OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains code for implementations of the r-tree and r*-tree |
| 13 ** algorithms packaged as an SQLite virtual table module. |
| 14 */ |
| 15 |
| 16 /* |
| 17 ** Database Format of R-Tree Tables |
| 18 ** -------------------------------- |
| 19 ** |
| 20 ** The data structure for a single virtual r-tree table is stored in three |
| 21 ** native SQLite tables declared as follows. In each case, the '%' character |
| 22 ** in the table name is replaced with the user-supplied name of the r-tree |
| 23 ** table. |
| 24 ** |
| 25 ** CREATE TABLE %_node(nodeno INTEGER PRIMARY KEY, data BLOB) |
| 26 ** CREATE TABLE %_parent(nodeno INTEGER PRIMARY KEY, parentnode INTEGER) |
| 27 ** CREATE TABLE %_rowid(rowid INTEGER PRIMARY KEY, nodeno INTEGER) |
| 28 ** |
| 29 ** The data for each node of the r-tree structure is stored in the %_node |
| 30 ** table. For each node that is not the root node of the r-tree, there is |
| 31 ** an entry in the %_parent table associating the node with its parent. |
| 32 ** And for each row of data in the table, there is an entry in the %_rowid |
| 33 ** table that maps from the entries rowid to the id of the node that it |
| 34 ** is stored on. |
| 35 ** |
| 36 ** The root node of an r-tree always exists, even if the r-tree table is |
| 37 ** empty. The nodeno of the root node is always 1. All other nodes in the |
| 38 ** table must be the same size as the root node. The content of each node |
| 39 ** is formatted as follows: |
| 40 ** |
| 41 ** 1. If the node is the root node (node 1), then the first 2 bytes |
| 42 ** of the node contain the tree depth as a big-endian integer. |
| 43 ** For non-root nodes, the first 2 bytes are left unused. |
| 44 ** |
| 45 ** 2. The next 2 bytes contain the number of entries currently |
| 46 ** stored in the node. |
| 47 ** |
| 48 ** 3. The remainder of the node contains the node entries. Each entry |
| 49 ** consists of a single 8-byte integer followed by an even number |
| 50 ** of 4-byte coordinates. For leaf nodes the integer is the rowid |
| 51 ** of a record. For internal nodes it is the node number of a |
| 52 ** child page. |
| 53 */ |
| 54 |
| 55 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_RTREE) |
| 56 |
| 57 /* |
| 58 ** This file contains an implementation of a couple of different variants |
| 59 ** of the r-tree algorithm. See the README file for further details. The |
| 60 ** same data-structure is used for all, but the algorithms for insert and |
| 61 ** delete operations vary. The variants used are selected at compile time |
| 62 ** by defining the following symbols: |
| 63 */ |
| 64 |
| 65 /* Either, both or none of the following may be set to activate |
| 66 ** r*tree variant algorithms. |
| 67 */ |
| 68 #define VARIANT_RSTARTREE_CHOOSESUBTREE 0 |
| 69 #define VARIANT_RSTARTREE_REINSERT 1 |
| 70 |
| 71 /* |
| 72 ** Exactly one of the following must be set to 1. |
| 73 */ |
| 74 #define VARIANT_GUTTMAN_QUADRATIC_SPLIT 0 |
| 75 #define VARIANT_GUTTMAN_LINEAR_SPLIT 0 |
| 76 #define VARIANT_RSTARTREE_SPLIT 1 |
| 77 |
| 78 #define VARIANT_GUTTMAN_SPLIT \ |
| 79 (VARIANT_GUTTMAN_LINEAR_SPLIT||VARIANT_GUTTMAN_QUADRATIC_SPLIT) |
| 80 |
| 81 #if VARIANT_GUTTMAN_QUADRATIC_SPLIT |
| 82 #define PickNext QuadraticPickNext |
| 83 #define PickSeeds QuadraticPickSeeds |
| 84 #define AssignCells splitNodeGuttman |
| 85 #endif |
| 86 #if VARIANT_GUTTMAN_LINEAR_SPLIT |
| 87 #define PickNext LinearPickNext |
| 88 #define PickSeeds LinearPickSeeds |
| 89 #define AssignCells splitNodeGuttman |
| 90 #endif |
| 91 #if VARIANT_RSTARTREE_SPLIT |
| 92 #define AssignCells splitNodeStartree |
| 93 #endif |
| 94 |
| 95 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) |
| 96 # define NDEBUG 1 |
| 97 #endif |
| 98 |
| 99 #ifndef SQLITE_CORE |
| 100 #include "sqlite3ext.h" |
| 101 SQLITE_EXTENSION_INIT1 |
| 102 #else |
| 103 #include "sqlite3.h" |
| 104 #endif |
| 105 |
| 106 #include <string.h> |
| 107 #include <assert.h> |
| 108 |
| 109 #ifndef SQLITE_AMALGAMATION |
| 110 #include "sqlite3rtree.h" |
| 111 typedef sqlite3_int64 i64; |
| 112 typedef unsigned char u8; |
| 113 typedef unsigned int u32; |
| 114 #endif |
| 115 |
| 116 /* The following macro is used to suppress compiler warnings. |
| 117 */ |
| 118 #ifndef UNUSED_PARAMETER |
| 119 # define UNUSED_PARAMETER(x) (void)(x) |
| 120 #endif |
| 121 |
| 122 typedef struct Rtree Rtree; |
| 123 typedef struct RtreeCursor RtreeCursor; |
| 124 typedef struct RtreeNode RtreeNode; |
| 125 typedef struct RtreeCell RtreeCell; |
| 126 typedef struct RtreeConstraint RtreeConstraint; |
| 127 typedef struct RtreeMatchArg RtreeMatchArg; |
| 128 typedef struct RtreeGeomCallback RtreeGeomCallback; |
| 129 typedef union RtreeCoord RtreeCoord; |
| 130 |
| 131 /* The rtree may have between 1 and RTREE_MAX_DIMENSIONS dimensions. */ |
| 132 #define RTREE_MAX_DIMENSIONS 5 |
| 133 |
| 134 /* Size of hash table Rtree.aHash. This hash table is not expected to |
| 135 ** ever contain very many entries, so a fixed number of buckets is |
| 136 ** used. |
| 137 */ |
| 138 #define HASHSIZE 128 |
| 139 |
| 140 /* |
| 141 ** An rtree virtual-table object. |
| 142 */ |
| 143 struct Rtree { |
| 144 sqlite3_vtab base; |
| 145 sqlite3 *db; /* Host database connection */ |
| 146 int iNodeSize; /* Size in bytes of each node in the node table */ |
| 147 int nDim; /* Number of dimensions */ |
| 148 int nBytesPerCell; /* Bytes consumed per cell */ |
| 149 int iDepth; /* Current depth of the r-tree structure */ |
| 150 char *zDb; /* Name of database containing r-tree table */ |
| 151 char *zName; /* Name of r-tree table */ |
| 152 RtreeNode *aHash[HASHSIZE]; /* Hash table of in-memory nodes. */ |
| 153 int nBusy; /* Current number of users of this structure */ |
| 154 |
| 155 /* List of nodes removed during a CondenseTree operation. List is |
| 156 ** linked together via the pointer normally used for hash chains - |
| 157 ** RtreeNode.pNext. RtreeNode.iNode stores the depth of the sub-tree |
| 158 ** headed by the node (leaf nodes have RtreeNode.iNode==0). |
| 159 */ |
| 160 RtreeNode *pDeleted; |
| 161 int iReinsertHeight; /* Height of sub-trees Reinsert() has run on */ |
| 162 |
| 163 /* Statements to read/write/delete a record from xxx_node */ |
| 164 sqlite3_stmt *pReadNode; |
| 165 sqlite3_stmt *pWriteNode; |
| 166 sqlite3_stmt *pDeleteNode; |
| 167 |
| 168 /* Statements to read/write/delete a record from xxx_rowid */ |
| 169 sqlite3_stmt *pReadRowid; |
| 170 sqlite3_stmt *pWriteRowid; |
| 171 sqlite3_stmt *pDeleteRowid; |
| 172 |
| 173 /* Statements to read/write/delete a record from xxx_parent */ |
| 174 sqlite3_stmt *pReadParent; |
| 175 sqlite3_stmt *pWriteParent; |
| 176 sqlite3_stmt *pDeleteParent; |
| 177 |
| 178 int eCoordType; |
| 179 }; |
| 180 |
| 181 /* Possible values for eCoordType: */ |
| 182 #define RTREE_COORD_REAL32 0 |
| 183 #define RTREE_COORD_INT32 1 |
| 184 |
| 185 /* |
| 186 ** The minimum number of cells allowed for a node is a third of the |
| 187 ** maximum. In Gutman's notation: |
| 188 ** |
| 189 ** m = M/3 |
| 190 ** |
| 191 ** If an R*-tree "Reinsert" operation is required, the same number of |
| 192 ** cells are removed from the overfull node and reinserted into the tree. |
| 193 */ |
| 194 #define RTREE_MINCELLS(p) ((((p)->iNodeSize-4)/(p)->nBytesPerCell)/3) |
| 195 #define RTREE_REINSERT(p) RTREE_MINCELLS(p) |
| 196 #define RTREE_MAXCELLS 51 |
| 197 |
| 198 /* |
| 199 ** The smallest possible node-size is (512-64)==448 bytes. And the largest |
| 200 ** supported cell size is 48 bytes (8 byte rowid + ten 4 byte coordinates). |
| 201 ** Therefore all non-root nodes must contain at least 3 entries. Since |
| 202 ** 2^40 is greater than 2^64, an r-tree structure always has a depth of |
| 203 ** 40 or less. |
| 204 */ |
| 205 #define RTREE_MAX_DEPTH 40 |
| 206 |
| 207 /* |
| 208 ** An rtree cursor object. |
| 209 */ |
| 210 struct RtreeCursor { |
| 211 sqlite3_vtab_cursor base; |
| 212 RtreeNode *pNode; /* Node cursor is currently pointing at */ |
| 213 int iCell; /* Index of current cell in pNode */ |
| 214 int iStrategy; /* Copy of idxNum search parameter */ |
| 215 int nConstraint; /* Number of entries in aConstraint */ |
| 216 RtreeConstraint *aConstraint; /* Search constraints. */ |
| 217 }; |
| 218 |
| 219 union RtreeCoord { |
| 220 float f; |
| 221 int i; |
| 222 }; |
| 223 |
| 224 /* |
| 225 ** The argument is an RtreeCoord. Return the value stored within the RtreeCoord |
| 226 ** formatted as a double. This macro assumes that local variable pRtree points |
| 227 ** to the Rtree structure associated with the RtreeCoord. |
| 228 */ |
| 229 #define DCOORD(coord) ( \ |
| 230 (pRtree->eCoordType==RTREE_COORD_REAL32) ? \ |
| 231 ((double)coord.f) : \ |
| 232 ((double)coord.i) \ |
| 233 ) |
| 234 |
| 235 /* |
| 236 ** A search constraint. |
| 237 */ |
| 238 struct RtreeConstraint { |
| 239 int iCoord; /* Index of constrained coordinate */ |
| 240 int op; /* Constraining operation */ |
| 241 double rValue; /* Constraint value. */ |
| 242 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); |
| 243 sqlite3_rtree_geometry *pGeom; /* Constraint callback argument for a MATCH */ |
| 244 }; |
| 245 |
| 246 /* Possible values for RtreeConstraint.op */ |
| 247 #define RTREE_EQ 0x41 |
| 248 #define RTREE_LE 0x42 |
| 249 #define RTREE_LT 0x43 |
| 250 #define RTREE_GE 0x44 |
| 251 #define RTREE_GT 0x45 |
| 252 #define RTREE_MATCH 0x46 |
| 253 |
| 254 /* |
| 255 ** An rtree structure node. |
| 256 */ |
| 257 struct RtreeNode { |
| 258 RtreeNode *pParent; /* Parent node */ |
| 259 i64 iNode; |
| 260 int nRef; |
| 261 int isDirty; |
| 262 u8 *zData; |
| 263 RtreeNode *pNext; /* Next node in this hash chain */ |
| 264 }; |
| 265 #define NCELL(pNode) readInt16(&(pNode)->zData[2]) |
| 266 |
| 267 /* |
| 268 ** Structure to store a deserialized rtree record. |
| 269 */ |
| 270 struct RtreeCell { |
| 271 i64 iRowid; |
| 272 RtreeCoord aCoord[RTREE_MAX_DIMENSIONS*2]; |
| 273 }; |
| 274 |
| 275 |
| 276 /* |
| 277 ** Value for the first field of every RtreeMatchArg object. The MATCH |
| 278 ** operator tests that the first field of a blob operand matches this |
| 279 ** value to avoid operating on invalid blobs (which could cause a segfault). |
| 280 */ |
| 281 #define RTREE_GEOMETRY_MAGIC 0x891245AB |
| 282 |
| 283 /* |
| 284 ** An instance of this structure must be supplied as a blob argument to |
| 285 ** the right-hand-side of an SQL MATCH operator used to constrain an |
| 286 ** r-tree query. |
| 287 */ |
| 288 struct RtreeMatchArg { |
| 289 u32 magic; /* Always RTREE_GEOMETRY_MAGIC */ |
| 290 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); |
| 291 void *pContext; |
| 292 int nParam; |
| 293 double aParam[1]; |
| 294 }; |
| 295 |
| 296 /* |
| 297 ** When a geometry callback is created (see sqlite3_rtree_geometry_callback), |
| 298 ** a single instance of the following structure is allocated. It is used |
| 299 ** as the context for the user-function created by by s_r_g_c(). The object |
| 300 ** is eventually deleted by the destructor mechanism provided by |
| 301 ** sqlite3_create_function_v2() (which is called by s_r_g_c() to create |
| 302 ** the geometry callback function). |
| 303 */ |
| 304 struct RtreeGeomCallback { |
| 305 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *); |
| 306 void *pContext; |
| 307 }; |
| 308 |
| 309 #ifndef MAX |
| 310 # define MAX(x,y) ((x) < (y) ? (y) : (x)) |
| 311 #endif |
| 312 #ifndef MIN |
| 313 # define MIN(x,y) ((x) > (y) ? (y) : (x)) |
| 314 #endif |
| 315 |
| 316 /* |
| 317 ** Functions to deserialize a 16 bit integer, 32 bit real number and |
| 318 ** 64 bit integer. The deserialized value is returned. |
| 319 */ |
| 320 static int readInt16(u8 *p){ |
| 321 return (p[0]<<8) + p[1]; |
| 322 } |
| 323 static void readCoord(u8 *p, RtreeCoord *pCoord){ |
| 324 u32 i = ( |
| 325 (((u32)p[0]) << 24) + |
| 326 (((u32)p[1]) << 16) + |
| 327 (((u32)p[2]) << 8) + |
| 328 (((u32)p[3]) << 0) |
| 329 ); |
| 330 *(u32 *)pCoord = i; |
| 331 } |
| 332 static i64 readInt64(u8 *p){ |
| 333 return ( |
| 334 (((i64)p[0]) << 56) + |
| 335 (((i64)p[1]) << 48) + |
| 336 (((i64)p[2]) << 40) + |
| 337 (((i64)p[3]) << 32) + |
| 338 (((i64)p[4]) << 24) + |
| 339 (((i64)p[5]) << 16) + |
| 340 (((i64)p[6]) << 8) + |
| 341 (((i64)p[7]) << 0) |
| 342 ); |
| 343 } |
| 344 |
| 345 /* |
| 346 ** Functions to serialize a 16 bit integer, 32 bit real number and |
| 347 ** 64 bit integer. The value returned is the number of bytes written |
| 348 ** to the argument buffer (always 2, 4 and 8 respectively). |
| 349 */ |
| 350 static int writeInt16(u8 *p, int i){ |
| 351 p[0] = (i>> 8)&0xFF; |
| 352 p[1] = (i>> 0)&0xFF; |
| 353 return 2; |
| 354 } |
| 355 static int writeCoord(u8 *p, RtreeCoord *pCoord){ |
| 356 u32 i; |
| 357 assert( sizeof(RtreeCoord)==4 ); |
| 358 assert( sizeof(u32)==4 ); |
| 359 i = *(u32 *)pCoord; |
| 360 p[0] = (i>>24)&0xFF; |
| 361 p[1] = (i>>16)&0xFF; |
| 362 p[2] = (i>> 8)&0xFF; |
| 363 p[3] = (i>> 0)&0xFF; |
| 364 return 4; |
| 365 } |
| 366 static int writeInt64(u8 *p, i64 i){ |
| 367 p[0] = (i>>56)&0xFF; |
| 368 p[1] = (i>>48)&0xFF; |
| 369 p[2] = (i>>40)&0xFF; |
| 370 p[3] = (i>>32)&0xFF; |
| 371 p[4] = (i>>24)&0xFF; |
| 372 p[5] = (i>>16)&0xFF; |
| 373 p[6] = (i>> 8)&0xFF; |
| 374 p[7] = (i>> 0)&0xFF; |
| 375 return 8; |
| 376 } |
| 377 |
| 378 /* |
| 379 ** Increment the reference count of node p. |
| 380 */ |
| 381 static void nodeReference(RtreeNode *p){ |
| 382 if( p ){ |
| 383 p->nRef++; |
| 384 } |
| 385 } |
| 386 |
| 387 /* |
| 388 ** Clear the content of node p (set all bytes to 0x00). |
| 389 */ |
| 390 static void nodeZero(Rtree *pRtree, RtreeNode *p){ |
| 391 memset(&p->zData[2], 0, pRtree->iNodeSize-2); |
| 392 p->isDirty = 1; |
| 393 } |
| 394 |
| 395 /* |
| 396 ** Given a node number iNode, return the corresponding key to use |
| 397 ** in the Rtree.aHash table. |
| 398 */ |
| 399 static int nodeHash(i64 iNode){ |
| 400 return ( |
| 401 (iNode>>56) ^ (iNode>>48) ^ (iNode>>40) ^ (iNode>>32) ^ |
| 402 (iNode>>24) ^ (iNode>>16) ^ (iNode>> 8) ^ (iNode>> 0) |
| 403 ) % HASHSIZE; |
| 404 } |
| 405 |
| 406 /* |
| 407 ** Search the node hash table for node iNode. If found, return a pointer |
| 408 ** to it. Otherwise, return 0. |
| 409 */ |
| 410 static RtreeNode *nodeHashLookup(Rtree *pRtree, i64 iNode){ |
| 411 RtreeNode *p; |
| 412 for(p=pRtree->aHash[nodeHash(iNode)]; p && p->iNode!=iNode; p=p->pNext); |
| 413 return p; |
| 414 } |
| 415 |
| 416 /* |
| 417 ** Add node pNode to the node hash table. |
| 418 */ |
| 419 static void nodeHashInsert(Rtree *pRtree, RtreeNode *pNode){ |
| 420 int iHash; |
| 421 assert( pNode->pNext==0 ); |
| 422 iHash = nodeHash(pNode->iNode); |
| 423 pNode->pNext = pRtree->aHash[iHash]; |
| 424 pRtree->aHash[iHash] = pNode; |
| 425 } |
| 426 |
| 427 /* |
| 428 ** Remove node pNode from the node hash table. |
| 429 */ |
| 430 static void nodeHashDelete(Rtree *pRtree, RtreeNode *pNode){ |
| 431 RtreeNode **pp; |
| 432 if( pNode->iNode!=0 ){ |
| 433 pp = &pRtree->aHash[nodeHash(pNode->iNode)]; |
| 434 for( ; (*pp)!=pNode; pp = &(*pp)->pNext){ assert(*pp); } |
| 435 *pp = pNode->pNext; |
| 436 pNode->pNext = 0; |
| 437 } |
| 438 } |
| 439 |
| 440 /* |
| 441 ** Allocate and return new r-tree node. Initially, (RtreeNode.iNode==0), |
| 442 ** indicating that node has not yet been assigned a node number. It is |
| 443 ** assigned a node number when nodeWrite() is called to write the |
| 444 ** node contents out to the database. |
| 445 */ |
| 446 static RtreeNode *nodeNew(Rtree *pRtree, RtreeNode *pParent){ |
| 447 RtreeNode *pNode; |
| 448 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode) + pRtree->iNodeSize); |
| 449 if( pNode ){ |
| 450 memset(pNode, 0, sizeof(RtreeNode) + pRtree->iNodeSize); |
| 451 pNode->zData = (u8 *)&pNode[1]; |
| 452 pNode->nRef = 1; |
| 453 pNode->pParent = pParent; |
| 454 pNode->isDirty = 1; |
| 455 nodeReference(pParent); |
| 456 } |
| 457 return pNode; |
| 458 } |
| 459 |
| 460 /* |
| 461 ** Obtain a reference to an r-tree node. |
| 462 */ |
| 463 static int |
| 464 nodeAcquire( |
| 465 Rtree *pRtree, /* R-tree structure */ |
| 466 i64 iNode, /* Node number to load */ |
| 467 RtreeNode *pParent, /* Either the parent node or NULL */ |
| 468 RtreeNode **ppNode /* OUT: Acquired node */ |
| 469 ){ |
| 470 int rc; |
| 471 int rc2 = SQLITE_OK; |
| 472 RtreeNode *pNode; |
| 473 |
| 474 /* Check if the requested node is already in the hash table. If so, |
| 475 ** increase its reference count and return it. |
| 476 */ |
| 477 if( (pNode = nodeHashLookup(pRtree, iNode)) ){ |
| 478 assert( !pParent || !pNode->pParent || pNode->pParent==pParent ); |
| 479 if( pParent && !pNode->pParent ){ |
| 480 nodeReference(pParent); |
| 481 pNode->pParent = pParent; |
| 482 } |
| 483 pNode->nRef++; |
| 484 *ppNode = pNode; |
| 485 return SQLITE_OK; |
| 486 } |
| 487 |
| 488 sqlite3_bind_int64(pRtree->pReadNode, 1, iNode); |
| 489 rc = sqlite3_step(pRtree->pReadNode); |
| 490 if( rc==SQLITE_ROW ){ |
| 491 const u8 *zBlob = sqlite3_column_blob(pRtree->pReadNode, 0); |
| 492 if( pRtree->iNodeSize==sqlite3_column_bytes(pRtree->pReadNode, 0) ){ |
| 493 pNode = (RtreeNode *)sqlite3_malloc(sizeof(RtreeNode)+pRtree->iNodeSize); |
| 494 if( !pNode ){ |
| 495 rc2 = SQLITE_NOMEM; |
| 496 }else{ |
| 497 pNode->pParent = pParent; |
| 498 pNode->zData = (u8 *)&pNode[1]; |
| 499 pNode->nRef = 1; |
| 500 pNode->iNode = iNode; |
| 501 pNode->isDirty = 0; |
| 502 pNode->pNext = 0; |
| 503 memcpy(pNode->zData, zBlob, pRtree->iNodeSize); |
| 504 nodeReference(pParent); |
| 505 } |
| 506 } |
| 507 } |
| 508 rc = sqlite3_reset(pRtree->pReadNode); |
| 509 if( rc==SQLITE_OK ) rc = rc2; |
| 510 |
| 511 /* If the root node was just loaded, set pRtree->iDepth to the height |
| 512 ** of the r-tree structure. A height of zero means all data is stored on |
| 513 ** the root node. A height of one means the children of the root node |
| 514 ** are the leaves, and so on. If the depth as specified on the root node |
| 515 ** is greater than RTREE_MAX_DEPTH, the r-tree structure must be corrupt. |
| 516 */ |
| 517 if( pNode && iNode==1 ){ |
| 518 pRtree->iDepth = readInt16(pNode->zData); |
| 519 if( pRtree->iDepth>RTREE_MAX_DEPTH ){ |
| 520 rc = SQLITE_CORRUPT; |
| 521 } |
| 522 } |
| 523 |
| 524 /* If no error has occurred so far, check if the "number of entries" |
| 525 ** field on the node is too large. If so, set the return code to |
| 526 ** SQLITE_CORRUPT. |
| 527 */ |
| 528 if( pNode && rc==SQLITE_OK ){ |
| 529 if( NCELL(pNode)>((pRtree->iNodeSize-4)/pRtree->nBytesPerCell) ){ |
| 530 rc = SQLITE_CORRUPT; |
| 531 } |
| 532 } |
| 533 |
| 534 if( rc==SQLITE_OK ){ |
| 535 if( pNode!=0 ){ |
| 536 nodeHashInsert(pRtree, pNode); |
| 537 }else{ |
| 538 rc = SQLITE_CORRUPT; |
| 539 } |
| 540 *ppNode = pNode; |
| 541 }else{ |
| 542 sqlite3_free(pNode); |
| 543 *ppNode = 0; |
| 544 } |
| 545 |
| 546 return rc; |
| 547 } |
| 548 |
| 549 /* |
| 550 ** Overwrite cell iCell of node pNode with the contents of pCell. |
| 551 */ |
| 552 static void nodeOverwriteCell( |
| 553 Rtree *pRtree, |
| 554 RtreeNode *pNode, |
| 555 RtreeCell *pCell, |
| 556 int iCell |
| 557 ){ |
| 558 int ii; |
| 559 u8 *p = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| 560 p += writeInt64(p, pCell->iRowid); |
| 561 for(ii=0; ii<(pRtree->nDim*2); ii++){ |
| 562 p += writeCoord(p, &pCell->aCoord[ii]); |
| 563 } |
| 564 pNode->isDirty = 1; |
| 565 } |
| 566 |
| 567 /* |
| 568 ** Remove cell the cell with index iCell from node pNode. |
| 569 */ |
| 570 static void nodeDeleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell){ |
| 571 u8 *pDst = &pNode->zData[4 + pRtree->nBytesPerCell*iCell]; |
| 572 u8 *pSrc = &pDst[pRtree->nBytesPerCell]; |
| 573 int nByte = (NCELL(pNode) - iCell - 1) * pRtree->nBytesPerCell; |
| 574 memmove(pDst, pSrc, nByte); |
| 575 writeInt16(&pNode->zData[2], NCELL(pNode)-1); |
| 576 pNode->isDirty = 1; |
| 577 } |
| 578 |
| 579 /* |
| 580 ** Insert the contents of cell pCell into node pNode. If the insert |
| 581 ** is successful, return SQLITE_OK. |
| 582 ** |
| 583 ** If there is not enough free space in pNode, return SQLITE_FULL. |
| 584 */ |
| 585 static int |
| 586 nodeInsertCell( |
| 587 Rtree *pRtree, |
| 588 RtreeNode *pNode, |
| 589 RtreeCell *pCell |
| 590 ){ |
| 591 int nCell; /* Current number of cells in pNode */ |
| 592 int nMaxCell; /* Maximum number of cells for pNode */ |
| 593 |
| 594 nMaxCell = (pRtree->iNodeSize-4)/pRtree->nBytesPerCell; |
| 595 nCell = NCELL(pNode); |
| 596 |
| 597 assert( nCell<=nMaxCell ); |
| 598 if( nCell<nMaxCell ){ |
| 599 nodeOverwriteCell(pRtree, pNode, pCell, nCell); |
| 600 writeInt16(&pNode->zData[2], nCell+1); |
| 601 pNode->isDirty = 1; |
| 602 } |
| 603 |
| 604 return (nCell==nMaxCell); |
| 605 } |
| 606 |
| 607 /* |
| 608 ** If the node is dirty, write it out to the database. |
| 609 */ |
| 610 static int |
| 611 nodeWrite(Rtree *pRtree, RtreeNode *pNode){ |
| 612 int rc = SQLITE_OK; |
| 613 if( pNode->isDirty ){ |
| 614 sqlite3_stmt *p = pRtree->pWriteNode; |
| 615 if( pNode->iNode ){ |
| 616 sqlite3_bind_int64(p, 1, pNode->iNode); |
| 617 }else{ |
| 618 sqlite3_bind_null(p, 1); |
| 619 } |
| 620 sqlite3_bind_blob(p, 2, pNode->zData, pRtree->iNodeSize, SQLITE_STATIC); |
| 621 sqlite3_step(p); |
| 622 pNode->isDirty = 0; |
| 623 rc = sqlite3_reset(p); |
| 624 if( pNode->iNode==0 && rc==SQLITE_OK ){ |
| 625 pNode->iNode = sqlite3_last_insert_rowid(pRtree->db); |
| 626 nodeHashInsert(pRtree, pNode); |
| 627 } |
| 628 } |
| 629 return rc; |
| 630 } |
| 631 |
| 632 /* |
| 633 ** Release a reference to a node. If the node is dirty and the reference |
| 634 ** count drops to zero, the node data is written to the database. |
| 635 */ |
| 636 static int |
| 637 nodeRelease(Rtree *pRtree, RtreeNode *pNode){ |
| 638 int rc = SQLITE_OK; |
| 639 if( pNode ){ |
| 640 assert( pNode->nRef>0 ); |
| 641 pNode->nRef--; |
| 642 if( pNode->nRef==0 ){ |
| 643 if( pNode->iNode==1 ){ |
| 644 pRtree->iDepth = -1; |
| 645 } |
| 646 if( pNode->pParent ){ |
| 647 rc = nodeRelease(pRtree, pNode->pParent); |
| 648 } |
| 649 if( rc==SQLITE_OK ){ |
| 650 rc = nodeWrite(pRtree, pNode); |
| 651 } |
| 652 nodeHashDelete(pRtree, pNode); |
| 653 sqlite3_free(pNode); |
| 654 } |
| 655 } |
| 656 return rc; |
| 657 } |
| 658 |
| 659 /* |
| 660 ** Return the 64-bit integer value associated with cell iCell of |
| 661 ** node pNode. If pNode is a leaf node, this is a rowid. If it is |
| 662 ** an internal node, then the 64-bit integer is a child page number. |
| 663 */ |
| 664 static i64 nodeGetRowid( |
| 665 Rtree *pRtree, |
| 666 RtreeNode *pNode, |
| 667 int iCell |
| 668 ){ |
| 669 assert( iCell<NCELL(pNode) ); |
| 670 return readInt64(&pNode->zData[4 + pRtree->nBytesPerCell*iCell]); |
| 671 } |
| 672 |
| 673 /* |
| 674 ** Return coordinate iCoord from cell iCell in node pNode. |
| 675 */ |
| 676 static void nodeGetCoord( |
| 677 Rtree *pRtree, |
| 678 RtreeNode *pNode, |
| 679 int iCell, |
| 680 int iCoord, |
| 681 RtreeCoord *pCoord /* Space to write result to */ |
| 682 ){ |
| 683 readCoord(&pNode->zData[12 + pRtree->nBytesPerCell*iCell + 4*iCoord], pCoord); |
| 684 } |
| 685 |
| 686 /* |
| 687 ** Deserialize cell iCell of node pNode. Populate the structure pointed |
| 688 ** to by pCell with the results. |
| 689 */ |
| 690 static void nodeGetCell( |
| 691 Rtree *pRtree, |
| 692 RtreeNode *pNode, |
| 693 int iCell, |
| 694 RtreeCell *pCell |
| 695 ){ |
| 696 int ii; |
| 697 pCell->iRowid = nodeGetRowid(pRtree, pNode, iCell); |
| 698 for(ii=0; ii<pRtree->nDim*2; ii++){ |
| 699 nodeGetCoord(pRtree, pNode, iCell, ii, &pCell->aCoord[ii]); |
| 700 } |
| 701 } |
| 702 |
| 703 |
| 704 /* Forward declaration for the function that does the work of |
| 705 ** the virtual table module xCreate() and xConnect() methods. |
| 706 */ |
| 707 static int rtreeInit( |
| 708 sqlite3 *, void *, int, const char *const*, sqlite3_vtab **, char **, int |
| 709 ); |
| 710 |
| 711 /* |
| 712 ** Rtree virtual table module xCreate method. |
| 713 */ |
| 714 static int rtreeCreate( |
| 715 sqlite3 *db, |
| 716 void *pAux, |
| 717 int argc, const char *const*argv, |
| 718 sqlite3_vtab **ppVtab, |
| 719 char **pzErr |
| 720 ){ |
| 721 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 1); |
| 722 } |
| 723 |
| 724 /* |
| 725 ** Rtree virtual table module xConnect method. |
| 726 */ |
| 727 static int rtreeConnect( |
| 728 sqlite3 *db, |
| 729 void *pAux, |
| 730 int argc, const char *const*argv, |
| 731 sqlite3_vtab **ppVtab, |
| 732 char **pzErr |
| 733 ){ |
| 734 return rtreeInit(db, pAux, argc, argv, ppVtab, pzErr, 0); |
| 735 } |
| 736 |
| 737 /* |
| 738 ** Increment the r-tree reference count. |
| 739 */ |
| 740 static void rtreeReference(Rtree *pRtree){ |
| 741 pRtree->nBusy++; |
| 742 } |
| 743 |
| 744 /* |
| 745 ** Decrement the r-tree reference count. When the reference count reaches |
| 746 ** zero the structure is deleted. |
| 747 */ |
| 748 static void rtreeRelease(Rtree *pRtree){ |
| 749 pRtree->nBusy--; |
| 750 if( pRtree->nBusy==0 ){ |
| 751 sqlite3_finalize(pRtree->pReadNode); |
| 752 sqlite3_finalize(pRtree->pWriteNode); |
| 753 sqlite3_finalize(pRtree->pDeleteNode); |
| 754 sqlite3_finalize(pRtree->pReadRowid); |
| 755 sqlite3_finalize(pRtree->pWriteRowid); |
| 756 sqlite3_finalize(pRtree->pDeleteRowid); |
| 757 sqlite3_finalize(pRtree->pReadParent); |
| 758 sqlite3_finalize(pRtree->pWriteParent); |
| 759 sqlite3_finalize(pRtree->pDeleteParent); |
| 760 sqlite3_free(pRtree); |
| 761 } |
| 762 } |
| 763 |
| 764 /* |
| 765 ** Rtree virtual table module xDisconnect method. |
| 766 */ |
| 767 static int rtreeDisconnect(sqlite3_vtab *pVtab){ |
| 768 rtreeRelease((Rtree *)pVtab); |
| 769 return SQLITE_OK; |
| 770 } |
| 771 |
| 772 /* |
| 773 ** Rtree virtual table module xDestroy method. |
| 774 */ |
| 775 static int rtreeDestroy(sqlite3_vtab *pVtab){ |
| 776 Rtree *pRtree = (Rtree *)pVtab; |
| 777 int rc; |
| 778 char *zCreate = sqlite3_mprintf( |
| 779 "DROP TABLE '%q'.'%q_node';" |
| 780 "DROP TABLE '%q'.'%q_rowid';" |
| 781 "DROP TABLE '%q'.'%q_parent';", |
| 782 pRtree->zDb, pRtree->zName, |
| 783 pRtree->zDb, pRtree->zName, |
| 784 pRtree->zDb, pRtree->zName |
| 785 ); |
| 786 if( !zCreate ){ |
| 787 rc = SQLITE_NOMEM; |
| 788 }else{ |
| 789 rc = sqlite3_exec(pRtree->db, zCreate, 0, 0, 0); |
| 790 sqlite3_free(zCreate); |
| 791 } |
| 792 if( rc==SQLITE_OK ){ |
| 793 rtreeRelease(pRtree); |
| 794 } |
| 795 |
| 796 return rc; |
| 797 } |
| 798 |
| 799 /* |
| 800 ** Rtree virtual table module xOpen method. |
| 801 */ |
| 802 static int rtreeOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ |
| 803 int rc = SQLITE_NOMEM; |
| 804 RtreeCursor *pCsr; |
| 805 |
| 806 pCsr = (RtreeCursor *)sqlite3_malloc(sizeof(RtreeCursor)); |
| 807 if( pCsr ){ |
| 808 memset(pCsr, 0, sizeof(RtreeCursor)); |
| 809 pCsr->base.pVtab = pVTab; |
| 810 rc = SQLITE_OK; |
| 811 } |
| 812 *ppCursor = (sqlite3_vtab_cursor *)pCsr; |
| 813 |
| 814 return rc; |
| 815 } |
| 816 |
| 817 |
| 818 /* |
| 819 ** Free the RtreeCursor.aConstraint[] array and its contents. |
| 820 */ |
| 821 static void freeCursorConstraints(RtreeCursor *pCsr){ |
| 822 if( pCsr->aConstraint ){ |
| 823 int i; /* Used to iterate through constraint array */ |
| 824 for(i=0; i<pCsr->nConstraint; i++){ |
| 825 sqlite3_rtree_geometry *pGeom = pCsr->aConstraint[i].pGeom; |
| 826 if( pGeom ){ |
| 827 if( pGeom->xDelUser ) pGeom->xDelUser(pGeom->pUser); |
| 828 sqlite3_free(pGeom); |
| 829 } |
| 830 } |
| 831 sqlite3_free(pCsr->aConstraint); |
| 832 pCsr->aConstraint = 0; |
| 833 } |
| 834 } |
| 835 |
| 836 /* |
| 837 ** Rtree virtual table module xClose method. |
| 838 */ |
| 839 static int rtreeClose(sqlite3_vtab_cursor *cur){ |
| 840 Rtree *pRtree = (Rtree *)(cur->pVtab); |
| 841 int rc; |
| 842 RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 843 freeCursorConstraints(pCsr); |
| 844 rc = nodeRelease(pRtree, pCsr->pNode); |
| 845 sqlite3_free(pCsr); |
| 846 return rc; |
| 847 } |
| 848 |
| 849 /* |
| 850 ** Rtree virtual table module xEof method. |
| 851 ** |
| 852 ** Return non-zero if the cursor does not currently point to a valid |
| 853 ** record (i.e if the scan has finished), or zero otherwise. |
| 854 */ |
| 855 static int rtreeEof(sqlite3_vtab_cursor *cur){ |
| 856 RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 857 return (pCsr->pNode==0); |
| 858 } |
| 859 |
| 860 /* |
| 861 ** The r-tree constraint passed as the second argument to this function is |
| 862 ** guaranteed to be a MATCH constraint. |
| 863 */ |
| 864 static int testRtreeGeom( |
| 865 Rtree *pRtree, /* R-Tree object */ |
| 866 RtreeConstraint *pConstraint, /* MATCH constraint to test */ |
| 867 RtreeCell *pCell, /* Cell to test */ |
| 868 int *pbRes /* OUT: Test result */ |
| 869 ){ |
| 870 int i; |
| 871 double aCoord[RTREE_MAX_DIMENSIONS*2]; |
| 872 int nCoord = pRtree->nDim*2; |
| 873 |
| 874 assert( pConstraint->op==RTREE_MATCH ); |
| 875 assert( pConstraint->pGeom ); |
| 876 |
| 877 for(i=0; i<nCoord; i++){ |
| 878 aCoord[i] = DCOORD(pCell->aCoord[i]); |
| 879 } |
| 880 return pConstraint->xGeom(pConstraint->pGeom, nCoord, aCoord, pbRes); |
| 881 } |
| 882 |
| 883 /* |
| 884 ** Cursor pCursor currently points to a cell in a non-leaf page. |
| 885 ** Set *pbEof to true if the sub-tree headed by the cell is filtered |
| 886 ** (excluded) by the constraints in the pCursor->aConstraint[] |
| 887 ** array, or false otherwise. |
| 888 ** |
| 889 ** Return SQLITE_OK if successful or an SQLite error code if an error |
| 890 ** occurs within a geometry callback. |
| 891 */ |
| 892 static int testRtreeCell(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ |
| 893 RtreeCell cell; |
| 894 int ii; |
| 895 int bRes = 0; |
| 896 int rc = SQLITE_OK; |
| 897 |
| 898 nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); |
| 899 for(ii=0; bRes==0 && ii<pCursor->nConstraint; ii++){ |
| 900 RtreeConstraint *p = &pCursor->aConstraint[ii]; |
| 901 double cell_min = DCOORD(cell.aCoord[(p->iCoord>>1)*2]); |
| 902 double cell_max = DCOORD(cell.aCoord[(p->iCoord>>1)*2+1]); |
| 903 |
| 904 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
| 905 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH |
| 906 ); |
| 907 |
| 908 switch( p->op ){ |
| 909 case RTREE_LE: case RTREE_LT: |
| 910 bRes = p->rValue<cell_min; |
| 911 break; |
| 912 |
| 913 case RTREE_GE: case RTREE_GT: |
| 914 bRes = p->rValue>cell_max; |
| 915 break; |
| 916 |
| 917 case RTREE_EQ: |
| 918 bRes = (p->rValue>cell_max || p->rValue<cell_min); |
| 919 break; |
| 920 |
| 921 default: { |
| 922 assert( p->op==RTREE_MATCH ); |
| 923 rc = testRtreeGeom(pRtree, p, &cell, &bRes); |
| 924 bRes = !bRes; |
| 925 break; |
| 926 } |
| 927 } |
| 928 } |
| 929 |
| 930 *pbEof = bRes; |
| 931 return rc; |
| 932 } |
| 933 |
| 934 /* |
| 935 ** Test if the cell that cursor pCursor currently points to |
| 936 ** would be filtered (excluded) by the constraints in the |
| 937 ** pCursor->aConstraint[] array. If so, set *pbEof to true before |
| 938 ** returning. If the cell is not filtered (excluded) by the constraints, |
| 939 ** set pbEof to zero. |
| 940 ** |
| 941 ** Return SQLITE_OK if successful or an SQLite error code if an error |
| 942 ** occurs within a geometry callback. |
| 943 ** |
| 944 ** This function assumes that the cell is part of a leaf node. |
| 945 */ |
| 946 static int testRtreeEntry(Rtree *pRtree, RtreeCursor *pCursor, int *pbEof){ |
| 947 RtreeCell cell; |
| 948 int ii; |
| 949 *pbEof = 0; |
| 950 |
| 951 nodeGetCell(pRtree, pCursor->pNode, pCursor->iCell, &cell); |
| 952 for(ii=0; ii<pCursor->nConstraint; ii++){ |
| 953 RtreeConstraint *p = &pCursor->aConstraint[ii]; |
| 954 double coord = DCOORD(cell.aCoord[p->iCoord]); |
| 955 int res; |
| 956 assert(p->op==RTREE_LE || p->op==RTREE_LT || p->op==RTREE_GE |
| 957 || p->op==RTREE_GT || p->op==RTREE_EQ || p->op==RTREE_MATCH |
| 958 ); |
| 959 switch( p->op ){ |
| 960 case RTREE_LE: res = (coord<=p->rValue); break; |
| 961 case RTREE_LT: res = (coord<p->rValue); break; |
| 962 case RTREE_GE: res = (coord>=p->rValue); break; |
| 963 case RTREE_GT: res = (coord>p->rValue); break; |
| 964 case RTREE_EQ: res = (coord==p->rValue); break; |
| 965 default: { |
| 966 int rc; |
| 967 assert( p->op==RTREE_MATCH ); |
| 968 rc = testRtreeGeom(pRtree, p, &cell, &res); |
| 969 if( rc!=SQLITE_OK ){ |
| 970 return rc; |
| 971 } |
| 972 break; |
| 973 } |
| 974 } |
| 975 |
| 976 if( !res ){ |
| 977 *pbEof = 1; |
| 978 return SQLITE_OK; |
| 979 } |
| 980 } |
| 981 |
| 982 return SQLITE_OK; |
| 983 } |
| 984 |
| 985 /* |
| 986 ** Cursor pCursor currently points at a node that heads a sub-tree of |
| 987 ** height iHeight (if iHeight==0, then the node is a leaf). Descend |
| 988 ** to point to the left-most cell of the sub-tree that matches the |
| 989 ** configured constraints. |
| 990 */ |
| 991 static int descendToCell( |
| 992 Rtree *pRtree, |
| 993 RtreeCursor *pCursor, |
| 994 int iHeight, |
| 995 int *pEof /* OUT: Set to true if cannot descend */ |
| 996 ){ |
| 997 int isEof; |
| 998 int rc; |
| 999 int ii; |
| 1000 RtreeNode *pChild; |
| 1001 sqlite3_int64 iRowid; |
| 1002 |
| 1003 RtreeNode *pSavedNode = pCursor->pNode; |
| 1004 int iSavedCell = pCursor->iCell; |
| 1005 |
| 1006 assert( iHeight>=0 ); |
| 1007 |
| 1008 if( iHeight==0 ){ |
| 1009 rc = testRtreeEntry(pRtree, pCursor, &isEof); |
| 1010 }else{ |
| 1011 rc = testRtreeCell(pRtree, pCursor, &isEof); |
| 1012 } |
| 1013 if( rc!=SQLITE_OK || isEof || iHeight==0 ){ |
| 1014 goto descend_to_cell_out; |
| 1015 } |
| 1016 |
| 1017 iRowid = nodeGetRowid(pRtree, pCursor->pNode, pCursor->iCell); |
| 1018 rc = nodeAcquire(pRtree, iRowid, pCursor->pNode, &pChild); |
| 1019 if( rc!=SQLITE_OK ){ |
| 1020 goto descend_to_cell_out; |
| 1021 } |
| 1022 |
| 1023 nodeRelease(pRtree, pCursor->pNode); |
| 1024 pCursor->pNode = pChild; |
| 1025 isEof = 1; |
| 1026 for(ii=0; isEof && ii<NCELL(pChild); ii++){ |
| 1027 pCursor->iCell = ii; |
| 1028 rc = descendToCell(pRtree, pCursor, iHeight-1, &isEof); |
| 1029 if( rc!=SQLITE_OK ){ |
| 1030 goto descend_to_cell_out; |
| 1031 } |
| 1032 } |
| 1033 |
| 1034 if( isEof ){ |
| 1035 assert( pCursor->pNode==pChild ); |
| 1036 nodeReference(pSavedNode); |
| 1037 nodeRelease(pRtree, pChild); |
| 1038 pCursor->pNode = pSavedNode; |
| 1039 pCursor->iCell = iSavedCell; |
| 1040 } |
| 1041 |
| 1042 descend_to_cell_out: |
| 1043 *pEof = isEof; |
| 1044 return rc; |
| 1045 } |
| 1046 |
| 1047 /* |
| 1048 ** One of the cells in node pNode is guaranteed to have a 64-bit |
| 1049 ** integer value equal to iRowid. Return the index of this cell. |
| 1050 */ |
| 1051 static int nodeRowidIndex( |
| 1052 Rtree *pRtree, |
| 1053 RtreeNode *pNode, |
| 1054 i64 iRowid, |
| 1055 int *piIndex |
| 1056 ){ |
| 1057 int ii; |
| 1058 int nCell = NCELL(pNode); |
| 1059 for(ii=0; ii<nCell; ii++){ |
| 1060 if( nodeGetRowid(pRtree, pNode, ii)==iRowid ){ |
| 1061 *piIndex = ii; |
| 1062 return SQLITE_OK; |
| 1063 } |
| 1064 } |
| 1065 return SQLITE_CORRUPT; |
| 1066 } |
| 1067 |
| 1068 /* |
| 1069 ** Return the index of the cell containing a pointer to node pNode |
| 1070 ** in its parent. If pNode is the root node, return -1. |
| 1071 */ |
| 1072 static int nodeParentIndex(Rtree *pRtree, RtreeNode *pNode, int *piIndex){ |
| 1073 RtreeNode *pParent = pNode->pParent; |
| 1074 if( pParent ){ |
| 1075 return nodeRowidIndex(pRtree, pParent, pNode->iNode, piIndex); |
| 1076 } |
| 1077 *piIndex = -1; |
| 1078 return SQLITE_OK; |
| 1079 } |
| 1080 |
| 1081 /* |
| 1082 ** Rtree virtual table module xNext method. |
| 1083 */ |
| 1084 static int rtreeNext(sqlite3_vtab_cursor *pVtabCursor){ |
| 1085 Rtree *pRtree = (Rtree *)(pVtabCursor->pVtab); |
| 1086 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| 1087 int rc = SQLITE_OK; |
| 1088 |
| 1089 /* RtreeCursor.pNode must not be NULL. If is is NULL, then this cursor is |
| 1090 ** already at EOF. It is against the rules to call the xNext() method of |
| 1091 ** a cursor that has already reached EOF. |
| 1092 */ |
| 1093 assert( pCsr->pNode ); |
| 1094 |
| 1095 if( pCsr->iStrategy==1 ){ |
| 1096 /* This "scan" is a direct lookup by rowid. There is no next entry. */ |
| 1097 nodeRelease(pRtree, pCsr->pNode); |
| 1098 pCsr->pNode = 0; |
| 1099 }else{ |
| 1100 /* Move to the next entry that matches the configured constraints. */ |
| 1101 int iHeight = 0; |
| 1102 while( pCsr->pNode ){ |
| 1103 RtreeNode *pNode = pCsr->pNode; |
| 1104 int nCell = NCELL(pNode); |
| 1105 for(pCsr->iCell++; pCsr->iCell<nCell; pCsr->iCell++){ |
| 1106 int isEof; |
| 1107 rc = descendToCell(pRtree, pCsr, iHeight, &isEof); |
| 1108 if( rc!=SQLITE_OK || !isEof ){ |
| 1109 return rc; |
| 1110 } |
| 1111 } |
| 1112 pCsr->pNode = pNode->pParent; |
| 1113 rc = nodeParentIndex(pRtree, pNode, &pCsr->iCell); |
| 1114 if( rc!=SQLITE_OK ){ |
| 1115 return rc; |
| 1116 } |
| 1117 nodeReference(pCsr->pNode); |
| 1118 nodeRelease(pRtree, pNode); |
| 1119 iHeight++; |
| 1120 } |
| 1121 } |
| 1122 |
| 1123 return rc; |
| 1124 } |
| 1125 |
| 1126 /* |
| 1127 ** Rtree virtual table module xRowid method. |
| 1128 */ |
| 1129 static int rtreeRowid(sqlite3_vtab_cursor *pVtabCursor, sqlite_int64 *pRowid){ |
| 1130 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
| 1131 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| 1132 |
| 1133 assert(pCsr->pNode); |
| 1134 *pRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); |
| 1135 |
| 1136 return SQLITE_OK; |
| 1137 } |
| 1138 |
| 1139 /* |
| 1140 ** Rtree virtual table module xColumn method. |
| 1141 */ |
| 1142 static int rtreeColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ |
| 1143 Rtree *pRtree = (Rtree *)cur->pVtab; |
| 1144 RtreeCursor *pCsr = (RtreeCursor *)cur; |
| 1145 |
| 1146 if( i==0 ){ |
| 1147 i64 iRowid = nodeGetRowid(pRtree, pCsr->pNode, pCsr->iCell); |
| 1148 sqlite3_result_int64(ctx, iRowid); |
| 1149 }else{ |
| 1150 RtreeCoord c; |
| 1151 nodeGetCoord(pRtree, pCsr->pNode, pCsr->iCell, i-1, &c); |
| 1152 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| 1153 sqlite3_result_double(ctx, c.f); |
| 1154 }else{ |
| 1155 assert( pRtree->eCoordType==RTREE_COORD_INT32 ); |
| 1156 sqlite3_result_int(ctx, c.i); |
| 1157 } |
| 1158 } |
| 1159 |
| 1160 return SQLITE_OK; |
| 1161 } |
| 1162 |
| 1163 /* |
| 1164 ** Use nodeAcquire() to obtain the leaf node containing the record with |
| 1165 ** rowid iRowid. If successful, set *ppLeaf to point to the node and |
| 1166 ** return SQLITE_OK. If there is no such record in the table, set |
| 1167 ** *ppLeaf to 0 and return SQLITE_OK. If an error occurs, set *ppLeaf |
| 1168 ** to zero and return an SQLite error code. |
| 1169 */ |
| 1170 static int findLeafNode(Rtree *pRtree, i64 iRowid, RtreeNode **ppLeaf){ |
| 1171 int rc; |
| 1172 *ppLeaf = 0; |
| 1173 sqlite3_bind_int64(pRtree->pReadRowid, 1, iRowid); |
| 1174 if( sqlite3_step(pRtree->pReadRowid)==SQLITE_ROW ){ |
| 1175 i64 iNode = sqlite3_column_int64(pRtree->pReadRowid, 0); |
| 1176 rc = nodeAcquire(pRtree, iNode, 0, ppLeaf); |
| 1177 sqlite3_reset(pRtree->pReadRowid); |
| 1178 }else{ |
| 1179 rc = sqlite3_reset(pRtree->pReadRowid); |
| 1180 } |
| 1181 return rc; |
| 1182 } |
| 1183 |
| 1184 /* |
| 1185 ** This function is called to configure the RtreeConstraint object passed |
| 1186 ** as the second argument for a MATCH constraint. The value passed as the |
| 1187 ** first argument to this function is the right-hand operand to the MATCH |
| 1188 ** operator. |
| 1189 */ |
| 1190 static int deserializeGeometry(sqlite3_value *pValue, RtreeConstraint *pCons){ |
| 1191 RtreeMatchArg *p; |
| 1192 sqlite3_rtree_geometry *pGeom; |
| 1193 int nBlob; |
| 1194 |
| 1195 /* Check that value is actually a blob. */ |
| 1196 if( !sqlite3_value_type(pValue)==SQLITE_BLOB ) return SQLITE_ERROR; |
| 1197 |
| 1198 /* Check that the blob is roughly the right size. */ |
| 1199 nBlob = sqlite3_value_bytes(pValue); |
| 1200 if( nBlob<(int)sizeof(RtreeMatchArg) |
| 1201 || ((nBlob-sizeof(RtreeMatchArg))%sizeof(double))!=0 |
| 1202 ){ |
| 1203 return SQLITE_ERROR; |
| 1204 } |
| 1205 |
| 1206 pGeom = (sqlite3_rtree_geometry *)sqlite3_malloc( |
| 1207 sizeof(sqlite3_rtree_geometry) + nBlob |
| 1208 ); |
| 1209 if( !pGeom ) return SQLITE_NOMEM; |
| 1210 memset(pGeom, 0, sizeof(sqlite3_rtree_geometry)); |
| 1211 p = (RtreeMatchArg *)&pGeom[1]; |
| 1212 |
| 1213 memcpy(p, sqlite3_value_blob(pValue), nBlob); |
| 1214 if( p->magic!=RTREE_GEOMETRY_MAGIC |
| 1215 || nBlob!=(int)(sizeof(RtreeMatchArg) + (p->nParam-1)*sizeof(double)) |
| 1216 ){ |
| 1217 sqlite3_free(pGeom); |
| 1218 return SQLITE_ERROR; |
| 1219 } |
| 1220 |
| 1221 pGeom->pContext = p->pContext; |
| 1222 pGeom->nParam = p->nParam; |
| 1223 pGeom->aParam = p->aParam; |
| 1224 |
| 1225 pCons->xGeom = p->xGeom; |
| 1226 pCons->pGeom = pGeom; |
| 1227 return SQLITE_OK; |
| 1228 } |
| 1229 |
| 1230 /* |
| 1231 ** Rtree virtual table module xFilter method. |
| 1232 */ |
| 1233 static int rtreeFilter( |
| 1234 sqlite3_vtab_cursor *pVtabCursor, |
| 1235 int idxNum, const char *idxStr, |
| 1236 int argc, sqlite3_value **argv |
| 1237 ){ |
| 1238 Rtree *pRtree = (Rtree *)pVtabCursor->pVtab; |
| 1239 RtreeCursor *pCsr = (RtreeCursor *)pVtabCursor; |
| 1240 |
| 1241 RtreeNode *pRoot = 0; |
| 1242 int ii; |
| 1243 int rc = SQLITE_OK; |
| 1244 |
| 1245 rtreeReference(pRtree); |
| 1246 |
| 1247 freeCursorConstraints(pCsr); |
| 1248 pCsr->iStrategy = idxNum; |
| 1249 |
| 1250 if( idxNum==1 ){ |
| 1251 /* Special case - lookup by rowid. */ |
| 1252 RtreeNode *pLeaf; /* Leaf on which the required cell resides */ |
| 1253 i64 iRowid = sqlite3_value_int64(argv[0]); |
| 1254 rc = findLeafNode(pRtree, iRowid, &pLeaf); |
| 1255 pCsr->pNode = pLeaf; |
| 1256 if( pLeaf ){ |
| 1257 assert( rc==SQLITE_OK ); |
| 1258 rc = nodeRowidIndex(pRtree, pLeaf, iRowid, &pCsr->iCell); |
| 1259 } |
| 1260 }else{ |
| 1261 /* Normal case - r-tree scan. Set up the RtreeCursor.aConstraint array |
| 1262 ** with the configured constraints. |
| 1263 */ |
| 1264 if( argc>0 ){ |
| 1265 pCsr->aConstraint = sqlite3_malloc(sizeof(RtreeConstraint)*argc); |
| 1266 pCsr->nConstraint = argc; |
| 1267 if( !pCsr->aConstraint ){ |
| 1268 rc = SQLITE_NOMEM; |
| 1269 }else{ |
| 1270 memset(pCsr->aConstraint, 0, sizeof(RtreeConstraint)*argc); |
| 1271 assert( (idxStr==0 && argc==0) || (int)strlen(idxStr)==argc*2 ); |
| 1272 for(ii=0; ii<argc; ii++){ |
| 1273 RtreeConstraint *p = &pCsr->aConstraint[ii]; |
| 1274 p->op = idxStr[ii*2]; |
| 1275 p->iCoord = idxStr[ii*2+1]-'a'; |
| 1276 if( p->op==RTREE_MATCH ){ |
| 1277 /* A MATCH operator. The right-hand-side must be a blob that |
| 1278 ** can be cast into an RtreeMatchArg object. One created using |
| 1279 ** an sqlite3_rtree_geometry_callback() SQL user function. |
| 1280 */ |
| 1281 rc = deserializeGeometry(argv[ii], p); |
| 1282 if( rc!=SQLITE_OK ){ |
| 1283 break; |
| 1284 } |
| 1285 }else{ |
| 1286 p->rValue = sqlite3_value_double(argv[ii]); |
| 1287 } |
| 1288 } |
| 1289 } |
| 1290 } |
| 1291 |
| 1292 if( rc==SQLITE_OK ){ |
| 1293 pCsr->pNode = 0; |
| 1294 rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| 1295 } |
| 1296 if( rc==SQLITE_OK ){ |
| 1297 int isEof = 1; |
| 1298 int nCell = NCELL(pRoot); |
| 1299 pCsr->pNode = pRoot; |
| 1300 for(pCsr->iCell=0; rc==SQLITE_OK && pCsr->iCell<nCell; pCsr->iCell++){ |
| 1301 assert( pCsr->pNode==pRoot ); |
| 1302 rc = descendToCell(pRtree, pCsr, pRtree->iDepth, &isEof); |
| 1303 if( !isEof ){ |
| 1304 break; |
| 1305 } |
| 1306 } |
| 1307 if( rc==SQLITE_OK && isEof ){ |
| 1308 assert( pCsr->pNode==pRoot ); |
| 1309 nodeRelease(pRtree, pRoot); |
| 1310 pCsr->pNode = 0; |
| 1311 } |
| 1312 assert( rc!=SQLITE_OK || !pCsr->pNode || pCsr->iCell<NCELL(pCsr->pNode) ); |
| 1313 } |
| 1314 } |
| 1315 |
| 1316 rtreeRelease(pRtree); |
| 1317 return rc; |
| 1318 } |
| 1319 |
| 1320 /* |
| 1321 ** Rtree virtual table module xBestIndex method. There are three |
| 1322 ** table scan strategies to choose from (in order from most to |
| 1323 ** least desirable): |
| 1324 ** |
| 1325 ** idxNum idxStr Strategy |
| 1326 ** ------------------------------------------------ |
| 1327 ** 1 Unused Direct lookup by rowid. |
| 1328 ** 2 See below R-tree query or full-table scan. |
| 1329 ** ------------------------------------------------ |
| 1330 ** |
| 1331 ** If strategy 1 is used, then idxStr is not meaningful. If strategy |
| 1332 ** 2 is used, idxStr is formatted to contain 2 bytes for each |
| 1333 ** constraint used. The first two bytes of idxStr correspond to |
| 1334 ** the constraint in sqlite3_index_info.aConstraintUsage[] with |
| 1335 ** (argvIndex==1) etc. |
| 1336 ** |
| 1337 ** The first of each pair of bytes in idxStr identifies the constraint |
| 1338 ** operator as follows: |
| 1339 ** |
| 1340 ** Operator Byte Value |
| 1341 ** ---------------------- |
| 1342 ** = 0x41 ('A') |
| 1343 ** <= 0x42 ('B') |
| 1344 ** < 0x43 ('C') |
| 1345 ** >= 0x44 ('D') |
| 1346 ** > 0x45 ('E') |
| 1347 ** MATCH 0x46 ('F') |
| 1348 ** ---------------------- |
| 1349 ** |
| 1350 ** The second of each pair of bytes identifies the coordinate column |
| 1351 ** to which the constraint applies. The leftmost coordinate column |
| 1352 ** is 'a', the second from the left 'b' etc. |
| 1353 */ |
| 1354 static int rtreeBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ |
| 1355 int rc = SQLITE_OK; |
| 1356 int ii; |
| 1357 |
| 1358 int iIdx = 0; |
| 1359 char zIdxStr[RTREE_MAX_DIMENSIONS*8+1]; |
| 1360 memset(zIdxStr, 0, sizeof(zIdxStr)); |
| 1361 UNUSED_PARAMETER(tab); |
| 1362 |
| 1363 assert( pIdxInfo->idxStr==0 ); |
| 1364 for(ii=0; ii<pIdxInfo->nConstraint && iIdx<(int)(sizeof(zIdxStr)-1); ii++){ |
| 1365 struct sqlite3_index_constraint *p = &pIdxInfo->aConstraint[ii]; |
| 1366 |
| 1367 if( p->usable && p->iColumn==0 && p->op==SQLITE_INDEX_CONSTRAINT_EQ ){ |
| 1368 /* We have an equality constraint on the rowid. Use strategy 1. */ |
| 1369 int jj; |
| 1370 for(jj=0; jj<ii; jj++){ |
| 1371 pIdxInfo->aConstraintUsage[jj].argvIndex = 0; |
| 1372 pIdxInfo->aConstraintUsage[jj].omit = 0; |
| 1373 } |
| 1374 pIdxInfo->idxNum = 1; |
| 1375 pIdxInfo->aConstraintUsage[ii].argvIndex = 1; |
| 1376 pIdxInfo->aConstraintUsage[jj].omit = 1; |
| 1377 |
| 1378 /* This strategy involves a two rowid lookups on an B-Tree structures |
| 1379 ** and then a linear search of an R-Tree node. This should be |
| 1380 ** considered almost as quick as a direct rowid lookup (for which |
| 1381 ** sqlite uses an internal cost of 0.0). |
| 1382 */ |
| 1383 pIdxInfo->estimatedCost = 10.0; |
| 1384 return SQLITE_OK; |
| 1385 } |
| 1386 |
| 1387 if( p->usable && (p->iColumn>0 || p->op==SQLITE_INDEX_CONSTRAINT_MATCH) ){ |
| 1388 u8 op; |
| 1389 switch( p->op ){ |
| 1390 case SQLITE_INDEX_CONSTRAINT_EQ: op = RTREE_EQ; break; |
| 1391 case SQLITE_INDEX_CONSTRAINT_GT: op = RTREE_GT; break; |
| 1392 case SQLITE_INDEX_CONSTRAINT_LE: op = RTREE_LE; break; |
| 1393 case SQLITE_INDEX_CONSTRAINT_LT: op = RTREE_LT; break; |
| 1394 case SQLITE_INDEX_CONSTRAINT_GE: op = RTREE_GE; break; |
| 1395 default: |
| 1396 assert( p->op==SQLITE_INDEX_CONSTRAINT_MATCH ); |
| 1397 op = RTREE_MATCH; |
| 1398 break; |
| 1399 } |
| 1400 zIdxStr[iIdx++] = op; |
| 1401 zIdxStr[iIdx++] = p->iColumn - 1 + 'a'; |
| 1402 pIdxInfo->aConstraintUsage[ii].argvIndex = (iIdx/2); |
| 1403 pIdxInfo->aConstraintUsage[ii].omit = 1; |
| 1404 } |
| 1405 } |
| 1406 |
| 1407 pIdxInfo->idxNum = 2; |
| 1408 pIdxInfo->needToFreeIdxStr = 1; |
| 1409 if( iIdx>0 && 0==(pIdxInfo->idxStr = sqlite3_mprintf("%s", zIdxStr)) ){ |
| 1410 return SQLITE_NOMEM; |
| 1411 } |
| 1412 assert( iIdx>=0 ); |
| 1413 pIdxInfo->estimatedCost = (2000000.0 / (double)(iIdx + 1)); |
| 1414 return rc; |
| 1415 } |
| 1416 |
| 1417 /* |
| 1418 ** Return the N-dimensional volumn of the cell stored in *p. |
| 1419 */ |
| 1420 static float cellArea(Rtree *pRtree, RtreeCell *p){ |
| 1421 float area = 1.0; |
| 1422 int ii; |
| 1423 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 1424 area = area * (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); |
| 1425 } |
| 1426 return area; |
| 1427 } |
| 1428 |
| 1429 /* |
| 1430 ** Return the margin length of cell p. The margin length is the sum |
| 1431 ** of the objects size in each dimension. |
| 1432 */ |
| 1433 static float cellMargin(Rtree *pRtree, RtreeCell *p){ |
| 1434 float margin = 0.0; |
| 1435 int ii; |
| 1436 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 1437 margin += (DCOORD(p->aCoord[ii+1]) - DCOORD(p->aCoord[ii])); |
| 1438 } |
| 1439 return margin; |
| 1440 } |
| 1441 |
| 1442 /* |
| 1443 ** Store the union of cells p1 and p2 in p1. |
| 1444 */ |
| 1445 static void cellUnion(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
| 1446 int ii; |
| 1447 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| 1448 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 1449 p1->aCoord[ii].f = MIN(p1->aCoord[ii].f, p2->aCoord[ii].f); |
| 1450 p1->aCoord[ii+1].f = MAX(p1->aCoord[ii+1].f, p2->aCoord[ii+1].f); |
| 1451 } |
| 1452 }else{ |
| 1453 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 1454 p1->aCoord[ii].i = MIN(p1->aCoord[ii].i, p2->aCoord[ii].i); |
| 1455 p1->aCoord[ii+1].i = MAX(p1->aCoord[ii+1].i, p2->aCoord[ii+1].i); |
| 1456 } |
| 1457 } |
| 1458 } |
| 1459 |
| 1460 /* |
| 1461 ** Return true if the area covered by p2 is a subset of the area covered |
| 1462 ** by p1. False otherwise. |
| 1463 */ |
| 1464 static int cellContains(Rtree *pRtree, RtreeCell *p1, RtreeCell *p2){ |
| 1465 int ii; |
| 1466 int isInt = (pRtree->eCoordType==RTREE_COORD_INT32); |
| 1467 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 1468 RtreeCoord *a1 = &p1->aCoord[ii]; |
| 1469 RtreeCoord *a2 = &p2->aCoord[ii]; |
| 1470 if( (!isInt && (a2[0].f<a1[0].f || a2[1].f>a1[1].f)) |
| 1471 || ( isInt && (a2[0].i<a1[0].i || a2[1].i>a1[1].i)) |
| 1472 ){ |
| 1473 return 0; |
| 1474 } |
| 1475 } |
| 1476 return 1; |
| 1477 } |
| 1478 |
| 1479 /* |
| 1480 ** Return the amount cell p would grow by if it were unioned with pCell. |
| 1481 */ |
| 1482 static float cellGrowth(Rtree *pRtree, RtreeCell *p, RtreeCell *pCell){ |
| 1483 float area; |
| 1484 RtreeCell cell; |
| 1485 memcpy(&cell, p, sizeof(RtreeCell)); |
| 1486 area = cellArea(pRtree, &cell); |
| 1487 cellUnion(pRtree, &cell, pCell); |
| 1488 return (cellArea(pRtree, &cell)-area); |
| 1489 } |
| 1490 |
| 1491 #if VARIANT_RSTARTREE_CHOOSESUBTREE || VARIANT_RSTARTREE_SPLIT |
| 1492 static float cellOverlap( |
| 1493 Rtree *pRtree, |
| 1494 RtreeCell *p, |
| 1495 RtreeCell *aCell, |
| 1496 int nCell, |
| 1497 int iExclude |
| 1498 ){ |
| 1499 int ii; |
| 1500 float overlap = 0.0; |
| 1501 for(ii=0; ii<nCell; ii++){ |
| 1502 #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| 1503 if( ii!=iExclude ) |
| 1504 #else |
| 1505 assert( iExclude==-1 ); |
| 1506 UNUSED_PARAMETER(iExclude); |
| 1507 #endif |
| 1508 { |
| 1509 int jj; |
| 1510 float o = 1.0; |
| 1511 for(jj=0; jj<(pRtree->nDim*2); jj+=2){ |
| 1512 double x1; |
| 1513 double x2; |
| 1514 |
| 1515 x1 = MAX(DCOORD(p->aCoord[jj]), DCOORD(aCell[ii].aCoord[jj])); |
| 1516 x2 = MIN(DCOORD(p->aCoord[jj+1]), DCOORD(aCell[ii].aCoord[jj+1])); |
| 1517 |
| 1518 if( x2<x1 ){ |
| 1519 o = 0.0; |
| 1520 break; |
| 1521 }else{ |
| 1522 o = o * (x2-x1); |
| 1523 } |
| 1524 } |
| 1525 overlap += o; |
| 1526 } |
| 1527 } |
| 1528 return overlap; |
| 1529 } |
| 1530 #endif |
| 1531 |
| 1532 #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| 1533 static float cellOverlapEnlargement( |
| 1534 Rtree *pRtree, |
| 1535 RtreeCell *p, |
| 1536 RtreeCell *pInsert, |
| 1537 RtreeCell *aCell, |
| 1538 int nCell, |
| 1539 int iExclude |
| 1540 ){ |
| 1541 float before; |
| 1542 float after; |
| 1543 before = cellOverlap(pRtree, p, aCell, nCell, iExclude); |
| 1544 cellUnion(pRtree, p, pInsert); |
| 1545 after = cellOverlap(pRtree, p, aCell, nCell, iExclude); |
| 1546 return after-before; |
| 1547 } |
| 1548 #endif |
| 1549 |
| 1550 |
| 1551 /* |
| 1552 ** This function implements the ChooseLeaf algorithm from Gutman[84]. |
| 1553 ** ChooseSubTree in r*tree terminology. |
| 1554 */ |
| 1555 static int ChooseLeaf( |
| 1556 Rtree *pRtree, /* Rtree table */ |
| 1557 RtreeCell *pCell, /* Cell to insert into rtree */ |
| 1558 int iHeight, /* Height of sub-tree rooted at pCell */ |
| 1559 RtreeNode **ppLeaf /* OUT: Selected leaf page */ |
| 1560 ){ |
| 1561 int rc; |
| 1562 int ii; |
| 1563 RtreeNode *pNode; |
| 1564 rc = nodeAcquire(pRtree, 1, 0, &pNode); |
| 1565 |
| 1566 for(ii=0; rc==SQLITE_OK && ii<(pRtree->iDepth-iHeight); ii++){ |
| 1567 int iCell; |
| 1568 sqlite3_int64 iBest; |
| 1569 |
| 1570 float fMinGrowth; |
| 1571 float fMinArea; |
| 1572 float fMinOverlap; |
| 1573 |
| 1574 int nCell = NCELL(pNode); |
| 1575 RtreeCell cell; |
| 1576 RtreeNode *pChild; |
| 1577 |
| 1578 RtreeCell *aCell = 0; |
| 1579 |
| 1580 #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| 1581 if( ii==(pRtree->iDepth-1) ){ |
| 1582 int jj; |
| 1583 aCell = sqlite3_malloc(sizeof(RtreeCell)*nCell); |
| 1584 if( !aCell ){ |
| 1585 rc = SQLITE_NOMEM; |
| 1586 nodeRelease(pRtree, pNode); |
| 1587 pNode = 0; |
| 1588 continue; |
| 1589 } |
| 1590 for(jj=0; jj<nCell; jj++){ |
| 1591 nodeGetCell(pRtree, pNode, jj, &aCell[jj]); |
| 1592 } |
| 1593 } |
| 1594 #endif |
| 1595 |
| 1596 /* Select the child node which will be enlarged the least if pCell |
| 1597 ** is inserted into it. Resolve ties by choosing the entry with |
| 1598 ** the smallest area. |
| 1599 */ |
| 1600 for(iCell=0; iCell<nCell; iCell++){ |
| 1601 int bBest = 0; |
| 1602 float growth; |
| 1603 float area; |
| 1604 float overlap = 0.0; |
| 1605 nodeGetCell(pRtree, pNode, iCell, &cell); |
| 1606 growth = cellGrowth(pRtree, &cell, pCell); |
| 1607 area = cellArea(pRtree, &cell); |
| 1608 |
| 1609 #if VARIANT_RSTARTREE_CHOOSESUBTREE |
| 1610 if( ii==(pRtree->iDepth-1) ){ |
| 1611 overlap = cellOverlapEnlargement(pRtree,&cell,pCell,aCell,nCell,iCell); |
| 1612 } |
| 1613 if( (iCell==0) |
| 1614 || (overlap<fMinOverlap) |
| 1615 || (overlap==fMinOverlap && growth<fMinGrowth) |
| 1616 || (overlap==fMinOverlap && growth==fMinGrowth && area<fMinArea) |
| 1617 ){ |
| 1618 bBest = 1; |
| 1619 } |
| 1620 #else |
| 1621 if( iCell==0||growth<fMinGrowth||(growth==fMinGrowth && area<fMinArea) ){ |
| 1622 bBest = 1; |
| 1623 } |
| 1624 #endif |
| 1625 if( bBest ){ |
| 1626 fMinOverlap = overlap; |
| 1627 fMinGrowth = growth; |
| 1628 fMinArea = area; |
| 1629 iBest = cell.iRowid; |
| 1630 } |
| 1631 } |
| 1632 |
| 1633 sqlite3_free(aCell); |
| 1634 rc = nodeAcquire(pRtree, iBest, pNode, &pChild); |
| 1635 nodeRelease(pRtree, pNode); |
| 1636 pNode = pChild; |
| 1637 } |
| 1638 |
| 1639 *ppLeaf = pNode; |
| 1640 return rc; |
| 1641 } |
| 1642 |
| 1643 /* |
| 1644 ** A cell with the same content as pCell has just been inserted into |
| 1645 ** the node pNode. This function updates the bounding box cells in |
| 1646 ** all ancestor elements. |
| 1647 */ |
| 1648 static int AdjustTree( |
| 1649 Rtree *pRtree, /* Rtree table */ |
| 1650 RtreeNode *pNode, /* Adjust ancestry of this node. */ |
| 1651 RtreeCell *pCell /* This cell was just inserted */ |
| 1652 ){ |
| 1653 RtreeNode *p = pNode; |
| 1654 while( p->pParent ){ |
| 1655 RtreeNode *pParent = p->pParent; |
| 1656 RtreeCell cell; |
| 1657 int iCell; |
| 1658 |
| 1659 if( nodeParentIndex(pRtree, p, &iCell) ){ |
| 1660 return SQLITE_CORRUPT; |
| 1661 } |
| 1662 |
| 1663 nodeGetCell(pRtree, pParent, iCell, &cell); |
| 1664 if( !cellContains(pRtree, &cell, pCell) ){ |
| 1665 cellUnion(pRtree, &cell, pCell); |
| 1666 nodeOverwriteCell(pRtree, pParent, &cell, iCell); |
| 1667 } |
| 1668 |
| 1669 p = pParent; |
| 1670 } |
| 1671 return SQLITE_OK; |
| 1672 } |
| 1673 |
| 1674 /* |
| 1675 ** Write mapping (iRowid->iNode) to the <rtree>_rowid table. |
| 1676 */ |
| 1677 static int rowidWrite(Rtree *pRtree, sqlite3_int64 iRowid, sqlite3_int64 iNode){ |
| 1678 sqlite3_bind_int64(pRtree->pWriteRowid, 1, iRowid); |
| 1679 sqlite3_bind_int64(pRtree->pWriteRowid, 2, iNode); |
| 1680 sqlite3_step(pRtree->pWriteRowid); |
| 1681 return sqlite3_reset(pRtree->pWriteRowid); |
| 1682 } |
| 1683 |
| 1684 /* |
| 1685 ** Write mapping (iNode->iPar) to the <rtree>_parent table. |
| 1686 */ |
| 1687 static int parentWrite(Rtree *pRtree, sqlite3_int64 iNode, sqlite3_int64 iPar){ |
| 1688 sqlite3_bind_int64(pRtree->pWriteParent, 1, iNode); |
| 1689 sqlite3_bind_int64(pRtree->pWriteParent, 2, iPar); |
| 1690 sqlite3_step(pRtree->pWriteParent); |
| 1691 return sqlite3_reset(pRtree->pWriteParent); |
| 1692 } |
| 1693 |
| 1694 static int rtreeInsertCell(Rtree *, RtreeNode *, RtreeCell *, int); |
| 1695 |
| 1696 #if VARIANT_GUTTMAN_LINEAR_SPLIT |
| 1697 /* |
| 1698 ** Implementation of the linear variant of the PickNext() function from |
| 1699 ** Guttman[84]. |
| 1700 */ |
| 1701 static RtreeCell *LinearPickNext( |
| 1702 Rtree *pRtree, |
| 1703 RtreeCell *aCell, |
| 1704 int nCell, |
| 1705 RtreeCell *pLeftBox, |
| 1706 RtreeCell *pRightBox, |
| 1707 int *aiUsed |
| 1708 ){ |
| 1709 int ii; |
| 1710 for(ii=0; aiUsed[ii]; ii++); |
| 1711 aiUsed[ii] = 1; |
| 1712 return &aCell[ii]; |
| 1713 } |
| 1714 |
| 1715 /* |
| 1716 ** Implementation of the linear variant of the PickSeeds() function from |
| 1717 ** Guttman[84]. |
| 1718 */ |
| 1719 static void LinearPickSeeds( |
| 1720 Rtree *pRtree, |
| 1721 RtreeCell *aCell, |
| 1722 int nCell, |
| 1723 int *piLeftSeed, |
| 1724 int *piRightSeed |
| 1725 ){ |
| 1726 int i; |
| 1727 int iLeftSeed = 0; |
| 1728 int iRightSeed = 1; |
| 1729 float maxNormalInnerWidth = 0.0; |
| 1730 |
| 1731 /* Pick two "seed" cells from the array of cells. The algorithm used |
| 1732 ** here is the LinearPickSeeds algorithm from Gutman[1984]. The |
| 1733 ** indices of the two seed cells in the array are stored in local |
| 1734 ** variables iLeftSeek and iRightSeed. |
| 1735 */ |
| 1736 for(i=0; i<pRtree->nDim; i++){ |
| 1737 float x1 = DCOORD(aCell[0].aCoord[i*2]); |
| 1738 float x2 = DCOORD(aCell[0].aCoord[i*2+1]); |
| 1739 float x3 = x1; |
| 1740 float x4 = x2; |
| 1741 int jj; |
| 1742 |
| 1743 int iCellLeft = 0; |
| 1744 int iCellRight = 0; |
| 1745 |
| 1746 for(jj=1; jj<nCell; jj++){ |
| 1747 float left = DCOORD(aCell[jj].aCoord[i*2]); |
| 1748 float right = DCOORD(aCell[jj].aCoord[i*2+1]); |
| 1749 |
| 1750 if( left<x1 ) x1 = left; |
| 1751 if( right>x4 ) x4 = right; |
| 1752 if( left>x3 ){ |
| 1753 x3 = left; |
| 1754 iCellRight = jj; |
| 1755 } |
| 1756 if( right<x2 ){ |
| 1757 x2 = right; |
| 1758 iCellLeft = jj; |
| 1759 } |
| 1760 } |
| 1761 |
| 1762 if( x4!=x1 ){ |
| 1763 float normalwidth = (x3 - x2) / (x4 - x1); |
| 1764 if( normalwidth>maxNormalInnerWidth ){ |
| 1765 iLeftSeed = iCellLeft; |
| 1766 iRightSeed = iCellRight; |
| 1767 } |
| 1768 } |
| 1769 } |
| 1770 |
| 1771 *piLeftSeed = iLeftSeed; |
| 1772 *piRightSeed = iRightSeed; |
| 1773 } |
| 1774 #endif /* VARIANT_GUTTMAN_LINEAR_SPLIT */ |
| 1775 |
| 1776 #if VARIANT_GUTTMAN_QUADRATIC_SPLIT |
| 1777 /* |
| 1778 ** Implementation of the quadratic variant of the PickNext() function from |
| 1779 ** Guttman[84]. |
| 1780 */ |
| 1781 static RtreeCell *QuadraticPickNext( |
| 1782 Rtree *pRtree, |
| 1783 RtreeCell *aCell, |
| 1784 int nCell, |
| 1785 RtreeCell *pLeftBox, |
| 1786 RtreeCell *pRightBox, |
| 1787 int *aiUsed |
| 1788 ){ |
| 1789 #define FABS(a) ((a)<0.0?-1.0*(a):(a)) |
| 1790 |
| 1791 int iSelect = -1; |
| 1792 float fDiff; |
| 1793 int ii; |
| 1794 for(ii=0; ii<nCell; ii++){ |
| 1795 if( aiUsed[ii]==0 ){ |
| 1796 float left = cellGrowth(pRtree, pLeftBox, &aCell[ii]); |
| 1797 float right = cellGrowth(pRtree, pLeftBox, &aCell[ii]); |
| 1798 float diff = FABS(right-left); |
| 1799 if( iSelect<0 || diff>fDiff ){ |
| 1800 fDiff = diff; |
| 1801 iSelect = ii; |
| 1802 } |
| 1803 } |
| 1804 } |
| 1805 aiUsed[iSelect] = 1; |
| 1806 return &aCell[iSelect]; |
| 1807 } |
| 1808 |
| 1809 /* |
| 1810 ** Implementation of the quadratic variant of the PickSeeds() function from |
| 1811 ** Guttman[84]. |
| 1812 */ |
| 1813 static void QuadraticPickSeeds( |
| 1814 Rtree *pRtree, |
| 1815 RtreeCell *aCell, |
| 1816 int nCell, |
| 1817 int *piLeftSeed, |
| 1818 int *piRightSeed |
| 1819 ){ |
| 1820 int ii; |
| 1821 int jj; |
| 1822 |
| 1823 int iLeftSeed = 0; |
| 1824 int iRightSeed = 1; |
| 1825 float fWaste = 0.0; |
| 1826 |
| 1827 for(ii=0; ii<nCell; ii++){ |
| 1828 for(jj=ii+1; jj<nCell; jj++){ |
| 1829 float right = cellArea(pRtree, &aCell[jj]); |
| 1830 float growth = cellGrowth(pRtree, &aCell[ii], &aCell[jj]); |
| 1831 float waste = growth - right; |
| 1832 |
| 1833 if( waste>fWaste ){ |
| 1834 iLeftSeed = ii; |
| 1835 iRightSeed = jj; |
| 1836 fWaste = waste; |
| 1837 } |
| 1838 } |
| 1839 } |
| 1840 |
| 1841 *piLeftSeed = iLeftSeed; |
| 1842 *piRightSeed = iRightSeed; |
| 1843 } |
| 1844 #endif /* VARIANT_GUTTMAN_QUADRATIC_SPLIT */ |
| 1845 |
| 1846 /* |
| 1847 ** Arguments aIdx, aDistance and aSpare all point to arrays of size |
| 1848 ** nIdx. The aIdx array contains the set of integers from 0 to |
| 1849 ** (nIdx-1) in no particular order. This function sorts the values |
| 1850 ** in aIdx according to the indexed values in aDistance. For |
| 1851 ** example, assuming the inputs: |
| 1852 ** |
| 1853 ** aIdx = { 0, 1, 2, 3 } |
| 1854 ** aDistance = { 5.0, 2.0, 7.0, 6.0 } |
| 1855 ** |
| 1856 ** this function sets the aIdx array to contain: |
| 1857 ** |
| 1858 ** aIdx = { 0, 1, 2, 3 } |
| 1859 ** |
| 1860 ** The aSpare array is used as temporary working space by the |
| 1861 ** sorting algorithm. |
| 1862 */ |
| 1863 static void SortByDistance( |
| 1864 int *aIdx, |
| 1865 int nIdx, |
| 1866 float *aDistance, |
| 1867 int *aSpare |
| 1868 ){ |
| 1869 if( nIdx>1 ){ |
| 1870 int iLeft = 0; |
| 1871 int iRight = 0; |
| 1872 |
| 1873 int nLeft = nIdx/2; |
| 1874 int nRight = nIdx-nLeft; |
| 1875 int *aLeft = aIdx; |
| 1876 int *aRight = &aIdx[nLeft]; |
| 1877 |
| 1878 SortByDistance(aLeft, nLeft, aDistance, aSpare); |
| 1879 SortByDistance(aRight, nRight, aDistance, aSpare); |
| 1880 |
| 1881 memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
| 1882 aLeft = aSpare; |
| 1883 |
| 1884 while( iLeft<nLeft || iRight<nRight ){ |
| 1885 if( iLeft==nLeft ){ |
| 1886 aIdx[iLeft+iRight] = aRight[iRight]; |
| 1887 iRight++; |
| 1888 }else if( iRight==nRight ){ |
| 1889 aIdx[iLeft+iRight] = aLeft[iLeft]; |
| 1890 iLeft++; |
| 1891 }else{ |
| 1892 float fLeft = aDistance[aLeft[iLeft]]; |
| 1893 float fRight = aDistance[aRight[iRight]]; |
| 1894 if( fLeft<fRight ){ |
| 1895 aIdx[iLeft+iRight] = aLeft[iLeft]; |
| 1896 iLeft++; |
| 1897 }else{ |
| 1898 aIdx[iLeft+iRight] = aRight[iRight]; |
| 1899 iRight++; |
| 1900 } |
| 1901 } |
| 1902 } |
| 1903 |
| 1904 #if 0 |
| 1905 /* Check that the sort worked */ |
| 1906 { |
| 1907 int jj; |
| 1908 for(jj=1; jj<nIdx; jj++){ |
| 1909 float left = aDistance[aIdx[jj-1]]; |
| 1910 float right = aDistance[aIdx[jj]]; |
| 1911 assert( left<=right ); |
| 1912 } |
| 1913 } |
| 1914 #endif |
| 1915 } |
| 1916 } |
| 1917 |
| 1918 /* |
| 1919 ** Arguments aIdx, aCell and aSpare all point to arrays of size |
| 1920 ** nIdx. The aIdx array contains the set of integers from 0 to |
| 1921 ** (nIdx-1) in no particular order. This function sorts the values |
| 1922 ** in aIdx according to dimension iDim of the cells in aCell. The |
| 1923 ** minimum value of dimension iDim is considered first, the |
| 1924 ** maximum used to break ties. |
| 1925 ** |
| 1926 ** The aSpare array is used as temporary working space by the |
| 1927 ** sorting algorithm. |
| 1928 */ |
| 1929 static void SortByDimension( |
| 1930 Rtree *pRtree, |
| 1931 int *aIdx, |
| 1932 int nIdx, |
| 1933 int iDim, |
| 1934 RtreeCell *aCell, |
| 1935 int *aSpare |
| 1936 ){ |
| 1937 if( nIdx>1 ){ |
| 1938 |
| 1939 int iLeft = 0; |
| 1940 int iRight = 0; |
| 1941 |
| 1942 int nLeft = nIdx/2; |
| 1943 int nRight = nIdx-nLeft; |
| 1944 int *aLeft = aIdx; |
| 1945 int *aRight = &aIdx[nLeft]; |
| 1946 |
| 1947 SortByDimension(pRtree, aLeft, nLeft, iDim, aCell, aSpare); |
| 1948 SortByDimension(pRtree, aRight, nRight, iDim, aCell, aSpare); |
| 1949 |
| 1950 memcpy(aSpare, aLeft, sizeof(int)*nLeft); |
| 1951 aLeft = aSpare; |
| 1952 while( iLeft<nLeft || iRight<nRight ){ |
| 1953 double xleft1 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2]); |
| 1954 double xleft2 = DCOORD(aCell[aLeft[iLeft]].aCoord[iDim*2+1]); |
| 1955 double xright1 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2]); |
| 1956 double xright2 = DCOORD(aCell[aRight[iRight]].aCoord[iDim*2+1]); |
| 1957 if( (iLeft!=nLeft) && ((iRight==nRight) |
| 1958 || (xleft1<xright1) |
| 1959 || (xleft1==xright1 && xleft2<xright2) |
| 1960 )){ |
| 1961 aIdx[iLeft+iRight] = aLeft[iLeft]; |
| 1962 iLeft++; |
| 1963 }else{ |
| 1964 aIdx[iLeft+iRight] = aRight[iRight]; |
| 1965 iRight++; |
| 1966 } |
| 1967 } |
| 1968 |
| 1969 #if 0 |
| 1970 /* Check that the sort worked */ |
| 1971 { |
| 1972 int jj; |
| 1973 for(jj=1; jj<nIdx; jj++){ |
| 1974 float xleft1 = aCell[aIdx[jj-1]].aCoord[iDim*2]; |
| 1975 float xleft2 = aCell[aIdx[jj-1]].aCoord[iDim*2+1]; |
| 1976 float xright1 = aCell[aIdx[jj]].aCoord[iDim*2]; |
| 1977 float xright2 = aCell[aIdx[jj]].aCoord[iDim*2+1]; |
| 1978 assert( xleft1<=xright1 && (xleft1<xright1 || xleft2<=xright2) ); |
| 1979 } |
| 1980 } |
| 1981 #endif |
| 1982 } |
| 1983 } |
| 1984 |
| 1985 #if VARIANT_RSTARTREE_SPLIT |
| 1986 /* |
| 1987 ** Implementation of the R*-tree variant of SplitNode from Beckman[1990]. |
| 1988 */ |
| 1989 static int splitNodeStartree( |
| 1990 Rtree *pRtree, |
| 1991 RtreeCell *aCell, |
| 1992 int nCell, |
| 1993 RtreeNode *pLeft, |
| 1994 RtreeNode *pRight, |
| 1995 RtreeCell *pBboxLeft, |
| 1996 RtreeCell *pBboxRight |
| 1997 ){ |
| 1998 int **aaSorted; |
| 1999 int *aSpare; |
| 2000 int ii; |
| 2001 |
| 2002 int iBestDim; |
| 2003 int iBestSplit; |
| 2004 float fBestMargin; |
| 2005 |
| 2006 int nByte = (pRtree->nDim+1)*(sizeof(int*)+nCell*sizeof(int)); |
| 2007 |
| 2008 aaSorted = (int **)sqlite3_malloc(nByte); |
| 2009 if( !aaSorted ){ |
| 2010 return SQLITE_NOMEM; |
| 2011 } |
| 2012 |
| 2013 aSpare = &((int *)&aaSorted[pRtree->nDim])[pRtree->nDim*nCell]; |
| 2014 memset(aaSorted, 0, nByte); |
| 2015 for(ii=0; ii<pRtree->nDim; ii++){ |
| 2016 int jj; |
| 2017 aaSorted[ii] = &((int *)&aaSorted[pRtree->nDim])[ii*nCell]; |
| 2018 for(jj=0; jj<nCell; jj++){ |
| 2019 aaSorted[ii][jj] = jj; |
| 2020 } |
| 2021 SortByDimension(pRtree, aaSorted[ii], nCell, ii, aCell, aSpare); |
| 2022 } |
| 2023 |
| 2024 for(ii=0; ii<pRtree->nDim; ii++){ |
| 2025 float margin = 0.0; |
| 2026 float fBestOverlap; |
| 2027 float fBestArea; |
| 2028 int iBestLeft; |
| 2029 int nLeft; |
| 2030 |
| 2031 for( |
| 2032 nLeft=RTREE_MINCELLS(pRtree); |
| 2033 nLeft<=(nCell-RTREE_MINCELLS(pRtree)); |
| 2034 nLeft++ |
| 2035 ){ |
| 2036 RtreeCell left; |
| 2037 RtreeCell right; |
| 2038 int kk; |
| 2039 float overlap; |
| 2040 float area; |
| 2041 |
| 2042 memcpy(&left, &aCell[aaSorted[ii][0]], sizeof(RtreeCell)); |
| 2043 memcpy(&right, &aCell[aaSorted[ii][nCell-1]], sizeof(RtreeCell)); |
| 2044 for(kk=1; kk<(nCell-1); kk++){ |
| 2045 if( kk<nLeft ){ |
| 2046 cellUnion(pRtree, &left, &aCell[aaSorted[ii][kk]]); |
| 2047 }else{ |
| 2048 cellUnion(pRtree, &right, &aCell[aaSorted[ii][kk]]); |
| 2049 } |
| 2050 } |
| 2051 margin += cellMargin(pRtree, &left); |
| 2052 margin += cellMargin(pRtree, &right); |
| 2053 overlap = cellOverlap(pRtree, &left, &right, 1, -1); |
| 2054 area = cellArea(pRtree, &left) + cellArea(pRtree, &right); |
| 2055 if( (nLeft==RTREE_MINCELLS(pRtree)) |
| 2056 || (overlap<fBestOverlap) |
| 2057 || (overlap==fBestOverlap && area<fBestArea) |
| 2058 ){ |
| 2059 iBestLeft = nLeft; |
| 2060 fBestOverlap = overlap; |
| 2061 fBestArea = area; |
| 2062 } |
| 2063 } |
| 2064 |
| 2065 if( ii==0 || margin<fBestMargin ){ |
| 2066 iBestDim = ii; |
| 2067 fBestMargin = margin; |
| 2068 iBestSplit = iBestLeft; |
| 2069 } |
| 2070 } |
| 2071 |
| 2072 memcpy(pBboxLeft, &aCell[aaSorted[iBestDim][0]], sizeof(RtreeCell)); |
| 2073 memcpy(pBboxRight, &aCell[aaSorted[iBestDim][iBestSplit]], sizeof(RtreeCell)); |
| 2074 for(ii=0; ii<nCell; ii++){ |
| 2075 RtreeNode *pTarget = (ii<iBestSplit)?pLeft:pRight; |
| 2076 RtreeCell *pBbox = (ii<iBestSplit)?pBboxLeft:pBboxRight; |
| 2077 RtreeCell *pCell = &aCell[aaSorted[iBestDim][ii]]; |
| 2078 nodeInsertCell(pRtree, pTarget, pCell); |
| 2079 cellUnion(pRtree, pBbox, pCell); |
| 2080 } |
| 2081 |
| 2082 sqlite3_free(aaSorted); |
| 2083 return SQLITE_OK; |
| 2084 } |
| 2085 #endif |
| 2086 |
| 2087 #if VARIANT_GUTTMAN_SPLIT |
| 2088 /* |
| 2089 ** Implementation of the regular R-tree SplitNode from Guttman[1984]. |
| 2090 */ |
| 2091 static int splitNodeGuttman( |
| 2092 Rtree *pRtree, |
| 2093 RtreeCell *aCell, |
| 2094 int nCell, |
| 2095 RtreeNode *pLeft, |
| 2096 RtreeNode *pRight, |
| 2097 RtreeCell *pBboxLeft, |
| 2098 RtreeCell *pBboxRight |
| 2099 ){ |
| 2100 int iLeftSeed = 0; |
| 2101 int iRightSeed = 1; |
| 2102 int *aiUsed; |
| 2103 int i; |
| 2104 |
| 2105 aiUsed = sqlite3_malloc(sizeof(int)*nCell); |
| 2106 if( !aiUsed ){ |
| 2107 return SQLITE_NOMEM; |
| 2108 } |
| 2109 memset(aiUsed, 0, sizeof(int)*nCell); |
| 2110 |
| 2111 PickSeeds(pRtree, aCell, nCell, &iLeftSeed, &iRightSeed); |
| 2112 |
| 2113 memcpy(pBboxLeft, &aCell[iLeftSeed], sizeof(RtreeCell)); |
| 2114 memcpy(pBboxRight, &aCell[iRightSeed], sizeof(RtreeCell)); |
| 2115 nodeInsertCell(pRtree, pLeft, &aCell[iLeftSeed]); |
| 2116 nodeInsertCell(pRtree, pRight, &aCell[iRightSeed]); |
| 2117 aiUsed[iLeftSeed] = 1; |
| 2118 aiUsed[iRightSeed] = 1; |
| 2119 |
| 2120 for(i=nCell-2; i>0; i--){ |
| 2121 RtreeCell *pNext; |
| 2122 pNext = PickNext(pRtree, aCell, nCell, pBboxLeft, pBboxRight, aiUsed); |
| 2123 float diff = |
| 2124 cellGrowth(pRtree, pBboxLeft, pNext) - |
| 2125 cellGrowth(pRtree, pBboxRight, pNext) |
| 2126 ; |
| 2127 if( (RTREE_MINCELLS(pRtree)-NCELL(pRight)==i) |
| 2128 || (diff>0.0 && (RTREE_MINCELLS(pRtree)-NCELL(pLeft)!=i)) |
| 2129 ){ |
| 2130 nodeInsertCell(pRtree, pRight, pNext); |
| 2131 cellUnion(pRtree, pBboxRight, pNext); |
| 2132 }else{ |
| 2133 nodeInsertCell(pRtree, pLeft, pNext); |
| 2134 cellUnion(pRtree, pBboxLeft, pNext); |
| 2135 } |
| 2136 } |
| 2137 |
| 2138 sqlite3_free(aiUsed); |
| 2139 return SQLITE_OK; |
| 2140 } |
| 2141 #endif |
| 2142 |
| 2143 static int updateMapping( |
| 2144 Rtree *pRtree, |
| 2145 i64 iRowid, |
| 2146 RtreeNode *pNode, |
| 2147 int iHeight |
| 2148 ){ |
| 2149 int (*xSetMapping)(Rtree *, sqlite3_int64, sqlite3_int64); |
| 2150 xSetMapping = ((iHeight==0)?rowidWrite:parentWrite); |
| 2151 if( iHeight>0 ){ |
| 2152 RtreeNode *pChild = nodeHashLookup(pRtree, iRowid); |
| 2153 if( pChild ){ |
| 2154 nodeRelease(pRtree, pChild->pParent); |
| 2155 nodeReference(pNode); |
| 2156 pChild->pParent = pNode; |
| 2157 } |
| 2158 } |
| 2159 return xSetMapping(pRtree, iRowid, pNode->iNode); |
| 2160 } |
| 2161 |
| 2162 static int SplitNode( |
| 2163 Rtree *pRtree, |
| 2164 RtreeNode *pNode, |
| 2165 RtreeCell *pCell, |
| 2166 int iHeight |
| 2167 ){ |
| 2168 int i; |
| 2169 int newCellIsRight = 0; |
| 2170 |
| 2171 int rc = SQLITE_OK; |
| 2172 int nCell = NCELL(pNode); |
| 2173 RtreeCell *aCell; |
| 2174 int *aiUsed; |
| 2175 |
| 2176 RtreeNode *pLeft = 0; |
| 2177 RtreeNode *pRight = 0; |
| 2178 |
| 2179 RtreeCell leftbbox; |
| 2180 RtreeCell rightbbox; |
| 2181 |
| 2182 /* Allocate an array and populate it with a copy of pCell and |
| 2183 ** all cells from node pLeft. Then zero the original node. |
| 2184 */ |
| 2185 aCell = sqlite3_malloc((sizeof(RtreeCell)+sizeof(int))*(nCell+1)); |
| 2186 if( !aCell ){ |
| 2187 rc = SQLITE_NOMEM; |
| 2188 goto splitnode_out; |
| 2189 } |
| 2190 aiUsed = (int *)&aCell[nCell+1]; |
| 2191 memset(aiUsed, 0, sizeof(int)*(nCell+1)); |
| 2192 for(i=0; i<nCell; i++){ |
| 2193 nodeGetCell(pRtree, pNode, i, &aCell[i]); |
| 2194 } |
| 2195 nodeZero(pRtree, pNode); |
| 2196 memcpy(&aCell[nCell], pCell, sizeof(RtreeCell)); |
| 2197 nCell++; |
| 2198 |
| 2199 if( pNode->iNode==1 ){ |
| 2200 pRight = nodeNew(pRtree, pNode); |
| 2201 pLeft = nodeNew(pRtree, pNode); |
| 2202 pRtree->iDepth++; |
| 2203 pNode->isDirty = 1; |
| 2204 writeInt16(pNode->zData, pRtree->iDepth); |
| 2205 }else{ |
| 2206 pLeft = pNode; |
| 2207 pRight = nodeNew(pRtree, pLeft->pParent); |
| 2208 nodeReference(pLeft); |
| 2209 } |
| 2210 |
| 2211 if( !pLeft || !pRight ){ |
| 2212 rc = SQLITE_NOMEM; |
| 2213 goto splitnode_out; |
| 2214 } |
| 2215 |
| 2216 memset(pLeft->zData, 0, pRtree->iNodeSize); |
| 2217 memset(pRight->zData, 0, pRtree->iNodeSize); |
| 2218 |
| 2219 rc = AssignCells(pRtree, aCell, nCell, pLeft, pRight, &leftbbox, &rightbbox); |
| 2220 if( rc!=SQLITE_OK ){ |
| 2221 goto splitnode_out; |
| 2222 } |
| 2223 |
| 2224 /* Ensure both child nodes have node numbers assigned to them by calling |
| 2225 ** nodeWrite(). Node pRight always needs a node number, as it was created |
| 2226 ** by nodeNew() above. But node pLeft sometimes already has a node number. |
| 2227 ** In this case avoid the all to nodeWrite(). |
| 2228 */ |
| 2229 if( SQLITE_OK!=(rc = nodeWrite(pRtree, pRight)) |
| 2230 || (0==pLeft->iNode && SQLITE_OK!=(rc = nodeWrite(pRtree, pLeft))) |
| 2231 ){ |
| 2232 goto splitnode_out; |
| 2233 } |
| 2234 |
| 2235 rightbbox.iRowid = pRight->iNode; |
| 2236 leftbbox.iRowid = pLeft->iNode; |
| 2237 |
| 2238 if( pNode->iNode==1 ){ |
| 2239 rc = rtreeInsertCell(pRtree, pLeft->pParent, &leftbbox, iHeight+1); |
| 2240 if( rc!=SQLITE_OK ){ |
| 2241 goto splitnode_out; |
| 2242 } |
| 2243 }else{ |
| 2244 RtreeNode *pParent = pLeft->pParent; |
| 2245 int iCell; |
| 2246 rc = nodeParentIndex(pRtree, pLeft, &iCell); |
| 2247 if( rc==SQLITE_OK ){ |
| 2248 nodeOverwriteCell(pRtree, pParent, &leftbbox, iCell); |
| 2249 rc = AdjustTree(pRtree, pParent, &leftbbox); |
| 2250 } |
| 2251 if( rc!=SQLITE_OK ){ |
| 2252 goto splitnode_out; |
| 2253 } |
| 2254 } |
| 2255 if( (rc = rtreeInsertCell(pRtree, pRight->pParent, &rightbbox, iHeight+1)) ){ |
| 2256 goto splitnode_out; |
| 2257 } |
| 2258 |
| 2259 for(i=0; i<NCELL(pRight); i++){ |
| 2260 i64 iRowid = nodeGetRowid(pRtree, pRight, i); |
| 2261 rc = updateMapping(pRtree, iRowid, pRight, iHeight); |
| 2262 if( iRowid==pCell->iRowid ){ |
| 2263 newCellIsRight = 1; |
| 2264 } |
| 2265 if( rc!=SQLITE_OK ){ |
| 2266 goto splitnode_out; |
| 2267 } |
| 2268 } |
| 2269 if( pNode->iNode==1 ){ |
| 2270 for(i=0; i<NCELL(pLeft); i++){ |
| 2271 i64 iRowid = nodeGetRowid(pRtree, pLeft, i); |
| 2272 rc = updateMapping(pRtree, iRowid, pLeft, iHeight); |
| 2273 if( rc!=SQLITE_OK ){ |
| 2274 goto splitnode_out; |
| 2275 } |
| 2276 } |
| 2277 }else if( newCellIsRight==0 ){ |
| 2278 rc = updateMapping(pRtree, pCell->iRowid, pLeft, iHeight); |
| 2279 } |
| 2280 |
| 2281 if( rc==SQLITE_OK ){ |
| 2282 rc = nodeRelease(pRtree, pRight); |
| 2283 pRight = 0; |
| 2284 } |
| 2285 if( rc==SQLITE_OK ){ |
| 2286 rc = nodeRelease(pRtree, pLeft); |
| 2287 pLeft = 0; |
| 2288 } |
| 2289 |
| 2290 splitnode_out: |
| 2291 nodeRelease(pRtree, pRight); |
| 2292 nodeRelease(pRtree, pLeft); |
| 2293 sqlite3_free(aCell); |
| 2294 return rc; |
| 2295 } |
| 2296 |
| 2297 /* |
| 2298 ** If node pLeaf is not the root of the r-tree and its pParent pointer is |
| 2299 ** still NULL, load all ancestor nodes of pLeaf into memory and populate |
| 2300 ** the pLeaf->pParent chain all the way up to the root node. |
| 2301 ** |
| 2302 ** This operation is required when a row is deleted (or updated - an update |
| 2303 ** is implemented as a delete followed by an insert). SQLite provides the |
| 2304 ** rowid of the row to delete, which can be used to find the leaf on which |
| 2305 ** the entry resides (argument pLeaf). Once the leaf is located, this |
| 2306 ** function is called to determine its ancestry. |
| 2307 */ |
| 2308 static int fixLeafParent(Rtree *pRtree, RtreeNode *pLeaf){ |
| 2309 int rc = SQLITE_OK; |
| 2310 RtreeNode *pChild = pLeaf; |
| 2311 while( rc==SQLITE_OK && pChild->iNode!=1 && pChild->pParent==0 ){ |
| 2312 int rc2 = SQLITE_OK; /* sqlite3_reset() return code */ |
| 2313 sqlite3_bind_int64(pRtree->pReadParent, 1, pChild->iNode); |
| 2314 rc = sqlite3_step(pRtree->pReadParent); |
| 2315 if( rc==SQLITE_ROW ){ |
| 2316 RtreeNode *pTest; /* Used to test for reference loops */ |
| 2317 i64 iNode; /* Node number of parent node */ |
| 2318 |
| 2319 /* Before setting pChild->pParent, test that we are not creating a |
| 2320 ** loop of references (as we would if, say, pChild==pParent). We don't |
| 2321 ** want to do this as it leads to a memory leak when trying to delete |
| 2322 ** the referenced counted node structures. |
| 2323 */ |
| 2324 iNode = sqlite3_column_int64(pRtree->pReadParent, 0); |
| 2325 for(pTest=pLeaf; pTest && pTest->iNode!=iNode; pTest=pTest->pParent); |
| 2326 if( !pTest ){ |
| 2327 rc2 = nodeAcquire(pRtree, iNode, 0, &pChild->pParent); |
| 2328 } |
| 2329 } |
| 2330 rc = sqlite3_reset(pRtree->pReadParent); |
| 2331 if( rc==SQLITE_OK ) rc = rc2; |
| 2332 if( rc==SQLITE_OK && !pChild->pParent ) rc = SQLITE_CORRUPT; |
| 2333 pChild = pChild->pParent; |
| 2334 } |
| 2335 return rc; |
| 2336 } |
| 2337 |
| 2338 static int deleteCell(Rtree *, RtreeNode *, int, int); |
| 2339 |
| 2340 static int removeNode(Rtree *pRtree, RtreeNode *pNode, int iHeight){ |
| 2341 int rc; |
| 2342 int rc2; |
| 2343 RtreeNode *pParent; |
| 2344 int iCell; |
| 2345 |
| 2346 assert( pNode->nRef==1 ); |
| 2347 |
| 2348 /* Remove the entry in the parent cell. */ |
| 2349 rc = nodeParentIndex(pRtree, pNode, &iCell); |
| 2350 if( rc==SQLITE_OK ){ |
| 2351 pParent = pNode->pParent; |
| 2352 pNode->pParent = 0; |
| 2353 rc = deleteCell(pRtree, pParent, iCell, iHeight+1); |
| 2354 } |
| 2355 rc2 = nodeRelease(pRtree, pParent); |
| 2356 if( rc==SQLITE_OK ){ |
| 2357 rc = rc2; |
| 2358 } |
| 2359 if( rc!=SQLITE_OK ){ |
| 2360 return rc; |
| 2361 } |
| 2362 |
| 2363 /* Remove the xxx_node entry. */ |
| 2364 sqlite3_bind_int64(pRtree->pDeleteNode, 1, pNode->iNode); |
| 2365 sqlite3_step(pRtree->pDeleteNode); |
| 2366 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteNode)) ){ |
| 2367 return rc; |
| 2368 } |
| 2369 |
| 2370 /* Remove the xxx_parent entry. */ |
| 2371 sqlite3_bind_int64(pRtree->pDeleteParent, 1, pNode->iNode); |
| 2372 sqlite3_step(pRtree->pDeleteParent); |
| 2373 if( SQLITE_OK!=(rc = sqlite3_reset(pRtree->pDeleteParent)) ){ |
| 2374 return rc; |
| 2375 } |
| 2376 |
| 2377 /* Remove the node from the in-memory hash table and link it into |
| 2378 ** the Rtree.pDeleted list. Its contents will be re-inserted later on. |
| 2379 */ |
| 2380 nodeHashDelete(pRtree, pNode); |
| 2381 pNode->iNode = iHeight; |
| 2382 pNode->pNext = pRtree->pDeleted; |
| 2383 pNode->nRef++; |
| 2384 pRtree->pDeleted = pNode; |
| 2385 |
| 2386 return SQLITE_OK; |
| 2387 } |
| 2388 |
| 2389 static int fixBoundingBox(Rtree *pRtree, RtreeNode *pNode){ |
| 2390 RtreeNode *pParent = pNode->pParent; |
| 2391 int rc = SQLITE_OK; |
| 2392 if( pParent ){ |
| 2393 int ii; |
| 2394 int nCell = NCELL(pNode); |
| 2395 RtreeCell box; /* Bounding box for pNode */ |
| 2396 nodeGetCell(pRtree, pNode, 0, &box); |
| 2397 for(ii=1; ii<nCell; ii++){ |
| 2398 RtreeCell cell; |
| 2399 nodeGetCell(pRtree, pNode, ii, &cell); |
| 2400 cellUnion(pRtree, &box, &cell); |
| 2401 } |
| 2402 box.iRowid = pNode->iNode; |
| 2403 rc = nodeParentIndex(pRtree, pNode, &ii); |
| 2404 if( rc==SQLITE_OK ){ |
| 2405 nodeOverwriteCell(pRtree, pParent, &box, ii); |
| 2406 rc = fixBoundingBox(pRtree, pParent); |
| 2407 } |
| 2408 } |
| 2409 return rc; |
| 2410 } |
| 2411 |
| 2412 /* |
| 2413 ** Delete the cell at index iCell of node pNode. After removing the |
| 2414 ** cell, adjust the r-tree data structure if required. |
| 2415 */ |
| 2416 static int deleteCell(Rtree *pRtree, RtreeNode *pNode, int iCell, int iHeight){ |
| 2417 RtreeNode *pParent; |
| 2418 int rc; |
| 2419 |
| 2420 if( SQLITE_OK!=(rc = fixLeafParent(pRtree, pNode)) ){ |
| 2421 return rc; |
| 2422 } |
| 2423 |
| 2424 /* Remove the cell from the node. This call just moves bytes around |
| 2425 ** the in-memory node image, so it cannot fail. |
| 2426 */ |
| 2427 nodeDeleteCell(pRtree, pNode, iCell); |
| 2428 |
| 2429 /* If the node is not the tree root and now has less than the minimum |
| 2430 ** number of cells, remove it from the tree. Otherwise, update the |
| 2431 ** cell in the parent node so that it tightly contains the updated |
| 2432 ** node. |
| 2433 */ |
| 2434 pParent = pNode->pParent; |
| 2435 assert( pParent || pNode->iNode==1 ); |
| 2436 if( pParent ){ |
| 2437 if( NCELL(pNode)<RTREE_MINCELLS(pRtree) ){ |
| 2438 rc = removeNode(pRtree, pNode, iHeight); |
| 2439 }else{ |
| 2440 rc = fixBoundingBox(pRtree, pNode); |
| 2441 } |
| 2442 } |
| 2443 |
| 2444 return rc; |
| 2445 } |
| 2446 |
| 2447 static int Reinsert( |
| 2448 Rtree *pRtree, |
| 2449 RtreeNode *pNode, |
| 2450 RtreeCell *pCell, |
| 2451 int iHeight |
| 2452 ){ |
| 2453 int *aOrder; |
| 2454 int *aSpare; |
| 2455 RtreeCell *aCell; |
| 2456 float *aDistance; |
| 2457 int nCell; |
| 2458 float aCenterCoord[RTREE_MAX_DIMENSIONS]; |
| 2459 int iDim; |
| 2460 int ii; |
| 2461 int rc = SQLITE_OK; |
| 2462 |
| 2463 memset(aCenterCoord, 0, sizeof(float)*RTREE_MAX_DIMENSIONS); |
| 2464 |
| 2465 nCell = NCELL(pNode)+1; |
| 2466 |
| 2467 /* Allocate the buffers used by this operation. The allocation is |
| 2468 ** relinquished before this function returns. |
| 2469 */ |
| 2470 aCell = (RtreeCell *)sqlite3_malloc(nCell * ( |
| 2471 sizeof(RtreeCell) + /* aCell array */ |
| 2472 sizeof(int) + /* aOrder array */ |
| 2473 sizeof(int) + /* aSpare array */ |
| 2474 sizeof(float) /* aDistance array */ |
| 2475 )); |
| 2476 if( !aCell ){ |
| 2477 return SQLITE_NOMEM; |
| 2478 } |
| 2479 aOrder = (int *)&aCell[nCell]; |
| 2480 aSpare = (int *)&aOrder[nCell]; |
| 2481 aDistance = (float *)&aSpare[nCell]; |
| 2482 |
| 2483 for(ii=0; ii<nCell; ii++){ |
| 2484 if( ii==(nCell-1) ){ |
| 2485 memcpy(&aCell[ii], pCell, sizeof(RtreeCell)); |
| 2486 }else{ |
| 2487 nodeGetCell(pRtree, pNode, ii, &aCell[ii]); |
| 2488 } |
| 2489 aOrder[ii] = ii; |
| 2490 for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| 2491 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2]); |
| 2492 aCenterCoord[iDim] += DCOORD(aCell[ii].aCoord[iDim*2+1]); |
| 2493 } |
| 2494 } |
| 2495 for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| 2496 aCenterCoord[iDim] = aCenterCoord[iDim]/((float)nCell*2.0); |
| 2497 } |
| 2498 |
| 2499 for(ii=0; ii<nCell; ii++){ |
| 2500 aDistance[ii] = 0.0; |
| 2501 for(iDim=0; iDim<pRtree->nDim; iDim++){ |
| 2502 float coord = DCOORD(aCell[ii].aCoord[iDim*2+1]) - |
| 2503 DCOORD(aCell[ii].aCoord[iDim*2]); |
| 2504 aDistance[ii] += (coord-aCenterCoord[iDim])*(coord-aCenterCoord[iDim]); |
| 2505 } |
| 2506 } |
| 2507 |
| 2508 SortByDistance(aOrder, nCell, aDistance, aSpare); |
| 2509 nodeZero(pRtree, pNode); |
| 2510 |
| 2511 for(ii=0; rc==SQLITE_OK && ii<(nCell-(RTREE_MINCELLS(pRtree)+1)); ii++){ |
| 2512 RtreeCell *p = &aCell[aOrder[ii]]; |
| 2513 nodeInsertCell(pRtree, pNode, p); |
| 2514 if( p->iRowid==pCell->iRowid ){ |
| 2515 if( iHeight==0 ){ |
| 2516 rc = rowidWrite(pRtree, p->iRowid, pNode->iNode); |
| 2517 }else{ |
| 2518 rc = parentWrite(pRtree, p->iRowid, pNode->iNode); |
| 2519 } |
| 2520 } |
| 2521 } |
| 2522 if( rc==SQLITE_OK ){ |
| 2523 rc = fixBoundingBox(pRtree, pNode); |
| 2524 } |
| 2525 for(; rc==SQLITE_OK && ii<nCell; ii++){ |
| 2526 /* Find a node to store this cell in. pNode->iNode currently contains |
| 2527 ** the height of the sub-tree headed by the cell. |
| 2528 */ |
| 2529 RtreeNode *pInsert; |
| 2530 RtreeCell *p = &aCell[aOrder[ii]]; |
| 2531 rc = ChooseLeaf(pRtree, p, iHeight, &pInsert); |
| 2532 if( rc==SQLITE_OK ){ |
| 2533 int rc2; |
| 2534 rc = rtreeInsertCell(pRtree, pInsert, p, iHeight); |
| 2535 rc2 = nodeRelease(pRtree, pInsert); |
| 2536 if( rc==SQLITE_OK ){ |
| 2537 rc = rc2; |
| 2538 } |
| 2539 } |
| 2540 } |
| 2541 |
| 2542 sqlite3_free(aCell); |
| 2543 return rc; |
| 2544 } |
| 2545 |
| 2546 /* |
| 2547 ** Insert cell pCell into node pNode. Node pNode is the head of a |
| 2548 ** subtree iHeight high (leaf nodes have iHeight==0). |
| 2549 */ |
| 2550 static int rtreeInsertCell( |
| 2551 Rtree *pRtree, |
| 2552 RtreeNode *pNode, |
| 2553 RtreeCell *pCell, |
| 2554 int iHeight |
| 2555 ){ |
| 2556 int rc = SQLITE_OK; |
| 2557 if( iHeight>0 ){ |
| 2558 RtreeNode *pChild = nodeHashLookup(pRtree, pCell->iRowid); |
| 2559 if( pChild ){ |
| 2560 nodeRelease(pRtree, pChild->pParent); |
| 2561 nodeReference(pNode); |
| 2562 pChild->pParent = pNode; |
| 2563 } |
| 2564 } |
| 2565 if( nodeInsertCell(pRtree, pNode, pCell) ){ |
| 2566 #if VARIANT_RSTARTREE_REINSERT |
| 2567 if( iHeight<=pRtree->iReinsertHeight || pNode->iNode==1){ |
| 2568 rc = SplitNode(pRtree, pNode, pCell, iHeight); |
| 2569 }else{ |
| 2570 pRtree->iReinsertHeight = iHeight; |
| 2571 rc = Reinsert(pRtree, pNode, pCell, iHeight); |
| 2572 } |
| 2573 #else |
| 2574 rc = SplitNode(pRtree, pNode, pCell, iHeight); |
| 2575 #endif |
| 2576 }else{ |
| 2577 rc = AdjustTree(pRtree, pNode, pCell); |
| 2578 if( rc==SQLITE_OK ){ |
| 2579 if( iHeight==0 ){ |
| 2580 rc = rowidWrite(pRtree, pCell->iRowid, pNode->iNode); |
| 2581 }else{ |
| 2582 rc = parentWrite(pRtree, pCell->iRowid, pNode->iNode); |
| 2583 } |
| 2584 } |
| 2585 } |
| 2586 return rc; |
| 2587 } |
| 2588 |
| 2589 static int reinsertNodeContent(Rtree *pRtree, RtreeNode *pNode){ |
| 2590 int ii; |
| 2591 int rc = SQLITE_OK; |
| 2592 int nCell = NCELL(pNode); |
| 2593 |
| 2594 for(ii=0; rc==SQLITE_OK && ii<nCell; ii++){ |
| 2595 RtreeNode *pInsert; |
| 2596 RtreeCell cell; |
| 2597 nodeGetCell(pRtree, pNode, ii, &cell); |
| 2598 |
| 2599 /* Find a node to store this cell in. pNode->iNode currently contains |
| 2600 ** the height of the sub-tree headed by the cell. |
| 2601 */ |
| 2602 rc = ChooseLeaf(pRtree, &cell, pNode->iNode, &pInsert); |
| 2603 if( rc==SQLITE_OK ){ |
| 2604 int rc2; |
| 2605 rc = rtreeInsertCell(pRtree, pInsert, &cell, pNode->iNode); |
| 2606 rc2 = nodeRelease(pRtree, pInsert); |
| 2607 if( rc==SQLITE_OK ){ |
| 2608 rc = rc2; |
| 2609 } |
| 2610 } |
| 2611 } |
| 2612 return rc; |
| 2613 } |
| 2614 |
| 2615 /* |
| 2616 ** Select a currently unused rowid for a new r-tree record. |
| 2617 */ |
| 2618 static int newRowid(Rtree *pRtree, i64 *piRowid){ |
| 2619 int rc; |
| 2620 sqlite3_bind_null(pRtree->pWriteRowid, 1); |
| 2621 sqlite3_bind_null(pRtree->pWriteRowid, 2); |
| 2622 sqlite3_step(pRtree->pWriteRowid); |
| 2623 rc = sqlite3_reset(pRtree->pWriteRowid); |
| 2624 *piRowid = sqlite3_last_insert_rowid(pRtree->db); |
| 2625 return rc; |
| 2626 } |
| 2627 |
| 2628 /* |
| 2629 ** The xUpdate method for rtree module virtual tables. |
| 2630 */ |
| 2631 static int rtreeUpdate( |
| 2632 sqlite3_vtab *pVtab, |
| 2633 int nData, |
| 2634 sqlite3_value **azData, |
| 2635 sqlite_int64 *pRowid |
| 2636 ){ |
| 2637 Rtree *pRtree = (Rtree *)pVtab; |
| 2638 int rc = SQLITE_OK; |
| 2639 |
| 2640 rtreeReference(pRtree); |
| 2641 |
| 2642 assert(nData>=1); |
| 2643 |
| 2644 /* If azData[0] is not an SQL NULL value, it is the rowid of a |
| 2645 ** record to delete from the r-tree table. The following block does |
| 2646 ** just that. |
| 2647 */ |
| 2648 if( sqlite3_value_type(azData[0])!=SQLITE_NULL ){ |
| 2649 i64 iDelete; /* The rowid to delete */ |
| 2650 RtreeNode *pLeaf; /* Leaf node containing record iDelete */ |
| 2651 int iCell; /* Index of iDelete cell in pLeaf */ |
| 2652 RtreeNode *pRoot; |
| 2653 |
| 2654 /* Obtain a reference to the root node to initialise Rtree.iDepth */ |
| 2655 rc = nodeAcquire(pRtree, 1, 0, &pRoot); |
| 2656 |
| 2657 /* Obtain a reference to the leaf node that contains the entry |
| 2658 ** about to be deleted. |
| 2659 */ |
| 2660 if( rc==SQLITE_OK ){ |
| 2661 iDelete = sqlite3_value_int64(azData[0]); |
| 2662 rc = findLeafNode(pRtree, iDelete, &pLeaf); |
| 2663 } |
| 2664 |
| 2665 /* Delete the cell in question from the leaf node. */ |
| 2666 if( rc==SQLITE_OK ){ |
| 2667 int rc2; |
| 2668 rc = nodeRowidIndex(pRtree, pLeaf, iDelete, &iCell); |
| 2669 if( rc==SQLITE_OK ){ |
| 2670 rc = deleteCell(pRtree, pLeaf, iCell, 0); |
| 2671 } |
| 2672 rc2 = nodeRelease(pRtree, pLeaf); |
| 2673 if( rc==SQLITE_OK ){ |
| 2674 rc = rc2; |
| 2675 } |
| 2676 } |
| 2677 |
| 2678 /* Delete the corresponding entry in the <rtree>_rowid table. */ |
| 2679 if( rc==SQLITE_OK ){ |
| 2680 sqlite3_bind_int64(pRtree->pDeleteRowid, 1, iDelete); |
| 2681 sqlite3_step(pRtree->pDeleteRowid); |
| 2682 rc = sqlite3_reset(pRtree->pDeleteRowid); |
| 2683 } |
| 2684 |
| 2685 /* Check if the root node now has exactly one child. If so, remove |
| 2686 ** it, schedule the contents of the child for reinsertion and |
| 2687 ** reduce the tree height by one. |
| 2688 ** |
| 2689 ** This is equivalent to copying the contents of the child into |
| 2690 ** the root node (the operation that Gutman's paper says to perform |
| 2691 ** in this scenario). |
| 2692 */ |
| 2693 if( rc==SQLITE_OK && pRtree->iDepth>0 && NCELL(pRoot)==1 ){ |
| 2694 int rc2; |
| 2695 RtreeNode *pChild; |
| 2696 i64 iChild = nodeGetRowid(pRtree, pRoot, 0); |
| 2697 rc = nodeAcquire(pRtree, iChild, pRoot, &pChild); |
| 2698 if( rc==SQLITE_OK ){ |
| 2699 rc = removeNode(pRtree, pChild, pRtree->iDepth-1); |
| 2700 } |
| 2701 rc2 = nodeRelease(pRtree, pChild); |
| 2702 if( rc==SQLITE_OK ) rc = rc2; |
| 2703 if( rc==SQLITE_OK ){ |
| 2704 pRtree->iDepth--; |
| 2705 writeInt16(pRoot->zData, pRtree->iDepth); |
| 2706 pRoot->isDirty = 1; |
| 2707 } |
| 2708 } |
| 2709 |
| 2710 /* Re-insert the contents of any underfull nodes removed from the tree. */ |
| 2711 for(pLeaf=pRtree->pDeleted; pLeaf; pLeaf=pRtree->pDeleted){ |
| 2712 if( rc==SQLITE_OK ){ |
| 2713 rc = reinsertNodeContent(pRtree, pLeaf); |
| 2714 } |
| 2715 pRtree->pDeleted = pLeaf->pNext; |
| 2716 sqlite3_free(pLeaf); |
| 2717 } |
| 2718 |
| 2719 /* Release the reference to the root node. */ |
| 2720 if( rc==SQLITE_OK ){ |
| 2721 rc = nodeRelease(pRtree, pRoot); |
| 2722 }else{ |
| 2723 nodeRelease(pRtree, pRoot); |
| 2724 } |
| 2725 } |
| 2726 |
| 2727 /* If the azData[] array contains more than one element, elements |
| 2728 ** (azData[2]..azData[argc-1]) contain a new record to insert into |
| 2729 ** the r-tree structure. |
| 2730 */ |
| 2731 if( rc==SQLITE_OK && nData>1 ){ |
| 2732 /* Insert a new record into the r-tree */ |
| 2733 RtreeCell cell; |
| 2734 int ii; |
| 2735 RtreeNode *pLeaf; |
| 2736 |
| 2737 /* Populate the cell.aCoord[] array. The first coordinate is azData[3]. */ |
| 2738 assert( nData==(pRtree->nDim*2 + 3) ); |
| 2739 if( pRtree->eCoordType==RTREE_COORD_REAL32 ){ |
| 2740 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 2741 cell.aCoord[ii].f = (float)sqlite3_value_double(azData[ii+3]); |
| 2742 cell.aCoord[ii+1].f = (float)sqlite3_value_double(azData[ii+4]); |
| 2743 if( cell.aCoord[ii].f>cell.aCoord[ii+1].f ){ |
| 2744 rc = SQLITE_CONSTRAINT; |
| 2745 goto constraint; |
| 2746 } |
| 2747 } |
| 2748 }else{ |
| 2749 for(ii=0; ii<(pRtree->nDim*2); ii+=2){ |
| 2750 cell.aCoord[ii].i = sqlite3_value_int(azData[ii+3]); |
| 2751 cell.aCoord[ii+1].i = sqlite3_value_int(azData[ii+4]); |
| 2752 if( cell.aCoord[ii].i>cell.aCoord[ii+1].i ){ |
| 2753 rc = SQLITE_CONSTRAINT; |
| 2754 goto constraint; |
| 2755 } |
| 2756 } |
| 2757 } |
| 2758 |
| 2759 /* Figure out the rowid of the new row. */ |
| 2760 if( sqlite3_value_type(azData[2])==SQLITE_NULL ){ |
| 2761 rc = newRowid(pRtree, &cell.iRowid); |
| 2762 }else{ |
| 2763 cell.iRowid = sqlite3_value_int64(azData[2]); |
| 2764 sqlite3_bind_int64(pRtree->pReadRowid, 1, cell.iRowid); |
| 2765 if( SQLITE_ROW==sqlite3_step(pRtree->pReadRowid) ){ |
| 2766 sqlite3_reset(pRtree->pReadRowid); |
| 2767 rc = SQLITE_CONSTRAINT; |
| 2768 goto constraint; |
| 2769 } |
| 2770 rc = sqlite3_reset(pRtree->pReadRowid); |
| 2771 } |
| 2772 *pRowid = cell.iRowid; |
| 2773 |
| 2774 if( rc==SQLITE_OK ){ |
| 2775 rc = ChooseLeaf(pRtree, &cell, 0, &pLeaf); |
| 2776 } |
| 2777 if( rc==SQLITE_OK ){ |
| 2778 int rc2; |
| 2779 pRtree->iReinsertHeight = -1; |
| 2780 rc = rtreeInsertCell(pRtree, pLeaf, &cell, 0); |
| 2781 rc2 = nodeRelease(pRtree, pLeaf); |
| 2782 if( rc==SQLITE_OK ){ |
| 2783 rc = rc2; |
| 2784 } |
| 2785 } |
| 2786 } |
| 2787 |
| 2788 constraint: |
| 2789 rtreeRelease(pRtree); |
| 2790 return rc; |
| 2791 } |
| 2792 |
| 2793 /* |
| 2794 ** The xRename method for rtree module virtual tables. |
| 2795 */ |
| 2796 static int rtreeRename(sqlite3_vtab *pVtab, const char *zNewName){ |
| 2797 Rtree *pRtree = (Rtree *)pVtab; |
| 2798 int rc = SQLITE_NOMEM; |
| 2799 char *zSql = sqlite3_mprintf( |
| 2800 "ALTER TABLE %Q.'%q_node' RENAME TO \"%w_node\";" |
| 2801 "ALTER TABLE %Q.'%q_parent' RENAME TO \"%w_parent\";" |
| 2802 "ALTER TABLE %Q.'%q_rowid' RENAME TO \"%w_rowid\";" |
| 2803 , pRtree->zDb, pRtree->zName, zNewName |
| 2804 , pRtree->zDb, pRtree->zName, zNewName |
| 2805 , pRtree->zDb, pRtree->zName, zNewName |
| 2806 ); |
| 2807 if( zSql ){ |
| 2808 rc = sqlite3_exec(pRtree->db, zSql, 0, 0, 0); |
| 2809 sqlite3_free(zSql); |
| 2810 } |
| 2811 return rc; |
| 2812 } |
| 2813 |
| 2814 static sqlite3_module rtreeModule = { |
| 2815 0, /* iVersion */ |
| 2816 rtreeCreate, /* xCreate - create a table */ |
| 2817 rtreeConnect, /* xConnect - connect to an existing table */ |
| 2818 rtreeBestIndex, /* xBestIndex - Determine search strategy */ |
| 2819 rtreeDisconnect, /* xDisconnect - Disconnect from a table */ |
| 2820 rtreeDestroy, /* xDestroy - Drop a table */ |
| 2821 rtreeOpen, /* xOpen - open a cursor */ |
| 2822 rtreeClose, /* xClose - close a cursor */ |
| 2823 rtreeFilter, /* xFilter - configure scan constraints */ |
| 2824 rtreeNext, /* xNext - advance a cursor */ |
| 2825 rtreeEof, /* xEof */ |
| 2826 rtreeColumn, /* xColumn - read data */ |
| 2827 rtreeRowid, /* xRowid - read data */ |
| 2828 rtreeUpdate, /* xUpdate - write data */ |
| 2829 0, /* xBegin - begin transaction */ |
| 2830 0, /* xSync - sync transaction */ |
| 2831 0, /* xCommit - commit transaction */ |
| 2832 0, /* xRollback - rollback transaction */ |
| 2833 0, /* xFindFunction - function overloading */ |
| 2834 rtreeRename /* xRename - rename the table */ |
| 2835 }; |
| 2836 |
| 2837 static int rtreeSqlInit( |
| 2838 Rtree *pRtree, |
| 2839 sqlite3 *db, |
| 2840 const char *zDb, |
| 2841 const char *zPrefix, |
| 2842 int isCreate |
| 2843 ){ |
| 2844 int rc = SQLITE_OK; |
| 2845 |
| 2846 #define N_STATEMENT 9 |
| 2847 static const char *azSql[N_STATEMENT] = { |
| 2848 /* Read and write the xxx_node table */ |
| 2849 "SELECT data FROM '%q'.'%q_node' WHERE nodeno = :1", |
| 2850 "INSERT OR REPLACE INTO '%q'.'%q_node' VALUES(:1, :2)", |
| 2851 "DELETE FROM '%q'.'%q_node' WHERE nodeno = :1", |
| 2852 |
| 2853 /* Read and write the xxx_rowid table */ |
| 2854 "SELECT nodeno FROM '%q'.'%q_rowid' WHERE rowid = :1", |
| 2855 "INSERT OR REPLACE INTO '%q'.'%q_rowid' VALUES(:1, :2)", |
| 2856 "DELETE FROM '%q'.'%q_rowid' WHERE rowid = :1", |
| 2857 |
| 2858 /* Read and write the xxx_parent table */ |
| 2859 "SELECT parentnode FROM '%q'.'%q_parent' WHERE nodeno = :1", |
| 2860 "INSERT OR REPLACE INTO '%q'.'%q_parent' VALUES(:1, :2)", |
| 2861 "DELETE FROM '%q'.'%q_parent' WHERE nodeno = :1" |
| 2862 }; |
| 2863 sqlite3_stmt **appStmt[N_STATEMENT]; |
| 2864 int i; |
| 2865 |
| 2866 pRtree->db = db; |
| 2867 |
| 2868 if( isCreate ){ |
| 2869 char *zCreate = sqlite3_mprintf( |
| 2870 "CREATE TABLE \"%w\".\"%w_node\"(nodeno INTEGER PRIMARY KEY, data BLOB);" |
| 2871 "CREATE TABLE \"%w\".\"%w_rowid\"(rowid INTEGER PRIMARY KEY, nodeno INTEGER);" |
| 2872 "CREATE TABLE \"%w\".\"%w_parent\"(nodeno INTEGER PRIMARY KEY, parentnode INTEGE
R);" |
| 2873 "INSERT INTO '%q'.'%q_node' VALUES(1, zeroblob(%d))", |
| 2874 zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, zDb, zPrefix, pRtree->iNodeSize |
| 2875 ); |
| 2876 if( !zCreate ){ |
| 2877 return SQLITE_NOMEM; |
| 2878 } |
| 2879 rc = sqlite3_exec(db, zCreate, 0, 0, 0); |
| 2880 sqlite3_free(zCreate); |
| 2881 if( rc!=SQLITE_OK ){ |
| 2882 return rc; |
| 2883 } |
| 2884 } |
| 2885 |
| 2886 appStmt[0] = &pRtree->pReadNode; |
| 2887 appStmt[1] = &pRtree->pWriteNode; |
| 2888 appStmt[2] = &pRtree->pDeleteNode; |
| 2889 appStmt[3] = &pRtree->pReadRowid; |
| 2890 appStmt[4] = &pRtree->pWriteRowid; |
| 2891 appStmt[5] = &pRtree->pDeleteRowid; |
| 2892 appStmt[6] = &pRtree->pReadParent; |
| 2893 appStmt[7] = &pRtree->pWriteParent; |
| 2894 appStmt[8] = &pRtree->pDeleteParent; |
| 2895 |
| 2896 for(i=0; i<N_STATEMENT && rc==SQLITE_OK; i++){ |
| 2897 char *zSql = sqlite3_mprintf(azSql[i], zDb, zPrefix); |
| 2898 if( zSql ){ |
| 2899 rc = sqlite3_prepare_v2(db, zSql, -1, appStmt[i], 0); |
| 2900 }else{ |
| 2901 rc = SQLITE_NOMEM; |
| 2902 } |
| 2903 sqlite3_free(zSql); |
| 2904 } |
| 2905 |
| 2906 return rc; |
| 2907 } |
| 2908 |
| 2909 /* |
| 2910 ** The second argument to this function contains the text of an SQL statement |
| 2911 ** that returns a single integer value. The statement is compiled and executed |
| 2912 ** using database connection db. If successful, the integer value returned |
| 2913 ** is written to *piVal and SQLITE_OK returned. Otherwise, an SQLite error |
| 2914 ** code is returned and the value of *piVal after returning is not defined. |
| 2915 */ |
| 2916 static int getIntFromStmt(sqlite3 *db, const char *zSql, int *piVal){ |
| 2917 int rc = SQLITE_NOMEM; |
| 2918 if( zSql ){ |
| 2919 sqlite3_stmt *pStmt = 0; |
| 2920 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); |
| 2921 if( rc==SQLITE_OK ){ |
| 2922 if( SQLITE_ROW==sqlite3_step(pStmt) ){ |
| 2923 *piVal = sqlite3_column_int(pStmt, 0); |
| 2924 } |
| 2925 rc = sqlite3_finalize(pStmt); |
| 2926 } |
| 2927 } |
| 2928 return rc; |
| 2929 } |
| 2930 |
| 2931 /* |
| 2932 ** This function is called from within the xConnect() or xCreate() method to |
| 2933 ** determine the node-size used by the rtree table being created or connected |
| 2934 ** to. If successful, pRtree->iNodeSize is populated and SQLITE_OK returned. |
| 2935 ** Otherwise, an SQLite error code is returned. |
| 2936 ** |
| 2937 ** If this function is being called as part of an xConnect(), then the rtree |
| 2938 ** table already exists. In this case the node-size is determined by inspecting |
| 2939 ** the root node of the tree. |
| 2940 ** |
| 2941 ** Otherwise, for an xCreate(), use 64 bytes less than the database page-size. |
| 2942 ** This ensures that each node is stored on a single database page. If the |
| 2943 ** database page-size is so large that more than RTREE_MAXCELLS entries |
| 2944 ** would fit in a single node, use a smaller node-size. |
| 2945 */ |
| 2946 static int getNodeSize( |
| 2947 sqlite3 *db, /* Database handle */ |
| 2948 Rtree *pRtree, /* Rtree handle */ |
| 2949 int isCreate /* True for xCreate, false for xConnect */ |
| 2950 ){ |
| 2951 int rc; |
| 2952 char *zSql; |
| 2953 if( isCreate ){ |
| 2954 int iPageSize; |
| 2955 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", pRtree->zDb); |
| 2956 rc = getIntFromStmt(db, zSql, &iPageSize); |
| 2957 if( rc==SQLITE_OK ){ |
| 2958 pRtree->iNodeSize = iPageSize-64; |
| 2959 if( (4+pRtree->nBytesPerCell*RTREE_MAXCELLS)<pRtree->iNodeSize ){ |
| 2960 pRtree->iNodeSize = 4+pRtree->nBytesPerCell*RTREE_MAXCELLS; |
| 2961 } |
| 2962 } |
| 2963 }else{ |
| 2964 zSql = sqlite3_mprintf( |
| 2965 "SELECT length(data) FROM '%q'.'%q_node' WHERE nodeno = 1", |
| 2966 pRtree->zDb, pRtree->zName |
| 2967 ); |
| 2968 rc = getIntFromStmt(db, zSql, &pRtree->iNodeSize); |
| 2969 } |
| 2970 |
| 2971 sqlite3_free(zSql); |
| 2972 return rc; |
| 2973 } |
| 2974 |
| 2975 /* |
| 2976 ** This function is the implementation of both the xConnect and xCreate |
| 2977 ** methods of the r-tree virtual table. |
| 2978 ** |
| 2979 ** argv[0] -> module name |
| 2980 ** argv[1] -> database name |
| 2981 ** argv[2] -> table name |
| 2982 ** argv[...] -> column names... |
| 2983 */ |
| 2984 static int rtreeInit( |
| 2985 sqlite3 *db, /* Database connection */ |
| 2986 void *pAux, /* One of the RTREE_COORD_* constants */ |
| 2987 int argc, const char *const*argv, /* Parameters to CREATE TABLE statement */ |
| 2988 sqlite3_vtab **ppVtab, /* OUT: New virtual table */ |
| 2989 char **pzErr, /* OUT: Error message, if any */ |
| 2990 int isCreate /* True for xCreate, false for xConnect */ |
| 2991 ){ |
| 2992 int rc = SQLITE_OK; |
| 2993 Rtree *pRtree; |
| 2994 int nDb; /* Length of string argv[1] */ |
| 2995 int nName; /* Length of string argv[2] */ |
| 2996 int eCoordType = (pAux ? RTREE_COORD_INT32 : RTREE_COORD_REAL32); |
| 2997 |
| 2998 const char *aErrMsg[] = { |
| 2999 0, /* 0 */ |
| 3000 "Wrong number of columns for an rtree table", /* 1 */ |
| 3001 "Too few columns for an rtree table", /* 2 */ |
| 3002 "Too many columns for an rtree table" /* 3 */ |
| 3003 }; |
| 3004 |
| 3005 int iErr = (argc<6) ? 2 : argc>(RTREE_MAX_DIMENSIONS*2+4) ? 3 : argc%2; |
| 3006 if( aErrMsg[iErr] ){ |
| 3007 *pzErr = sqlite3_mprintf("%s", aErrMsg[iErr]); |
| 3008 return SQLITE_ERROR; |
| 3009 } |
| 3010 |
| 3011 /* Allocate the sqlite3_vtab structure */ |
| 3012 nDb = strlen(argv[1]); |
| 3013 nName = strlen(argv[2]); |
| 3014 pRtree = (Rtree *)sqlite3_malloc(sizeof(Rtree)+nDb+nName+2); |
| 3015 if( !pRtree ){ |
| 3016 return SQLITE_NOMEM; |
| 3017 } |
| 3018 memset(pRtree, 0, sizeof(Rtree)+nDb+nName+2); |
| 3019 pRtree->nBusy = 1; |
| 3020 pRtree->base.pModule = &rtreeModule; |
| 3021 pRtree->zDb = (char *)&pRtree[1]; |
| 3022 pRtree->zName = &pRtree->zDb[nDb+1]; |
| 3023 pRtree->nDim = (argc-4)/2; |
| 3024 pRtree->nBytesPerCell = 8 + pRtree->nDim*4*2; |
| 3025 pRtree->eCoordType = eCoordType; |
| 3026 memcpy(pRtree->zDb, argv[1], nDb); |
| 3027 memcpy(pRtree->zName, argv[2], nName); |
| 3028 |
| 3029 /* Figure out the node size to use. */ |
| 3030 rc = getNodeSize(db, pRtree, isCreate); |
| 3031 |
| 3032 /* Create/Connect to the underlying relational database schema. If |
| 3033 ** that is successful, call sqlite3_declare_vtab() to configure |
| 3034 ** the r-tree table schema. |
| 3035 */ |
| 3036 if( rc==SQLITE_OK ){ |
| 3037 if( (rc = rtreeSqlInit(pRtree, db, argv[1], argv[2], isCreate)) ){ |
| 3038 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
| 3039 }else{ |
| 3040 char *zSql = sqlite3_mprintf("CREATE TABLE x(%s", argv[3]); |
| 3041 char *zTmp; |
| 3042 int ii; |
| 3043 for(ii=4; zSql && ii<argc; ii++){ |
| 3044 zTmp = zSql; |
| 3045 zSql = sqlite3_mprintf("%s, %s", zTmp, argv[ii]); |
| 3046 sqlite3_free(zTmp); |
| 3047 } |
| 3048 if( zSql ){ |
| 3049 zTmp = zSql; |
| 3050 zSql = sqlite3_mprintf("%s);", zTmp); |
| 3051 sqlite3_free(zTmp); |
| 3052 } |
| 3053 if( !zSql ){ |
| 3054 rc = SQLITE_NOMEM; |
| 3055 }else if( SQLITE_OK!=(rc = sqlite3_declare_vtab(db, zSql)) ){ |
| 3056 *pzErr = sqlite3_mprintf("%s", sqlite3_errmsg(db)); |
| 3057 } |
| 3058 sqlite3_free(zSql); |
| 3059 } |
| 3060 } |
| 3061 |
| 3062 if( rc==SQLITE_OK ){ |
| 3063 *ppVtab = (sqlite3_vtab *)pRtree; |
| 3064 }else{ |
| 3065 rtreeRelease(pRtree); |
| 3066 } |
| 3067 return rc; |
| 3068 } |
| 3069 |
| 3070 |
| 3071 /* |
| 3072 ** Implementation of a scalar function that decodes r-tree nodes to |
| 3073 ** human readable strings. This can be used for debugging and analysis. |
| 3074 ** |
| 3075 ** The scalar function takes two arguments, a blob of data containing |
| 3076 ** an r-tree node, and the number of dimensions the r-tree indexes. |
| 3077 ** For a two-dimensional r-tree structure called "rt", to deserialize |
| 3078 ** all nodes, a statement like: |
| 3079 ** |
| 3080 ** SELECT rtreenode(2, data) FROM rt_node; |
| 3081 ** |
| 3082 ** The human readable string takes the form of a Tcl list with one |
| 3083 ** entry for each cell in the r-tree node. Each entry is itself a |
| 3084 ** list, containing the 8-byte rowid/pageno followed by the |
| 3085 ** <num-dimension>*2 coordinates. |
| 3086 */ |
| 3087 static void rtreenode(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
| 3088 char *zText = 0; |
| 3089 RtreeNode node; |
| 3090 Rtree tree; |
| 3091 int ii; |
| 3092 |
| 3093 UNUSED_PARAMETER(nArg); |
| 3094 memset(&node, 0, sizeof(RtreeNode)); |
| 3095 memset(&tree, 0, sizeof(Rtree)); |
| 3096 tree.nDim = sqlite3_value_int(apArg[0]); |
| 3097 tree.nBytesPerCell = 8 + 8 * tree.nDim; |
| 3098 node.zData = (u8 *)sqlite3_value_blob(apArg[1]); |
| 3099 |
| 3100 for(ii=0; ii<NCELL(&node); ii++){ |
| 3101 char zCell[512]; |
| 3102 int nCell = 0; |
| 3103 RtreeCell cell; |
| 3104 int jj; |
| 3105 |
| 3106 nodeGetCell(&tree, &node, ii, &cell); |
| 3107 sqlite3_snprintf(512-nCell,&zCell[nCell],"%lld", cell.iRowid); |
| 3108 nCell = strlen(zCell); |
| 3109 for(jj=0; jj<tree.nDim*2; jj++){ |
| 3110 sqlite3_snprintf(512-nCell,&zCell[nCell]," %f",(double)cell.aCoord[jj].f); |
| 3111 nCell = strlen(zCell); |
| 3112 } |
| 3113 |
| 3114 if( zText ){ |
| 3115 char *zTextNew = sqlite3_mprintf("%s {%s}", zText, zCell); |
| 3116 sqlite3_free(zText); |
| 3117 zText = zTextNew; |
| 3118 }else{ |
| 3119 zText = sqlite3_mprintf("{%s}", zCell); |
| 3120 } |
| 3121 } |
| 3122 |
| 3123 sqlite3_result_text(ctx, zText, -1, sqlite3_free); |
| 3124 } |
| 3125 |
| 3126 static void rtreedepth(sqlite3_context *ctx, int nArg, sqlite3_value **apArg){ |
| 3127 UNUSED_PARAMETER(nArg); |
| 3128 if( sqlite3_value_type(apArg[0])!=SQLITE_BLOB |
| 3129 || sqlite3_value_bytes(apArg[0])<2 |
| 3130 ){ |
| 3131 sqlite3_result_error(ctx, "Invalid argument to rtreedepth()", -1); |
| 3132 }else{ |
| 3133 u8 *zBlob = (u8 *)sqlite3_value_blob(apArg[0]); |
| 3134 sqlite3_result_int(ctx, readInt16(zBlob)); |
| 3135 } |
| 3136 } |
| 3137 |
| 3138 /* |
| 3139 ** Register the r-tree module with database handle db. This creates the |
| 3140 ** virtual table module "rtree" and the debugging/analysis scalar |
| 3141 ** function "rtreenode". |
| 3142 */ |
| 3143 int sqlite3RtreeInit(sqlite3 *db){ |
| 3144 const int utf8 = SQLITE_UTF8; |
| 3145 int rc; |
| 3146 |
| 3147 rc = sqlite3_create_function(db, "rtreenode", 2, utf8, 0, rtreenode, 0, 0); |
| 3148 if( rc==SQLITE_OK ){ |
| 3149 rc = sqlite3_create_function(db, "rtreedepth", 1, utf8, 0,rtreedepth, 0, 0); |
| 3150 } |
| 3151 if( rc==SQLITE_OK ){ |
| 3152 void *c = (void *)RTREE_COORD_REAL32; |
| 3153 rc = sqlite3_create_module_v2(db, "rtree", &rtreeModule, c, 0); |
| 3154 } |
| 3155 if( rc==SQLITE_OK ){ |
| 3156 void *c = (void *)RTREE_COORD_INT32; |
| 3157 rc = sqlite3_create_module_v2(db, "rtree_i32", &rtreeModule, c, 0); |
| 3158 } |
| 3159 |
| 3160 return rc; |
| 3161 } |
| 3162 |
| 3163 /* |
| 3164 ** A version of sqlite3_free() that can be used as a callback. This is used |
| 3165 ** in two places - as the destructor for the blob value returned by the |
| 3166 ** invocation of a geometry function, and as the destructor for the geometry |
| 3167 ** functions themselves. |
| 3168 */ |
| 3169 static void doSqlite3Free(void *p){ |
| 3170 sqlite3_free(p); |
| 3171 } |
| 3172 |
| 3173 /* |
| 3174 ** Each call to sqlite3_rtree_geometry_callback() creates an ordinary SQLite |
| 3175 ** scalar user function. This C function is the callback used for all such |
| 3176 ** registered SQL functions. |
| 3177 ** |
| 3178 ** The scalar user functions return a blob that is interpreted by r-tree |
| 3179 ** table MATCH operators. |
| 3180 */ |
| 3181 static void geomCallback(sqlite3_context *ctx, int nArg, sqlite3_value **aArg){ |
| 3182 RtreeGeomCallback *pGeomCtx = (RtreeGeomCallback *)sqlite3_user_data(ctx); |
| 3183 RtreeMatchArg *pBlob; |
| 3184 int nBlob; |
| 3185 |
| 3186 nBlob = sizeof(RtreeMatchArg) + (nArg-1)*sizeof(double); |
| 3187 pBlob = (RtreeMatchArg *)sqlite3_malloc(nBlob); |
| 3188 if( !pBlob ){ |
| 3189 sqlite3_result_error_nomem(ctx); |
| 3190 }else{ |
| 3191 int i; |
| 3192 pBlob->magic = RTREE_GEOMETRY_MAGIC; |
| 3193 pBlob->xGeom = pGeomCtx->xGeom; |
| 3194 pBlob->pContext = pGeomCtx->pContext; |
| 3195 pBlob->nParam = nArg; |
| 3196 for(i=0; i<nArg; i++){ |
| 3197 pBlob->aParam[i] = sqlite3_value_double(aArg[i]); |
| 3198 } |
| 3199 sqlite3_result_blob(ctx, pBlob, nBlob, doSqlite3Free); |
| 3200 } |
| 3201 } |
| 3202 |
| 3203 /* |
| 3204 ** Register a new geometry function for use with the r-tree MATCH operator. |
| 3205 */ |
| 3206 int sqlite3_rtree_geometry_callback( |
| 3207 sqlite3 *db, |
| 3208 const char *zGeom, |
| 3209 int (*xGeom)(sqlite3_rtree_geometry *, int, double *, int *), |
| 3210 void *pContext |
| 3211 ){ |
| 3212 RtreeGeomCallback *pGeomCtx; /* Context object for new user-function */ |
| 3213 |
| 3214 /* Allocate and populate the context object. */ |
| 3215 pGeomCtx = (RtreeGeomCallback *)sqlite3_malloc(sizeof(RtreeGeomCallback)); |
| 3216 if( !pGeomCtx ) return SQLITE_NOMEM; |
| 3217 pGeomCtx->xGeom = xGeom; |
| 3218 pGeomCtx->pContext = pContext; |
| 3219 |
| 3220 /* Create the new user-function. Register a destructor function to delete |
| 3221 ** the context object when it is no longer required. */ |
| 3222 return sqlite3_create_function_v2(db, zGeom, -1, SQLITE_ANY, |
| 3223 (void *)pGeomCtx, geomCallback, 0, 0, doSqlite3Free |
| 3224 ); |
| 3225 } |
| 3226 |
| 3227 #if !SQLITE_CORE |
| 3228 int sqlite3_extension_init( |
| 3229 sqlite3 *db, |
| 3230 char **pzErrMsg, |
| 3231 const sqlite3_api_routines *pApi |
| 3232 ){ |
| 3233 SQLITE_EXTENSION_INIT2(pApi) |
| 3234 return sqlite3RtreeInit(db); |
| 3235 } |
| 3236 #endif |
| 3237 |
| 3238 #endif |
OLD | NEW |