| Index: third_party/sqlite/src/src/malloc.c
|
| diff --git a/third_party/sqlite/src/src/malloc.c b/third_party/sqlite/src/src/malloc.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..50fdf524c5242f728c37cf782975204e3a881089
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/src/malloc.c
|
| @@ -0,0 +1,776 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +**
|
| +** Memory allocation functions used throughout sqlite.
|
| +*/
|
| +#include "sqliteInt.h"
|
| +#include <stdarg.h>
|
| +
|
| +/*
|
| +** Attempt to release up to n bytes of non-essential memory currently
|
| +** held by SQLite. An example of non-essential memory is memory used to
|
| +** cache database pages that are not currently in use.
|
| +*/
|
| +int sqlite3_release_memory(int n){
|
| +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
| + return sqlite3PcacheReleaseMemory(n);
|
| +#else
|
| + /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
|
| + ** is a no-op returning zero if SQLite is not compiled with
|
| + ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
|
| + UNUSED_PARAMETER(n);
|
| + return 0;
|
| +#endif
|
| +}
|
| +
|
| +/*
|
| +** An instance of the following object records the location of
|
| +** each unused scratch buffer.
|
| +*/
|
| +typedef struct ScratchFreeslot {
|
| + struct ScratchFreeslot *pNext; /* Next unused scratch buffer */
|
| +} ScratchFreeslot;
|
| +
|
| +/*
|
| +** State information local to the memory allocation subsystem.
|
| +*/
|
| +static SQLITE_WSD struct Mem0Global {
|
| + sqlite3_mutex *mutex; /* Mutex to serialize access */
|
| +
|
| + /*
|
| + ** The alarm callback and its arguments. The mem0.mutex lock will
|
| + ** be held while the callback is running. Recursive calls into
|
| + ** the memory subsystem are allowed, but no new callbacks will be
|
| + ** issued.
|
| + */
|
| + sqlite3_int64 alarmThreshold;
|
| + void (*alarmCallback)(void*, sqlite3_int64,int);
|
| + void *alarmArg;
|
| +
|
| + /*
|
| + ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
|
| + ** (so that a range test can be used to determine if an allocation
|
| + ** being freed came from pScratch) and a pointer to the list of
|
| + ** unused scratch allocations.
|
| + */
|
| + void *pScratchEnd;
|
| + ScratchFreeslot *pScratchFree;
|
| + u32 nScratchFree;
|
| +
|
| + /*
|
| + ** True if heap is nearly "full" where "full" is defined by the
|
| + ** sqlite3_soft_heap_limit() setting.
|
| + */
|
| + int nearlyFull;
|
| +} mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
|
| +
|
| +#define mem0 GLOBAL(struct Mem0Global, mem0)
|
| +
|
| +/*
|
| +** This routine runs when the memory allocator sees that the
|
| +** total memory allocation is about to exceed the soft heap
|
| +** limit.
|
| +*/
|
| +static void softHeapLimitEnforcer(
|
| + void *NotUsed,
|
| + sqlite3_int64 NotUsed2,
|
| + int allocSize
|
| +){
|
| + UNUSED_PARAMETER2(NotUsed, NotUsed2);
|
| + sqlite3_release_memory(allocSize);
|
| +}
|
| +
|
| +/*
|
| +** Change the alarm callback
|
| +*/
|
| +static int sqlite3MemoryAlarm(
|
| + void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
| + void *pArg,
|
| + sqlite3_int64 iThreshold
|
| +){
|
| + int nUsed;
|
| + sqlite3_mutex_enter(mem0.mutex);
|
| + mem0.alarmCallback = xCallback;
|
| + mem0.alarmArg = pArg;
|
| + mem0.alarmThreshold = iThreshold;
|
| + nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
| + mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + return SQLITE_OK;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_DEPRECATED
|
| +/*
|
| +** Deprecated external interface. Internal/core SQLite code
|
| +** should call sqlite3MemoryAlarm.
|
| +*/
|
| +int sqlite3_memory_alarm(
|
| + void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
|
| + void *pArg,
|
| + sqlite3_int64 iThreshold
|
| +){
|
| + return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
|
| +}
|
| +#endif
|
| +
|
| +/*
|
| +** Set the soft heap-size limit for the library. Passing a zero or
|
| +** negative value indicates no limit.
|
| +*/
|
| +sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
|
| + sqlite3_int64 priorLimit;
|
| + sqlite3_int64 excess;
|
| +#ifndef SQLITE_OMIT_AUTOINIT
|
| + sqlite3_initialize();
|
| +#endif
|
| + sqlite3_mutex_enter(mem0.mutex);
|
| + priorLimit = mem0.alarmThreshold;
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + if( n<0 ) return priorLimit;
|
| + if( n>0 ){
|
| + sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
|
| + }else{
|
| + sqlite3MemoryAlarm(0, 0, 0);
|
| + }
|
| + excess = sqlite3_memory_used() - n;
|
| + if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
|
| + return priorLimit;
|
| +}
|
| +void sqlite3_soft_heap_limit(int n){
|
| + if( n<0 ) n = 0;
|
| + sqlite3_soft_heap_limit64(n);
|
| +}
|
| +
|
| +/*
|
| +** Initialize the memory allocation subsystem.
|
| +*/
|
| +int sqlite3MallocInit(void){
|
| + if( sqlite3GlobalConfig.m.xMalloc==0 ){
|
| + sqlite3MemSetDefault();
|
| + }
|
| + memset(&mem0, 0, sizeof(mem0));
|
| + if( sqlite3GlobalConfig.bCoreMutex ){
|
| + mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
|
| + }
|
| + if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
|
| + && sqlite3GlobalConfig.nScratch>0 ){
|
| + int i, n, sz;
|
| + ScratchFreeslot *pSlot;
|
| + sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
|
| + sqlite3GlobalConfig.szScratch = sz;
|
| + pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
|
| + n = sqlite3GlobalConfig.nScratch;
|
| + mem0.pScratchFree = pSlot;
|
| + mem0.nScratchFree = n;
|
| + for(i=0; i<n-1; i++){
|
| + pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
|
| + pSlot = pSlot->pNext;
|
| + }
|
| + pSlot->pNext = 0;
|
| + mem0.pScratchEnd = (void*)&pSlot[1];
|
| + }else{
|
| + mem0.pScratchEnd = 0;
|
| + sqlite3GlobalConfig.pScratch = 0;
|
| + sqlite3GlobalConfig.szScratch = 0;
|
| + sqlite3GlobalConfig.nScratch = 0;
|
| + }
|
| + if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
|
| + || sqlite3GlobalConfig.nPage<1 ){
|
| + sqlite3GlobalConfig.pPage = 0;
|
| + sqlite3GlobalConfig.szPage = 0;
|
| + sqlite3GlobalConfig.nPage = 0;
|
| + }
|
| + return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
|
| +}
|
| +
|
| +/*
|
| +** Return true if the heap is currently under memory pressure - in other
|
| +** words if the amount of heap used is close to the limit set by
|
| +** sqlite3_soft_heap_limit().
|
| +*/
|
| +int sqlite3HeapNearlyFull(void){
|
| + return mem0.nearlyFull;
|
| +}
|
| +
|
| +/*
|
| +** Deinitialize the memory allocation subsystem.
|
| +*/
|
| +void sqlite3MallocEnd(void){
|
| + if( sqlite3GlobalConfig.m.xShutdown ){
|
| + sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
|
| + }
|
| + memset(&mem0, 0, sizeof(mem0));
|
| +}
|
| +
|
| +/*
|
| +** Return the amount of memory currently checked out.
|
| +*/
|
| +sqlite3_int64 sqlite3_memory_used(void){
|
| + int n, mx;
|
| + sqlite3_int64 res;
|
| + sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
|
| + res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
|
| + return res;
|
| +}
|
| +
|
| +/*
|
| +** Return the maximum amount of memory that has ever been
|
| +** checked out since either the beginning of this process
|
| +** or since the most recent reset.
|
| +*/
|
| +sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
|
| + int n, mx;
|
| + sqlite3_int64 res;
|
| + sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
|
| + res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
|
| + return res;
|
| +}
|
| +
|
| +/*
|
| +** Trigger the alarm
|
| +*/
|
| +static void sqlite3MallocAlarm(int nByte){
|
| + void (*xCallback)(void*,sqlite3_int64,int);
|
| + sqlite3_int64 nowUsed;
|
| + void *pArg;
|
| + if( mem0.alarmCallback==0 ) return;
|
| + xCallback = mem0.alarmCallback;
|
| + nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
| + pArg = mem0.alarmArg;
|
| + mem0.alarmCallback = 0;
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + xCallback(pArg, nowUsed, nByte);
|
| + sqlite3_mutex_enter(mem0.mutex);
|
| + mem0.alarmCallback = xCallback;
|
| + mem0.alarmArg = pArg;
|
| +}
|
| +
|
| +/*
|
| +** Do a memory allocation with statistics and alarms. Assume the
|
| +** lock is already held.
|
| +*/
|
| +static int mallocWithAlarm(int n, void **pp){
|
| + int nFull;
|
| + void *p;
|
| + assert( sqlite3_mutex_held(mem0.mutex) );
|
| + nFull = sqlite3GlobalConfig.m.xRoundup(n);
|
| + sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
|
| + if( mem0.alarmCallback!=0 ){
|
| + int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
|
| + if( nUsed+nFull >= mem0.alarmThreshold ){
|
| + mem0.nearlyFull = 1;
|
| + sqlite3MallocAlarm(nFull);
|
| + }else{
|
| + mem0.nearlyFull = 0;
|
| + }
|
| + }
|
| + p = sqlite3GlobalConfig.m.xMalloc(nFull);
|
| +#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
|
| + if( p==0 && mem0.alarmCallback ){
|
| + sqlite3MallocAlarm(nFull);
|
| + p = sqlite3GlobalConfig.m.xMalloc(nFull);
|
| + }
|
| +#endif
|
| + if( p ){
|
| + nFull = sqlite3MallocSize(p);
|
| + sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
|
| + sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
|
| + }
|
| + *pp = p;
|
| + return nFull;
|
| +}
|
| +
|
| +/*
|
| +** Allocate memory. This routine is like sqlite3_malloc() except that it
|
| +** assumes the memory subsystem has already been initialized.
|
| +*/
|
| +void *sqlite3Malloc(int n){
|
| + void *p;
|
| + if( n<=0 /* IMP: R-65312-04917 */
|
| + || n>=0x7fffff00
|
| + ){
|
| + /* A memory allocation of a number of bytes which is near the maximum
|
| + ** signed integer value might cause an integer overflow inside of the
|
| + ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
|
| + ** 255 bytes of overhead. SQLite itself will never use anything near
|
| + ** this amount. The only way to reach the limit is with sqlite3_malloc() */
|
| + p = 0;
|
| + }else if( sqlite3GlobalConfig.bMemstat ){
|
| + sqlite3_mutex_enter(mem0.mutex);
|
| + mallocWithAlarm(n, &p);
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + }else{
|
| + p = sqlite3GlobalConfig.m.xMalloc(n);
|
| + }
|
| + assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** This version of the memory allocation is for use by the application.
|
| +** First make sure the memory subsystem is initialized, then do the
|
| +** allocation.
|
| +*/
|
| +void *sqlite3_malloc(int n){
|
| +#ifndef SQLITE_OMIT_AUTOINIT
|
| + if( sqlite3_initialize() ) return 0;
|
| +#endif
|
| + return sqlite3Malloc(n);
|
| +}
|
| +
|
| +/*
|
| +** Each thread may only have a single outstanding allocation from
|
| +** xScratchMalloc(). We verify this constraint in the single-threaded
|
| +** case by setting scratchAllocOut to 1 when an allocation
|
| +** is outstanding clearing it when the allocation is freed.
|
| +*/
|
| +#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
| +static int scratchAllocOut = 0;
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** Allocate memory that is to be used and released right away.
|
| +** This routine is similar to alloca() in that it is not intended
|
| +** for situations where the memory might be held long-term. This
|
| +** routine is intended to get memory to old large transient data
|
| +** structures that would not normally fit on the stack of an
|
| +** embedded processor.
|
| +*/
|
| +void *sqlite3ScratchMalloc(int n){
|
| + void *p;
|
| + assert( n>0 );
|
| +
|
| + sqlite3_mutex_enter(mem0.mutex);
|
| + if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
|
| + p = mem0.pScratchFree;
|
| + mem0.pScratchFree = mem0.pScratchFree->pNext;
|
| + mem0.nScratchFree--;
|
| + sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
|
| + sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + }else{
|
| + if( sqlite3GlobalConfig.bMemstat ){
|
| + sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
|
| + n = mallocWithAlarm(n, &p);
|
| + if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + }else{
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + p = sqlite3GlobalConfig.m.xMalloc(n);
|
| + }
|
| + sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
|
| + }
|
| + assert( sqlite3_mutex_notheld(mem0.mutex) );
|
| +
|
| +
|
| +#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
| + /* Verify that no more than two scratch allocations per thread
|
| + ** are outstanding at one time. (This is only checked in the
|
| + ** single-threaded case since checking in the multi-threaded case
|
| + ** would be much more complicated.) */
|
| + assert( scratchAllocOut<=1 );
|
| + if( p ) scratchAllocOut++;
|
| +#endif
|
| +
|
| + return p;
|
| +}
|
| +void sqlite3ScratchFree(void *p){
|
| + if( p ){
|
| +
|
| +#if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
|
| + /* Verify that no more than two scratch allocation per thread
|
| + ** is outstanding at one time. (This is only checked in the
|
| + ** single-threaded case since checking in the multi-threaded case
|
| + ** would be much more complicated.) */
|
| + assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
|
| + scratchAllocOut--;
|
| +#endif
|
| +
|
| + if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
|
| + /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
|
| + ScratchFreeslot *pSlot;
|
| + pSlot = (ScratchFreeslot*)p;
|
| + sqlite3_mutex_enter(mem0.mutex);
|
| + pSlot->pNext = mem0.pScratchFree;
|
| + mem0.pScratchFree = pSlot;
|
| + mem0.nScratchFree++;
|
| + assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
|
| + sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + }else{
|
| + /* Release memory back to the heap */
|
| + assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
|
| + assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
|
| + sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
|
| + if( sqlite3GlobalConfig.bMemstat ){
|
| + int iSize = sqlite3MallocSize(p);
|
| + sqlite3_mutex_enter(mem0.mutex);
|
| + sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
|
| + sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
|
| + sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
|
| + sqlite3GlobalConfig.m.xFree(p);
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + }else{
|
| + sqlite3GlobalConfig.m.xFree(p);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** TRUE if p is a lookaside memory allocation from db
|
| +*/
|
| +#ifndef SQLITE_OMIT_LOOKASIDE
|
| +static int isLookaside(sqlite3 *db, void *p){
|
| + return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
|
| +}
|
| +#else
|
| +#define isLookaside(A,B) 0
|
| +#endif
|
| +
|
| +/*
|
| +** Return the size of a memory allocation previously obtained from
|
| +** sqlite3Malloc() or sqlite3_malloc().
|
| +*/
|
| +int sqlite3MallocSize(void *p){
|
| + assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
|
| + assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
|
| + return sqlite3GlobalConfig.m.xSize(p);
|
| +}
|
| +int sqlite3DbMallocSize(sqlite3 *db, void *p){
|
| + assert( db==0 || sqlite3_mutex_held(db->mutex) );
|
| + if( db && isLookaside(db, p) ){
|
| + return db->lookaside.sz;
|
| + }else{
|
| + assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
|
| + assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
|
| + assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
|
| + return sqlite3GlobalConfig.m.xSize(p);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Free memory previously obtained from sqlite3Malloc().
|
| +*/
|
| +void sqlite3_free(void *p){
|
| + if( p==0 ) return; /* IMP: R-49053-54554 */
|
| + assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
|
| + assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
|
| + if( sqlite3GlobalConfig.bMemstat ){
|
| + sqlite3_mutex_enter(mem0.mutex);
|
| + sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
|
| + sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
|
| + sqlite3GlobalConfig.m.xFree(p);
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + }else{
|
| + sqlite3GlobalConfig.m.xFree(p);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Free memory that might be associated with a particular database
|
| +** connection.
|
| +*/
|
| +void sqlite3DbFree(sqlite3 *db, void *p){
|
| + assert( db==0 || sqlite3_mutex_held(db->mutex) );
|
| + if( db ){
|
| + if( db->pnBytesFreed ){
|
| + *db->pnBytesFreed += sqlite3DbMallocSize(db, p);
|
| + return;
|
| + }
|
| + if( isLookaside(db, p) ){
|
| + LookasideSlot *pBuf = (LookasideSlot*)p;
|
| + pBuf->pNext = db->lookaside.pFree;
|
| + db->lookaside.pFree = pBuf;
|
| + db->lookaside.nOut--;
|
| + return;
|
| + }
|
| + }
|
| + assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
|
| + assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
|
| + assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
|
| + sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
|
| + sqlite3_free(p);
|
| +}
|
| +
|
| +/*
|
| +** Change the size of an existing memory allocation
|
| +*/
|
| +void *sqlite3Realloc(void *pOld, int nBytes){
|
| + int nOld, nNew;
|
| + void *pNew;
|
| + if( pOld==0 ){
|
| + return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
|
| + }
|
| + if( nBytes<=0 ){
|
| + sqlite3_free(pOld); /* IMP: R-31593-10574 */
|
| + return 0;
|
| + }
|
| + if( nBytes>=0x7fffff00 ){
|
| + /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
|
| + return 0;
|
| + }
|
| + nOld = sqlite3MallocSize(pOld);
|
| + /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
|
| + ** argument to xRealloc is always a value returned by a prior call to
|
| + ** xRoundup. */
|
| + nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
|
| + if( nOld==nNew ){
|
| + pNew = pOld;
|
| + }else if( sqlite3GlobalConfig.bMemstat ){
|
| + sqlite3_mutex_enter(mem0.mutex);
|
| + sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
|
| + if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
|
| + mem0.alarmThreshold ){
|
| + sqlite3MallocAlarm(nNew-nOld);
|
| + }
|
| + assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
|
| + assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
|
| + pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
|
| + if( pNew==0 && mem0.alarmCallback ){
|
| + sqlite3MallocAlarm(nBytes);
|
| + pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
|
| + }
|
| + if( pNew ){
|
| + nNew = sqlite3MallocSize(pNew);
|
| + sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
|
| + }
|
| + sqlite3_mutex_leave(mem0.mutex);
|
| + }else{
|
| + pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
|
| + }
|
| + assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** The public interface to sqlite3Realloc. Make sure that the memory
|
| +** subsystem is initialized prior to invoking sqliteRealloc.
|
| +*/
|
| +void *sqlite3_realloc(void *pOld, int n){
|
| +#ifndef SQLITE_OMIT_AUTOINIT
|
| + if( sqlite3_initialize() ) return 0;
|
| +#endif
|
| + return sqlite3Realloc(pOld, n);
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Allocate and zero memory.
|
| +*/
|
| +void *sqlite3MallocZero(int n){
|
| + void *p = sqlite3Malloc(n);
|
| + if( p ){
|
| + memset(p, 0, n);
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Allocate and zero memory. If the allocation fails, make
|
| +** the mallocFailed flag in the connection pointer.
|
| +*/
|
| +void *sqlite3DbMallocZero(sqlite3 *db, int n){
|
| + void *p = sqlite3DbMallocRaw(db, n);
|
| + if( p ){
|
| + memset(p, 0, n);
|
| + }
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Allocate and zero memory. If the allocation fails, make
|
| +** the mallocFailed flag in the connection pointer.
|
| +**
|
| +** If db!=0 and db->mallocFailed is true (indicating a prior malloc
|
| +** failure on the same database connection) then always return 0.
|
| +** Hence for a particular database connection, once malloc starts
|
| +** failing, it fails consistently until mallocFailed is reset.
|
| +** This is an important assumption. There are many places in the
|
| +** code that do things like this:
|
| +**
|
| +** int *a = (int*)sqlite3DbMallocRaw(db, 100);
|
| +** int *b = (int*)sqlite3DbMallocRaw(db, 200);
|
| +** if( b ) a[10] = 9;
|
| +**
|
| +** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
|
| +** that all prior mallocs (ex: "a") worked too.
|
| +*/
|
| +void *sqlite3DbMallocRaw(sqlite3 *db, int n){
|
| + void *p;
|
| + assert( db==0 || sqlite3_mutex_held(db->mutex) );
|
| + assert( db==0 || db->pnBytesFreed==0 );
|
| +#ifndef SQLITE_OMIT_LOOKASIDE
|
| + if( db ){
|
| + LookasideSlot *pBuf;
|
| + if( db->mallocFailed ){
|
| + return 0;
|
| + }
|
| + if( db->lookaside.bEnabled ){
|
| + if( n>db->lookaside.sz ){
|
| + db->lookaside.anStat[1]++;
|
| + }else if( (pBuf = db->lookaside.pFree)==0 ){
|
| + db->lookaside.anStat[2]++;
|
| + }else{
|
| + db->lookaside.pFree = pBuf->pNext;
|
| + db->lookaside.nOut++;
|
| + db->lookaside.anStat[0]++;
|
| + if( db->lookaside.nOut>db->lookaside.mxOut ){
|
| + db->lookaside.mxOut = db->lookaside.nOut;
|
| + }
|
| + return (void*)pBuf;
|
| + }
|
| + }
|
| + }
|
| +#else
|
| + if( db && db->mallocFailed ){
|
| + return 0;
|
| + }
|
| +#endif
|
| + p = sqlite3Malloc(n);
|
| + if( !p && db ){
|
| + db->mallocFailed = 1;
|
| + }
|
| + sqlite3MemdebugSetType(p, MEMTYPE_DB |
|
| + ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
|
| + return p;
|
| +}
|
| +
|
| +/*
|
| +** Resize the block of memory pointed to by p to n bytes. If the
|
| +** resize fails, set the mallocFailed flag in the connection object.
|
| +*/
|
| +void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
|
| + void *pNew = 0;
|
| + assert( db!=0 );
|
| + assert( sqlite3_mutex_held(db->mutex) );
|
| + if( db->mallocFailed==0 ){
|
| + if( p==0 ){
|
| + return sqlite3DbMallocRaw(db, n);
|
| + }
|
| + if( isLookaside(db, p) ){
|
| + if( n<=db->lookaside.sz ){
|
| + return p;
|
| + }
|
| + pNew = sqlite3DbMallocRaw(db, n);
|
| + if( pNew ){
|
| + memcpy(pNew, p, db->lookaside.sz);
|
| + sqlite3DbFree(db, p);
|
| + }
|
| + }else{
|
| + assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
|
| + assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
|
| + sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
|
| + pNew = sqlite3_realloc(p, n);
|
| + if( !pNew ){
|
| + sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
|
| + db->mallocFailed = 1;
|
| + }
|
| + sqlite3MemdebugSetType(pNew, MEMTYPE_DB |
|
| + (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
|
| + }
|
| + }
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** Attempt to reallocate p. If the reallocation fails, then free p
|
| +** and set the mallocFailed flag in the database connection.
|
| +*/
|
| +void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
|
| + void *pNew;
|
| + pNew = sqlite3DbRealloc(db, p, n);
|
| + if( !pNew ){
|
| + sqlite3DbFree(db, p);
|
| + }
|
| + return pNew;
|
| +}
|
| +
|
| +/*
|
| +** Make a copy of a string in memory obtained from sqliteMalloc(). These
|
| +** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
|
| +** is because when memory debugging is turned on, these two functions are
|
| +** called via macros that record the current file and line number in the
|
| +** ThreadData structure.
|
| +*/
|
| +char *sqlite3DbStrDup(sqlite3 *db, const char *z){
|
| + char *zNew;
|
| + size_t n;
|
| + if( z==0 ){
|
| + return 0;
|
| + }
|
| + n = sqlite3Strlen30(z) + 1;
|
| + assert( (n&0x7fffffff)==n );
|
| + zNew = sqlite3DbMallocRaw(db, (int)n);
|
| + if( zNew ){
|
| + memcpy(zNew, z, n);
|
| + }
|
| + return zNew;
|
| +}
|
| +char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
|
| + char *zNew;
|
| + if( z==0 ){
|
| + return 0;
|
| + }
|
| + assert( (n&0x7fffffff)==n );
|
| + zNew = sqlite3DbMallocRaw(db, n+1);
|
| + if( zNew ){
|
| + memcpy(zNew, z, n);
|
| + zNew[n] = 0;
|
| + }
|
| + return zNew;
|
| +}
|
| +
|
| +/*
|
| +** Create a string from the zFromat argument and the va_list that follows.
|
| +** Store the string in memory obtained from sqliteMalloc() and make *pz
|
| +** point to that string.
|
| +*/
|
| +void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
|
| + va_list ap;
|
| + char *z;
|
| +
|
| + va_start(ap, zFormat);
|
| + z = sqlite3VMPrintf(db, zFormat, ap);
|
| + va_end(ap);
|
| + sqlite3DbFree(db, *pz);
|
| + *pz = z;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** This function must be called before exiting any API function (i.e.
|
| +** returning control to the user) that has called sqlite3_malloc or
|
| +** sqlite3_realloc.
|
| +**
|
| +** The returned value is normally a copy of the second argument to this
|
| +** function. However, if a malloc() failure has occurred since the previous
|
| +** invocation SQLITE_NOMEM is returned instead.
|
| +**
|
| +** If the first argument, db, is not NULL and a malloc() error has occurred,
|
| +** then the connection error-code (the value returned by sqlite3_errcode())
|
| +** is set to SQLITE_NOMEM.
|
| +*/
|
| +int sqlite3ApiExit(sqlite3* db, int rc){
|
| + /* If the db handle is not NULL, then we must hold the connection handle
|
| + ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
|
| + ** is unsafe, as is the call to sqlite3Error().
|
| + */
|
| + assert( !db || sqlite3_mutex_held(db->mutex) );
|
| + if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
|
| + sqlite3Error(db, SQLITE_NOMEM, 0);
|
| + db->mallocFailed = 0;
|
| + rc = SQLITE_NOMEM;
|
| + }
|
| + return rc & (db ? db->errMask : 0xff);
|
| +}
|
|
|