Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(816)

Unified Diff: src/compiler/control-equivalence.h

Issue 738613005: Restrict floating control to minimal control-connected component. (Closed) Base URL: https://chromium.googlesource.com/v8/v8.git@local_scheduler-loop-1
Patch Set: Rebased and adapted. Created 6 years ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « BUILD.gn ('k') | src/compiler/scheduler.h » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/compiler/control-equivalence.h
diff --git a/src/compiler/control-equivalence.h b/src/compiler/control-equivalence.h
new file mode 100644
index 0000000000000000000000000000000000000000..2ab5f1fc75731f4d96d87064f679788fa2201b8f
--- /dev/null
+++ b/src/compiler/control-equivalence.h
@@ -0,0 +1,358 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_
+#define V8_COMPILER_CONTROL_EQUIVALENCE_H_
+
+#include "src/v8.h"
+
+#include "src/compiler/graph.h"
+#include "src/compiler/node.h"
+#include "src/compiler/node-properties.h"
+#include "src/zone-containers.h"
+
+namespace v8 {
+namespace internal {
+namespace compiler {
+
+// Determines control dependence equivalence classes for control nodes. Any two
+// nodes having the same set of control dependences land in one class. These
+// classes can in turn be used to:
+// - Build a program structure tree (PST) for controls in the graph.
+// - Determine single-entry single-exit (SESE) regions within the graph.
+//
+// Note that this implementation actually uses cycle equivalence to establish
+// class numbers. Any two nodes are cycle equivalent if they occur in the same
+// set of cycles. It can be shown that control dependence equivalence reduces
+// to undirected cycle equivalence for strongly connected control flow graphs.
+//
+// The algorithm is based on the paper, "The program structure tree: computing
+// control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which
+// also contains proofs for the aforementioned equivalence. References to line
+// numbers in the algorithm from figure 4 have been added [line:x].
+class ControlEquivalence : public ZoneObject {
+ public:
+ ControlEquivalence(Zone* zone, Graph* graph)
+ : zone_(zone),
+ graph_(graph),
+ dfs_number_(0),
+ class_number_(1),
+ node_data_(graph->NodeCount(), EmptyData(), zone) {}
+
+ // Run the main algorithm starting from the {exit} control node. This causes
+ // the following iterations over control edges of the graph:
+ // 1) A breadth-first backwards traversal to determine the set of nodes that
+ // participate in the next step. Takes O(E) time and O(N) space.
+ // 2) An undirected depth-first backwards traversal that determines class
+ // numbers for all participating nodes. Takes O(E) time and O(N) space.
+ void Run(Node* exit) {
+ if (GetClass(exit) != kInvalidClass) return;
+ DetermineParticipation(exit);
+ RunUndirectedDFS(exit);
+ }
+
+ // Retrieves a previously computed class number.
+ size_t ClassOf(Node* node) {
+ DCHECK(GetClass(node) != kInvalidClass);
+ return GetClass(node);
+ }
+
+ private:
+ static const size_t kInvalidClass = static_cast<size_t>(-1);
+ typedef enum { kInputDirection, kUseDirection } DFSDirection;
+
+ struct Bracket {
+ DFSDirection direction; // Direction in which this bracket was added.
+ size_t recent_class; // Cached class when bracket was topmost.
+ size_t recent_size; // Cached set-size when bracket was topmost.
+ Node* from; // Node that this bracket originates from.
+ Node* to; // Node that this bracket points to.
+ };
+
+ // The set of brackets for each node during the DFS walk.
+ typedef ZoneLinkedList<Bracket> BracketList;
+
+ struct DFSStackEntry {
+ DFSDirection direction; // Direction currently used in DFS walk.
+ Node::InputEdges::iterator input; // Iterator used for "input" direction.
+ Node::UseEdges::iterator use; // Iterator used for "use" direction.
+ Node* parent_node; // Parent node of entry during DFS walk.
+ Node* node; // Node that this stack entry belongs to.
+ };
+
+ // The stack is used during the undirected DFS walk.
+ typedef ZoneStack<DFSStackEntry> DFSStack;
+
+ struct NodeData {
+ size_t class_number; // Equivalence class number assigned to node.
+ size_t dfs_number; // Pre-order DFS number assigned to node.
+ bool on_stack; // Indicates node is on DFS stack during walk.
+ bool participates; // Indicates node participates in DFS walk.
+ BracketList blist; // List of brackets per node.
+ };
+
+ // The per-node data computed during the DFS walk.
+ typedef ZoneVector<NodeData> Data;
+
+ // Called at pre-visit during DFS walk.
+ void VisitPre(Node* node) {
+ Trace("CEQ: Pre-visit of #%d:%s\n", node->id(), node->op()->mnemonic());
+
+ // Dispense a new pre-order number.
+ SetNumber(node, NewDFSNumber());
+ Trace(" Assigned DFS number is %d\n", GetNumber(node));
+ }
+
+ // Called at mid-visit during DFS walk.
+ void VisitMid(Node* node, DFSDirection direction) {
+ Trace("CEQ: Mid-visit of #%d:%s\n", node->id(), node->op()->mnemonic());
+ BracketList& blist = GetBracketList(node);
+
+ // Remove brackets pointing to this node [line:19].
+ BracketListDelete(blist, node, direction);
+
+ // Potentially introduce artificial dependency from start to end.
+ if (blist.empty()) {
+ DCHECK_EQ(graph_->start(), node);
+ DCHECK_EQ(kInputDirection, direction);
+ VisitBackedge(graph_->start(), graph_->end(), kInputDirection);
+ }
+
+ // Potentially start a new equivalence class [line:37].
+ BracketListTrace(blist);
+ Bracket* recent = &blist.back();
+ if (recent->recent_size != blist.size()) {
+ recent->recent_size = blist.size();
+ recent->recent_class = NewClassNumber();
+ }
+
+ // Assign equivalence class to node.
+ SetClass(node, recent->recent_class);
+ Trace(" Assigned class number is %d\n", GetClass(node));
+ }
+
+ // Called at post-visit during DFS walk.
+ void VisitPost(Node* node, Node* parent_node, DFSDirection direction) {
+ Trace("CEQ: Post-visit of #%d:%s\n", node->id(), node->op()->mnemonic());
+ BracketList& blist = GetBracketList(node);
+
+ // Remove brackets pointing to this node [line:19].
+ BracketListDelete(blist, node, direction);
+
+ // Propagate bracket list up the DFS tree [line:13].
+ if (parent_node != NULL) {
+ BracketList& parent_blist = GetBracketList(parent_node);
+ parent_blist.splice(parent_blist.end(), blist);
+ }
+ }
+
+ // Called when hitting a back edge in the DFS walk.
+ void VisitBackedge(Node* from, Node* to, DFSDirection direction) {
+ Trace("CEQ: Backedge from #%d:%s to #%d:%s\n", from->id(),
+ from->op()->mnemonic(), to->id(), to->op()->mnemonic());
+
+ // Push backedge onto the bracket list [line:25].
+ Bracket bracket = {direction, kInvalidClass, 0, from, to};
+ GetBracketList(from).push_back(bracket);
+ }
+
+ // Performs and undirected DFS walk of the graph. Conceptually all nodes are
+ // expanded, splitting "input" and "use" out into separate nodes. During the
+ // traversal, edges towards the representative nodes are preferred.
+ //
+ // \ / - Pre-visit: When N1 is visited in direction D the preferred
+ // x N1 edge towards N is taken next, calling VisitPre(N).
+ // | - Mid-visit: After all edges out of N2 in direction D have
+ // | N been visited, we switch the direction and start considering
+ // | edges out of N1 now, and we call VisitMid(N).
+ // x N2 - Post-visit: After all edges out of N1 in direction opposite
+ // / \ to D have been visited, we pop N and call VisitPost(N).
+ //
+ // This will yield a true spanning tree (without cross or forward edges) and
+ // also discover proper back edges in both directions.
+ void RunUndirectedDFS(Node* exit) {
+ ZoneStack<DFSStackEntry> stack(zone_);
+ DFSPush(stack, exit, NULL, kInputDirection);
+ VisitPre(exit);
+
+ while (!stack.empty()) { // Undirected depth-first backwards traversal.
+ DFSStackEntry& entry = stack.top();
+ Node* node = entry.node;
+
+ if (entry.direction == kInputDirection) {
+ if (entry.input != node->input_edges().end()) {
+ Edge edge = *entry.input;
+ Node* input = edge.to();
+ ++(entry.input);
+ if (NodeProperties::IsControlEdge(edge) &&
+ NodeProperties::IsControl(input)) {
+ // Visit next control input.
+ if (!GetData(input)->participates) continue;
+ if (GetData(input)->on_stack) {
+ // Found backedge if input is on stack.
+ if (input != entry.parent_node) {
+ VisitBackedge(node, input, kInputDirection);
+ }
+ } else {
+ // Push input onto stack.
+ DFSPush(stack, input, node, kInputDirection);
+ VisitPre(input);
+ }
+ }
+ continue;
+ }
+ if (entry.use != node->use_edges().end()) {
+ // Switch direction to uses.
+ entry.direction = kUseDirection;
+ VisitMid(node, kInputDirection);
+ continue;
+ }
+ }
+
+ if (entry.direction == kUseDirection) {
+ if (entry.use != node->use_edges().end()) {
+ Edge edge = *entry.use;
+ Node* use = edge.from();
+ ++(entry.use);
+ if (NodeProperties::IsControlEdge(edge) &&
+ NodeProperties::IsControl(use)) {
+ // Visit next control use.
+ if (!GetData(use)->participates) continue;
+ if (GetData(use)->on_stack) {
+ // Found backedge if use is on stack.
+ if (use != entry.parent_node) {
+ VisitBackedge(node, use, kUseDirection);
+ }
+ } else {
+ // Push use onto stack.
+ DFSPush(stack, use, node, kUseDirection);
+ VisitPre(use);
+ }
+ }
+ continue;
+ }
+ if (entry.input != node->input_edges().end()) {
+ // Switch direction to inputs.
+ entry.direction = kInputDirection;
+ VisitMid(node, kUseDirection);
+ continue;
+ }
+ }
+
+ // Pop node from stack when done with all inputs and uses.
+ DCHECK(entry.input == node->input_edges().end());
+ DCHECK(entry.use == node->use_edges().end());
+ DFSPop(stack, node);
+ VisitPost(node, entry.parent_node, entry.direction);
+ }
+ }
+
+ void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node) {
+ if (!GetData(node)->participates) {
+ GetData(node)->participates = true;
+ queue.push(node);
+ }
+ }
+
+ void DetermineParticipation(Node* exit) {
+ ZoneQueue<Node*> queue(zone_);
+ DetermineParticipationEnqueue(queue, exit);
+ while (!queue.empty()) { // Breadth-first backwards traversal.
+ Node* node = queue.front();
+ queue.pop();
+ int max = NodeProperties::PastControlIndex(node);
+ for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) {
+ DetermineParticipationEnqueue(queue, node->InputAt(i));
+ }
+ }
+ }
+
+ private:
+ NodeData* GetData(Node* node) { return &node_data_[node->id()]; }
+ int NewClassNumber() { return class_number_++; }
+ int NewDFSNumber() { return dfs_number_++; }
+
+ // Template used to initialize per-node data.
+ NodeData EmptyData() {
+ return {kInvalidClass, 0, false, false, BracketList(zone_)};
+ }
+
+ // Accessors for the DFS number stored within the per-node data.
+ size_t GetNumber(Node* node) { return GetData(node)->dfs_number; }
+ void SetNumber(Node* node, size_t number) {
+ GetData(node)->dfs_number = number;
+ }
+
+ // Accessors for the equivalence class stored within the per-node data.
+ size_t GetClass(Node* node) { return GetData(node)->class_number; }
+ void SetClass(Node* node, size_t number) {
+ GetData(node)->class_number = number;
+ }
+
+ // Accessors for the bracket list stored within the per-node data.
+ BracketList& GetBracketList(Node* node) { return GetData(node)->blist; }
+ void SetBracketList(Node* node, BracketList& list) {
+ GetData(node)->blist = list;
+ }
+
+ // Mutates the DFS stack by pushing an entry.
+ void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir) {
+ DCHECK(GetData(node)->participates);
+ GetData(node)->on_stack = true;
+ Node::InputEdges::iterator input = node->input_edges().begin();
+ Node::UseEdges::iterator use = node->use_edges().begin();
+ stack.push({dir, input, use, from, node});
+ }
+
+ // Mutates the DFS stack by popping an entry.
+ void DFSPop(DFSStack& stack, Node* node) {
+ DCHECK_EQ(stack.top().node, node);
+ GetData(node)->on_stack = false;
+ GetData(node)->participates = false;
+ stack.pop();
+ }
+
+ // TODO(mstarzinger): Optimize this to avoid linear search.
+ void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction) {
+ for (BracketList::iterator i = blist.begin(); i != blist.end(); /*nop*/) {
+ if (i->to == to && i->direction != direction) {
+ Trace(" BList erased: {%d->%d}\n", i->from->id(), i->to->id());
+ i = blist.erase(i);
+ } else {
+ ++i;
+ }
+ }
+ }
+
+ void BracketListTrace(BracketList& blist) {
+ if (FLAG_trace_turbo_scheduler) {
+ Trace(" BList: ");
+ for (Bracket bracket : blist) {
+ Trace("{%d->%d} ", bracket.from->id(), bracket.to->id());
+ }
+ Trace("\n");
+ }
+ }
+
+ void Trace(const char* msg, ...) {
+ if (FLAG_trace_turbo_scheduler) {
+ va_list arguments;
+ va_start(arguments, msg);
+ base::OS::VPrint(msg, arguments);
+ va_end(arguments);
+ }
+ }
+
+ Zone* zone_;
+ Graph* graph_;
+ int dfs_number_; // Generates new DFS pre-order numbers on demand.
+ int class_number_; // Generates new equivalence class numbers on demand.
+ Data node_data_; // Per-node data stored as a side-table.
+};
+
+} // namespace compiler
+} // namespace internal
+} // namespace v8
+
+#endif // V8_COMPILER_CONTROL_EQUIVALENCE_H_
« no previous file with comments | « BUILD.gn ('k') | src/compiler/scheduler.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698