| Index: third_party/sqlite/src/ext/rtree/rtree.c
|
| diff --git a/third_party/sqlite/src/ext/rtree/rtree.c b/third_party/sqlite/src/ext/rtree/rtree.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..ebf430a98c6218d3970fa3dafd977c20c8aee46b
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/ext/rtree/rtree.c
|
| @@ -0,0 +1,3238 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This file contains code for implementations of the r-tree and r*-tree
|
| +** algorithms packaged as an SQLite virtual table module.
|
| +*/
|
| +
|
| +/*
|
| +** Database Format of R-Tree Tables
|
| +** --------------------------------
|
| +**
|
| +** The data structure for a single virtual r-tree table is stored in three
|
| +** native SQLite tables declared as follows. In each case, the '%' character
|
| +** in the table name is replaced with the user-supplied name of the r-tree
|
| +** table.
|
| +**
|
| +** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB)
|
| +** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER)
|
| +** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER)
|
| +**
|
| +** The data for each node of the r-tree structure is stored in the %_node
|
| +** table. For each node that is not the root node of the r-tree, there is
|
| +** an entry in the %_parent table associating the node with its parent.
|
| +** And for each row of data in the table, there is an entry in the %_rowid
|
| +** table that maps from the entries rowid to the id of the node that it
|
| +** is stored on.
|
| +**
|
| +** The root node of an r-tree always exists, even if the r-tree table is
|
| +** empty. The nodeno of the root node is always 1. All other nodes in the
|
| +** table must be the same size as the root node. The content of each node
|
| +** is formatted as follows:
|
| +**
|
| +** 1. If the node is the root node (node 1), then the first 2 bytes
|
| +** of the node contain the tree depth as a big-endian integer.
|
| +** For non-root nodes, the first 2 bytes are left unused.
|
| +**
|
| +** 2. The next 2 bytes contain the number of entries currently
|
| +** stored in the node.
|
| +**
|
| +** 3. The remainder of the node contains the node entries. Each entry
|
| +** consists of a single 8-byte integer followed by an even number
|
| +** of 4-byte coordinates. For leaf nodes the integer is the rowid
|
| +** of a record. For internal nodes it is the node number of a
|
| +** child page.
|
| +*/
|
| +
|
| +#if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE)
|
| +
|
| +/*
|
| +** This file contains an implementation of a couple of different variants
|
| +** of the r-tree algorithm. See the README file for further details. The
|
| +** same data-structure is used for all, but the algorithms for insert and
|
| +** delete operations vary. The variants used are selected at compile time
|
| +** by defining the following symbols:
|
| +*/
|
| +
|
| +/* Either, both or none of the following may be set to activate
|
| +** r*tree variant algorithms.
|
| +*/
|
| +#define VARIANT_RSTARTREE_CHOOSESUBTREE 0
|
| +#define VARIANT_RSTARTREE_REINSERT 1
|
| +
|
| +/*
|
| +** Exactly one of the following must be set to 1.
|
| +*/
|
| +#define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0
|
| +#define VARIANT_GUTTMAN_LINEAR_SPLIT 0
|
| +#define VARIANT_RSTARTREE_SPLIT 1
|
| +
|
| +#define VARIANT_GUTTMAN_SPLIT \
|
| + (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT)
|
| +
|
| +#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
|
| + #define PickNext QuadraticPickNext
|
| + #define PickSeeds QuadraticPickSeeds
|
| + #define AssignCells splitNodeGuttman
|
| +#endif
|
| +#if VARIANT_GUTTMAN_LINEAR_SPLIT
|
| + #define PickNext LinearPickNext
|
| + #define PickSeeds LinearPickSeeds
|
| + #define AssignCells splitNodeGuttman
|
| +#endif
|
| +#if VARIANT_RSTARTREE_SPLIT
|
| + #define AssignCells splitNodeStartree
|
| +#endif
|
| +
|
| +#if !defined(NDEBUG) && !defined(SQLITE_DEBUG)
|
| +# define NDEBUG 1
|
| +#endif
|
| +
|
| +#ifndef SQLITE_CORE
|
| + #include "sqlite3ext.h"
|
| + SQLITE_EXTENSION_INIT1
|
| +#else
|
| + #include "sqlite3.h"
|
| +#endif
|
| +
|
| +#include <string.h>
|
| +#include <assert.h>
|
| +
|
| +#ifndef SQLITE_AMALGAMATION
|
| +#include "sqlite3rtree.h"
|
| +typedef sqlite3_int64 i64;
|
| +typedef unsigned char u8;
|
| +typedef unsigned int u32;
|
| +#endif
|
| +
|
| +/* The following macro is used to suppress compiler warnings.
|
| +*/
|
| +#ifndef UNUSED_PARAMETER
|
| +# define UNUSED_PARAMETER(x) (void)(x)
|
| +#endif
|
| +
|
| +typedef struct Rtree Rtree;
|
| +typedef struct RtreeCursor RtreeCursor;
|
| +typedef struct RtreeNode RtreeNode;
|
| +typedef struct RtreeCell RtreeCell;
|
| +typedef struct RtreeConstraint RtreeConstraint;
|
| +typedef struct RtreeMatchArg RtreeMatchArg;
|
| +typedef struct RtreeGeomCallback RtreeGeomCallback;
|
| +typedef union RtreeCoord RtreeCoord;
|
| +
|
| +/* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */
|
| +#define RTREE_MAX_DIMENSIONS 5
|
| +
|
| +/* Size of hash table Rtree.aHash. This hash table is not expected to
|
| +** ever contain very many entries, so a fixed number of buckets is
|
| +** used.
|
| +*/
|
| +#define HASHSIZE 128
|
| +
|
| +/*
|
| +** An rtree virtual-table object.
|
| +*/
|
| +struct Rtree {
|
| + sqlite3_vtab base;
|
| + sqlite3 *db; /* Host database connection */
|
| + int iNodeSize; /* Size in bytes of each node in the node table */
|
| + int nDim; /* Number of dimensions */
|
| + int nBytesPerCell; /* Bytes consumed per cell */
|
| + int iDepth; /* Current depth of the r-tree structure */
|
| + char *zDb; /* Name of database containing r-tree table */
|
| + char *zName; /* Name of r-tree table */
|
| + RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */
|
| + int nBusy; /* Current number of users of this structure */
|
| +
|
| + /* List of nodes removed during a CondenseTree operation. List is
|
| + ** linked together via the pointer normally used for hash chains -
|
| + ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree
|
| + ** headed by the node (leaf nodes have RtreeNode.iNode==0).
|
| + */
|
| + RtreeNode *pDeleted;
|
| + int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */
|
| +
|
| + /* Statements to read/write/delete a record from xxx_node */
|
| + sqlite3_stmt *pReadNode;
|
| + sqlite3_stmt *pWriteNode;
|
| + sqlite3_stmt *pDeleteNode;
|
| +
|
| + /* Statements to read/write/delete a record from xxx_rowid */
|
| + sqlite3_stmt *pReadRowid;
|
| + sqlite3_stmt *pWriteRowid;
|
| + sqlite3_stmt *pDeleteRowid;
|
| +
|
| + /* Statements to read/write/delete a record from xxx_parent */
|
| + sqlite3_stmt *pReadParent;
|
| + sqlite3_stmt *pWriteParent;
|
| + sqlite3_stmt *pDeleteParent;
|
| +
|
| + int eCoordType;
|
| +};
|
| +
|
| +/* Possible values for eCoordType: */
|
| +#define RTREE_COORD_REAL32 0
|
| +#define RTREE_COORD_INT32 1
|
| +
|
| +/*
|
| +** The minimum number of cells allowed for a node is a third of the
|
| +** maximum. In Gutman's notation:
|
| +**
|
| +** m = M/3
|
| +**
|
| +** If an R*-tree "Reinsert" operation is required, the same number of
|
| +** cells are removed from the overfull node and reinserted into the tree.
|
| +*/
|
| +#define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3)
|
| +#define RTREE_REINSERT(p) RTREE_MINCELLS(p)
|
| +#define RTREE_MAXCELLS 51
|
| +
|
| +/*
|
| +** The smallest possible node-size is (512-64)==448 bytes. And the largest
|
| +** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates).
|
| +** Therefore all non-root nodes must contain at least 3 entries. Since
|
| +** 2^40 is greater than 2^64, an r-tree structure always has a depth of
|
| +** 40 or less.
|
| +*/
|
| +#define RTREE_MAX_DEPTH 40
|
| +
|
| +/*
|
| +** An rtree cursor object.
|
| +*/
|
| +struct RtreeCursor {
|
| + sqlite3_vtab_cursor base;
|
| + RtreeNode *pNode; /* Node cursor is currently pointing at */
|
| + int iCell; /* Index of current cell in pNode */
|
| + int iStrategy; /* Copy of idxNum search parameter */
|
| + int nConstraint; /* Number of entries in aConstraint */
|
| + RtreeConstraint *aConstraint; /* Search constraints. */
|
| +};
|
| +
|
| +union RtreeCoord {
|
| + float f;
|
| + int i;
|
| +};
|
| +
|
| +/*
|
| +** The argument is an RtreeCoord. Return the value stored within the RtreeCoord
|
| +** formatted as a double. This macro assumes that local variable pRtree points
|
| +** to the Rtree structure associated with the RtreeCoord.
|
| +*/
|
| +#define DCOORD(coord) ( \
|
| + (pRtree->eCoordType==RTREE_COORD_REAL32) ? \
|
| + ((double)coord.f) : \
|
| + ((double)coord.i) \
|
| +)
|
| +
|
| +/*
|
| +** A search constraint.
|
| +*/
|
| +struct RtreeConstraint {
|
| + int iCoord; /* Index of constrained coordinate */
|
| + int op; /* Constraining operation */
|
| + double rValue; /* Constraint value. */
|
| + int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
|
| + sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */
|
| +};
|
| +
|
| +/* Possible values for RtreeConstraint.op */
|
| +#define RTREE_EQ 0x41
|
| +#define RTREE_LE 0x42
|
| +#define RTREE_LT 0x43
|
| +#define RTREE_GE 0x44
|
| +#define RTREE_GT 0x45
|
| +#define RTREE_MATCH 0x46
|
| +
|
| +/*
|
| +** An rtree structure node.
|
| +*/
|
| +struct RtreeNode {
|
| + RtreeNode *pParent; /* Parent node */
|
| + i64 iNode;
|
| + int nRef;
|
| + int isDirty;
|
| + u8 *zData;
|
| + RtreeNode *pNext; /* Next node in this hash chain */
|
| +};
|
| +#define NCELL(pNode) readInt16(&(pNode)->zData[2])
|
| +
|
| +/*
|
| +** Structure to store a deserialized rtree record.
|
| +*/
|
| +struct RtreeCell {
|
| + i64 iRowid;
|
| + RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2];
|
| +};
|
| +
|
| +
|
| +/*
|
| +** Value for the first field of every RtreeMatchArg object. The MATCH
|
| +** operator tests that the first field of a blob operand matches this
|
| +** value to avoid operating on invalid blobs (which could cause a segfault).
|
| +*/
|
| +#define RTREE_GEOMETRY_MAGIC 0x891245AB
|
| +
|
| +/*
|
| +** An instance of this structure must be supplied as a blob argument to
|
| +** the right-hand-side of an SQL MATCH operator used to constrain an
|
| +** r-tree query.
|
| +*/
|
| +struct RtreeMatchArg {
|
| + u32 magic; /* Always RTREE_GEOMETRY_MAGIC */
|
| + int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
|
| + void *pContext;
|
| + int nParam;
|
| + double aParam[1];
|
| +};
|
| +
|
| +/*
|
| +** When a geometry callback is created (see sqlite3_rtree_geometry_callback),
|
| +** a single instance of the following structure is allocated. It is used
|
| +** as the context for the user-function created by by s_r_g_c(). The object
|
| +** is eventually deleted by the destructor mechanism provided by
|
| +** sqlite3_create_function_v2() (which is called by s_r_g_c() to create
|
| +** the geometry callback function).
|
| +*/
|
| +struct RtreeGeomCallback {
|
| + int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *);
|
| + void *pContext;
|
| +};
|
| +
|
| +#ifndef MAX
|
| +# define MAX(x,y) ((x) < (y) ? (y) : (x))
|
| +#endif
|
| +#ifndef MIN
|
| +# define MIN(x,y) ((x) > (y) ? (y) : (x))
|
| +#endif
|
| +
|
| +/*
|
| +** Functions to deserialize a 16 bit integer, 32 bit real number and
|
| +** 64 bit integer. The deserialized value is returned.
|
| +*/
|
| +static int readInt16(u8 *p){
|
| + return (p[0]<<8) + p[1];
|
| +}
|
| +static void readCoord(u8 *p, RtreeCoord *pCoord){
|
| + u32 i = (
|
| + (((u32)p[0]) << 24) +
|
| + (((u32)p[1]) << 16) +
|
| + (((u32)p[2]) << 8) +
|
| + (((u32)p[3]) << 0)
|
| + );
|
| + *(u32 *)pCoord = i;
|
| +}
|
| +static i64 readInt64(u8 *p){
|
| + return (
|
| + (((i64)p[0]) << 56) +
|
| + (((i64)p[1]) << 48) +
|
| + (((i64)p[2]) << 40) +
|
| + (((i64)p[3]) << 32) +
|
| + (((i64)p[4]) << 24) +
|
| + (((i64)p[5]) << 16) +
|
| + (((i64)p[6]) << 8) +
|
| + (((i64)p[7]) << 0)
|
| + );
|
| +}
|
| +
|
| +/*
|
| +** Functions to serialize a 16 bit integer, 32 bit real number and
|
| +** 64 bit integer. The value returned is the number of bytes written
|
| +** to the argument buffer (always 2, 4 and 8 respectively).
|
| +*/
|
| +static int writeInt16(u8 *p, int i){
|
| + p[0] = (i>> 8)&0xFF;
|
| + p[1] = (i>> 0)&0xFF;
|
| + return 2;
|
| +}
|
| +static int writeCoord(u8 *p, RtreeCoord *pCoord){
|
| + u32 i;
|
| + assert( sizeof(RtreeCoord)==4 );
|
| + assert( sizeof(u32)==4 );
|
| + i = *(u32 *)pCoord;
|
| + p[0] = (i>>24)&0xFF;
|
| + p[1] = (i>>16)&0xFF;
|
| + p[2] = (i>> 8)&0xFF;
|
| + p[3] = (i>> 0)&0xFF;
|
| + return 4;
|
| +}
|
| +static int writeInt64(u8 *p, i64 i){
|
| + p[0] = (i>>56)&0xFF;
|
| + p[1] = (i>>48)&0xFF;
|
| + p[2] = (i>>40)&0xFF;
|
| + p[3] = (i>>32)&0xFF;
|
| + p[4] = (i>>24)&0xFF;
|
| + p[5] = (i>>16)&0xFF;
|
| + p[6] = (i>> 8)&0xFF;
|
| + p[7] = (i>> 0)&0xFF;
|
| + return 8;
|
| +}
|
| +
|
| +/*
|
| +** Increment the reference count of node p.
|
| +*/
|
| +static void nodeReference(RtreeNode *p){
|
| + if( p ){
|
| + p->nRef++;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Clear the content of node p (set all bytes to 0x00).
|
| +*/
|
| +static void nodeZero(Rtree *pRtree, RtreeNode *p){
|
| + memset(&p->zData[2], 0, pRtree->iNodeSize-2);
|
| + p->isDirty = 1;
|
| +}
|
| +
|
| +/*
|
| +** Given a node number iNode, return the corresponding key to use
|
| +** in the Rtree.aHash table.
|
| +*/
|
| +static int nodeHash(i64 iNode){
|
| + return (
|
| + (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^
|
| + (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0)
|
| + ) % HASHSIZE;
|
| +}
|
| +
|
| +/*
|
| +** Search the node hash table for node iNode. If found, return a pointer
|
| +** to it. Otherwise, return 0.
|
| +*/
|
| +static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){
|
| + RtreeNode *p;
|
| + for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext);
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Add node pNode to the node hash table.
|
| +*/
|
| +static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){
|
| + int iHash;
|
| + assert( pNode->pNext==0 );
|
| + iHash = nodeHash(pNode->iNode);
|
| + pNode->pNext = pRtree->aHash[iHash];
|
| + pRtree->aHash[iHash] = pNode;
|
| +}
|
| +
|
| +/*
|
| +** Remove node pNode from the node hash table.
|
| +*/
|
| +static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){
|
| + RtreeNode **pp;
|
| + if( pNode->iNode!=0 ){
|
| + pp = &pRtree->aHash[nodeHash(pNode->iNode)];
|
| + for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); }
|
| + *pp = pNode->pNext;
|
| + pNode->pNext = 0;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0),
|
| +** indicating that node has not yet been assigned a node number. It is
|
| +** assigned a node number when nodeWrite() is called to write the
|
| +** node contents out to the database.
|
| +*/
|
| +static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){
|
| + RtreeNode *pNode;
|
| + pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize);
|
| + if( pNode ){
|
| + memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize);
|
| + pNode->zData = (u8 *)&pNode[1];
|
| + pNode->nRef = 1;
|
| + pNode->pParent = pParent;
|
| + pNode->isDirty = 1;
|
| + nodeReference(pParent);
|
| + }
|
| + return pNode;
|
| +}
|
| +
|
| +/*
|
| +** Obtain a reference to an r-tree node.
|
| +*/
|
| +static int
|
| +nodeAcquire(
|
| + Rtree *pRtree, /* R-tree structure */
|
| + i64 iNode, /* Node number to load */
|
| + RtreeNode *pParent, /* Either the parent node or NULL */
|
| + RtreeNode **ppNode /* OUT: Acquired node */
|
| +){
|
| + int rc;
|
| + int rc2 = SQLITE_OK;
|
| + RtreeNode *pNode;
|
| +
|
| + /* Check if the requested node is already in the hash table. If so,
|
| + ** increase its reference count and return it.
|
| + */
|
| + if( (pNode = nodeHashLookup(pRtree, iNode)) ){
|
| + assert( !pParent || !pNode->pParent || pNode->pParent==pParent );
|
| + if( pParent && !pNode->pParent ){
|
| + nodeReference(pParent);
|
| + pNode->pParent = pParent;
|
| + }
|
| + pNode->nRef++;
|
| + *ppNode = pNode;
|
| + return SQLITE_OK;
|
| + }
|
| +
|
| + sqlite3_bind_int64(pRtree->pReadNode, 1, iNode);
|
| + rc = sqlite3_step(pRtree->pReadNode);
|
| + if( rc==SQLITE_ROW ){
|
| + const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0);
|
| + if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){
|
| + pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize);
|
| + if( !pNode ){
|
| + rc2 = SQLITE_NOMEM;
|
| + }else{
|
| + pNode->pParent = pParent;
|
| + pNode->zData = (u8 *)&pNode[1];
|
| + pNode->nRef = 1;
|
| + pNode->iNode = iNode;
|
| + pNode->isDirty = 0;
|
| + pNode->pNext = 0;
|
| + memcpy(pNode->zData, zBlob, pRtree->iNodeSize);
|
| + nodeReference(pParent);
|
| + }
|
| + }
|
| + }
|
| + rc = sqlite3_reset(pRtree->pReadNode);
|
| + if( rc==SQLITE_OK ) rc = rc2;
|
| +
|
| + /* If the root node was just loaded, set pRtree->iDepth to the height
|
| + ** of the r-tree structure. A height of zero means all data is stored on
|
| + ** the root node. A height of one means the children of the root node
|
| + ** are the leaves, and so on. If the depth as specified on the root node
|
| + ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt.
|
| + */
|
| + if( pNode && iNode==1 ){
|
| + pRtree->iDepth = readInt16(pNode->zData);
|
| + if( pRtree->iDepth>RTREE_MAX_DEPTH ){
|
| + rc = SQLITE_CORRUPT;
|
| + }
|
| + }
|
| +
|
| + /* If no error has occurred so far, check if the "number of entries"
|
| + ** field on the node is too large. If so, set the return code to
|
| + ** SQLITE_CORRUPT.
|
| + */
|
| + if( pNode && rc==SQLITE_OK ){
|
| + if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){
|
| + rc = SQLITE_CORRUPT;
|
| + }
|
| + }
|
| +
|
| + if( rc==SQLITE_OK ){
|
| + if( pNode!=0 ){
|
| + nodeHashInsert(pRtree, pNode);
|
| + }else{
|
| + rc = SQLITE_CORRUPT;
|
| + }
|
| + *ppNode = pNode;
|
| + }else{
|
| + sqlite3_free(pNode);
|
| + *ppNode = 0;
|
| + }
|
| +
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Overwrite cell iCell of node pNode with the contents of pCell.
|
| +*/
|
| +static void nodeOverwriteCell(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + RtreeCell *pCell,
|
| + int iCell
|
| +){
|
| + int ii;
|
| + u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
|
| + p += writeInt64(p, pCell->iRowid);
|
| + for(ii=0; ii<(pRtree->nDim*2); ii++){
|
| + p += writeCoord(p, &pCell->aCoord[ii]);
|
| + }
|
| + pNode->isDirty = 1;
|
| +}
|
| +
|
| +/*
|
| +** Remove cell the cell with index iCell from node pNode.
|
| +*/
|
| +static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){
|
| + u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell];
|
| + u8 *pSrc = &pDst[pRtree->nBytesPerCell];
|
| + int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell;
|
| + memmove(pDst, pSrc, nByte);
|
| + writeInt16(&pNode->zData[2], NCELL(pNode)-1);
|
| + pNode->isDirty = 1;
|
| +}
|
| +
|
| +/*
|
| +** Insert the contents of cell pCell into node pNode. If the insert
|
| +** is successful, return SQLITE_OK.
|
| +**
|
| +** If there is not enough free space in pNode, return SQLITE_FULL.
|
| +*/
|
| +static int
|
| +nodeInsertCell(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + RtreeCell *pCell
|
| +){
|
| + int nCell; /* Current number of cells in pNode */
|
| + int nMaxCell; /* Maximum number of cells for pNode */
|
| +
|
| + nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell;
|
| + nCell = NCELL(pNode);
|
| +
|
| + assert( nCell<=nMaxCell );
|
| + if( nCell<nMaxCell ){
|
| + nodeOverwriteCell(pRtree, pNode, pCell, nCell);
|
| + writeInt16(&pNode->zData[2], nCell+1);
|
| + pNode->isDirty = 1;
|
| + }
|
| +
|
| + return (nCell==nMaxCell);
|
| +}
|
| +
|
| +/*
|
| +** If the node is dirty, write it out to the database.
|
| +*/
|
| +static int
|
| +nodeWrite(Rtree *pRtree, RtreeNode *pNode){
|
| + int rc = SQLITE_OK;
|
| + if( pNode->isDirty ){
|
| + sqlite3_stmt *p = pRtree->pWriteNode;
|
| + if( pNode->iNode ){
|
| + sqlite3_bind_int64(p, 1, pNode->iNode);
|
| + }else{
|
| + sqlite3_bind_null(p, 1);
|
| + }
|
| + sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC);
|
| + sqlite3_step(p);
|
| + pNode->isDirty = 0;
|
| + rc = sqlite3_reset(p);
|
| + if( pNode->iNode==0 && rc==SQLITE_OK ){
|
| + pNode->iNode = sqlite3_last_insert_rowid(pRtree->db);
|
| + nodeHashInsert(pRtree, pNode);
|
| + }
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Release a reference to a node. If the node is dirty and the reference
|
| +** count drops to zero, the node data is written to the database.
|
| +*/
|
| +static int
|
| +nodeRelease(Rtree *pRtree, RtreeNode *pNode){
|
| + int rc = SQLITE_OK;
|
| + if( pNode ){
|
| + assert( pNode->nRef>0 );
|
| + pNode->nRef--;
|
| + if( pNode->nRef==0 ){
|
| + if( pNode->iNode==1 ){
|
| + pRtree->iDepth = -1;
|
| + }
|
| + if( pNode->pParent ){
|
| + rc = nodeRelease(pRtree, pNode->pParent);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + rc = nodeWrite(pRtree, pNode);
|
| + }
|
| + nodeHashDelete(pRtree, pNode);
|
| + sqlite3_free(pNode);
|
| + }
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Return the 64-bit integer value associated with cell iCell of
|
| +** node pNode. If pNode is a leaf node, this is a rowid. If it is
|
| +** an internal node, then the 64-bit integer is a child page number.
|
| +*/
|
| +static i64 nodeGetRowid(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + int iCell
|
| +){
|
| + assert( iCell<NCELL(pNode) );
|
| + return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]);
|
| +}
|
| +
|
| +/*
|
| +** Return coordinate iCoord from cell iCell in node pNode.
|
| +*/
|
| +static void nodeGetCoord(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + int iCell,
|
| + int iCoord,
|
| + RtreeCoord *pCoord /* Space to write result to */
|
| +){
|
| + readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord);
|
| +}
|
| +
|
| +/*
|
| +** Deserialize cell iCell of node pNode. Populate the structure pointed
|
| +** to by pCell with the results.
|
| +*/
|
| +static void nodeGetCell(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + int iCell,
|
| + RtreeCell *pCell
|
| +){
|
| + int ii;
|
| + pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell);
|
| + for(ii=0; ii<pRtree->nDim*2; ii++){
|
| + nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]);
|
| + }
|
| +}
|
| +
|
| +
|
| +/* Forward declaration for the function that does the work of
|
| +** the virtual table module xCreate() and xConnect() methods.
|
| +*/
|
| +static int rtreeInit(
|
| + sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int
|
| +);
|
| +
|
| +/*
|
| +** Rtree virtual table module xCreate method.
|
| +*/
|
| +static int rtreeCreate(
|
| + sqlite3 *db,
|
| + void *pAux,
|
| + int argc, const char *const*argv,
|
| + sqlite3_vtab **ppVtab,
|
| + char **pzErr
|
| +){
|
| + return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1);
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xConnect method.
|
| +*/
|
| +static int rtreeConnect(
|
| + sqlite3 *db,
|
| + void *pAux,
|
| + int argc, const char *const*argv,
|
| + sqlite3_vtab **ppVtab,
|
| + char **pzErr
|
| +){
|
| + return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0);
|
| +}
|
| +
|
| +/*
|
| +** Increment the r-tree reference count.
|
| +*/
|
| +static void rtreeReference(Rtree *pRtree){
|
| + pRtree->nBusy++;
|
| +}
|
| +
|
| +/*
|
| +** Decrement the r-tree reference count. When the reference count reaches
|
| +** zero the structure is deleted.
|
| +*/
|
| +static void rtreeRelease(Rtree *pRtree){
|
| + pRtree->nBusy--;
|
| + if( pRtree->nBusy==0 ){
|
| + sqlite3_finalize(pRtree->pReadNode);
|
| + sqlite3_finalize(pRtree->pWriteNode);
|
| + sqlite3_finalize(pRtree->pDeleteNode);
|
| + sqlite3_finalize(pRtree->pReadRowid);
|
| + sqlite3_finalize(pRtree->pWriteRowid);
|
| + sqlite3_finalize(pRtree->pDeleteRowid);
|
| + sqlite3_finalize(pRtree->pReadParent);
|
| + sqlite3_finalize(pRtree->pWriteParent);
|
| + sqlite3_finalize(pRtree->pDeleteParent);
|
| + sqlite3_free(pRtree);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xDisconnect method.
|
| +*/
|
| +static int rtreeDisconnect(sqlite3_vtab *pVtab){
|
| + rtreeRelease((Rtree *)pVtab);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xDestroy method.
|
| +*/
|
| +static int rtreeDestroy(sqlite3_vtab *pVtab){
|
| + Rtree *pRtree = (Rtree *)pVtab;
|
| + int rc;
|
| + char *zCreate = sqlite3_mprintf(
|
| + "DROP TABLE '%q'.'%q_node';"
|
| + "DROP TABLE '%q'.'%q_rowid';"
|
| + "DROP TABLE '%q'.'%q_parent';",
|
| + pRtree->zDb, pRtree->zName,
|
| + pRtree->zDb, pRtree->zName,
|
| + pRtree->zDb, pRtree->zName
|
| + );
|
| + if( !zCreate ){
|
| + rc = SQLITE_NOMEM;
|
| + }else{
|
| + rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0);
|
| + sqlite3_free(zCreate);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + rtreeRelease(pRtree);
|
| + }
|
| +
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xOpen method.
|
| +*/
|
| +static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){
|
| + int rc = SQLITE_NOMEM;
|
| + RtreeCursor *pCsr;
|
| +
|
| + pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor));
|
| + if( pCsr ){
|
| + memset(pCsr, 0, sizeof(RtreeCursor));
|
| + pCsr->base.pVtab = pVTab;
|
| + rc = SQLITE_OK;
|
| + }
|
| + *ppCursor = (sqlite3_vtab_cursor *)pCsr;
|
| +
|
| + return rc;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Free the RtreeCursor.aConstraint[] array and its contents.
|
| +*/
|
| +static void freeCursorConstraints(RtreeCursor *pCsr){
|
| + if( pCsr->aConstraint ){
|
| + int i; /* Used to iterate through constraint array */
|
| + for(i=0; i<pCsr->nConstraint; i++){
|
| + sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom;
|
| + if( pGeom ){
|
| + if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser);
|
| + sqlite3_free(pGeom);
|
| + }
|
| + }
|
| + sqlite3_free(pCsr->aConstraint);
|
| + pCsr->aConstraint = 0;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xClose method.
|
| +*/
|
| +static int rtreeClose(sqlite3_vtab_cursor *cur){
|
| + Rtree *pRtree = (Rtree *)(cur->pVtab);
|
| + int rc;
|
| + RtreeCursor *pCsr = (RtreeCursor *)cur;
|
| + freeCursorConstraints(pCsr);
|
| + rc = nodeRelease(pRtree, pCsr->pNode);
|
| + sqlite3_free(pCsr);
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xEof method.
|
| +**
|
| +** Return non-zero if the cursor does not currently point to a valid
|
| +** record (i.e if the scan has finished), or zero otherwise.
|
| +*/
|
| +static int rtreeEof(sqlite3_vtab_cursor *cur){
|
| + RtreeCursor *pCsr = (RtreeCursor *)cur;
|
| + return (pCsr->pNode==0);
|
| +}
|
| +
|
| +/*
|
| +** The r-tree constraint passed as the second argument to this function is
|
| +** guaranteed to be a MATCH constraint.
|
| +*/
|
| +static int testRtreeGeom(
|
| + Rtree *pRtree, /* R-Tree object */
|
| + RtreeConstraint *pConstraint, /* MATCH constraint to test */
|
| + RtreeCell *pCell, /* Cell to test */
|
| + int *pbRes /* OUT: Test result */
|
| +){
|
| + int i;
|
| + double aCoord[RTREE_MAX_DIMENSIONS*2];
|
| + int nCoord = pRtree->nDim*2;
|
| +
|
| + assert( pConstraint->op==RTREE_MATCH );
|
| + assert( pConstraint->pGeom );
|
| +
|
| + for(i=0; i<nCoord; i++){
|
| + aCoord[i] = DCOORD(pCell->aCoord[i]);
|
| + }
|
| + return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes);
|
| +}
|
| +
|
| +/*
|
| +** Cursor pCursor currently points to a cell in a non-leaf page.
|
| +** Set *pbEof to true if the sub-tree headed by the cell is filtered
|
| +** (excluded) by the constraints in the pCursor->aConstraint[]
|
| +** array, or false otherwise.
|
| +**
|
| +** Return SQLITE_OK if successful or an SQLite error code if an error
|
| +** occurs within a geometry callback.
|
| +*/
|
| +static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
|
| + RtreeCell cell;
|
| + int ii;
|
| + int bRes = 0;
|
| + int rc = SQLITE_OK;
|
| +
|
| + nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
|
| + for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){
|
| + RtreeConstraint *p = &pCursor->aConstraint[ii];
|
| + double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]);
|
| + double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]);
|
| +
|
| + assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|
| + || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
|
| + );
|
| +
|
| + switch( p->op ){
|
| + case RTREE_LE: case RTREE_LT:
|
| + bRes = p->rValue<cell_min;
|
| + break;
|
| +
|
| + case RTREE_GE: case RTREE_GT:
|
| + bRes = p->rValue>cell_max;
|
| + break;
|
| +
|
| + case RTREE_EQ:
|
| + bRes = (p->rValue>cell_max || p->rValue<cell_min);
|
| + break;
|
| +
|
| + default: {
|
| + assert( p->op==RTREE_MATCH );
|
| + rc = testRtreeGeom(pRtree, p, &cell, &bRes);
|
| + bRes = !bRes;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + *pbEof = bRes;
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Test if the cell that cursor pCursor currently points to
|
| +** would be filtered (excluded) by the constraints in the
|
| +** pCursor->aConstraint[] array. If so, set *pbEof to true before
|
| +** returning. If the cell is not filtered (excluded) by the constraints,
|
| +** set pbEof to zero.
|
| +**
|
| +** Return SQLITE_OK if successful or an SQLite error code if an error
|
| +** occurs within a geometry callback.
|
| +**
|
| +** This function assumes that the cell is part of a leaf node.
|
| +*/
|
| +static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){
|
| + RtreeCell cell;
|
| + int ii;
|
| + *pbEof = 0;
|
| +
|
| + nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell);
|
| + for(ii=0; ii<pCursor->nConstraint; ii++){
|
| + RtreeConstraint *p = &pCursor->aConstraint[ii];
|
| + double coord = DCOORD(cell.aCoord[p->iCoord]);
|
| + int res;
|
| + assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE
|
| + || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH
|
| + );
|
| + switch( p->op ){
|
| + case RTREE_LE: res = (coord<=p->rValue); break;
|
| + case RTREE_LT: res = (coord<p->rValue); break;
|
| + case RTREE_GE: res = (coord>=p->rValue); break;
|
| + case RTREE_GT: res = (coord>p->rValue); break;
|
| + case RTREE_EQ: res = (coord==p->rValue); break;
|
| + default: {
|
| + int rc;
|
| + assert( p->op==RTREE_MATCH );
|
| + rc = testRtreeGeom(pRtree, p, &cell, &res);
|
| + if( rc!=SQLITE_OK ){
|
| + return rc;
|
| + }
|
| + break;
|
| + }
|
| + }
|
| +
|
| + if( !res ){
|
| + *pbEof = 1;
|
| + return SQLITE_OK;
|
| + }
|
| + }
|
| +
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Cursor pCursor currently points at a node that heads a sub-tree of
|
| +** height iHeight (if iHeight==0, then the node is a leaf). Descend
|
| +** to point to the left-most cell of the sub-tree that matches the
|
| +** configured constraints.
|
| +*/
|
| +static int descendToCell(
|
| + Rtree *pRtree,
|
| + RtreeCursor *pCursor,
|
| + int iHeight,
|
| + int *pEof /* OUT: Set to true if cannot descend */
|
| +){
|
| + int isEof;
|
| + int rc;
|
| + int ii;
|
| + RtreeNode *pChild;
|
| + sqlite3_int64 iRowid;
|
| +
|
| + RtreeNode *pSavedNode = pCursor->pNode;
|
| + int iSavedCell = pCursor->iCell;
|
| +
|
| + assert( iHeight>=0 );
|
| +
|
| + if( iHeight==0 ){
|
| + rc = testRtreeEntry(pRtree, pCursor, &isEof);
|
| + }else{
|
| + rc = testRtreeCell(pRtree, pCursor, &isEof);
|
| + }
|
| + if( rc!=SQLITE_OK || isEof || iHeight==0 ){
|
| + goto descend_to_cell_out;
|
| + }
|
| +
|
| + iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell);
|
| + rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild);
|
| + if( rc!=SQLITE_OK ){
|
| + goto descend_to_cell_out;
|
| + }
|
| +
|
| + nodeRelease(pRtree, pCursor->pNode);
|
| + pCursor->pNode = pChild;
|
| + isEof = 1;
|
| + for(ii=0; isEof && ii<NCELL(pChild); ii++){
|
| + pCursor->iCell = ii;
|
| + rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof);
|
| + if( rc!=SQLITE_OK ){
|
| + goto descend_to_cell_out;
|
| + }
|
| + }
|
| +
|
| + if( isEof ){
|
| + assert( pCursor->pNode==pChild );
|
| + nodeReference(pSavedNode);
|
| + nodeRelease(pRtree, pChild);
|
| + pCursor->pNode = pSavedNode;
|
| + pCursor->iCell = iSavedCell;
|
| + }
|
| +
|
| +descend_to_cell_out:
|
| + *pEof = isEof;
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** One of the cells in node pNode is guaranteed to have a 64-bit
|
| +** integer value equal to iRowid. Return the index of this cell.
|
| +*/
|
| +static int nodeRowidIndex(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + i64 iRowid,
|
| + int *piIndex
|
| +){
|
| + int ii;
|
| + int nCell = NCELL(pNode);
|
| + for(ii=0; ii<nCell; ii++){
|
| + if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){
|
| + *piIndex = ii;
|
| + return SQLITE_OK;
|
| + }
|
| + }
|
| + return SQLITE_CORRUPT;
|
| +}
|
| +
|
| +/*
|
| +** Return the index of the cell containing a pointer to node pNode
|
| +** in its parent. If pNode is the root node, return -1.
|
| +*/
|
| +static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){
|
| + RtreeNode *pParent = pNode->pParent;
|
| + if( pParent ){
|
| + return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex);
|
| + }
|
| + *piIndex = -1;
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xNext method.
|
| +*/
|
| +static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){
|
| + Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab);
|
| + RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
| + int rc = SQLITE_OK;
|
| +
|
| + /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is
|
| + ** already at EOF. It is against the rules to call the xNext() method of
|
| + ** a cursor that has already reached EOF.
|
| + */
|
| + assert( pCsr->pNode );
|
| +
|
| + if( pCsr->iStrategy==1 ){
|
| + /* This "scan" is a direct lookup by rowid. There is no next entry. */
|
| + nodeRelease(pRtree, pCsr->pNode);
|
| + pCsr->pNode = 0;
|
| + }else{
|
| + /* Move to the next entry that matches the configured constraints. */
|
| + int iHeight = 0;
|
| + while( pCsr->pNode ){
|
| + RtreeNode *pNode = pCsr->pNode;
|
| + int nCell = NCELL(pNode);
|
| + for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){
|
| + int isEof;
|
| + rc = descendToCell(pRtree, pCsr, iHeight, &isEof);
|
| + if( rc!=SQLITE_OK || !isEof ){
|
| + return rc;
|
| + }
|
| + }
|
| + pCsr->pNode = pNode->pParent;
|
| + rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell);
|
| + if( rc!=SQLITE_OK ){
|
| + return rc;
|
| + }
|
| + nodeReference(pCsr->pNode);
|
| + nodeRelease(pRtree, pNode);
|
| + iHeight++;
|
| + }
|
| + }
|
| +
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xRowid method.
|
| +*/
|
| +static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){
|
| + Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
|
| + RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
| +
|
| + assert(pCsr->pNode);
|
| + *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
|
| +
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xColumn method.
|
| +*/
|
| +static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){
|
| + Rtree *pRtree = (Rtree *)cur->pVtab;
|
| + RtreeCursor *pCsr = (RtreeCursor *)cur;
|
| +
|
| + if( i==0 ){
|
| + i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell);
|
| + sqlite3_result_int64(ctx, iRowid);
|
| + }else{
|
| + RtreeCoord c;
|
| + nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c);
|
| + if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
| + sqlite3_result_double(ctx, c.f);
|
| + }else{
|
| + assert( pRtree->eCoordType==RTREE_COORD_INT32 );
|
| + sqlite3_result_int(ctx, c.i);
|
| + }
|
| + }
|
| +
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Use nodeAcquire() to obtain the leaf node containing the record with
|
| +** rowid iRowid. If successful, set *ppLeaf to point to the node and
|
| +** return SQLITE_OK. If there is no such record in the table, set
|
| +** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf
|
| +** to zero and return an SQLite error code.
|
| +*/
|
| +static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){
|
| + int rc;
|
| + *ppLeaf = 0;
|
| + sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid);
|
| + if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){
|
| + i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0);
|
| + rc = nodeAcquire(pRtree, iNode, 0, ppLeaf);
|
| + sqlite3_reset(pRtree->pReadRowid);
|
| + }else{
|
| + rc = sqlite3_reset(pRtree->pReadRowid);
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** This function is called to configure the RtreeConstraint object passed
|
| +** as the second argument for a MATCH constraint. The value passed as the
|
| +** first argument to this function is the right-hand operand to the MATCH
|
| +** operator.
|
| +*/
|
| +static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){
|
| + RtreeMatchArg *p;
|
| + sqlite3_rtree_geometry *pGeom;
|
| + int nBlob;
|
| +
|
| + /* Check that value is actually a blob. */
|
| + if( !sqlite3_value_type(pValue)==SQLITE_BLOB ) return SQLITE_ERROR;
|
| +
|
| + /* Check that the blob is roughly the right size. */
|
| + nBlob = sqlite3_value_bytes(pValue);
|
| + if( nBlob<(int)sizeof(RtreeMatchArg)
|
| + || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0
|
| + ){
|
| + return SQLITE_ERROR;
|
| + }
|
| +
|
| + pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc(
|
| + sizeof(sqlite3_rtree_geometry) + nBlob
|
| + );
|
| + if( !pGeom ) return SQLITE_NOMEM;
|
| + memset(pGeom, 0, sizeof(sqlite3_rtree_geometry));
|
| + p = (RtreeMatchArg *)&pGeom[1];
|
| +
|
| + memcpy(p, sqlite3_value_blob(pValue), nBlob);
|
| + if( p->magic!=RTREE_GEOMETRY_MAGIC
|
| + || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double))
|
| + ){
|
| + sqlite3_free(pGeom);
|
| + return SQLITE_ERROR;
|
| + }
|
| +
|
| + pGeom->pContext = p->pContext;
|
| + pGeom->nParam = p->nParam;
|
| + pGeom->aParam = p->aParam;
|
| +
|
| + pCons->xGeom = p->xGeom;
|
| + pCons->pGeom = pGeom;
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xFilter method.
|
| +*/
|
| +static int rtreeFilter(
|
| + sqlite3_vtab_cursor *pVtabCursor,
|
| + int idxNum, const char *idxStr,
|
| + int argc, sqlite3_value **argv
|
| +){
|
| + Rtree *pRtree = (Rtree *)pVtabCursor->pVtab;
|
| + RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor;
|
| +
|
| + RtreeNode *pRoot = 0;
|
| + int ii;
|
| + int rc = SQLITE_OK;
|
| +
|
| + rtreeReference(pRtree);
|
| +
|
| + freeCursorConstraints(pCsr);
|
| + pCsr->iStrategy = idxNum;
|
| +
|
| + if( idxNum==1 ){
|
| + /* Special case - lookup by rowid. */
|
| + RtreeNode *pLeaf; /* Leaf on which the required cell resides */
|
| + i64 iRowid = sqlite3_value_int64(argv[0]);
|
| + rc = findLeafNode(pRtree, iRowid, &pLeaf);
|
| + pCsr->pNode = pLeaf;
|
| + if( pLeaf ){
|
| + assert( rc==SQLITE_OK );
|
| + rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell);
|
| + }
|
| + }else{
|
| + /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array
|
| + ** with the configured constraints.
|
| + */
|
| + if( argc>0 ){
|
| + pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc);
|
| + pCsr->nConstraint = argc;
|
| + if( !pCsr->aConstraint ){
|
| + rc = SQLITE_NOMEM;
|
| + }else{
|
| + memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc);
|
| + assert( (idxStr==0 && argc==0) || (int)strlen(idxStr)==argc*2 );
|
| + for(ii=0; ii<argc; ii++){
|
| + RtreeConstraint *p = &pCsr->aConstraint[ii];
|
| + p->op = idxStr[ii*2];
|
| + p->iCoord = idxStr[ii*2+1]-'a';
|
| + if( p->op==RTREE_MATCH ){
|
| + /* A MATCH operator. The right-hand-side must be a blob that
|
| + ** can be cast into an RtreeMatchArg object. One created using
|
| + ** an sqlite3_rtree_geometry_callback() SQL user function.
|
| + */
|
| + rc = deserializeGeometry(argv[ii], p);
|
| + if( rc!=SQLITE_OK ){
|
| + break;
|
| + }
|
| + }else{
|
| + p->rValue = sqlite3_value_double(argv[ii]);
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + if( rc==SQLITE_OK ){
|
| + pCsr->pNode = 0;
|
| + rc = nodeAcquire(pRtree, 1, 0, &pRoot);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + int isEof = 1;
|
| + int nCell = NCELL(pRoot);
|
| + pCsr->pNode = pRoot;
|
| + for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){
|
| + assert( pCsr->pNode==pRoot );
|
| + rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof);
|
| + if( !isEof ){
|
| + break;
|
| + }
|
| + }
|
| + if( rc==SQLITE_OK && isEof ){
|
| + assert( pCsr->pNode==pRoot );
|
| + nodeRelease(pRtree, pRoot);
|
| + pCsr->pNode = 0;
|
| + }
|
| + assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) );
|
| + }
|
| + }
|
| +
|
| + rtreeRelease(pRtree);
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Rtree virtual table module xBestIndex method. There are three
|
| +** table scan strategies to choose from (in order from most to
|
| +** least desirable):
|
| +**
|
| +** idxNum idxStr Strategy
|
| +** ------------------------------------------------
|
| +** 1 Unused Direct lookup by rowid.
|
| +** 2 See below R-tree query or full-table scan.
|
| +** ------------------------------------------------
|
| +**
|
| +** If strategy 1 is used, then idxStr is not meaningful. If strategy
|
| +** 2 is used, idxStr is formatted to contain 2 bytes for each
|
| +** constraint used. The first two bytes of idxStr correspond to
|
| +** the constraint in sqlite3_index_info.aConstraintUsage[] with
|
| +** (argvIndex==1) etc.
|
| +**
|
| +** The first of each pair of bytes in idxStr identifies the constraint
|
| +** operator as follows:
|
| +**
|
| +** Operator Byte Value
|
| +** ----------------------
|
| +** = 0x41 ('A')
|
| +** <= 0x42 ('B')
|
| +** < 0x43 ('C')
|
| +** >= 0x44 ('D')
|
| +** > 0x45 ('E')
|
| +** MATCH 0x46 ('F')
|
| +** ----------------------
|
| +**
|
| +** The second of each pair of bytes identifies the coordinate column
|
| +** to which the constraint applies. The leftmost coordinate column
|
| +** is 'a', the second from the left 'b' etc.
|
| +*/
|
| +static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){
|
| + int rc = SQLITE_OK;
|
| + int ii;
|
| +
|
| + int iIdx = 0;
|
| + char zIdxStr[RTREE_MAX_DIMENSIONS*8+1];
|
| + memset(zIdxStr, 0, sizeof(zIdxStr));
|
| + UNUSED_PARAMETER(tab);
|
| +
|
| + assert( pIdxInfo->idxStr==0 );
|
| + for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){
|
| + struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii];
|
| +
|
| + if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){
|
| + /* We have an equality constraint on the rowid. Use strategy 1. */
|
| + int jj;
|
| + for(jj=0; jj<ii; jj++){
|
| + pIdxInfo->aConstraintUsage[jj].argvIndex = 0;
|
| + pIdxInfo->aConstraintUsage[jj].omit = 0;
|
| + }
|
| + pIdxInfo->idxNum = 1;
|
| + pIdxInfo->aConstraintUsage[ii].argvIndex = 1;
|
| + pIdxInfo->aConstraintUsage[jj].omit = 1;
|
| +
|
| + /* This strategy involves a two rowid lookups on an B-Tree structures
|
| + ** and then a linear search of an R-Tree node. This should be
|
| + ** considered almost as quick as a direct rowid lookup (for which
|
| + ** sqlite uses an internal cost of 0.0).
|
| + */
|
| + pIdxInfo->estimatedCost = 10.0;
|
| + return SQLITE_OK;
|
| + }
|
| +
|
| + if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){
|
| + u8 op;
|
| + switch( p->op ){
|
| + case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break;
|
| + case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break;
|
| + case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break;
|
| + case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break;
|
| + case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break;
|
| + default:
|
| + assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH );
|
| + op = RTREE_MATCH;
|
| + break;
|
| + }
|
| + zIdxStr[iIdx++] = op;
|
| + zIdxStr[iIdx++] = p->iColumn - 1 + 'a';
|
| + pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2);
|
| + pIdxInfo->aConstraintUsage[ii].omit = 1;
|
| + }
|
| + }
|
| +
|
| + pIdxInfo->idxNum = 2;
|
| + pIdxInfo->needToFreeIdxStr = 1;
|
| + if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + assert( iIdx>=0 );
|
| + pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1));
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Return the N-dimensional volumn of the cell stored in *p.
|
| +*/
|
| +static float cellArea(Rtree *pRtree, RtreeCell *p){
|
| + float area = 1.0;
|
| + int ii;
|
| + for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
| + area = area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
|
| + }
|
| + return area;
|
| +}
|
| +
|
| +/*
|
| +** Return the margin length of cell p. The margin length is the sum
|
| +** of the objects size in each dimension.
|
| +*/
|
| +static float cellMargin(Rtree *pRtree, RtreeCell *p){
|
| + float margin = 0.0;
|
| + int ii;
|
| + for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
| + margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii]));
|
| + }
|
| + return margin;
|
| +}
|
| +
|
| +/*
|
| +** Store the union of cells p1 and p2 in p1.
|
| +*/
|
| +static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
|
| + int ii;
|
| + if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
| + for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
| + p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f);
|
| + p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f);
|
| + }
|
| + }else{
|
| + for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
| + p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i);
|
| + p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return true if the area covered by p2 is a subset of the area covered
|
| +** by p1. False otherwise.
|
| +*/
|
| +static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){
|
| + int ii;
|
| + int isInt = (pRtree->eCoordType==RTREE_COORD_INT32);
|
| + for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
| + RtreeCoord *a1 = &p1->aCoord[ii];
|
| + RtreeCoord *a2 = &p2->aCoord[ii];
|
| + if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f))
|
| + || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i))
|
| + ){
|
| + return 0;
|
| + }
|
| + }
|
| + return 1;
|
| +}
|
| +
|
| +/*
|
| +** Return the amount cell p would grow by if it were unioned with pCell.
|
| +*/
|
| +static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){
|
| + float area;
|
| + RtreeCell cell;
|
| + memcpy(&cell, p, sizeof(RtreeCell));
|
| + area = cellArea(pRtree, &cell);
|
| + cellUnion(pRtree, &cell, pCell);
|
| + return (cellArea(pRtree, &cell)-area);
|
| +}
|
| +
|
| +#if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT
|
| +static float cellOverlap(
|
| + Rtree *pRtree,
|
| + RtreeCell *p,
|
| + RtreeCell *aCell,
|
| + int nCell,
|
| + int iExclude
|
| +){
|
| + int ii;
|
| + float overlap = 0.0;
|
| + for(ii=0; ii<nCell; ii++){
|
| +#if VARIANT_RSTARTREE_CHOOSESUBTREE
|
| + if( ii!=iExclude )
|
| +#else
|
| + assert( iExclude==-1 );
|
| + UNUSED_PARAMETER(iExclude);
|
| +#endif
|
| + {
|
| + int jj;
|
| + float o = 1.0;
|
| + for(jj=0; jj<(pRtree->nDim*2); jj+=2){
|
| + double x1;
|
| + double x2;
|
| +
|
| + x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj]));
|
| + x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1]));
|
| +
|
| + if( x2<x1 ){
|
| + o = 0.0;
|
| + break;
|
| + }else{
|
| + o = o * (x2-x1);
|
| + }
|
| + }
|
| + overlap += o;
|
| + }
|
| + }
|
| + return overlap;
|
| +}
|
| +#endif
|
| +
|
| +#if VARIANT_RSTARTREE_CHOOSESUBTREE
|
| +static float cellOverlapEnlargement(
|
| + Rtree *pRtree,
|
| + RtreeCell *p,
|
| + RtreeCell *pInsert,
|
| + RtreeCell *aCell,
|
| + int nCell,
|
| + int iExclude
|
| +){
|
| + float before;
|
| + float after;
|
| + before = cellOverlap(pRtree, p, aCell, nCell, iExclude);
|
| + cellUnion(pRtree, p, pInsert);
|
| + after = cellOverlap(pRtree, p, aCell, nCell, iExclude);
|
| + return after-before;
|
| +}
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** This function implements the ChooseLeaf algorithm from Gutman[84].
|
| +** ChooseSubTree in r*tree terminology.
|
| +*/
|
| +static int ChooseLeaf(
|
| + Rtree *pRtree, /* Rtree table */
|
| + RtreeCell *pCell, /* Cell to insert into rtree */
|
| + int iHeight, /* Height of sub-tree rooted at pCell */
|
| + RtreeNode **ppLeaf /* OUT: Selected leaf page */
|
| +){
|
| + int rc;
|
| + int ii;
|
| + RtreeNode *pNode;
|
| + rc = nodeAcquire(pRtree, 1, 0, &pNode);
|
| +
|
| + for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){
|
| + int iCell;
|
| + sqlite3_int64 iBest;
|
| +
|
| + float fMinGrowth;
|
| + float fMinArea;
|
| + float fMinOverlap;
|
| +
|
| + int nCell = NCELL(pNode);
|
| + RtreeCell cell;
|
| + RtreeNode *pChild;
|
| +
|
| + RtreeCell *aCell = 0;
|
| +
|
| +#if VARIANT_RSTARTREE_CHOOSESUBTREE
|
| + if( ii==(pRtree->iDepth-1) ){
|
| + int jj;
|
| + aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell);
|
| + if( !aCell ){
|
| + rc = SQLITE_NOMEM;
|
| + nodeRelease(pRtree, pNode);
|
| + pNode = 0;
|
| + continue;
|
| + }
|
| + for(jj=0; jj<nCell; jj++){
|
| + nodeGetCell(pRtree, pNode, jj, &aCell[jj]);
|
| + }
|
| + }
|
| +#endif
|
| +
|
| + /* Select the child node which will be enlarged the least if pCell
|
| + ** is inserted into it. Resolve ties by choosing the entry with
|
| + ** the smallest area.
|
| + */
|
| + for(iCell=0; iCell<nCell; iCell++){
|
| + int bBest = 0;
|
| + float growth;
|
| + float area;
|
| + float overlap = 0.0;
|
| + nodeGetCell(pRtree, pNode, iCell, &cell);
|
| + growth = cellGrowth(pRtree, &cell, pCell);
|
| + area = cellArea(pRtree, &cell);
|
| +
|
| +#if VARIANT_RSTARTREE_CHOOSESUBTREE
|
| + if( ii==(pRtree->iDepth-1) ){
|
| + overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell);
|
| + }
|
| + if( (iCell==0)
|
| + || (overlap<fMinOverlap)
|
| + || (overlap==fMinOverlap && growth<fMinGrowth)
|
| + || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea)
|
| + ){
|
| + bBest = 1;
|
| + }
|
| +#else
|
| + if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){
|
| + bBest = 1;
|
| + }
|
| +#endif
|
| + if( bBest ){
|
| + fMinOverlap = overlap;
|
| + fMinGrowth = growth;
|
| + fMinArea = area;
|
| + iBest = cell.iRowid;
|
| + }
|
| + }
|
| +
|
| + sqlite3_free(aCell);
|
| + rc = nodeAcquire(pRtree, iBest, pNode, &pChild);
|
| + nodeRelease(pRtree, pNode);
|
| + pNode = pChild;
|
| + }
|
| +
|
| + *ppLeaf = pNode;
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** A cell with the same content as pCell has just been inserted into
|
| +** the node pNode. This function updates the bounding box cells in
|
| +** all ancestor elements.
|
| +*/
|
| +static int AdjustTree(
|
| + Rtree *pRtree, /* Rtree table */
|
| + RtreeNode *pNode, /* Adjust ancestry of this node. */
|
| + RtreeCell *pCell /* This cell was just inserted */
|
| +){
|
| + RtreeNode *p = pNode;
|
| + while( p->pParent ){
|
| + RtreeNode *pParent = p->pParent;
|
| + RtreeCell cell;
|
| + int iCell;
|
| +
|
| + if( nodeParentIndex(pRtree, p, &iCell) ){
|
| + return SQLITE_CORRUPT;
|
| + }
|
| +
|
| + nodeGetCell(pRtree, pParent, iCell, &cell);
|
| + if( !cellContains(pRtree, &cell, pCell) ){
|
| + cellUnion(pRtree, &cell, pCell);
|
| + nodeOverwriteCell(pRtree, pParent, &cell, iCell);
|
| + }
|
| +
|
| + p = pParent;
|
| + }
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +/*
|
| +** Write mapping (iRowid->iNode) to the <rtree>_rowid table.
|
| +*/
|
| +static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){
|
| + sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid);
|
| + sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode);
|
| + sqlite3_step(pRtree->pWriteRowid);
|
| + return sqlite3_reset(pRtree->pWriteRowid);
|
| +}
|
| +
|
| +/*
|
| +** Write mapping (iNode->iPar) to the <rtree>_parent table.
|
| +*/
|
| +static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){
|
| + sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode);
|
| + sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar);
|
| + sqlite3_step(pRtree->pWriteParent);
|
| + return sqlite3_reset(pRtree->pWriteParent);
|
| +}
|
| +
|
| +static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int);
|
| +
|
| +#if VARIANT_GUTTMAN_LINEAR_SPLIT
|
| +/*
|
| +** Implementation of the linear variant of the PickNext() function from
|
| +** Guttman[84].
|
| +*/
|
| +static RtreeCell *LinearPickNext(
|
| + Rtree *pRtree,
|
| + RtreeCell *aCell,
|
| + int nCell,
|
| + RtreeCell *pLeftBox,
|
| + RtreeCell *pRightBox,
|
| + int *aiUsed
|
| +){
|
| + int ii;
|
| + for(ii=0; aiUsed[ii]; ii++);
|
| + aiUsed[ii] = 1;
|
| + return &aCell[ii];
|
| +}
|
| +
|
| +/*
|
| +** Implementation of the linear variant of the PickSeeds() function from
|
| +** Guttman[84].
|
| +*/
|
| +static void LinearPickSeeds(
|
| + Rtree *pRtree,
|
| + RtreeCell *aCell,
|
| + int nCell,
|
| + int *piLeftSeed,
|
| + int *piRightSeed
|
| +){
|
| + int i;
|
| + int iLeftSeed = 0;
|
| + int iRightSeed = 1;
|
| + float maxNormalInnerWidth = 0.0;
|
| +
|
| + /* Pick two "seed" cells from the array of cells. The algorithm used
|
| + ** here is the LinearPickSeeds algorithm from Gutman[1984]. The
|
| + ** indices of the two seed cells in the array are stored in local
|
| + ** variables iLeftSeek and iRightSeed.
|
| + */
|
| + for(i=0; i<pRtree->nDim; i++){
|
| + float x1 = DCOORD(aCell[0].aCoord[i*2]);
|
| + float x2 = DCOORD(aCell[0].aCoord[i*2+1]);
|
| + float x3 = x1;
|
| + float x4 = x2;
|
| + int jj;
|
| +
|
| + int iCellLeft = 0;
|
| + int iCellRight = 0;
|
| +
|
| + for(jj=1; jj<nCell; jj++){
|
| + float left = DCOORD(aCell[jj].aCoord[i*2]);
|
| + float right = DCOORD(aCell[jj].aCoord[i*2+1]);
|
| +
|
| + if( left<x1 ) x1 = left;
|
| + if( right>x4 ) x4 = right;
|
| + if( left>x3 ){
|
| + x3 = left;
|
| + iCellRight = jj;
|
| + }
|
| + if( right<x2 ){
|
| + x2 = right;
|
| + iCellLeft = jj;
|
| + }
|
| + }
|
| +
|
| + if( x4!=x1 ){
|
| + float normalwidth = (x3 - x2) / (x4 - x1);
|
| + if( normalwidth>maxNormalInnerWidth ){
|
| + iLeftSeed = iCellLeft;
|
| + iRightSeed = iCellRight;
|
| + }
|
| + }
|
| + }
|
| +
|
| + *piLeftSeed = iLeftSeed;
|
| + *piRightSeed = iRightSeed;
|
| +}
|
| +#endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */
|
| +
|
| +#if VARIANT_GUTTMAN_QUADRATIC_SPLIT
|
| +/*
|
| +** Implementation of the quadratic variant of the PickNext() function from
|
| +** Guttman[84].
|
| +*/
|
| +static RtreeCell *QuadraticPickNext(
|
| + Rtree *pRtree,
|
| + RtreeCell *aCell,
|
| + int nCell,
|
| + RtreeCell *pLeftBox,
|
| + RtreeCell *pRightBox,
|
| + int *aiUsed
|
| +){
|
| + #define FABS(a) ((a)<0.0?-1.0*(a):(a))
|
| +
|
| + int iSelect = -1;
|
| + float fDiff;
|
| + int ii;
|
| + for(ii=0; ii<nCell; ii++){
|
| + if( aiUsed[ii]==0 ){
|
| + float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
|
| + float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]);
|
| + float diff = FABS(right-left);
|
| + if( iSelect<0 || diff>fDiff ){
|
| + fDiff = diff;
|
| + iSelect = ii;
|
| + }
|
| + }
|
| + }
|
| + aiUsed[iSelect] = 1;
|
| + return &aCell[iSelect];
|
| +}
|
| +
|
| +/*
|
| +** Implementation of the quadratic variant of the PickSeeds() function from
|
| +** Guttman[84].
|
| +*/
|
| +static void QuadraticPickSeeds(
|
| + Rtree *pRtree,
|
| + RtreeCell *aCell,
|
| + int nCell,
|
| + int *piLeftSeed,
|
| + int *piRightSeed
|
| +){
|
| + int ii;
|
| + int jj;
|
| +
|
| + int iLeftSeed = 0;
|
| + int iRightSeed = 1;
|
| + float fWaste = 0.0;
|
| +
|
| + for(ii=0; ii<nCell; ii++){
|
| + for(jj=ii+1; jj<nCell; jj++){
|
| + float right = cellArea(pRtree, &aCell[jj]);
|
| + float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]);
|
| + float waste = growth - right;
|
| +
|
| + if( waste>fWaste ){
|
| + iLeftSeed = ii;
|
| + iRightSeed = jj;
|
| + fWaste = waste;
|
| + }
|
| + }
|
| + }
|
| +
|
| + *piLeftSeed = iLeftSeed;
|
| + *piRightSeed = iRightSeed;
|
| +}
|
| +#endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */
|
| +
|
| +/*
|
| +** Arguments aIdx, aDistance and aSpare all point to arrays of size
|
| +** nIdx. The aIdx array contains the set of integers from 0 to
|
| +** (nIdx-1) in no particular order. This function sorts the values
|
| +** in aIdx according to the indexed values in aDistance. For
|
| +** example, assuming the inputs:
|
| +**
|
| +** aIdx = { 0, 1, 2, 3 }
|
| +** aDistance = { 5.0, 2.0, 7.0, 6.0 }
|
| +**
|
| +** this function sets the aIdx array to contain:
|
| +**
|
| +** aIdx = { 0, 1, 2, 3 }
|
| +**
|
| +** The aSpare array is used as temporary working space by the
|
| +** sorting algorithm.
|
| +*/
|
| +static void SortByDistance(
|
| + int *aIdx,
|
| + int nIdx,
|
| + float *aDistance,
|
| + int *aSpare
|
| +){
|
| + if( nIdx>1 ){
|
| + int iLeft = 0;
|
| + int iRight = 0;
|
| +
|
| + int nLeft = nIdx/2;
|
| + int nRight = nIdx-nLeft;
|
| + int *aLeft = aIdx;
|
| + int *aRight = &aIdx[nLeft];
|
| +
|
| + SortByDistance(aLeft, nLeft, aDistance, aSpare);
|
| + SortByDistance(aRight, nRight, aDistance, aSpare);
|
| +
|
| + memcpy(aSpare, aLeft, sizeof(int)*nLeft);
|
| + aLeft = aSpare;
|
| +
|
| + while( iLeft<nLeft || iRight<nRight ){
|
| + if( iLeft==nLeft ){
|
| + aIdx[iLeft+iRight] = aRight[iRight];
|
| + iRight++;
|
| + }else if( iRight==nRight ){
|
| + aIdx[iLeft+iRight] = aLeft[iLeft];
|
| + iLeft++;
|
| + }else{
|
| + float fLeft = aDistance[aLeft[iLeft]];
|
| + float fRight = aDistance[aRight[iRight]];
|
| + if( fLeft<fRight ){
|
| + aIdx[iLeft+iRight] = aLeft[iLeft];
|
| + iLeft++;
|
| + }else{
|
| + aIdx[iLeft+iRight] = aRight[iRight];
|
| + iRight++;
|
| + }
|
| + }
|
| + }
|
| +
|
| +#if 0
|
| + /* Check that the sort worked */
|
| + {
|
| + int jj;
|
| + for(jj=1; jj<nIdx; jj++){
|
| + float left = aDistance[aIdx[jj-1]];
|
| + float right = aDistance[aIdx[jj]];
|
| + assert( left<=right );
|
| + }
|
| + }
|
| +#endif
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Arguments aIdx, aCell and aSpare all point to arrays of size
|
| +** nIdx. The aIdx array contains the set of integers from 0 to
|
| +** (nIdx-1) in no particular order. This function sorts the values
|
| +** in aIdx according to dimension iDim of the cells in aCell. The
|
| +** minimum value of dimension iDim is considered first, the
|
| +** maximum used to break ties.
|
| +**
|
| +** The aSpare array is used as temporary working space by the
|
| +** sorting algorithm.
|
| +*/
|
| +static void SortByDimension(
|
| + Rtree *pRtree,
|
| + int *aIdx,
|
| + int nIdx,
|
| + int iDim,
|
| + RtreeCell *aCell,
|
| + int *aSpare
|
| +){
|
| + if( nIdx>1 ){
|
| +
|
| + int iLeft = 0;
|
| + int iRight = 0;
|
| +
|
| + int nLeft = nIdx/2;
|
| + int nRight = nIdx-nLeft;
|
| + int *aLeft = aIdx;
|
| + int *aRight = &aIdx[nLeft];
|
| +
|
| + SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare);
|
| + SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare);
|
| +
|
| + memcpy(aSpare, aLeft, sizeof(int)*nLeft);
|
| + aLeft = aSpare;
|
| + while( iLeft<nLeft || iRight<nRight ){
|
| + double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]);
|
| + double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]);
|
| + double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]);
|
| + double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]);
|
| + if( (iLeft!=nLeft) && ((iRight==nRight)
|
| + || (xleft1<xright1)
|
| + || (xleft1==xright1 && xleft2<xright2)
|
| + )){
|
| + aIdx[iLeft+iRight] = aLeft[iLeft];
|
| + iLeft++;
|
| + }else{
|
| + aIdx[iLeft+iRight] = aRight[iRight];
|
| + iRight++;
|
| + }
|
| + }
|
| +
|
| +#if 0
|
| + /* Check that the sort worked */
|
| + {
|
| + int jj;
|
| + for(jj=1; jj<nIdx; jj++){
|
| + float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2];
|
| + float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1];
|
| + float xright1 = aCell[aIdx[jj]].aCoord[iDim*2];
|
| + float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1];
|
| + assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) );
|
| + }
|
| + }
|
| +#endif
|
| + }
|
| +}
|
| +
|
| +#if VARIANT_RSTARTREE_SPLIT
|
| +/*
|
| +** Implementation of the R*-tree variant of SplitNode from Beckman[1990].
|
| +*/
|
| +static int splitNodeStartree(
|
| + Rtree *pRtree,
|
| + RtreeCell *aCell,
|
| + int nCell,
|
| + RtreeNode *pLeft,
|
| + RtreeNode *pRight,
|
| + RtreeCell *pBboxLeft,
|
| + RtreeCell *pBboxRight
|
| +){
|
| + int **aaSorted;
|
| + int *aSpare;
|
| + int ii;
|
| +
|
| + int iBestDim;
|
| + int iBestSplit;
|
| + float fBestMargin;
|
| +
|
| + int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int));
|
| +
|
| + aaSorted = (int **)sqlite3_malloc(nByte);
|
| + if( !aaSorted ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| +
|
| + aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell];
|
| + memset(aaSorted, 0, nByte);
|
| + for(ii=0; ii<pRtree->nDim; ii++){
|
| + int jj;
|
| + aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell];
|
| + for(jj=0; jj<nCell; jj++){
|
| + aaSorted[ii][jj] = jj;
|
| + }
|
| + SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare);
|
| + }
|
| +
|
| + for(ii=0; ii<pRtree->nDim; ii++){
|
| + float margin = 0.0;
|
| + float fBestOverlap;
|
| + float fBestArea;
|
| + int iBestLeft;
|
| + int nLeft;
|
| +
|
| + for(
|
| + nLeft=RTREE_MINCELLS(pRtree);
|
| + nLeft<=(nCell-RTREE_MINCELLS(pRtree));
|
| + nLeft++
|
| + ){
|
| + RtreeCell left;
|
| + RtreeCell right;
|
| + int kk;
|
| + float overlap;
|
| + float area;
|
| +
|
| + memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell));
|
| + memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell));
|
| + for(kk=1; kk<(nCell-1); kk++){
|
| + if( kk<nLeft ){
|
| + cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]);
|
| + }else{
|
| + cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]);
|
| + }
|
| + }
|
| + margin += cellMargin(pRtree, &left);
|
| + margin += cellMargin(pRtree, &right);
|
| + overlap = cellOverlap(pRtree, &left, &right, 1, -1);
|
| + area = cellArea(pRtree, &left) + cellArea(pRtree, &right);
|
| + if( (nLeft==RTREE_MINCELLS(pRtree))
|
| + || (overlap<fBestOverlap)
|
| + || (overlap==fBestOverlap && area<fBestArea)
|
| + ){
|
| + iBestLeft = nLeft;
|
| + fBestOverlap = overlap;
|
| + fBestArea = area;
|
| + }
|
| + }
|
| +
|
| + if( ii==0 || margin<fBestMargin ){
|
| + iBestDim = ii;
|
| + fBestMargin = margin;
|
| + iBestSplit = iBestLeft;
|
| + }
|
| + }
|
| +
|
| + memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell));
|
| + memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell));
|
| + for(ii=0; ii<nCell; ii++){
|
| + RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight;
|
| + RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight;
|
| + RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]];
|
| + nodeInsertCell(pRtree, pTarget, pCell);
|
| + cellUnion(pRtree, pBbox, pCell);
|
| + }
|
| +
|
| + sqlite3_free(aaSorted);
|
| + return SQLITE_OK;
|
| +}
|
| +#endif
|
| +
|
| +#if VARIANT_GUTTMAN_SPLIT
|
| +/*
|
| +** Implementation of the regular R-tree SplitNode from Guttman[1984].
|
| +*/
|
| +static int splitNodeGuttman(
|
| + Rtree *pRtree,
|
| + RtreeCell *aCell,
|
| + int nCell,
|
| + RtreeNode *pLeft,
|
| + RtreeNode *pRight,
|
| + RtreeCell *pBboxLeft,
|
| + RtreeCell *pBboxRight
|
| +){
|
| + int iLeftSeed = 0;
|
| + int iRightSeed = 1;
|
| + int *aiUsed;
|
| + int i;
|
| +
|
| + aiUsed = sqlite3_malloc(sizeof(int)*nCell);
|
| + if( !aiUsed ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + memset(aiUsed, 0, sizeof(int)*nCell);
|
| +
|
| + PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed);
|
| +
|
| + memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell));
|
| + memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell));
|
| + nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]);
|
| + nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]);
|
| + aiUsed[iLeftSeed] = 1;
|
| + aiUsed[iRightSeed] = 1;
|
| +
|
| + for(i=nCell-2; i>0; i--){
|
| + RtreeCell *pNext;
|
| + pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed);
|
| + float diff =
|
| + cellGrowth(pRtree, pBboxLeft, pNext) -
|
| + cellGrowth(pRtree, pBboxRight, pNext)
|
| + ;
|
| + if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i)
|
| + || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i))
|
| + ){
|
| + nodeInsertCell(pRtree, pRight, pNext);
|
| + cellUnion(pRtree, pBboxRight, pNext);
|
| + }else{
|
| + nodeInsertCell(pRtree, pLeft, pNext);
|
| + cellUnion(pRtree, pBboxLeft, pNext);
|
| + }
|
| + }
|
| +
|
| + sqlite3_free(aiUsed);
|
| + return SQLITE_OK;
|
| +}
|
| +#endif
|
| +
|
| +static int updateMapping(
|
| + Rtree *pRtree,
|
| + i64 iRowid,
|
| + RtreeNode *pNode,
|
| + int iHeight
|
| +){
|
| + int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64);
|
| + xSetMapping = ((iHeight==0)?rowidWrite:parentWrite);
|
| + if( iHeight>0 ){
|
| + RtreeNode *pChild = nodeHashLookup(pRtree, iRowid);
|
| + if( pChild ){
|
| + nodeRelease(pRtree, pChild->pParent);
|
| + nodeReference(pNode);
|
| + pChild->pParent = pNode;
|
| + }
|
| + }
|
| + return xSetMapping(pRtree, iRowid, pNode->iNode);
|
| +}
|
| +
|
| +static int SplitNode(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + RtreeCell *pCell,
|
| + int iHeight
|
| +){
|
| + int i;
|
| + int newCellIsRight = 0;
|
| +
|
| + int rc = SQLITE_OK;
|
| + int nCell = NCELL(pNode);
|
| + RtreeCell *aCell;
|
| + int *aiUsed;
|
| +
|
| + RtreeNode *pLeft = 0;
|
| + RtreeNode *pRight = 0;
|
| +
|
| + RtreeCell leftbbox;
|
| + RtreeCell rightbbox;
|
| +
|
| + /* Allocate an array and populate it with a copy of pCell and
|
| + ** all cells from node pLeft. Then zero the original node.
|
| + */
|
| + aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1));
|
| + if( !aCell ){
|
| + rc = SQLITE_NOMEM;
|
| + goto splitnode_out;
|
| + }
|
| + aiUsed = (int *)&aCell[nCell+1];
|
| + memset(aiUsed, 0, sizeof(int)*(nCell+1));
|
| + for(i=0; i<nCell; i++){
|
| + nodeGetCell(pRtree, pNode, i, &aCell[i]);
|
| + }
|
| + nodeZero(pRtree, pNode);
|
| + memcpy(&aCell[nCell], pCell, sizeof(RtreeCell));
|
| + nCell++;
|
| +
|
| + if( pNode->iNode==1 ){
|
| + pRight = nodeNew(pRtree, pNode);
|
| + pLeft = nodeNew(pRtree, pNode);
|
| + pRtree->iDepth++;
|
| + pNode->isDirty = 1;
|
| + writeInt16(pNode->zData, pRtree->iDepth);
|
| + }else{
|
| + pLeft = pNode;
|
| + pRight = nodeNew(pRtree, pLeft->pParent);
|
| + nodeReference(pLeft);
|
| + }
|
| +
|
| + if( !pLeft || !pRight ){
|
| + rc = SQLITE_NOMEM;
|
| + goto splitnode_out;
|
| + }
|
| +
|
| + memset(pLeft->zData, 0, pRtree->iNodeSize);
|
| + memset(pRight->zData, 0, pRtree->iNodeSize);
|
| +
|
| + rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox);
|
| + if( rc!=SQLITE_OK ){
|
| + goto splitnode_out;
|
| + }
|
| +
|
| + /* Ensure both child nodes have node numbers assigned to them by calling
|
| + ** nodeWrite(). Node pRight always needs a node number, as it was created
|
| + ** by nodeNew() above. But node pLeft sometimes already has a node number.
|
| + ** In this case avoid the all to nodeWrite().
|
| + */
|
| + if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight))
|
| + || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft)))
|
| + ){
|
| + goto splitnode_out;
|
| + }
|
| +
|
| + rightbbox.iRowid = pRight->iNode;
|
| + leftbbox.iRowid = pLeft->iNode;
|
| +
|
| + if( pNode->iNode==1 ){
|
| + rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1);
|
| + if( rc!=SQLITE_OK ){
|
| + goto splitnode_out;
|
| + }
|
| + }else{
|
| + RtreeNode *pParent = pLeft->pParent;
|
| + int iCell;
|
| + rc = nodeParentIndex(pRtree, pLeft, &iCell);
|
| + if( rc==SQLITE_OK ){
|
| + nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell);
|
| + rc = AdjustTree(pRtree, pParent, &leftbbox);
|
| + }
|
| + if( rc!=SQLITE_OK ){
|
| + goto splitnode_out;
|
| + }
|
| + }
|
| + if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){
|
| + goto splitnode_out;
|
| + }
|
| +
|
| + for(i=0; i<NCELL(pRight); i++){
|
| + i64 iRowid = nodeGetRowid(pRtree, pRight, i);
|
| + rc = updateMapping(pRtree, iRowid, pRight, iHeight);
|
| + if( iRowid==pCell->iRowid ){
|
| + newCellIsRight = 1;
|
| + }
|
| + if( rc!=SQLITE_OK ){
|
| + goto splitnode_out;
|
| + }
|
| + }
|
| + if( pNode->iNode==1 ){
|
| + for(i=0; i<NCELL(pLeft); i++){
|
| + i64 iRowid = nodeGetRowid(pRtree, pLeft, i);
|
| + rc = updateMapping(pRtree, iRowid, pLeft, iHeight);
|
| + if( rc!=SQLITE_OK ){
|
| + goto splitnode_out;
|
| + }
|
| + }
|
| + }else if( newCellIsRight==0 ){
|
| + rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight);
|
| + }
|
| +
|
| + if( rc==SQLITE_OK ){
|
| + rc = nodeRelease(pRtree, pRight);
|
| + pRight = 0;
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + rc = nodeRelease(pRtree, pLeft);
|
| + pLeft = 0;
|
| + }
|
| +
|
| +splitnode_out:
|
| + nodeRelease(pRtree, pRight);
|
| + nodeRelease(pRtree, pLeft);
|
| + sqlite3_free(aCell);
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** If node pLeaf is not the root of the r-tree and its pParent pointer is
|
| +** still NULL, load all ancestor nodes of pLeaf into memory and populate
|
| +** the pLeaf->pParent chain all the way up to the root node.
|
| +**
|
| +** This operation is required when a row is deleted (or updated - an update
|
| +** is implemented as a delete followed by an insert). SQLite provides the
|
| +** rowid of the row to delete, which can be used to find the leaf on which
|
| +** the entry resides (argument pLeaf). Once the leaf is located, this
|
| +** function is called to determine its ancestry.
|
| +*/
|
| +static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){
|
| + int rc = SQLITE_OK;
|
| + RtreeNode *pChild = pLeaf;
|
| + while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){
|
| + int rc2 = SQLITE_OK; /* sqlite3_reset() return code */
|
| + sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode);
|
| + rc = sqlite3_step(pRtree->pReadParent);
|
| + if( rc==SQLITE_ROW ){
|
| + RtreeNode *pTest; /* Used to test for reference loops */
|
| + i64 iNode; /* Node number of parent node */
|
| +
|
| + /* Before setting pChild->pParent, test that we are not creating a
|
| + ** loop of references (as we would if, say, pChild==pParent). We don't
|
| + ** want to do this as it leads to a memory leak when trying to delete
|
| + ** the referenced counted node structures.
|
| + */
|
| + iNode = sqlite3_column_int64(pRtree->pReadParent, 0);
|
| + for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent);
|
| + if( !pTest ){
|
| + rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent);
|
| + }
|
| + }
|
| + rc = sqlite3_reset(pRtree->pReadParent);
|
| + if( rc==SQLITE_OK ) rc = rc2;
|
| + if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT;
|
| + pChild = pChild->pParent;
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +static int deleteCell(Rtree *, RtreeNode *, int, int);
|
| +
|
| +static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){
|
| + int rc;
|
| + int rc2;
|
| + RtreeNode *pParent;
|
| + int iCell;
|
| +
|
| + assert( pNode->nRef==1 );
|
| +
|
| + /* Remove the entry in the parent cell. */
|
| + rc = nodeParentIndex(pRtree, pNode, &iCell);
|
| + if( rc==SQLITE_OK ){
|
| + pParent = pNode->pParent;
|
| + pNode->pParent = 0;
|
| + rc = deleteCell(pRtree, pParent, iCell, iHeight+1);
|
| + }
|
| + rc2 = nodeRelease(pRtree, pParent);
|
| + if( rc==SQLITE_OK ){
|
| + rc = rc2;
|
| + }
|
| + if( rc!=SQLITE_OK ){
|
| + return rc;
|
| + }
|
| +
|
| + /* Remove the xxx_node entry. */
|
| + sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode);
|
| + sqlite3_step(pRtree->pDeleteNode);
|
| + if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){
|
| + return rc;
|
| + }
|
| +
|
| + /* Remove the xxx_parent entry. */
|
| + sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode);
|
| + sqlite3_step(pRtree->pDeleteParent);
|
| + if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){
|
| + return rc;
|
| + }
|
| +
|
| + /* Remove the node from the in-memory hash table and link it into
|
| + ** the Rtree.pDeleted list. Its contents will be re-inserted later on.
|
| + */
|
| + nodeHashDelete(pRtree, pNode);
|
| + pNode->iNode = iHeight;
|
| + pNode->pNext = pRtree->pDeleted;
|
| + pNode->nRef++;
|
| + pRtree->pDeleted = pNode;
|
| +
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){
|
| + RtreeNode *pParent = pNode->pParent;
|
| + int rc = SQLITE_OK;
|
| + if( pParent ){
|
| + int ii;
|
| + int nCell = NCELL(pNode);
|
| + RtreeCell box; /* Bounding box for pNode */
|
| + nodeGetCell(pRtree, pNode, 0, &box);
|
| + for(ii=1; ii<nCell; ii++){
|
| + RtreeCell cell;
|
| + nodeGetCell(pRtree, pNode, ii, &cell);
|
| + cellUnion(pRtree, &box, &cell);
|
| + }
|
| + box.iRowid = pNode->iNode;
|
| + rc = nodeParentIndex(pRtree, pNode, &ii);
|
| + if( rc==SQLITE_OK ){
|
| + nodeOverwriteCell(pRtree, pParent, &box, ii);
|
| + rc = fixBoundingBox(pRtree, pParent);
|
| + }
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Delete the cell at index iCell of node pNode. After removing the
|
| +** cell, adjust the r-tree data structure if required.
|
| +*/
|
| +static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){
|
| + RtreeNode *pParent;
|
| + int rc;
|
| +
|
| + if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){
|
| + return rc;
|
| + }
|
| +
|
| + /* Remove the cell from the node. This call just moves bytes around
|
| + ** the in-memory node image, so it cannot fail.
|
| + */
|
| + nodeDeleteCell(pRtree, pNode, iCell);
|
| +
|
| + /* If the node is not the tree root and now has less than the minimum
|
| + ** number of cells, remove it from the tree. Otherwise, update the
|
| + ** cell in the parent node so that it tightly contains the updated
|
| + ** node.
|
| + */
|
| + pParent = pNode->pParent;
|
| + assert( pParent || pNode->iNode==1 );
|
| + if( pParent ){
|
| + if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){
|
| + rc = removeNode(pRtree, pNode, iHeight);
|
| + }else{
|
| + rc = fixBoundingBox(pRtree, pNode);
|
| + }
|
| + }
|
| +
|
| + return rc;
|
| +}
|
| +
|
| +static int Reinsert(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + RtreeCell *pCell,
|
| + int iHeight
|
| +){
|
| + int *aOrder;
|
| + int *aSpare;
|
| + RtreeCell *aCell;
|
| + float *aDistance;
|
| + int nCell;
|
| + float aCenterCoord[RTREE_MAX_DIMENSIONS];
|
| + int iDim;
|
| + int ii;
|
| + int rc = SQLITE_OK;
|
| +
|
| + memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS);
|
| +
|
| + nCell = NCELL(pNode)+1;
|
| +
|
| + /* Allocate the buffers used by this operation. The allocation is
|
| + ** relinquished before this function returns.
|
| + */
|
| + aCell = (RtreeCell *)sqlite3_malloc(nCell * (
|
| + sizeof(RtreeCell) + /* aCell array */
|
| + sizeof(int) + /* aOrder array */
|
| + sizeof(int) + /* aSpare array */
|
| + sizeof(float) /* aDistance array */
|
| + ));
|
| + if( !aCell ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + aOrder = (int *)&aCell[nCell];
|
| + aSpare = (int *)&aOrder[nCell];
|
| + aDistance = (float *)&aSpare[nCell];
|
| +
|
| + for(ii=0; ii<nCell; ii++){
|
| + if( ii==(nCell-1) ){
|
| + memcpy(&aCell[ii], pCell, sizeof(RtreeCell));
|
| + }else{
|
| + nodeGetCell(pRtree, pNode, ii, &aCell[ii]);
|
| + }
|
| + aOrder[ii] = ii;
|
| + for(iDim=0; iDim<pRtree->nDim; iDim++){
|
| + aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]);
|
| + aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]);
|
| + }
|
| + }
|
| + for(iDim=0; iDim<pRtree->nDim; iDim++){
|
| + aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0);
|
| + }
|
| +
|
| + for(ii=0; ii<nCell; ii++){
|
| + aDistance[ii] = 0.0;
|
| + for(iDim=0; iDim<pRtree->nDim; iDim++){
|
| + float coord = DCOORD(aCell[ii].aCoord[iDim*2+1]) -
|
| + DCOORD(aCell[ii].aCoord[iDim*2]);
|
| + aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]);
|
| + }
|
| + }
|
| +
|
| + SortByDistance(aOrder, nCell, aDistance, aSpare);
|
| + nodeZero(pRtree, pNode);
|
| +
|
| + for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){
|
| + RtreeCell *p = &aCell[aOrder[ii]];
|
| + nodeInsertCell(pRtree, pNode, p);
|
| + if( p->iRowid==pCell->iRowid ){
|
| + if( iHeight==0 ){
|
| + rc = rowidWrite(pRtree, p->iRowid, pNode->iNode);
|
| + }else{
|
| + rc = parentWrite(pRtree, p->iRowid, pNode->iNode);
|
| + }
|
| + }
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + rc = fixBoundingBox(pRtree, pNode);
|
| + }
|
| + for(; rc==SQLITE_OK && ii<nCell; ii++){
|
| + /* Find a node to store this cell in. pNode->iNode currently contains
|
| + ** the height of the sub-tree headed by the cell.
|
| + */
|
| + RtreeNode *pInsert;
|
| + RtreeCell *p = &aCell[aOrder[ii]];
|
| + rc = ChooseLeaf(pRtree, p, iHeight, &pInsert);
|
| + if( rc==SQLITE_OK ){
|
| + int rc2;
|
| + rc = rtreeInsertCell(pRtree, pInsert, p, iHeight);
|
| + rc2 = nodeRelease(pRtree, pInsert);
|
| + if( rc==SQLITE_OK ){
|
| + rc = rc2;
|
| + }
|
| + }
|
| + }
|
| +
|
| + sqlite3_free(aCell);
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Insert cell pCell into node pNode. Node pNode is the head of a
|
| +** subtree iHeight high (leaf nodes have iHeight==0).
|
| +*/
|
| +static int rtreeInsertCell(
|
| + Rtree *pRtree,
|
| + RtreeNode *pNode,
|
| + RtreeCell *pCell,
|
| + int iHeight
|
| +){
|
| + int rc = SQLITE_OK;
|
| + if( iHeight>0 ){
|
| + RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid);
|
| + if( pChild ){
|
| + nodeRelease(pRtree, pChild->pParent);
|
| + nodeReference(pNode);
|
| + pChild->pParent = pNode;
|
| + }
|
| + }
|
| + if( nodeInsertCell(pRtree, pNode, pCell) ){
|
| +#if VARIANT_RSTARTREE_REINSERT
|
| + if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){
|
| + rc = SplitNode(pRtree, pNode, pCell, iHeight);
|
| + }else{
|
| + pRtree->iReinsertHeight = iHeight;
|
| + rc = Reinsert(pRtree, pNode, pCell, iHeight);
|
| + }
|
| +#else
|
| + rc = SplitNode(pRtree, pNode, pCell, iHeight);
|
| +#endif
|
| + }else{
|
| + rc = AdjustTree(pRtree, pNode, pCell);
|
| + if( rc==SQLITE_OK ){
|
| + if( iHeight==0 ){
|
| + rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode);
|
| + }else{
|
| + rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode);
|
| + }
|
| + }
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){
|
| + int ii;
|
| + int rc = SQLITE_OK;
|
| + int nCell = NCELL(pNode);
|
| +
|
| + for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){
|
| + RtreeNode *pInsert;
|
| + RtreeCell cell;
|
| + nodeGetCell(pRtree, pNode, ii, &cell);
|
| +
|
| + /* Find a node to store this cell in. pNode->iNode currently contains
|
| + ** the height of the sub-tree headed by the cell.
|
| + */
|
| + rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert);
|
| + if( rc==SQLITE_OK ){
|
| + int rc2;
|
| + rc = rtreeInsertCell(pRtree, pInsert, &cell, pNode->iNode);
|
| + rc2 = nodeRelease(pRtree, pInsert);
|
| + if( rc==SQLITE_OK ){
|
| + rc = rc2;
|
| + }
|
| + }
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** Select a currently unused rowid for a new r-tree record.
|
| +*/
|
| +static int newRowid(Rtree *pRtree, i64 *piRowid){
|
| + int rc;
|
| + sqlite3_bind_null(pRtree->pWriteRowid, 1);
|
| + sqlite3_bind_null(pRtree->pWriteRowid, 2);
|
| + sqlite3_step(pRtree->pWriteRowid);
|
| + rc = sqlite3_reset(pRtree->pWriteRowid);
|
| + *piRowid = sqlite3_last_insert_rowid(pRtree->db);
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** The xUpdate method for rtree module virtual tables.
|
| +*/
|
| +static int rtreeUpdate(
|
| + sqlite3_vtab *pVtab,
|
| + int nData,
|
| + sqlite3_value **azData,
|
| + sqlite_int64 *pRowid
|
| +){
|
| + Rtree *pRtree = (Rtree *)pVtab;
|
| + int rc = SQLITE_OK;
|
| +
|
| + rtreeReference(pRtree);
|
| +
|
| + assert(nData>=1);
|
| +
|
| + /* If azData[0] is not an SQL NULL value, it is the rowid of a
|
| + ** record to delete from the r-tree table. The following block does
|
| + ** just that.
|
| + */
|
| + if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){
|
| + i64 iDelete; /* The rowid to delete */
|
| + RtreeNode *pLeaf; /* Leaf node containing record iDelete */
|
| + int iCell; /* Index of iDelete cell in pLeaf */
|
| + RtreeNode *pRoot;
|
| +
|
| + /* Obtain a reference to the root node to initialise Rtree.iDepth */
|
| + rc = nodeAcquire(pRtree, 1, 0, &pRoot);
|
| +
|
| + /* Obtain a reference to the leaf node that contains the entry
|
| + ** about to be deleted.
|
| + */
|
| + if( rc==SQLITE_OK ){
|
| + iDelete = sqlite3_value_int64(azData[0]);
|
| + rc = findLeafNode(pRtree, iDelete, &pLeaf);
|
| + }
|
| +
|
| + /* Delete the cell in question from the leaf node. */
|
| + if( rc==SQLITE_OK ){
|
| + int rc2;
|
| + rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell);
|
| + if( rc==SQLITE_OK ){
|
| + rc = deleteCell(pRtree, pLeaf, iCell, 0);
|
| + }
|
| + rc2 = nodeRelease(pRtree, pLeaf);
|
| + if( rc==SQLITE_OK ){
|
| + rc = rc2;
|
| + }
|
| + }
|
| +
|
| + /* Delete the corresponding entry in the <rtree>_rowid table. */
|
| + if( rc==SQLITE_OK ){
|
| + sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete);
|
| + sqlite3_step(pRtree->pDeleteRowid);
|
| + rc = sqlite3_reset(pRtree->pDeleteRowid);
|
| + }
|
| +
|
| + /* Check if the root node now has exactly one child. If so, remove
|
| + ** it, schedule the contents of the child for reinsertion and
|
| + ** reduce the tree height by one.
|
| + **
|
| + ** This is equivalent to copying the contents of the child into
|
| + ** the root node (the operation that Gutman's paper says to perform
|
| + ** in this scenario).
|
| + */
|
| + if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){
|
| + int rc2;
|
| + RtreeNode *pChild;
|
| + i64 iChild = nodeGetRowid(pRtree, pRoot, 0);
|
| + rc = nodeAcquire(pRtree, iChild, pRoot, &pChild);
|
| + if( rc==SQLITE_OK ){
|
| + rc = removeNode(pRtree, pChild, pRtree->iDepth-1);
|
| + }
|
| + rc2 = nodeRelease(pRtree, pChild);
|
| + if( rc==SQLITE_OK ) rc = rc2;
|
| + if( rc==SQLITE_OK ){
|
| + pRtree->iDepth--;
|
| + writeInt16(pRoot->zData, pRtree->iDepth);
|
| + pRoot->isDirty = 1;
|
| + }
|
| + }
|
| +
|
| + /* Re-insert the contents of any underfull nodes removed from the tree. */
|
| + for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){
|
| + if( rc==SQLITE_OK ){
|
| + rc = reinsertNodeContent(pRtree, pLeaf);
|
| + }
|
| + pRtree->pDeleted = pLeaf->pNext;
|
| + sqlite3_free(pLeaf);
|
| + }
|
| +
|
| + /* Release the reference to the root node. */
|
| + if( rc==SQLITE_OK ){
|
| + rc = nodeRelease(pRtree, pRoot);
|
| + }else{
|
| + nodeRelease(pRtree, pRoot);
|
| + }
|
| + }
|
| +
|
| + /* If the azData[] array contains more than one element, elements
|
| + ** (azData[2]..azData[argc-1]) contain a new record to insert into
|
| + ** the r-tree structure.
|
| + */
|
| + if( rc==SQLITE_OK && nData>1 ){
|
| + /* Insert a new record into the r-tree */
|
| + RtreeCell cell;
|
| + int ii;
|
| + RtreeNode *pLeaf;
|
| +
|
| + /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */
|
| + assert( nData==(pRtree->nDim*2 + 3) );
|
| + if( pRtree->eCoordType==RTREE_COORD_REAL32 ){
|
| + for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
| + cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]);
|
| + cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]);
|
| + if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){
|
| + rc = SQLITE_CONSTRAINT;
|
| + goto constraint;
|
| + }
|
| + }
|
| + }else{
|
| + for(ii=0; ii<(pRtree->nDim*2); ii+=2){
|
| + cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]);
|
| + cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]);
|
| + if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){
|
| + rc = SQLITE_CONSTRAINT;
|
| + goto constraint;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Figure out the rowid of the new row. */
|
| + if( sqlite3_value_type(azData[2])==SQLITE_NULL ){
|
| + rc = newRowid(pRtree, &cell.iRowid);
|
| + }else{
|
| + cell.iRowid = sqlite3_value_int64(azData[2]);
|
| + sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid);
|
| + if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){
|
| + sqlite3_reset(pRtree->pReadRowid);
|
| + rc = SQLITE_CONSTRAINT;
|
| + goto constraint;
|
| + }
|
| + rc = sqlite3_reset(pRtree->pReadRowid);
|
| + }
|
| + *pRowid = cell.iRowid;
|
| +
|
| + if( rc==SQLITE_OK ){
|
| + rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + int rc2;
|
| + pRtree->iReinsertHeight = -1;
|
| + rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0);
|
| + rc2 = nodeRelease(pRtree, pLeaf);
|
| + if( rc==SQLITE_OK ){
|
| + rc = rc2;
|
| + }
|
| + }
|
| + }
|
| +
|
| +constraint:
|
| + rtreeRelease(pRtree);
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** The xRename method for rtree module virtual tables.
|
| +*/
|
| +static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){
|
| + Rtree *pRtree = (Rtree *)pVtab;
|
| + int rc = SQLITE_NOMEM;
|
| + char *zSql = sqlite3_mprintf(
|
| + "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";"
|
| + "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";"
|
| + "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";"
|
| + , pRtree->zDb, pRtree->zName, zNewName
|
| + , pRtree->zDb, pRtree->zName, zNewName
|
| + , pRtree->zDb, pRtree->zName, zNewName
|
| + );
|
| + if( zSql ){
|
| + rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0);
|
| + sqlite3_free(zSql);
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +static sqlite3_module rtreeModule = {
|
| + 0, /* iVersion */
|
| + rtreeCreate, /* xCreate - create a table */
|
| + rtreeConnect, /* xConnect - connect to an existing table */
|
| + rtreeBestIndex, /* xBestIndex - Determine search strategy */
|
| + rtreeDisconnect, /* xDisconnect - Disconnect from a table */
|
| + rtreeDestroy, /* xDestroy - Drop a table */
|
| + rtreeOpen, /* xOpen - open a cursor */
|
| + rtreeClose, /* xClose - close a cursor */
|
| + rtreeFilter, /* xFilter - configure scan constraints */
|
| + rtreeNext, /* xNext - advance a cursor */
|
| + rtreeEof, /* xEof */
|
| + rtreeColumn, /* xColumn - read data */
|
| + rtreeRowid, /* xRowid - read data */
|
| + rtreeUpdate, /* xUpdate - write data */
|
| + 0, /* xBegin - begin transaction */
|
| + 0, /* xSync - sync transaction */
|
| + 0, /* xCommit - commit transaction */
|
| + 0, /* xRollback - rollback transaction */
|
| + 0, /* xFindFunction - function overloading */
|
| + rtreeRename /* xRename - rename the table */
|
| +};
|
| +
|
| +static int rtreeSqlInit(
|
| + Rtree *pRtree,
|
| + sqlite3 *db,
|
| + const char *zDb,
|
| + const char *zPrefix,
|
| + int isCreate
|
| +){
|
| + int rc = SQLITE_OK;
|
| +
|
| + #define N_STATEMENT 9
|
| + static const char *azSql[N_STATEMENT] = {
|
| + /* Read and write the xxx_node table */
|
| + "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1",
|
| + "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)",
|
| + "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1",
|
| +
|
| + /* Read and write the xxx_rowid table */
|
| + "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1",
|
| + "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)",
|
| + "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1",
|
| +
|
| + /* Read and write the xxx_parent table */
|
| + "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1",
|
| + "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)",
|
| + "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1"
|
| + };
|
| + sqlite3_stmt **appStmt[N_STATEMENT];
|
| + int i;
|
| +
|
| + pRtree->db = db;
|
| +
|
| + if( isCreate ){
|
| + char *zCreate = sqlite3_mprintf(
|
| +"CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);"
|
| +"CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);"
|
| +"CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGER);"
|
| +"INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))",
|
| + zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize
|
| + );
|
| + if( !zCreate ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + rc = sqlite3_exec(db, zCreate, 0, 0, 0);
|
| + sqlite3_free(zCreate);
|
| + if( rc!=SQLITE_OK ){
|
| + return rc;
|
| + }
|
| + }
|
| +
|
| + appStmt[0] = &pRtree->pReadNode;
|
| + appStmt[1] = &pRtree->pWriteNode;
|
| + appStmt[2] = &pRtree->pDeleteNode;
|
| + appStmt[3] = &pRtree->pReadRowid;
|
| + appStmt[4] = &pRtree->pWriteRowid;
|
| + appStmt[5] = &pRtree->pDeleteRowid;
|
| + appStmt[6] = &pRtree->pReadParent;
|
| + appStmt[7] = &pRtree->pWriteParent;
|
| + appStmt[8] = &pRtree->pDeleteParent;
|
| +
|
| + for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){
|
| + char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix);
|
| + if( zSql ){
|
| + rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0);
|
| + }else{
|
| + rc = SQLITE_NOMEM;
|
| + }
|
| + sqlite3_free(zSql);
|
| + }
|
| +
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** The second argument to this function contains the text of an SQL statement
|
| +** that returns a single integer value. The statement is compiled and executed
|
| +** using database connection db. If successful, the integer value returned
|
| +** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error
|
| +** code is returned and the value of *piVal after returning is not defined.
|
| +*/
|
| +static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){
|
| + int rc = SQLITE_NOMEM;
|
| + if( zSql ){
|
| + sqlite3_stmt *pStmt = 0;
|
| + rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0);
|
| + if( rc==SQLITE_OK ){
|
| + if( SQLITE_ROW==sqlite3_step(pStmt) ){
|
| + *piVal = sqlite3_column_int(pStmt, 0);
|
| + }
|
| + rc = sqlite3_finalize(pStmt);
|
| + }
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** This function is called from within the xConnect() or xCreate() method to
|
| +** determine the node-size used by the rtree table being created or connected
|
| +** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned.
|
| +** Otherwise, an SQLite error code is returned.
|
| +**
|
| +** If this function is being called as part of an xConnect(), then the rtree
|
| +** table already exists. In this case the node-size is determined by inspecting
|
| +** the root node of the tree.
|
| +**
|
| +** Otherwise, for an xCreate(), use 64 bytes less than the database page-size.
|
| +** This ensures that each node is stored on a single database page. If the
|
| +** database page-size is so large that more than RTREE_MAXCELLS entries
|
| +** would fit in a single node, use a smaller node-size.
|
| +*/
|
| +static int getNodeSize(
|
| + sqlite3 *db, /* Database handle */
|
| + Rtree *pRtree, /* Rtree handle */
|
| + int isCreate /* True for xCreate, false for xConnect */
|
| +){
|
| + int rc;
|
| + char *zSql;
|
| + if( isCreate ){
|
| + int iPageSize;
|
| + zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb);
|
| + rc = getIntFromStmt(db, zSql, &iPageSize);
|
| + if( rc==SQLITE_OK ){
|
| + pRtree->iNodeSize = iPageSize-64;
|
| + if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){
|
| + pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS;
|
| + }
|
| + }
|
| + }else{
|
| + zSql = sqlite3_mprintf(
|
| + "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1",
|
| + pRtree->zDb, pRtree->zName
|
| + );
|
| + rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize);
|
| + }
|
| +
|
| + sqlite3_free(zSql);
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** This function is the implementation of both the xConnect and xCreate
|
| +** methods of the r-tree virtual table.
|
| +**
|
| +** argv[0] -> module name
|
| +** argv[1] -> database name
|
| +** argv[2] -> table name
|
| +** argv[...] -> column names...
|
| +*/
|
| +static int rtreeInit(
|
| + sqlite3 *db, /* Database connection */
|
| + void *pAux, /* One of the RTREE_COORD_* constants */
|
| + int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */
|
| + sqlite3_vtab **ppVtab, /* OUT: New virtual table */
|
| + char **pzErr, /* OUT: Error message, if any */
|
| + int isCreate /* True for xCreate, false for xConnect */
|
| +){
|
| + int rc = SQLITE_OK;
|
| + Rtree *pRtree;
|
| + int nDb; /* Length of string argv[1] */
|
| + int nName; /* Length of string argv[2] */
|
| + int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32);
|
| +
|
| + const char *aErrMsg[] = {
|
| + 0, /* 0 */
|
| + "Wrong number of columns for an rtree table", /* 1 */
|
| + "Too few columns for an rtree table", /* 2 */
|
| + "Too many columns for an rtree table" /* 3 */
|
| + };
|
| +
|
| + int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2;
|
| + if( aErrMsg[iErr] ){
|
| + *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]);
|
| + return SQLITE_ERROR;
|
| + }
|
| +
|
| + /* Allocate the sqlite3_vtab structure */
|
| + nDb = strlen(argv[1]);
|
| + nName = strlen(argv[2]);
|
| + pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2);
|
| + if( !pRtree ){
|
| + return SQLITE_NOMEM;
|
| + }
|
| + memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2);
|
| + pRtree->nBusy = 1;
|
| + pRtree->base.pModule = &rtreeModule;
|
| + pRtree->zDb = (char *)&pRtree[1];
|
| + pRtree->zName = &pRtree->zDb[nDb+1];
|
| + pRtree->nDim = (argc-4)/2;
|
| + pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2;
|
| + pRtree->eCoordType = eCoordType;
|
| + memcpy(pRtree->zDb, argv[1], nDb);
|
| + memcpy(pRtree->zName, argv[2], nName);
|
| +
|
| + /* Figure out the node size to use. */
|
| + rc = getNodeSize(db, pRtree, isCreate);
|
| +
|
| + /* Create/Connect to the underlying relational database schema. If
|
| + ** that is successful, call sqlite3_declare_vtab() to configure
|
| + ** the r-tree table schema.
|
| + */
|
| + if( rc==SQLITE_OK ){
|
| + if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){
|
| + *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
| + }else{
|
| + char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]);
|
| + char *zTmp;
|
| + int ii;
|
| + for(ii=4; zSql && ii<argc; ii++){
|
| + zTmp = zSql;
|
| + zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]);
|
| + sqlite3_free(zTmp);
|
| + }
|
| + if( zSql ){
|
| + zTmp = zSql;
|
| + zSql = sqlite3_mprintf("%s);", zTmp);
|
| + sqlite3_free(zTmp);
|
| + }
|
| + if( !zSql ){
|
| + rc = SQLITE_NOMEM;
|
| + }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){
|
| + *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db));
|
| + }
|
| + sqlite3_free(zSql);
|
| + }
|
| + }
|
| +
|
| + if( rc==SQLITE_OK ){
|
| + *ppVtab = (sqlite3_vtab *)pRtree;
|
| + }else{
|
| + rtreeRelease(pRtree);
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Implementation of a scalar function that decodes r-tree nodes to
|
| +** human readable strings. This can be used for debugging and analysis.
|
| +**
|
| +** The scalar function takes two arguments, a blob of data containing
|
| +** an r-tree node, and the number of dimensions the r-tree indexes.
|
| +** For a two-dimensional r-tree structure called "rt", to deserialize
|
| +** all nodes, a statement like:
|
| +**
|
| +** SELECT rtreenode(2, data) FROM rt_node;
|
| +**
|
| +** The human readable string takes the form of a Tcl list with one
|
| +** entry for each cell in the r-tree node. Each entry is itself a
|
| +** list, containing the 8-byte rowid/pageno followed by the
|
| +** <num-dimension>*2 coordinates.
|
| +*/
|
| +static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
|
| + char *zText = 0;
|
| + RtreeNode node;
|
| + Rtree tree;
|
| + int ii;
|
| +
|
| + UNUSED_PARAMETER(nArg);
|
| + memset(&node, 0, sizeof(RtreeNode));
|
| + memset(&tree, 0, sizeof(Rtree));
|
| + tree.nDim = sqlite3_value_int(apArg[0]);
|
| + tree.nBytesPerCell = 8 + 8 * tree.nDim;
|
| + node.zData = (u8 *)sqlite3_value_blob(apArg[1]);
|
| +
|
| + for(ii=0; ii<NCELL(&node); ii++){
|
| + char zCell[512];
|
| + int nCell = 0;
|
| + RtreeCell cell;
|
| + int jj;
|
| +
|
| + nodeGetCell(&tree, &node, ii, &cell);
|
| + sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid);
|
| + nCell = strlen(zCell);
|
| + for(jj=0; jj<tree.nDim*2; jj++){
|
| + sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f);
|
| + nCell = strlen(zCell);
|
| + }
|
| +
|
| + if( zText ){
|
| + char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell);
|
| + sqlite3_free(zText);
|
| + zText = zTextNew;
|
| + }else{
|
| + zText = sqlite3_mprintf("{%s}", zCell);
|
| + }
|
| + }
|
| +
|
| + sqlite3_result_text(ctx, zText, -1, sqlite3_free);
|
| +}
|
| +
|
| +static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){
|
| + UNUSED_PARAMETER(nArg);
|
| + if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB
|
| + || sqlite3_value_bytes(apArg[0])<2
|
| + ){
|
| + sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1);
|
| + }else{
|
| + u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]);
|
| + sqlite3_result_int(ctx, readInt16(zBlob));
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Register the r-tree module with database handle db. This creates the
|
| +** virtual table module "rtree" and the debugging/analysis scalar
|
| +** function "rtreenode".
|
| +*/
|
| +int sqlite3RtreeInit(sqlite3 *db){
|
| + const int utf8 = SQLITE_UTF8;
|
| + int rc;
|
| +
|
| + rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0);
|
| + if( rc==SQLITE_OK ){
|
| + rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + void *c = (void *)RTREE_COORD_REAL32;
|
| + rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0);
|
| + }
|
| + if( rc==SQLITE_OK ){
|
| + void *c = (void *)RTREE_COORD_INT32;
|
| + rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0);
|
| + }
|
| +
|
| + return rc;
|
| +}
|
| +
|
| +/*
|
| +** A version of sqlite3_free() that can be used as a callback. This is used
|
| +** in two places - as the destructor for the blob value returned by the
|
| +** invocation of a geometry function, and as the destructor for the geometry
|
| +** functions themselves.
|
| +*/
|
| +static void doSqlite3Free(void *p){
|
| + sqlite3_free(p);
|
| +}
|
| +
|
| +/*
|
| +** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite
|
| +** scalar user function. This C function is the callback used for all such
|
| +** registered SQL functions.
|
| +**
|
| +** The scalar user functions return a blob that is interpreted by r-tree
|
| +** table MATCH operators.
|
| +*/
|
| +static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){
|
| + RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx);
|
| + RtreeMatchArg *pBlob;
|
| + int nBlob;
|
| +
|
| + nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double);
|
| + pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob);
|
| + if( !pBlob ){
|
| + sqlite3_result_error_nomem(ctx);
|
| + }else{
|
| + int i;
|
| + pBlob->magic = RTREE_GEOMETRY_MAGIC;
|
| + pBlob->xGeom = pGeomCtx->xGeom;
|
| + pBlob->pContext = pGeomCtx->pContext;
|
| + pBlob->nParam = nArg;
|
| + for(i=0; i<nArg; i++){
|
| + pBlob->aParam[i] = sqlite3_value_double(aArg[i]);
|
| + }
|
| + sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Register a new geometry function for use with the r-tree MATCH operator.
|
| +*/
|
| +int sqlite3_rtree_geometry_callback(
|
| + sqlite3 *db,
|
| + const char *zGeom,
|
| + int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *),
|
| + void *pContext
|
| +){
|
| + RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */
|
| +
|
| + /* Allocate and populate the context object. */
|
| + pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback));
|
| + if( !pGeomCtx ) return SQLITE_NOMEM;
|
| + pGeomCtx->xGeom = xGeom;
|
| + pGeomCtx->pContext = pContext;
|
| +
|
| + /* Create the new user-function. Register a destructor function to delete
|
| + ** the context object when it is no longer required. */
|
| + return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY,
|
| + (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free
|
| + );
|
| +}
|
| +
|
| +#if !SQLITE_CORE
|
| +int sqlite3_extension_init(
|
| + sqlite3 *db,
|
| + char **pzErrMsg,
|
| + const sqlite3_api_routines *pApi
|
| +){
|
| + SQLITE_EXTENSION_INIT2(pApi)
|
| + return sqlite3RtreeInit(db);
|
| +}
|
| +#endif
|
| +
|
| +#endif
|
|
|