
assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
}
// If the match is empty we bail out, otherwise we fall through
// to the on-success continuation.
assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
trace->backtrack());
- assembler->Bind(&skip_empty_check);
+ assembler->BindBlock(&skip_empty_check);
on_success()->Emit(compiler, trace);
}
break;
@@ -3599,22 +3649,23 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
data_.u_submatch.current_position_register);
assembler->ReadStackPointerFromRegister(
data_.u_submatch.stack_pointer_register);
- int clear_register_count = data_.u_submatch.clear_register_count;
+ intptr_t clear_register_count = data_.u_submatch.clear_register_count;
if (clear_register_count == 0) {
on_success()->Emit(compiler, trace);
return;
}
- int clear_registers_from = data_.u_submatch.clear_register_from;
- Label clear_registers_backtrack;
+ intptr_t clear_registers_from = data_.u_submatch.clear_register_from;
+ BlockLabel clear_registers_backtrack;
Trace new_trace = *trace;
new_trace.set_backtrack(&clear_registers_backtrack);
on_success()->Emit(compiler, &new_trace);
- assembler->Bind(&clear_registers_backtrack);
- int clear_registers_to = clear_registers_from + clear_register_count - 1;
+ assembler->BindBlock(&clear_registers_backtrack);
+ intptr_t clear_registers_to =
+ clear_registers_from + clear_register_count - 1;
assembler->ClearRegisters(clear_registers_from, clear_registers_to);
- DCHECK(trace->backtrack() == NULL);
+ ASSERT(trace->backtrack() == NULL);
assembler->Backtrack();
return;
}
@@ -3633,11 +3684,11 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
LimitResult limit_result = LimitVersions(compiler, trace);
if (limit_result == DONE) return;
- DCHECK(limit_result == CONTINUE);
+ ASSERT(limit_result == CONTINUE);
RecursionCheck rc(compiler);
- DCHECK_EQ(start_reg_ + 1, end_reg_);
+ ASSERT(start_reg_ + 1 == end_reg_);
if (compiler->ignore_case()) {
assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
trace->backtrack());
@@ -3657,9 +3708,7 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
class DotPrinter: public NodeVisitor {
public:
- DotPrinter(OStream& os, bool ignore_case) // NOLINT
- : os_(os),
- ignore_case_(ignore_case) {}
+ explicit DotPrinter(bool ignore_case) {}
void PrintNode(const char* label, RegExpNode* node);
void Visit(RegExpNode* node);
void PrintAttributes(RegExpNode* from);
@@ -3668,30 +3717,27 @@ class DotPrinter: public NodeVisitor {
virtual void Visit##Type(Type##Node* that);
FOR_EACH_NODE_TYPE(DECLARE_VISIT)
#undef DECLARE_VISIT
- private:
- OStream& os_;
- bool ignore_case_;
};
void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
- os_ << "digraph G {\n graph [label=\"";
- for (int i = 0; label[i]; i++) {
+ OS::Print("digraph G {\n graph [label=\"");
+ for (intptr_t i = 0; label[i]; i++) {
switch (label[i]) {
case '\\':
- os_ << "\\\\";
+ OS::Print("\\\\");
break;
case '"':
- os_ << "\"";
+ OS::Print("\"");
break;
default:
- os_ << label[i];
+ OS::Print("%c", label[i]);
break;
}
}
- os_ << "\"];\n";
+ OS::Print("\"];\n");
Visit(node);
- os_ << "}" << endl;
+ OS::Print("}\n");
}
@@ -3703,292 +3749,194 @@ void DotPrinter::Visit(RegExpNode* node) {
void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
- os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n";
+ OS::Print(" n%p -> n%p [style=dotted];\n", from, on_failure);
Visit(on_failure);
}
-class TableEntryBodyPrinter {
- public:
- TableEntryBodyPrinter(OStream& os, ChoiceNode* choice) // NOLINT
- : os_(os),
- choice_(choice) {}
- void Call(uc16 from, DispatchTable::Entry entry) {
- OutSet* out_set = entry.out_set();
- for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
- if (out_set->Get(i)) {
- os_ << " n" << choice() << ":s" << from << "o" << i << " -> n"
- << choice()->alternatives()->at(i).node() << ";\n";
- }
- }
- }
- private:
- ChoiceNode* choice() { return choice_; }
- OStream& os_;
- ChoiceNode* choice_;
-};
-
-
-class TableEntryHeaderPrinter {
- public:
- explicit TableEntryHeaderPrinter(OStream& os) // NOLINT
- : first_(true),
- os_(os) {}
- void Call(uc16 from, DispatchTable::Entry entry) {
- if (first_) {
- first_ = false;
- } else {
- os_ << "|";
- }
- os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
- OutSet* out_set = entry.out_set();
- int priority = 0;
- for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
- if (out_set->Get(i)) {
- if (priority > 0) os_ << "|";
- os_ << "<s" << from << "o" << i << "> " << priority;
- priority++;
- }
- }
- os_ << "}}";
- }
-
- private:
- bool first_;
- OStream& os_;
-};
-
-
-class AttributePrinter {
+class AttributePrinter : public ValueObject {
public:
- explicit AttributePrinter(OStream& os) // NOLINT
- : os_(os),
- first_(true) {}
+ AttributePrinter() : first_(true) {}
void PrintSeparator() {
if (first_) {
first_ = false;
} else {
- os_ << "|";
+ OS::Print("|");
}
}
void PrintBit(const char* name, bool value) {
if (!value) return;
PrintSeparator();
- os_ << "{" << name << "}";
+ OS::Print("{%s}", name);
}
- void PrintPositive(const char* name, int value) {
+ void PrintPositive(const char* name, intptr_t value) {
if (value < 0) return;
PrintSeparator();
- os_ << "{" << name << "|" << value << "}";
+ OS::Print("{%s|%" Pd "}", name, value);
}
private:
- OStream& os_;
bool first_;
};
void DotPrinter::PrintAttributes(RegExpNode* that) {
- os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
- << "margin=0.1, fontsize=10, label=\"{";
- AttributePrinter printer(os_);
+ OS::Print(" a%p [shape=Mrecord, color=grey, fontcolor=grey, "
+ "margin=0.1, fontsize=10, label=\"{", that);
+ AttributePrinter printer;
NodeInfo* info = that->info();
printer.PrintBit("NI", info->follows_newline_interest);
printer.PrintBit("WI", info->follows_word_interest);
printer.PrintBit("SI", info->follows_start_interest);
- Label* label = that->label();
- if (label->is_bound())
- printer.PrintPositive("@", label->pos());
- os_ << "}\"];\n"
- << " a" << that << " -> n" << that
- << " [style=dashed, color=grey, arrowhead=none];\n";
+ BlockLabel* label = that->label();
+ if (label->IsBound())
+ printer.PrintPositive("@", label->Position());
+ OS::Print("}\"];\n"
+ " a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n",
+ that, that);
}
-static const bool kPrintDispatchTable = false;
void DotPrinter::VisitChoice(ChoiceNode* that) {
- if (kPrintDispatchTable) {
- os_ << " n" << that << " [shape=Mrecord, label=\"";
- TableEntryHeaderPrinter header_printer(os_);
- that->GetTable(ignore_case_)->ForEach(&header_printer);
- os_ << "\"]\n";
- PrintAttributes(that);
- TableEntryBodyPrinter body_printer(os_, that);
- that->GetTable(ignore_case_)->ForEach(&body_printer);
- } else {
- os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n";
- for (int i = 0; i < that->alternatives()->length(); i++) {
- GuardedAlternative alt = that->alternatives()->at(i);
- os_ << " n" << that << " -> n" << alt.node();
- }
+ OS::Print(" n%p [shape=Mrecord, label=\"?\"];\n", that);
+ for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->At(i);
+ OS::Print(" n%p -> n%p", that, alt.node());
}
- for (int i = 0; i < that->alternatives()->length(); i++) {
- GuardedAlternative alt = that->alternatives()->at(i);
+ for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
+ GuardedAlternative alt = that->alternatives()->At(i);
alt.node()->Accept(this);
}
}
void DotPrinter::VisitText(TextNode* that) {
- Zone* zone = that->zone();
- os_ << " n" << that << " [label=\"";
- for (int i = 0; i < that->elements()->length(); i++) {
- if (i > 0) os_ << " ";
- TextElement elm = that->elements()->at(i);
+ OS::Print(" n%p [label=\"", that);
+ for (intptr_t i = 0; i < that->elements()->length(); i++) {
+ if (i > 0) OS::Print(" ");
+ TextElement elm = that->elements()->At(i);
switch (elm.text_type()) {
case TextElement::ATOM: {
- Vector<const uc16> data = elm.atom()->data();
- for (int i = 0; i < data.length(); i++) {
- os_ << static_cast<char>(data[i]);
+ ZoneGrowableArray<uint16_t>* data = elm.atom()->data();
+ for (intptr_t i = 0; i < data->length(); i++) {
+ OS::Print("%c", static_cast<char>(data->At(i)));
}
break;
}
case TextElement::CHAR_CLASS: {
RegExpCharacterClass* node = elm.char_class();
- os_ << "[";
- if (node->is_negated()) os_ << "^";
- for (int j = 0; j < node->ranges(zone)->length(); j++) {
- CharacterRange range = node->ranges(zone)->at(j);
- os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
+ OS::Print("[");
+ if (node->is_negated()) OS::Print("^");
+ for (intptr_t j = 0; j < node->ranges()->length(); j++) {
+ CharacterRange range = node->ranges()->At(j);
+ PrintUtf16(range.from());
+ OS::Print("-");
+ PrintUtf16(range.to());
}
- os_ << "]";
+ OS::Print("]");
break;
}
default:
UNREACHABLE();
}
}
- os_ << "\", shape=box, peripheries=2];\n";
+ OS::Print("\", shape=box, peripheries=2];\n");
PrintAttributes(that);
- os_ << " n" << that << " -> n" << that->on_success() << ";\n";
+ OS::Print(" n%p -> n%p;\n", that, that->on_success());
Visit(that->on_success());
}
void DotPrinter::VisitBackReference(BackReferenceNode* that) {
- os_ << " n" << that << " [label=\"$" << that->start_register() << "..$"
- << that->end_register() << "\", shape=doubleoctagon];\n";
+ OS::Print(" n%p [label=\"$%" Pd "..$%" Pd "\", shape=doubleoctagon];\n",
+ that, that->start_register(), that->end_register());
PrintAttributes(that);
- os_ << " n" << that << " -> n" << that->on_success() << ";\n";
+ OS::Print(" n%p -> n%p;\n", that, that->on_success());
Visit(that->on_success());
}
void DotPrinter::VisitEnd(EndNode* that) {
- os_ << " n" << that << " [style=bold, shape=point];\n";
+ OS::Print(" n%p [style=bold, shape=point];\n", that);
PrintAttributes(that);
}
void DotPrinter::VisitAssertion(AssertionNode* that) {
- os_ << " n" << that << " [";
+ OS::Print(" n%p [", that);
switch (that->assertion_type()) {
case AssertionNode::AT_END:
- os_ << "label=\"$\", shape=septagon";
+ OS::Print("label=\"$\", shape=septagon");
break;
case AssertionNode::AT_START:
- os_ << "label=\"^\", shape=septagon";
+ OS::Print("label=\"^\", shape=septagon");
break;
case AssertionNode::AT_BOUNDARY:
- os_ << "label=\"\\b\", shape=septagon";
+ OS::Print("label=\"\\b\", shape=septagon");
break;
case AssertionNode::AT_NON_BOUNDARY:
- os_ << "label=\"\\B\", shape=septagon";
+ OS::Print("label=\"\\B\", shape=septagon");
break;
case AssertionNode::AFTER_NEWLINE:
- os_ << "label=\"(?<=\\n)\", shape=septagon";
+ OS::Print("label=\"(?<=\\n)\", shape=septagon");
break;
}
- os_ << "];\n";
+ OS::Print("];\n");
PrintAttributes(that);
RegExpNode* successor = that->on_success();
- os_ << " n" << that << " -> n" << successor << ";\n";
+ OS::Print(" n%p -> n%p;\n", that, successor);
Visit(successor);
}
void DotPrinter::VisitAction(ActionNode* that) {
- os_ << " n" << that << " [";
+ OS::Print(" n%p [", that);
switch (that->action_type_) {
case ActionNode::SET_REGISTER:
- os_ << "label=\"$" << that->data_.u_store_register.reg
- << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
+ OS::Print("label=\"$%" Pd ":=%" Pd "\", shape=octagon",
+ that->data_.u_store_register.reg,
+ that->data_.u_store_register.value);
break;
case ActionNode::INCREMENT_REGISTER:
- os_ << "label=\"$" << that->data_.u_increment_register.reg
- << "++\", shape=octagon";
+ OS::Print("label=\"$%" Pd "++\", shape=octagon",
+ that->data_.u_increment_register.reg);
break;
case ActionNode::STORE_POSITION:
- os_ << "label=\"$" << that->data_.u_position_register.reg
- << ":=$pos\", shape=octagon";
+ OS::Print("label=\"$%" Pd ":=$pos\", shape=octagon",
+ that->data_.u_position_register.reg);
break;
case ActionNode::BEGIN_SUBMATCH:
- os_ << "label=\"$" << that->data_.u_submatch.current_position_register
- << ":=$pos,begin\", shape=septagon";
+ OS::Print("label=\"$%" Pd ":=$pos,begin\", shape=septagon",
+ that->data_.u_submatch.current_position_register);
break;
case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
- os_ << "label=\"escape\", shape=septagon";
+ OS::Print("label=\"escape\", shape=septagon");
break;
case ActionNode::EMPTY_MATCH_CHECK:
- os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
- << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
- << "<" << that->data_.u_empty_match_check.repetition_limit
- << "?\", shape=septagon";
+ OS::Print("label=\"$%" Pd "=$pos?,$%" Pd "<%" Pd "?\", shape=septagon",
+ that->data_.u_empty_match_check.start_register,
+ that->data_.u_empty_match_check.repetition_register,
+ that->data_.u_empty_match_check.repetition_limit);
break;
case ActionNode::CLEAR_CAPTURES: {
- os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
- << " to $" << that->data_.u_clear_captures.range_to
- << "\", shape=septagon";
+ OS::Print("label=\"clear $%" Pd " to $%" Pd "\", shape=septagon",
+ that->data_.u_clear_captures.range_from,
+ that->data_.u_clear_captures.range_to);
break;
}
}
- os_ << "];\n";
+ OS::Print("];\n");
PrintAttributes(that);
RegExpNode* successor = that->on_success();
- os_ << " n" << that << " -> n" << successor << ";\n";
+ OS::Print(" n%p -> n%p;\n", that, successor);
Visit(successor);
}
-class DispatchTableDumper {
- public:
- explicit DispatchTableDumper(OStream& os) : os_(os) {}
- void Call(uc16 key, DispatchTable::Entry entry);
- private:
- OStream& os_;
-};
-
-
-void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
- os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
- OutSet* set = entry.out_set();
- bool first = true;
- for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
- if (set->Get(i)) {
- if (first) {
- first = false;
- } else {
- os_ << ", ";
- }
- os_ << i;
- }
- }
- os_ << "}\n";
-}
-
-
-void DispatchTable::Dump() {
- OFStream os(stderr);
- DispatchTableDumper dumper(os);
- tree()->ForEach(&dumper);
-}
-
-
void RegExpEngine::DotPrint(const char* label,
RegExpNode* node,
bool ignore_case) {
- OFStream os(stdout);
- DotPrinter printer(os, ignore_case);
+ DotPrinter printer(ignore_case);
printer.PrintNode(label, node);
}
@@ -4001,39 +3949,44 @@ void RegExpEngine::DotPrint(const char* label,
RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- ZoneList<TextElement>* elms =
- new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
- elms->Add(TextElement::Atom(this), compiler->zone());
- return new(compiler->zone()) TextNode(elms, on_success);
+ ZoneGrowableArray<TextElement>* elms =
+ new(CI) ZoneGrowableArray<TextElement>(1);
+ elms->Add(TextElement::Atom(this));
+ return new(CI) TextNode(elms, on_success);
}
RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- return new(compiler->zone()) TextNode(elements(), on_success);
+ ZoneGrowableArray<TextElement>* elms =
+ new(CI) ZoneGrowableArray<TextElement>(1);
+ for (intptr_t i = 0; i < elements()->length(); i++) {
+ elms->Add(elements()->At(i));
+ }
+ return new(CI) TextNode(elms, on_success);
}
-static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
- const int* special_class,
- int length) {
+static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges,
+ const intptr_t* special_class,
+ intptr_t length) {
length--; // Remove final 0x10000.
- DCHECK(special_class[length] == 0x10000);
- DCHECK(ranges->length() != 0);
- DCHECK(length != 0);
- DCHECK(special_class[0] != 0);
+ ASSERT(special_class[length] == 0x10000);
+ ASSERT(ranges->length() != 0);
+ ASSERT(length != 0);
+ ASSERT(special_class[0] != 0);
if (ranges->length() != (length >> 1) + 1) {
return false;
}
- CharacterRange range = ranges->at(0);
+ CharacterRange range = ranges->At(0);
if (range.from() != 0) {
return false;
}
- for (int i = 0; i < length; i += 2) {
+ for (intptr_t i = 0; i < length; i += 2) {
if (special_class[i] != (range.to() + 1)) {
return false;
}
- range = ranges->at((i >> 1) + 1);
+ range = ranges->At((i >> 1) + 1);
if (special_class[i+1] != range.from()) {
return false;
}
@@ -4045,16 +3998,16 @@ static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
}
-static bool CompareRanges(ZoneList<CharacterRange>* ranges,
- const int* special_class,
- int length) {
+static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges,
+ const intptr_t* special_class,
+ intptr_t length) {
length--; // Remove final 0x10000.
- DCHECK(special_class[length] == 0x10000);
+ ASSERT(special_class[length] == 0x10000);
if (ranges->length() * 2 != length) {
return false;
}
- for (int i = 0; i < length; i += 2) {
- CharacterRange range = ranges->at(i >> 1);
+ for (intptr_t i = 0; i < length; i += 2) {
+ CharacterRange range = ranges->At(i >> 1);
if (range.from() != special_class[i] ||
range.to() != special_class[i + 1] - 1) {
return false;
@@ -4064,7 +4017,7 @@ static bool CompareRanges(ZoneList<CharacterRange>* ranges,
}
-bool RegExpCharacterClass::is_standard(Zone* zone) {
+bool RegExpCharacterClass::is_standard() {
// TODO(lrn): Remove need for this function, by not throwing away information
// along the way.
if (is_negated_) {
@@ -4073,31 +4026,31 @@ bool RegExpCharacterClass::is_standard(Zone* zone) {
if (set_.is_standard()) {
return true;
}
- if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
+ if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
set_.set_standard_set_type('s');
return true;
}
- if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
+ if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
set_.set_standard_set_type('S');
return true;
}
- if (CompareInverseRanges(set_.ranges(zone),
+ if (CompareInverseRanges(set_.ranges(),
kLineTerminatorRanges,
kLineTerminatorRangeCount)) {
set_.set_standard_set_type('.');
return true;
}
- if (CompareRanges(set_.ranges(zone),
+ if (CompareRanges(set_.ranges(),
kLineTerminatorRanges,
kLineTerminatorRangeCount)) {
set_.set_standard_set_type('n');
return true;
}
- if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
+ if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
set_.set_standard_set_type('w');
return true;
}
- if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
+ if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
set_.set_standard_set_type('W');
return true;
}
@@ -4107,18 +4060,18 @@ bool RegExpCharacterClass::is_standard(Zone* zone) {
RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- return new(compiler->zone()) TextNode(this, on_success);
+ return new(CI) TextNode(this, on_success);
}
RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- ZoneList<RegExpTree*>* alternatives = this->alternatives();
- int length = alternatives->length();
+ ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives();
+ intptr_t length = alternatives->length();
ChoiceNode* result =
- new(compiler->zone()) ChoiceNode(length, compiler->zone());
- for (int i = 0; i < length; i++) {
- GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
+ new(CI) ChoiceNode(length, CI);
+ for (intptr_t i = 0; i < length; i++) {
+ GuardedAlternative alternative(alternatives->At(i)->ToNode(compiler,
on_success));
result->AddAlternative(alternative);
}
@@ -4139,21 +4092,21 @@ RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
// Scoped object to keep track of how much we unroll quantifier loops in the
// regexp graph generator.
-class RegExpExpansionLimiter {
+class RegExpExpansionLimiter : public ValueObject {
public:
- static const int kMaxExpansionFactor = 6;
- RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
+ static const intptr_t kMaxExpansionFactor = 6;
+ RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor)
: compiler_(compiler),
saved_expansion_factor_(compiler->current_expansion_factor()),
ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
- DCHECK(factor > 0);
+ ASSERT(factor > 0);
if (ok_to_expand_) {
if (factor > kMaxExpansionFactor) {
// Avoid integer overflow of the current expansion factor.
ok_to_expand_ = false;
compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
} else {
- int new_factor = saved_expansion_factor_ * factor;
+ intptr_t new_factor = saved_expansion_factor_ * factor;
ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
compiler->set_current_expansion_factor(new_factor);
}
@@ -4168,15 +4121,15 @@ class RegExpExpansionLimiter {
private:
RegExpCompiler* compiler_;
- int saved_expansion_factor_;
+ intptr_t saved_expansion_factor_;
bool ok_to_expand_;
DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
};
-RegExpNode* RegExpQuantifier::ToNode(int min,
- int max,
+RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
+ intptr_t max,
bool is_greedy,
RegExpTree* body,
RegExpCompiler* compiler,
@@ -4202,25 +4155,27 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
// simpler since we don't need to make the special zero length match check
// from step 2.1. If the min and max are small we can unroll a little in
// this case.
- static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
- static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
+ // Unroll (foo)+ and (foo){3,}
+ static const intptr_t kMaxUnrolledMinMatches = 3;
+ // Unroll (foo)? and (foo){x,3}
+ static const intptr_t kMaxUnrolledMaxMatches = 3;
if (max == 0) return on_success; // This can happen due to recursion.
bool body_can_be_empty = (body->min_match() == 0);
- int body_start_reg = RegExpCompiler::kNoRegister;
+ intptr_t body_start_reg = RegExpCompiler::kNoRegister;
Interval capture_registers = body->CaptureRegisters();
bool needs_capture_clearing = !capture_registers.is_empty();
- Zone* zone = compiler->zone();
+ Isolate* isolate = compiler->isolate();
if (body_can_be_empty) {
body_start_reg = compiler->AllocateRegister();
- } else if (FLAG_regexp_optimization && !needs_capture_clearing) {
+ } else if (kRegexpOptimization && !needs_capture_clearing) {
// Only unroll if there are no captures and the body can't be
// empty.
{
RegExpExpansionLimiter limiter(
compiler, min + ((max != min) ? 1 : 0));
if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
- int new_max = (max == kInfinity) ? max : max - min;
+ intptr_t new_max = (max == kInfinity) ? max : max - min;
// Recurse once to get the loop or optional matches after the fixed
// ones.
RegExpNode* answer = ToNode(
@@ -4228,20 +4183,20 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
// Unroll the forced matches from 0 to min. This can cause chains of
// TextNodes (which the parser does not generate). These should be
// combined if it turns out they hinder good code generation.
- for (int i = 0; i < min; i++) {
+ for (intptr_t i = 0; i < min; i++) {
answer = body->ToNode(compiler, answer);
}
return answer;
}
}
if (max <= kMaxUnrolledMaxMatches && min == 0) {
- DCHECK(max > 0); // Due to the 'if' above.
+ ASSERT(max > 0); // Due to the 'if' above.
RegExpExpansionLimiter limiter(compiler, max);
if (limiter.ok_to_expand()) {
// Unroll the optional matches up to max.
RegExpNode* answer = on_success;
- for (int i = 0; i < max; i++) {
- ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
+ for (intptr_t i = 0; i < max; i++) {
+ ChoiceNode* alternation = new(isolate) ChoiceNode(2, isolate);
if (is_greedy) {
alternation->AddAlternative(
GuardedAlternative(body->ToNode(compiler, answer)));
@@ -4261,11 +4216,11 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
bool has_min = min > 0;
bool has_max = max < RegExpTree::kInfinity;
bool needs_counter = has_min || has_max;
- int reg_ctr = needs_counter
+ intptr_t reg_ctr = needs_counter
? compiler->AllocateRegister()
: RegExpCompiler::kNoRegister;
- LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0,
- zone);
+ LoopChoiceNode* center = new(isolate) LoopChoiceNode(body->min_match() == 0,
+ isolate);
if (not_at_start) center->set_not_at_start();
RegExpNode* loop_return = needs_counter
? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
@@ -4291,13 +4246,13 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
GuardedAlternative body_alt(body_node);
if (has_max) {
Guard* body_guard =
- new(zone) Guard(reg_ctr, Guard::LT, max);
- body_alt.AddGuard(body_guard, zone);
+ new(isolate) Guard(reg_ctr, Guard::LT, max);
+ body_alt.AddGuard(body_guard, isolate);
}
GuardedAlternative rest_alt(on_success);
if (has_min) {
- Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
- rest_alt.AddGuard(rest_guard, zone);
+ Guard* rest_guard = new(isolate) Guard(reg_ctr, Guard::GEQ, min);
+ rest_alt.AddGuard(rest_guard, isolate);
}
if (is_greedy) {
center->AddLoopAlternative(body_alt);
@@ -4316,9 +4271,6 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- NodeInfo info;
- Zone* zone = compiler->zone();
-
switch (assertion_type()) {
case START_OF_LINE:
return AssertionNode::AfterNewline(on_success);
@@ -4334,16 +4286,16 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
// Compile $ in multiline regexps as an alternation with a positive
// lookahead in one side and an end-of-input on the other side.
// We need two registers for the lookahead.
- int stack_pointer_register = compiler->AllocateRegister();
- int position_register = compiler->AllocateRegister();
+ intptr_t stack_pointer_register = compiler->AllocateRegister();
+ intptr_t position_register = compiler->AllocateRegister();
// The ChoiceNode to distinguish between a newline and end-of-input.
- ChoiceNode* result = new(zone) ChoiceNode(2, zone);
+ ChoiceNode* result = new ChoiceNode(2, on_success->isolate());
// Create a newline atom.
- ZoneList<CharacterRange>* newline_ranges =
- new(zone) ZoneList<CharacterRange>(3, zone);
- CharacterRange::AddClassEscape('n', newline_ranges, zone);
- RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n');
- TextNode* newline_matcher = new(zone) TextNode(
+ ZoneGrowableArray<CharacterRange>* newline_ranges =
+ new ZoneGrowableArray<CharacterRange>(3);
+ CharacterRange::AddClassEscape('n', newline_ranges);
+ RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n');
+ TextNode* newline_matcher = new TextNode(
newline_atom,
ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
position_register,
@@ -4371,7 +4323,7 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- return new(compiler->zone())
+ return new(CI)
BackReferenceNode(RegExpCapture::StartRegister(index()),
RegExpCapture::EndRegister(index()),
on_success);
@@ -4386,13 +4338,13 @@ RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- int stack_pointer_register = compiler->AllocateRegister();
- int position_register = compiler->AllocateRegister();
+ intptr_t stack_pointer_register = compiler->AllocateRegister();
+ intptr_t position_register = compiler->AllocateRegister();
- const int registers_per_capture = 2;
- const int register_of_first_capture = 2;
- int register_count = capture_count_ * registers_per_capture;
- int register_start =
+ const intptr_t registers_per_capture = 2;
+ const intptr_t register_of_first_capture = 2;
+ intptr_t register_count = capture_count_ * registers_per_capture;
+ intptr_t register_start =
register_of_first_capture + capture_from_ * registers_per_capture;
RegExpNode* success;
@@ -4419,20 +4371,19 @@ RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
// for a negative lookahead. The NegativeLookaheadChoiceNode is a special
// ChoiceNode that knows to ignore the first exit when calculating quick
// checks.
- Zone* zone = compiler->zone();
GuardedAlternative body_alt(
body()->ToNode(
compiler,
- success = new(zone) NegativeSubmatchSuccess(stack_pointer_register,
- position_register,
- register_count,
- register_start,
- zone)));
+ success = new(CI) NegativeSubmatchSuccess(stack_pointer_register,
+ position_register,
+ register_count,
+ register_start,
+ CI)));
ChoiceNode* choice_node =
- new(zone) NegativeLookaheadChoiceNode(body_alt,
- GuardedAlternative(on_success),
- zone);
+ new(CI) NegativeLookaheadChoiceNode(body_alt,
+ GuardedAlternative(on_success),
+ CI);
return ActionNode::BeginSubmatch(stack_pointer_register,
position_register,
choice_node);
@@ -4447,11 +4398,11 @@ RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
- int index,
+ intptr_t index,
RegExpCompiler* compiler,
RegExpNode* on_success) {
- int start_reg = RegExpCapture::StartRegister(index);
- int end_reg = RegExpCapture::EndRegister(index);
+ intptr_t start_reg = RegExpCapture::StartRegister(index);
+ intptr_t end_reg = RegExpCapture::EndRegister(index);
RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
RegExpNode* body_node = body->ToNode(compiler, store_end);
return ActionNode::StorePosition(start_reg, true, body_node);
@@ -4460,88 +4411,83 @@ RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
RegExpNode* on_success) {
- ZoneList<RegExpTree*>* children = nodes();
+ ZoneGrowableArray<RegExpTree*>* children = nodes();
RegExpNode* current = on_success;
- for (int i = children->length() - 1; i >= 0; i--) {
- current = children->at(i)->ToNode(compiler, current);
+ for (intptr_t i = children->length() - 1; i >= 0; i--) {
+ current = children->At(i)->ToNode(compiler, current);
}
return current;
}
-static void AddClass(const int* elmv,
- int elmc,
- ZoneList<CharacterRange>* ranges,
- Zone* zone) {
+static void AddClass(const intptr_t* elmv,
+ intptr_t elmc,
+ ZoneGrowableArray<CharacterRange>* ranges) {
elmc--;
- DCHECK(elmv[elmc] == 0x10000);
- for (int i = 0; i < elmc; i += 2) {
- DCHECK(elmv[i] < elmv[i + 1]);
- ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
+ ASSERT(elmv[elmc] == 0x10000);
+ for (intptr_t i = 0; i < elmc; i += 2) {
+ ASSERT(elmv[i] < elmv[i + 1]);
+ ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1));
}
}
-static void AddClassNegated(const int *elmv,
- int elmc,
- ZoneList<CharacterRange>* ranges,
- Zone* zone) {
+static void AddClassNegated(const intptr_t *elmv,
+ intptr_t elmc,
+ ZoneGrowableArray<CharacterRange>* ranges) {
elmc--;
- DCHECK(elmv[elmc] == 0x10000);
- DCHECK(elmv[0] != 0x0000);
- DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
- uc16 last = 0x0000;
- for (int i = 0; i < elmc; i += 2) {
- DCHECK(last <= elmv[i] - 1);
- DCHECK(elmv[i] < elmv[i + 1]);
- ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
+ ASSERT(elmv[elmc] == 0x10000);
+ ASSERT(elmv[0] != 0x0000);
+ ASSERT(elmv[elmc-1] != Utf16::kMaxCodeUnit);
+ uint16_t last = 0x0000;
+ for (intptr_t i = 0; i < elmc; i += 2) {
+ ASSERT(last <= elmv[i] - 1);
+ ASSERT(elmv[i] < elmv[i + 1]);
+ ranges->Add(CharacterRange(last, elmv[i] - 1));
last = elmv[i + 1];
}
- ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
+ ranges->Add(CharacterRange(last, Utf16::kMaxCodeUnit));
}
-void CharacterRange::AddClassEscape(uc16 type,
- ZoneList<CharacterRange>* ranges,
- Zone* zone) {
+void CharacterRange::AddClassEscape(uint16_t type,
+ ZoneGrowableArray<CharacterRange>* ranges) {
switch (type) {
case 's':
- AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
+ AddClass(kSpaceRanges, kSpaceRangeCount, ranges);
break;
case 'S':
- AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
+ AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges);
break;
case 'w':
- AddClass(kWordRanges, kWordRangeCount, ranges, zone);
+ AddClass(kWordRanges, kWordRangeCount, ranges);
break;
case 'W':
- AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
+ AddClassNegated(kWordRanges, kWordRangeCount, ranges);
break;
case 'd':
- AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
+ AddClass(kDigitRanges, kDigitRangeCount, ranges);
break;
case 'D':
- AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
+ AddClassNegated(kDigitRanges, kDigitRangeCount, ranges);
break;
case '.':
AddClassNegated(kLineTerminatorRanges,
kLineTerminatorRangeCount,
- ranges,
- zone);
+ ranges);
break;
// This is not a character range as defined by the spec but a
// convenient shorthand for a character class that matches any
// character.
case '*':
- ranges->Add(CharacterRange::Everything(), zone);
+ ranges->Add(CharacterRange::Everything());
break;
// This is the set of characters matched by the $ and ^ symbols
// in multiline mode.
case 'n':
AddClass(kLineTerminatorRanges,
kLineTerminatorRangeCount,
- ranges,
- zone);
+ ranges);
break;
default:
UNREACHABLE();
@@ -4549,77 +4495,29 @@ void CharacterRange::AddClassEscape(uc16 type,
}
-Vector<const int> CharacterRange::GetWordBounds() {
- return Vector<const int>(kWordRanges, kWordRangeCount - 1);
-}
-
-
-class CharacterRangeSplitter {
- public:
- CharacterRangeSplitter(ZoneList<CharacterRange>** included,
- ZoneList<CharacterRange>** excluded,
- Zone* zone)
- : included_(included),
- excluded_(excluded),
- zone_(zone) { }
- void Call(uc16 from, DispatchTable::Entry entry);
-
- static const int kInBase = 0;
- static const int kInOverlay = 1;
-
- private:
- ZoneList<CharacterRange>** included_;
- ZoneList<CharacterRange>** excluded_;
- Zone* zone_;
-};
-
-
-void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
- if (!entry.out_set()->Get(kInBase)) return;
- ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
- ? included_
- : excluded_;
- if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
- (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
-}
-
-
-void CharacterRange::Split(ZoneList<CharacterRange>* base,
- Vector<const int> overlay,
- ZoneList<CharacterRange>** included,
- ZoneList<CharacterRange>** excluded,
- Zone* zone) {
- DCHECK_EQ(NULL, *included);
- DCHECK_EQ(NULL, *excluded);
- DispatchTable table(zone);
- for (int i = 0; i < base->length(); i++)
- table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
- for (int i = 0; i < overlay.length(); i += 2) {
- table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
- CharacterRangeSplitter::kInOverlay, zone);
- }
- CharacterRangeSplitter callback(included, excluded, zone);
- table.ForEach(&callback);
-}
-
-
-void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
- bool is_one_byte, Zone* zone) {
- Isolate* isolate = zone->isolate();
- uc16 bottom = from();
- uc16 top = to();
+void CharacterRange::AddCaseEquivalents(
+ ZoneGrowableArray<CharacterRange>* ranges,
+ bool is_one_byte,
+ Isolate* isolate) {
+ uint16_t bottom = from();
+ uint16_t top = to();
if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
- if (bottom > String::kMaxOneByteCharCode) return;
- if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
+ if (bottom > Symbols::kMaxOneCharCodeSymbol) return;
+ if (top > Symbols::kMaxOneCharCodeSymbol) {
+ top = Symbols::kMaxOneCharCodeSymbol;
+ }
}
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+
+ unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
+ unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange;
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
if (top == bottom) {
// If this is a singleton we just expand the one character.
- int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
- for (int i = 0; i < length; i++) {
- uc32 chr = chars[i];
+ intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars); // NOLINT
+ for (intptr_t i = 0; i < length; i++) {
+ uint32_t chr = chars[i];
if (chr != bottom) {
- ranges->Add(CharacterRange::Singleton(chars[i]), zone);
+ ranges->Add(CharacterRange::Singleton(chars[i]));
}
}
} else {
@@ -4641,25 +4539,25 @@ void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
// completely contained in a block we do this for all the blocks
// covered by the range (handling characters that is not in a block
// as a "singleton block").
- unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int pos = bottom;
+ int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t pos = bottom;
while (pos <= top) {
- int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
- uc16 block_end;
+ intptr_t length = jsregexp_canonrange.get(pos, '\0', range);
+ uint16_t block_end;
if (length == 0) {
block_end = pos;
} else {
- DCHECK_EQ(1, length);
+ ASSERT(length == 1);
block_end = range[0];
}
- int end = (block_end > top) ? top : block_end;
- length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
- for (int i = 0; i < length; i++) {
- uc32 c = range[i];
- uc16 range_from = c - (block_end - pos);
- uc16 range_to = c - (block_end - end);
+ intptr_t end = (block_end > top) ? top : block_end;
+ length = jsregexp_uncanonicalize.get(block_end, '\0', range); // NOLINT
+ for (intptr_t i = 0; i < length; i++) {
+ uint32_t c = range[i];
+ uint16_t range_from = c - (block_end - pos);
+ uint16_t range_to = c - (block_end - end);
if (!(bottom <= range_from && range_to <= top)) {
- ranges->Add(CharacterRange(range_from, range_to), zone);
+ ranges->Add(CharacterRange(range_from, range_to));
}
}
pos = end + 1;
@@ -4668,13 +4566,13 @@ void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
}
-bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
- DCHECK_NOT_NULL(ranges);
- int n = ranges->length();
+bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) {
+ ASSERT(ranges != NULL);
+ intptr_t n = ranges->length();
if (n <= 1) return true;
- int max = ranges->at(0).to();
- for (int i = 1; i < n; i++) {
- CharacterRange next_range = ranges->at(i);
+ intptr_t max = ranges->At(0).to();
+ for (intptr_t i = 1; i < n; i++) {
+ CharacterRange next_range = ranges->At(i);
if (next_range.from() <= max + 1) return false;
max = next_range.to();
}
@@ -4682,48 +4580,49 @@ bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
}
-ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
+ZoneGrowableArray<CharacterRange>* CharacterSet::ranges() {
if (ranges_ == NULL) {
- ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
- CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
+ ranges_ = new ZoneGrowableArray<CharacterRange>(2);
+ CharacterRange::AddClassEscape(standard_set_type_, ranges_);
}
return ranges_;
}
-// Move a number of elements in a zonelist to another position
-// in the same list. Handles overlapping source and target areas.
-static void MoveRanges(ZoneList<CharacterRange>* list,
- int from,
- int to,
- int count) {
+// Move a number of elements in a zone array to another position
+// in the same array. Handles overlapping source and target areas.
+static void MoveRanges(ZoneGrowableArray<CharacterRange>* list,
+ intptr_t from,
+ intptr_t to,
+ intptr_t count) {
// Ranges are potentially overlapping.
if (from < to) {
- for (int i = count - 1; i >= 0; i--) {
- list->at(to + i) = list->at(from + i);
+ for (intptr_t i = count - 1; i >= 0; i--) {
+ (*list)[to + i] = list->At(from + i);
}
} else {
- for (int i = 0; i < count; i++) {
- list->at(to + i) = list->at(from + i);
+ for (intptr_t i = 0; i < count; i++) {
+ (*list)[to + i] = list->At(from + i);
}
}
}
-static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
- int count,
- CharacterRange insert) {
+static intptr_t InsertRangeInCanonicalList(
+ ZoneGrowableArray<CharacterRange>* list,
+ intptr_t count,
+ CharacterRange insert) {
// Inserts a range into list[0..count[, which must be sorted
// by from value and non-overlapping and non-adjacent, using at most
// list[0..count] for the result. Returns the number of resulting
// canonicalized ranges. Inserting a range may collapse existing ranges into
// fewer ranges, so the return value can be anything in the range 1..count+1.
- uc16 from = insert.from();
- uc16 to = insert.to();
- int start_pos = 0;
- int end_pos = count;
- for (int i = count - 1; i >= 0; i--) {
- CharacterRange current = list->at(i);
+ uint16_t from = insert.from();
+ uint16_t to = insert.to();
+ intptr_t start_pos = 0;
+ intptr_t end_pos = count;
+ for (intptr_t i = count - 1; i >= 0; i--) {
+ CharacterRange current = list->At(i);
if (current.from() > to + 1) {
end_pos = i;
} else if (current.to() + 1 < from) {
@@ -4744,26 +4643,26 @@ static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
if (start_pos < count) {
MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
}
- list->at(start_pos) = insert;
+ (*list)[start_pos] = insert;
return count + 1;
}
if (start_pos + 1 == end_pos) {
// Replace single existing range at position start_pos.
- CharacterRange to_replace = list->at(start_pos);
- int new_from = Min(to_replace.from(), from);
- int new_to = Max(to_replace.to(), to);
- list->at(start_pos) = CharacterRange(new_from, new_to);
+ CharacterRange to_replace = list->At(start_pos);
+ intptr_t new_from = Utils::Minimum(to_replace.from(), from);
+ intptr_t new_to = Utils::Maximum(to_replace.to(), to);
+ (*list)[start_pos] = CharacterRange(new_from, new_to);
return count;
}
// Replace a number of existing ranges from start_pos to end_pos - 1.
// Move the remaining ranges down.
- int new_from = Min(list->at(start_pos).from(), from);
- int new_to = Max(list->at(end_pos - 1).to(), to);
+ intptr_t new_from = Utils::Minimum(list->At(start_pos).from(), from);
+ intptr_t new_to = Utils::Maximum(list->At(end_pos - 1).to(), to);
if (end_pos < count) {
MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
}
- list->at(start_pos) = CharacterRange(new_from, new_to);
+ (*list)[start_pos] = CharacterRange(new_from, new_to);
return count - (end_pos - start_pos) + 1;
}
@@ -4776,15 +4675,16 @@ void CharacterSet::Canonicalize() {
}
-void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
+void CharacterRange::Canonicalize(
+ ZoneGrowableArray<CharacterRange>* character_ranges) {
if (character_ranges->length() <= 1) return;
// Check whether ranges are already canonical (increasing, non-overlapping,
// non-adjacent).
- int n = character_ranges->length();
- int max = character_ranges->at(0).to();
- int i = 1;
+ intptr_t n = character_ranges->length();
+ intptr_t max = character_ranges->At(0).to();
+ intptr_t i = 1;
while (i < n) {
- CharacterRange current = character_ranges->at(i);
+ CharacterRange current = character_ranges->At(i);
if (current.from() <= max + 1) {
break;
}
@@ -4799,41 +4699,39 @@ void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
// list, in order).
// Notice that inserting a range can reduce the number of ranges in the
// result due to combining of adjacent and overlapping ranges.
- int read = i; // Range to insert.
- int num_canonical = i; // Length of canonicalized part of list.
+ intptr_t read = i; // Range to insert.
+ intptr_t num_canonical = i; // Length of canonicalized part of list.
do {
num_canonical = InsertRangeInCanonicalList(character_ranges,
num_canonical,
- character_ranges->at(read));
+ character_ranges->At(read));
read++;
} while (read < n);
- character_ranges->Rewind(num_canonical);
+ character_ranges->TruncateTo(num_canonical);
- DCHECK(CharacterRange::IsCanonical(character_ranges));
+ ASSERT(CharacterRange::IsCanonical(character_ranges));
}
-void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
- ZoneList<CharacterRange>* negated_ranges,
- Zone* zone) {
- DCHECK(CharacterRange::IsCanonical(ranges));
- DCHECK_EQ(0, negated_ranges->length());
- int range_count = ranges->length();
- uc16 from = 0;
- int i = 0;
- if (range_count > 0 && ranges->at(0).from() == 0) {
- from = ranges->at(0).to();
+void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges,
+ ZoneGrowableArray<CharacterRange>* negated_ranges) {
+ ASSERT(CharacterRange::IsCanonical(ranges));
+ ASSERT(negated_ranges->length() == 0);
+ intptr_t range_count = ranges->length();
+ uint16_t from = 0;
+ intptr_t i = 0;
+ if (range_count > 0 && ranges->At(0).from() == 0) {
+ from = ranges->At(0).to();
i = 1;
}
while (i < range_count) {
- CharacterRange range = ranges->at(i);
- negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone);
+ CharacterRange range = ranges->At(i);
+ negated_ranges->Add(CharacterRange(from + 1, range.from() - 1));
from = range.to();
i++;
}
- if (from < String::kMaxUtf16CodeUnit) {
- negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
- zone);
+ if (from < Utf16::kMaxCodeUnit) {
+ negated_ranges->Add(CharacterRange(from + 1, Utf16::kMaxCodeUnit));
}
}
@@ -4842,33 +4740,29 @@ void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
// Splay tree
-OutSet* OutSet::Extend(unsigned value, Zone* zone) {
- if (Get(value))
- return this;
- if (successors(zone) != NULL) {
- for (int i = 0; i < successors(zone)->length(); i++) {
- OutSet* successor = successors(zone)->at(i);
- if (successor->Get(value))
- return successor;
+// Workaround for the fact that ZoneGrowableArray does not have contains().
+static bool ArrayContains(ZoneGrowableArray<unsigned>* array,
+ unsigned value) {
+ for (intptr_t i = 0; i < array->length(); i++) {
+ if (array->At(i) == value) {
+ return true;
}
- } else {
- successors_ = new(zone) ZoneList<OutSet*>(2, zone);
}
- OutSet* result = new(zone) OutSet(first_, remaining_);
- result->Set(value, zone);
- successors(zone)->Add(result, zone);
- return result;
+ return false;
}
-void OutSet::Set(unsigned value, Zone *zone) {
+void OutSet::Set(unsigned value, Isolate* isolate) {
if (value < kFirstLimit) {
first_ |= (1 << value);
} else {
if (remaining_ == NULL)
- remaining_ = new(zone) ZoneList<unsigned>(1, zone);
- if (remaining_->is_empty() || !remaining_->Contains(value))
- remaining_->Add(value, zone);
+ remaining_ = new(isolate) ZoneGrowableArray<unsigned>(1);
+
+ bool remaining_contains_value = ArrayContains(remaining_, value);
+ if (remaining_->is_empty() || !remaining_contains_value) {
+ remaining_->Add(value);
+ }
}
}
@@ -4879,125 +4773,16 @@ bool OutSet::Get(unsigned value) const {
} else if (remaining_ == NULL) {
return false;
} else {
- return remaining_->Contains(value);
- }
-}
-
-
-const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
-
-
-void DispatchTable::AddRange(CharacterRange full_range, int value,
- Zone* zone) {
- CharacterRange current = full_range;
- if (tree()->is_empty()) {
- // If this is the first range we just insert into the table.
- ZoneSplayTree<Config>::Locator loc;
- DCHECK_RESULT(tree()->Insert(current.from(), &loc));
- loc.set_value(Entry(current.from(), current.to(),
- empty()->Extend(value, zone)));
- return;
- }
- // First see if there is a range to the left of this one that
- // overlaps.
- ZoneSplayTree<Config>::Locator loc;
- if (tree()->FindGreatestLessThan(current.from(), &loc)) {
- Entry* entry = &loc.value();
- // If we've found a range that overlaps with this one, and it
- // starts strictly to the left of this one, we have to fix it
- // because the following code only handles ranges that start on
- // or after the start point of the range we're adding.
- if (entry->from() < current.from() && entry->to() >= current.from()) {
- // Snap the overlapping range in half around the start point of
- // the range we're adding.
- CharacterRange left(entry->from(), current.from() - 1);
- CharacterRange right(current.from(), entry->to());
- // The left part of the overlapping range doesn't overlap.
- // Truncate the whole entry to be just the left part.
- entry->set_to(left.to());
- // The right part is the one that overlaps. We add this part
- // to the map and let the next step deal with merging it with
- // the range we're adding.
- ZoneSplayTree<Config>::Locator loc;
- DCHECK_RESULT(tree()->Insert(right.from(), &loc));
- loc.set_value(Entry(right.from(),
- right.to(),
- entry->out_set()));
- }
- }
- while (current.is_valid()) {
- if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
- (loc.value().from() <= current.to()) &&
- (loc.value().to() >= current.from())) {
- Entry* entry = &loc.value();
- // We have overlap. If there is space between the start point of
- // the range we're adding and where the overlapping range starts
- // then we have to add a range covering just that space.
- if (current.from() < entry->from()) {
- ZoneSplayTree<Config>::Locator ins;
- DCHECK_RESULT(tree()->Insert(current.from(), &ins));
- ins.set_value(Entry(current.from(),
- entry->from() - 1,
- empty()->Extend(value, zone)));
- current.set_from(entry->from());
- }
- DCHECK_EQ(current.from(), entry->from());
- // If the overlapping range extends beyond the one we want to add
- // we have to snap the right part off and add it separately.
- if (entry->to() > current.to()) {
- ZoneSplayTree<Config>::Locator ins;
- DCHECK_RESULT(tree()->Insert(current.to() + 1, &ins));
- ins.set_value(Entry(current.to() + 1,
- entry->to(),
- entry->out_set()));
- entry->set_to(current.to());
- }
- DCHECK(entry->to() <= current.to());
- // The overlapping range is now completely contained by the range
- // we're adding so we can just update it and move the start point
- // of the range we're adding just past it.
- entry->AddValue(value, zone);
- // Bail out if the last interval ended at 0xFFFF since otherwise
- // adding 1 will wrap around to 0.
- if (entry->to() == String::kMaxUtf16CodeUnit)
- break;
- DCHECK(entry->to() + 1 > current.from());
- current.set_from(entry->to() + 1);
- } else {
- // There is no overlap so we can just add the range
- ZoneSplayTree<Config>::Locator ins;
- DCHECK_RESULT(tree()->Insert(current.from(), &ins));
- ins.set_value(Entry(current.from(),
- current.to(),
- empty()->Extend(value, zone)));
- break;
- }
+ return ArrayContains(remaining_, value);
}
}
-OutSet* DispatchTable::Get(uc16 value) {
- ZoneSplayTree<Config>::Locator loc;
- if (!tree()->FindGreatestLessThan(value, &loc))
- return empty();
- Entry* entry = &loc.value();
- if (value <= entry->to())
- return entry->out_set();
- else
- return empty();
-}
-
-
// -------------------------------------------------------------------
// Analysis
void Analysis::EnsureAnalyzed(RegExpNode* that) {
- StackLimitCheck check(that->zone()->isolate());
- if (check.HasOverflowed()) {
- fail("Stack overflow");
- return;
- }
if (that->info()->been_analyzed || that->info()->being_analyzed)
return;
that->info()->being_analyzed = true;
@@ -5013,12 +4798,12 @@ void Analysis::VisitEnd(EndNode* that) {
void TextNode::CalculateOffsets() {
- int element_count = elements()->length();
+ intptr_t element_count = elements()->length();
// Set up the offsets of the elements relative to the start. This is a fixed
// quantity since a TextNode can only contain fixed-width things.
- int cp_offset = 0;
- for (int i = 0; i < element_count; i++) {
- TextElement& elm = elements()->at(i);
+ intptr_t cp_offset = 0;
+ for (intptr_t i = 0; i < element_count; i++) {
+ TextElement& elm = (*elements())[i];
elm.set_cp_offset(cp_offset);
cp_offset += elm.length();
}
@@ -5049,8 +4834,8 @@ void Analysis::VisitAction(ActionNode* that) {
void Analysis::VisitChoice(ChoiceNode* that) {
NodeInfo* info = that->info();
- for (int i = 0; i < that->alternatives()->length(); i++) {
- RegExpNode* node = that->alternatives()->at(i).node();
+ for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = (*that->alternatives())[i].node();
EnsureAnalyzed(node);
if (has_failed()) return;
// Anything the following nodes need to know has to be known by
@@ -5062,8 +4847,8 @@ void Analysis::VisitChoice(ChoiceNode* that) {
void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
NodeInfo* info = that->info();
- for (int i = 0; i < that->alternatives()->length(); i++) {
- RegExpNode* node = that->alternatives()->at(i).node();
+ for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
+ RegExpNode* node = (*that->alternatives())[i].node();
if (node != that->loop_node()) {
EnsureAnalyzed(node);
if (has_failed()) return;
@@ -5089,8 +4874,8 @@ void Analysis::VisitAssertion(AssertionNode* that) {
}
-void BackReferenceNode::FillInBMInfo(int offset,
- int budget,
+void BackReferenceNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
// Working out the set of characters that a backreference can match is too
@@ -5100,18 +4885,18 @@ void BackReferenceNode::FillInBMInfo(int offset,
}
-STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
- RegExpMacroAssembler::kTableSize);
+COMPILE_ASSERT(BoyerMoorePositionInfo::kMapSize ==
+ RegExpMacroAssembler::kTableSize);
-void ChoiceNode::FillInBMInfo(int offset,
- int budget,
+void ChoiceNode::FillInBMInfo(intptr_t offset,
+ intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
- ZoneList<GuardedAlternative>* alts = alternatives();
+ ZoneGrowableArray<GuardedAlternative>* alts = alternatives();
budget = (budget - 1) / alts->length();
- for (int i = 0; i < alts->length(); i++) {
- GuardedAlternative& alt = alts->at(i);
+ for (intptr_t i = 0; i < alts->length(); i++) {
+ GuardedAlternative& alt = (*alts)[i];
if (alt.guards() != NULL && alt.guards()->length() != 0) {
bm->SetRest(offset); // Give up trying to fill in info.
SaveBMInfo(bm, not_at_start, offset);
@@ -5123,35 +4908,34 @@ void ChoiceNode::FillInBMInfo(int offset,
}
-void TextNode::FillInBMInfo(int initial_offset,
- int budget,
+void TextNode::FillInBMInfo(intptr_t initial_offset,
+ intptr_t budget,
BoyerMooreLookahead* bm,
bool not_at_start) {
if (initial_offset >= bm->length()) return;
- int offset = initial_offset;
- int max_char = bm->max_char();
- for (int i = 0; i < elements()->length(); i++) {
+ intptr_t offset = initial_offset;
+ intptr_t max_char = bm->max_char();
+ for (intptr_t i = 0; i < elements()->length(); i++) {
if (offset >= bm->length()) {
if (initial_offset == 0) set_bm_info(not_at_start, bm);
return;
}
- TextElement text = elements()->at(i);
+ TextElement text = elements()->At(i);
if (text.text_type() == TextElement::ATOM) {
RegExpAtom* atom = text.atom();
- for (int j = 0; j < atom->length(); j++, offset++) {
+ for (intptr_t j = 0; j < atom->length(); j++, offset++) {
if (offset >= bm->length()) {
if (initial_offset == 0) set_bm_info(not_at_start, bm);
return;
}
- uc16 character = atom->data()[j];
+ uint16_t character = atom->data()->At(j);
if (bm->compiler()->ignore_case()) {
- unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
- int length = GetCaseIndependentLetters(
- Isolate::Current(),
+ int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
+ intptr_t length = GetCaseIndependentLetters(
character,
- bm->max_char() == String::kMaxOneByteCharCode,
+ bm->max_char() == Symbols::kMaxOneCharCodeSymbol,
chars);
- for (int j = 0; j < length; j++) {
+ for (intptr_t j = 0; j < length; j++) {
bm->Set(offset, chars[j]);
}
} else {
@@ -5159,16 +4943,17 @@ void TextNode::FillInBMInfo(int initial_offset,
}
}
} else {
- DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
+ ASSERT(text.text_type() == TextElement::CHAR_CLASS);
RegExpCharacterClass* char_class = text.char_class();
- ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
+ ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges();
if (char_class->is_negated()) {
bm->SetAll(offset);
} else {
- for (int k = 0; k < ranges->length(); k++) {
- CharacterRange& range = ranges->at(k);
+ for (intptr_t k = 0; k < ranges->length(); k++) {
+ CharacterRange& range = (*ranges)[k];
if (range.from() > max_char) continue;
- int to = Min(max_char, static_cast<int>(range.to()));
+ intptr_t to = Utils::Minimum(max_char,
+ static_cast<intptr_t>(range.to()));
bm->SetInterval(offset, Interval(range.from(), to));
}
}
@@ -5187,159 +4972,54 @@ void TextNode::FillInBMInfo(int initial_offset,
}
-// -------------------------------------------------------------------
-// Dispatch table construction
-
-
-void DispatchTableConstructor::VisitEnd(EndNode* that) {
- AddRange(CharacterRange::Everything());
-}
-
-
-void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
- node->set_being_calculated(true);
- ZoneList<GuardedAlternative>* alternatives = node->alternatives();
- for (int i = 0; i < alternatives->length(); i++) {
- set_choice_index(i);
- alternatives->at(i).node()->Accept(this);
- }
- node->set_being_calculated(false);
-}
-
-
-class AddDispatchRange {
- public:
- explicit AddDispatchRange(DispatchTableConstructor* constructor)
- : constructor_(constructor) { }
- void Call(uc32 from, DispatchTable::Entry entry);
- private:
- DispatchTableConstructor* constructor_;
-};
-
-
-void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
- CharacterRange range(from, entry.to());
- constructor_->AddRange(range);
-}
-
-
-void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
- if (node->being_calculated())
- return;
- DispatchTable* table = node->GetTable(ignore_case_);
- AddDispatchRange adder(this);
- table->ForEach(&adder);
-}
-
-
-void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
- // TODO(160): Find the node that we refer back to and propagate its start
- // set back to here. For now we just accept anything.
- AddRange(CharacterRange::Everything());
-}
-
-
-void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
- RegExpNode* target = that->on_success();
- target->Accept(this);
-}
-
-
-static int CompareRangeByFrom(const CharacterRange* a,
- const CharacterRange* b) {
- return Compare<uc16>(a->from(), b->from());
-}
-
-
-void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
- ranges->Sort(CompareRangeByFrom);
- uc16 last = 0;
- for (int i = 0; i < ranges->length(); i++) {
- CharacterRange range = ranges->at(i);
- if (last < range.from())
- AddRange(CharacterRange(last, range.from() - 1));
- if (range.to() >= last) {
- if (range.to() == String::kMaxUtf16CodeUnit) {
- return;
- } else {
- last = range.to() + 1;
- }
- }
- }
- AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit));
-}
-
-
-void DispatchTableConstructor::VisitText(TextNode* that) {
- TextElement elm = that->elements()->at(0);
- switch (elm.text_type()) {
- case TextElement::ATOM: {
- uc16 c = elm.atom()->data()[0];
- AddRange(CharacterRange(c, c));
- break;
- }
- case TextElement::CHAR_CLASS: {
- RegExpCharacterClass* tree = elm.char_class();
- ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
- if (tree->is_negated()) {
- AddInverse(ranges);
- } else {
- for (int i = 0; i < ranges->length(); i++)
- AddRange(ranges->at(i));
- }
- break;
- }
- default: {
- UNIMPLEMENTED();
- }
- }
-}
-
-
-void DispatchTableConstructor::VisitAction(ActionNode* that) {
- RegExpNode* target = that->on_success();
- target->Accept(this);
-}
-
-
RegExpEngine::CompilationResult RegExpEngine::Compile(
- RegExpCompileData* data, bool ignore_case, bool is_global,
- bool is_multiline, bool is_sticky, Handle<String> pattern,
- Handle<String> sample_subject, bool is_one_byte, Zone* zone) {
- if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
- return IrregexpRegExpTooBig(zone->isolate());
- }
- RegExpCompiler compiler(data->capture_count, ignore_case, is_one_byte, zone);
-
- // Sample some characters from the middle of the string.
- static const int kSampleSize = 128;
-
- sample_subject = String::Flatten(sample_subject);
- int chars_sampled = 0;
- int half_way = (sample_subject->length() - kSampleSize) / 2;
- for (int i = Max(0, half_way);
- i < sample_subject->length() && chars_sampled < kSampleSize;
- i++, chars_sampled++) {
- compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
- }
+ RegExpCompileData* data,
+ const ParsedFunction* parsed_function,
+ const ZoneGrowableArray<const ICData*>& ic_data_array) {
+ Isolate* isolate = Isolate::Current();
+
+ const Function& function = parsed_function->function();
+ const intptr_t specialization_cid = function.regexp_cid();
+ const bool is_one_byte = (specialization_cid == kOneByteStringCid ||
+ specialization_cid == kExternalOneByteStringCid);
+ JSRegExp& regexp = JSRegExp::Handle(isolate, function.regexp());
+ const String& pattern = String::Handle(isolate, regexp.pattern());
+
+ ASSERT(!regexp.IsNull());
+ ASSERT(!pattern.IsNull());
+
+ const bool ignore_case = regexp.is_ignore_case();
+ const bool is_global = regexp.is_global();
+
+ RegExpCompiler compiler(data->capture_count, ignore_case, specialization_cid);
+
+ // TODO(zerny): Frequency sampling is currently disabled because of several
+ // issues. We do not want to store subject strings in the regexp object since
+ // they might be long and we should not prevent their garbage collection.
+ // Passing them to this function explicitly does not help, since we must
+ // generate exactly the same IR for both the unoptimizing and optimizing
+ // pipelines (otherwise it gets confused when i.e. deopt id's differ).
+ // An option would be to store sampling results in the regexp object, but
+ // I'm not sure the performance gains are relevant enough.
// Wrap the body of the regexp in capture #0.
RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
0,
&compiler,
compiler.accept());
+
RegExpNode* node = captured_body;
bool is_end_anchored = data->tree->IsAnchoredAtEnd();
bool is_start_anchored = data->tree->IsAnchoredAtStart();
- int max_length = data->tree->max_match();
- if (!is_start_anchored && !is_sticky) {
+ intptr_t max_length = data->tree->max_match();
+ if (!is_start_anchored) {
// Add a .*? at the beginning, outside the body capture, unless
- // this expression is anchored at the beginning or sticky.
+ // this expression is anchored at the beginning.
RegExpNode* loop_node =
RegExpQuantifier::ToNode(0,
RegExpTree::kInfinity,
false,
- new(zone) RegExpCharacterClass('*'),
+ new(isolate) RegExpCharacterClass('*'),
&compiler,
captured_body,
data->contains_anchor);
@@ -5347,10 +5027,11 @@ RegExpEngine::CompilationResult RegExpEngine::Compile(
if (data->contains_anchor) {
// Unroll loop once, to take care of the case that might start
// at the start of input.
- ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
+ ChoiceNode* first_step_node = new(isolate) ChoiceNode(2, isolate);
first_step_node->AddAlternative(GuardedAlternative(captured_body));
first_step_node->AddAlternative(GuardedAlternative(
- new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node)));
+ new(isolate) TextNode(
+ new(isolate) RegExpCharacterClass('*'), loop_node)));
node = first_step_node;
} else {
node = loop_node;
@@ -5365,74 +5046,124 @@ RegExpEngine::CompilationResult RegExpEngine::Compile(
}
}
- if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
+ if (node == NULL) node = new(isolate) EndNode(EndNode::BACKTRACK, isolate);
data->node = node;
Analysis analysis(ignore_case, is_one_byte);
analysis.EnsureAnalyzed(node);
if (analysis.has_failed()) {
const char* error_message = analysis.error_message();
- return CompilationResult(zone->isolate(), error_message);
+ return CompilationResult(error_message);
}
- // Create the correct assembler for the architecture.
-#ifndef V8_INTERPRETED_REGEXP
// Native regexp implementation.
- NativeRegExpMacroAssembler::Mode mode =
- is_one_byte ? NativeRegExpMacroAssembler::LATIN1
- : NativeRegExpMacroAssembler::UC16;
-
-#if V8_TARGET_ARCH_IA32
- RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2,
- zone);
-#elif V8_TARGET_ARCH_X64
- RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2,
- zone);
-#elif V8_TARGET_ARCH_ARM
- RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2,
- zone);
-#elif V8_TARGET_ARCH_ARM64
- RegExpMacroAssemblerARM64 macro_assembler(mode, (data->capture_count + 1) * 2,
- zone);
-#elif V8_TARGET_ARCH_MIPS
- RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
- zone);
-#elif V8_TARGET_ARCH_MIPS64
- RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
- zone);
-#elif V8_TARGET_ARCH_X87
- RegExpMacroAssemblerX87 macro_assembler(mode, (data->capture_count + 1) * 2,
- zone);
-#else
-#error "Unsupported architecture"
-#endif
-
-#else // V8_INTERPRETED_REGEXP
- // Interpreted regexp implementation.
- EmbeddedVector<byte, 1024> codes;
- RegExpMacroAssemblerIrregexp macro_assembler(codes, zone);
-#endif // V8_INTERPRETED_REGEXP
+ IRRegExpMacroAssembler* macro_assembler =
+ new(isolate) IRRegExpMacroAssembler(specialization_cid,
+ data->capture_count,
+ parsed_function,
+ ic_data_array,
+ isolate);
// Inserted here, instead of in Assembler, because it depends on information
// in the AST that isn't replicated in the Node structure.
- static const int kMaxBacksearchLimit = 1024;
+ static const intptr_t kMaxBacksearchLimit = 1024;
if (is_end_anchored &&
!is_start_anchored &&
max_length < kMaxBacksearchLimit) {
- macro_assembler.SetCurrentPositionFromEnd(max_length);
+ macro_assembler->SetCurrentPositionFromEnd(max_length);
}
if (is_global) {
- macro_assembler.set_global_mode(
+ macro_assembler->set_global_mode(
(data->tree->min_match() > 0)
? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
: RegExpMacroAssembler::GLOBAL);
}
- return compiler.Assemble(&macro_assembler,
- node,
- data->capture_count,
- pattern);
+ RegExpEngine::CompilationResult result =
+ compiler.Assemble(macro_assembler,
+ node,
+ data->capture_count,
+ pattern);
+
+ if (FLAG_trace_irregexp) {
+ macro_assembler->PrintBlocks();
+ }
+
+ return result;
}
+
+static void CreateSpecializedFunction(Isolate* isolate,
+ const JSRegExp& regexp,
+ intptr_t specialization_cid,
+ const Object& owner) {
+ const intptr_t kParamCount = RegExpMacroAssembler::kParamCount;
+
+ Function& fn = Function::Handle(isolate, Function::New(
+ Symbols::IrregExp(),
+ RawFunction::kIrregexpFunction,
+ true, // Static.
+ false, // Not const.
+ false, // Not abstract.
+ false, // Not external.
+ false, // Not native.
+ owner,
+ 0)); // No token position.
+
+ // TODO(zerny): Share these arrays between all irregexp functions.
+ fn.set_num_fixed_parameters(kParamCount);
+ fn.set_parameter_types(Array::Handle(isolate, Array::New(kParamCount,
+ Heap::kOld)));
+ fn.set_parameter_names(Array::Handle(isolate, Array::New(kParamCount,
+ Heap::kOld)));
+ fn.SetParameterTypeAt(0, Type::Handle(isolate, Type::DynamicType()));
+ fn.SetParameterNameAt(0, Symbols::string_param());
+ fn.SetParameterTypeAt(1, Type::Handle(isolate, Type::DynamicType()));
+ fn.SetParameterNameAt(1, Symbols::start_index_param());
+ fn.set_result_type(Type::Handle(isolate, Type::ArrayType()));
+
+ // Cache the result.
+ regexp.set_function(specialization_cid, fn);
+
+ fn.set_regexp(regexp);
+ fn.set_regexp_cid(specialization_cid);
+
+ // The function is compiled lazily during the first call.
+}
+
+
+RawJSRegExp* RegExpEngine::CreateJSRegExp(Isolate* isolate,
+ const String& pattern,
+ bool multi_line,
+ bool ignore_case) {
+ const JSRegExp& regexp = JSRegExp::Handle(JSRegExp::New(0));
+
+ regexp.set_pattern(pattern);
+
+ if (multi_line) {
+ regexp.set_is_multi_line();
+ }
+ if (ignore_case) {
+ regexp.set_is_ignore_case();
+ }
+
+ // TODO(zerny): We might want to use normal string searching algorithms
+ // for simple patterns.
+ regexp.set_is_complex();
+ regexp.set_is_global(); // All dart regexps are global.
+
+ const Library& lib = Library::Handle(isolate, Library::CoreLibrary());
+ const Class& owner = Class::Handle(
+ isolate, lib.LookupClass(Symbols::RegExp()));
+
+ CreateSpecializedFunction(isolate, regexp, kOneByteStringCid, owner);
+ CreateSpecializedFunction(isolate, regexp, kTwoByteStringCid, owner);
+ CreateSpecializedFunction(isolate, regexp, kExternalOneByteStringCid, owner);
+ CreateSpecializedFunction(isolate, regexp, kExternalTwoByteStringCid, owner);
+
+ return regexp.raw();
+}
+
+
} // namespace dart
« no previous file with comments | « runtime/vm/regexp.h ('k') | runtime/vm/regexp_assembler.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698