| Index: runtime/vm/regexp.cc
|
| diff --git a/runtime/vm/regexp.cc b/runtime/vm/regexp.cc
|
| index 534e0c5072dc380457539422f1121bdecd81b0a8..edb9d26e3a3b9b67eb114f5f770ad51a34de2145 100644
|
| --- a/runtime/vm/regexp.cc
|
| +++ b/runtime/vm/regexp.cc
|
| @@ -4,29 +4,66 @@
|
|
|
| #include "vm/regexp.h"
|
|
|
| -// SNIP
|
| +#include "vm/dart_entry.h"
|
| +#include "vm/regexp_assembler.h"
|
| +#include "vm/regexp_ast.h"
|
| +#include "vm/unibrow-inl.h"
|
| +#include "vm/unicode.h"
|
| +#include "vm/symbols.h"
|
| +
|
| +#define I (isolate())
|
| +#define CI (compiler->isolate())
|
|
|
| namespace dart {
|
|
|
| -// SNIP
|
| +DECLARE_FLAG(bool, trace_irregexp);
|
| +
|
| +// Default to generating optimized regexp code.
|
| +static const bool kRegexpOptimization = true;
|
| +
|
| +// More makes code generation slower, less makes V8 benchmark score lower.
|
| +static const intptr_t kMaxLookaheadForBoyerMoore = 8;
|
| +
|
| +ContainedInLattice AddRange(ContainedInLattice containment,
|
| + const intptr_t* ranges,
|
| + intptr_t ranges_length,
|
| + Interval new_range) {
|
| + ASSERT((ranges_length & 1) == 1);
|
| + ASSERT(ranges[ranges_length - 1] == Utf16::kMaxCodeUnit + 1);
|
| + if (containment == kLatticeUnknown) return containment;
|
| + bool inside = false;
|
| + intptr_t last = 0;
|
| + for (intptr_t i = 0; i < ranges_length;
|
| + inside = !inside, last = ranges[i], i++) {
|
| + // Consider the range from last to ranges[i].
|
| + // We haven't got to the new range yet.
|
| + if (ranges[i] <= new_range.from()) continue;
|
| + // New range is wholly inside last-ranges[i]. Note that new_range.to() is
|
| + // inclusive, but the values in ranges are not.
|
| + if (last <= new_range.from() && new_range.to() < ranges[i]) {
|
| + return Combine(containment, inside ? kLatticeIn : kLatticeOut);
|
| + }
|
| + return kLatticeUnknown;
|
| + }
|
| + return containment;
|
| +}
|
|
|
| // -------------------------------------------------------------------
|
| // Implementation of the Irregexp regular expression engine.
|
| //
|
| // The Irregexp regular expression engine is intended to be a complete
|
| -// implementation of ECMAScript regular expressions. It generates either
|
| -// bytecodes or native code.
|
| +// implementation of ECMAScript regular expressions. It generates
|
| +// IR code that is subsequently compiled to native code.
|
|
|
| // The Irregexp regexp engine is structured in three steps.
|
| -// 1) The parser generates an abstract syntax tree. See ast.cc.
|
| +// 1) The parser generates an abstract syntax tree. See regexp_ast.cc.
|
| // 2) From the AST a node network is created. The nodes are all
|
| // subclasses of RegExpNode. The nodes represent states when
|
| // executing a regular expression. Several optimizations are
|
| // performed on the node network.
|
| -// 3) From the nodes we generate either byte codes or native code
|
| -// that can actually execute the regular expression (perform
|
| -// the search). The code generation step is described in more
|
| -// detail below.
|
| +// 3) From the nodes we generate IR instructions that can actually
|
| +// execute the regular expression (perform the search). The
|
| +// code generation step is described in more detail below.
|
|
|
| // Code generation.
|
| //
|
| @@ -49,8 +86,8 @@ namespace dart {
|
| // These are used to implement the actions required on finding
|
| // a successful match or failing to find a match.
|
| //
|
| -// The code generated (whether as byte codes or native code) maintains
|
| -// some state as it runs. This consists of the following elements:
|
| +// The code generated maintains some state as it runs. This consists of the
|
| +// following elements:
|
| //
|
| // * The capture registers. Used for string captures.
|
| // * Other registers. Used for counters etc.
|
| @@ -160,24 +197,24 @@ namespace dart {
|
| // the event that code generation is requested for an identical trace.
|
|
|
|
|
| -void RegExpTree::AppendToText(RegExpText* text, Zone* zone) {
|
| +void RegExpTree::AppendToText(RegExpText* text) {
|
| UNREACHABLE();
|
| }
|
|
|
|
|
| -void RegExpAtom::AppendToText(RegExpText* text, Zone* zone) {
|
| - text->AddElement(TextElement::Atom(this), zone);
|
| +void RegExpAtom::AppendToText(RegExpText* text) {
|
| + text->AddElement(TextElement::Atom(this));
|
| }
|
|
|
|
|
| -void RegExpCharacterClass::AppendToText(RegExpText* text, Zone* zone) {
|
| - text->AddElement(TextElement::CharClass(this), zone);
|
| +void RegExpCharacterClass::AppendToText(RegExpText* text) {
|
| + text->AddElement(TextElement::CharClass(this));
|
| }
|
|
|
|
|
| -void RegExpText::AppendToText(RegExpText* text, Zone* zone) {
|
| - for (int i = 0; i < elements()->length(); i++)
|
| - text->AddElement(elements()->at(i), zone);
|
| +void RegExpText::AppendToText(RegExpText* text) {
|
| + for (intptr_t i = 0; i < elements()->length(); i++)
|
| + text->AddElement((*elements())[i]);
|
| }
|
|
|
|
|
| @@ -191,7 +228,7 @@ TextElement TextElement::CharClass(RegExpCharacterClass* char_class) {
|
| }
|
|
|
|
|
| -int TextElement::length() const {
|
| +intptr_t TextElement::length() const {
|
| switch (text_type()) {
|
| case ATOM:
|
| return atom()->length();
|
| @@ -204,36 +241,26 @@ int TextElement::length() const {
|
| }
|
|
|
|
|
| -DispatchTable* ChoiceNode::GetTable(bool ignore_case) {
|
| - if (table_ == NULL) {
|
| - table_ = new(zone()) DispatchTable(zone());
|
| - DispatchTableConstructor cons(table_, ignore_case, zone());
|
| - cons.BuildTable(this);
|
| - }
|
| - return table_;
|
| -}
|
| -
|
| -
|
| -class FrequencyCollator {
|
| +class FrequencyCollator : public ValueObject {
|
| public:
|
| FrequencyCollator() : total_samples_(0) {
|
| - for (int i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
|
| + for (intptr_t i = 0; i < RegExpMacroAssembler::kTableSize; i++) {
|
| frequencies_[i] = CharacterFrequency(i);
|
| }
|
| }
|
|
|
| - void CountCharacter(int character) {
|
| - int index = (character & RegExpMacroAssembler::kTableMask);
|
| + void CountCharacter(intptr_t character) {
|
| + intptr_t index = (character & RegExpMacroAssembler::kTableMask);
|
| frequencies_[index].Increment();
|
| total_samples_++;
|
| }
|
|
|
| // Does not measure in percent, but rather per-128 (the table size from the
|
| // regexp macro assembler).
|
| - int Frequency(int in_character) {
|
| - DCHECK((in_character & RegExpMacroAssembler::kTableMask) == in_character);
|
| + intptr_t Frequency(intptr_t in_character) {
|
| + ASSERT((in_character & RegExpMacroAssembler::kTableMask) == in_character);
|
| if (total_samples_ < 1) return 1; // Division by zero.
|
| - int freq_in_per128 =
|
| + intptr_t freq_in_per128 =
|
| (frequencies_[in_character].counter() * 128) / total_samples_;
|
| return freq_in_per128;
|
| }
|
| @@ -242,88 +269,91 @@ class FrequencyCollator {
|
| class CharacterFrequency {
|
| public:
|
| CharacterFrequency() : counter_(0), character_(-1) { }
|
| - explicit CharacterFrequency(int character)
|
| + explicit CharacterFrequency(intptr_t character)
|
| : counter_(0), character_(character) { }
|
|
|
| void Increment() { counter_++; }
|
| - int counter() { return counter_; }
|
| - int character() { return character_; }
|
| + intptr_t counter() { return counter_; }
|
| + intptr_t character() { return character_; }
|
|
|
| private:
|
| - int counter_;
|
| - int character_;
|
| + intptr_t counter_;
|
| + intptr_t character_;
|
| +
|
| + DISALLOW_ALLOCATION();
|
| };
|
|
|
|
|
| private:
|
| CharacterFrequency frequencies_[RegExpMacroAssembler::kTableSize];
|
| - int total_samples_;
|
| + intptr_t total_samples_;
|
| };
|
|
|
|
|
| -class RegExpCompiler {
|
| +class RegExpCompiler : public ValueObject {
|
| public:
|
| - RegExpCompiler(int capture_count, bool ignore_case, bool is_one_byte,
|
| - Zone* zone);
|
| + RegExpCompiler(intptr_t capture_count,
|
| + bool ignore_case,
|
| + intptr_t specialization_cid);
|
|
|
| - int AllocateRegister() {
|
| - if (next_register_ >= RegExpMacroAssembler::kMaxRegister) {
|
| - reg_exp_too_big_ = true;
|
| - return next_register_;
|
| - }
|
| + intptr_t AllocateRegister() {
|
| return next_register_++;
|
| }
|
|
|
| - RegExpEngine::CompilationResult Assemble(RegExpMacroAssembler* assembler,
|
| + RegExpEngine::CompilationResult Assemble(IRRegExpMacroAssembler* assembler,
|
| RegExpNode* start,
|
| - int capture_count,
|
| - Handle<String> pattern);
|
| + intptr_t capture_count,
|
| + const String& pattern);
|
|
|
| inline void AddWork(RegExpNode* node) { work_list_->Add(node); }
|
|
|
| - static const int kImplementationOffset = 0;
|
| - static const int kNumberOfRegistersOffset = 0;
|
| - static const int kCodeOffset = 1;
|
| + static const intptr_t kImplementationOffset = 0;
|
| + static const intptr_t kNumberOfRegistersOffset = 0;
|
| + static const intptr_t kCodeOffset = 1;
|
|
|
| - RegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
|
| + IRRegExpMacroAssembler* macro_assembler() { return macro_assembler_; }
|
| EndNode* accept() { return accept_; }
|
|
|
| - static const int kMaxRecursion = 100;
|
| - inline int recursion_depth() { return recursion_depth_; }
|
| + static const intptr_t kMaxRecursion = 100;
|
| + inline intptr_t recursion_depth() { return recursion_depth_; }
|
| inline void IncrementRecursionDepth() { recursion_depth_++; }
|
| inline void DecrementRecursionDepth() { recursion_depth_--; }
|
|
|
| void SetRegExpTooBig() { reg_exp_too_big_ = true; }
|
|
|
| inline bool ignore_case() { return ignore_case_; }
|
| - inline bool one_byte() { return one_byte_; }
|
| + inline bool one_byte() const {
|
| + return (specialization_cid_ == kOneByteStringCid ||
|
| + specialization_cid_ == kExternalOneByteStringCid);
|
| + }
|
| + inline intptr_t specialization_cid() { return specialization_cid_; }
|
| FrequencyCollator* frequency_collator() { return &frequency_collator_; }
|
|
|
| - int current_expansion_factor() { return current_expansion_factor_; }
|
| - void set_current_expansion_factor(int value) {
|
| + intptr_t current_expansion_factor() { return current_expansion_factor_; }
|
| + void set_current_expansion_factor(intptr_t value) {
|
| current_expansion_factor_ = value;
|
| }
|
|
|
| - Zone* zone() const { return zone_; }
|
| + Isolate* isolate() const { return isolate_; }
|
|
|
| - static const int kNoRegister = -1;
|
| + static const intptr_t kNoRegister = -1;
|
|
|
| private:
|
| EndNode* accept_;
|
| - int next_register_;
|
| - List<RegExpNode*>* work_list_;
|
| - int recursion_depth_;
|
| - RegExpMacroAssembler* macro_assembler_;
|
| + intptr_t next_register_;
|
| + ZoneGrowableArray<RegExpNode*>* work_list_;
|
| + intptr_t recursion_depth_;
|
| + IRRegExpMacroAssembler* macro_assembler_;
|
| bool ignore_case_;
|
| - bool one_byte_;
|
| + intptr_t specialization_cid_;
|
| bool reg_exp_too_big_;
|
| - int current_expansion_factor_;
|
| + intptr_t current_expansion_factor_;
|
| FrequencyCollator frequency_collator_;
|
| - Zone* zone_;
|
| + Isolate* isolate_;
|
| };
|
|
|
|
|
| -class RecursionCheck {
|
| +class RecursionCheck : public ValueObject {
|
| public:
|
| explicit RecursionCheck(RegExpCompiler* compiler) : compiler_(compiler) {
|
| compiler->IncrementRecursionDepth();
|
| @@ -334,84 +364,60 @@ class RecursionCheck {
|
| };
|
|
|
|
|
| -static RegExpEngine::CompilationResult IrregexpRegExpTooBig(Isolate* isolate) {
|
| - return RegExpEngine::CompilationResult(isolate, "RegExp too big");
|
| +static RegExpEngine::CompilationResult IrregexpRegExpTooBig() {
|
| + return RegExpEngine::CompilationResult("RegExp too big");
|
| }
|
|
|
|
|
| // Attempts to compile the regexp using an Irregexp code generator. Returns
|
| // a fixed array or a null handle depending on whether it succeeded.
|
| -RegExpCompiler::RegExpCompiler(int capture_count, bool ignore_case,
|
| - bool one_byte, Zone* zone)
|
| +RegExpCompiler::RegExpCompiler(intptr_t capture_count, bool ignore_case,
|
| + intptr_t specialization_cid)
|
| : next_register_(2 * (capture_count + 1)),
|
| work_list_(NULL),
|
| recursion_depth_(0),
|
| ignore_case_(ignore_case),
|
| - one_byte_(one_byte),
|
| + specialization_cid_(specialization_cid),
|
| reg_exp_too_big_(false),
|
| current_expansion_factor_(1),
|
| - frequency_collator_(),
|
| - zone_(zone) {
|
| - accept_ = new(zone) EndNode(EndNode::ACCEPT, zone);
|
| - DCHECK(next_register_ - 1 <= RegExpMacroAssembler::kMaxRegister);
|
| + isolate_(Isolate::Current()) {
|
| + accept_ = new(I) EndNode(EndNode::ACCEPT, I);
|
| }
|
|
|
|
|
| RegExpEngine::CompilationResult RegExpCompiler::Assemble(
|
| - RegExpMacroAssembler* macro_assembler,
|
| + IRRegExpMacroAssembler* macro_assembler,
|
| RegExpNode* start,
|
| - int capture_count,
|
| - Handle<String> pattern) {
|
| - Heap* heap = pattern->GetHeap();
|
| -
|
| - bool use_slow_safe_regexp_compiler = false;
|
| - if (heap->total_regexp_code_generated() >
|
| - RegExpImpl::kRegWxpCompiledLimit &&
|
| - heap->isolate()->memory_allocator()->SizeExecutable() >
|
| - RegExpImpl::kRegExpExecutableMemoryLimit) {
|
| - use_slow_safe_regexp_compiler = true;
|
| - }
|
| + intptr_t capture_count,
|
| + const String& pattern) {
|
| + static const bool use_slow_safe_regexp_compiler = false;
|
|
|
| macro_assembler->set_slow_safe(use_slow_safe_regexp_compiler);
|
| + macro_assembler_ = macro_assembler;
|
|
|
| -#ifdef DEBUG
|
| - if (FLAG_trace_regexp_assembler)
|
| - macro_assembler_ = new RegExpMacroAssemblerTracer(macro_assembler);
|
| - else
|
| -#endif
|
| - macro_assembler_ = macro_assembler;
|
| -
|
| - List <RegExpNode*> work_list(0);
|
| + ZoneGrowableArray<RegExpNode*> work_list(0);
|
| work_list_ = &work_list;
|
| - Label fail;
|
| + BlockLabel fail;
|
| macro_assembler_->PushBacktrack(&fail);
|
| Trace new_trace;
|
| start->Emit(this, &new_trace);
|
| - macro_assembler_->Bind(&fail);
|
| + macro_assembler_->BindBlock(&fail);
|
| macro_assembler_->Fail();
|
| while (!work_list.is_empty()) {
|
| work_list.RemoveLast()->Emit(this, &new_trace);
|
| }
|
| - if (reg_exp_too_big_) return IrregexpRegExpTooBig(zone_->isolate());
|
| + if (reg_exp_too_big_) return IrregexpRegExpTooBig();
|
|
|
| - Handle<HeapObject> code = macro_assembler_->GetCode(pattern);
|
| - heap->IncreaseTotalRegexpCodeGenerated(code->Size());
|
| - work_list_ = NULL;
|
| -#ifdef DEBUG
|
| - if (FLAG_print_code) {
|
| - CodeTracer::Scope trace_scope(heap->isolate()->GetCodeTracer());
|
| - OFStream os(trace_scope.file());
|
| - Handle<Code>::cast(code)->Disassemble(pattern->ToCString().get(), os);
|
| - }
|
| - if (FLAG_trace_regexp_assembler) {
|
| - delete macro_assembler_;
|
| - }
|
| -#endif
|
| - return RegExpEngine::CompilationResult(*code, next_register_);
|
| + macro_assembler->GenerateBacktrackBlock();
|
| +
|
| + return RegExpEngine::CompilationResult(macro_assembler->backtrack_goto(),
|
| + macro_assembler->graph_entry(),
|
| + macro_assembler->num_blocks(),
|
| + macro_assembler->num_stack_locals());
|
| }
|
|
|
|
|
| -bool Trace::DeferredAction::Mentions(int that) {
|
| +bool Trace::DeferredAction::Mentions(intptr_t that) {
|
| if (action_type() == ActionNode::CLEAR_CAPTURES) {
|
| Interval range = static_cast<DeferredClearCaptures*>(this)->range();
|
| return range.Contains(that);
|
| @@ -421,7 +427,7 @@ bool Trace::DeferredAction::Mentions(int that) {
|
| }
|
|
|
|
|
| -bool Trace::mentions_reg(int reg) {
|
| +bool Trace::mentions_reg(intptr_t reg) {
|
| for (DeferredAction* action = actions_;
|
| action != NULL;
|
| action = action->next()) {
|
| @@ -432,8 +438,8 @@ bool Trace::mentions_reg(int reg) {
|
| }
|
|
|
|
|
| -bool Trace::GetStoredPosition(int reg, int* cp_offset) {
|
| - DCHECK_EQ(0, *cp_offset);
|
| +bool Trace::GetStoredPosition(intptr_t reg, intptr_t* cp_offset) {
|
| + ASSERT(*cp_offset == 0);
|
| for (DeferredAction* action = actions_;
|
| action != NULL;
|
| action = action->next()) {
|
| @@ -450,19 +456,22 @@ bool Trace::GetStoredPosition(int reg, int* cp_offset) {
|
| }
|
|
|
|
|
| -int Trace::FindAffectedRegisters(OutSet* affected_registers,
|
| - Zone* zone) {
|
| - int max_register = RegExpCompiler::kNoRegister;
|
| +// This is called as we come into a loop choice node and some other tricky
|
| +// nodes. It normalizes the state of the code generator to ensure we can
|
| +// generate generic code.
|
| +intptr_t Trace::FindAffectedRegisters(OutSet* affected_registers,
|
| + Isolate* isolate) {
|
| + intptr_t max_register = RegExpCompiler::kNoRegister;
|
| for (DeferredAction* action = actions_;
|
| action != NULL;
|
| action = action->next()) {
|
| if (action->action_type() == ActionNode::CLEAR_CAPTURES) {
|
| Interval range = static_cast<DeferredClearCaptures*>(action)->range();
|
| - for (int i = range.from(); i <= range.to(); i++)
|
| - affected_registers->Set(i, zone);
|
| + for (intptr_t i = range.from(); i <= range.to(); i++)
|
| + affected_registers->Set(i, isolate);
|
| if (range.to() > max_register) max_register = range.to();
|
| } else {
|
| - affected_registers->Set(action->reg(), zone);
|
| + affected_registers->Set(action->reg(), isolate);
|
| if (action->reg() > max_register) max_register = action->reg();
|
| }
|
| }
|
| @@ -471,14 +480,14 @@ int Trace::FindAffectedRegisters(OutSet* affected_registers,
|
|
|
|
|
| void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
|
| - int max_register,
|
| + intptr_t max_register,
|
| const OutSet& registers_to_pop,
|
| const OutSet& registers_to_clear) {
|
| - for (int reg = max_register; reg >= 0; reg--) {
|
| + for (intptr_t reg = max_register; reg >= 0; reg--) {
|
| if (registers_to_pop.Get(reg)) {
|
| assembler->PopRegister(reg);
|
| } else if (registers_to_clear.Get(reg)) {
|
| - int clear_to = reg;
|
| + intptr_t clear_to = reg;
|
| while (reg > 0 && registers_to_clear.Get(reg - 1)) {
|
| reg--;
|
| }
|
| @@ -489,18 +498,12 @@ void Trace::RestoreAffectedRegisters(RegExpMacroAssembler* assembler,
|
|
|
|
|
| void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
| - int max_register,
|
| + intptr_t max_register,
|
| const OutSet& affected_registers,
|
| OutSet* registers_to_pop,
|
| OutSet* registers_to_clear,
|
| - Zone* zone) {
|
| - // The "+1" is to avoid a push_limit of zero if stack_limit_slack() is 1.
|
| - const int push_limit = (assembler->stack_limit_slack() + 1) / 2;
|
| -
|
| - // Count pushes performed to force a stack limit check occasionally.
|
| - int pushes = 0;
|
| -
|
| - for (int reg = 0; reg <= max_register; reg++) {
|
| + Isolate* isolate) {
|
| + for (intptr_t reg = 0; reg <= max_register; reg++) {
|
| if (!affected_registers.Get(reg)) {
|
| continue;
|
| }
|
| @@ -508,13 +511,13 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
| // The chronologically first deferred action in the trace
|
| // is used to infer the action needed to restore a register
|
| // to its previous state (or not, if it's safe to ignore it).
|
| - enum DeferredActionUndoType { IGNORE, RESTORE, CLEAR };
|
| - DeferredActionUndoType undo_action = IGNORE;
|
| + enum DeferredActionUndoType { ACTION_IGNORE, ACTION_RESTORE, ACTION_CLEAR };
|
| + DeferredActionUndoType undo_action = ACTION_IGNORE;
|
|
|
| - int value = 0;
|
| + intptr_t value = 0;
|
| bool absolute = false;
|
| bool clear = false;
|
| - int store_position = -1;
|
| + intptr_t store_position = -1;
|
| // This is a little tricky because we are scanning the actions in reverse
|
| // historical order (newest first).
|
| for (DeferredAction* action = actions_;
|
| @@ -531,21 +534,21 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
| }
|
| // SET_REGISTER is currently only used for newly introduced loop
|
| // counters. They can have a significant previous value if they
|
| - // occour in a loop. TODO(lrn): Propagate this information, so
|
| - // we can set undo_action to IGNORE if we know there is no value to
|
| - // restore.
|
| - undo_action = RESTORE;
|
| - DCHECK_EQ(store_position, -1);
|
| - DCHECK(!clear);
|
| + // occour in a loop. TODO(lrn): Propagate this information, so we
|
| + // can set undo_action to ACTION_IGNORE if we know there is no
|
| + // value to restore.
|
| + undo_action = ACTION_RESTORE;
|
| + ASSERT(store_position == -1);
|
| + ASSERT(!clear);
|
| break;
|
| }
|
| case ActionNode::INCREMENT_REGISTER:
|
| if (!absolute) {
|
| value++;
|
| }
|
| - DCHECK_EQ(store_position, -1);
|
| - DCHECK(!clear);
|
| - undo_action = RESTORE;
|
| + ASSERT(store_position == -1);
|
| + ASSERT(!clear);
|
| + undo_action = ACTION_RESTORE;
|
| break;
|
| case ActionNode::STORE_POSITION: {
|
| Trace::DeferredCapture* pc =
|
| @@ -562,12 +565,12 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
| // always set correctly if we succeed. There is no
|
| // need to undo a setting on backtrack, because we
|
| // will set it again or fail.
|
| - undo_action = IGNORE;
|
| + undo_action = ACTION_IGNORE;
|
| } else {
|
| - undo_action = pc->is_capture() ? CLEAR : RESTORE;
|
| + undo_action = pc->is_capture() ? ACTION_CLEAR : ACTION_RESTORE;
|
| }
|
| - DCHECK(!absolute);
|
| - DCHECK_EQ(value, 0);
|
| + ASSERT(!absolute);
|
| + ASSERT(value == 0);
|
| break;
|
| }
|
| case ActionNode::CLEAR_CAPTURES: {
|
| @@ -577,9 +580,9 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
| if (store_position == -1) {
|
| clear = true;
|
| }
|
| - undo_action = RESTORE;
|
| - DCHECK(!absolute);
|
| - DCHECK_EQ(value, 0);
|
| + undo_action = ACTION_RESTORE;
|
| + ASSERT(!absolute);
|
| + ASSERT(value == 0);
|
| break;
|
| }
|
| default:
|
| @@ -589,19 +592,11 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
| }
|
| }
|
| // Prepare for the undo-action (e.g., push if it's going to be popped).
|
| - if (undo_action == RESTORE) {
|
| - pushes++;
|
| - RegExpMacroAssembler::StackCheckFlag stack_check =
|
| - RegExpMacroAssembler::kNoStackLimitCheck;
|
| - if (pushes == push_limit) {
|
| - stack_check = RegExpMacroAssembler::kCheckStackLimit;
|
| - pushes = 0;
|
| - }
|
| -
|
| - assembler->PushRegister(reg, stack_check);
|
| - registers_to_pop->Set(reg, zone);
|
| - } else if (undo_action == CLEAR) {
|
| - registers_to_clear->Set(reg, zone);
|
| + if (undo_action == ACTION_RESTORE) {
|
| + assembler->PushRegister(reg);
|
| + registers_to_pop->Set(reg, isolate);
|
| + } else if (undo_action == ACTION_CLEAR) {
|
| + registers_to_clear->Set(reg, isolate);
|
| }
|
| // Perform the chronologically last action (or accumulated increment)
|
| // for the register.
|
| @@ -624,7 +619,7 @@ void Trace::PerformDeferredActions(RegExpMacroAssembler* assembler,
|
| void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
|
| RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
|
| - DCHECK(!is_trivial());
|
| + ASSERT(!is_trivial());
|
|
|
| if (actions_ == NULL && backtrack() == NULL) {
|
| // Here we just have some deferred cp advances to fix and we are back to
|
| @@ -647,8 +642,7 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
|
| assembler->PushCurrentPosition();
|
| }
|
|
|
| - int max_register = FindAffectedRegisters(&affected_registers,
|
| - compiler->zone());
|
| + intptr_t max_register = FindAffectedRegisters(&affected_registers, CI);
|
| OutSet registers_to_pop;
|
| OutSet registers_to_clear;
|
| PerformDeferredActions(assembler,
|
| @@ -656,19 +650,19 @@ void Trace::Flush(RegExpCompiler* compiler, RegExpNode* successor) {
|
| affected_registers,
|
| ®isters_to_pop,
|
| ®isters_to_clear,
|
| - compiler->zone());
|
| + CI);
|
| if (cp_offset_ != 0) {
|
| assembler->AdvanceCurrentPosition(cp_offset_);
|
| }
|
|
|
| // Create a new trivial state and generate the node with that.
|
| - Label undo;
|
| + BlockLabel undo;
|
| assembler->PushBacktrack(&undo);
|
| Trace new_state;
|
| successor->Emit(compiler, &new_state);
|
|
|
| // On backtrack we need to restore state.
|
| - assembler->Bind(&undo);
|
| + assembler->BindBlock(&undo);
|
| RestoreAffectedRegisters(assembler,
|
| max_register,
|
| registers_to_pop,
|
| @@ -687,10 +681,10 @@ void NegativeSubmatchSuccess::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
|
| // Omit flushing the trace. We discard the entire stack frame anyway.
|
|
|
| - if (!label()->is_bound()) {
|
| + if (!label()->IsBound()) {
|
| // We are completely independent of the trace, since we ignore it,
|
| // so this code can be used as the generic version.
|
| - assembler->Bind(label());
|
| + assembler->BindBlock(label());
|
| }
|
|
|
| // Throw away everything on the backtrack stack since the start
|
| @@ -715,8 +709,8 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| return;
|
| }
|
| RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - if (!label()->is_bound()) {
|
| - assembler->Bind(label());
|
| + if (!label()->IsBound()) {
|
| + assembler->BindBlock(label());
|
| }
|
| switch (action_) {
|
| case ACCEPT:
|
| @@ -733,37 +727,38 @@ void EndNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| }
|
|
|
|
|
| -void GuardedAlternative::AddGuard(Guard* guard, Zone* zone) {
|
| +void GuardedAlternative::AddGuard(Guard* guard, Isolate* isolate) {
|
| if (guards_ == NULL)
|
| - guards_ = new(zone) ZoneList<Guard*>(1, zone);
|
| - guards_->Add(guard, zone);
|
| + guards_ = new(isolate) ZoneGrowableArray<Guard*>(1);
|
| + guards_->Add(guard);
|
| }
|
|
|
|
|
| -ActionNode* ActionNode::SetRegister(int reg,
|
| - int val,
|
| +ActionNode* ActionNode::SetRegister(intptr_t reg,
|
| + intptr_t val,
|
| RegExpNode* on_success) {
|
| ActionNode* result =
|
| - new(on_success->zone()) ActionNode(SET_REGISTER, on_success);
|
| + new(on_success->isolate()) ActionNode(SET_REGISTER, on_success);
|
| result->data_.u_store_register.reg = reg;
|
| result->data_.u_store_register.value = val;
|
| return result;
|
| }
|
|
|
|
|
| -ActionNode* ActionNode::IncrementRegister(int reg, RegExpNode* on_success) {
|
| +ActionNode* ActionNode::IncrementRegister(intptr_t reg,
|
| + RegExpNode* on_success) {
|
| ActionNode* result =
|
| - new(on_success->zone()) ActionNode(INCREMENT_REGISTER, on_success);
|
| + new(on_success->isolate()) ActionNode(INCREMENT_REGISTER, on_success);
|
| result->data_.u_increment_register.reg = reg;
|
| return result;
|
| }
|
|
|
|
|
| -ActionNode* ActionNode::StorePosition(int reg,
|
| +ActionNode* ActionNode::StorePosition(intptr_t reg,
|
| bool is_capture,
|
| RegExpNode* on_success) {
|
| ActionNode* result =
|
| - new(on_success->zone()) ActionNode(STORE_POSITION, on_success);
|
| + new(on_success->isolate()) ActionNode(STORE_POSITION, on_success);
|
| result->data_.u_position_register.reg = reg;
|
| result->data_.u_position_register.is_capture = is_capture;
|
| return result;
|
| @@ -773,31 +768,32 @@ ActionNode* ActionNode::StorePosition(int reg,
|
| ActionNode* ActionNode::ClearCaptures(Interval range,
|
| RegExpNode* on_success) {
|
| ActionNode* result =
|
| - new(on_success->zone()) ActionNode(CLEAR_CAPTURES, on_success);
|
| + new(on_success->isolate()) ActionNode(CLEAR_CAPTURES, on_success);
|
| result->data_.u_clear_captures.range_from = range.from();
|
| result->data_.u_clear_captures.range_to = range.to();
|
| return result;
|
| }
|
|
|
|
|
| -ActionNode* ActionNode::BeginSubmatch(int stack_reg,
|
| - int position_reg,
|
| +ActionNode* ActionNode::BeginSubmatch(intptr_t stack_reg,
|
| + intptr_t position_reg,
|
| RegExpNode* on_success) {
|
| ActionNode* result =
|
| - new(on_success->zone()) ActionNode(BEGIN_SUBMATCH, on_success);
|
| + new(on_success->isolate()) ActionNode(BEGIN_SUBMATCH, on_success);
|
| result->data_.u_submatch.stack_pointer_register = stack_reg;
|
| result->data_.u_submatch.current_position_register = position_reg;
|
| return result;
|
| }
|
|
|
|
|
| -ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
|
| - int position_reg,
|
| - int clear_register_count,
|
| - int clear_register_from,
|
| +ActionNode* ActionNode::PositiveSubmatchSuccess(intptr_t stack_reg,
|
| + intptr_t position_reg,
|
| + intptr_t clear_register_count,
|
| + intptr_t clear_register_from,
|
| RegExpNode* on_success) {
|
| ActionNode* result =
|
| - new(on_success->zone()) ActionNode(POSITIVE_SUBMATCH_SUCCESS, on_success);
|
| + new(on_success->isolate()) ActionNode(POSITIVE_SUBMATCH_SUCCESS,
|
| + on_success);
|
| result->data_.u_submatch.stack_pointer_register = stack_reg;
|
| result->data_.u_submatch.current_position_register = position_reg;
|
| result->data_.u_submatch.clear_register_count = clear_register_count;
|
| @@ -806,12 +802,12 @@ ActionNode* ActionNode::PositiveSubmatchSuccess(int stack_reg,
|
| }
|
|
|
|
|
| -ActionNode* ActionNode::EmptyMatchCheck(int start_register,
|
| - int repetition_register,
|
| - int repetition_limit,
|
| +ActionNode* ActionNode::EmptyMatchCheck(intptr_t start_register,
|
| + intptr_t repetition_register,
|
| + intptr_t repetition_limit,
|
| RegExpNode* on_success) {
|
| ActionNode* result =
|
| - new(on_success->zone()) ActionNode(EMPTY_MATCH_CHECK, on_success);
|
| + new(on_success->isolate()) ActionNode(EMPTY_MATCH_CHECK, on_success);
|
| result->data_.u_empty_match_check.start_register = start_register;
|
| result->data_.u_empty_match_check.repetition_register = repetition_register;
|
| result->data_.u_empty_match_check.repetition_limit = repetition_limit;
|
| @@ -841,13 +837,13 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
|
| Trace* trace) {
|
| switch (guard->op()) {
|
| case Guard::LT:
|
| - DCHECK(!trace->mentions_reg(guard->reg()));
|
| + ASSERT(!trace->mentions_reg(guard->reg()));
|
| macro_assembler->IfRegisterGE(guard->reg(),
|
| guard->value(),
|
| trace->backtrack());
|
| break;
|
| case Guard::GEQ:
|
| - DCHECK(!trace->mentions_reg(guard->reg()));
|
| + ASSERT(!trace->mentions_reg(guard->reg()));
|
| macro_assembler->IfRegisterLT(guard->reg(),
|
| guard->value(),
|
| trace->backtrack());
|
| @@ -858,18 +854,18 @@ void ChoiceNode::GenerateGuard(RegExpMacroAssembler* macro_assembler,
|
|
|
| // Returns the number of characters in the equivalence class, omitting those
|
| // that cannot occur in the source string because it is ASCII.
|
| -static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
|
| - bool one_byte_subject,
|
| - unibrow::uchar* letters) {
|
| - int length =
|
| - isolate->jsregexp_uncanonicalize()->get(character, '\0', letters);
|
| +static intptr_t GetCaseIndependentLetters(uint16_t character,
|
| + bool one_byte_subject,
|
| + int32_t* letters) {
|
| + unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
|
| + intptr_t length = jsregexp_uncanonicalize.get(character, '\0', letters);
|
| // Unibrow returns 0 or 1 for characters where case independence is
|
| // trivial.
|
| if (length == 0) {
|
| letters[0] = character;
|
| length = 1;
|
| }
|
| - if (!one_byte_subject || character <= String::kMaxOneByteCharCode) {
|
| + if (!one_byte_subject || character <= Symbols::kMaxOneCharCodeSymbol) {
|
| return length;
|
| }
|
|
|
| @@ -883,9 +879,9 @@ static int GetCaseIndependentLetters(Isolate* isolate, uc16 character,
|
|
|
| static inline bool EmitSimpleCharacter(Isolate* isolate,
|
| RegExpCompiler* compiler,
|
| - uc16 c,
|
| - Label* on_failure,
|
| - int cp_offset,
|
| + uint16_t c,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| bool check,
|
| bool preloaded) {
|
| RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| @@ -906,15 +902,15 @@ static inline bool EmitSimpleCharacter(Isolate* isolate,
|
| // independent matches.
|
| static inline bool EmitAtomNonLetter(Isolate* isolate,
|
| RegExpCompiler* compiler,
|
| - uc16 c,
|
| - Label* on_failure,
|
| - int cp_offset,
|
| + uint16_t c,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| bool check,
|
| bool preloaded) {
|
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| bool one_byte = compiler->one_byte();
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t length = GetCaseIndependentLetters(c, one_byte, chars);
|
| if (length < 1) {
|
| // This can't match. Must be an one-byte subject and a non-one-byte
|
| // character. We do not need to do anything since the one-byte pass
|
| @@ -924,7 +920,7 @@ static inline bool EmitAtomNonLetter(Isolate* isolate,
|
| bool checked = false;
|
| // We handle the length > 1 case in a later pass.
|
| if (length == 1) {
|
| - if (one_byte && c > String::kMaxOneByteCharCodeU) {
|
| + if (one_byte && c > Symbols::kMaxOneCharCodeSymbol) {
|
| // Can't match - see above.
|
| return false; // Bounds not checked.
|
| }
|
| @@ -939,32 +935,34 @@ static inline bool EmitAtomNonLetter(Isolate* isolate,
|
|
|
|
|
| static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
|
| - bool one_byte, uc16 c1, uc16 c2,
|
| - Label* on_failure) {
|
| - uc16 char_mask;
|
| + bool one_byte,
|
| + uint16_t c1,
|
| + uint16_t c2,
|
| + BlockLabel* on_failure) {
|
| + uint16_t char_mask;
|
| if (one_byte) {
|
| - char_mask = String::kMaxOneByteCharCode;
|
| + char_mask = Symbols::kMaxOneCharCodeSymbol;
|
| } else {
|
| - char_mask = String::kMaxUtf16CodeUnit;
|
| + char_mask = Utf16::kMaxCodeUnit;
|
| }
|
| - uc16 exor = c1 ^ c2;
|
| + uint16_t exor = c1 ^ c2;
|
| // Check whether exor has only one bit set.
|
| if (((exor - 1) & exor) == 0) {
|
| // If c1 and c2 differ only by one bit.
|
| // Ecma262UnCanonicalize always gives the highest number last.
|
| - DCHECK(c2 > c1);
|
| - uc16 mask = char_mask ^ exor;
|
| + ASSERT(c2 > c1);
|
| + uint16_t mask = char_mask ^ exor;
|
| macro_assembler->CheckNotCharacterAfterAnd(c1, mask, on_failure);
|
| return true;
|
| }
|
| - DCHECK(c2 > c1);
|
| - uc16 diff = c2 - c1;
|
| + ASSERT(c2 > c1);
|
| + uint16_t diff = c2 - c1;
|
| if (((diff - 1) & diff) == 0 && c1 >= diff) {
|
| // If the characters differ by 2^n but don't differ by one bit then
|
| // subtract the difference from the found character, then do the or
|
| // trick. We avoid the theoretical case where negative numbers are
|
| // involved in order to simplify code generation.
|
| - uc16 mask = char_mask ^ diff;
|
| + uint16_t mask = char_mask ^ diff;
|
| macro_assembler->CheckNotCharacterAfterMinusAnd(c1 - diff,
|
| diff,
|
| mask,
|
| @@ -977,9 +975,9 @@ static bool ShortCutEmitCharacterPair(RegExpMacroAssembler* macro_assembler,
|
|
|
| typedef bool EmitCharacterFunction(Isolate* isolate,
|
| RegExpCompiler* compiler,
|
| - uc16 c,
|
| - Label* on_failure,
|
| - int cp_offset,
|
| + uint16_t c,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| bool check,
|
| bool preloaded);
|
|
|
| @@ -987,31 +985,34 @@ typedef bool EmitCharacterFunction(Isolate* isolate,
|
| // matches.
|
| static inline bool EmitAtomLetter(Isolate* isolate,
|
| RegExpCompiler* compiler,
|
| - uc16 c,
|
| - Label* on_failure,
|
| - int cp_offset,
|
| + uint16_t c,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| bool check,
|
| bool preloaded) {
|
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| bool one_byte = compiler->one_byte();
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int length = GetCaseIndependentLetters(isolate, c, one_byte, chars);
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t length = GetCaseIndependentLetters(c, one_byte, chars);
|
| if (length <= 1) return false;
|
| // We may not need to check against the end of the input string
|
| // if this character lies before a character that matched.
|
| if (!preloaded) {
|
| macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check);
|
| }
|
| - Label ok;
|
| - DCHECK(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
|
| + BlockLabel ok;
|
| + ASSERT(unibrow::Ecma262UnCanonicalize::kMaxWidth == 4);
|
| switch (length) {
|
| case 2: {
|
| - if (ShortCutEmitCharacterPair(macro_assembler, one_byte, chars[0],
|
| - chars[1], on_failure)) {
|
| + if (ShortCutEmitCharacterPair(macro_assembler,
|
| + one_byte,
|
| + chars[0],
|
| + chars[1],
|
| + on_failure)) {
|
| } else {
|
| macro_assembler->CheckCharacter(chars[0], &ok);
|
| macro_assembler->CheckNotCharacter(chars[1], on_failure);
|
| - macro_assembler->Bind(&ok);
|
| + macro_assembler->BindBlock(&ok);
|
| }
|
| break;
|
| }
|
| @@ -1022,7 +1023,7 @@ static inline bool EmitAtomLetter(Isolate* isolate,
|
| macro_assembler->CheckCharacter(chars[0], &ok);
|
| macro_assembler->CheckCharacter(chars[1], &ok);
|
| macro_assembler->CheckNotCharacter(chars[2], on_failure);
|
| - macro_assembler->Bind(&ok);
|
| + macro_assembler->BindBlock(&ok);
|
| break;
|
| default:
|
| UNREACHABLE();
|
| @@ -1033,10 +1034,10 @@ static inline bool EmitAtomLetter(Isolate* isolate,
|
|
|
|
|
| static void EmitBoundaryTest(RegExpMacroAssembler* masm,
|
| - int border,
|
| - Label* fall_through,
|
| - Label* above_or_equal,
|
| - Label* below) {
|
| + intptr_t border,
|
| + BlockLabel* fall_through,
|
| + BlockLabel* above_or_equal,
|
| + BlockLabel* below) {
|
| if (below != fall_through) {
|
| masm->CheckCharacterLT(border, below);
|
| if (above_or_equal != fall_through) masm->GoTo(above_or_equal);
|
| @@ -1047,11 +1048,11 @@ static void EmitBoundaryTest(RegExpMacroAssembler* masm,
|
|
|
|
|
| static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
|
| - int first,
|
| - int last,
|
| - Label* fall_through,
|
| - Label* in_range,
|
| - Label* out_of_range) {
|
| + intptr_t first,
|
| + intptr_t last,
|
| + BlockLabel* fall_through,
|
| + BlockLabel* in_range,
|
| + BlockLabel* out_of_range) {
|
| if (in_range == fall_through) {
|
| if (first == last) {
|
| masm->CheckNotCharacter(first, out_of_range);
|
| @@ -1073,29 +1074,28 @@ static void EmitDoubleBoundaryTest(RegExpMacroAssembler* masm,
|
| // odd_label is for ranges[i] to ranges[i + 1] where i - start_index is odd.
|
| static void EmitUseLookupTable(
|
| RegExpMacroAssembler* masm,
|
| - ZoneList<int>* ranges,
|
| - int start_index,
|
| - int end_index,
|
| - int min_char,
|
| - Label* fall_through,
|
| - Label* even_label,
|
| - Label* odd_label) {
|
| - static const int kSize = RegExpMacroAssembler::kTableSize;
|
| - static const int kMask = RegExpMacroAssembler::kTableMask;
|
| -
|
| - int base = (min_char & ~kMask);
|
| - USE(base);
|
| + ZoneGrowableArray<int>* ranges,
|
| + intptr_t start_index,
|
| + intptr_t end_index,
|
| + intptr_t min_char,
|
| + BlockLabel* fall_through,
|
| + BlockLabel* even_label,
|
| + BlockLabel* odd_label) {
|
| + static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
| + static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
|
| +
|
| + intptr_t base = (min_char & ~kMask);
|
|
|
| // Assert that everything is on one kTableSize page.
|
| - for (int i = start_index; i <= end_index; i++) {
|
| - DCHECK_EQ(ranges->at(i) & ~kMask, base);
|
| + for (intptr_t i = start_index; i <= end_index; i++) {
|
| + ASSERT((ranges->At(i) & ~kMask) == base);
|
| }
|
| - DCHECK(start_index == 0 || (ranges->at(start_index - 1) & ~kMask) <= base);
|
| + ASSERT(start_index == 0 || (ranges->At(start_index - 1) & ~kMask) <= base);
|
|
|
| char templ[kSize];
|
| - Label* on_bit_set;
|
| - Label* on_bit_clear;
|
| - int bit;
|
| + BlockLabel* on_bit_set;
|
| + BlockLabel* on_bit_clear;
|
| + intptr_t bit;
|
| if (even_label == fall_through) {
|
| on_bit_set = odd_label;
|
| on_bit_clear = even_label;
|
| @@ -1105,25 +1105,27 @@ static void EmitUseLookupTable(
|
| on_bit_clear = odd_label;
|
| bit = 0;
|
| }
|
| - for (int i = 0; i < (ranges->at(start_index) & kMask) && i < kSize; i++) {
|
| + for (intptr_t i = 0; i < (ranges->At(start_index) & kMask) && i < kSize;
|
| + i++) {
|
| templ[i] = bit;
|
| }
|
| - int j = 0;
|
| + intptr_t j = 0;
|
| bit ^= 1;
|
| - for (int i = start_index; i < end_index; i++) {
|
| - for (j = (ranges->at(i) & kMask); j < (ranges->at(i + 1) & kMask); j++) {
|
| + for (intptr_t i = start_index; i < end_index; i++) {
|
| + for (j = (ranges->At(i) & kMask); j < (ranges->At(i + 1) & kMask); j++) {
|
| templ[j] = bit;
|
| }
|
| bit ^= 1;
|
| }
|
| - for (int i = j; i < kSize; i++) {
|
| + for (intptr_t i = j; i < kSize; i++) {
|
| templ[i] = bit;
|
| }
|
| - Factory* factory = masm->zone()->isolate()->factory();
|
| // TODO(erikcorry): Cache these.
|
| - Handle<ByteArray> ba = factory->NewByteArray(kSize, TENURED);
|
| - for (int i = 0; i < kSize; i++) {
|
| - ba->set(i, templ[i]);
|
| + const TypedData& ba = TypedData::ZoneHandle(
|
| + masm->isolate(),
|
| + TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
|
| + for (intptr_t i = 0; i < kSize; i++) {
|
| + ba.SetUint8(i, templ[i]);
|
| }
|
| masm->CheckBitInTable(ba, on_bit_set);
|
| if (on_bit_clear != fall_through) masm->GoTo(on_bit_clear);
|
| @@ -1131,52 +1133,52 @@ static void EmitUseLookupTable(
|
|
|
|
|
| static void CutOutRange(RegExpMacroAssembler* masm,
|
| - ZoneList<int>* ranges,
|
| - int start_index,
|
| - int end_index,
|
| - int cut_index,
|
| - Label* even_label,
|
| - Label* odd_label) {
|
| + ZoneGrowableArray<int>* ranges,
|
| + intptr_t start_index,
|
| + intptr_t end_index,
|
| + intptr_t cut_index,
|
| + BlockLabel* even_label,
|
| + BlockLabel* odd_label) {
|
| bool odd = (((cut_index - start_index) & 1) == 1);
|
| - Label* in_range_label = odd ? odd_label : even_label;
|
| - Label dummy;
|
| + BlockLabel* in_range_label = odd ? odd_label : even_label;
|
| + BlockLabel dummy;
|
| EmitDoubleBoundaryTest(masm,
|
| - ranges->at(cut_index),
|
| - ranges->at(cut_index + 1) - 1,
|
| + ranges->At(cut_index),
|
| + ranges->At(cut_index + 1) - 1,
|
| &dummy,
|
| in_range_label,
|
| &dummy);
|
| - DCHECK(!dummy.is_linked());
|
| + ASSERT(!dummy.IsLinked());
|
| // Cut out the single range by rewriting the array. This creates a new
|
| // range that is a merger of the two ranges on either side of the one we
|
| // are cutting out. The oddity of the labels is preserved.
|
| - for (int j = cut_index; j > start_index; j--) {
|
| - ranges->at(j) = ranges->at(j - 1);
|
| + for (intptr_t j = cut_index; j > start_index; j--) {
|
| + (*ranges)[j] = ranges->At(j - 1);
|
| }
|
| - for (int j = cut_index + 1; j < end_index; j++) {
|
| - ranges->at(j) = ranges->at(j + 1);
|
| + for (intptr_t j = cut_index + 1; j < end_index; j++) {
|
| + (*ranges)[j] = ranges->At(j + 1);
|
| }
|
| }
|
|
|
|
|
| // Unicode case. Split the search space into kSize spaces that are handled
|
| // with recursion.
|
| -static void SplitSearchSpace(ZoneList<int>* ranges,
|
| - int start_index,
|
| - int end_index,
|
| - int* new_start_index,
|
| - int* new_end_index,
|
| - int* border) {
|
| - static const int kSize = RegExpMacroAssembler::kTableSize;
|
| - static const int kMask = RegExpMacroAssembler::kTableMask;
|
| -
|
| - int first = ranges->at(start_index);
|
| - int last = ranges->at(end_index) - 1;
|
| +static void SplitSearchSpace(ZoneGrowableArray<int>* ranges,
|
| + intptr_t start_index,
|
| + intptr_t end_index,
|
| + intptr_t* new_start_index,
|
| + intptr_t* new_end_index,
|
| + intptr_t* border) {
|
| + static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
| + static const intptr_t kMask = RegExpMacroAssembler::kTableMask;
|
| +
|
| + intptr_t first = ranges->At(start_index);
|
| + intptr_t last = ranges->At(end_index) - 1;
|
|
|
| *new_start_index = start_index;
|
| - *border = (ranges->at(start_index) & ~kMask) + kSize;
|
| + *border = (ranges->At(start_index) & ~kMask) + kSize;
|
| while (*new_start_index < end_index) {
|
| - if (ranges->at(*new_start_index) > *border) break;
|
| + if (ranges->At(*new_start_index) > *border) break;
|
| (*new_start_index)++;
|
| }
|
| // new_start_index is the index of the first edge that is beyond the
|
| @@ -1190,20 +1192,21 @@ static void SplitSearchSpace(ZoneList<int>* ranges,
|
| // 128-character space can take up a lot of space in the ranges array if,
|
| // for example, we only want to match every second character (eg. the lower
|
| // case characters on some Unicode pages).
|
| - int binary_chop_index = (end_index + start_index) / 2;
|
| + intptr_t binary_chop_index = (end_index + start_index) / 2;
|
| // The first test ensures that we get to the code that handles the Latin1
|
| // range with a single not-taken branch, speeding up this important
|
| // character range (even non-Latin1 charset-based text has spaces and
|
| // punctuation).
|
| - if (*border - 1 > String::kMaxOneByteCharCode && // Latin1 case.
|
| + if (*border - 1 > Symbols::kMaxOneCharCodeSymbol && // Latin1 case.
|
| end_index - start_index > (*new_start_index - start_index) * 2 &&
|
| - last - first > kSize * 2 && binary_chop_index > *new_start_index &&
|
| - ranges->at(binary_chop_index) >= first + 2 * kSize) {
|
| - int scan_forward_for_section_border = binary_chop_index;;
|
| - int new_border = (ranges->at(binary_chop_index) | kMask) + 1;
|
| + last - first > kSize * 2 &&
|
| + binary_chop_index > *new_start_index &&
|
| + ranges->At(binary_chop_index) >= first + 2 * kSize) {
|
| + intptr_t scan_forward_for_section_border = binary_chop_index;;
|
| + intptr_t new_border = (ranges->At(binary_chop_index) | kMask) + 1;
|
|
|
| while (scan_forward_for_section_border < end_index) {
|
| - if (ranges->at(scan_forward_for_section_border) > new_border) {
|
| + if (ranges->At(scan_forward_for_section_border) > new_border) {
|
| *new_start_index = scan_forward_for_section_border;
|
| *border = new_border;
|
| break;
|
| @@ -1212,13 +1215,13 @@ static void SplitSearchSpace(ZoneList<int>* ranges,
|
| }
|
| }
|
|
|
| - DCHECK(*new_start_index > start_index);
|
| + ASSERT(*new_start_index > start_index);
|
| *new_end_index = *new_start_index - 1;
|
| - if (ranges->at(*new_end_index) == *border) {
|
| + if (ranges->At(*new_end_index) == *border) {
|
| (*new_end_index)--;
|
| }
|
| - if (*border >= ranges->at(end_index)) {
|
| - *border = ranges->at(end_index);
|
| + if (*border >= ranges->At(end_index)) {
|
| + *border = ranges->At(end_index);
|
| *new_start_index = end_index; // Won't be used.
|
| *new_end_index = end_index - 1;
|
| }
|
| @@ -1232,18 +1235,18 @@ static void SplitSearchSpace(ZoneList<int>* ranges,
|
| // Either label can be NULL indicating backtracking. Either label can also be
|
| // equal to the fall_through label.
|
| static void GenerateBranches(RegExpMacroAssembler* masm,
|
| - ZoneList<int>* ranges,
|
| - int start_index,
|
| - int end_index,
|
| - uc16 min_char,
|
| - uc16 max_char,
|
| - Label* fall_through,
|
| - Label* even_label,
|
| - Label* odd_label) {
|
| - int first = ranges->at(start_index);
|
| - int last = ranges->at(end_index) - 1;
|
| -
|
| - DCHECK_LT(min_char, first);
|
| + ZoneGrowableArray<int>* ranges,
|
| + intptr_t start_index,
|
| + intptr_t end_index,
|
| + uint16_t min_char,
|
| + uint16_t max_char,
|
| + BlockLabel* fall_through,
|
| + BlockLabel* even_label,
|
| + BlockLabel* odd_label) {
|
| + intptr_t first = ranges->At(start_index);
|
| + intptr_t last = ranges->At(end_index) - 1;
|
| +
|
| + ASSERT(min_char < first);
|
|
|
| // Just need to test if the character is before or on-or-after
|
| // a particular character.
|
| @@ -1265,10 +1268,10 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
|
| if (end_index - start_index <= 6) {
|
| // It is faster to test for individual characters, so we look for those
|
| // first, then try arbitrary ranges in the second round.
|
| - static int kNoCutIndex = -1;
|
| - int cut = kNoCutIndex;
|
| - for (int i = start_index; i < end_index; i++) {
|
| - if (ranges->at(i) == ranges->at(i + 1) - 1) {
|
| + static intptr_t kNoCutIndex = -1;
|
| + intptr_t cut = kNoCutIndex;
|
| + for (intptr_t i = start_index; i < end_index; i++) {
|
| + if (ranges->At(i) == ranges->At(i + 1) - 1) {
|
| cut = i;
|
| break;
|
| }
|
| @@ -1276,7 +1279,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
|
| if (cut == kNoCutIndex) cut = start_index;
|
| CutOutRange(
|
| masm, ranges, start_index, end_index, cut, even_label, odd_label);
|
| - DCHECK_GE(end_index - start_index, 2);
|
| + ASSERT(end_index - start_index >= 2);
|
| GenerateBranches(masm,
|
| ranges,
|
| start_index + 1,
|
| @@ -1291,7 +1294,7 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
|
|
|
| // If there are a lot of intervals in the regexp, then we will use tables to
|
| // determine whether the character is inside or outside the character class.
|
| - static const int kBits = RegExpMacroAssembler::kTableSizeBits;
|
| + static const intptr_t kBits = RegExpMacroAssembler::kTableSizeBits;
|
|
|
| if ((max_char >> kBits) == (min_char >> kBits)) {
|
| EmitUseLookupTable(masm,
|
| @@ -1319,9 +1322,9 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
|
| return;
|
| }
|
|
|
| - int new_start_index = 0;
|
| - int new_end_index = 0;
|
| - int border = 0;
|
| + intptr_t new_start_index = 0;
|
| + intptr_t new_end_index = 0;
|
| + intptr_t border = 0;
|
|
|
| SplitSearchSpace(ranges,
|
| start_index,
|
| @@ -1330,34 +1333,34 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
|
| &new_end_index,
|
| &border);
|
|
|
| - Label handle_rest;
|
| - Label* above = &handle_rest;
|
| + BlockLabel handle_rest;
|
| + BlockLabel* above = &handle_rest;
|
| if (border == last + 1) {
|
| // We didn't find any section that started after the limit, so everything
|
| // above the border is one of the terminal labels.
|
| above = (end_index & 1) != (start_index & 1) ? odd_label : even_label;
|
| - DCHECK(new_end_index == end_index - 1);
|
| + ASSERT(new_end_index == end_index - 1);
|
| }
|
|
|
| - DCHECK_LE(start_index, new_end_index);
|
| - DCHECK_LE(new_start_index, end_index);
|
| - DCHECK_LT(start_index, new_start_index);
|
| - DCHECK_LT(new_end_index, end_index);
|
| - DCHECK(new_end_index + 1 == new_start_index ||
|
| + ASSERT(start_index <= new_end_index);
|
| + ASSERT(new_start_index <= end_index);
|
| + ASSERT(start_index < new_start_index);
|
| + ASSERT(new_end_index < end_index);
|
| + ASSERT(new_end_index + 1 == new_start_index ||
|
| (new_end_index + 2 == new_start_index &&
|
| - border == ranges->at(new_end_index + 1)));
|
| - DCHECK_LT(min_char, border - 1);
|
| - DCHECK_LT(border, max_char);
|
| - DCHECK_LT(ranges->at(new_end_index), border);
|
| - DCHECK(border < ranges->at(new_start_index) ||
|
| - (border == ranges->at(new_start_index) &&
|
| + border == ranges->At(new_end_index + 1)));
|
| + ASSERT(min_char < border - 1);
|
| + ASSERT(border < max_char);
|
| + ASSERT(ranges->At(new_end_index) < border);
|
| + ASSERT(border < ranges->At(new_start_index) ||
|
| + (border == ranges->At(new_start_index) &&
|
| new_start_index == end_index &&
|
| new_end_index == end_index - 1 &&
|
| border == last + 1));
|
| - DCHECK(new_start_index == 0 || border >= ranges->at(new_start_index - 1));
|
| + ASSERT(new_start_index == 0 || border >= ranges->At(new_start_index - 1));
|
|
|
| masm->CheckCharacterGT(border - 1, above);
|
| - Label dummy;
|
| + BlockLabel dummy;
|
| GenerateBranches(masm,
|
| ranges,
|
| start_index,
|
| @@ -1367,8 +1370,9 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
|
| &dummy,
|
| even_label,
|
| odd_label);
|
| - if (handle_rest.is_linked()) {
|
| - masm->Bind(&handle_rest);
|
| +
|
| + if (handle_rest.IsLinked()) {
|
| + masm->BindBlock(&handle_rest);
|
| bool flip = (new_start_index & 1) != (start_index & 1);
|
| GenerateBranches(masm,
|
| ranges,
|
| @@ -1384,26 +1388,30 @@ static void GenerateBranches(RegExpMacroAssembler* masm,
|
|
|
|
|
| static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
|
| - RegExpCharacterClass* cc, bool one_byte,
|
| - Label* on_failure, int cp_offset, bool check_offset,
|
| - bool preloaded, Zone* zone) {
|
| - ZoneList<CharacterRange>* ranges = cc->ranges(zone);
|
| + RegExpCharacterClass* cc,
|
| + bool one_byte,
|
| + BlockLabel* on_failure,
|
| + intptr_t cp_offset,
|
| + bool check_offset,
|
| + bool preloaded,
|
| + Isolate* isolate) {
|
| + ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
|
| if (!CharacterRange::IsCanonical(ranges)) {
|
| CharacterRange::Canonicalize(ranges);
|
| }
|
|
|
| - int max_char;
|
| + intptr_t max_char;
|
| if (one_byte) {
|
| - max_char = String::kMaxOneByteCharCode;
|
| + max_char = Symbols::kMaxOneCharCodeSymbol;
|
| } else {
|
| - max_char = String::kMaxUtf16CodeUnit;
|
| + max_char = Utf16::kMaxCodeUnit;
|
| }
|
|
|
| - int range_count = ranges->length();
|
| + intptr_t range_count = ranges->length();
|
|
|
| - int last_valid_range = range_count - 1;
|
| + intptr_t last_valid_range = range_count - 1;
|
| while (last_valid_range >= 0) {
|
| - CharacterRange& range = ranges->at(last_valid_range);
|
| + CharacterRange& range = (*ranges)[last_valid_range];
|
| if (range.from() <= max_char) {
|
| break;
|
| }
|
| @@ -1421,7 +1429,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
|
| }
|
|
|
| if (last_valid_range == 0 &&
|
| - ranges->at(0).IsEverything(max_char)) {
|
| + ranges->At(0).IsEverything(max_char)) {
|
| if (cc->is_negated()) {
|
| macro_assembler->GoTo(on_failure);
|
| } else {
|
| @@ -1434,7 +1442,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
|
| }
|
| if (last_valid_range == 0 &&
|
| !cc->is_negated() &&
|
| - ranges->at(0).IsEverything(max_char)) {
|
| + ranges->At(0).IsEverything(max_char)) {
|
| // This is a common case hit by non-anchored expressions.
|
| if (check_offset) {
|
| macro_assembler->CheckPosition(cp_offset, on_failure);
|
| @@ -1446,7 +1454,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
|
| macro_assembler->LoadCurrentCharacter(cp_offset, on_failure, check_offset);
|
| }
|
|
|
| - if (cc->is_standard(zone) &&
|
| + if (cc->is_standard() &&
|
| macro_assembler->CheckSpecialCharacterClass(cc->standard_type(),
|
| on_failure)) {
|
| return;
|
| @@ -1459,27 +1467,27 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
|
| // entry at zero which goes to the failure label, but if there
|
| // was already one there we fall through for success on that entry.
|
| // Subsequent entries have alternating meaning (success/failure).
|
| - ZoneList<int>* range_boundaries =
|
| - new(zone) ZoneList<int>(last_valid_range, zone);
|
| + ZoneGrowableArray<int>* range_boundaries =
|
| + new(isolate) ZoneGrowableArray<int>(last_valid_range);
|
|
|
| bool zeroth_entry_is_failure = !cc->is_negated();
|
|
|
| - for (int i = 0; i <= last_valid_range; i++) {
|
| - CharacterRange& range = ranges->at(i);
|
| + for (intptr_t i = 0; i <= last_valid_range; i++) {
|
| + CharacterRange& range = (*ranges)[i];
|
| if (range.from() == 0) {
|
| - DCHECK_EQ(i, 0);
|
| + ASSERT(i == 0);
|
| zeroth_entry_is_failure = !zeroth_entry_is_failure;
|
| } else {
|
| - range_boundaries->Add(range.from(), zone);
|
| + range_boundaries->Add(range.from());
|
| }
|
| - range_boundaries->Add(range.to() + 1, zone);
|
| + range_boundaries->Add(range.to() + 1);
|
| }
|
| - int end_index = range_boundaries->length() - 1;
|
| - if (range_boundaries->at(end_index) > max_char) {
|
| + intptr_t end_index = range_boundaries->length() - 1;
|
| + if (range_boundaries->At(end_index) > max_char) {
|
| end_index--;
|
| }
|
|
|
| - Label fall_through;
|
| + BlockLabel fall_through;
|
| GenerateBranches(macro_assembler,
|
| range_boundaries,
|
| 0, // start_index.
|
| @@ -1489,7 +1497,7 @@ static void EmitCharClass(RegExpMacroAssembler* macro_assembler,
|
| &fall_through,
|
| zeroth_entry_is_failure ? &fall_through : on_failure,
|
| zeroth_entry_is_failure ? on_failure : &fall_through);
|
| - macro_assembler->Bind(&fall_through);
|
| + macro_assembler->BindBlock(&fall_through);
|
| }
|
|
|
|
|
| @@ -1506,7 +1514,7 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
|
|
|
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| if (trace->is_trivial()) {
|
| - if (label_.is_bound()) {
|
| + if (label_.IsBound()) {
|
| // We are being asked to generate a generic version, but that's already
|
| // been done so just go to it.
|
| macro_assembler->GoTo(&label_);
|
| @@ -1520,14 +1528,14 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
|
| return DONE;
|
| }
|
| // Generate generic version of the node and bind the label for later use.
|
| - macro_assembler->Bind(&label_);
|
| + macro_assembler->BindBlock(&label_);
|
| return CONTINUE;
|
| }
|
|
|
| // We are being asked to make a non-generic version. Keep track of how many
|
| // non-generic versions we generate so as not to overdo it.
|
| trace_count_++;
|
| - if (FLAG_regexp_optimization &&
|
| + if (kRegexpOptimization &&
|
| trace_count_ < kMaxCopiesCodeGenerated &&
|
| compiler->recursion_depth() <= RegExpCompiler::kMaxRecursion) {
|
| return CONTINUE;
|
| @@ -1541,9 +1549,9 @@ RegExpNode::LimitResult RegExpNode::LimitVersions(RegExpCompiler* compiler,
|
| }
|
|
|
|
|
| -int ActionNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| +intptr_t ActionNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| if (budget <= 0) return 0;
|
| if (action_type_ == POSITIVE_SUBMATCH_SUCCESS) return 0; // Rewinds input!
|
| return on_success()->EatsAtLeast(still_to_find,
|
| @@ -1552,8 +1560,8 @@ int ActionNode::EatsAtLeast(int still_to_find,
|
| }
|
|
|
|
|
| -void ActionNode::FillInBMInfo(int offset,
|
| - int budget,
|
| +void ActionNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| BoyerMooreLookahead* bm,
|
| bool not_at_start) {
|
| if (action_type_ == BEGIN_SUBMATCH) {
|
| @@ -1565,9 +1573,9 @@ void ActionNode::FillInBMInfo(int offset,
|
| }
|
|
|
|
|
| -int AssertionNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| +intptr_t AssertionNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| if (budget <= 0) return 0;
|
| // If we know we are not at the start and we are asked "how many characters
|
| // will you match if you succeed?" then we can answer anything since false
|
| @@ -1581,8 +1589,8 @@ int AssertionNode::EatsAtLeast(int still_to_find,
|
| }
|
|
|
|
|
| -void AssertionNode::FillInBMInfo(int offset,
|
| - int budget,
|
| +void AssertionNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| BoyerMooreLookahead* bm,
|
| bool not_at_start) {
|
| // Match the behaviour of EatsAtLeast on this node.
|
| @@ -1592,9 +1600,9 @@ void AssertionNode::FillInBMInfo(int offset,
|
| }
|
|
|
|
|
| -int BackReferenceNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| +intptr_t BackReferenceNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| if (budget <= 0) return 0;
|
| return on_success()->EatsAtLeast(still_to_find,
|
| budget - 1,
|
| @@ -1602,10 +1610,10 @@ int BackReferenceNode::EatsAtLeast(int still_to_find,
|
| }
|
|
|
|
|
| -int TextNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| - int answer = Length();
|
| +intptr_t TextNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| + intptr_t answer = Length();
|
| if (answer >= still_to_find) return answer;
|
| if (budget <= 0) return answer;
|
| // We are not at start after this node so we set the last argument to 'true'.
|
| @@ -1615,13 +1623,13 @@ int TextNode::EatsAtLeast(int still_to_find,
|
| }
|
|
|
|
|
| -int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| +intptr_t NegativeLookaheadChoiceNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| if (budget <= 0) return 0;
|
| // Alternative 0 is the negative lookahead, alternative 1 is what comes
|
| // afterwards.
|
| - RegExpNode* node = alternatives_->at(1).node();
|
| + RegExpNode* node = (*alternatives_)[1].node();
|
| return node->EatsAtLeast(still_to_find, budget - 1, not_at_start);
|
| }
|
|
|
| @@ -1629,27 +1637,27 @@ int NegativeLookaheadChoiceNode::EatsAtLeast(int still_to_find,
|
| void NegativeLookaheadChoiceNode::GetQuickCheckDetails(
|
| QuickCheckDetails* details,
|
| RegExpCompiler* compiler,
|
| - int filled_in,
|
| + intptr_t filled_in,
|
| bool not_at_start) {
|
| // Alternative 0 is the negative lookahead, alternative 1 is what comes
|
| // afterwards.
|
| - RegExpNode* node = alternatives_->at(1).node();
|
| + RegExpNode* node = (*alternatives_)[1].node();
|
| return node->GetQuickCheckDetails(details, compiler, filled_in, not_at_start);
|
| }
|
|
|
|
|
| -int ChoiceNode::EatsAtLeastHelper(int still_to_find,
|
| - int budget,
|
| - RegExpNode* ignore_this_node,
|
| - bool not_at_start) {
|
| +intptr_t ChoiceNode::EatsAtLeastHelper(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + RegExpNode* ignore_this_node,
|
| + bool not_at_start) {
|
| if (budget <= 0) return 0;
|
| - int min = 100;
|
| - int choice_count = alternatives_->length();
|
| + intptr_t min = 100;
|
| + intptr_t choice_count = alternatives_->length();
|
| budget = (budget - 1) / choice_count;
|
| - for (int i = 0; i < choice_count; i++) {
|
| - RegExpNode* node = alternatives_->at(i).node();
|
| + for (intptr_t i = 0; i < choice_count; i++) {
|
| + RegExpNode* node = (*alternatives_)[i].node();
|
| if (node == ignore_this_node) continue;
|
| - int node_eats_at_least =
|
| + intptr_t node_eats_at_least =
|
| node->EatsAtLeast(still_to_find, budget, not_at_start);
|
| if (node_eats_at_least < min) min = node_eats_at_least;
|
| if (min == 0) return 0;
|
| @@ -1658,9 +1666,9 @@ int ChoiceNode::EatsAtLeastHelper(int still_to_find,
|
| }
|
|
|
|
|
| -int LoopChoiceNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| +intptr_t LoopChoiceNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| return EatsAtLeastHelper(still_to_find,
|
| budget - 1,
|
| loop_node_,
|
| @@ -1668,9 +1676,9 @@ int LoopChoiceNode::EatsAtLeast(int still_to_find,
|
| }
|
|
|
|
|
| -int ChoiceNode::EatsAtLeast(int still_to_find,
|
| - int budget,
|
| - bool not_at_start) {
|
| +intptr_t ChoiceNode::EatsAtLeast(intptr_t still_to_find,
|
| + intptr_t budget,
|
| + bool not_at_start) {
|
| return EatsAtLeastHelper(still_to_find,
|
| budget,
|
| NULL,
|
| @@ -1693,16 +1701,16 @@ bool QuickCheckDetails::Rationalize(bool asc) {
|
| bool found_useful_op = false;
|
| uint32_t char_mask;
|
| if (asc) {
|
| - char_mask = String::kMaxOneByteCharCode;
|
| + char_mask = Symbols::kMaxOneCharCodeSymbol;
|
| } else {
|
| - char_mask = String::kMaxUtf16CodeUnit;
|
| + char_mask = Utf16::kMaxCodeUnit;
|
| }
|
| mask_ = 0;
|
| value_ = 0;
|
| - int char_shift = 0;
|
| - for (int i = 0; i < characters_; i++) {
|
| + intptr_t char_shift = 0;
|
| + for (intptr_t i = 0; i < characters_; i++) {
|
| Position* pos = &positions_[i];
|
| - if ((pos->mask & String::kMaxOneByteCharCode) != 0) {
|
| + if ((pos->mask & Symbols::kMaxOneCharCodeSymbol) != 0) {
|
| found_useful_op = true;
|
| }
|
| mask_ |= (pos->mask & char_mask) << char_shift;
|
| @@ -1717,7 +1725,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
|
| Trace* bounds_check_trace,
|
| Trace* trace,
|
| bool preload_has_checked_bounds,
|
| - Label* on_possible_success,
|
| + BlockLabel* on_possible_success,
|
| QuickCheckDetails* details,
|
| bool fall_through_on_failure) {
|
| if (details->characters() == 0) return false;
|
| @@ -1725,7 +1733,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
|
| details, compiler, 0, trace->at_start() == Trace::FALSE_VALUE);
|
| if (details->cannot_match()) return false;
|
| if (!details->Rationalize(compiler->one_byte())) return false;
|
| - DCHECK(details->characters() == 1 ||
|
| + ASSERT(details->characters() == 1 ||
|
| compiler->macro_assembler()->CanReadUnaligned());
|
| uint32_t mask = details->mask();
|
| uint32_t value = details->value();
|
| @@ -1733,7 +1741,7 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
|
| RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
|
|
| if (trace->characters_preloaded() != details->characters()) {
|
| - DCHECK(trace->cp_offset() == bounds_check_trace->cp_offset());
|
| + ASSERT(trace->cp_offset() == bounds_check_trace->cp_offset());
|
| // We are attempting to preload the minimum number of characters
|
| // any choice would eat, so if the bounds check fails, then none of the
|
| // choices can succeed, so we can just immediately backtrack, rather
|
| @@ -1752,9 +1760,9 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
|
| // load so the value is already masked down.
|
| uint32_t char_mask;
|
| if (compiler->one_byte()) {
|
| - char_mask = String::kMaxOneByteCharCode;
|
| + char_mask = Symbols::kMaxOneCharCodeSymbol;
|
| } else {
|
| - char_mask = String::kMaxUtf16CodeUnit;
|
| + char_mask = Utf16::kMaxCodeUnit;
|
| }
|
| if ((mask & char_mask) == char_mask) need_mask = false;
|
| mask &= char_mask;
|
| @@ -1797,28 +1805,32 @@ bool RegExpNode::EmitQuickCheck(RegExpCompiler* compiler,
|
| // generating a quick check.
|
| void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| RegExpCompiler* compiler,
|
| - int characters_filled_in,
|
| + intptr_t characters_filled_in,
|
| bool not_at_start) {
|
| - Isolate* isolate = compiler->macro_assembler()->zone()->isolate();
|
| - DCHECK(characters_filled_in < details->characters());
|
| - int characters = details->characters();
|
| - int char_mask;
|
| +#if defined(__GNUC__)
|
| + // TODO(zerny): Make the combination code byte-order independent.
|
| + ASSERT(details->characters() == 1 ||
|
| + (__BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__));
|
| +#endif
|
| + ASSERT(characters_filled_in < details->characters());
|
| + intptr_t characters = details->characters();
|
| + intptr_t char_mask;
|
| if (compiler->one_byte()) {
|
| - char_mask = String::kMaxOneByteCharCode;
|
| + char_mask = Symbols::kMaxOneCharCodeSymbol;
|
| } else {
|
| - char_mask = String::kMaxUtf16CodeUnit;
|
| + char_mask = Utf16::kMaxCodeUnit;
|
| }
|
| - for (int k = 0; k < elms_->length(); k++) {
|
| - TextElement elm = elms_->at(k);
|
| + for (intptr_t k = 0; k < elms_->length(); k++) {
|
| + TextElement elm = elms_->At(k);
|
| if (elm.text_type() == TextElement::ATOM) {
|
| - Vector<const uc16> quarks = elm.atom()->data();
|
| - for (int i = 0; i < characters && i < quarks.length(); i++) {
|
| + ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
|
| + for (intptr_t i = 0; i < characters && i < quarks->length(); i++) {
|
| QuickCheckDetails::Position* pos =
|
| details->positions(characters_filled_in);
|
| - uc16 c = quarks[i];
|
| + uint16_t c = quarks->At(i);
|
| if (c > char_mask) {
|
| // If we expect a non-Latin1 character from an one-byte string,
|
| - // there is no way we can match. Not even case-independent
|
| + // there is no way we can match. Not even case independent
|
| // matching can turn an Latin1 character into non-Latin1 or
|
| // vice versa.
|
| // TODO(dcarney): issue 3550. Verify that this works as expected.
|
| @@ -1828,10 +1840,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| return;
|
| }
|
| if (compiler->ignore_case()) {
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int length = GetCaseIndependentLetters(isolate, c,
|
| - compiler->one_byte(), chars);
|
| - DCHECK(length != 0); // Can only happen if c > char_mask (see above).
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t length =
|
| + GetCaseIndependentLetters(c, compiler->one_byte(), chars);
|
| + ASSERT(length != 0); // Can only happen if c > char_mask (see above).
|
| if (length == 1) {
|
| // This letter has no case equivalents, so it's nice and simple
|
| // and the mask-compare will determine definitely whether we have
|
| @@ -1842,7 +1854,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| } else {
|
| uint32_t common_bits = char_mask;
|
| uint32_t bits = chars[0];
|
| - for (int j = 1; j < length; j++) {
|
| + for (intptr_t j = 1; j < length; j++) {
|
| uint32_t differing_bits = ((chars[j] & common_bits) ^ bits);
|
| common_bits ^= differing_bits;
|
| bits &= common_bits;
|
| @@ -1867,7 +1879,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| pos->determines_perfectly = true;
|
| }
|
| characters_filled_in++;
|
| - DCHECK(characters_filled_in <= details->characters());
|
| + ASSERT(characters_filled_in <= details->characters());
|
| if (characters_filled_in == details->characters()) {
|
| return;
|
| }
|
| @@ -1876,7 +1888,7 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| QuickCheckDetails::Position* pos =
|
| details->positions(characters_filled_in);
|
| RegExpCharacterClass* tree = elm.char_class();
|
| - ZoneList<CharacterRange>* ranges = tree->ranges(zone());
|
| + ZoneGrowableArray<CharacterRange>* ranges = tree->ranges();
|
| if (tree->is_negated()) {
|
| // A quick check uses multi-character mask and compare. There is no
|
| // useful way to incorporate a negative char class into this scheme
|
| @@ -1885,8 +1897,8 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| pos->mask = 0;
|
| pos->value = 0;
|
| } else {
|
| - int first_range = 0;
|
| - while (ranges->at(first_range).from() > char_mask) {
|
| + intptr_t first_range = 0;
|
| + while (ranges->At(first_range).from() > char_mask) {
|
| first_range++;
|
| if (first_range == ranges->length()) {
|
| details->set_cannot_match();
|
| @@ -1894,9 +1906,9 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| return;
|
| }
|
| }
|
| - CharacterRange range = ranges->at(first_range);
|
| - uc16 from = range.from();
|
| - uc16 to = range.to();
|
| + CharacterRange range = ranges->At(first_range);
|
| + uint16_t from = range.from();
|
| + uint16_t to = range.to();
|
| if (to > char_mask) {
|
| to = char_mask;
|
| }
|
| @@ -1909,10 +1921,10 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| }
|
| uint32_t common_bits = ~SmearBitsRight(differing_bits);
|
| uint32_t bits = (from & common_bits);
|
| - for (int i = first_range + 1; i < ranges->length(); i++) {
|
| - CharacterRange range = ranges->at(i);
|
| - uc16 from = range.from();
|
| - uc16 to = range.to();
|
| + for (intptr_t i = first_range + 1; i < ranges->length(); i++) {
|
| + CharacterRange range = ranges->At(i);
|
| + uint16_t from = range.from();
|
| + uint16_t to = range.to();
|
| if (from > char_mask) continue;
|
| if (to > char_mask) to = char_mask;
|
| // Here we are combining more ranges into the mask and compare
|
| @@ -1933,13 +1945,13 @@ void TextNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| pos->value = bits;
|
| }
|
| characters_filled_in++;
|
| - DCHECK(characters_filled_in <= details->characters());
|
| + ASSERT(characters_filled_in <= details->characters());
|
| if (characters_filled_in == details->characters()) {
|
| return;
|
| }
|
| }
|
| }
|
| - DCHECK(characters_filled_in != details->characters());
|
| + ASSERT(characters_filled_in != details->characters());
|
| if (!details->cannot_match()) {
|
| on_success()-> GetQuickCheckDetails(details,
|
| compiler,
|
| @@ -1959,16 +1971,16 @@ void QuickCheckDetails::Clear() {
|
| }
|
|
|
|
|
| -void QuickCheckDetails::Advance(int by, bool one_byte) {
|
| - DCHECK(by >= 0);
|
| +void QuickCheckDetails::Advance(intptr_t by, bool one_byte) {
|
| + ASSERT(by >= 0);
|
| if (by >= characters_) {
|
| Clear();
|
| return;
|
| }
|
| - for (int i = 0; i < characters_ - by; i++) {
|
| + for (intptr_t i = 0; i < characters_ - by; i++) {
|
| positions_[i] = positions_[by + i];
|
| }
|
| - for (int i = characters_ - by; i < characters_; i++) {
|
| + for (intptr_t i = characters_ - by; i < characters_; i++) {
|
| positions_[i].mask = 0;
|
| positions_[i].value = 0;
|
| positions_[i].determines_perfectly = false;
|
| @@ -1980,8 +1992,8 @@ void QuickCheckDetails::Advance(int by, bool one_byte) {
|
| }
|
|
|
|
|
| -void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
|
| - DCHECK(characters_ == other->characters_);
|
| +void QuickCheckDetails::Merge(QuickCheckDetails* other, intptr_t from_index) {
|
| + ASSERT(characters_ == other->characters_);
|
| if (other->cannot_match_) {
|
| return;
|
| }
|
| @@ -1989,7 +2001,7 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
|
| *this = *other;
|
| return;
|
| }
|
| - for (int i = from_index; i < characters_; i++) {
|
| + for (intptr_t i = from_index; i < characters_; i++) {
|
| QuickCheckDetails::Position* pos = positions(i);
|
| QuickCheckDetails::Position* other_pos = other->positions(i);
|
| if (pos->mask != other_pos->mask ||
|
| @@ -2002,17 +2014,17 @@ void QuickCheckDetails::Merge(QuickCheckDetails* other, int from_index) {
|
| pos->mask &= other_pos->mask;
|
| pos->value &= pos->mask;
|
| other_pos->value &= pos->mask;
|
| - uc16 differing_bits = (pos->value ^ other_pos->value);
|
| + uint16_t differing_bits = (pos->value ^ other_pos->value);
|
| pos->mask &= ~differing_bits;
|
| pos->value &= pos->mask;
|
| }
|
| }
|
|
|
|
|
| -class VisitMarker {
|
| +class VisitMarker : public ValueObject {
|
| public:
|
| explicit VisitMarker(NodeInfo* info) : info_(info) {
|
| - DCHECK(!info->visited);
|
| + ASSERT(!info->visited);
|
| info->visited = true;
|
| }
|
| ~VisitMarker() {
|
| @@ -2023,16 +2035,16 @@ class VisitMarker {
|
| };
|
|
|
|
|
| -RegExpNode* SeqRegExpNode::FilterOneByte(int depth, bool ignore_case) {
|
| +RegExpNode* SeqRegExpNode::FilterOneByte(intptr_t depth, bool ignore_case) {
|
| if (info()->replacement_calculated) return replacement();
|
| if (depth < 0) return this;
|
| - DCHECK(!info()->visited);
|
| + ASSERT(!info()->visited);
|
| VisitMarker marker(info());
|
| return FilterSuccessor(depth - 1, ignore_case);
|
| }
|
|
|
|
|
| -RegExpNode* SeqRegExpNode::FilterSuccessor(int depth, bool ignore_case) {
|
| +RegExpNode* SeqRegExpNode::FilterSuccessor(intptr_t depth, bool ignore_case) {
|
| RegExpNode* next = on_success_->FilterOneByte(depth - 1, ignore_case);
|
| if (next == NULL) return set_replacement(NULL);
|
| on_success_ = next;
|
| @@ -2048,58 +2060,74 @@ static inline bool RangeContainsLatin1Equivalents(CharacterRange range) {
|
| }
|
|
|
|
|
| -static bool RangesContainLatin1Equivalents(ZoneList<CharacterRange>* ranges) {
|
| - for (int i = 0; i < ranges->length(); i++) {
|
| +static bool RangesContainLatin1Equivalents(
|
| + ZoneGrowableArray<CharacterRange>* ranges) {
|
| + for (intptr_t i = 0; i < ranges->length(); i++) {
|
| // TODO(dcarney): this could be a lot more efficient.
|
| - if (RangeContainsLatin1Equivalents(ranges->at(i))) return true;
|
| + if (RangeContainsLatin1Equivalents(ranges->At(i))) return true;
|
| }
|
| return false;
|
| }
|
|
|
|
|
| -RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
|
| +static uint16_t ConvertNonLatin1ToLatin1(uint16_t c) {
|
| + ASSERT(c > Symbols::kMaxOneCharCodeSymbol);
|
| + switch (c) {
|
| + // This are equivalent characters in unicode.
|
| + case 0x39c:
|
| + case 0x3bc:
|
| + return 0xb5;
|
| + // This is an uppercase of a Latin-1 character
|
| + // outside of Latin-1.
|
| + case 0x178:
|
| + return 0xff;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +
|
| +RegExpNode* TextNode::FilterOneByte(intptr_t depth, bool ignore_case) {
|
| if (info()->replacement_calculated) return replacement();
|
| if (depth < 0) return this;
|
| - DCHECK(!info()->visited);
|
| + ASSERT(!info()->visited);
|
| VisitMarker marker(info());
|
| - int element_count = elms_->length();
|
| - for (int i = 0; i < element_count; i++) {
|
| - TextElement elm = elms_->at(i);
|
| + intptr_t element_count = elms_->length();
|
| + for (intptr_t i = 0; i < element_count; i++) {
|
| + TextElement elm = elms_->At(i);
|
| if (elm.text_type() == TextElement::ATOM) {
|
| - Vector<const uc16> quarks = elm.atom()->data();
|
| - for (int j = 0; j < quarks.length(); j++) {
|
| - uint16_t c = quarks[j];
|
| - if (c <= String::kMaxOneByteCharCode) continue;
|
| + ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
|
| + for (intptr_t j = 0; j < quarks->length(); j++) {
|
| + uint16_t c = quarks->At(j);
|
| + if (c <= Symbols::kMaxOneCharCodeSymbol) continue;
|
| if (!ignore_case) return set_replacement(NULL);
|
| // Here, we need to check for characters whose upper and lower cases
|
| // are outside the Latin-1 range.
|
| - uint16_t converted = unibrow::Latin1::ConvertNonLatin1ToLatin1(c);
|
| + uint16_t converted = ConvertNonLatin1ToLatin1(c);
|
| // Character is outside Latin-1 completely
|
| if (converted == 0) return set_replacement(NULL);
|
| // Convert quark to Latin-1 in place.
|
| - uint16_t* copy = const_cast<uint16_t*>(quarks.start());
|
| - copy[j] = converted;
|
| + (*quarks)[0] = converted;
|
| }
|
| } else {
|
| - DCHECK(elm.text_type() == TextElement::CHAR_CLASS);
|
| + ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
|
| RegExpCharacterClass* cc = elm.char_class();
|
| - ZoneList<CharacterRange>* ranges = cc->ranges(zone());
|
| + ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
|
| if (!CharacterRange::IsCanonical(ranges)) {
|
| CharacterRange::Canonicalize(ranges);
|
| }
|
| // Now they are in order so we only need to look at the first.
|
| - int range_count = ranges->length();
|
| + intptr_t range_count = ranges->length();
|
| if (cc->is_negated()) {
|
| if (range_count != 0 &&
|
| - ranges->at(0).from() == 0 &&
|
| - ranges->at(0).to() >= String::kMaxOneByteCharCode) {
|
| + ranges->At(0).from() == 0 &&
|
| + ranges->At(0).to() >= Symbols::kMaxOneCharCodeSymbol) {
|
| // This will be handled in a later filter.
|
| if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
|
| return set_replacement(NULL);
|
| }
|
| } else {
|
| if (range_count == 0 ||
|
| - ranges->at(0).from() > String::kMaxOneByteCharCode) {
|
| + ranges->At(0).from() > Symbols::kMaxOneCharCodeSymbol) {
|
| // This will be handled in a later filter.
|
| if (ignore_case && RangesContainLatin1Equivalents(ranges)) continue;
|
| return set_replacement(NULL);
|
| @@ -2111,7 +2139,7 @@ RegExpNode* TextNode::FilterOneByte(int depth, bool ignore_case) {
|
| }
|
|
|
|
|
| -RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
|
| +RegExpNode* LoopChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) {
|
| if (info()->replacement_calculated) return replacement();
|
| if (depth < 0) return this;
|
| if (info()->visited) return this;
|
| @@ -2129,30 +2157,30 @@ RegExpNode* LoopChoiceNode::FilterOneByte(int depth, bool ignore_case) {
|
| }
|
|
|
|
|
| -RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
|
| +RegExpNode* ChoiceNode::FilterOneByte(intptr_t depth, bool ignore_case) {
|
| if (info()->replacement_calculated) return replacement();
|
| if (depth < 0) return this;
|
| if (info()->visited) return this;
|
| VisitMarker marker(info());
|
| - int choice_count = alternatives_->length();
|
| + intptr_t choice_count = alternatives_->length();
|
|
|
| - for (int i = 0; i < choice_count; i++) {
|
| - GuardedAlternative alternative = alternatives_->at(i);
|
| + for (intptr_t i = 0; i < choice_count; i++) {
|
| + GuardedAlternative alternative = alternatives_->At(i);
|
| if (alternative.guards() != NULL && alternative.guards()->length() != 0) {
|
| set_replacement(this);
|
| return this;
|
| }
|
| }
|
|
|
| - int surviving = 0;
|
| + intptr_t surviving = 0;
|
| RegExpNode* survivor = NULL;
|
| - for (int i = 0; i < choice_count; i++) {
|
| - GuardedAlternative alternative = alternatives_->at(i);
|
| + for (intptr_t i = 0; i < choice_count; i++) {
|
| + GuardedAlternative alternative = alternatives_->At(i);
|
| RegExpNode* replacement =
|
| alternative.node()->FilterOneByte(depth - 1, ignore_case);
|
| - DCHECK(replacement != this); // No missing EMPTY_MATCH_CHECK.
|
| + ASSERT(replacement != this); // No missing EMPTY_MATCH_CHECK.
|
| if (replacement != NULL) {
|
| - alternatives_->at(i).set_node(replacement);
|
| + (*alternatives_)[i].set_node(replacement);
|
| surviving++;
|
| survivor = replacement;
|
| }
|
| @@ -2165,14 +2193,14 @@ RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
|
| }
|
| // Only some of the nodes survived the filtering. We need to rebuild the
|
| // alternatives list.
|
| - ZoneList<GuardedAlternative>* new_alternatives =
|
| - new(zone()) ZoneList<GuardedAlternative>(surviving, zone());
|
| - for (int i = 0; i < choice_count; i++) {
|
| + ZoneGrowableArray<GuardedAlternative>* new_alternatives =
|
| + new(I) ZoneGrowableArray<GuardedAlternative>(surviving);
|
| + for (intptr_t i = 0; i < choice_count; i++) {
|
| RegExpNode* replacement =
|
| - alternatives_->at(i).node()->FilterOneByte(depth - 1, ignore_case);
|
| + (*alternatives_)[i].node()->FilterOneByte(depth - 1, ignore_case);
|
| if (replacement != NULL) {
|
| - alternatives_->at(i).set_node(replacement);
|
| - new_alternatives->Add(alternatives_->at(i), zone());
|
| + (*alternatives_)[i].set_node(replacement);
|
| + new_alternatives->Add((*alternatives_)[i]);
|
| }
|
| }
|
| alternatives_ = new_alternatives;
|
| @@ -2180,7 +2208,7 @@ RegExpNode* ChoiceNode::FilterOneByte(int depth, bool ignore_case) {
|
| }
|
|
|
|
|
| -RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
|
| +RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(intptr_t depth,
|
| bool ignore_case) {
|
| if (info()->replacement_calculated) return replacement();
|
| if (depth < 0) return this;
|
| @@ -2188,24 +2216,24 @@ RegExpNode* NegativeLookaheadChoiceNode::FilterOneByte(int depth,
|
| VisitMarker marker(info());
|
| // Alternative 0 is the negative lookahead, alternative 1 is what comes
|
| // afterwards.
|
| - RegExpNode* node = alternatives_->at(1).node();
|
| + RegExpNode* node = (*alternatives_)[1].node();
|
| RegExpNode* replacement = node->FilterOneByte(depth - 1, ignore_case);
|
| if (replacement == NULL) return set_replacement(NULL);
|
| - alternatives_->at(1).set_node(replacement);
|
| + (*alternatives_)[1].set_node(replacement);
|
|
|
| - RegExpNode* neg_node = alternatives_->at(0).node();
|
| + RegExpNode* neg_node = (*alternatives_)[0].node();
|
| RegExpNode* neg_replacement = neg_node->FilterOneByte(depth - 1, ignore_case);
|
| // If the negative lookahead is always going to fail then
|
| // we don't need to check it.
|
| if (neg_replacement == NULL) return set_replacement(replacement);
|
| - alternatives_->at(0).set_node(neg_replacement);
|
| + (*alternatives_)[0].set_node(neg_replacement);
|
| return set_replacement(this);
|
| }
|
|
|
|
|
| void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| RegExpCompiler* compiler,
|
| - int characters_filled_in,
|
| + intptr_t characters_filled_in,
|
| bool not_at_start) {
|
| if (body_can_be_zero_length_ || info()->visited) return;
|
| VisitMarker marker(info());
|
| @@ -2216,8 +2244,8 @@ void LoopChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| }
|
|
|
|
|
| -void LoopChoiceNode::FillInBMInfo(int offset,
|
| - int budget,
|
| +void LoopChoiceNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| BoyerMooreLookahead* bm,
|
| bool not_at_start) {
|
| if (body_can_be_zero_length_ || budget <= 0) {
|
| @@ -2232,18 +2260,18 @@ void LoopChoiceNode::FillInBMInfo(int offset,
|
|
|
| void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| RegExpCompiler* compiler,
|
| - int characters_filled_in,
|
| + intptr_t characters_filled_in,
|
| bool not_at_start) {
|
| not_at_start = (not_at_start || not_at_start_);
|
| - int choice_count = alternatives_->length();
|
| - DCHECK(choice_count > 0);
|
| - alternatives_->at(0).node()->GetQuickCheckDetails(details,
|
| + intptr_t choice_count = alternatives_->length();
|
| + ASSERT(choice_count > 0);
|
| + (*alternatives_)[0].node()->GetQuickCheckDetails(details,
|
| compiler,
|
| characters_filled_in,
|
| not_at_start);
|
| - for (int i = 1; i < choice_count; i++) {
|
| + for (intptr_t i = 1; i < choice_count; i++) {
|
| QuickCheckDetails new_details(details->characters());
|
| - RegExpNode* node = alternatives_->at(i).node();
|
| + RegExpNode* node = (*alternatives_)[i].node();
|
| node->GetQuickCheckDetails(&new_details, compiler,
|
| characters_filled_in,
|
| not_at_start);
|
| @@ -2255,8 +2283,8 @@ void ChoiceNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
|
|
| // Check for [0-9A-Z_a-z].
|
| static void EmitWordCheck(RegExpMacroAssembler* assembler,
|
| - Label* word,
|
| - Label* non_word,
|
| + BlockLabel* word,
|
| + BlockLabel* non_word,
|
| bool fall_through_on_word) {
|
| if (assembler->CheckSpecialCharacterClass(
|
| fall_through_on_word ? 'w' : 'W',
|
| @@ -2289,7 +2317,7 @@ static void EmitHat(RegExpCompiler* compiler,
|
| Trace new_trace(*trace);
|
| new_trace.InvalidateCurrentCharacter();
|
|
|
| - Label ok;
|
| + BlockLabel ok;
|
| if (new_trace.cp_offset() == 0) {
|
| // The start of input counts as a newline in this context, so skip to
|
| // ok if we are at the start.
|
| @@ -2309,7 +2337,7 @@ static void EmitHat(RegExpCompiler* compiler,
|
| assembler->CheckCharacter('\n', &ok);
|
| assembler->CheckNotCharacter('\r', new_trace.backtrack());
|
| }
|
| - assembler->Bind(&ok);
|
| + assembler->BindBlock(&ok);
|
| on_success->Emit(compiler, &new_trace);
|
| }
|
|
|
| @@ -2321,13 +2349,14 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
|
| bool not_at_start = (trace->at_start() == Trace::FALSE_VALUE);
|
| BoyerMooreLookahead* lookahead = bm_info(not_at_start);
|
| if (lookahead == NULL) {
|
| - int eats_at_least =
|
| - Min(kMaxLookaheadForBoyerMoore, EatsAtLeast(kMaxLookaheadForBoyerMoore,
|
| - kRecursionBudget,
|
| - not_at_start));
|
| + intptr_t eats_at_least =
|
| + Utils::Minimum(kMaxLookaheadForBoyerMoore,
|
| + EatsAtLeast(kMaxLookaheadForBoyerMoore,
|
| + kRecursionBudget,
|
| + not_at_start));
|
| if (eats_at_least >= 1) {
|
| BoyerMooreLookahead* bm =
|
| - new(zone()) BoyerMooreLookahead(eats_at_least, compiler, zone());
|
| + new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
|
| FillInBMInfo(0, kRecursionBudget, bm, not_at_start);
|
| if (bm->at(0)->is_non_word())
|
| next_is_word_character = Trace::FALSE_VALUE;
|
| @@ -2341,26 +2370,31 @@ void AssertionNode::EmitBoundaryCheck(RegExpCompiler* compiler, Trace* trace) {
|
| }
|
| bool at_boundary = (assertion_type_ == AssertionNode::AT_BOUNDARY);
|
| if (next_is_word_character == Trace::UNKNOWN) {
|
| - Label before_non_word;
|
| - Label before_word;
|
| + BlockLabel before_non_word;
|
| + BlockLabel before_word;
|
| if (trace->characters_preloaded() != 1) {
|
| assembler->LoadCurrentCharacter(trace->cp_offset(), &before_non_word);
|
| }
|
| // Fall through on non-word.
|
| EmitWordCheck(assembler, &before_word, &before_non_word, false);
|
| // Next character is not a word character.
|
| - assembler->Bind(&before_non_word);
|
| - Label ok;
|
| + assembler->BindBlock(&before_non_word);
|
| + BlockLabel ok;
|
| + // Backtrack on \B (non-boundary check) if previous is a word,
|
| + // since we know next *is not* a word and this would be a boundary.
|
| BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
|
| - assembler->GoTo(&ok);
|
|
|
| - assembler->Bind(&before_word);
|
| + if (!assembler->IsClosed()) {
|
| + assembler->GoTo(&ok);
|
| + }
|
| +
|
| + assembler->BindBlock(&before_word);
|
| BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
|
| - assembler->Bind(&ok);
|
| + assembler->BindBlock(&ok);
|
| } else if (next_is_word_character == Trace::TRUE_VALUE) {
|
| BacktrackIfPrevious(compiler, trace, at_boundary ? kIsWord : kIsNonWord);
|
| } else {
|
| - DCHECK(next_is_word_character == Trace::FALSE_VALUE);
|
| + ASSERT(next_is_word_character == Trace::FALSE_VALUE);
|
| BacktrackIfPrevious(compiler, trace, at_boundary ? kIsNonWord : kIsWord);
|
| }
|
| }
|
| @@ -2374,14 +2408,14 @@ void AssertionNode::BacktrackIfPrevious(
|
| Trace new_trace(*trace);
|
| new_trace.InvalidateCurrentCharacter();
|
|
|
| - Label fall_through, dummy;
|
| + BlockLabel fall_through, dummy;
|
|
|
| - Label* non_word = backtrack_if_previous == kIsNonWord ?
|
| - new_trace.backtrack() :
|
| - &fall_through;
|
| - Label* word = backtrack_if_previous == kIsNonWord ?
|
| - &fall_through :
|
| - new_trace.backtrack();
|
| + BlockLabel* non_word = backtrack_if_previous == kIsNonWord ?
|
| + new_trace.backtrack() :
|
| + &fall_through;
|
| + BlockLabel* word = backtrack_if_previous == kIsNonWord ?
|
| + &fall_through :
|
| + new_trace.backtrack();
|
|
|
| if (new_trace.cp_offset() == 0) {
|
| // The start of input counts as a non-word character, so the question is
|
| @@ -2393,14 +2427,14 @@ void AssertionNode::BacktrackIfPrevious(
|
| assembler->LoadCurrentCharacter(new_trace.cp_offset() - 1, &dummy, false);
|
| EmitWordCheck(assembler, word, non_word, backtrack_if_previous == kIsNonWord);
|
|
|
| - assembler->Bind(&fall_through);
|
| + assembler->BindBlock(&fall_through);
|
| on_success()->Emit(compiler, &new_trace);
|
| }
|
|
|
|
|
| void AssertionNode::GetQuickCheckDetails(QuickCheckDetails* details,
|
| RegExpCompiler* compiler,
|
| - int filled_in,
|
| + intptr_t filled_in,
|
| bool not_at_start) {
|
| if (assertion_type_ == AT_START && not_at_start) {
|
| details->set_cannot_match();
|
| @@ -2417,10 +2451,10 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| switch (assertion_type_) {
|
| case AT_END: {
|
| - Label ok;
|
| + BlockLabel ok;
|
| assembler->CheckPosition(trace->cp_offset(), &ok);
|
| assembler->GoTo(trace->backtrack());
|
| - assembler->Bind(&ok);
|
| + assembler->BindBlock(&ok);
|
| break;
|
| }
|
| case AT_START: {
|
| @@ -2450,14 +2484,14 @@ void AssertionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| }
|
|
|
|
|
| -static bool DeterminedAlready(QuickCheckDetails* quick_check, int offset) {
|
| +static bool DeterminedAlready(QuickCheckDetails* quick_check, intptr_t offset) {
|
| if (quick_check == NULL) return false;
|
| if (offset >= quick_check->characters()) return false;
|
| return quick_check->positions(offset)->determines_perfectly;
|
| }
|
|
|
|
|
| -static void UpdateBoundsCheck(int index, int* checked_up_to) {
|
| +static void UpdateBoundsCheck(intptr_t index, intptr_t* checked_up_to) {
|
| if (index > *checked_up_to) {
|
| *checked_up_to = index;
|
| }
|
| @@ -2498,26 +2532,25 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
|
| bool preloaded,
|
| Trace* trace,
|
| bool first_element_checked,
|
| - int* checked_up_to) {
|
| + intptr_t* checked_up_to) {
|
| RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| - Isolate* isolate = assembler->zone()->isolate();
|
| bool one_byte = compiler->one_byte();
|
| - Label* backtrack = trace->backtrack();
|
| + BlockLabel* backtrack = trace->backtrack();
|
| QuickCheckDetails* quick_check = trace->quick_check_performed();
|
| - int element_count = elms_->length();
|
| - for (int i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
|
| - TextElement elm = elms_->at(i);
|
| - int cp_offset = trace->cp_offset() + elm.cp_offset();
|
| + intptr_t element_count = elms_->length();
|
| + for (intptr_t i = preloaded ? 0 : element_count - 1; i >= 0; i--) {
|
| + TextElement elm = elms_->At(i);
|
| + intptr_t cp_offset = trace->cp_offset() + elm.cp_offset();
|
| if (elm.text_type() == TextElement::ATOM) {
|
| - Vector<const uc16> quarks = elm.atom()->data();
|
| - for (int j = preloaded ? 0 : quarks.length() - 1; j >= 0; j--) {
|
| + ZoneGrowableArray<uint16_t>* quarks = elm.atom()->data();
|
| + for (intptr_t j = preloaded ? 0 : quarks->length() - 1; j >= 0; j--) {
|
| if (first_element_checked && i == 0 && j == 0) continue;
|
| if (DeterminedAlready(quick_check, elm.cp_offset() + j)) continue;
|
| EmitCharacterFunction* emit_function = NULL;
|
| switch (pass) {
|
| case NON_LATIN1_MATCH:
|
| - DCHECK(one_byte);
|
| - if (quarks[j] > String::kMaxOneByteCharCode) {
|
| + ASSERT(one_byte);
|
| + if (quarks->At(j) > Symbols::kMaxOneCharCodeSymbol) {
|
| assembler->GoTo(backtrack);
|
| return;
|
| }
|
| @@ -2535,9 +2568,9 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
|
| break;
|
| }
|
| if (emit_function != NULL) {
|
| - bool bound_checked = emit_function(isolate,
|
| + bool bound_checked = emit_function(I,
|
| compiler,
|
| - quarks[j],
|
| + quarks->At(j),
|
| backtrack,
|
| cp_offset + j,
|
| *checked_up_to < cp_offset + j,
|
| @@ -2546,13 +2579,19 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
|
| }
|
| }
|
| } else {
|
| - DCHECK_EQ(TextElement::CHAR_CLASS, elm.text_type());
|
| + ASSERT(elm.text_type() == TextElement::CHAR_CLASS);
|
| if (pass == CHARACTER_CLASS_MATCH) {
|
| if (first_element_checked && i == 0) continue;
|
| if (DeterminedAlready(quick_check, elm.cp_offset())) continue;
|
| RegExpCharacterClass* cc = elm.char_class();
|
| - EmitCharClass(assembler, cc, one_byte, backtrack, cp_offset,
|
| - *checked_up_to < cp_offset, preloaded, zone());
|
| + EmitCharClass(assembler,
|
| + cc,
|
| + one_byte,
|
| + backtrack,
|
| + cp_offset,
|
| + *checked_up_to < cp_offset,
|
| + preloaded,
|
| + I);
|
| UpdateBoundsCheck(cp_offset, checked_up_to);
|
| }
|
| }
|
| @@ -2560,15 +2599,15 @@ void TextNode::TextEmitPass(RegExpCompiler* compiler,
|
| }
|
|
|
|
|
| -int TextNode::Length() {
|
| - TextElement elm = elms_->last();
|
| - DCHECK(elm.cp_offset() >= 0);
|
| +intptr_t TextNode::Length() {
|
| + TextElement elm = elms_->Last();
|
| + ASSERT(elm.cp_offset() >= 0);
|
| return elm.cp_offset() + elm.length();
|
| }
|
|
|
|
|
| -bool TextNode::SkipPass(int int_pass, bool ignore_case) {
|
| - TextEmitPassType pass = static_cast<TextEmitPassType>(int_pass);
|
| +bool TextNode::SkipPass(intptr_t intptr_t_pass, bool ignore_case) {
|
| + TextEmitPassType pass = static_cast<TextEmitPassType>(intptr_t_pass);
|
| if (ignore_case) {
|
| return pass == SIMPLE_CHARACTER_MATCH;
|
| } else {
|
| @@ -2586,7 +2625,7 @@ bool TextNode::SkipPass(int int_pass, bool ignore_case) {
|
| void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| LimitResult limit_result = LimitVersions(compiler, trace);
|
| if (limit_result == DONE) return;
|
| - DCHECK(limit_result == CONTINUE);
|
| + ASSERT(limit_result == CONTINUE);
|
|
|
| if (trace->cp_offset() + Length() > RegExpMacroAssembler::kMaxCPOffset) {
|
| compiler->SetRegExpTooBig();
|
| @@ -2594,18 +2633,18 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| }
|
|
|
| if (compiler->one_byte()) {
|
| - int dummy = 0;
|
| + intptr_t dummy = 0;
|
| TextEmitPass(compiler, NON_LATIN1_MATCH, false, trace, false, &dummy);
|
| }
|
|
|
| bool first_elt_done = false;
|
| - int bound_checked_to = trace->cp_offset() - 1;
|
| + intptr_t bound_checked_to = trace->cp_offset() - 1;
|
| bound_checked_to += trace->bound_checked_up_to();
|
|
|
| // If a character is preloaded into the current character register then
|
| // check that now.
|
| if (trace->characters_preloaded() == 1) {
|
| - for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
| + for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
| if (!SkipPass(pass, compiler->ignore_case())) {
|
| TextEmitPass(compiler,
|
| static_cast<TextEmitPassType>(pass),
|
| @@ -2618,7 +2657,7 @@ void TextNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| first_elt_done = true;
|
| }
|
|
|
| - for (int pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
| + for (intptr_t pass = kFirstRealPass; pass <= kLastPass; pass++) {
|
| if (!SkipPass(pass, compiler->ignore_case())) {
|
| TextEmitPass(compiler,
|
| static_cast<TextEmitPassType>(pass),
|
| @@ -2642,8 +2681,9 @@ void Trace::InvalidateCurrentCharacter() {
|
| }
|
|
|
|
|
| -void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
|
| - DCHECK(by > 0);
|
| +void Trace::AdvanceCurrentPositionInTrace(intptr_t by,
|
| + RegExpCompiler* compiler) {
|
| + ASSERT(by > 0);
|
| // We don't have an instruction for shifting the current character register
|
| // down or for using a shifted value for anything so lets just forget that
|
| // we preloaded any characters into it.
|
| @@ -2657,31 +2697,32 @@ void Trace::AdvanceCurrentPositionInTrace(int by, RegExpCompiler* compiler) {
|
| compiler->SetRegExpTooBig();
|
| cp_offset_ = 0;
|
| }
|
| - bound_checked_up_to_ = Max(0, bound_checked_up_to_ - by);
|
| + bound_checked_up_to_ = Utils::Maximum(static_cast<intptr_t>(0),
|
| + bound_checked_up_to_ - by);
|
| }
|
|
|
|
|
| void TextNode::MakeCaseIndependent(bool is_one_byte) {
|
| - int element_count = elms_->length();
|
| - for (int i = 0; i < element_count; i++) {
|
| - TextElement elm = elms_->at(i);
|
| + intptr_t element_count = elms_->length();
|
| + for (intptr_t i = 0; i < element_count; i++) {
|
| + TextElement elm = elms_->At(i);
|
| if (elm.text_type() == TextElement::CHAR_CLASS) {
|
| RegExpCharacterClass* cc = elm.char_class();
|
| // None of the standard character classes is different in the case
|
| // independent case and it slows us down if we don't know that.
|
| - if (cc->is_standard(zone())) continue;
|
| - ZoneList<CharacterRange>* ranges = cc->ranges(zone());
|
| - int range_count = ranges->length();
|
| - for (int j = 0; j < range_count; j++) {
|
| - ranges->at(j).AddCaseEquivalents(ranges, is_one_byte, zone());
|
| + if (cc->is_standard()) continue;
|
| + ZoneGrowableArray<CharacterRange>* ranges = cc->ranges();
|
| + intptr_t range_count = ranges->length();
|
| + for (intptr_t j = 0; j < range_count; j++) {
|
| + (*ranges)[j].AddCaseEquivalents(ranges, is_one_byte, I);
|
| }
|
| }
|
| }
|
| }
|
|
|
|
|
| -int TextNode::GreedyLoopTextLength() {
|
| - TextElement elm = elms_->at(elms_->length() - 1);
|
| +intptr_t TextNode::GreedyLoopTextLength() {
|
| + TextElement elm = elms_->At(elms_->length() - 1);
|
| return elm.cp_offset() + elm.length();
|
| }
|
|
|
| @@ -2689,10 +2730,10 @@ int TextNode::GreedyLoopTextLength() {
|
| RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
|
| RegExpCompiler* compiler) {
|
| if (elms_->length() != 1) return NULL;
|
| - TextElement elm = elms_->at(0);
|
| + TextElement elm = elms_->At(0);
|
| if (elm.text_type() != TextElement::CHAR_CLASS) return NULL;
|
| RegExpCharacterClass* node = elm.char_class();
|
| - ZoneList<CharacterRange>* ranges = node->ranges(zone());
|
| + ZoneGrowableArray<CharacterRange>* ranges = node->ranges();
|
| if (!CharacterRange::IsCanonical(ranges)) {
|
| CharacterRange::Canonicalize(ranges);
|
| }
|
| @@ -2702,11 +2743,11 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
|
| if (ranges->length() != 1) return NULL;
|
| uint32_t max_char;
|
| if (compiler->one_byte()) {
|
| - max_char = String::kMaxOneByteCharCode;
|
| + max_char = Symbols::kMaxOneCharCodeSymbol;
|
| } else {
|
| - max_char = String::kMaxUtf16CodeUnit;
|
| + max_char = Utf16::kMaxCodeUnit;
|
| }
|
| - return ranges->at(0).IsEverything(max_char) ? on_success() : NULL;
|
| + return ranges->At(0).IsEverything(max_char) ? on_success() : NULL;
|
| }
|
|
|
|
|
| @@ -2714,18 +2755,18 @@ RegExpNode* TextNode::GetSuccessorOfOmnivorousTextNode(
|
| // this alternative and back to this choice node. If there are variable
|
| // length nodes or other complications in the way then return a sentinel
|
| // value indicating that a greedy loop cannot be constructed.
|
| -int ChoiceNode::GreedyLoopTextLengthForAlternative(
|
| +intptr_t ChoiceNode::GreedyLoopTextLengthForAlternative(
|
| GuardedAlternative* alternative) {
|
| - int length = 0;
|
| + intptr_t length = 0;
|
| RegExpNode* node = alternative->node();
|
| // Later we will generate code for all these text nodes using recursion
|
| // so we have to limit the max number.
|
| - int recursion_depth = 0;
|
| + intptr_t recursion_depth = 0;
|
| while (node != this) {
|
| if (recursion_depth++ > RegExpCompiler::kMaxRecursion) {
|
| return kNodeIsTooComplexForGreedyLoops;
|
| }
|
| - int node_length = node->GreedyLoopTextLength();
|
| + intptr_t node_length = node->GreedyLoopTextLength();
|
| if (node_length == kNodeIsTooComplexForGreedyLoops) {
|
| return kNodeIsTooComplexForGreedyLoops;
|
| }
|
| @@ -2738,14 +2779,14 @@ int ChoiceNode::GreedyLoopTextLengthForAlternative(
|
|
|
|
|
| void LoopChoiceNode::AddLoopAlternative(GuardedAlternative alt) {
|
| - DCHECK_EQ(loop_node_, NULL);
|
| + ASSERT(loop_node_ == NULL);
|
| AddAlternative(alt);
|
| loop_node_ = alt.node();
|
| }
|
|
|
|
|
| void LoopChoiceNode::AddContinueAlternative(GuardedAlternative alt) {
|
| - DCHECK_EQ(continue_node_, NULL);
|
| + ASSERT(continue_node_ == NULL);
|
| AddAlternative(alt);
|
| continue_node_ = alt.node();
|
| }
|
| @@ -2755,17 +2796,17 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| if (trace->stop_node() == this) {
|
| // Back edge of greedy optimized loop node graph.
|
| - int text_length =
|
| - GreedyLoopTextLengthForAlternative(&(alternatives_->at(0)));
|
| - DCHECK(text_length != kNodeIsTooComplexForGreedyLoops);
|
| + intptr_t text_length =
|
| + GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
|
| + ASSERT(text_length != kNodeIsTooComplexForGreedyLoops);
|
| // Update the counter-based backtracking info on the stack. This is an
|
| // optimization for greedy loops (see below).
|
| - DCHECK(trace->cp_offset() == text_length);
|
| + ASSERT(trace->cp_offset() == text_length);
|
| macro_assembler->AdvanceCurrentPosition(text_length);
|
| macro_assembler->GoTo(trace->loop_label());
|
| return;
|
| }
|
| - DCHECK(trace->stop_node() == NULL);
|
| + ASSERT(trace->stop_node() == NULL);
|
| if (!trace->is_trivial()) {
|
| trace->Flush(compiler, this);
|
| return;
|
| @@ -2774,9 +2815,10 @@ void LoopChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| }
|
|
|
|
|
| -int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
|
| - int eats_at_least) {
|
| - int preload_characters = Min(4, eats_at_least);
|
| +intptr_t ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
|
| + intptr_t eats_at_least) {
|
| + intptr_t preload_characters = Utils::Minimum(static_cast<intptr_t>(4),
|
| + eats_at_least);
|
| if (compiler->macro_assembler()->CanReadUnaligned()) {
|
| bool one_byte = compiler->one_byte();
|
| if (one_byte) {
|
| @@ -2795,18 +2837,17 @@ int ChoiceNode::CalculatePreloadCharacters(RegExpCompiler* compiler,
|
| }
|
|
|
|
|
| -// This class is used when generating the alternatives in a choice node. It
|
| +// This structure is used when generating the alternatives in a choice node. It
|
| // records the way the alternative is being code generated.
|
| -class AlternativeGeneration: public Malloced {
|
| - public:
|
| +struct AlternativeGeneration {
|
| AlternativeGeneration()
|
| : possible_success(),
|
| expects_preload(false),
|
| after(),
|
| quick_check_details() { }
|
| - Label possible_success;
|
| + BlockLabel possible_success;
|
| bool expects_preload;
|
| - Label after;
|
| + BlockLabel after;
|
| QuickCheckDetails quick_check_details;
|
| };
|
|
|
| @@ -2815,55 +2856,57 @@ class AlternativeGeneration: public Malloced {
|
| // size then it is on the stack, otherwise the excess is on the heap.
|
| class AlternativeGenerationList {
|
| public:
|
| - AlternativeGenerationList(int count, Zone* zone)
|
| - : alt_gens_(count, zone) {
|
| - for (int i = 0; i < count && i < kAFew; i++) {
|
| - alt_gens_.Add(a_few_alt_gens_ + i, zone);
|
| + explicit AlternativeGenerationList(intptr_t count)
|
| + : alt_gens_(count) {
|
| + for (intptr_t i = 0; i < count && i < kAFew; i++) {
|
| + alt_gens_.Add(a_few_alt_gens_ + i);
|
| }
|
| - for (int i = kAFew; i < count; i++) {
|
| - alt_gens_.Add(new AlternativeGeneration(), zone);
|
| + for (intptr_t i = kAFew; i < count; i++) {
|
| + alt_gens_.Add(new AlternativeGeneration());
|
| }
|
| }
|
| ~AlternativeGenerationList() {
|
| - for (int i = kAFew; i < alt_gens_.length(); i++) {
|
| + for (intptr_t i = kAFew; i < alt_gens_.length(); i++) {
|
| delete alt_gens_[i];
|
| alt_gens_[i] = NULL;
|
| }
|
| }
|
|
|
| - AlternativeGeneration* at(int i) {
|
| + AlternativeGeneration* at(intptr_t i) {
|
| return alt_gens_[i];
|
| }
|
|
|
| private:
|
| - static const int kAFew = 10;
|
| - ZoneList<AlternativeGeneration*> alt_gens_;
|
| + static const intptr_t kAFew = 10;
|
| + GrowableArray<AlternativeGeneration*> alt_gens_;
|
| AlternativeGeneration a_few_alt_gens_[kAFew];
|
| +
|
| + DISALLOW_ALLOCATION();
|
| };
|
|
|
|
|
| -// The '2' variant is has inclusive from and exclusive to.
|
| +// The '2' variant is inclusive from and exclusive to.
|
| // This covers \s as defined in ECMA-262 5.1, 15.10.2.12,
|
| // which include WhiteSpace (7.2) or LineTerminator (7.3) values.
|
| -static const int kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
|
| +static const intptr_t kSpaceRanges[] = { '\t', '\r' + 1, ' ', ' ' + 1,
|
| 0x00A0, 0x00A1, 0x1680, 0x1681, 0x180E, 0x180F, 0x2000, 0x200B,
|
| 0x2028, 0x202A, 0x202F, 0x2030, 0x205F, 0x2060, 0x3000, 0x3001,
|
| 0xFEFF, 0xFF00, 0x10000 };
|
| -static const int kSpaceRangeCount = arraysize(kSpaceRanges);
|
| -
|
| -static const int kWordRanges[] = {
|
| +static const intptr_t kSpaceRangeCount = ARRAY_SIZE(kSpaceRanges);
|
| +static const intptr_t kWordRanges[] = {
|
| '0', '9' + 1, 'A', 'Z' + 1, '_', '_' + 1, 'a', 'z' + 1, 0x10000 };
|
| -static const int kWordRangeCount = arraysize(kWordRanges);
|
| -static const int kDigitRanges[] = { '0', '9' + 1, 0x10000 };
|
| -static const int kDigitRangeCount = arraysize(kDigitRanges);
|
| -static const int kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
|
| -static const int kSurrogateRangeCount = arraysize(kSurrogateRanges);
|
| -static const int kLineTerminatorRanges[] = { 0x000A, 0x000B, 0x000D, 0x000E,
|
| - 0x2028, 0x202A, 0x10000 };
|
| -static const int kLineTerminatorRangeCount = arraysize(kLineTerminatorRanges);
|
| -
|
| -
|
| -void BoyerMoorePositionInfo::Set(int character) {
|
| +static const intptr_t kWordRangeCount = ARRAY_SIZE(kWordRanges);
|
| +static const intptr_t kDigitRanges[] = { '0', '9' + 1, 0x10000 };
|
| +static const intptr_t kDigitRangeCount = ARRAY_SIZE(kDigitRanges);
|
| +static const intptr_t kSurrogateRanges[] = { 0xd800, 0xe000, 0x10000 };
|
| +static const intptr_t kSurrogateRangeCount = ARRAY_SIZE(kSurrogateRanges);
|
| +static const intptr_t kLineTerminatorRanges[] = {
|
| + 0x000A, 0x000B, 0x000D, 0x000E, 0x2028, 0x202A, 0x10000 };
|
| +static const intptr_t kLineTerminatorRangeCount =
|
| + ARRAY_SIZE(kLineTerminatorRanges);
|
| +
|
| +
|
| +void BoyerMoorePositionInfo::Set(intptr_t character) {
|
| SetInterval(Interval(character, character));
|
| }
|
|
|
| @@ -2877,15 +2920,15 @@ void BoyerMoorePositionInfo::SetInterval(const Interval& interval) {
|
| if (interval.to() - interval.from() >= kMapSize - 1) {
|
| if (map_count_ != kMapSize) {
|
| map_count_ = kMapSize;
|
| - for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
|
| + for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
|
| }
|
| return;
|
| }
|
| - for (int i = interval.from(); i <= interval.to(); i++) {
|
| - int mod_character = (i & kMask);
|
| - if (!map_->at(mod_character)) {
|
| + for (intptr_t i = interval.from(); i <= interval.to(); i++) {
|
| + intptr_t mod_character = (i & kMask);
|
| + if (!map_->At(mod_character)) {
|
| map_count_++;
|
| - map_->at(mod_character) = true;
|
| + (*map_)[mod_character] = true;
|
| }
|
| if (map_count_ == kMapSize) return;
|
| }
|
| @@ -2896,23 +2939,23 @@ void BoyerMoorePositionInfo::SetAll() {
|
| s_ = w_ = d_ = kLatticeUnknown;
|
| if (map_count_ != kMapSize) {
|
| map_count_ = kMapSize;
|
| - for (int i = 0; i < kMapSize; i++) map_->at(i) = true;
|
| + for (intptr_t i = 0; i < kMapSize; i++) (*map_)[i] = true;
|
| }
|
| }
|
|
|
|
|
| BoyerMooreLookahead::BoyerMooreLookahead(
|
| - int length, RegExpCompiler* compiler, Zone* zone)
|
| + intptr_t length, RegExpCompiler* compiler, Isolate* isolate)
|
| : length_(length),
|
| compiler_(compiler) {
|
| if (compiler->one_byte()) {
|
| - max_char_ = String::kMaxOneByteCharCode;
|
| + max_char_ = Symbols::kMaxOneCharCodeSymbol;
|
| } else {
|
| - max_char_ = String::kMaxUtf16CodeUnit;
|
| + max_char_ = Utf16::kMaxCodeUnit;
|
| }
|
| - bitmaps_ = new(zone) ZoneList<BoyerMoorePositionInfo*>(length, zone);
|
| - for (int i = 0; i < length; i++) {
|
| - bitmaps_->Add(new(zone) BoyerMoorePositionInfo(zone), zone);
|
| + bitmaps_ = new(isolate) ZoneGrowableArray<BoyerMoorePositionInfo*>(length);
|
| + for (intptr_t i = 0; i < length; i++) {
|
| + bitmaps_->Add(new(isolate) BoyerMoorePositionInfo(isolate));
|
| }
|
| }
|
|
|
| @@ -2920,12 +2963,12 @@ BoyerMooreLookahead::BoyerMooreLookahead(
|
| // Find the longest range of lookahead that has the fewest number of different
|
| // characters that can occur at a given position. Since we are optimizing two
|
| // different parameters at once this is a tradeoff.
|
| -bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
|
| - int biggest_points = 0;
|
| +bool BoyerMooreLookahead::FindWorthwhileInterval(intptr_t* from, intptr_t* to) {
|
| + intptr_t biggest_points = 0;
|
| // If more than 32 characters out of 128 can occur it is unlikely that we can
|
| // be lucky enough to step forwards much of the time.
|
| - const int kMaxMax = 32;
|
| - for (int max_number_of_chars = 4;
|
| + const intptr_t kMaxMax = 32;
|
| + for (intptr_t max_number_of_chars = 4;
|
| max_number_of_chars < kMaxMax;
|
| max_number_of_chars *= 2) {
|
| biggest_points =
|
| @@ -2942,23 +2985,26 @@ bool BoyerMooreLookahead::FindWorthwhileInterval(int* from, int* to) {
|
| // of points as the product of width-of-the-range and
|
| // probability-of-finding-one-of-the-characters, where the probability is
|
| // calculated using the frequency distribution of the sample subject string.
|
| -int BoyerMooreLookahead::FindBestInterval(
|
| - int max_number_of_chars, int old_biggest_points, int* from, int* to) {
|
| - int biggest_points = old_biggest_points;
|
| - static const int kSize = RegExpMacroAssembler::kTableSize;
|
| - for (int i = 0; i < length_; ) {
|
| +intptr_t BoyerMooreLookahead::FindBestInterval(
|
| + intptr_t max_number_of_chars,
|
| + intptr_t old_biggest_points,
|
| + intptr_t* from,
|
| + intptr_t* to) {
|
| + intptr_t biggest_points = old_biggest_points;
|
| + static const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
| + for (intptr_t i = 0; i < length_; ) {
|
| while (i < length_ && Count(i) > max_number_of_chars) i++;
|
| if (i == length_) break;
|
| - int remembered_from = i;
|
| + intptr_t remembered_from = i;
|
| bool union_map[kSize];
|
| - for (int j = 0; j < kSize; j++) union_map[j] = false;
|
| + for (intptr_t j = 0; j < kSize; j++) union_map[j] = false;
|
| while (i < length_ && Count(i) <= max_number_of_chars) {
|
| - BoyerMoorePositionInfo* map = bitmaps_->at(i);
|
| - for (int j = 0; j < kSize; j++) union_map[j] |= map->at(j);
|
| + BoyerMoorePositionInfo* map = bitmaps_->At(i);
|
| + for (intptr_t j = 0; j < kSize; j++) union_map[j] |= map->at(j);
|
| i++;
|
| }
|
| - int frequency = 0;
|
| - for (int j = 0; j < kSize; j++) {
|
| + intptr_t frequency = 0;
|
| + for (intptr_t j = 0; j < kSize; j++) {
|
| if (union_map[j]) {
|
| // Add 1 to the frequency to give a small per-character boost for
|
| // the cases where our sampling is not good enough and many
|
| @@ -2973,13 +3019,13 @@ int BoyerMooreLookahead::FindBestInterval(
|
| // dividing by 2 we switch off the skipping if the probability of skipping
|
| // is less than 50%. This is because the multibyte mask-and-compare
|
| // skipping in quickcheck is more likely to do well on this case.
|
| - bool in_quickcheck_range =
|
| - ((i - remembered_from < 4) ||
|
| - (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
|
| + bool in_quickcheck_range = ((i - remembered_from < 4) ||
|
| + (compiler_->one_byte() ? remembered_from <= 4 : remembered_from <= 2));
|
| // Called 'probability' but it is only a rough estimate and can actually
|
| // be outside the 0-kSize range.
|
| - int probability = (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
|
| - int points = (i - remembered_from) * probability;
|
| + intptr_t probability =
|
| + (in_quickcheck_range ? kSize / 2 : kSize) - frequency;
|
| + intptr_t points = (i - remembered_from) * probability;
|
| if (points > biggest_points) {
|
| *from = remembered_from;
|
| *to = i - 1;
|
| @@ -2995,24 +3041,25 @@ int BoyerMooreLookahead::FindBestInterval(
|
| // max_lookahead (inclusive) measured from the current position. If the
|
| // character at max_lookahead offset is not one of these characters, then we
|
| // can safely skip forwards by the number of characters in the range.
|
| -int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
|
| - int max_lookahead,
|
| - Handle<ByteArray> boolean_skip_table) {
|
| - const int kSize = RegExpMacroAssembler::kTableSize;
|
| +intptr_t BoyerMooreLookahead::GetSkipTable(
|
| + intptr_t min_lookahead,
|
| + intptr_t max_lookahead,
|
| + const TypedData& boolean_skip_table) {
|
| + const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
|
|
| - const int kSkipArrayEntry = 0;
|
| - const int kDontSkipArrayEntry = 1;
|
| + const intptr_t kSkipArrayEntry = 0;
|
| + const intptr_t kDontSkipArrayEntry = 1;
|
|
|
| - for (int i = 0; i < kSize; i++) {
|
| - boolean_skip_table->set(i, kSkipArrayEntry);
|
| + for (intptr_t i = 0; i < kSize; i++) {
|
| + boolean_skip_table.SetUint8(i, kSkipArrayEntry);
|
| }
|
| - int skip = max_lookahead + 1 - min_lookahead;
|
| + intptr_t skip = max_lookahead + 1 - min_lookahead;
|
|
|
| - for (int i = max_lookahead; i >= min_lookahead; i--) {
|
| - BoyerMoorePositionInfo* map = bitmaps_->at(i);
|
| - for (int j = 0; j < kSize; j++) {
|
| + for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
|
| + BoyerMoorePositionInfo* map = bitmaps_->At(i);
|
| + for (intptr_t j = 0; j < kSize; j++) {
|
| if (map->at(j)) {
|
| - boolean_skip_table->set(j, kDontSkipArrayEntry);
|
| + boolean_skip_table.SetUint8(j, kDontSkipArrayEntry);
|
| }
|
| }
|
| }
|
| @@ -3023,23 +3070,23 @@ int BoyerMooreLookahead::GetSkipTable(int min_lookahead,
|
|
|
| // See comment above on the implementation of GetSkipTable.
|
| void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
|
| - const int kSize = RegExpMacroAssembler::kTableSize;
|
| + const intptr_t kSize = RegExpMacroAssembler::kTableSize;
|
|
|
| - int min_lookahead = 0;
|
| - int max_lookahead = 0;
|
| + intptr_t min_lookahead = 0;
|
| + intptr_t max_lookahead = 0;
|
|
|
| if (!FindWorthwhileInterval(&min_lookahead, &max_lookahead)) return;
|
|
|
| bool found_single_character = false;
|
| - int single_character = 0;
|
| - for (int i = max_lookahead; i >= min_lookahead; i--) {
|
| - BoyerMoorePositionInfo* map = bitmaps_->at(i);
|
| + intptr_t single_character = 0;
|
| + for (intptr_t i = max_lookahead; i >= min_lookahead; i--) {
|
| + BoyerMoorePositionInfo* map = bitmaps_->At(i);
|
| if (map->map_count() > 1 ||
|
| (found_single_character && map->map_count() != 0)) {
|
| found_single_character = false;
|
| break;
|
| }
|
| - for (int j = 0; j < kSize; j++) {
|
| + for (intptr_t j = 0; j < kSize; j++) {
|
| if (map->at(j)) {
|
| found_single_character = true;
|
| single_character = j;
|
| @@ -3048,7 +3095,7 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
|
| }
|
| }
|
|
|
| - int lookahead_width = max_lookahead + 1 - min_lookahead;
|
| + intptr_t lookahead_width = max_lookahead + 1 - min_lookahead;
|
|
|
| if (found_single_character && lookahead_width == 1 && max_lookahead < 3) {
|
| // The mask-compare can probably handle this better.
|
| @@ -3056,8 +3103,8 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
|
| }
|
|
|
| if (found_single_character) {
|
| - Label cont, again;
|
| - masm->Bind(&again);
|
| + BlockLabel cont, again;
|
| + masm->BindBlock(&again);
|
| masm->LoadCurrentCharacter(max_lookahead, &cont, true);
|
| if (max_char_ > kSize) {
|
| masm->CheckCharacterAfterAnd(single_character,
|
| @@ -3068,23 +3115,27 @@ void BoyerMooreLookahead::EmitSkipInstructions(RegExpMacroAssembler* masm) {
|
| }
|
| masm->AdvanceCurrentPosition(lookahead_width);
|
| masm->GoTo(&again);
|
| - masm->Bind(&cont);
|
| + masm->BindBlock(&cont);
|
| return;
|
| }
|
|
|
| - Factory* factory = masm->zone()->isolate()->factory();
|
| - Handle<ByteArray> boolean_skip_table = factory->NewByteArray(kSize, TENURED);
|
| - int skip_distance = GetSkipTable(
|
| + const TypedData& boolean_skip_table = TypedData::ZoneHandle(
|
| + compiler_->isolate(),
|
| + TypedData::New(kTypedDataUint8ArrayCid, kSize, Heap::kOld));
|
| + intptr_t skip_distance = GetSkipTable(
|
| min_lookahead, max_lookahead, boolean_skip_table);
|
| - DCHECK(skip_distance != 0);
|
| + ASSERT(skip_distance != 0);
|
|
|
| - Label cont, again;
|
| - masm->Bind(&again);
|
| + BlockLabel cont, again;
|
| +
|
| + masm->BindBlock(&again);
|
| masm->LoadCurrentCharacter(max_lookahead, &cont, true);
|
| masm->CheckBitInTable(boolean_skip_table, &cont);
|
| masm->AdvanceCurrentPosition(skip_distance);
|
| masm->GoTo(&again);
|
| - masm->Bind(&cont);
|
| + masm->BindBlock(&cont);
|
| +
|
| + return;
|
| }
|
|
|
|
|
| @@ -3170,13 +3221,13 @@ GreedyLoopState::GreedyLoopState(bool not_at_start) {
|
|
|
| void ChoiceNode::AssertGuardsMentionRegisters(Trace* trace) {
|
| #ifdef DEBUG
|
| - int choice_count = alternatives_->length();
|
| - for (int i = 0; i < choice_count - 1; i++) {
|
| - GuardedAlternative alternative = alternatives_->at(i);
|
| - ZoneList<Guard*>* guards = alternative.guards();
|
| - int guard_count = (guards == NULL) ? 0 : guards->length();
|
| - for (int j = 0; j < guard_count; j++) {
|
| - DCHECK(!trace->mentions_reg(guards->at(j)->reg()));
|
| + intptr_t choice_count = alternatives_->length();
|
| + for (intptr_t i = 0; i < choice_count - 1; i++) {
|
| + GuardedAlternative alternative = alternatives_->At(i);
|
| + ZoneGrowableArray<Guard*>* guards = alternative.guards();
|
| + intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
|
| + for (intptr_t j = 0; j < guard_count; j++) {
|
| + ASSERT(!trace->mentions_reg(guards->At(j)->reg()));
|
| }
|
| }
|
| #endif
|
| @@ -3202,13 +3253,13 @@ void ChoiceNode::SetUpPreLoad(RegExpCompiler* compiler,
|
|
|
|
|
| void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| - int choice_count = alternatives_->length();
|
| + intptr_t choice_count = alternatives_->length();
|
|
|
| AssertGuardsMentionRegisters(trace);
|
|
|
| LimitResult limit_result = LimitVersions(compiler, trace);
|
| if (limit_result == DONE) return;
|
| - DCHECK(limit_result == CONTINUE);
|
| + ASSERT(limit_result == CONTINUE);
|
|
|
| // For loop nodes we already flushed (see LoopChoiceNode::Emit), but for
|
| // other choice nodes we only flush if we are out of code size budget.
|
| @@ -3223,8 +3274,9 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| preload.init();
|
| GreedyLoopState greedy_loop_state(not_at_start());
|
|
|
| - int text_length = GreedyLoopTextLengthForAlternative(&alternatives_->at(0));
|
| - AlternativeGenerationList alt_gens(choice_count, zone());
|
| + intptr_t text_length =
|
| + GreedyLoopTextLengthForAlternative(&((*alternatives_)[0]));
|
| + AlternativeGenerationList alt_gens(choice_count);
|
|
|
| if (choice_count > 1 && text_length != kNodeIsTooComplexForGreedyLoops) {
|
| trace = EmitGreedyLoop(compiler,
|
| @@ -3236,8 +3288,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| } else {
|
| // TODO(erikcorry): Delete this. We don't need this label, but it makes us
|
| // match the traces produced pre-cleanup.
|
| - Label second_choice;
|
| - compiler->macro_assembler()->Bind(&second_choice);
|
| + BlockLabel second_choice;
|
| + compiler->macro_assembler()->BindBlock(&second_choice);
|
|
|
| preload.eats_at_least_ = EmitOptimizedUnanchoredSearch(compiler, trace);
|
|
|
| @@ -3251,8 +3303,8 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| // At this point we need to generate slow checks for the alternatives where
|
| // the quick check was inlined. We can recognize these because the associated
|
| // label was bound.
|
| - int new_flush_budget = trace->flush_budget() / choice_count;
|
| - for (int i = 0; i < choice_count; i++) {
|
| + intptr_t new_flush_budget = trace->flush_budget() / choice_count;
|
| + for (intptr_t i = 0; i < choice_count; i++) {
|
| AlternativeGeneration* alt_gen = alt_gens.at(i);
|
| Trace new_trace(*trace);
|
| // If there are actions to be flushed we have to limit how many times
|
| @@ -3265,20 +3317,19 @@ void ChoiceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| i == choice_count - 1 ? false : alt_gens.at(i + 1)->expects_preload;
|
| EmitOutOfLineContinuation(compiler,
|
| &new_trace,
|
| - alternatives_->at(i),
|
| + alternatives_->At(i),
|
| alt_gen,
|
| preload.preload_characters_,
|
| next_expects_preload);
|
| }
|
| }
|
|
|
| -
|
| Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
|
| Trace* trace,
|
| AlternativeGenerationList* alt_gens,
|
| PreloadState* preload,
|
| GreedyLoopState* greedy_loop_state,
|
| - int text_length) {
|
| + intptr_t text_length) {
|
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| // Here we have special handling for greedy loops containing only text nodes
|
| // and other simple nodes. These are handled by pushing the current
|
| @@ -3287,21 +3338,21 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
|
| // and check it against the pushed value. This avoids pushing backtrack
|
| // information for each iteration of the loop, which could take up a lot of
|
| // space.
|
| - DCHECK(trace->stop_node() == NULL);
|
| + ASSERT(trace->stop_node() == NULL);
|
| macro_assembler->PushCurrentPosition();
|
| - Label greedy_match_failed;
|
| + BlockLabel greedy_match_failed;
|
| Trace greedy_match_trace;
|
| if (not_at_start()) greedy_match_trace.set_at_start(false);
|
| greedy_match_trace.set_backtrack(&greedy_match_failed);
|
| - Label loop_label;
|
| - macro_assembler->Bind(&loop_label);
|
| + BlockLabel loop_label;
|
| + macro_assembler->BindBlock(&loop_label);
|
| greedy_match_trace.set_stop_node(this);
|
| greedy_match_trace.set_loop_label(&loop_label);
|
| - alternatives_->at(0).node()->Emit(compiler, &greedy_match_trace);
|
| - macro_assembler->Bind(&greedy_match_failed);
|
| + (*alternatives_)[0].node()->Emit(compiler, &greedy_match_trace);
|
| + macro_assembler->BindBlock(&greedy_match_failed);
|
|
|
| - Label second_choice; // For use in greedy matches.
|
| - macro_assembler->Bind(&second_choice);
|
| + BlockLabel second_choice; // For use in greedy matches.
|
| + macro_assembler->BindBlock(&second_choice);
|
|
|
| Trace* new_trace = greedy_loop_state->counter_backtrack_trace();
|
|
|
| @@ -3311,7 +3362,7 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
|
| new_trace,
|
| preload);
|
|
|
| - macro_assembler->Bind(greedy_loop_state->label());
|
| + macro_assembler->BindBlock(greedy_loop_state->label());
|
| // If we have unwound to the bottom then backtrack.
|
| macro_assembler->CheckGreedyLoop(trace->backtrack());
|
| // Otherwise try the second priority at an earlier position.
|
| @@ -3320,12 +3371,13 @@ Trace* ChoiceNode::EmitGreedyLoop(RegExpCompiler* compiler,
|
| return new_trace;
|
| }
|
|
|
| -int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
|
| - Trace* trace) {
|
| - int eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
|
| +
|
| +intptr_t ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
|
| + Trace* trace) {
|
| + intptr_t eats_at_least = PreloadState::kEatsAtLeastNotYetInitialized;
|
| if (alternatives_->length() != 2) return eats_at_least;
|
|
|
| - GuardedAlternative alt1 = alternatives_->at(1);
|
| + GuardedAlternative alt1 = alternatives_->At(1);
|
| if (alt1.guards() != NULL && alt1.guards()->length() != 0) {
|
| return eats_at_least;
|
| }
|
| @@ -3340,7 +3392,7 @@ int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
|
| // loop. That also implies that there are no preloaded characters, which is
|
| // good, because it means we won't be violating any assumptions by
|
| // overwriting those characters with new load instructions.
|
| - DCHECK(trace->is_trivial());
|
| + ASSERT(trace->is_trivial());
|
|
|
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| // At this point we know that we are at a non-greedy loop that will eat
|
| @@ -3352,15 +3404,13 @@ int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
|
| // small alternation.
|
| BoyerMooreLookahead* bm = bm_info(false);
|
| if (bm == NULL) {
|
| - eats_at_least = Min(kMaxLookaheadForBoyerMoore,
|
| + eats_at_least = Utils::Minimum(kMaxLookaheadForBoyerMoore,
|
| EatsAtLeast(kMaxLookaheadForBoyerMoore,
|
| kRecursionBudget,
|
| false));
|
| if (eats_at_least >= 1) {
|
| - bm = new(zone()) BoyerMooreLookahead(eats_at_least,
|
| - compiler,
|
| - zone());
|
| - GuardedAlternative alt0 = alternatives_->at(0);
|
| + bm = new(I) BoyerMooreLookahead(eats_at_least, compiler, I);
|
| + GuardedAlternative alt0 = alternatives_->At(0);
|
| alt0.node()->FillInBMInfo(0, kRecursionBudget, bm, false);
|
| }
|
| }
|
| @@ -3373,7 +3423,7 @@ int ChoiceNode::EmitOptimizedUnanchoredSearch(RegExpCompiler* compiler,
|
|
|
| void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
|
| AlternativeGenerationList* alt_gens,
|
| - int first_choice,
|
| + intptr_t first_choice,
|
| Trace* trace,
|
| PreloadState* preload) {
|
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| @@ -3381,18 +3431,18 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
|
|
|
| // For now we just call all choices one after the other. The idea ultimately
|
| // is to use the Dispatch table to try only the relevant ones.
|
| - int choice_count = alternatives_->length();
|
| + intptr_t choice_count = alternatives_->length();
|
|
|
| - int new_flush_budget = trace->flush_budget() / choice_count;
|
| + intptr_t new_flush_budget = trace->flush_budget() / choice_count;
|
|
|
| - for (int i = first_choice; i < choice_count; i++) {
|
| + for (intptr_t i = first_choice; i < choice_count; i++) {
|
| bool is_last = i == choice_count - 1;
|
| bool fall_through_on_failure = !is_last;
|
| - GuardedAlternative alternative = alternatives_->at(i);
|
| + GuardedAlternative alternative = alternatives_->At(i);
|
| AlternativeGeneration* alt_gen = alt_gens->at(i);
|
| alt_gen->quick_check_details.set_characters(preload->preload_characters_);
|
| - ZoneList<Guard*>* guards = alternative.guards();
|
| - int guard_count = (guards == NULL) ? 0 : guards->length();
|
| + ZoneGrowableArray<Guard*>* guards = alternative.guards();
|
| + intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
|
| Trace new_trace(*trace);
|
| new_trace.set_characters_preloaded(preload->preload_is_current_ ?
|
| preload->preload_characters_ :
|
| @@ -3407,7 +3457,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
|
| }
|
| alt_gen->expects_preload = preload->preload_is_current_;
|
| bool generate_full_check_inline = false;
|
| - if (FLAG_regexp_optimization &&
|
| + if (kRegexpOptimization &&
|
| try_to_emit_quick_check_for_alternative(i == 0) &&
|
| alternative.node()->EmitQuickCheck(compiler,
|
| trace,
|
| @@ -3422,7 +3472,7 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
|
| // If we generated the quick check to fall through on possible success,
|
| // we now need to generate the full check inline.
|
| if (!fall_through_on_failure) {
|
| - macro_assembler->Bind(&alt_gen->possible_success);
|
| + macro_assembler->BindBlock(&alt_gen->possible_success);
|
| new_trace.set_quick_check_performed(&alt_gen->quick_check_details);
|
| new_trace.set_characters_preloaded(preload->preload_characters_);
|
| new_trace.set_bound_checked_up_to(preload->preload_characters_);
|
| @@ -3449,13 +3499,13 @@ void ChoiceNode::EmitChoices(RegExpCompiler* compiler,
|
| if (new_trace.actions() != NULL) {
|
| new_trace.set_flush_budget(new_flush_budget);
|
| }
|
| - for (int j = 0; j < guard_count; j++) {
|
| - GenerateGuard(macro_assembler, guards->at(j), &new_trace);
|
| + for (intptr_t j = 0; j < guard_count; j++) {
|
| + GenerateGuard(macro_assembler, guards->At(j), &new_trace);
|
| }
|
| alternative.node()->Emit(compiler, &new_trace);
|
| preload->preload_is_current_ = false;
|
| }
|
| - macro_assembler->Bind(&alt_gen->after);
|
| + macro_assembler->BindBlock(&alt_gen->after);
|
| }
|
| }
|
|
|
| @@ -3464,26 +3514,26 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
|
| Trace* trace,
|
| GuardedAlternative alternative,
|
| AlternativeGeneration* alt_gen,
|
| - int preload_characters,
|
| + intptr_t preload_characters,
|
| bool next_expects_preload) {
|
| - if (!alt_gen->possible_success.is_linked()) return;
|
| + if (!alt_gen->possible_success.IsLinked()) return;
|
|
|
| RegExpMacroAssembler* macro_assembler = compiler->macro_assembler();
|
| - macro_assembler->Bind(&alt_gen->possible_success);
|
| + macro_assembler->BindBlock(&alt_gen->possible_success);
|
| Trace out_of_line_trace(*trace);
|
| out_of_line_trace.set_characters_preloaded(preload_characters);
|
| out_of_line_trace.set_quick_check_performed(&alt_gen->quick_check_details);
|
| if (not_at_start_) out_of_line_trace.set_at_start(Trace::FALSE_VALUE);
|
| - ZoneList<Guard*>* guards = alternative.guards();
|
| - int guard_count = (guards == NULL) ? 0 : guards->length();
|
| + ZoneGrowableArray<Guard*>* guards = alternative.guards();
|
| + intptr_t guard_count = (guards == NULL) ? 0 : guards->length();
|
| if (next_expects_preload) {
|
| - Label reload_current_char;
|
| + BlockLabel reload_current_char;
|
| out_of_line_trace.set_backtrack(&reload_current_char);
|
| - for (int j = 0; j < guard_count; j++) {
|
| - GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
|
| + for (intptr_t j = 0; j < guard_count; j++) {
|
| + GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
|
| }
|
| alternative.node()->Emit(compiler, &out_of_line_trace);
|
| - macro_assembler->Bind(&reload_current_char);
|
| + macro_assembler->BindBlock(&reload_current_char);
|
| // Reload the current character, since the next quick check expects that.
|
| // We don't need to check bounds here because we only get into this
|
| // code through a quick check which already did the checked load.
|
| @@ -3494,8 +3544,8 @@ void ChoiceNode::EmitOutOfLineContinuation(RegExpCompiler* compiler,
|
| macro_assembler->GoTo(&(alt_gen->after));
|
| } else {
|
| out_of_line_trace.set_backtrack(&(alt_gen->after));
|
| - for (int j = 0; j < guard_count; j++) {
|
| - GenerateGuard(macro_assembler, guards->at(j), &out_of_line_trace);
|
| + for (intptr_t j = 0; j < guard_count; j++) {
|
| + GenerateGuard(macro_assembler, guards->At(j), &out_of_line_trace);
|
| }
|
| alternative.node()->Emit(compiler, &out_of_line_trace);
|
| }
|
| @@ -3506,7 +3556,7 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| RegExpMacroAssembler* assembler = compiler->macro_assembler();
|
| LimitResult limit_result = LimitVersions(compiler, trace);
|
| if (limit_result == DONE) return;
|
| - DCHECK(limit_result == CONTINUE);
|
| + ASSERT(limit_result == CONTINUE);
|
|
|
| RecursionCheck rc(compiler);
|
|
|
| @@ -3558,9 +3608,9 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| }
|
| break;
|
| case EMPTY_MATCH_CHECK: {
|
| - int start_pos_reg = data_.u_empty_match_check.start_register;
|
| - int stored_pos = 0;
|
| - int rep_reg = data_.u_empty_match_check.repetition_register;
|
| + intptr_t start_pos_reg = data_.u_empty_match_check.start_register;
|
| + intptr_t stored_pos = 0;
|
| + intptr_t rep_reg = data_.u_empty_match_check.repetition_register;
|
| bool has_minimum = (rep_reg != RegExpCompiler::kNoRegister);
|
| bool know_dist = trace->GetStoredPosition(start_pos_reg, &stored_pos);
|
| if (know_dist && !has_minimum && stored_pos == trace->cp_offset()) {
|
| @@ -3574,18 +3624,18 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| } else if (!trace->is_trivial()) {
|
| trace->Flush(compiler, this);
|
| } else {
|
| - Label skip_empty_check;
|
| + BlockLabel skip_empty_check;
|
| // If we have a minimum number of repetitions we check the current
|
| // number first and skip the empty check if it's not enough.
|
| if (has_minimum) {
|
| - int limit = data_.u_empty_match_check.repetition_limit;
|
| + intptr_t limit = data_.u_empty_match_check.repetition_limit;
|
| assembler->IfRegisterLT(rep_reg, limit, &skip_empty_check);
|
| }
|
| // If the match is empty we bail out, otherwise we fall through
|
| // to the on-success continuation.
|
| assembler->IfRegisterEqPos(data_.u_empty_match_check.start_register,
|
| trace->backtrack());
|
| - assembler->Bind(&skip_empty_check);
|
| + assembler->BindBlock(&skip_empty_check);
|
| on_success()->Emit(compiler, trace);
|
| }
|
| break;
|
| @@ -3599,22 +3649,23 @@ void ActionNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
| data_.u_submatch.current_position_register);
|
| assembler->ReadStackPointerFromRegister(
|
| data_.u_submatch.stack_pointer_register);
|
| - int clear_register_count = data_.u_submatch.clear_register_count;
|
| + intptr_t clear_register_count = data_.u_submatch.clear_register_count;
|
| if (clear_register_count == 0) {
|
| on_success()->Emit(compiler, trace);
|
| return;
|
| }
|
| - int clear_registers_from = data_.u_submatch.clear_register_from;
|
| - Label clear_registers_backtrack;
|
| + intptr_t clear_registers_from = data_.u_submatch.clear_register_from;
|
| + BlockLabel clear_registers_backtrack;
|
| Trace new_trace = *trace;
|
| new_trace.set_backtrack(&clear_registers_backtrack);
|
| on_success()->Emit(compiler, &new_trace);
|
|
|
| - assembler->Bind(&clear_registers_backtrack);
|
| - int clear_registers_to = clear_registers_from + clear_register_count - 1;
|
| + assembler->BindBlock(&clear_registers_backtrack);
|
| + intptr_t clear_registers_to =
|
| + clear_registers_from + clear_register_count - 1;
|
| assembler->ClearRegisters(clear_registers_from, clear_registers_to);
|
|
|
| - DCHECK(trace->backtrack() == NULL);
|
| + ASSERT(trace->backtrack() == NULL);
|
| assembler->Backtrack();
|
| return;
|
| }
|
| @@ -3633,11 +3684,11 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
|
| LimitResult limit_result = LimitVersions(compiler, trace);
|
| if (limit_result == DONE) return;
|
| - DCHECK(limit_result == CONTINUE);
|
| + ASSERT(limit_result == CONTINUE);
|
|
|
| RecursionCheck rc(compiler);
|
|
|
| - DCHECK_EQ(start_reg_ + 1, end_reg_);
|
| + ASSERT(start_reg_ + 1 == end_reg_);
|
| if (compiler->ignore_case()) {
|
| assembler->CheckNotBackReferenceIgnoreCase(start_reg_,
|
| trace->backtrack());
|
| @@ -3657,9 +3708,7 @@ void BackReferenceNode::Emit(RegExpCompiler* compiler, Trace* trace) {
|
|
|
| class DotPrinter: public NodeVisitor {
|
| public:
|
| - DotPrinter(OStream& os, bool ignore_case) // NOLINT
|
| - : os_(os),
|
| - ignore_case_(ignore_case) {}
|
| + explicit DotPrinter(bool ignore_case) {}
|
| void PrintNode(const char* label, RegExpNode* node);
|
| void Visit(RegExpNode* node);
|
| void PrintAttributes(RegExpNode* from);
|
| @@ -3668,30 +3717,27 @@ class DotPrinter: public NodeVisitor {
|
| virtual void Visit##Type(Type##Node* that);
|
| FOR_EACH_NODE_TYPE(DECLARE_VISIT)
|
| #undef DECLARE_VISIT
|
| - private:
|
| - OStream& os_;
|
| - bool ignore_case_;
|
| };
|
|
|
|
|
| void DotPrinter::PrintNode(const char* label, RegExpNode* node) {
|
| - os_ << "digraph G {\n graph [label=\"";
|
| - for (int i = 0; label[i]; i++) {
|
| + OS::Print("digraph G {\n graph [label=\"");
|
| + for (intptr_t i = 0; label[i]; i++) {
|
| switch (label[i]) {
|
| case '\\':
|
| - os_ << "\\\\";
|
| + OS::Print("\\\\");
|
| break;
|
| case '"':
|
| - os_ << "\"";
|
| + OS::Print("\"");
|
| break;
|
| default:
|
| - os_ << label[i];
|
| + OS::Print("%c", label[i]);
|
| break;
|
| }
|
| }
|
| - os_ << "\"];\n";
|
| + OS::Print("\"];\n");
|
| Visit(node);
|
| - os_ << "}" << endl;
|
| + OS::Print("}\n");
|
| }
|
|
|
|
|
| @@ -3703,292 +3749,194 @@ void DotPrinter::Visit(RegExpNode* node) {
|
|
|
|
|
| void DotPrinter::PrintOnFailure(RegExpNode* from, RegExpNode* on_failure) {
|
| - os_ << " n" << from << " -> n" << on_failure << " [style=dotted];\n";
|
| + OS::Print(" n%p -> n%p [style=dotted];\n", from, on_failure);
|
| Visit(on_failure);
|
| }
|
|
|
|
|
| -class TableEntryBodyPrinter {
|
| - public:
|
| - TableEntryBodyPrinter(OStream& os, ChoiceNode* choice) // NOLINT
|
| - : os_(os),
|
| - choice_(choice) {}
|
| - void Call(uc16 from, DispatchTable::Entry entry) {
|
| - OutSet* out_set = entry.out_set();
|
| - for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
|
| - if (out_set->Get(i)) {
|
| - os_ << " n" << choice() << ":s" << from << "o" << i << " -> n"
|
| - << choice()->alternatives()->at(i).node() << ";\n";
|
| - }
|
| - }
|
| - }
|
| - private:
|
| - ChoiceNode* choice() { return choice_; }
|
| - OStream& os_;
|
| - ChoiceNode* choice_;
|
| -};
|
| -
|
| -
|
| -class TableEntryHeaderPrinter {
|
| - public:
|
| - explicit TableEntryHeaderPrinter(OStream& os) // NOLINT
|
| - : first_(true),
|
| - os_(os) {}
|
| - void Call(uc16 from, DispatchTable::Entry entry) {
|
| - if (first_) {
|
| - first_ = false;
|
| - } else {
|
| - os_ << "|";
|
| - }
|
| - os_ << "{\\" << AsUC16(from) << "-\\" << AsUC16(entry.to()) << "|{";
|
| - OutSet* out_set = entry.out_set();
|
| - int priority = 0;
|
| - for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
|
| - if (out_set->Get(i)) {
|
| - if (priority > 0) os_ << "|";
|
| - os_ << "<s" << from << "o" << i << "> " << priority;
|
| - priority++;
|
| - }
|
| - }
|
| - os_ << "}}";
|
| - }
|
| -
|
| - private:
|
| - bool first_;
|
| - OStream& os_;
|
| -};
|
| -
|
| -
|
| -class AttributePrinter {
|
| +class AttributePrinter : public ValueObject {
|
| public:
|
| - explicit AttributePrinter(OStream& os) // NOLINT
|
| - : os_(os),
|
| - first_(true) {}
|
| + AttributePrinter() : first_(true) {}
|
| void PrintSeparator() {
|
| if (first_) {
|
| first_ = false;
|
| } else {
|
| - os_ << "|";
|
| + OS::Print("|");
|
| }
|
| }
|
| void PrintBit(const char* name, bool value) {
|
| if (!value) return;
|
| PrintSeparator();
|
| - os_ << "{" << name << "}";
|
| + OS::Print("{%s}", name);
|
| }
|
| - void PrintPositive(const char* name, int value) {
|
| + void PrintPositive(const char* name, intptr_t value) {
|
| if (value < 0) return;
|
| PrintSeparator();
|
| - os_ << "{" << name << "|" << value << "}";
|
| + OS::Print("{%s|%" Pd "}", name, value);
|
| }
|
|
|
| private:
|
| - OStream& os_;
|
| bool first_;
|
| };
|
|
|
|
|
| void DotPrinter::PrintAttributes(RegExpNode* that) {
|
| - os_ << " a" << that << " [shape=Mrecord, color=grey, fontcolor=grey, "
|
| - << "margin=0.1, fontsize=10, label=\"{";
|
| - AttributePrinter printer(os_);
|
| + OS::Print(" a%p [shape=Mrecord, color=grey, fontcolor=grey, "
|
| + "margin=0.1, fontsize=10, label=\"{", that);
|
| + AttributePrinter printer;
|
| NodeInfo* info = that->info();
|
| printer.PrintBit("NI", info->follows_newline_interest);
|
| printer.PrintBit("WI", info->follows_word_interest);
|
| printer.PrintBit("SI", info->follows_start_interest);
|
| - Label* label = that->label();
|
| - if (label->is_bound())
|
| - printer.PrintPositive("@", label->pos());
|
| - os_ << "}\"];\n"
|
| - << " a" << that << " -> n" << that
|
| - << " [style=dashed, color=grey, arrowhead=none];\n";
|
| + BlockLabel* label = that->label();
|
| + if (label->IsBound())
|
| + printer.PrintPositive("@", label->Position());
|
| + OS::Print("}\"];\n"
|
| + " a%p -> n%p [style=dashed, color=grey, arrowhead=none];\n",
|
| + that, that);
|
| }
|
|
|
|
|
| -static const bool kPrintDispatchTable = false;
|
| void DotPrinter::VisitChoice(ChoiceNode* that) {
|
| - if (kPrintDispatchTable) {
|
| - os_ << " n" << that << " [shape=Mrecord, label=\"";
|
| - TableEntryHeaderPrinter header_printer(os_);
|
| - that->GetTable(ignore_case_)->ForEach(&header_printer);
|
| - os_ << "\"]\n";
|
| - PrintAttributes(that);
|
| - TableEntryBodyPrinter body_printer(os_, that);
|
| - that->GetTable(ignore_case_)->ForEach(&body_printer);
|
| - } else {
|
| - os_ << " n" << that << " [shape=Mrecord, label=\"?\"];\n";
|
| - for (int i = 0; i < that->alternatives()->length(); i++) {
|
| - GuardedAlternative alt = that->alternatives()->at(i);
|
| - os_ << " n" << that << " -> n" << alt.node();
|
| - }
|
| + OS::Print(" n%p [shape=Mrecord, label=\"?\"];\n", that);
|
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
|
| + GuardedAlternative alt = that->alternatives()->At(i);
|
| + OS::Print(" n%p -> n%p", that, alt.node());
|
| }
|
| - for (int i = 0; i < that->alternatives()->length(); i++) {
|
| - GuardedAlternative alt = that->alternatives()->at(i);
|
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
|
| + GuardedAlternative alt = that->alternatives()->At(i);
|
| alt.node()->Accept(this);
|
| }
|
| }
|
|
|
|
|
| void DotPrinter::VisitText(TextNode* that) {
|
| - Zone* zone = that->zone();
|
| - os_ << " n" << that << " [label=\"";
|
| - for (int i = 0; i < that->elements()->length(); i++) {
|
| - if (i > 0) os_ << " ";
|
| - TextElement elm = that->elements()->at(i);
|
| + OS::Print(" n%p [label=\"", that);
|
| + for (intptr_t i = 0; i < that->elements()->length(); i++) {
|
| + if (i > 0) OS::Print(" ");
|
| + TextElement elm = that->elements()->At(i);
|
| switch (elm.text_type()) {
|
| case TextElement::ATOM: {
|
| - Vector<const uc16> data = elm.atom()->data();
|
| - for (int i = 0; i < data.length(); i++) {
|
| - os_ << static_cast<char>(data[i]);
|
| + ZoneGrowableArray<uint16_t>* data = elm.atom()->data();
|
| + for (intptr_t i = 0; i < data->length(); i++) {
|
| + OS::Print("%c", static_cast<char>(data->At(i)));
|
| }
|
| break;
|
| }
|
| case TextElement::CHAR_CLASS: {
|
| RegExpCharacterClass* node = elm.char_class();
|
| - os_ << "[";
|
| - if (node->is_negated()) os_ << "^";
|
| - for (int j = 0; j < node->ranges(zone)->length(); j++) {
|
| - CharacterRange range = node->ranges(zone)->at(j);
|
| - os_ << AsUC16(range.from()) << "-" << AsUC16(range.to());
|
| + OS::Print("[");
|
| + if (node->is_negated()) OS::Print("^");
|
| + for (intptr_t j = 0; j < node->ranges()->length(); j++) {
|
| + CharacterRange range = node->ranges()->At(j);
|
| + PrintUtf16(range.from());
|
| + OS::Print("-");
|
| + PrintUtf16(range.to());
|
| }
|
| - os_ << "]";
|
| + OS::Print("]");
|
| break;
|
| }
|
| default:
|
| UNREACHABLE();
|
| }
|
| }
|
| - os_ << "\", shape=box, peripheries=2];\n";
|
| + OS::Print("\", shape=box, peripheries=2];\n");
|
| PrintAttributes(that);
|
| - os_ << " n" << that << " -> n" << that->on_success() << ";\n";
|
| + OS::Print(" n%p -> n%p;\n", that, that->on_success());
|
| Visit(that->on_success());
|
| }
|
|
|
|
|
| void DotPrinter::VisitBackReference(BackReferenceNode* that) {
|
| - os_ << " n" << that << " [label=\"$" << that->start_register() << "..$"
|
| - << that->end_register() << "\", shape=doubleoctagon];\n";
|
| + OS::Print(" n%p [label=\"$%" Pd "..$%" Pd "\", shape=doubleoctagon];\n",
|
| + that, that->start_register(), that->end_register());
|
| PrintAttributes(that);
|
| - os_ << " n" << that << " -> n" << that->on_success() << ";\n";
|
| + OS::Print(" n%p -> n%p;\n", that, that->on_success());
|
| Visit(that->on_success());
|
| }
|
|
|
|
|
| void DotPrinter::VisitEnd(EndNode* that) {
|
| - os_ << " n" << that << " [style=bold, shape=point];\n";
|
| + OS::Print(" n%p [style=bold, shape=point];\n", that);
|
| PrintAttributes(that);
|
| }
|
|
|
|
|
| void DotPrinter::VisitAssertion(AssertionNode* that) {
|
| - os_ << " n" << that << " [";
|
| + OS::Print(" n%p [", that);
|
| switch (that->assertion_type()) {
|
| case AssertionNode::AT_END:
|
| - os_ << "label=\"$\", shape=septagon";
|
| + OS::Print("label=\"$\", shape=septagon");
|
| break;
|
| case AssertionNode::AT_START:
|
| - os_ << "label=\"^\", shape=septagon";
|
| + OS::Print("label=\"^\", shape=septagon");
|
| break;
|
| case AssertionNode::AT_BOUNDARY:
|
| - os_ << "label=\"\\b\", shape=septagon";
|
| + OS::Print("label=\"\\b\", shape=septagon");
|
| break;
|
| case AssertionNode::AT_NON_BOUNDARY:
|
| - os_ << "label=\"\\B\", shape=septagon";
|
| + OS::Print("label=\"\\B\", shape=septagon");
|
| break;
|
| case AssertionNode::AFTER_NEWLINE:
|
| - os_ << "label=\"(?<=\\n)\", shape=septagon";
|
| + OS::Print("label=\"(?<=\\n)\", shape=septagon");
|
| break;
|
| }
|
| - os_ << "];\n";
|
| + OS::Print("];\n");
|
| PrintAttributes(that);
|
| RegExpNode* successor = that->on_success();
|
| - os_ << " n" << that << " -> n" << successor << ";\n";
|
| + OS::Print(" n%p -> n%p;\n", that, successor);
|
| Visit(successor);
|
| }
|
|
|
|
|
| void DotPrinter::VisitAction(ActionNode* that) {
|
| - os_ << " n" << that << " [";
|
| + OS::Print(" n%p [", that);
|
| switch (that->action_type_) {
|
| case ActionNode::SET_REGISTER:
|
| - os_ << "label=\"$" << that->data_.u_store_register.reg
|
| - << ":=" << that->data_.u_store_register.value << "\", shape=octagon";
|
| + OS::Print("label=\"$%" Pd ":=%" Pd "\", shape=octagon",
|
| + that->data_.u_store_register.reg,
|
| + that->data_.u_store_register.value);
|
| break;
|
| case ActionNode::INCREMENT_REGISTER:
|
| - os_ << "label=\"$" << that->data_.u_increment_register.reg
|
| - << "++\", shape=octagon";
|
| + OS::Print("label=\"$%" Pd "++\", shape=octagon",
|
| + that->data_.u_increment_register.reg);
|
| break;
|
| case ActionNode::STORE_POSITION:
|
| - os_ << "label=\"$" << that->data_.u_position_register.reg
|
| - << ":=$pos\", shape=octagon";
|
| + OS::Print("label=\"$%" Pd ":=$pos\", shape=octagon",
|
| + that->data_.u_position_register.reg);
|
| break;
|
| case ActionNode::BEGIN_SUBMATCH:
|
| - os_ << "label=\"$" << that->data_.u_submatch.current_position_register
|
| - << ":=$pos,begin\", shape=septagon";
|
| + OS::Print("label=\"$%" Pd ":=$pos,begin\", shape=septagon",
|
| + that->data_.u_submatch.current_position_register);
|
| break;
|
| case ActionNode::POSITIVE_SUBMATCH_SUCCESS:
|
| - os_ << "label=\"escape\", shape=septagon";
|
| + OS::Print("label=\"escape\", shape=septagon");
|
| break;
|
| case ActionNode::EMPTY_MATCH_CHECK:
|
| - os_ << "label=\"$" << that->data_.u_empty_match_check.start_register
|
| - << "=$pos?,$" << that->data_.u_empty_match_check.repetition_register
|
| - << "<" << that->data_.u_empty_match_check.repetition_limit
|
| - << "?\", shape=septagon";
|
| + OS::Print("label=\"$%" Pd "=$pos?,$%" Pd "<%" Pd "?\", shape=septagon",
|
| + that->data_.u_empty_match_check.start_register,
|
| + that->data_.u_empty_match_check.repetition_register,
|
| + that->data_.u_empty_match_check.repetition_limit);
|
| break;
|
| case ActionNode::CLEAR_CAPTURES: {
|
| - os_ << "label=\"clear $" << that->data_.u_clear_captures.range_from
|
| - << " to $" << that->data_.u_clear_captures.range_to
|
| - << "\", shape=septagon";
|
| + OS::Print("label=\"clear $%" Pd " to $%" Pd "\", shape=septagon",
|
| + that->data_.u_clear_captures.range_from,
|
| + that->data_.u_clear_captures.range_to);
|
| break;
|
| }
|
| }
|
| - os_ << "];\n";
|
| + OS::Print("];\n");
|
| PrintAttributes(that);
|
| RegExpNode* successor = that->on_success();
|
| - os_ << " n" << that << " -> n" << successor << ";\n";
|
| + OS::Print(" n%p -> n%p;\n", that, successor);
|
| Visit(successor);
|
| }
|
|
|
|
|
| -class DispatchTableDumper {
|
| - public:
|
| - explicit DispatchTableDumper(OStream& os) : os_(os) {}
|
| - void Call(uc16 key, DispatchTable::Entry entry);
|
| - private:
|
| - OStream& os_;
|
| -};
|
| -
|
| -
|
| -void DispatchTableDumper::Call(uc16 key, DispatchTable::Entry entry) {
|
| - os_ << "[" << AsUC16(key) << "-" << AsUC16(entry.to()) << "]: {";
|
| - OutSet* set = entry.out_set();
|
| - bool first = true;
|
| - for (unsigned i = 0; i < OutSet::kFirstLimit; i++) {
|
| - if (set->Get(i)) {
|
| - if (first) {
|
| - first = false;
|
| - } else {
|
| - os_ << ", ";
|
| - }
|
| - os_ << i;
|
| - }
|
| - }
|
| - os_ << "}\n";
|
| -}
|
| -
|
| -
|
| -void DispatchTable::Dump() {
|
| - OFStream os(stderr);
|
| - DispatchTableDumper dumper(os);
|
| - tree()->ForEach(&dumper);
|
| -}
|
| -
|
| -
|
| void RegExpEngine::DotPrint(const char* label,
|
| RegExpNode* node,
|
| bool ignore_case) {
|
| - OFStream os(stdout);
|
| - DotPrinter printer(os, ignore_case);
|
| + DotPrinter printer(ignore_case);
|
| printer.PrintNode(label, node);
|
| }
|
|
|
| @@ -4001,39 +3949,44 @@ void RegExpEngine::DotPrint(const char* label,
|
|
|
| RegExpNode* RegExpAtom::ToNode(RegExpCompiler* compiler,
|
| RegExpNode* on_success) {
|
| - ZoneList<TextElement>* elms =
|
| - new(compiler->zone()) ZoneList<TextElement>(1, compiler->zone());
|
| - elms->Add(TextElement::Atom(this), compiler->zone());
|
| - return new(compiler->zone()) TextNode(elms, on_success);
|
| + ZoneGrowableArray<TextElement>* elms =
|
| + new(CI) ZoneGrowableArray<TextElement>(1);
|
| + elms->Add(TextElement::Atom(this));
|
| + return new(CI) TextNode(elms, on_success);
|
| }
|
|
|
|
|
| RegExpNode* RegExpText::ToNode(RegExpCompiler* compiler,
|
| RegExpNode* on_success) {
|
| - return new(compiler->zone()) TextNode(elements(), on_success);
|
| + ZoneGrowableArray<TextElement>* elms =
|
| + new(CI) ZoneGrowableArray<TextElement>(1);
|
| + for (intptr_t i = 0; i < elements()->length(); i++) {
|
| + elms->Add(elements()->At(i));
|
| + }
|
| + return new(CI) TextNode(elms, on_success);
|
| }
|
|
|
|
|
| -static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
|
| - const int* special_class,
|
| - int length) {
|
| +static bool CompareInverseRanges(ZoneGrowableArray<CharacterRange>* ranges,
|
| + const intptr_t* special_class,
|
| + intptr_t length) {
|
| length--; // Remove final 0x10000.
|
| - DCHECK(special_class[length] == 0x10000);
|
| - DCHECK(ranges->length() != 0);
|
| - DCHECK(length != 0);
|
| - DCHECK(special_class[0] != 0);
|
| + ASSERT(special_class[length] == 0x10000);
|
| + ASSERT(ranges->length() != 0);
|
| + ASSERT(length != 0);
|
| + ASSERT(special_class[0] != 0);
|
| if (ranges->length() != (length >> 1) + 1) {
|
| return false;
|
| }
|
| - CharacterRange range = ranges->at(0);
|
| + CharacterRange range = ranges->At(0);
|
| if (range.from() != 0) {
|
| return false;
|
| }
|
| - for (int i = 0; i < length; i += 2) {
|
| + for (intptr_t i = 0; i < length; i += 2) {
|
| if (special_class[i] != (range.to() + 1)) {
|
| return false;
|
| }
|
| - range = ranges->at((i >> 1) + 1);
|
| + range = ranges->At((i >> 1) + 1);
|
| if (special_class[i+1] != range.from()) {
|
| return false;
|
| }
|
| @@ -4045,16 +3998,16 @@ static bool CompareInverseRanges(ZoneList<CharacterRange>* ranges,
|
| }
|
|
|
|
|
| -static bool CompareRanges(ZoneList<CharacterRange>* ranges,
|
| - const int* special_class,
|
| - int length) {
|
| +static bool CompareRanges(ZoneGrowableArray<CharacterRange>* ranges,
|
| + const intptr_t* special_class,
|
| + intptr_t length) {
|
| length--; // Remove final 0x10000.
|
| - DCHECK(special_class[length] == 0x10000);
|
| + ASSERT(special_class[length] == 0x10000);
|
| if (ranges->length() * 2 != length) {
|
| return false;
|
| }
|
| - for (int i = 0; i < length; i += 2) {
|
| - CharacterRange range = ranges->at(i >> 1);
|
| + for (intptr_t i = 0; i < length; i += 2) {
|
| + CharacterRange range = ranges->At(i >> 1);
|
| if (range.from() != special_class[i] ||
|
| range.to() != special_class[i + 1] - 1) {
|
| return false;
|
| @@ -4064,7 +4017,7 @@ static bool CompareRanges(ZoneList<CharacterRange>* ranges,
|
| }
|
|
|
|
|
| -bool RegExpCharacterClass::is_standard(Zone* zone) {
|
| +bool RegExpCharacterClass::is_standard() {
|
| // TODO(lrn): Remove need for this function, by not throwing away information
|
| // along the way.
|
| if (is_negated_) {
|
| @@ -4073,31 +4026,31 @@ bool RegExpCharacterClass::is_standard(Zone* zone) {
|
| if (set_.is_standard()) {
|
| return true;
|
| }
|
| - if (CompareRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
|
| + if (CompareRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
|
| set_.set_standard_set_type('s');
|
| return true;
|
| }
|
| - if (CompareInverseRanges(set_.ranges(zone), kSpaceRanges, kSpaceRangeCount)) {
|
| + if (CompareInverseRanges(set_.ranges(), kSpaceRanges, kSpaceRangeCount)) {
|
| set_.set_standard_set_type('S');
|
| return true;
|
| }
|
| - if (CompareInverseRanges(set_.ranges(zone),
|
| + if (CompareInverseRanges(set_.ranges(),
|
| kLineTerminatorRanges,
|
| kLineTerminatorRangeCount)) {
|
| set_.set_standard_set_type('.');
|
| return true;
|
| }
|
| - if (CompareRanges(set_.ranges(zone),
|
| + if (CompareRanges(set_.ranges(),
|
| kLineTerminatorRanges,
|
| kLineTerminatorRangeCount)) {
|
| set_.set_standard_set_type('n');
|
| return true;
|
| }
|
| - if (CompareRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
|
| + if (CompareRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
|
| set_.set_standard_set_type('w');
|
| return true;
|
| }
|
| - if (CompareInverseRanges(set_.ranges(zone), kWordRanges, kWordRangeCount)) {
|
| + if (CompareInverseRanges(set_.ranges(), kWordRanges, kWordRangeCount)) {
|
| set_.set_standard_set_type('W');
|
| return true;
|
| }
|
| @@ -4107,18 +4060,18 @@ bool RegExpCharacterClass::is_standard(Zone* zone) {
|
|
|
| RegExpNode* RegExpCharacterClass::ToNode(RegExpCompiler* compiler,
|
| RegExpNode* on_success) {
|
| - return new(compiler->zone()) TextNode(this, on_success);
|
| + return new(CI) TextNode(this, on_success);
|
| }
|
|
|
|
|
| RegExpNode* RegExpDisjunction::ToNode(RegExpCompiler* compiler,
|
| RegExpNode* on_success) {
|
| - ZoneList<RegExpTree*>* alternatives = this->alternatives();
|
| - int length = alternatives->length();
|
| + ZoneGrowableArray<RegExpTree*>* alternatives = this->alternatives();
|
| + intptr_t length = alternatives->length();
|
| ChoiceNode* result =
|
| - new(compiler->zone()) ChoiceNode(length, compiler->zone());
|
| - for (int i = 0; i < length; i++) {
|
| - GuardedAlternative alternative(alternatives->at(i)->ToNode(compiler,
|
| + new(CI) ChoiceNode(length, CI);
|
| + for (intptr_t i = 0; i < length; i++) {
|
| + GuardedAlternative alternative(alternatives->At(i)->ToNode(compiler,
|
| on_success));
|
| result->AddAlternative(alternative);
|
| }
|
| @@ -4139,21 +4092,21 @@ RegExpNode* RegExpQuantifier::ToNode(RegExpCompiler* compiler,
|
|
|
| // Scoped object to keep track of how much we unroll quantifier loops in the
|
| // regexp graph generator.
|
| -class RegExpExpansionLimiter {
|
| +class RegExpExpansionLimiter : public ValueObject {
|
| public:
|
| - static const int kMaxExpansionFactor = 6;
|
| - RegExpExpansionLimiter(RegExpCompiler* compiler, int factor)
|
| + static const intptr_t kMaxExpansionFactor = 6;
|
| + RegExpExpansionLimiter(RegExpCompiler* compiler, intptr_t factor)
|
| : compiler_(compiler),
|
| saved_expansion_factor_(compiler->current_expansion_factor()),
|
| ok_to_expand_(saved_expansion_factor_ <= kMaxExpansionFactor) {
|
| - DCHECK(factor > 0);
|
| + ASSERT(factor > 0);
|
| if (ok_to_expand_) {
|
| if (factor > kMaxExpansionFactor) {
|
| // Avoid integer overflow of the current expansion factor.
|
| ok_to_expand_ = false;
|
| compiler->set_current_expansion_factor(kMaxExpansionFactor + 1);
|
| } else {
|
| - int new_factor = saved_expansion_factor_ * factor;
|
| + intptr_t new_factor = saved_expansion_factor_ * factor;
|
| ok_to_expand_ = (new_factor <= kMaxExpansionFactor);
|
| compiler->set_current_expansion_factor(new_factor);
|
| }
|
| @@ -4168,15 +4121,15 @@ class RegExpExpansionLimiter {
|
|
|
| private:
|
| RegExpCompiler* compiler_;
|
| - int saved_expansion_factor_;
|
| + intptr_t saved_expansion_factor_;
|
| bool ok_to_expand_;
|
|
|
| DISALLOW_IMPLICIT_CONSTRUCTORS(RegExpExpansionLimiter);
|
| };
|
|
|
|
|
| -RegExpNode* RegExpQuantifier::ToNode(int min,
|
| - int max,
|
| +RegExpNode* RegExpQuantifier::ToNode(intptr_t min,
|
| + intptr_t max,
|
| bool is_greedy,
|
| RegExpTree* body,
|
| RegExpCompiler* compiler,
|
| @@ -4202,25 +4155,27 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
|
| // simpler since we don't need to make the special zero length match check
|
| // from step 2.1. If the min and max are small we can unroll a little in
|
| // this case.
|
| - static const int kMaxUnrolledMinMatches = 3; // Unroll (foo)+ and (foo){3,}
|
| - static const int kMaxUnrolledMaxMatches = 3; // Unroll (foo)? and (foo){x,3}
|
| + // Unroll (foo)+ and (foo){3,}
|
| + static const intptr_t kMaxUnrolledMinMatches = 3;
|
| + // Unroll (foo)? and (foo){x,3}
|
| + static const intptr_t kMaxUnrolledMaxMatches = 3;
|
| if (max == 0) return on_success; // This can happen due to recursion.
|
| bool body_can_be_empty = (body->min_match() == 0);
|
| - int body_start_reg = RegExpCompiler::kNoRegister;
|
| + intptr_t body_start_reg = RegExpCompiler::kNoRegister;
|
| Interval capture_registers = body->CaptureRegisters();
|
| bool needs_capture_clearing = !capture_registers.is_empty();
|
| - Zone* zone = compiler->zone();
|
| + Isolate* isolate = compiler->isolate();
|
|
|
| if (body_can_be_empty) {
|
| body_start_reg = compiler->AllocateRegister();
|
| - } else if (FLAG_regexp_optimization && !needs_capture_clearing) {
|
| + } else if (kRegexpOptimization && !needs_capture_clearing) {
|
| // Only unroll if there are no captures and the body can't be
|
| // empty.
|
| {
|
| RegExpExpansionLimiter limiter(
|
| compiler, min + ((max != min) ? 1 : 0));
|
| if (min > 0 && min <= kMaxUnrolledMinMatches && limiter.ok_to_expand()) {
|
| - int new_max = (max == kInfinity) ? max : max - min;
|
| + intptr_t new_max = (max == kInfinity) ? max : max - min;
|
| // Recurse once to get the loop or optional matches after the fixed
|
| // ones.
|
| RegExpNode* answer = ToNode(
|
| @@ -4228,20 +4183,20 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
|
| // Unroll the forced matches from 0 to min. This can cause chains of
|
| // TextNodes (which the parser does not generate). These should be
|
| // combined if it turns out they hinder good code generation.
|
| - for (int i = 0; i < min; i++) {
|
| + for (intptr_t i = 0; i < min; i++) {
|
| answer = body->ToNode(compiler, answer);
|
| }
|
| return answer;
|
| }
|
| }
|
| if (max <= kMaxUnrolledMaxMatches && min == 0) {
|
| - DCHECK(max > 0); // Due to the 'if' above.
|
| + ASSERT(max > 0); // Due to the 'if' above.
|
| RegExpExpansionLimiter limiter(compiler, max);
|
| if (limiter.ok_to_expand()) {
|
| // Unroll the optional matches up to max.
|
| RegExpNode* answer = on_success;
|
| - for (int i = 0; i < max; i++) {
|
| - ChoiceNode* alternation = new(zone) ChoiceNode(2, zone);
|
| + for (intptr_t i = 0; i < max; i++) {
|
| + ChoiceNode* alternation = new(isolate) ChoiceNode(2, isolate);
|
| if (is_greedy) {
|
| alternation->AddAlternative(
|
| GuardedAlternative(body->ToNode(compiler, answer)));
|
| @@ -4261,11 +4216,11 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
|
| bool has_min = min > 0;
|
| bool has_max = max < RegExpTree::kInfinity;
|
| bool needs_counter = has_min || has_max;
|
| - int reg_ctr = needs_counter
|
| + intptr_t reg_ctr = needs_counter
|
| ? compiler->AllocateRegister()
|
| : RegExpCompiler::kNoRegister;
|
| - LoopChoiceNode* center = new(zone) LoopChoiceNode(body->min_match() == 0,
|
| - zone);
|
| + LoopChoiceNode* center = new(isolate) LoopChoiceNode(body->min_match() == 0,
|
| + isolate);
|
| if (not_at_start) center->set_not_at_start();
|
| RegExpNode* loop_return = needs_counter
|
| ? static_cast<RegExpNode*>(ActionNode::IncrementRegister(reg_ctr, center))
|
| @@ -4291,13 +4246,13 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
|
| GuardedAlternative body_alt(body_node);
|
| if (has_max) {
|
| Guard* body_guard =
|
| - new(zone) Guard(reg_ctr, Guard::LT, max);
|
| - body_alt.AddGuard(body_guard, zone);
|
| + new(isolate) Guard(reg_ctr, Guard::LT, max);
|
| + body_alt.AddGuard(body_guard, isolate);
|
| }
|
| GuardedAlternative rest_alt(on_success);
|
| if (has_min) {
|
| - Guard* rest_guard = new(compiler->zone()) Guard(reg_ctr, Guard::GEQ, min);
|
| - rest_alt.AddGuard(rest_guard, zone);
|
| + Guard* rest_guard = new(isolate) Guard(reg_ctr, Guard::GEQ, min);
|
| + rest_alt.AddGuard(rest_guard, isolate);
|
| }
|
| if (is_greedy) {
|
| center->AddLoopAlternative(body_alt);
|
| @@ -4316,9 +4271,6 @@ RegExpNode* RegExpQuantifier::ToNode(int min,
|
|
|
| RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
|
| RegExpNode* on_success) {
|
| - NodeInfo info;
|
| - Zone* zone = compiler->zone();
|
| -
|
| switch (assertion_type()) {
|
| case START_OF_LINE:
|
| return AssertionNode::AfterNewline(on_success);
|
| @@ -4334,16 +4286,16 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
|
| // Compile $ in multiline regexps as an alternation with a positive
|
| // lookahead in one side and an end-of-input on the other side.
|
| // We need two registers for the lookahead.
|
| - int stack_pointer_register = compiler->AllocateRegister();
|
| - int position_register = compiler->AllocateRegister();
|
| + intptr_t stack_pointer_register = compiler->AllocateRegister();
|
| + intptr_t position_register = compiler->AllocateRegister();
|
| // The ChoiceNode to distinguish between a newline and end-of-input.
|
| - ChoiceNode* result = new(zone) ChoiceNode(2, zone);
|
| + ChoiceNode* result = new ChoiceNode(2, on_success->isolate());
|
| // Create a newline atom.
|
| - ZoneList<CharacterRange>* newline_ranges =
|
| - new(zone) ZoneList<CharacterRange>(3, zone);
|
| - CharacterRange::AddClassEscape('n', newline_ranges, zone);
|
| - RegExpCharacterClass* newline_atom = new(zone) RegExpCharacterClass('n');
|
| - TextNode* newline_matcher = new(zone) TextNode(
|
| + ZoneGrowableArray<CharacterRange>* newline_ranges =
|
| + new ZoneGrowableArray<CharacterRange>(3);
|
| + CharacterRange::AddClassEscape('n', newline_ranges);
|
| + RegExpCharacterClass* newline_atom = new RegExpCharacterClass('n');
|
| + TextNode* newline_matcher = new TextNode(
|
| newline_atom,
|
| ActionNode::PositiveSubmatchSuccess(stack_pointer_register,
|
| position_register,
|
| @@ -4371,7 +4323,7 @@ RegExpNode* RegExpAssertion::ToNode(RegExpCompiler* compiler,
|
|
|
| RegExpNode* RegExpBackReference::ToNode(RegExpCompiler* compiler,
|
| RegExpNode* on_success) {
|
| - return new(compiler->zone())
|
| + return new(CI)
|
| BackReferenceNode(RegExpCapture::StartRegister(index()),
|
| RegExpCapture::EndRegister(index()),
|
| on_success);
|
| @@ -4386,13 +4338,13 @@ RegExpNode* RegExpEmpty::ToNode(RegExpCompiler* compiler,
|
|
|
| RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
|
| RegExpNode* on_success) {
|
| - int stack_pointer_register = compiler->AllocateRegister();
|
| - int position_register = compiler->AllocateRegister();
|
| + intptr_t stack_pointer_register = compiler->AllocateRegister();
|
| + intptr_t position_register = compiler->AllocateRegister();
|
|
|
| - const int registers_per_capture = 2;
|
| - const int register_of_first_capture = 2;
|
| - int register_count = capture_count_ * registers_per_capture;
|
| - int register_start =
|
| + const intptr_t registers_per_capture = 2;
|
| + const intptr_t register_of_first_capture = 2;
|
| + intptr_t register_count = capture_count_ * registers_per_capture;
|
| + intptr_t register_start =
|
| register_of_first_capture + capture_from_ * registers_per_capture;
|
|
|
| RegExpNode* success;
|
| @@ -4419,20 +4371,19 @@ RegExpNode* RegExpLookahead::ToNode(RegExpCompiler* compiler,
|
| // for a negative lookahead. The NegativeLookaheadChoiceNode is a special
|
| // ChoiceNode that knows to ignore the first exit when calculating quick
|
| // checks.
|
| - Zone* zone = compiler->zone();
|
|
|
| GuardedAlternative body_alt(
|
| body()->ToNode(
|
| compiler,
|
| - success = new(zone) NegativeSubmatchSuccess(stack_pointer_register,
|
| - position_register,
|
| - register_count,
|
| - register_start,
|
| - zone)));
|
| + success = new(CI) NegativeSubmatchSuccess(stack_pointer_register,
|
| + position_register,
|
| + register_count,
|
| + register_start,
|
| + CI)));
|
| ChoiceNode* choice_node =
|
| - new(zone) NegativeLookaheadChoiceNode(body_alt,
|
| - GuardedAlternative(on_success),
|
| - zone);
|
| + new(CI) NegativeLookaheadChoiceNode(body_alt,
|
| + GuardedAlternative(on_success),
|
| + CI);
|
| return ActionNode::BeginSubmatch(stack_pointer_register,
|
| position_register,
|
| choice_node);
|
| @@ -4447,11 +4398,11 @@ RegExpNode* RegExpCapture::ToNode(RegExpCompiler* compiler,
|
|
|
|
|
| RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
|
| - int index,
|
| + intptr_t index,
|
| RegExpCompiler* compiler,
|
| RegExpNode* on_success) {
|
| - int start_reg = RegExpCapture::StartRegister(index);
|
| - int end_reg = RegExpCapture::EndRegister(index);
|
| + intptr_t start_reg = RegExpCapture::StartRegister(index);
|
| + intptr_t end_reg = RegExpCapture::EndRegister(index);
|
| RegExpNode* store_end = ActionNode::StorePosition(end_reg, true, on_success);
|
| RegExpNode* body_node = body->ToNode(compiler, store_end);
|
| return ActionNode::StorePosition(start_reg, true, body_node);
|
| @@ -4460,88 +4411,83 @@ RegExpNode* RegExpCapture::ToNode(RegExpTree* body,
|
|
|
| RegExpNode* RegExpAlternative::ToNode(RegExpCompiler* compiler,
|
| RegExpNode* on_success) {
|
| - ZoneList<RegExpTree*>* children = nodes();
|
| + ZoneGrowableArray<RegExpTree*>* children = nodes();
|
| RegExpNode* current = on_success;
|
| - for (int i = children->length() - 1; i >= 0; i--) {
|
| - current = children->at(i)->ToNode(compiler, current);
|
| + for (intptr_t i = children->length() - 1; i >= 0; i--) {
|
| + current = children->At(i)->ToNode(compiler, current);
|
| }
|
| return current;
|
| }
|
|
|
|
|
| -static void AddClass(const int* elmv,
|
| - int elmc,
|
| - ZoneList<CharacterRange>* ranges,
|
| - Zone* zone) {
|
| +static void AddClass(const intptr_t* elmv,
|
| + intptr_t elmc,
|
| + ZoneGrowableArray<CharacterRange>* ranges) {
|
| elmc--;
|
| - DCHECK(elmv[elmc] == 0x10000);
|
| - for (int i = 0; i < elmc; i += 2) {
|
| - DCHECK(elmv[i] < elmv[i + 1]);
|
| - ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1), zone);
|
| + ASSERT(elmv[elmc] == 0x10000);
|
| + for (intptr_t i = 0; i < elmc; i += 2) {
|
| + ASSERT(elmv[i] < elmv[i + 1]);
|
| + ranges->Add(CharacterRange(elmv[i], elmv[i + 1] - 1));
|
| }
|
| }
|
|
|
|
|
| -static void AddClassNegated(const int *elmv,
|
| - int elmc,
|
| - ZoneList<CharacterRange>* ranges,
|
| - Zone* zone) {
|
| +static void AddClassNegated(const intptr_t *elmv,
|
| + intptr_t elmc,
|
| + ZoneGrowableArray<CharacterRange>* ranges) {
|
| elmc--;
|
| - DCHECK(elmv[elmc] == 0x10000);
|
| - DCHECK(elmv[0] != 0x0000);
|
| - DCHECK(elmv[elmc-1] != String::kMaxUtf16CodeUnit);
|
| - uc16 last = 0x0000;
|
| - for (int i = 0; i < elmc; i += 2) {
|
| - DCHECK(last <= elmv[i] - 1);
|
| - DCHECK(elmv[i] < elmv[i + 1]);
|
| - ranges->Add(CharacterRange(last, elmv[i] - 1), zone);
|
| + ASSERT(elmv[elmc] == 0x10000);
|
| + ASSERT(elmv[0] != 0x0000);
|
| + ASSERT(elmv[elmc-1] != Utf16::kMaxCodeUnit);
|
| + uint16_t last = 0x0000;
|
| + for (intptr_t i = 0; i < elmc; i += 2) {
|
| + ASSERT(last <= elmv[i] - 1);
|
| + ASSERT(elmv[i] < elmv[i + 1]);
|
| + ranges->Add(CharacterRange(last, elmv[i] - 1));
|
| last = elmv[i + 1];
|
| }
|
| - ranges->Add(CharacterRange(last, String::kMaxUtf16CodeUnit), zone);
|
| + ranges->Add(CharacterRange(last, Utf16::kMaxCodeUnit));
|
| }
|
|
|
|
|
| -void CharacterRange::AddClassEscape(uc16 type,
|
| - ZoneList<CharacterRange>* ranges,
|
| - Zone* zone) {
|
| +void CharacterRange::AddClassEscape(uint16_t type,
|
| + ZoneGrowableArray<CharacterRange>* ranges) {
|
| switch (type) {
|
| case 's':
|
| - AddClass(kSpaceRanges, kSpaceRangeCount, ranges, zone);
|
| + AddClass(kSpaceRanges, kSpaceRangeCount, ranges);
|
| break;
|
| case 'S':
|
| - AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges, zone);
|
| + AddClassNegated(kSpaceRanges, kSpaceRangeCount, ranges);
|
| break;
|
| case 'w':
|
| - AddClass(kWordRanges, kWordRangeCount, ranges, zone);
|
| + AddClass(kWordRanges, kWordRangeCount, ranges);
|
| break;
|
| case 'W':
|
| - AddClassNegated(kWordRanges, kWordRangeCount, ranges, zone);
|
| + AddClassNegated(kWordRanges, kWordRangeCount, ranges);
|
| break;
|
| case 'd':
|
| - AddClass(kDigitRanges, kDigitRangeCount, ranges, zone);
|
| + AddClass(kDigitRanges, kDigitRangeCount, ranges);
|
| break;
|
| case 'D':
|
| - AddClassNegated(kDigitRanges, kDigitRangeCount, ranges, zone);
|
| + AddClassNegated(kDigitRanges, kDigitRangeCount, ranges);
|
| break;
|
| case '.':
|
| AddClassNegated(kLineTerminatorRanges,
|
| kLineTerminatorRangeCount,
|
| - ranges,
|
| - zone);
|
| + ranges);
|
| break;
|
| // This is not a character range as defined by the spec but a
|
| // convenient shorthand for a character class that matches any
|
| // character.
|
| case '*':
|
| - ranges->Add(CharacterRange::Everything(), zone);
|
| + ranges->Add(CharacterRange::Everything());
|
| break;
|
| // This is the set of characters matched by the $ and ^ symbols
|
| // in multiline mode.
|
| case 'n':
|
| AddClass(kLineTerminatorRanges,
|
| kLineTerminatorRangeCount,
|
| - ranges,
|
| - zone);
|
| + ranges);
|
| break;
|
| default:
|
| UNREACHABLE();
|
| @@ -4549,77 +4495,29 @@ void CharacterRange::AddClassEscape(uc16 type,
|
| }
|
|
|
|
|
| -Vector<const int> CharacterRange::GetWordBounds() {
|
| - return Vector<const int>(kWordRanges, kWordRangeCount - 1);
|
| -}
|
| -
|
| -
|
| -class CharacterRangeSplitter {
|
| - public:
|
| - CharacterRangeSplitter(ZoneList<CharacterRange>** included,
|
| - ZoneList<CharacterRange>** excluded,
|
| - Zone* zone)
|
| - : included_(included),
|
| - excluded_(excluded),
|
| - zone_(zone) { }
|
| - void Call(uc16 from, DispatchTable::Entry entry);
|
| -
|
| - static const int kInBase = 0;
|
| - static const int kInOverlay = 1;
|
| -
|
| - private:
|
| - ZoneList<CharacterRange>** included_;
|
| - ZoneList<CharacterRange>** excluded_;
|
| - Zone* zone_;
|
| -};
|
| -
|
| -
|
| -void CharacterRangeSplitter::Call(uc16 from, DispatchTable::Entry entry) {
|
| - if (!entry.out_set()->Get(kInBase)) return;
|
| - ZoneList<CharacterRange>** target = entry.out_set()->Get(kInOverlay)
|
| - ? included_
|
| - : excluded_;
|
| - if (*target == NULL) *target = new(zone_) ZoneList<CharacterRange>(2, zone_);
|
| - (*target)->Add(CharacterRange(entry.from(), entry.to()), zone_);
|
| -}
|
| -
|
| -
|
| -void CharacterRange::Split(ZoneList<CharacterRange>* base,
|
| - Vector<const int> overlay,
|
| - ZoneList<CharacterRange>** included,
|
| - ZoneList<CharacterRange>** excluded,
|
| - Zone* zone) {
|
| - DCHECK_EQ(NULL, *included);
|
| - DCHECK_EQ(NULL, *excluded);
|
| - DispatchTable table(zone);
|
| - for (int i = 0; i < base->length(); i++)
|
| - table.AddRange(base->at(i), CharacterRangeSplitter::kInBase, zone);
|
| - for (int i = 0; i < overlay.length(); i += 2) {
|
| - table.AddRange(CharacterRange(overlay[i], overlay[i + 1] - 1),
|
| - CharacterRangeSplitter::kInOverlay, zone);
|
| - }
|
| - CharacterRangeSplitter callback(included, excluded, zone);
|
| - table.ForEach(&callback);
|
| -}
|
| -
|
| -
|
| -void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
|
| - bool is_one_byte, Zone* zone) {
|
| - Isolate* isolate = zone->isolate();
|
| - uc16 bottom = from();
|
| - uc16 top = to();
|
| +void CharacterRange::AddCaseEquivalents(
|
| + ZoneGrowableArray<CharacterRange>* ranges,
|
| + bool is_one_byte,
|
| + Isolate* isolate) {
|
| + uint16_t bottom = from();
|
| + uint16_t top = to();
|
| if (is_one_byte && !RangeContainsLatin1Equivalents(*this)) {
|
| - if (bottom > String::kMaxOneByteCharCode) return;
|
| - if (top > String::kMaxOneByteCharCode) top = String::kMaxOneByteCharCode;
|
| + if (bottom > Symbols::kMaxOneCharCodeSymbol) return;
|
| + if (top > Symbols::kMaxOneCharCodeSymbol) {
|
| + top = Symbols::kMaxOneCharCodeSymbol;
|
| + }
|
| }
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| +
|
| + unibrow::Mapping<unibrow::Ecma262UnCanonicalize> jsregexp_uncanonicalize;
|
| + unibrow::Mapping<unibrow::CanonicalizationRange> jsregexp_canonrange;
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| if (top == bottom) {
|
| // If this is a singleton we just expand the one character.
|
| - int length = isolate->jsregexp_uncanonicalize()->get(bottom, '\0', chars);
|
| - for (int i = 0; i < length; i++) {
|
| - uc32 chr = chars[i];
|
| + intptr_t length = jsregexp_uncanonicalize.get(bottom, '\0', chars); // NOLINT
|
| + for (intptr_t i = 0; i < length; i++) {
|
| + uint32_t chr = chars[i];
|
| if (chr != bottom) {
|
| - ranges->Add(CharacterRange::Singleton(chars[i]), zone);
|
| + ranges->Add(CharacterRange::Singleton(chars[i]));
|
| }
|
| }
|
| } else {
|
| @@ -4641,25 +4539,25 @@ void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
|
| // completely contained in a block we do this for all the blocks
|
| // covered by the range (handling characters that is not in a block
|
| // as a "singleton block").
|
| - unibrow::uchar range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int pos = bottom;
|
| + int32_t range[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t pos = bottom;
|
| while (pos <= top) {
|
| - int length = isolate->jsregexp_canonrange()->get(pos, '\0', range);
|
| - uc16 block_end;
|
| + intptr_t length = jsregexp_canonrange.get(pos, '\0', range);
|
| + uint16_t block_end;
|
| if (length == 0) {
|
| block_end = pos;
|
| } else {
|
| - DCHECK_EQ(1, length);
|
| + ASSERT(length == 1);
|
| block_end = range[0];
|
| }
|
| - int end = (block_end > top) ? top : block_end;
|
| - length = isolate->jsregexp_uncanonicalize()->get(block_end, '\0', range);
|
| - for (int i = 0; i < length; i++) {
|
| - uc32 c = range[i];
|
| - uc16 range_from = c - (block_end - pos);
|
| - uc16 range_to = c - (block_end - end);
|
| + intptr_t end = (block_end > top) ? top : block_end;
|
| + length = jsregexp_uncanonicalize.get(block_end, '\0', range); // NOLINT
|
| + for (intptr_t i = 0; i < length; i++) {
|
| + uint32_t c = range[i];
|
| + uint16_t range_from = c - (block_end - pos);
|
| + uint16_t range_to = c - (block_end - end);
|
| if (!(bottom <= range_from && range_to <= top)) {
|
| - ranges->Add(CharacterRange(range_from, range_to), zone);
|
| + ranges->Add(CharacterRange(range_from, range_to));
|
| }
|
| }
|
| pos = end + 1;
|
| @@ -4668,13 +4566,13 @@ void CharacterRange::AddCaseEquivalents(ZoneList<CharacterRange>* ranges,
|
| }
|
|
|
|
|
| -bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
|
| - DCHECK_NOT_NULL(ranges);
|
| - int n = ranges->length();
|
| +bool CharacterRange::IsCanonical(ZoneGrowableArray<CharacterRange>* ranges) {
|
| + ASSERT(ranges != NULL);
|
| + intptr_t n = ranges->length();
|
| if (n <= 1) return true;
|
| - int max = ranges->at(0).to();
|
| - for (int i = 1; i < n; i++) {
|
| - CharacterRange next_range = ranges->at(i);
|
| + intptr_t max = ranges->At(0).to();
|
| + for (intptr_t i = 1; i < n; i++) {
|
| + CharacterRange next_range = ranges->At(i);
|
| if (next_range.from() <= max + 1) return false;
|
| max = next_range.to();
|
| }
|
| @@ -4682,48 +4580,49 @@ bool CharacterRange::IsCanonical(ZoneList<CharacterRange>* ranges) {
|
| }
|
|
|
|
|
| -ZoneList<CharacterRange>* CharacterSet::ranges(Zone* zone) {
|
| +ZoneGrowableArray<CharacterRange>* CharacterSet::ranges() {
|
| if (ranges_ == NULL) {
|
| - ranges_ = new(zone) ZoneList<CharacterRange>(2, zone);
|
| - CharacterRange::AddClassEscape(standard_set_type_, ranges_, zone);
|
| + ranges_ = new ZoneGrowableArray<CharacterRange>(2);
|
| + CharacterRange::AddClassEscape(standard_set_type_, ranges_);
|
| }
|
| return ranges_;
|
| }
|
|
|
|
|
| -// Move a number of elements in a zonelist to another position
|
| -// in the same list. Handles overlapping source and target areas.
|
| -static void MoveRanges(ZoneList<CharacterRange>* list,
|
| - int from,
|
| - int to,
|
| - int count) {
|
| +// Move a number of elements in a zone array to another position
|
| +// in the same array. Handles overlapping source and target areas.
|
| +static void MoveRanges(ZoneGrowableArray<CharacterRange>* list,
|
| + intptr_t from,
|
| + intptr_t to,
|
| + intptr_t count) {
|
| // Ranges are potentially overlapping.
|
| if (from < to) {
|
| - for (int i = count - 1; i >= 0; i--) {
|
| - list->at(to + i) = list->at(from + i);
|
| + for (intptr_t i = count - 1; i >= 0; i--) {
|
| + (*list)[to + i] = list->At(from + i);
|
| }
|
| } else {
|
| - for (int i = 0; i < count; i++) {
|
| - list->at(to + i) = list->at(from + i);
|
| + for (intptr_t i = 0; i < count; i++) {
|
| + (*list)[to + i] = list->At(from + i);
|
| }
|
| }
|
| }
|
|
|
|
|
| -static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
|
| - int count,
|
| - CharacterRange insert) {
|
| +static intptr_t InsertRangeInCanonicalList(
|
| + ZoneGrowableArray<CharacterRange>* list,
|
| + intptr_t count,
|
| + CharacterRange insert) {
|
| // Inserts a range into list[0..count[, which must be sorted
|
| // by from value and non-overlapping and non-adjacent, using at most
|
| // list[0..count] for the result. Returns the number of resulting
|
| // canonicalized ranges. Inserting a range may collapse existing ranges into
|
| // fewer ranges, so the return value can be anything in the range 1..count+1.
|
| - uc16 from = insert.from();
|
| - uc16 to = insert.to();
|
| - int start_pos = 0;
|
| - int end_pos = count;
|
| - for (int i = count - 1; i >= 0; i--) {
|
| - CharacterRange current = list->at(i);
|
| + uint16_t from = insert.from();
|
| + uint16_t to = insert.to();
|
| + intptr_t start_pos = 0;
|
| + intptr_t end_pos = count;
|
| + for (intptr_t i = count - 1; i >= 0; i--) {
|
| + CharacterRange current = list->At(i);
|
| if (current.from() > to + 1) {
|
| end_pos = i;
|
| } else if (current.to() + 1 < from) {
|
| @@ -4744,26 +4643,26 @@ static int InsertRangeInCanonicalList(ZoneList<CharacterRange>* list,
|
| if (start_pos < count) {
|
| MoveRanges(list, start_pos, start_pos + 1, count - start_pos);
|
| }
|
| - list->at(start_pos) = insert;
|
| + (*list)[start_pos] = insert;
|
| return count + 1;
|
| }
|
| if (start_pos + 1 == end_pos) {
|
| // Replace single existing range at position start_pos.
|
| - CharacterRange to_replace = list->at(start_pos);
|
| - int new_from = Min(to_replace.from(), from);
|
| - int new_to = Max(to_replace.to(), to);
|
| - list->at(start_pos) = CharacterRange(new_from, new_to);
|
| + CharacterRange to_replace = list->At(start_pos);
|
| + intptr_t new_from = Utils::Minimum(to_replace.from(), from);
|
| + intptr_t new_to = Utils::Maximum(to_replace.to(), to);
|
| + (*list)[start_pos] = CharacterRange(new_from, new_to);
|
| return count;
|
| }
|
| // Replace a number of existing ranges from start_pos to end_pos - 1.
|
| // Move the remaining ranges down.
|
|
|
| - int new_from = Min(list->at(start_pos).from(), from);
|
| - int new_to = Max(list->at(end_pos - 1).to(), to);
|
| + intptr_t new_from = Utils::Minimum(list->At(start_pos).from(), from);
|
| + intptr_t new_to = Utils::Maximum(list->At(end_pos - 1).to(), to);
|
| if (end_pos < count) {
|
| MoveRanges(list, end_pos, start_pos + 1, count - end_pos);
|
| }
|
| - list->at(start_pos) = CharacterRange(new_from, new_to);
|
| + (*list)[start_pos] = CharacterRange(new_from, new_to);
|
| return count - (end_pos - start_pos) + 1;
|
| }
|
|
|
| @@ -4776,15 +4675,16 @@ void CharacterSet::Canonicalize() {
|
| }
|
|
|
|
|
| -void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
|
| +void CharacterRange::Canonicalize(
|
| + ZoneGrowableArray<CharacterRange>* character_ranges) {
|
| if (character_ranges->length() <= 1) return;
|
| // Check whether ranges are already canonical (increasing, non-overlapping,
|
| // non-adjacent).
|
| - int n = character_ranges->length();
|
| - int max = character_ranges->at(0).to();
|
| - int i = 1;
|
| + intptr_t n = character_ranges->length();
|
| + intptr_t max = character_ranges->At(0).to();
|
| + intptr_t i = 1;
|
| while (i < n) {
|
| - CharacterRange current = character_ranges->at(i);
|
| + CharacterRange current = character_ranges->At(i);
|
| if (current.from() <= max + 1) {
|
| break;
|
| }
|
| @@ -4799,41 +4699,39 @@ void CharacterRange::Canonicalize(ZoneList<CharacterRange>* character_ranges) {
|
| // list, in order).
|
| // Notice that inserting a range can reduce the number of ranges in the
|
| // result due to combining of adjacent and overlapping ranges.
|
| - int read = i; // Range to insert.
|
| - int num_canonical = i; // Length of canonicalized part of list.
|
| + intptr_t read = i; // Range to insert.
|
| + intptr_t num_canonical = i; // Length of canonicalized part of list.
|
| do {
|
| num_canonical = InsertRangeInCanonicalList(character_ranges,
|
| num_canonical,
|
| - character_ranges->at(read));
|
| + character_ranges->At(read));
|
| read++;
|
| } while (read < n);
|
| - character_ranges->Rewind(num_canonical);
|
| + character_ranges->TruncateTo(num_canonical);
|
|
|
| - DCHECK(CharacterRange::IsCanonical(character_ranges));
|
| + ASSERT(CharacterRange::IsCanonical(character_ranges));
|
| }
|
|
|
|
|
| -void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
|
| - ZoneList<CharacterRange>* negated_ranges,
|
| - Zone* zone) {
|
| - DCHECK(CharacterRange::IsCanonical(ranges));
|
| - DCHECK_EQ(0, negated_ranges->length());
|
| - int range_count = ranges->length();
|
| - uc16 from = 0;
|
| - int i = 0;
|
| - if (range_count > 0 && ranges->at(0).from() == 0) {
|
| - from = ranges->at(0).to();
|
| +void CharacterRange::Negate(ZoneGrowableArray<CharacterRange>* ranges,
|
| + ZoneGrowableArray<CharacterRange>* negated_ranges) {
|
| + ASSERT(CharacterRange::IsCanonical(ranges));
|
| + ASSERT(negated_ranges->length() == 0);
|
| + intptr_t range_count = ranges->length();
|
| + uint16_t from = 0;
|
| + intptr_t i = 0;
|
| + if (range_count > 0 && ranges->At(0).from() == 0) {
|
| + from = ranges->At(0).to();
|
| i = 1;
|
| }
|
| while (i < range_count) {
|
| - CharacterRange range = ranges->at(i);
|
| - negated_ranges->Add(CharacterRange(from + 1, range.from() - 1), zone);
|
| + CharacterRange range = ranges->At(i);
|
| + negated_ranges->Add(CharacterRange(from + 1, range.from() - 1));
|
| from = range.to();
|
| i++;
|
| }
|
| - if (from < String::kMaxUtf16CodeUnit) {
|
| - negated_ranges->Add(CharacterRange(from + 1, String::kMaxUtf16CodeUnit),
|
| - zone);
|
| + if (from < Utf16::kMaxCodeUnit) {
|
| + negated_ranges->Add(CharacterRange(from + 1, Utf16::kMaxCodeUnit));
|
| }
|
| }
|
|
|
| @@ -4842,33 +4740,29 @@ void CharacterRange::Negate(ZoneList<CharacterRange>* ranges,
|
| // Splay tree
|
|
|
|
|
| -OutSet* OutSet::Extend(unsigned value, Zone* zone) {
|
| - if (Get(value))
|
| - return this;
|
| - if (successors(zone) != NULL) {
|
| - for (int i = 0; i < successors(zone)->length(); i++) {
|
| - OutSet* successor = successors(zone)->at(i);
|
| - if (successor->Get(value))
|
| - return successor;
|
| +// Workaround for the fact that ZoneGrowableArray does not have contains().
|
| +static bool ArrayContains(ZoneGrowableArray<unsigned>* array,
|
| + unsigned value) {
|
| + for (intptr_t i = 0; i < array->length(); i++) {
|
| + if (array->At(i) == value) {
|
| + return true;
|
| }
|
| - } else {
|
| - successors_ = new(zone) ZoneList<OutSet*>(2, zone);
|
| }
|
| - OutSet* result = new(zone) OutSet(first_, remaining_);
|
| - result->Set(value, zone);
|
| - successors(zone)->Add(result, zone);
|
| - return result;
|
| + return false;
|
| }
|
|
|
|
|
| -void OutSet::Set(unsigned value, Zone *zone) {
|
| +void OutSet::Set(unsigned value, Isolate* isolate) {
|
| if (value < kFirstLimit) {
|
| first_ |= (1 << value);
|
| } else {
|
| if (remaining_ == NULL)
|
| - remaining_ = new(zone) ZoneList<unsigned>(1, zone);
|
| - if (remaining_->is_empty() || !remaining_->Contains(value))
|
| - remaining_->Add(value, zone);
|
| + remaining_ = new(isolate) ZoneGrowableArray<unsigned>(1);
|
| +
|
| + bool remaining_contains_value = ArrayContains(remaining_, value);
|
| + if (remaining_->is_empty() || !remaining_contains_value) {
|
| + remaining_->Add(value);
|
| + }
|
| }
|
| }
|
|
|
| @@ -4879,125 +4773,16 @@ bool OutSet::Get(unsigned value) const {
|
| } else if (remaining_ == NULL) {
|
| return false;
|
| } else {
|
| - return remaining_->Contains(value);
|
| - }
|
| -}
|
| -
|
| -
|
| -const uc16 DispatchTable::Config::kNoKey = unibrow::Utf8::kBadChar;
|
| -
|
| -
|
| -void DispatchTable::AddRange(CharacterRange full_range, int value,
|
| - Zone* zone) {
|
| - CharacterRange current = full_range;
|
| - if (tree()->is_empty()) {
|
| - // If this is the first range we just insert into the table.
|
| - ZoneSplayTree<Config>::Locator loc;
|
| - DCHECK_RESULT(tree()->Insert(current.from(), &loc));
|
| - loc.set_value(Entry(current.from(), current.to(),
|
| - empty()->Extend(value, zone)));
|
| - return;
|
| - }
|
| - // First see if there is a range to the left of this one that
|
| - // overlaps.
|
| - ZoneSplayTree<Config>::Locator loc;
|
| - if (tree()->FindGreatestLessThan(current.from(), &loc)) {
|
| - Entry* entry = &loc.value();
|
| - // If we've found a range that overlaps with this one, and it
|
| - // starts strictly to the left of this one, we have to fix it
|
| - // because the following code only handles ranges that start on
|
| - // or after the start point of the range we're adding.
|
| - if (entry->from() < current.from() && entry->to() >= current.from()) {
|
| - // Snap the overlapping range in half around the start point of
|
| - // the range we're adding.
|
| - CharacterRange left(entry->from(), current.from() - 1);
|
| - CharacterRange right(current.from(), entry->to());
|
| - // The left part of the overlapping range doesn't overlap.
|
| - // Truncate the whole entry to be just the left part.
|
| - entry->set_to(left.to());
|
| - // The right part is the one that overlaps. We add this part
|
| - // to the map and let the next step deal with merging it with
|
| - // the range we're adding.
|
| - ZoneSplayTree<Config>::Locator loc;
|
| - DCHECK_RESULT(tree()->Insert(right.from(), &loc));
|
| - loc.set_value(Entry(right.from(),
|
| - right.to(),
|
| - entry->out_set()));
|
| - }
|
| - }
|
| - while (current.is_valid()) {
|
| - if (tree()->FindLeastGreaterThan(current.from(), &loc) &&
|
| - (loc.value().from() <= current.to()) &&
|
| - (loc.value().to() >= current.from())) {
|
| - Entry* entry = &loc.value();
|
| - // We have overlap. If there is space between the start point of
|
| - // the range we're adding and where the overlapping range starts
|
| - // then we have to add a range covering just that space.
|
| - if (current.from() < entry->from()) {
|
| - ZoneSplayTree<Config>::Locator ins;
|
| - DCHECK_RESULT(tree()->Insert(current.from(), &ins));
|
| - ins.set_value(Entry(current.from(),
|
| - entry->from() - 1,
|
| - empty()->Extend(value, zone)));
|
| - current.set_from(entry->from());
|
| - }
|
| - DCHECK_EQ(current.from(), entry->from());
|
| - // If the overlapping range extends beyond the one we want to add
|
| - // we have to snap the right part off and add it separately.
|
| - if (entry->to() > current.to()) {
|
| - ZoneSplayTree<Config>::Locator ins;
|
| - DCHECK_RESULT(tree()->Insert(current.to() + 1, &ins));
|
| - ins.set_value(Entry(current.to() + 1,
|
| - entry->to(),
|
| - entry->out_set()));
|
| - entry->set_to(current.to());
|
| - }
|
| - DCHECK(entry->to() <= current.to());
|
| - // The overlapping range is now completely contained by the range
|
| - // we're adding so we can just update it and move the start point
|
| - // of the range we're adding just past it.
|
| - entry->AddValue(value, zone);
|
| - // Bail out if the last interval ended at 0xFFFF since otherwise
|
| - // adding 1 will wrap around to 0.
|
| - if (entry->to() == String::kMaxUtf16CodeUnit)
|
| - break;
|
| - DCHECK(entry->to() + 1 > current.from());
|
| - current.set_from(entry->to() + 1);
|
| - } else {
|
| - // There is no overlap so we can just add the range
|
| - ZoneSplayTree<Config>::Locator ins;
|
| - DCHECK_RESULT(tree()->Insert(current.from(), &ins));
|
| - ins.set_value(Entry(current.from(),
|
| - current.to(),
|
| - empty()->Extend(value, zone)));
|
| - break;
|
| - }
|
| + return ArrayContains(remaining_, value);
|
| }
|
| }
|
|
|
|
|
| -OutSet* DispatchTable::Get(uc16 value) {
|
| - ZoneSplayTree<Config>::Locator loc;
|
| - if (!tree()->FindGreatestLessThan(value, &loc))
|
| - return empty();
|
| - Entry* entry = &loc.value();
|
| - if (value <= entry->to())
|
| - return entry->out_set();
|
| - else
|
| - return empty();
|
| -}
|
| -
|
| -
|
| // -------------------------------------------------------------------
|
| // Analysis
|
|
|
|
|
| void Analysis::EnsureAnalyzed(RegExpNode* that) {
|
| - StackLimitCheck check(that->zone()->isolate());
|
| - if (check.HasOverflowed()) {
|
| - fail("Stack overflow");
|
| - return;
|
| - }
|
| if (that->info()->been_analyzed || that->info()->being_analyzed)
|
| return;
|
| that->info()->being_analyzed = true;
|
| @@ -5013,12 +4798,12 @@ void Analysis::VisitEnd(EndNode* that) {
|
|
|
|
|
| void TextNode::CalculateOffsets() {
|
| - int element_count = elements()->length();
|
| + intptr_t element_count = elements()->length();
|
| // Set up the offsets of the elements relative to the start. This is a fixed
|
| // quantity since a TextNode can only contain fixed-width things.
|
| - int cp_offset = 0;
|
| - for (int i = 0; i < element_count; i++) {
|
| - TextElement& elm = elements()->at(i);
|
| + intptr_t cp_offset = 0;
|
| + for (intptr_t i = 0; i < element_count; i++) {
|
| + TextElement& elm = (*elements())[i];
|
| elm.set_cp_offset(cp_offset);
|
| cp_offset += elm.length();
|
| }
|
| @@ -5049,8 +4834,8 @@ void Analysis::VisitAction(ActionNode* that) {
|
|
|
| void Analysis::VisitChoice(ChoiceNode* that) {
|
| NodeInfo* info = that->info();
|
| - for (int i = 0; i < that->alternatives()->length(); i++) {
|
| - RegExpNode* node = that->alternatives()->at(i).node();
|
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
|
| + RegExpNode* node = (*that->alternatives())[i].node();
|
| EnsureAnalyzed(node);
|
| if (has_failed()) return;
|
| // Anything the following nodes need to know has to be known by
|
| @@ -5062,8 +4847,8 @@ void Analysis::VisitChoice(ChoiceNode* that) {
|
|
|
| void Analysis::VisitLoopChoice(LoopChoiceNode* that) {
|
| NodeInfo* info = that->info();
|
| - for (int i = 0; i < that->alternatives()->length(); i++) {
|
| - RegExpNode* node = that->alternatives()->at(i).node();
|
| + for (intptr_t i = 0; i < that->alternatives()->length(); i++) {
|
| + RegExpNode* node = (*that->alternatives())[i].node();
|
| if (node != that->loop_node()) {
|
| EnsureAnalyzed(node);
|
| if (has_failed()) return;
|
| @@ -5089,8 +4874,8 @@ void Analysis::VisitAssertion(AssertionNode* that) {
|
| }
|
|
|
|
|
| -void BackReferenceNode::FillInBMInfo(int offset,
|
| - int budget,
|
| +void BackReferenceNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| BoyerMooreLookahead* bm,
|
| bool not_at_start) {
|
| // Working out the set of characters that a backreference can match is too
|
| @@ -5100,18 +4885,18 @@ void BackReferenceNode::FillInBMInfo(int offset,
|
| }
|
|
|
|
|
| -STATIC_ASSERT(BoyerMoorePositionInfo::kMapSize ==
|
| - RegExpMacroAssembler::kTableSize);
|
| +COMPILE_ASSERT(BoyerMoorePositionInfo::kMapSize ==
|
| + RegExpMacroAssembler::kTableSize);
|
|
|
|
|
| -void ChoiceNode::FillInBMInfo(int offset,
|
| - int budget,
|
| +void ChoiceNode::FillInBMInfo(intptr_t offset,
|
| + intptr_t budget,
|
| BoyerMooreLookahead* bm,
|
| bool not_at_start) {
|
| - ZoneList<GuardedAlternative>* alts = alternatives();
|
| + ZoneGrowableArray<GuardedAlternative>* alts = alternatives();
|
| budget = (budget - 1) / alts->length();
|
| - for (int i = 0; i < alts->length(); i++) {
|
| - GuardedAlternative& alt = alts->at(i);
|
| + for (intptr_t i = 0; i < alts->length(); i++) {
|
| + GuardedAlternative& alt = (*alts)[i];
|
| if (alt.guards() != NULL && alt.guards()->length() != 0) {
|
| bm->SetRest(offset); // Give up trying to fill in info.
|
| SaveBMInfo(bm, not_at_start, offset);
|
| @@ -5123,35 +4908,34 @@ void ChoiceNode::FillInBMInfo(int offset,
|
| }
|
|
|
|
|
| -void TextNode::FillInBMInfo(int initial_offset,
|
| - int budget,
|
| +void TextNode::FillInBMInfo(intptr_t initial_offset,
|
| + intptr_t budget,
|
| BoyerMooreLookahead* bm,
|
| bool not_at_start) {
|
| if (initial_offset >= bm->length()) return;
|
| - int offset = initial_offset;
|
| - int max_char = bm->max_char();
|
| - for (int i = 0; i < elements()->length(); i++) {
|
| + intptr_t offset = initial_offset;
|
| + intptr_t max_char = bm->max_char();
|
| + for (intptr_t i = 0; i < elements()->length(); i++) {
|
| if (offset >= bm->length()) {
|
| if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| return;
|
| }
|
| - TextElement text = elements()->at(i);
|
| + TextElement text = elements()->At(i);
|
| if (text.text_type() == TextElement::ATOM) {
|
| RegExpAtom* atom = text.atom();
|
| - for (int j = 0; j < atom->length(); j++, offset++) {
|
| + for (intptr_t j = 0; j < atom->length(); j++, offset++) {
|
| if (offset >= bm->length()) {
|
| if (initial_offset == 0) set_bm_info(not_at_start, bm);
|
| return;
|
| }
|
| - uc16 character = atom->data()[j];
|
| + uint16_t character = atom->data()->At(j);
|
| if (bm->compiler()->ignore_case()) {
|
| - unibrow::uchar chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| - int length = GetCaseIndependentLetters(
|
| - Isolate::Current(),
|
| + int32_t chars[unibrow::Ecma262UnCanonicalize::kMaxWidth];
|
| + intptr_t length = GetCaseIndependentLetters(
|
| character,
|
| - bm->max_char() == String::kMaxOneByteCharCode,
|
| + bm->max_char() == Symbols::kMaxOneCharCodeSymbol,
|
| chars);
|
| - for (int j = 0; j < length; j++) {
|
| + for (intptr_t j = 0; j < length; j++) {
|
| bm->Set(offset, chars[j]);
|
| }
|
| } else {
|
| @@ -5159,16 +4943,17 @@ void TextNode::FillInBMInfo(int initial_offset,
|
| }
|
| }
|
| } else {
|
| - DCHECK_EQ(TextElement::CHAR_CLASS, text.text_type());
|
| + ASSERT(text.text_type() == TextElement::CHAR_CLASS);
|
| RegExpCharacterClass* char_class = text.char_class();
|
| - ZoneList<CharacterRange>* ranges = char_class->ranges(zone());
|
| + ZoneGrowableArray<CharacterRange>* ranges = char_class->ranges();
|
| if (char_class->is_negated()) {
|
| bm->SetAll(offset);
|
| } else {
|
| - for (int k = 0; k < ranges->length(); k++) {
|
| - CharacterRange& range = ranges->at(k);
|
| + for (intptr_t k = 0; k < ranges->length(); k++) {
|
| + CharacterRange& range = (*ranges)[k];
|
| if (range.from() > max_char) continue;
|
| - int to = Min(max_char, static_cast<int>(range.to()));
|
| + intptr_t to = Utils::Minimum(max_char,
|
| + static_cast<intptr_t>(range.to()));
|
| bm->SetInterval(offset, Interval(range.from(), to));
|
| }
|
| }
|
| @@ -5187,159 +4972,54 @@ void TextNode::FillInBMInfo(int initial_offset,
|
| }
|
|
|
|
|
| -// -------------------------------------------------------------------
|
| -// Dispatch table construction
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitEnd(EndNode* that) {
|
| - AddRange(CharacterRange::Everything());
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::BuildTable(ChoiceNode* node) {
|
| - node->set_being_calculated(true);
|
| - ZoneList<GuardedAlternative>* alternatives = node->alternatives();
|
| - for (int i = 0; i < alternatives->length(); i++) {
|
| - set_choice_index(i);
|
| - alternatives->at(i).node()->Accept(this);
|
| - }
|
| - node->set_being_calculated(false);
|
| -}
|
| -
|
| -
|
| -class AddDispatchRange {
|
| - public:
|
| - explicit AddDispatchRange(DispatchTableConstructor* constructor)
|
| - : constructor_(constructor) { }
|
| - void Call(uc32 from, DispatchTable::Entry entry);
|
| - private:
|
| - DispatchTableConstructor* constructor_;
|
| -};
|
| -
|
| -
|
| -void AddDispatchRange::Call(uc32 from, DispatchTable::Entry entry) {
|
| - CharacterRange range(from, entry.to());
|
| - constructor_->AddRange(range);
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitChoice(ChoiceNode* node) {
|
| - if (node->being_calculated())
|
| - return;
|
| - DispatchTable* table = node->GetTable(ignore_case_);
|
| - AddDispatchRange adder(this);
|
| - table->ForEach(&adder);
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitBackReference(BackReferenceNode* that) {
|
| - // TODO(160): Find the node that we refer back to and propagate its start
|
| - // set back to here. For now we just accept anything.
|
| - AddRange(CharacterRange::Everything());
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitAssertion(AssertionNode* that) {
|
| - RegExpNode* target = that->on_success();
|
| - target->Accept(this);
|
| -}
|
| -
|
| -
|
| -static int CompareRangeByFrom(const CharacterRange* a,
|
| - const CharacterRange* b) {
|
| - return Compare<uc16>(a->from(), b->from());
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::AddInverse(ZoneList<CharacterRange>* ranges) {
|
| - ranges->Sort(CompareRangeByFrom);
|
| - uc16 last = 0;
|
| - for (int i = 0; i < ranges->length(); i++) {
|
| - CharacterRange range = ranges->at(i);
|
| - if (last < range.from())
|
| - AddRange(CharacterRange(last, range.from() - 1));
|
| - if (range.to() >= last) {
|
| - if (range.to() == String::kMaxUtf16CodeUnit) {
|
| - return;
|
| - } else {
|
| - last = range.to() + 1;
|
| - }
|
| - }
|
| - }
|
| - AddRange(CharacterRange(last, String::kMaxUtf16CodeUnit));
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitText(TextNode* that) {
|
| - TextElement elm = that->elements()->at(0);
|
| - switch (elm.text_type()) {
|
| - case TextElement::ATOM: {
|
| - uc16 c = elm.atom()->data()[0];
|
| - AddRange(CharacterRange(c, c));
|
| - break;
|
| - }
|
| - case TextElement::CHAR_CLASS: {
|
| - RegExpCharacterClass* tree = elm.char_class();
|
| - ZoneList<CharacterRange>* ranges = tree->ranges(that->zone());
|
| - if (tree->is_negated()) {
|
| - AddInverse(ranges);
|
| - } else {
|
| - for (int i = 0; i < ranges->length(); i++)
|
| - AddRange(ranges->at(i));
|
| - }
|
| - break;
|
| - }
|
| - default: {
|
| - UNIMPLEMENTED();
|
| - }
|
| - }
|
| -}
|
| -
|
| -
|
| -void DispatchTableConstructor::VisitAction(ActionNode* that) {
|
| - RegExpNode* target = that->on_success();
|
| - target->Accept(this);
|
| -}
|
| -
|
| -
|
| RegExpEngine::CompilationResult RegExpEngine::Compile(
|
| - RegExpCompileData* data, bool ignore_case, bool is_global,
|
| - bool is_multiline, bool is_sticky, Handle<String> pattern,
|
| - Handle<String> sample_subject, bool is_one_byte, Zone* zone) {
|
| - if ((data->capture_count + 1) * 2 - 1 > RegExpMacroAssembler::kMaxRegister) {
|
| - return IrregexpRegExpTooBig(zone->isolate());
|
| - }
|
| - RegExpCompiler compiler(data->capture_count, ignore_case, is_one_byte, zone);
|
| -
|
| - // Sample some characters from the middle of the string.
|
| - static const int kSampleSize = 128;
|
| -
|
| - sample_subject = String::Flatten(sample_subject);
|
| - int chars_sampled = 0;
|
| - int half_way = (sample_subject->length() - kSampleSize) / 2;
|
| - for (int i = Max(0, half_way);
|
| - i < sample_subject->length() && chars_sampled < kSampleSize;
|
| - i++, chars_sampled++) {
|
| - compiler.frequency_collator()->CountCharacter(sample_subject->Get(i));
|
| - }
|
| + RegExpCompileData* data,
|
| + const ParsedFunction* parsed_function,
|
| + const ZoneGrowableArray<const ICData*>& ic_data_array) {
|
| + Isolate* isolate = Isolate::Current();
|
| +
|
| + const Function& function = parsed_function->function();
|
| + const intptr_t specialization_cid = function.regexp_cid();
|
| + const bool is_one_byte = (specialization_cid == kOneByteStringCid ||
|
| + specialization_cid == kExternalOneByteStringCid);
|
| + JSRegExp& regexp = JSRegExp::Handle(isolate, function.regexp());
|
| + const String& pattern = String::Handle(isolate, regexp.pattern());
|
| +
|
| + ASSERT(!regexp.IsNull());
|
| + ASSERT(!pattern.IsNull());
|
| +
|
| + const bool ignore_case = regexp.is_ignore_case();
|
| + const bool is_global = regexp.is_global();
|
| +
|
| + RegExpCompiler compiler(data->capture_count, ignore_case, specialization_cid);
|
| +
|
| + // TODO(zerny): Frequency sampling is currently disabled because of several
|
| + // issues. We do not want to store subject strings in the regexp object since
|
| + // they might be long and we should not prevent their garbage collection.
|
| + // Passing them to this function explicitly does not help, since we must
|
| + // generate exactly the same IR for both the unoptimizing and optimizing
|
| + // pipelines (otherwise it gets confused when i.e. deopt id's differ).
|
| + // An option would be to store sampling results in the regexp object, but
|
| + // I'm not sure the performance gains are relevant enough.
|
|
|
| // Wrap the body of the regexp in capture #0.
|
| RegExpNode* captured_body = RegExpCapture::ToNode(data->tree,
|
| 0,
|
| &compiler,
|
| compiler.accept());
|
| +
|
| RegExpNode* node = captured_body;
|
| bool is_end_anchored = data->tree->IsAnchoredAtEnd();
|
| bool is_start_anchored = data->tree->IsAnchoredAtStart();
|
| - int max_length = data->tree->max_match();
|
| - if (!is_start_anchored && !is_sticky) {
|
| + intptr_t max_length = data->tree->max_match();
|
| + if (!is_start_anchored) {
|
| // Add a .*? at the beginning, outside the body capture, unless
|
| - // this expression is anchored at the beginning or sticky.
|
| + // this expression is anchored at the beginning.
|
| RegExpNode* loop_node =
|
| RegExpQuantifier::ToNode(0,
|
| RegExpTree::kInfinity,
|
| false,
|
| - new(zone) RegExpCharacterClass('*'),
|
| + new(isolate) RegExpCharacterClass('*'),
|
| &compiler,
|
| captured_body,
|
| data->contains_anchor);
|
| @@ -5347,10 +5027,11 @@ RegExpEngine::CompilationResult RegExpEngine::Compile(
|
| if (data->contains_anchor) {
|
| // Unroll loop once, to take care of the case that might start
|
| // at the start of input.
|
| - ChoiceNode* first_step_node = new(zone) ChoiceNode(2, zone);
|
| + ChoiceNode* first_step_node = new(isolate) ChoiceNode(2, isolate);
|
| first_step_node->AddAlternative(GuardedAlternative(captured_body));
|
| first_step_node->AddAlternative(GuardedAlternative(
|
| - new(zone) TextNode(new(zone) RegExpCharacterClass('*'), loop_node)));
|
| + new(isolate) TextNode(
|
| + new(isolate) RegExpCharacterClass('*'), loop_node)));
|
| node = first_step_node;
|
| } else {
|
| node = loop_node;
|
| @@ -5365,74 +5046,124 @@ RegExpEngine::CompilationResult RegExpEngine::Compile(
|
| }
|
| }
|
|
|
| - if (node == NULL) node = new(zone) EndNode(EndNode::BACKTRACK, zone);
|
| + if (node == NULL) node = new(isolate) EndNode(EndNode::BACKTRACK, isolate);
|
| data->node = node;
|
| Analysis analysis(ignore_case, is_one_byte);
|
| analysis.EnsureAnalyzed(node);
|
| if (analysis.has_failed()) {
|
| const char* error_message = analysis.error_message();
|
| - return CompilationResult(zone->isolate(), error_message);
|
| + return CompilationResult(error_message);
|
| }
|
|
|
| - // Create the correct assembler for the architecture.
|
| -#ifndef V8_INTERPRETED_REGEXP
|
| // Native regexp implementation.
|
|
|
| - NativeRegExpMacroAssembler::Mode mode =
|
| - is_one_byte ? NativeRegExpMacroAssembler::LATIN1
|
| - : NativeRegExpMacroAssembler::UC16;
|
| -
|
| -#if V8_TARGET_ARCH_IA32
|
| - RegExpMacroAssemblerIA32 macro_assembler(mode, (data->capture_count + 1) * 2,
|
| - zone);
|
| -#elif V8_TARGET_ARCH_X64
|
| - RegExpMacroAssemblerX64 macro_assembler(mode, (data->capture_count + 1) * 2,
|
| - zone);
|
| -#elif V8_TARGET_ARCH_ARM
|
| - RegExpMacroAssemblerARM macro_assembler(mode, (data->capture_count + 1) * 2,
|
| - zone);
|
| -#elif V8_TARGET_ARCH_ARM64
|
| - RegExpMacroAssemblerARM64 macro_assembler(mode, (data->capture_count + 1) * 2,
|
| - zone);
|
| -#elif V8_TARGET_ARCH_MIPS
|
| - RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
|
| - zone);
|
| -#elif V8_TARGET_ARCH_MIPS64
|
| - RegExpMacroAssemblerMIPS macro_assembler(mode, (data->capture_count + 1) * 2,
|
| - zone);
|
| -#elif V8_TARGET_ARCH_X87
|
| - RegExpMacroAssemblerX87 macro_assembler(mode, (data->capture_count + 1) * 2,
|
| - zone);
|
| -#else
|
| -#error "Unsupported architecture"
|
| -#endif
|
| -
|
| -#else // V8_INTERPRETED_REGEXP
|
| - // Interpreted regexp implementation.
|
| - EmbeddedVector<byte, 1024> codes;
|
| - RegExpMacroAssemblerIrregexp macro_assembler(codes, zone);
|
| -#endif // V8_INTERPRETED_REGEXP
|
| + IRRegExpMacroAssembler* macro_assembler =
|
| + new(isolate) IRRegExpMacroAssembler(specialization_cid,
|
| + data->capture_count,
|
| + parsed_function,
|
| + ic_data_array,
|
| + isolate);
|
|
|
| // Inserted here, instead of in Assembler, because it depends on information
|
| // in the AST that isn't replicated in the Node structure.
|
| - static const int kMaxBacksearchLimit = 1024;
|
| + static const intptr_t kMaxBacksearchLimit = 1024;
|
| if (is_end_anchored &&
|
| !is_start_anchored &&
|
| max_length < kMaxBacksearchLimit) {
|
| - macro_assembler.SetCurrentPositionFromEnd(max_length);
|
| + macro_assembler->SetCurrentPositionFromEnd(max_length);
|
| }
|
|
|
| if (is_global) {
|
| - macro_assembler.set_global_mode(
|
| + macro_assembler->set_global_mode(
|
| (data->tree->min_match() > 0)
|
| ? RegExpMacroAssembler::GLOBAL_NO_ZERO_LENGTH_CHECK
|
| : RegExpMacroAssembler::GLOBAL);
|
| }
|
|
|
| - return compiler.Assemble(¯o_assembler,
|
| - node,
|
| - data->capture_count,
|
| - pattern);
|
| + RegExpEngine::CompilationResult result =
|
| + compiler.Assemble(macro_assembler,
|
| + node,
|
| + data->capture_count,
|
| + pattern);
|
| +
|
| + if (FLAG_trace_irregexp) {
|
| + macro_assembler->PrintBlocks();
|
| + }
|
| +
|
| + return result;
|
| }
|
|
|
| +
|
| +static void CreateSpecializedFunction(Isolate* isolate,
|
| + const JSRegExp& regexp,
|
| + intptr_t specialization_cid,
|
| + const Object& owner) {
|
| + const intptr_t kParamCount = RegExpMacroAssembler::kParamCount;
|
| +
|
| + Function& fn = Function::Handle(isolate, Function::New(
|
| + Symbols::IrregExp(),
|
| + RawFunction::kIrregexpFunction,
|
| + true, // Static.
|
| + false, // Not const.
|
| + false, // Not abstract.
|
| + false, // Not external.
|
| + false, // Not native.
|
| + owner,
|
| + 0)); // No token position.
|
| +
|
| + // TODO(zerny): Share these arrays between all irregexp functions.
|
| + fn.set_num_fixed_parameters(kParamCount);
|
| + fn.set_parameter_types(Array::Handle(isolate, Array::New(kParamCount,
|
| + Heap::kOld)));
|
| + fn.set_parameter_names(Array::Handle(isolate, Array::New(kParamCount,
|
| + Heap::kOld)));
|
| + fn.SetParameterTypeAt(0, Type::Handle(isolate, Type::DynamicType()));
|
| + fn.SetParameterNameAt(0, Symbols::string_param());
|
| + fn.SetParameterTypeAt(1, Type::Handle(isolate, Type::DynamicType()));
|
| + fn.SetParameterNameAt(1, Symbols::start_index_param());
|
| + fn.set_result_type(Type::Handle(isolate, Type::ArrayType()));
|
| +
|
| + // Cache the result.
|
| + regexp.set_function(specialization_cid, fn);
|
| +
|
| + fn.set_regexp(regexp);
|
| + fn.set_regexp_cid(specialization_cid);
|
| +
|
| + // The function is compiled lazily during the first call.
|
| +}
|
| +
|
| +
|
| +RawJSRegExp* RegExpEngine::CreateJSRegExp(Isolate* isolate,
|
| + const String& pattern,
|
| + bool multi_line,
|
| + bool ignore_case) {
|
| + const JSRegExp& regexp = JSRegExp::Handle(JSRegExp::New(0));
|
| +
|
| + regexp.set_pattern(pattern);
|
| +
|
| + if (multi_line) {
|
| + regexp.set_is_multi_line();
|
| + }
|
| + if (ignore_case) {
|
| + regexp.set_is_ignore_case();
|
| + }
|
| +
|
| + // TODO(zerny): We might want to use normal string searching algorithms
|
| + // for simple patterns.
|
| + regexp.set_is_complex();
|
| + regexp.set_is_global(); // All dart regexps are global.
|
| +
|
| + const Library& lib = Library::Handle(isolate, Library::CoreLibrary());
|
| + const Class& owner = Class::Handle(
|
| + isolate, lib.LookupClass(Symbols::RegExp()));
|
| +
|
| + CreateSpecializedFunction(isolate, regexp, kOneByteStringCid, owner);
|
| + CreateSpecializedFunction(isolate, regexp, kTwoByteStringCid, owner);
|
| + CreateSpecializedFunction(isolate, regexp, kExternalOneByteStringCid, owner);
|
| + CreateSpecializedFunction(isolate, regexp, kExternalTwoByteStringCid, owner);
|
| +
|
| + return regexp.raw();
|
| +}
|
| +
|
| +
|
| } // namespace dart
|
|
|