| Index: src/core/SkRTree.cpp
|
| diff --git a/src/core/SkRTree.cpp b/src/core/SkRTree.cpp
|
| index 93f914276fac6bda3bc3c750ea961376e12a8189..6c7803119df757cc576ef2f4d6543b8b250910d7 100644
|
| --- a/src/core/SkRTree.cpp
|
| +++ b/src/core/SkRTree.cpp
|
| @@ -6,445 +6,167 @@
|
| */
|
|
|
| #include "SkRTree.h"
|
| -#include "SkTSort.h"
|
|
|
| -static inline uint32_t get_area(const SkIRect& rect);
|
| -static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2);
|
| -static inline uint32_t get_margin(const SkIRect& rect);
|
| -static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2);
|
| -static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out);
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -SkRTree* SkRTree::Create(int minChildren, int maxChildren, SkScalar aspectRatio,
|
| - bool sortWhenBulkLoading) {
|
| - if (minChildren < maxChildren && (maxChildren + 1) / 2 >= minChildren &&
|
| - minChildren > 0 && maxChildren < static_cast<int>(SK_MaxU16)) {
|
| - return new SkRTree(minChildren, maxChildren, aspectRatio, sortWhenBulkLoading);
|
| - }
|
| - return NULL;
|
| -}
|
| -
|
| -SkRTree::SkRTree(int minChildren, int maxChildren, SkScalar aspectRatio,
|
| - bool sortWhenBulkLoading)
|
| - : fMinChildren(minChildren)
|
| - , fMaxChildren(maxChildren)
|
| - , fNodeSize(sizeof(Node) + sizeof(Branch) * maxChildren)
|
| - , fCount(0)
|
| - , fNodes(fNodeSize * 256)
|
| - , fAspectRatio(aspectRatio)
|
| - , fSortWhenBulkLoading(sortWhenBulkLoading) {
|
| - SkASSERT(minChildren < maxChildren && minChildren > 0 && maxChildren <
|
| - static_cast<int>(SK_MaxU16));
|
| - SkASSERT((maxChildren + 1) / 2 >= minChildren);
|
| - this->validate();
|
| -}
|
| -
|
| -SkRTree::~SkRTree() {
|
| - this->clear();
|
| -}
|
| +SkRTree::SkRTree(SkScalar aspectRatio) : fCount(0), fAspectRatio(aspectRatio) {}
|
|
|
| void SkRTree::insert(SkAutoTMalloc<SkRect>* boundsArray, int N) {
|
| - SkASSERT(this->isEmpty());
|
| - this->validate();
|
| + SkASSERT(0 == fCount);
|
|
|
| - SkTDArray<Branch> deferred;
|
| - deferred.setReserve(N);
|
| + SkTDArray<Branch> branches;
|
| + branches.setReserve(N);
|
|
|
| for (int i = 0; i < N; i++) {
|
| - SkIRect bounds;
|
| - (*boundsArray)[i].roundOut(&bounds);
|
| + const SkRect& bounds = (*boundsArray)[i];
|
| if (bounds.isEmpty()) {
|
| continue;
|
| }
|
|
|
| - Branch newBranch;
|
| - newBranch.fBounds = bounds;
|
| - newBranch.fChild.opIndex = i;
|
| -
|
| - deferred.push(newBranch);
|
| + Branch* b = branches.push();
|
| + b->fBounds = bounds;
|
| + b->fOpIndex = i;
|
| }
|
|
|
| - fCount = deferred.count();
|
| + fCount = branches.count();
|
| if (fCount) {
|
| if (1 == fCount) {
|
| - fRoot.fChild.subtree = this->allocateNode(0);
|
| - fRoot.fChild.subtree->fNumChildren = 0;
|
| - this->insert(fRoot.fChild.subtree, &deferred[0]);
|
| - fRoot.fBounds = deferred[0].fBounds;
|
| + fNodes.setReserve(1);
|
| + Node* n = this->allocateNodeAtLevel(0);
|
| + n->fNumChildren = 1;
|
| + n->fChildren[0] = branches[0];
|
| + fRoot.fSubtree = n;
|
| + fRoot.fBounds = branches[0].fBounds;
|
| } else {
|
| - fRoot = this->bulkLoad(&deferred);
|
| + fNodes.setReserve(CountNodes(fCount, fAspectRatio));
|
| + fRoot = this->bulkLoad(&branches);
|
| }
|
| }
|
| -
|
| - this->validate();
|
| }
|
|
|
| -void SkRTree::search(const SkRect& fquery, SkTDArray<unsigned>* results) const {
|
| - SkIRect query;
|
| - fquery.roundOut(&query);
|
| - this->validate();
|
| - if (!this->isEmpty() && SkIRect::IntersectsNoEmptyCheck(fRoot.fBounds, query)) {
|
| - this->search(fRoot.fChild.subtree, query, results);
|
| - }
|
| - this->validate();
|
| -}
|
| -
|
| -void SkRTree::clear() {
|
| - this->validate();
|
| - fNodes.reset();
|
| - fCount = 0;
|
| - this->validate();
|
| -}
|
| -
|
| -SkRTree::Node* SkRTree::allocateNode(uint16_t level) {
|
| - Node* out = static_cast<Node*>(fNodes.allocThrow(fNodeSize));
|
| +SkRTree::Node* SkRTree::allocateNodeAtLevel(uint16_t level) {
|
| + SkDEBUGCODE(Node* p = fNodes.begin());
|
| + Node* out = fNodes.push();
|
| + SkASSERT(fNodes.begin() == p); // If this fails, we didn't setReserve() enough.
|
| out->fNumChildren = 0;
|
| out->fLevel = level;
|
| return out;
|
| }
|
|
|
| -SkRTree::Branch* SkRTree::insert(Node* root, Branch* branch, uint16_t level) {
|
| - Branch* toInsert = branch;
|
| - if (root->fLevel != level) {
|
| - int childIndex = this->chooseSubtree(root, branch);
|
| - toInsert = this->insert(root->child(childIndex)->fChild.subtree, branch, level);
|
| - root->child(childIndex)->fBounds = this->computeBounds(
|
| - root->child(childIndex)->fChild.subtree);
|
| +// This function parallels bulkLoad, but just counts how many nodes bulkLoad would allocate.
|
| +int SkRTree::CountNodes(int branches, SkScalar aspectRatio) {
|
| + if (branches == 1) {
|
| + return 1;
|
| }
|
| - if (toInsert) {
|
| - if (root->fNumChildren == fMaxChildren) {
|
| - // handle overflow by splitting. TODO: opportunistic reinsertion
|
| -
|
| - // decide on a distribution to divide with
|
| - Node* newSibling = this->allocateNode(root->fLevel);
|
| - Branch* toDivide = SkNEW_ARRAY(Branch, fMaxChildren + 1);
|
| - for (int i = 0; i < fMaxChildren; ++i) {
|
| - toDivide[i] = *root->child(i);
|
| - }
|
| - toDivide[fMaxChildren] = *toInsert;
|
| - int splitIndex = this->distributeChildren(toDivide);
|
| -
|
| - // divide up the branches
|
| - root->fNumChildren = splitIndex;
|
| - newSibling->fNumChildren = fMaxChildren + 1 - splitIndex;
|
| - for (int i = 0; i < splitIndex; ++i) {
|
| - *root->child(i) = toDivide[i];
|
| - }
|
| - for (int i = splitIndex; i < fMaxChildren + 1; ++i) {
|
| - *newSibling->child(i - splitIndex) = toDivide[i];
|
| - }
|
| - SkDELETE_ARRAY(toDivide);
|
| -
|
| - // pass the new sibling branch up to the parent
|
| - branch->fChild.subtree = newSibling;
|
| - branch->fBounds = this->computeBounds(newSibling);
|
| - return branch;
|
| + int numBranches = branches / kMaxChildren;
|
| + int remainder = branches % kMaxChildren;
|
| + if (remainder > 0) {
|
| + numBranches++;
|
| + if (remainder >= kMinChildren) {
|
| + remainder = 0;
|
| } else {
|
| - *root->child(root->fNumChildren) = *toInsert;
|
| - ++root->fNumChildren;
|
| - return NULL;
|
| + remainder = kMinChildren - remainder;
|
| }
|
| }
|
| - return NULL;
|
| -}
|
| -
|
| -int SkRTree::chooseSubtree(Node* root, Branch* branch) {
|
| - SkASSERT(!root->isLeaf());
|
| - if (1 < root->fLevel) {
|
| - // root's child pointers do not point to leaves, so minimize area increase
|
| - int32_t minAreaIncrease = SK_MaxS32;
|
| - int32_t minArea = SK_MaxS32;
|
| - int32_t bestSubtree = -1;
|
| - for (int i = 0; i < root->fNumChildren; ++i) {
|
| - const SkIRect& subtreeBounds = root->child(i)->fBounds;
|
| - int32_t areaIncrease = get_area_increase(subtreeBounds, branch->fBounds);
|
| - // break ties in favor of subtree with smallest area
|
| - if (areaIncrease < minAreaIncrease || (areaIncrease == minAreaIncrease &&
|
| - static_cast<int32_t>(get_area(subtreeBounds)) < minArea)) {
|
| - minAreaIncrease = areaIncrease;
|
| - minArea = get_area(subtreeBounds);
|
| - bestSubtree = i;
|
| - }
|
| - }
|
| - SkASSERT(-1 != bestSubtree);
|
| - return bestSubtree;
|
| - } else if (1 == root->fLevel) {
|
| - // root's child pointers do point to leaves, so minimize overlap increase
|
| - int32_t minOverlapIncrease = SK_MaxS32;
|
| - int32_t minAreaIncrease = SK_MaxS32;
|
| - int32_t bestSubtree = -1;
|
| - for (int32_t i = 0; i < root->fNumChildren; ++i) {
|
| - const SkIRect& subtreeBounds = root->child(i)->fBounds;
|
| - SkIRect expandedBounds = subtreeBounds;
|
| - join_no_empty_check(branch->fBounds, &expandedBounds);
|
| - int32_t overlap = 0;
|
| - for (int32_t j = 0; j < root->fNumChildren; ++j) {
|
| - if (j == i) continue;
|
| - // Note: this would be more correct if we subtracted the original pre-expanded
|
| - // overlap, but computing overlaps is expensive and omitting it doesn't seem to
|
| - // hurt query performance. See get_overlap_increase()
|
| - overlap += get_overlap(expandedBounds, root->child(j)->fBounds);
|
| - }
|
| - // break ties with lowest area increase
|
| - if (overlap < minOverlapIncrease || (overlap == minOverlapIncrease &&
|
| - static_cast<int32_t>(get_area_increase(branch->fBounds, subtreeBounds)) <
|
| - minAreaIncrease)) {
|
| - minOverlapIncrease = overlap;
|
| - minAreaIncrease = get_area_increase(branch->fBounds, subtreeBounds);
|
| - bestSubtree = i;
|
| - }
|
| - }
|
| - return bestSubtree;
|
| - } else {
|
| - SkASSERT(false);
|
| - return 0;
|
| - }
|
| -}
|
| -
|
| -SkIRect SkRTree::computeBounds(Node* n) {
|
| - SkIRect r = n->child(0)->fBounds;
|
| - for (int i = 1; i < n->fNumChildren; ++i) {
|
| - join_no_empty_check(n->child(i)->fBounds, &r);
|
| - }
|
| - return r;
|
| -}
|
| -
|
| -int SkRTree::distributeChildren(Branch* children) {
|
| - // We have two sides to sort by on each of two axes:
|
| - const static SortSide sorts[2][2] = {
|
| - {&SkIRect::fLeft, &SkIRect::fRight},
|
| - {&SkIRect::fTop, &SkIRect::fBottom}
|
| - };
|
| -
|
| - // We want to choose an axis to split on, then a distribution along that axis; we'll need
|
| - // three pieces of info: the split axis, the side to sort by on that axis, and the index
|
| - // to split the sorted array on.
|
| - int32_t sortSide = -1;
|
| - int32_t k = -1;
|
| - int32_t axis = -1;
|
| - int32_t bestS = SK_MaxS32;
|
| -
|
| - // Evaluate each axis, we want the min summed margin-value (s) over all distributions
|
| - for (int i = 0; i < 2; ++i) {
|
| - int32_t minOverlap = SK_MaxS32;
|
| - int32_t minArea = SK_MaxS32;
|
| - int32_t axisBestK = 0;
|
| - int32_t axisBestSide = 0;
|
| - int32_t s = 0;
|
| -
|
| - // Evaluate each sort
|
| - for (int j = 0; j < 2; ++j) {
|
| - SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[i][j]));
|
| -
|
| - // Evaluate each split index
|
| - for (int32_t k = 1; k <= fMaxChildren - 2 * fMinChildren + 2; ++k) {
|
| - SkIRect r1 = children[0].fBounds;
|
| - SkIRect r2 = children[fMinChildren + k - 1].fBounds;
|
| - for (int32_t l = 1; l < fMinChildren - 1 + k; ++l) {
|
| - join_no_empty_check(children[l].fBounds, &r1);
|
| - }
|
| - for (int32_t l = fMinChildren + k; l < fMaxChildren + 1; ++l) {
|
| - join_no_empty_check(children[l].fBounds, &r2);
|
| - }
|
| -
|
| - int32_t area = get_area(r1) + get_area(r2);
|
| - int32_t overlap = get_overlap(r1, r2);
|
| - s += get_margin(r1) + get_margin(r2);
|
| -
|
| - if (overlap < minOverlap || (overlap == minOverlap && area < minArea)) {
|
| - minOverlap = overlap;
|
| - minArea = area;
|
| - axisBestSide = j;
|
| - axisBestK = k;
|
| + int numStrips = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(numBranches) / aspectRatio));
|
| + int numTiles = SkScalarCeilToInt(SkIntToScalar(numBranches) / SkIntToScalar(numStrips));
|
| + int currentBranch = 0;
|
| + int nodes = 0;
|
| + for (int i = 0; i < numStrips; ++i) {
|
| + for (int j = 0; j < numTiles && currentBranch < branches; ++j) {
|
| + int incrementBy = kMaxChildren;
|
| + if (remainder != 0) {
|
| + if (remainder <= kMaxChildren - kMinChildren) {
|
| + incrementBy -= remainder;
|
| + remainder = 0;
|
| + } else {
|
| + incrementBy = kMinChildren;
|
| + remainder -= kMaxChildren - kMinChildren;
|
| }
|
| }
|
| - }
|
| -
|
| - if (s < bestS) {
|
| - bestS = s;
|
| - axis = i;
|
| - sortSide = axisBestSide;
|
| - k = axisBestK;
|
| - }
|
| - }
|
| -
|
| - // replicate the sort of the winning distribution, (we can skip this if the last
|
| - // sort ended up being best)
|
| - if (!(axis == 1 && sortSide == 1)) {
|
| - SkTQSort(children, children + fMaxChildren, RectLessThan(sorts[axis][sortSide]));
|
| - }
|
| -
|
| - return fMinChildren - 1 + k;
|
| -}
|
| -
|
| -void SkRTree::search(Node* root, const SkIRect query, SkTDArray<unsigned>* results) const {
|
| - for (int i = 0; i < root->fNumChildren; ++i) {
|
| - if (SkIRect::IntersectsNoEmptyCheck(root->child(i)->fBounds, query)) {
|
| - if (root->isLeaf()) {
|
| - results->push(root->child(i)->fChild.opIndex);
|
| - } else {
|
| - this->search(root->child(i)->fChild.subtree, query, results);
|
| + nodes++;
|
| + currentBranch++;
|
| + for (int k = 1; k < incrementBy && currentBranch < branches; ++k) {
|
| + currentBranch++;
|
| }
|
| }
|
| }
|
| + return nodes + CountNodes(nodes, aspectRatio);
|
| }
|
|
|
| SkRTree::Branch SkRTree::bulkLoad(SkTDArray<Branch>* branches, int level) {
|
| - if (branches->count() == 1) {
|
| - // Only one branch: it will be the root
|
| - Branch out = (*branches)[0];
|
| - branches->rewind();
|
| - return out;
|
| - } else {
|
| - // We sort the whole list by y coordinates, if we are told to do so.
|
| - //
|
| - // We expect Webkit / Blink to give us a reasonable x,y order.
|
| - // Avoiding this call resulted in a 17% win for recording with
|
| - // negligible difference in playback speed.
|
| - if (fSortWhenBulkLoading) {
|
| - SkTQSort(branches->begin(), branches->end() - 1, RectLessY());
|
| - }
|
| -
|
| - int numBranches = branches->count() / fMaxChildren;
|
| - int remainder = branches->count() % fMaxChildren;
|
| - int newBranches = 0;
|
| -
|
| - if (0 != remainder) {
|
| - ++numBranches;
|
| - // If the remainder isn't enough to fill a node, we'll need to add fewer nodes to
|
| - // some other branches to make up for it
|
| - if (remainder >= fMinChildren) {
|
| - remainder = 0;
|
| - } else {
|
| - remainder = fMinChildren - remainder;
|
| - }
|
| + if (branches->count() == 1) { // Only one branch. It will be the root.
|
| + return (*branches)[0];
|
| + }
|
| +
|
| + // We might sort our branches here, but we expect Blink gives us a reasonable x,y order.
|
| + // Skipping a call to sort (in Y) here resulted in a 17% win for recording with negligible
|
| + // difference in playback speed.
|
| + int numBranches = branches->count() / kMaxChildren;
|
| + int remainder = branches->count() % kMaxChildren;
|
| + int newBranches = 0;
|
| +
|
| + if (remainder > 0) {
|
| + ++numBranches;
|
| + // If the remainder isn't enough to fill a node, we'll add fewer nodes to other branches.
|
| + if (remainder >= kMinChildren) {
|
| + remainder = 0;
|
| + } else {
|
| + remainder = kMinChildren - remainder;
|
| }
|
| + }
|
|
|
| - int numStrips = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(numBranches) *
|
| - SkScalarInvert(fAspectRatio)));
|
| - int numTiles = SkScalarCeilToInt(SkIntToScalar(numBranches) /
|
| - SkIntToScalar(numStrips));
|
| - int currentBranch = 0;
|
| -
|
| - for (int i = 0; i < numStrips; ++i) {
|
| - // Once again, if we are told to do so, we sort by x.
|
| - if (fSortWhenBulkLoading) {
|
| - int begin = currentBranch;
|
| - int end = currentBranch + numTiles * fMaxChildren - SkMin32(remainder,
|
| - (fMaxChildren - fMinChildren) * numTiles);
|
| - if (end > branches->count()) {
|
| - end = branches->count();
|
| + int numStrips = SkScalarCeilToInt(SkScalarSqrt(SkIntToScalar(numBranches) / fAspectRatio));
|
| + int numTiles = SkScalarCeilToInt(SkIntToScalar(numBranches) / SkIntToScalar(numStrips));
|
| + int currentBranch = 0;
|
| +
|
| + for (int i = 0; i < numStrips; ++i) {
|
| + // Might be worth sorting by X here too.
|
| + for (int j = 0; j < numTiles && currentBranch < branches->count(); ++j) {
|
| + int incrementBy = kMaxChildren;
|
| + if (remainder != 0) {
|
| + // if need be, omit some nodes to make up for remainder
|
| + if (remainder <= kMaxChildren - kMinChildren) {
|
| + incrementBy -= remainder;
|
| + remainder = 0;
|
| + } else {
|
| + incrementBy = kMinChildren;
|
| + remainder -= kMaxChildren - kMinChildren;
|
| }
|
| -
|
| - // Now we sort horizontal strips of rectangles by their x coords
|
| - SkTQSort(branches->begin() + begin, branches->begin() + end - 1, RectLessX());
|
| }
|
| -
|
| - for (int j = 0; j < numTiles && currentBranch < branches->count(); ++j) {
|
| - int incrementBy = fMaxChildren;
|
| - if (remainder != 0) {
|
| - // if need be, omit some nodes to make up for remainder
|
| - if (remainder <= fMaxChildren - fMinChildren) {
|
| - incrementBy -= remainder;
|
| - remainder = 0;
|
| - } else {
|
| - incrementBy = fMinChildren;
|
| - remainder -= fMaxChildren - fMinChildren;
|
| - }
|
| - }
|
| - Node* n = allocateNode(level);
|
| - n->fNumChildren = 1;
|
| - *n->child(0) = (*branches)[currentBranch];
|
| - Branch b;
|
| - b.fBounds = (*branches)[currentBranch].fBounds;
|
| - b.fChild.subtree = n;
|
| + Node* n = allocateNodeAtLevel(level);
|
| + n->fNumChildren = 1;
|
| + n->fChildren[0] = (*branches)[currentBranch];
|
| + Branch b;
|
| + b.fBounds = (*branches)[currentBranch].fBounds;
|
| + b.fSubtree = n;
|
| + ++currentBranch;
|
| + for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) {
|
| + b.fBounds.join((*branches)[currentBranch].fBounds);
|
| + n->fChildren[k] = (*branches)[currentBranch];
|
| + ++n->fNumChildren;
|
| ++currentBranch;
|
| - for (int k = 1; k < incrementBy && currentBranch < branches->count(); ++k) {
|
| - b.fBounds.join((*branches)[currentBranch].fBounds);
|
| - *n->child(k) = (*branches)[currentBranch];
|
| - ++n->fNumChildren;
|
| - ++currentBranch;
|
| - }
|
| - (*branches)[newBranches] = b;
|
| - ++newBranches;
|
| }
|
| + (*branches)[newBranches] = b;
|
| + ++newBranches;
|
| }
|
| - branches->setCount(newBranches);
|
| - return this->bulkLoad(branches, level + 1);
|
| }
|
| + branches->setCount(newBranches);
|
| + return this->bulkLoad(branches, level + 1);
|
| }
|
|
|
| -void SkRTree::validate() const {
|
| -#ifdef SK_DEBUG
|
| - if (this->isEmpty()) {
|
| - return;
|
| +void SkRTree::search(const SkRect& query, SkTDArray<unsigned>* results) const {
|
| + if (fCount > 0 && SkRect::Intersects(fRoot.fBounds, query)) {
|
| + this->search(fRoot.fSubtree, query, results);
|
| }
|
| - SkASSERT(fCount == this->validateSubtree(fRoot.fChild.subtree, fRoot.fBounds, true));
|
| -#endif
|
| }
|
|
|
| -int SkRTree::validateSubtree(Node* root, SkIRect bounds, bool isRoot) const {
|
| - // make sure the pointer is pointing to a valid place
|
| - SkASSERT(fNodes.contains(static_cast<void*>(root)));
|
| -
|
| - if (isRoot) {
|
| - // If the root of this subtree is the overall root, we have looser standards:
|
| - if (root->isLeaf()) {
|
| - SkASSERT(root->fNumChildren >= 1 && root->fNumChildren <= fMaxChildren);
|
| - } else {
|
| - SkASSERT(root->fNumChildren >= 2 && root->fNumChildren <= fMaxChildren);
|
| - }
|
| - } else {
|
| - SkASSERT(root->fNumChildren >= fMinChildren && root->fNumChildren <= fMaxChildren);
|
| - }
|
| -
|
| - for (int i = 0; i < root->fNumChildren; ++i) {
|
| - SkASSERT(bounds.contains(root->child(i)->fBounds));
|
| - }
|
| -
|
| - if (root->isLeaf()) {
|
| - SkASSERT(0 == root->fLevel);
|
| - return root->fNumChildren;
|
| - } else {
|
| - int childCount = 0;
|
| - for (int i = 0; i < root->fNumChildren; ++i) {
|
| - SkASSERT(root->child(i)->fChild.subtree->fLevel == root->fLevel - 1);
|
| - childCount += this->validateSubtree(root->child(i)->fChild.subtree,
|
| - root->child(i)->fBounds);
|
| +void SkRTree::search(Node* node, const SkRect& query, SkTDArray<unsigned>* results) const {
|
| + for (int i = 0; i < node->fNumChildren; ++i) {
|
| + if (SkRect::Intersects(node->fChildren[i].fBounds, query)) {
|
| + if (0 == node->fLevel) {
|
| + results->push(node->fChildren[i].fOpIndex);
|
| + } else {
|
| + this->search(node->fChildren[i].fSubtree, query, results);
|
| + }
|
| }
|
| - return childCount;
|
| }
|
| }
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////////////////////////
|
| -
|
| -static inline uint32_t get_area(const SkIRect& rect) {
|
| - return rect.width() * rect.height();
|
| -}
|
| -
|
| -static inline uint32_t get_overlap(const SkIRect& rect1, const SkIRect& rect2) {
|
| - // I suspect there's a more efficient way of computing this...
|
| - return SkMax32(0, SkMin32(rect1.fRight, rect2.fRight) - SkMax32(rect1.fLeft, rect2.fLeft)) *
|
| - SkMax32(0, SkMin32(rect1.fBottom, rect2.fBottom) - SkMax32(rect1.fTop, rect2.fTop));
|
| -}
|
| -
|
| -// Get the margin (aka perimeter)
|
| -static inline uint32_t get_margin(const SkIRect& rect) {
|
| - return 2 * (rect.width() + rect.height());
|
| -}
|
| -
|
| -static inline uint32_t get_area_increase(const SkIRect& rect1, SkIRect rect2) {
|
| - join_no_empty_check(rect1, &rect2);
|
| - return get_area(rect2) - get_area(rect1);
|
| -}
|
| -
|
| -// Expand 'out' to include 'joinWith'
|
| -static inline void join_no_empty_check(const SkIRect& joinWith, SkIRect* out) {
|
| - // since we check for empty bounds on insert, we know we'll never have empty rects
|
| - // and we can save the empty check that SkIRect::join requires
|
| - if (joinWith.fLeft < out->fLeft) { out->fLeft = joinWith.fLeft; }
|
| - if (joinWith.fTop < out->fTop) { out->fTop = joinWith.fTop; }
|
| - if (joinWith.fRight > out->fRight) { out->fRight = joinWith.fRight; }
|
| - if (joinWith.fBottom > out->fBottom) { out->fBottom = joinWith.fBottom; }
|
| -}
|
|
|