Index: src/compiler/control-equivalence.h |
diff --git a/src/compiler/control-equivalence.h b/src/compiler/control-equivalence.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..2ab5f1fc75731f4d96d87064f679788fa2201b8f |
--- /dev/null |
+++ b/src/compiler/control-equivalence.h |
@@ -0,0 +1,358 @@ |
+// Copyright 2014 the V8 project authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_ |
+#define V8_COMPILER_CONTROL_EQUIVALENCE_H_ |
+ |
+#include "src/v8.h" |
+ |
+#include "src/compiler/graph.h" |
+#include "src/compiler/node.h" |
+#include "src/compiler/node-properties.h" |
+#include "src/zone-containers.h" |
+ |
+namespace v8 { |
+namespace internal { |
+namespace compiler { |
+ |
+// Determines control dependence equivalence classes for control nodes. Any two |
+// nodes having the same set of control dependences land in one class. These |
+// classes can in turn be used to: |
+// - Build a program structure tree (PST) for controls in the graph. |
+// - Determine single-entry single-exit (SESE) regions within the graph. |
+// |
+// Note that this implementation actually uses cycle equivalence to establish |
+// class numbers. Any two nodes are cycle equivalent if they occur in the same |
+// set of cycles. It can be shown that control dependence equivalence reduces |
+// to undirected cycle equivalence for strongly connected control flow graphs. |
+// |
+// The algorithm is based on the paper, "The program structure tree: computing |
+// control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which |
+// also contains proofs for the aforementioned equivalence. References to line |
+// numbers in the algorithm from figure 4 have been added [line:x]. |
+class ControlEquivalence : public ZoneObject { |
+ public: |
+ ControlEquivalence(Zone* zone, Graph* graph) |
+ : zone_(zone), |
+ graph_(graph), |
+ dfs_number_(0), |
+ class_number_(1), |
+ node_data_(graph->NodeCount(), EmptyData(), zone) {} |
+ |
+ // Run the main algorithm starting from the {exit} control node. This causes |
+ // the following iterations over control edges of the graph: |
+ // 1) A breadth-first backwards traversal to determine the set of nodes that |
+ // participate in the next step. Takes O(E) time and O(N) space. |
+ // 2) An undirected depth-first backwards traversal that determines class |
+ // numbers for all participating nodes. Takes O(E) time and O(N) space. |
+ void Run(Node* exit) { |
+ if (GetClass(exit) != kInvalidClass) return; |
+ DetermineParticipation(exit); |
+ RunUndirectedDFS(exit); |
+ } |
+ |
+ // Retrieves a previously computed class number. |
+ size_t ClassOf(Node* node) { |
+ DCHECK(GetClass(node) != kInvalidClass); |
+ return GetClass(node); |
+ } |
+ |
+ private: |
+ static const size_t kInvalidClass = static_cast<size_t>(-1); |
+ typedef enum { kInputDirection, kUseDirection } DFSDirection; |
+ |
+ struct Bracket { |
+ DFSDirection direction; // Direction in which this bracket was added. |
+ size_t recent_class; // Cached class when bracket was topmost. |
+ size_t recent_size; // Cached set-size when bracket was topmost. |
+ Node* from; // Node that this bracket originates from. |
+ Node* to; // Node that this bracket points to. |
+ }; |
+ |
+ // The set of brackets for each node during the DFS walk. |
+ typedef ZoneLinkedList<Bracket> BracketList; |
+ |
+ struct DFSStackEntry { |
+ DFSDirection direction; // Direction currently used in DFS walk. |
+ Node::InputEdges::iterator input; // Iterator used for "input" direction. |
+ Node::UseEdges::iterator use; // Iterator used for "use" direction. |
+ Node* parent_node; // Parent node of entry during DFS walk. |
+ Node* node; // Node that this stack entry belongs to. |
+ }; |
+ |
+ // The stack is used during the undirected DFS walk. |
+ typedef ZoneStack<DFSStackEntry> DFSStack; |
+ |
+ struct NodeData { |
+ size_t class_number; // Equivalence class number assigned to node. |
+ size_t dfs_number; // Pre-order DFS number assigned to node. |
+ bool on_stack; // Indicates node is on DFS stack during walk. |
+ bool participates; // Indicates node participates in DFS walk. |
+ BracketList blist; // List of brackets per node. |
+ }; |
+ |
+ // The per-node data computed during the DFS walk. |
+ typedef ZoneVector<NodeData> Data; |
+ |
+ // Called at pre-visit during DFS walk. |
+ void VisitPre(Node* node) { |
+ Trace("CEQ: Pre-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); |
+ |
+ // Dispense a new pre-order number. |
+ SetNumber(node, NewDFSNumber()); |
+ Trace(" Assigned DFS number is %d\n", GetNumber(node)); |
+ } |
+ |
+ // Called at mid-visit during DFS walk. |
+ void VisitMid(Node* node, DFSDirection direction) { |
+ Trace("CEQ: Mid-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); |
+ BracketList& blist = GetBracketList(node); |
+ |
+ // Remove brackets pointing to this node [line:19]. |
+ BracketListDelete(blist, node, direction); |
+ |
+ // Potentially introduce artificial dependency from start to end. |
+ if (blist.empty()) { |
+ DCHECK_EQ(graph_->start(), node); |
+ DCHECK_EQ(kInputDirection, direction); |
+ VisitBackedge(graph_->start(), graph_->end(), kInputDirection); |
+ } |
+ |
+ // Potentially start a new equivalence class [line:37]. |
+ BracketListTrace(blist); |
+ Bracket* recent = &blist.back(); |
+ if (recent->recent_size != blist.size()) { |
+ recent->recent_size = blist.size(); |
+ recent->recent_class = NewClassNumber(); |
+ } |
+ |
+ // Assign equivalence class to node. |
+ SetClass(node, recent->recent_class); |
+ Trace(" Assigned class number is %d\n", GetClass(node)); |
+ } |
+ |
+ // Called at post-visit during DFS walk. |
+ void VisitPost(Node* node, Node* parent_node, DFSDirection direction) { |
+ Trace("CEQ: Post-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); |
+ BracketList& blist = GetBracketList(node); |
+ |
+ // Remove brackets pointing to this node [line:19]. |
+ BracketListDelete(blist, node, direction); |
+ |
+ // Propagate bracket list up the DFS tree [line:13]. |
+ if (parent_node != NULL) { |
+ BracketList& parent_blist = GetBracketList(parent_node); |
+ parent_blist.splice(parent_blist.end(), blist); |
+ } |
+ } |
+ |
+ // Called when hitting a back edge in the DFS walk. |
+ void VisitBackedge(Node* from, Node* to, DFSDirection direction) { |
+ Trace("CEQ: Backedge from #%d:%s to #%d:%s\n", from->id(), |
+ from->op()->mnemonic(), to->id(), to->op()->mnemonic()); |
+ |
+ // Push backedge onto the bracket list [line:25]. |
+ Bracket bracket = {direction, kInvalidClass, 0, from, to}; |
+ GetBracketList(from).push_back(bracket); |
+ } |
+ |
+ // Performs and undirected DFS walk of the graph. Conceptually all nodes are |
+ // expanded, splitting "input" and "use" out into separate nodes. During the |
+ // traversal, edges towards the representative nodes are preferred. |
+ // |
+ // \ / - Pre-visit: When N1 is visited in direction D the preferred |
+ // x N1 edge towards N is taken next, calling VisitPre(N). |
+ // | - Mid-visit: After all edges out of N2 in direction D have |
+ // | N been visited, we switch the direction and start considering |
+ // | edges out of N1 now, and we call VisitMid(N). |
+ // x N2 - Post-visit: After all edges out of N1 in direction opposite |
+ // / \ to D have been visited, we pop N and call VisitPost(N). |
+ // |
+ // This will yield a true spanning tree (without cross or forward edges) and |
+ // also discover proper back edges in both directions. |
+ void RunUndirectedDFS(Node* exit) { |
+ ZoneStack<DFSStackEntry> stack(zone_); |
+ DFSPush(stack, exit, NULL, kInputDirection); |
+ VisitPre(exit); |
+ |
+ while (!stack.empty()) { // Undirected depth-first backwards traversal. |
+ DFSStackEntry& entry = stack.top(); |
+ Node* node = entry.node; |
+ |
+ if (entry.direction == kInputDirection) { |
+ if (entry.input != node->input_edges().end()) { |
+ Edge edge = *entry.input; |
+ Node* input = edge.to(); |
+ ++(entry.input); |
+ if (NodeProperties::IsControlEdge(edge) && |
+ NodeProperties::IsControl(input)) { |
+ // Visit next control input. |
+ if (!GetData(input)->participates) continue; |
+ if (GetData(input)->on_stack) { |
+ // Found backedge if input is on stack. |
+ if (input != entry.parent_node) { |
+ VisitBackedge(node, input, kInputDirection); |
+ } |
+ } else { |
+ // Push input onto stack. |
+ DFSPush(stack, input, node, kInputDirection); |
+ VisitPre(input); |
+ } |
+ } |
+ continue; |
+ } |
+ if (entry.use != node->use_edges().end()) { |
+ // Switch direction to uses. |
+ entry.direction = kUseDirection; |
+ VisitMid(node, kInputDirection); |
+ continue; |
+ } |
+ } |
+ |
+ if (entry.direction == kUseDirection) { |
+ if (entry.use != node->use_edges().end()) { |
+ Edge edge = *entry.use; |
+ Node* use = edge.from(); |
+ ++(entry.use); |
+ if (NodeProperties::IsControlEdge(edge) && |
+ NodeProperties::IsControl(use)) { |
+ // Visit next control use. |
+ if (!GetData(use)->participates) continue; |
+ if (GetData(use)->on_stack) { |
+ // Found backedge if use is on stack. |
+ if (use != entry.parent_node) { |
+ VisitBackedge(node, use, kUseDirection); |
+ } |
+ } else { |
+ // Push use onto stack. |
+ DFSPush(stack, use, node, kUseDirection); |
+ VisitPre(use); |
+ } |
+ } |
+ continue; |
+ } |
+ if (entry.input != node->input_edges().end()) { |
+ // Switch direction to inputs. |
+ entry.direction = kInputDirection; |
+ VisitMid(node, kUseDirection); |
+ continue; |
+ } |
+ } |
+ |
+ // Pop node from stack when done with all inputs and uses. |
+ DCHECK(entry.input == node->input_edges().end()); |
+ DCHECK(entry.use == node->use_edges().end()); |
+ DFSPop(stack, node); |
+ VisitPost(node, entry.parent_node, entry.direction); |
+ } |
+ } |
+ |
+ void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node) { |
+ if (!GetData(node)->participates) { |
+ GetData(node)->participates = true; |
+ queue.push(node); |
+ } |
+ } |
+ |
+ void DetermineParticipation(Node* exit) { |
+ ZoneQueue<Node*> queue(zone_); |
+ DetermineParticipationEnqueue(queue, exit); |
+ while (!queue.empty()) { // Breadth-first backwards traversal. |
+ Node* node = queue.front(); |
+ queue.pop(); |
+ int max = NodeProperties::PastControlIndex(node); |
+ for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) { |
+ DetermineParticipationEnqueue(queue, node->InputAt(i)); |
+ } |
+ } |
+ } |
+ |
+ private: |
+ NodeData* GetData(Node* node) { return &node_data_[node->id()]; } |
+ int NewClassNumber() { return class_number_++; } |
+ int NewDFSNumber() { return dfs_number_++; } |
+ |
+ // Template used to initialize per-node data. |
+ NodeData EmptyData() { |
+ return {kInvalidClass, 0, false, false, BracketList(zone_)}; |
+ } |
+ |
+ // Accessors for the DFS number stored within the per-node data. |
+ size_t GetNumber(Node* node) { return GetData(node)->dfs_number; } |
+ void SetNumber(Node* node, size_t number) { |
+ GetData(node)->dfs_number = number; |
+ } |
+ |
+ // Accessors for the equivalence class stored within the per-node data. |
+ size_t GetClass(Node* node) { return GetData(node)->class_number; } |
+ void SetClass(Node* node, size_t number) { |
+ GetData(node)->class_number = number; |
+ } |
+ |
+ // Accessors for the bracket list stored within the per-node data. |
+ BracketList& GetBracketList(Node* node) { return GetData(node)->blist; } |
+ void SetBracketList(Node* node, BracketList& list) { |
+ GetData(node)->blist = list; |
+ } |
+ |
+ // Mutates the DFS stack by pushing an entry. |
+ void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir) { |
+ DCHECK(GetData(node)->participates); |
+ GetData(node)->on_stack = true; |
+ Node::InputEdges::iterator input = node->input_edges().begin(); |
+ Node::UseEdges::iterator use = node->use_edges().begin(); |
+ stack.push({dir, input, use, from, node}); |
+ } |
+ |
+ // Mutates the DFS stack by popping an entry. |
+ void DFSPop(DFSStack& stack, Node* node) { |
+ DCHECK_EQ(stack.top().node, node); |
+ GetData(node)->on_stack = false; |
+ GetData(node)->participates = false; |
+ stack.pop(); |
+ } |
+ |
+ // TODO(mstarzinger): Optimize this to avoid linear search. |
+ void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction) { |
+ for (BracketList::iterator i = blist.begin(); i != blist.end(); /*nop*/) { |
+ if (i->to == to && i->direction != direction) { |
+ Trace(" BList erased: {%d->%d}\n", i->from->id(), i->to->id()); |
+ i = blist.erase(i); |
+ } else { |
+ ++i; |
+ } |
+ } |
+ } |
+ |
+ void BracketListTrace(BracketList& blist) { |
+ if (FLAG_trace_turbo_scheduler) { |
+ Trace(" BList: "); |
+ for (Bracket bracket : blist) { |
+ Trace("{%d->%d} ", bracket.from->id(), bracket.to->id()); |
+ } |
+ Trace("\n"); |
+ } |
+ } |
+ |
+ void Trace(const char* msg, ...) { |
+ if (FLAG_trace_turbo_scheduler) { |
+ va_list arguments; |
+ va_start(arguments, msg); |
+ base::OS::VPrint(msg, arguments); |
+ va_end(arguments); |
+ } |
+ } |
+ |
+ Zone* zone_; |
+ Graph* graph_; |
+ int dfs_number_; // Generates new DFS pre-order numbers on demand. |
+ int class_number_; // Generates new equivalence class numbers on demand. |
+ Data node_data_; // Per-node data stored as a side-table. |
+}; |
+ |
+} // namespace compiler |
+} // namespace internal |
+} // namespace v8 |
+ |
+#endif // V8_COMPILER_CONTROL_EQUIVALENCE_H_ |