Index: src/core/Sk4x_sse.h |
diff --git a/src/core/Sk4x_sse.h b/src/core/Sk4x_sse.h |
new file mode 100644 |
index 0000000000000000000000000000000000000000..246abd31f96465ea0340d241f766d0921545b6c3 |
--- /dev/null |
+++ b/src/core/Sk4x_sse.h |
@@ -0,0 +1,177 @@ |
+// It is important _not_ to put header guards here. |
+// This file will be intentionally included three times. |
+ |
+// Useful reading: |
+// https://software.intel.com/sites/landingpage/IntrinsicsGuide/ |
+ |
+#if defined(SK4X_PREAMBLE) |
+ // Code in this file may assume SSE and SSE2. |
+ #include <emmintrin.h> |
+ |
+ // It must check for later instruction sets. |
+ #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
+ #include <immintrin.h> |
+ #endif |
+ |
+ // A little bit of template metaprogramming to map |
+ // float to __m128 and int32_t to __m128i. |
+ template <typename T> struct SkScalarToSIMD; |
+ template <> struct SkScalarToSIMD<float> { typedef __m128 Type; }; |
+ template <> struct SkScalarToSIMD<int32_t> { typedef __m128i Type; }; |
+ |
+ // These are all free, zero instructions. |
+ // MSVC insists we use _mm_castA_B(a) instead of (B)a. |
+ static __m128 as_4f(__m128i v) { return _mm_castsi128_ps(v); } |
+ static __m128 as_4f(__m128 v) { return v ; } |
+ static __m128i as_4i(__m128i v) { return v ; } |
+ static __m128i as_4i(__m128 v) { return _mm_castps_si128(v); } |
+ |
+#elif defined(SK4X_PRIVATE) |
+ // It'd be slightly faster to call _mm_cmpeq_epi32() on an unintialized register and itself, |
+ // but that has caused hard to debug issues when compilers recognize dealing with uninitialized |
+ // memory as undefined behavior that can be optimized away. |
+ static __m128i True() { return _mm_set1_epi8(~0); } |
+ |
+ // Leaving these implicit makes the rest of the code below a bit less noisy to read. |
+ Sk4x(__m128i); |
+ Sk4x(__m128); |
+ |
+ Sk4x andNot(const Sk4x&) const; |
+ |
+ typename SkScalarToSIMD<T>::Type fVec; |
+ |
+#else//Method definitions. |
+ |
+// Helps to get these in before anything else. |
+template <> inline Sk4f::Sk4x(__m128i v) : fVec(as_4f(v)) {} |
+template <> inline Sk4f::Sk4x(__m128 v) : fVec( v ) {} |
+template <> inline Sk4i::Sk4x(__m128i v) : fVec( v ) {} |
+template <> inline Sk4i::Sk4x(__m128 v) : fVec(as_4i(v)) {} |
+ |
+// Next, methods whose implementation is the same for Sk4f and Sk4i. |
+template <typename T> Sk4x<T>::Sk4x() {} |
+template <typename T> Sk4x<T>::Sk4x(const Sk4x& other) { *this = other; } |
+template <typename T> Sk4x<T>& Sk4x<T>::operator=(const Sk4x<T>& other) { |
+ fVec = other.fVec; |
+ return *this; |
+} |
+ |
+// We pun in these _mm_shuffle_* methods a little to use the fastest / most available methods. |
+// They're all bit-preserving operations so it shouldn't matter. |
+ |
+template <typename T> |
+Sk4x<T> Sk4x<T>::zwxy() const { return _mm_shuffle_epi32(as_4i(fVec), _MM_SHUFFLE(1,0,3,2)); } |
+ |
+template <typename T> |
+Sk4x<T> Sk4x<T>::XYAB(const Sk4x<T>& a, const Sk4x<T>& b) { |
+ return _mm_movelh_ps(as_4f(a.fVec), as_4f(b.fVec)); |
+} |
+ |
+template <typename T> |
+Sk4x<T> Sk4x<T>::ZWCD(const Sk4x<T>& a, const Sk4x<T>& b) { |
+ return _mm_movehl_ps(as_4f(b.fVec), as_4f(a.fVec)); |
+} |
+ |
+// Now we'll write all Sk4f specific methods. This M() macro will remove some noise. |
+#define M(...) template <> inline __VA_ARGS__ Sk4f:: |
+ |
+M() Sk4x(float a, float b, float c, float d) : fVec(_mm_set_ps(d,c,b,a)) {} |
+ |
+M(Sk4f) Load (const float fs[4]) { return _mm_loadu_ps(fs); } |
+M(Sk4f) LoadAligned(const float fs[4]) { return _mm_load_ps (fs); } |
+ |
+M(void) store (float fs[4]) const { _mm_storeu_ps(fs, fVec); } |
+M(void) storeAligned(float fs[4]) const { _mm_store_ps (fs, fVec); } |
+ |
+template <> template <> |
+Sk4i Sk4f::reinterpret<Sk4i>() const { return as_4i(fVec); } |
+ |
+template <> template <> |
+Sk4i Sk4f::cast<Sk4i>() const { return _mm_cvtps_epi32(fVec); } |
+ |
+// We're going to try a little experiment here and skip allTrue(), anyTrue(), and bit-manipulators |
+// for Sk4f. Code that calls them probably does so accidentally. |
+// Ask mtklein to fill these in if you really need them. |
+ |
+M(Sk4f) add (const Sk4f& o) const { return _mm_add_ps(fVec, o.fVec); } |
+M(Sk4f) subtract(const Sk4f& o) const { return _mm_sub_ps(fVec, o.fVec); } |
+M(Sk4f) multiply(const Sk4f& o) const { return _mm_mul_ps(fVec, o.fVec); } |
+M(Sk4f) divide (const Sk4f& o) const { return _mm_div_ps(fVec, o.fVec); } |
+ |
+M(Sk4i) equal (const Sk4f& o) const { return _mm_cmpeq_ps (fVec, o.fVec); } |
+M(Sk4i) notEqual (const Sk4f& o) const { return _mm_cmpneq_ps(fVec, o.fVec); } |
+M(Sk4i) lessThan (const Sk4f& o) const { return _mm_cmplt_ps (fVec, o.fVec); } |
+M(Sk4i) greaterThan (const Sk4f& o) const { return _mm_cmpgt_ps (fVec, o.fVec); } |
+M(Sk4i) lessThanEqual (const Sk4f& o) const { return _mm_cmple_ps (fVec, o.fVec); } |
+M(Sk4i) greaterThanEqual(const Sk4f& o) const { return _mm_cmpge_ps (fVec, o.fVec); } |
+ |
+M(Sk4f) Min(const Sk4f& a, const Sk4f& b) { return _mm_min_ps(a.fVec, b.fVec); } |
+M(Sk4f) Max(const Sk4f& a, const Sk4f& b) { return _mm_max_ps(a.fVec, b.fVec); } |
+ |
+// Now we'll write all the Sk4i specific methods. Same deal for M(). |
+#undef M |
+#define M(...) template <> inline __VA_ARGS__ Sk4i:: |
+ |
+M() Sk4x(int32_t a, int32_t b, int32_t c, int32_t d) : fVec(_mm_set_epi32(d,c,b,a)) {} |
+ |
+M(Sk4i) Load (const int32_t is[4]) { return _mm_loadu_si128((const __m128i*)is); } |
+M(Sk4i) LoadAligned(const int32_t is[4]) { return _mm_load_si128 ((const __m128i*)is); } |
+ |
+M(void) store (int32_t is[4]) const { _mm_storeu_si128((__m128i*)is, fVec); } |
+M(void) storeAligned(int32_t is[4]) const { _mm_store_si128 ((__m128i*)is, fVec); } |
+ |
+template <> template <> |
+Sk4f Sk4i::reinterpret<Sk4f>() const { return as_4f(fVec); } |
+ |
+template <> template <> |
+Sk4f Sk4i::cast<Sk4f>() const { return _mm_cvtepi32_ps(fVec); } |
+ |
+M(bool) allTrue() const { return 0xf == _mm_movemask_ps(as_4f(fVec)); } |
+M(bool) anyTrue() const { return 0x0 != _mm_movemask_ps(as_4f(fVec)); } |
+ |
+M(Sk4i) bitNot() const { return _mm_xor_si128(fVec, True()); } |
+M(Sk4i) bitAnd(const Sk4i& o) const { return _mm_and_si128(fVec, o.fVec); } |
+M(Sk4i) bitOr (const Sk4i& o) const { return _mm_or_si128 (fVec, o.fVec); } |
+ |
+M(Sk4i) equal (const Sk4i& o) const { return _mm_cmpeq_epi32 (fVec, o.fVec); } |
+M(Sk4i) lessThan (const Sk4i& o) const { return _mm_cmplt_epi32 (fVec, o.fVec); } |
+M(Sk4i) greaterThan (const Sk4i& o) const { return _mm_cmpgt_epi32 (fVec, o.fVec); } |
+M(Sk4i) notEqual (const Sk4i& o) const { return this-> equal(o).bitNot(); } |
+M(Sk4i) lessThanEqual (const Sk4i& o) const { return this->greaterThan(o).bitNot(); } |
+M(Sk4i) greaterThanEqual(const Sk4i& o) const { return this-> lessThan(o).bitNot(); } |
+ |
+M(Sk4i) add (const Sk4i& o) const { return _mm_add_epi32(fVec, o.fVec); } |
+M(Sk4i) subtract(const Sk4i& o) const { return _mm_sub_epi32(fVec, o.fVec); } |
+ |
+// SSE doesn't have integer division. Let's see how far we can get without Sk4i::divide(). |
+ |
+// Sk4i's multiply(), Min(), and Max() all improve significantly with SSE4.1. |
+#if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE41 |
+ M(Sk4i) multiply(const Sk4i& o) const { return _mm_mullo_epi32(fVec, o.fVec); } |
+ M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { return _mm_min_epi32(a.fVec, b.fVec); } |
+ M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { return _mm_max_epi32(a.fVec, b.fVec); } |
+#else |
+ M(Sk4i) multiply(const Sk4i& o) const { |
+ // First 2 32->64 bit multiplies. |
+ __m128i mul02 = _mm_mul_epu32(fVec, o.fVec), |
+ mul13 = _mm_mul_epu32(_mm_srli_si128(fVec, 4), _mm_srli_si128(o.fVec, 4)); |
+ // Now recombine the high bits of the two products. |
+ return _mm_unpacklo_epi32(_mm_shuffle_epi32(mul02, _MM_SHUFFLE(0,0,2,0)), |
+ _mm_shuffle_epi32(mul13, _MM_SHUFFLE(0,0,2,0))); |
+ } |
+ |
+ M(Sk4i) andNot(const Sk4i& o) const { return _mm_andnot_si128(o.fVec, fVec); } |
+ |
+ M(Sk4i) Min(const Sk4i& a, const Sk4i& b) { |
+ Sk4i less = a.lessThan(b); |
+ return a.bitAnd(less).bitOr(b.andNot(less)); |
+ } |
+ M(Sk4i) Max(const Sk4i& a, const Sk4i& b) { |
+ Sk4i less = a.lessThan(b); |
+ return b.bitAnd(less).bitOr(a.andNot(less)); |
+ } |
+#endif |
+ |
+#undef M |
+ |
+#endif//Method definitions. |