OLD | NEW |
(Empty) | |
| 1 // Copyright 2014 the V8 project authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. |
| 4 |
| 5 #ifndef V8_COMPILER_CONTROL_EQUIVALENCE_H_ |
| 6 #define V8_COMPILER_CONTROL_EQUIVALENCE_H_ |
| 7 |
| 8 #include "src/v8.h" |
| 9 |
| 10 #include "src/compiler/graph.h" |
| 11 #include "src/compiler/node.h" |
| 12 #include "src/compiler/node-properties.h" |
| 13 #include "src/zone-containers.h" |
| 14 |
| 15 namespace v8 { |
| 16 namespace internal { |
| 17 namespace compiler { |
| 18 |
| 19 // Determines control dependence equivalence classes for control nodes. Any two |
| 20 // nodes having the same set of control dependences land in one class. These |
| 21 // classes can in turn be used to: |
| 22 // - Build a program structure tree (PST) for controls in the graph. |
| 23 // - Determine single-entry single-exit (SESE) regions within the graph. |
| 24 // |
| 25 // Note that this implementation actually uses cycle equivalence to establish |
| 26 // class numbers. Any two nodes are cycle equivalent if they occur in the same |
| 27 // set of cycles. It can be shown that control dependence equivalence reduces |
| 28 // to undirected cycle equivalence for strongly connected control flow graphs. |
| 29 // |
| 30 // The algorithm is based on the paper, "The program structure tree: computing |
| 31 // control regions in linear time" by Johnson, Pearson & Pingali (PLDI94) which |
| 32 // also contains proofs for the aforementioned equivalence. References to line |
| 33 // numbers in the algorithm from figure 4 have been added [line:x]. |
| 34 class ControlEquivalence : public ZoneObject { |
| 35 public: |
| 36 ControlEquivalence(Zone* zone, Graph* graph) |
| 37 : zone_(zone), |
| 38 graph_(graph), |
| 39 dfs_number_(0), |
| 40 class_number_(1), |
| 41 node_data_(graph->NodeCount(), EmptyData(), zone) {} |
| 42 |
| 43 // Run the main algorithm starting from the {exit} control node. This causes |
| 44 // the following iterations over control edges of the graph: |
| 45 // 1) A breadth-first backwards traversal to determine the set of nodes that |
| 46 // participate in the next step. Takes O(E) time and O(N) space. |
| 47 // 2) An undirected depth-first backwards traversal that determines class |
| 48 // numbers for all participating nodes. Takes O(E) time and O(N) space. |
| 49 void Run(Node* exit) { |
| 50 if (GetClass(exit) != kInvalidClass) return; |
| 51 DetermineParticipation(exit); |
| 52 RunUndirectedDFS(exit); |
| 53 } |
| 54 |
| 55 // Retrieves a previously computed class number. |
| 56 size_t ClassOf(Node* node) { |
| 57 DCHECK(GetClass(node) != kInvalidClass); |
| 58 return GetClass(node); |
| 59 } |
| 60 |
| 61 private: |
| 62 static const size_t kInvalidClass = static_cast<size_t>(-1); |
| 63 typedef enum { kInputDirection, kUseDirection } DFSDirection; |
| 64 |
| 65 struct Bracket { |
| 66 DFSDirection direction; // Direction in which this bracket was added. |
| 67 size_t recent_class; // Cached class when bracket was topmost. |
| 68 size_t recent_size; // Cached set-size when bracket was topmost. |
| 69 Node* from; // Node that this bracket originates from. |
| 70 Node* to; // Node that this bracket points to. |
| 71 }; |
| 72 |
| 73 // The set of brackets for each node during the DFS walk. |
| 74 typedef ZoneLinkedList<Bracket> BracketList; |
| 75 |
| 76 struct DFSStackEntry { |
| 77 DFSDirection direction; // Direction currently used in DFS walk. |
| 78 Node::InputEdges::iterator input; // Iterator used for "input" direction. |
| 79 Node::UseEdges::iterator use; // Iterator used for "use" direction. |
| 80 Node* parent_node; // Parent node of entry during DFS walk. |
| 81 Node* node; // Node that this stack entry belongs to. |
| 82 }; |
| 83 |
| 84 // The stack is used during the undirected DFS walk. |
| 85 typedef ZoneStack<DFSStackEntry> DFSStack; |
| 86 |
| 87 struct NodeData { |
| 88 size_t class_number; // Equivalence class number assigned to node. |
| 89 size_t dfs_number; // Pre-order DFS number assigned to node. |
| 90 bool on_stack; // Indicates node is on DFS stack during walk. |
| 91 bool participates; // Indicates node participates in DFS walk. |
| 92 BracketList blist; // List of brackets per node. |
| 93 }; |
| 94 |
| 95 // The per-node data computed during the DFS walk. |
| 96 typedef ZoneVector<NodeData> Data; |
| 97 |
| 98 // Called at pre-visit during DFS walk. |
| 99 void VisitPre(Node* node) { |
| 100 Trace("CEQ: Pre-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); |
| 101 |
| 102 // Dispense a new pre-order number. |
| 103 SetNumber(node, NewDFSNumber()); |
| 104 Trace(" Assigned DFS number is %d\n", GetNumber(node)); |
| 105 } |
| 106 |
| 107 // Called at mid-visit during DFS walk. |
| 108 void VisitMid(Node* node, DFSDirection direction) { |
| 109 Trace("CEQ: Mid-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); |
| 110 BracketList& blist = GetBracketList(node); |
| 111 |
| 112 // Remove brackets pointing to this node [line:19]. |
| 113 BracketListDelete(blist, node, direction); |
| 114 |
| 115 // Potentially introduce artificial dependency from start to end. |
| 116 if (blist.empty()) { |
| 117 DCHECK_EQ(graph_->start(), node); |
| 118 DCHECK_EQ(kInputDirection, direction); |
| 119 VisitBackedge(graph_->start(), graph_->end(), kInputDirection); |
| 120 } |
| 121 |
| 122 // Potentially start a new equivalence class [line:37]. |
| 123 BracketListTrace(blist); |
| 124 Bracket* recent = &blist.back(); |
| 125 if (recent->recent_size != blist.size()) { |
| 126 recent->recent_size = blist.size(); |
| 127 recent->recent_class = NewClassNumber(); |
| 128 } |
| 129 |
| 130 // Assign equivalence class to node. |
| 131 SetClass(node, recent->recent_class); |
| 132 Trace(" Assigned class number is %d\n", GetClass(node)); |
| 133 } |
| 134 |
| 135 // Called at post-visit during DFS walk. |
| 136 void VisitPost(Node* node, Node* parent_node, DFSDirection direction) { |
| 137 Trace("CEQ: Post-visit of #%d:%s\n", node->id(), node->op()->mnemonic()); |
| 138 BracketList& blist = GetBracketList(node); |
| 139 |
| 140 // Remove brackets pointing to this node [line:19]. |
| 141 BracketListDelete(blist, node, direction); |
| 142 |
| 143 // Propagate bracket list up the DFS tree [line:13]. |
| 144 if (parent_node != NULL) { |
| 145 BracketList& parent_blist = GetBracketList(parent_node); |
| 146 parent_blist.splice(parent_blist.end(), blist); |
| 147 } |
| 148 } |
| 149 |
| 150 // Called when hitting a back edge in the DFS walk. |
| 151 void VisitBackedge(Node* from, Node* to, DFSDirection direction) { |
| 152 Trace("CEQ: Backedge from #%d:%s to #%d:%s\n", from->id(), |
| 153 from->op()->mnemonic(), to->id(), to->op()->mnemonic()); |
| 154 |
| 155 // Push backedge onto the bracket list [line:25]. |
| 156 Bracket bracket = {direction, kInvalidClass, 0, from, to}; |
| 157 GetBracketList(from).push_back(bracket); |
| 158 } |
| 159 |
| 160 // Performs and undirected DFS walk of the graph. Conceptually all nodes are |
| 161 // expanded, splitting "input" and "use" out into separate nodes. During the |
| 162 // traversal, edges towards the representative nodes are preferred. |
| 163 // |
| 164 // \ / - Pre-visit: When N1 is visited in direction D the preferred |
| 165 // x N1 edge towards N is taken next, calling VisitPre(N). |
| 166 // | - Mid-visit: After all edges out of N2 in direction D have |
| 167 // | N been visited, we switch the direction and start considering |
| 168 // | edges out of N1 now, and we call VisitMid(N). |
| 169 // x N2 - Post-visit: After all edges out of N1 in direction opposite |
| 170 // / \ to D have been visited, we pop N and call VisitPost(N). |
| 171 // |
| 172 // This will yield a true spanning tree (without cross or forward edges) and |
| 173 // also discover proper back edges in both directions. |
| 174 void RunUndirectedDFS(Node* exit) { |
| 175 ZoneStack<DFSStackEntry> stack(zone_); |
| 176 DFSPush(stack, exit, NULL, kInputDirection); |
| 177 VisitPre(exit); |
| 178 |
| 179 while (!stack.empty()) { // Undirected depth-first backwards traversal. |
| 180 DFSStackEntry& entry = stack.top(); |
| 181 Node* node = entry.node; |
| 182 |
| 183 if (entry.direction == kInputDirection) { |
| 184 if (entry.input != node->input_edges().end()) { |
| 185 Edge edge = *entry.input; |
| 186 Node* input = edge.to(); |
| 187 ++(entry.input); |
| 188 if (NodeProperties::IsControlEdge(edge) && |
| 189 NodeProperties::IsControl(input)) { |
| 190 // Visit next control input. |
| 191 if (!GetData(input)->participates) continue; |
| 192 if (GetData(input)->on_stack) { |
| 193 // Found backedge if input is on stack. |
| 194 if (input != entry.parent_node) { |
| 195 VisitBackedge(node, input, kInputDirection); |
| 196 } |
| 197 } else { |
| 198 // Push input onto stack. |
| 199 DFSPush(stack, input, node, kInputDirection); |
| 200 VisitPre(input); |
| 201 } |
| 202 } |
| 203 continue; |
| 204 } |
| 205 if (entry.use != node->use_edges().end()) { |
| 206 // Switch direction to uses. |
| 207 entry.direction = kUseDirection; |
| 208 VisitMid(node, kInputDirection); |
| 209 continue; |
| 210 } |
| 211 } |
| 212 |
| 213 if (entry.direction == kUseDirection) { |
| 214 if (entry.use != node->use_edges().end()) { |
| 215 Edge edge = *entry.use; |
| 216 Node* use = edge.from(); |
| 217 ++(entry.use); |
| 218 if (NodeProperties::IsControlEdge(edge) && |
| 219 NodeProperties::IsControl(use)) { |
| 220 // Visit next control use. |
| 221 if (!GetData(use)->participates) continue; |
| 222 if (GetData(use)->on_stack) { |
| 223 // Found backedge if use is on stack. |
| 224 if (use != entry.parent_node) { |
| 225 VisitBackedge(node, use, kUseDirection); |
| 226 } |
| 227 } else { |
| 228 // Push use onto stack. |
| 229 DFSPush(stack, use, node, kUseDirection); |
| 230 VisitPre(use); |
| 231 } |
| 232 } |
| 233 continue; |
| 234 } |
| 235 if (entry.input != node->input_edges().end()) { |
| 236 // Switch direction to inputs. |
| 237 entry.direction = kInputDirection; |
| 238 VisitMid(node, kUseDirection); |
| 239 continue; |
| 240 } |
| 241 } |
| 242 |
| 243 // Pop node from stack when done with all inputs and uses. |
| 244 DCHECK(entry.input == node->input_edges().end()); |
| 245 DCHECK(entry.use == node->use_edges().end()); |
| 246 DFSPop(stack, node); |
| 247 VisitPost(node, entry.parent_node, entry.direction); |
| 248 } |
| 249 } |
| 250 |
| 251 void DetermineParticipationEnqueue(ZoneQueue<Node*>& queue, Node* node) { |
| 252 if (!GetData(node)->participates) { |
| 253 GetData(node)->participates = true; |
| 254 queue.push(node); |
| 255 } |
| 256 } |
| 257 |
| 258 void DetermineParticipation(Node* exit) { |
| 259 ZoneQueue<Node*> queue(zone_); |
| 260 DetermineParticipationEnqueue(queue, exit); |
| 261 while (!queue.empty()) { // Breadth-first backwards traversal. |
| 262 Node* node = queue.front(); |
| 263 queue.pop(); |
| 264 int max = NodeProperties::PastControlIndex(node); |
| 265 for (int i = NodeProperties::FirstControlIndex(node); i < max; i++) { |
| 266 DetermineParticipationEnqueue(queue, node->InputAt(i)); |
| 267 } |
| 268 } |
| 269 } |
| 270 |
| 271 private: |
| 272 NodeData* GetData(Node* node) { return &node_data_[node->id()]; } |
| 273 int NewClassNumber() { return class_number_++; } |
| 274 int NewDFSNumber() { return dfs_number_++; } |
| 275 |
| 276 // Template used to initialize per-node data. |
| 277 NodeData EmptyData() { |
| 278 return {kInvalidClass, 0, false, false, BracketList(zone_)}; |
| 279 } |
| 280 |
| 281 // Accessors for the DFS number stored within the per-node data. |
| 282 size_t GetNumber(Node* node) { return GetData(node)->dfs_number; } |
| 283 void SetNumber(Node* node, size_t number) { |
| 284 GetData(node)->dfs_number = number; |
| 285 } |
| 286 |
| 287 // Accessors for the equivalence class stored within the per-node data. |
| 288 size_t GetClass(Node* node) { return GetData(node)->class_number; } |
| 289 void SetClass(Node* node, size_t number) { |
| 290 GetData(node)->class_number = number; |
| 291 } |
| 292 |
| 293 // Accessors for the bracket list stored within the per-node data. |
| 294 BracketList& GetBracketList(Node* node) { return GetData(node)->blist; } |
| 295 void SetBracketList(Node* node, BracketList& list) { |
| 296 GetData(node)->blist = list; |
| 297 } |
| 298 |
| 299 // Mutates the DFS stack by pushing an entry. |
| 300 void DFSPush(DFSStack& stack, Node* node, Node* from, DFSDirection dir) { |
| 301 DCHECK(GetData(node)->participates); |
| 302 GetData(node)->on_stack = true; |
| 303 Node::InputEdges::iterator input = node->input_edges().begin(); |
| 304 Node::UseEdges::iterator use = node->use_edges().begin(); |
| 305 stack.push({dir, input, use, from, node}); |
| 306 } |
| 307 |
| 308 // Mutates the DFS stack by popping an entry. |
| 309 void DFSPop(DFSStack& stack, Node* node) { |
| 310 DCHECK_EQ(stack.top().node, node); |
| 311 GetData(node)->on_stack = false; |
| 312 GetData(node)->participates = false; |
| 313 stack.pop(); |
| 314 } |
| 315 |
| 316 // TODO(mstarzinger): Optimize this to avoid linear search. |
| 317 void BracketListDelete(BracketList& blist, Node* to, DFSDirection direction) { |
| 318 for (BracketList::iterator i = blist.begin(); i != blist.end(); /*nop*/) { |
| 319 if (i->to == to && i->direction != direction) { |
| 320 Trace(" BList erased: {%d->%d}\n", i->from->id(), i->to->id()); |
| 321 i = blist.erase(i); |
| 322 } else { |
| 323 ++i; |
| 324 } |
| 325 } |
| 326 } |
| 327 |
| 328 void BracketListTrace(BracketList& blist) { |
| 329 if (FLAG_trace_turbo_scheduler) { |
| 330 Trace(" BList: "); |
| 331 for (Bracket bracket : blist) { |
| 332 Trace("{%d->%d} ", bracket.from->id(), bracket.to->id()); |
| 333 } |
| 334 Trace("\n"); |
| 335 } |
| 336 } |
| 337 |
| 338 void Trace(const char* msg, ...) { |
| 339 if (FLAG_trace_turbo_scheduler) { |
| 340 va_list arguments; |
| 341 va_start(arguments, msg); |
| 342 base::OS::VPrint(msg, arguments); |
| 343 va_end(arguments); |
| 344 } |
| 345 } |
| 346 |
| 347 Zone* zone_; |
| 348 Graph* graph_; |
| 349 int dfs_number_; // Generates new DFS pre-order numbers on demand. |
| 350 int class_number_; // Generates new equivalence class numbers on demand. |
| 351 Data node_data_; // Per-node data stored as a side-table. |
| 352 }; |
| 353 |
| 354 } // namespace compiler |
| 355 } // namespace internal |
| 356 } // namespace v8 |
| 357 |
| 358 #endif // V8_COMPILER_CONTROL_EQUIVALENCE_H_ |
OLD | NEW |