OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** |
| 13 ** Memory allocation functions used throughout sqlite. |
| 14 */ |
| 15 #include "sqliteInt.h" |
| 16 #include <stdarg.h> |
| 17 |
| 18 /* |
| 19 ** Attempt to release up to n bytes of non-essential memory currently |
| 20 ** held by SQLite. An example of non-essential memory is memory used to |
| 21 ** cache database pages that are not currently in use. |
| 22 */ |
| 23 int sqlite3_release_memory(int n){ |
| 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| 25 return sqlite3PcacheReleaseMemory(n); |
| 26 #else |
| 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine |
| 28 ** is a no-op returning zero if SQLite is not compiled with |
| 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ |
| 30 UNUSED_PARAMETER(n); |
| 31 return 0; |
| 32 #endif |
| 33 } |
| 34 |
| 35 /* |
| 36 ** An instance of the following object records the location of |
| 37 ** each unused scratch buffer. |
| 38 */ |
| 39 typedef struct ScratchFreeslot { |
| 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ |
| 41 } ScratchFreeslot; |
| 42 |
| 43 /* |
| 44 ** State information local to the memory allocation subsystem. |
| 45 */ |
| 46 static SQLITE_WSD struct Mem0Global { |
| 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ |
| 48 |
| 49 /* |
| 50 ** The alarm callback and its arguments. The mem0.mutex lock will |
| 51 ** be held while the callback is running. Recursive calls into |
| 52 ** the memory subsystem are allowed, but no new callbacks will be |
| 53 ** issued. |
| 54 */ |
| 55 sqlite3_int64 alarmThreshold; |
| 56 void (*alarmCallback)(void*, sqlite3_int64,int); |
| 57 void *alarmArg; |
| 58 |
| 59 /* |
| 60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory |
| 61 ** (so that a range test can be used to determine if an allocation |
| 62 ** being freed came from pScratch) and a pointer to the list of |
| 63 ** unused scratch allocations. |
| 64 */ |
| 65 void *pScratchEnd; |
| 66 ScratchFreeslot *pScratchFree; |
| 67 u32 nScratchFree; |
| 68 |
| 69 /* |
| 70 ** True if heap is nearly "full" where "full" is defined by the |
| 71 ** sqlite3_soft_heap_limit() setting. |
| 72 */ |
| 73 int nearlyFull; |
| 74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; |
| 75 |
| 76 #define mem0 GLOBAL(struct Mem0Global, mem0) |
| 77 |
| 78 /* |
| 79 ** This routine runs when the memory allocator sees that the |
| 80 ** total memory allocation is about to exceed the soft heap |
| 81 ** limit. |
| 82 */ |
| 83 static void softHeapLimitEnforcer( |
| 84 void *NotUsed, |
| 85 sqlite3_int64 NotUsed2, |
| 86 int allocSize |
| 87 ){ |
| 88 UNUSED_PARAMETER2(NotUsed, NotUsed2); |
| 89 sqlite3_release_memory(allocSize); |
| 90 } |
| 91 |
| 92 /* |
| 93 ** Change the alarm callback |
| 94 */ |
| 95 static int sqlite3MemoryAlarm( |
| 96 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), |
| 97 void *pArg, |
| 98 sqlite3_int64 iThreshold |
| 99 ){ |
| 100 int nUsed; |
| 101 sqlite3_mutex_enter(mem0.mutex); |
| 102 mem0.alarmCallback = xCallback; |
| 103 mem0.alarmArg = pArg; |
| 104 mem0.alarmThreshold = iThreshold; |
| 105 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| 106 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed); |
| 107 sqlite3_mutex_leave(mem0.mutex); |
| 108 return SQLITE_OK; |
| 109 } |
| 110 |
| 111 #ifndef SQLITE_OMIT_DEPRECATED |
| 112 /* |
| 113 ** Deprecated external interface. Internal/core SQLite code |
| 114 ** should call sqlite3MemoryAlarm. |
| 115 */ |
| 116 int sqlite3_memory_alarm( |
| 117 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), |
| 118 void *pArg, |
| 119 sqlite3_int64 iThreshold |
| 120 ){ |
| 121 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold); |
| 122 } |
| 123 #endif |
| 124 |
| 125 /* |
| 126 ** Set the soft heap-size limit for the library. Passing a zero or |
| 127 ** negative value indicates no limit. |
| 128 */ |
| 129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ |
| 130 sqlite3_int64 priorLimit; |
| 131 sqlite3_int64 excess; |
| 132 #ifndef SQLITE_OMIT_AUTOINIT |
| 133 sqlite3_initialize(); |
| 134 #endif |
| 135 sqlite3_mutex_enter(mem0.mutex); |
| 136 priorLimit = mem0.alarmThreshold; |
| 137 sqlite3_mutex_leave(mem0.mutex); |
| 138 if( n<0 ) return priorLimit; |
| 139 if( n>0 ){ |
| 140 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n); |
| 141 }else{ |
| 142 sqlite3MemoryAlarm(0, 0, 0); |
| 143 } |
| 144 excess = sqlite3_memory_used() - n; |
| 145 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); |
| 146 return priorLimit; |
| 147 } |
| 148 void sqlite3_soft_heap_limit(int n){ |
| 149 if( n<0 ) n = 0; |
| 150 sqlite3_soft_heap_limit64(n); |
| 151 } |
| 152 |
| 153 /* |
| 154 ** Initialize the memory allocation subsystem. |
| 155 */ |
| 156 int sqlite3MallocInit(void){ |
| 157 if( sqlite3GlobalConfig.m.xMalloc==0 ){ |
| 158 sqlite3MemSetDefault(); |
| 159 } |
| 160 memset(&mem0, 0, sizeof(mem0)); |
| 161 if( sqlite3GlobalConfig.bCoreMutex ){ |
| 162 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); |
| 163 } |
| 164 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 |
| 165 && sqlite3GlobalConfig.nScratch>0 ){ |
| 166 int i, n, sz; |
| 167 ScratchFreeslot *pSlot; |
| 168 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); |
| 169 sqlite3GlobalConfig.szScratch = sz; |
| 170 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; |
| 171 n = sqlite3GlobalConfig.nScratch; |
| 172 mem0.pScratchFree = pSlot; |
| 173 mem0.nScratchFree = n; |
| 174 for(i=0; i<n-1; i++){ |
| 175 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); |
| 176 pSlot = pSlot->pNext; |
| 177 } |
| 178 pSlot->pNext = 0; |
| 179 mem0.pScratchEnd = (void*)&pSlot[1]; |
| 180 }else{ |
| 181 mem0.pScratchEnd = 0; |
| 182 sqlite3GlobalConfig.pScratch = 0; |
| 183 sqlite3GlobalConfig.szScratch = 0; |
| 184 sqlite3GlobalConfig.nScratch = 0; |
| 185 } |
| 186 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 |
| 187 || sqlite3GlobalConfig.nPage<1 ){ |
| 188 sqlite3GlobalConfig.pPage = 0; |
| 189 sqlite3GlobalConfig.szPage = 0; |
| 190 sqlite3GlobalConfig.nPage = 0; |
| 191 } |
| 192 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); |
| 193 } |
| 194 |
| 195 /* |
| 196 ** Return true if the heap is currently under memory pressure - in other |
| 197 ** words if the amount of heap used is close to the limit set by |
| 198 ** sqlite3_soft_heap_limit(). |
| 199 */ |
| 200 int sqlite3HeapNearlyFull(void){ |
| 201 return mem0.nearlyFull; |
| 202 } |
| 203 |
| 204 /* |
| 205 ** Deinitialize the memory allocation subsystem. |
| 206 */ |
| 207 void sqlite3MallocEnd(void){ |
| 208 if( sqlite3GlobalConfig.m.xShutdown ){ |
| 209 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); |
| 210 } |
| 211 memset(&mem0, 0, sizeof(mem0)); |
| 212 } |
| 213 |
| 214 /* |
| 215 ** Return the amount of memory currently checked out. |
| 216 */ |
| 217 sqlite3_int64 sqlite3_memory_used(void){ |
| 218 int n, mx; |
| 219 sqlite3_int64 res; |
| 220 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0); |
| 221 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */ |
| 222 return res; |
| 223 } |
| 224 |
| 225 /* |
| 226 ** Return the maximum amount of memory that has ever been |
| 227 ** checked out since either the beginning of this process |
| 228 ** or since the most recent reset. |
| 229 */ |
| 230 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ |
| 231 int n, mx; |
| 232 sqlite3_int64 res; |
| 233 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag); |
| 234 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */ |
| 235 return res; |
| 236 } |
| 237 |
| 238 /* |
| 239 ** Trigger the alarm |
| 240 */ |
| 241 static void sqlite3MallocAlarm(int nByte){ |
| 242 void (*xCallback)(void*,sqlite3_int64,int); |
| 243 sqlite3_int64 nowUsed; |
| 244 void *pArg; |
| 245 if( mem0.alarmCallback==0 ) return; |
| 246 xCallback = mem0.alarmCallback; |
| 247 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| 248 pArg = mem0.alarmArg; |
| 249 mem0.alarmCallback = 0; |
| 250 sqlite3_mutex_leave(mem0.mutex); |
| 251 xCallback(pArg, nowUsed, nByte); |
| 252 sqlite3_mutex_enter(mem0.mutex); |
| 253 mem0.alarmCallback = xCallback; |
| 254 mem0.alarmArg = pArg; |
| 255 } |
| 256 |
| 257 /* |
| 258 ** Do a memory allocation with statistics and alarms. Assume the |
| 259 ** lock is already held. |
| 260 */ |
| 261 static int mallocWithAlarm(int n, void **pp){ |
| 262 int nFull; |
| 263 void *p; |
| 264 assert( sqlite3_mutex_held(mem0.mutex) ); |
| 265 nFull = sqlite3GlobalConfig.m.xRoundup(n); |
| 266 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n); |
| 267 if( mem0.alarmCallback!=0 ){ |
| 268 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); |
| 269 if( nUsed+nFull >= mem0.alarmThreshold ){ |
| 270 mem0.nearlyFull = 1; |
| 271 sqlite3MallocAlarm(nFull); |
| 272 }else{ |
| 273 mem0.nearlyFull = 0; |
| 274 } |
| 275 } |
| 276 p = sqlite3GlobalConfig.m.xMalloc(nFull); |
| 277 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT |
| 278 if( p==0 && mem0.alarmCallback ){ |
| 279 sqlite3MallocAlarm(nFull); |
| 280 p = sqlite3GlobalConfig.m.xMalloc(nFull); |
| 281 } |
| 282 #endif |
| 283 if( p ){ |
| 284 nFull = sqlite3MallocSize(p); |
| 285 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull); |
| 286 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1); |
| 287 } |
| 288 *pp = p; |
| 289 return nFull; |
| 290 } |
| 291 |
| 292 /* |
| 293 ** Allocate memory. This routine is like sqlite3_malloc() except that it |
| 294 ** assumes the memory subsystem has already been initialized. |
| 295 */ |
| 296 void *sqlite3Malloc(int n){ |
| 297 void *p; |
| 298 if( n<=0 /* IMP: R-65312-04917 */ |
| 299 || n>=0x7fffff00 |
| 300 ){ |
| 301 /* A memory allocation of a number of bytes which is near the maximum |
| 302 ** signed integer value might cause an integer overflow inside of the |
| 303 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving |
| 304 ** 255 bytes of overhead. SQLite itself will never use anything near |
| 305 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ |
| 306 p = 0; |
| 307 }else if( sqlite3GlobalConfig.bMemstat ){ |
| 308 sqlite3_mutex_enter(mem0.mutex); |
| 309 mallocWithAlarm(n, &p); |
| 310 sqlite3_mutex_leave(mem0.mutex); |
| 311 }else{ |
| 312 p = sqlite3GlobalConfig.m.xMalloc(n); |
| 313 } |
| 314 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */ |
| 315 return p; |
| 316 } |
| 317 |
| 318 /* |
| 319 ** This version of the memory allocation is for use by the application. |
| 320 ** First make sure the memory subsystem is initialized, then do the |
| 321 ** allocation. |
| 322 */ |
| 323 void *sqlite3_malloc(int n){ |
| 324 #ifndef SQLITE_OMIT_AUTOINIT |
| 325 if( sqlite3_initialize() ) return 0; |
| 326 #endif |
| 327 return sqlite3Malloc(n); |
| 328 } |
| 329 |
| 330 /* |
| 331 ** Each thread may only have a single outstanding allocation from |
| 332 ** xScratchMalloc(). We verify this constraint in the single-threaded |
| 333 ** case by setting scratchAllocOut to 1 when an allocation |
| 334 ** is outstanding clearing it when the allocation is freed. |
| 335 */ |
| 336 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| 337 static int scratchAllocOut = 0; |
| 338 #endif |
| 339 |
| 340 |
| 341 /* |
| 342 ** Allocate memory that is to be used and released right away. |
| 343 ** This routine is similar to alloca() in that it is not intended |
| 344 ** for situations where the memory might be held long-term. This |
| 345 ** routine is intended to get memory to old large transient data |
| 346 ** structures that would not normally fit on the stack of an |
| 347 ** embedded processor. |
| 348 */ |
| 349 void *sqlite3ScratchMalloc(int n){ |
| 350 void *p; |
| 351 assert( n>0 ); |
| 352 |
| 353 sqlite3_mutex_enter(mem0.mutex); |
| 354 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ |
| 355 p = mem0.pScratchFree; |
| 356 mem0.pScratchFree = mem0.pScratchFree->pNext; |
| 357 mem0.nScratchFree--; |
| 358 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1); |
| 359 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); |
| 360 sqlite3_mutex_leave(mem0.mutex); |
| 361 }else{ |
| 362 if( sqlite3GlobalConfig.bMemstat ){ |
| 363 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n); |
| 364 n = mallocWithAlarm(n, &p); |
| 365 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n); |
| 366 sqlite3_mutex_leave(mem0.mutex); |
| 367 }else{ |
| 368 sqlite3_mutex_leave(mem0.mutex); |
| 369 p = sqlite3GlobalConfig.m.xMalloc(n); |
| 370 } |
| 371 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); |
| 372 } |
| 373 assert( sqlite3_mutex_notheld(mem0.mutex) ); |
| 374 |
| 375 |
| 376 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| 377 /* Verify that no more than two scratch allocations per thread |
| 378 ** are outstanding at one time. (This is only checked in the |
| 379 ** single-threaded case since checking in the multi-threaded case |
| 380 ** would be much more complicated.) */ |
| 381 assert( scratchAllocOut<=1 ); |
| 382 if( p ) scratchAllocOut++; |
| 383 #endif |
| 384 |
| 385 return p; |
| 386 } |
| 387 void sqlite3ScratchFree(void *p){ |
| 388 if( p ){ |
| 389 |
| 390 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) |
| 391 /* Verify that no more than two scratch allocation per thread |
| 392 ** is outstanding at one time. (This is only checked in the |
| 393 ** single-threaded case since checking in the multi-threaded case |
| 394 ** would be much more complicated.) */ |
| 395 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); |
| 396 scratchAllocOut--; |
| 397 #endif |
| 398 |
| 399 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){ |
| 400 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ |
| 401 ScratchFreeslot *pSlot; |
| 402 pSlot = (ScratchFreeslot*)p; |
| 403 sqlite3_mutex_enter(mem0.mutex); |
| 404 pSlot->pNext = mem0.pScratchFree; |
| 405 mem0.pScratchFree = pSlot; |
| 406 mem0.nScratchFree++; |
| 407 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); |
| 408 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1); |
| 409 sqlite3_mutex_leave(mem0.mutex); |
| 410 }else{ |
| 411 /* Release memory back to the heap */ |
| 412 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); |
| 413 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) ); |
| 414 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| 415 if( sqlite3GlobalConfig.bMemstat ){ |
| 416 int iSize = sqlite3MallocSize(p); |
| 417 sqlite3_mutex_enter(mem0.mutex); |
| 418 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize); |
| 419 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize); |
| 420 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); |
| 421 sqlite3GlobalConfig.m.xFree(p); |
| 422 sqlite3_mutex_leave(mem0.mutex); |
| 423 }else{ |
| 424 sqlite3GlobalConfig.m.xFree(p); |
| 425 } |
| 426 } |
| 427 } |
| 428 } |
| 429 |
| 430 /* |
| 431 ** TRUE if p is a lookaside memory allocation from db |
| 432 */ |
| 433 #ifndef SQLITE_OMIT_LOOKASIDE |
| 434 static int isLookaside(sqlite3 *db, void *p){ |
| 435 return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd; |
| 436 } |
| 437 #else |
| 438 #define isLookaside(A,B) 0 |
| 439 #endif |
| 440 |
| 441 /* |
| 442 ** Return the size of a memory allocation previously obtained from |
| 443 ** sqlite3Malloc() or sqlite3_malloc(). |
| 444 */ |
| 445 int sqlite3MallocSize(void *p){ |
| 446 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| 447 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); |
| 448 return sqlite3GlobalConfig.m.xSize(p); |
| 449 } |
| 450 int sqlite3DbMallocSize(sqlite3 *db, void *p){ |
| 451 assert( db==0 || sqlite3_mutex_held(db->mutex) ); |
| 452 if( db && isLookaside(db, p) ){ |
| 453 return db->lookaside.sz; |
| 454 }else{ |
| 455 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); |
| 456 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); |
| 457 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); |
| 458 return sqlite3GlobalConfig.m.xSize(p); |
| 459 } |
| 460 } |
| 461 |
| 462 /* |
| 463 ** Free memory previously obtained from sqlite3Malloc(). |
| 464 */ |
| 465 void sqlite3_free(void *p){ |
| 466 if( p==0 ) return; /* IMP: R-49053-54554 */ |
| 467 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) ); |
| 468 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); |
| 469 if( sqlite3GlobalConfig.bMemstat ){ |
| 470 sqlite3_mutex_enter(mem0.mutex); |
| 471 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p)); |
| 472 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1); |
| 473 sqlite3GlobalConfig.m.xFree(p); |
| 474 sqlite3_mutex_leave(mem0.mutex); |
| 475 }else{ |
| 476 sqlite3GlobalConfig.m.xFree(p); |
| 477 } |
| 478 } |
| 479 |
| 480 /* |
| 481 ** Free memory that might be associated with a particular database |
| 482 ** connection. |
| 483 */ |
| 484 void sqlite3DbFree(sqlite3 *db, void *p){ |
| 485 assert( db==0 || sqlite3_mutex_held(db->mutex) ); |
| 486 if( db ){ |
| 487 if( db->pnBytesFreed ){ |
| 488 *db->pnBytesFreed += sqlite3DbMallocSize(db, p); |
| 489 return; |
| 490 } |
| 491 if( isLookaside(db, p) ){ |
| 492 LookasideSlot *pBuf = (LookasideSlot*)p; |
| 493 pBuf->pNext = db->lookaside.pFree; |
| 494 db->lookaside.pFree = pBuf; |
| 495 db->lookaside.nOut--; |
| 496 return; |
| 497 } |
| 498 } |
| 499 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); |
| 500 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); |
| 501 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); |
| 502 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| 503 sqlite3_free(p); |
| 504 } |
| 505 |
| 506 /* |
| 507 ** Change the size of an existing memory allocation |
| 508 */ |
| 509 void *sqlite3Realloc(void *pOld, int nBytes){ |
| 510 int nOld, nNew; |
| 511 void *pNew; |
| 512 if( pOld==0 ){ |
| 513 return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */ |
| 514 } |
| 515 if( nBytes<=0 ){ |
| 516 sqlite3_free(pOld); /* IMP: R-31593-10574 */ |
| 517 return 0; |
| 518 } |
| 519 if( nBytes>=0x7fffff00 ){ |
| 520 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ |
| 521 return 0; |
| 522 } |
| 523 nOld = sqlite3MallocSize(pOld); |
| 524 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second |
| 525 ** argument to xRealloc is always a value returned by a prior call to |
| 526 ** xRoundup. */ |
| 527 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes); |
| 528 if( nOld==nNew ){ |
| 529 pNew = pOld; |
| 530 }else if( sqlite3GlobalConfig.bMemstat ){ |
| 531 sqlite3_mutex_enter(mem0.mutex); |
| 532 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes); |
| 533 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >= |
| 534 mem0.alarmThreshold ){ |
| 535 sqlite3MallocAlarm(nNew-nOld); |
| 536 } |
| 537 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); |
| 538 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) ); |
| 539 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| 540 if( pNew==0 && mem0.alarmCallback ){ |
| 541 sqlite3MallocAlarm(nBytes); |
| 542 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| 543 } |
| 544 if( pNew ){ |
| 545 nNew = sqlite3MallocSize(pNew); |
| 546 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld); |
| 547 } |
| 548 sqlite3_mutex_leave(mem0.mutex); |
| 549 }else{ |
| 550 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); |
| 551 } |
| 552 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */ |
| 553 return pNew; |
| 554 } |
| 555 |
| 556 /* |
| 557 ** The public interface to sqlite3Realloc. Make sure that the memory |
| 558 ** subsystem is initialized prior to invoking sqliteRealloc. |
| 559 */ |
| 560 void *sqlite3_realloc(void *pOld, int n){ |
| 561 #ifndef SQLITE_OMIT_AUTOINIT |
| 562 if( sqlite3_initialize() ) return 0; |
| 563 #endif |
| 564 return sqlite3Realloc(pOld, n); |
| 565 } |
| 566 |
| 567 |
| 568 /* |
| 569 ** Allocate and zero memory. |
| 570 */ |
| 571 void *sqlite3MallocZero(int n){ |
| 572 void *p = sqlite3Malloc(n); |
| 573 if( p ){ |
| 574 memset(p, 0, n); |
| 575 } |
| 576 return p; |
| 577 } |
| 578 |
| 579 /* |
| 580 ** Allocate and zero memory. If the allocation fails, make |
| 581 ** the mallocFailed flag in the connection pointer. |
| 582 */ |
| 583 void *sqlite3DbMallocZero(sqlite3 *db, int n){ |
| 584 void *p = sqlite3DbMallocRaw(db, n); |
| 585 if( p ){ |
| 586 memset(p, 0, n); |
| 587 } |
| 588 return p; |
| 589 } |
| 590 |
| 591 /* |
| 592 ** Allocate and zero memory. If the allocation fails, make |
| 593 ** the mallocFailed flag in the connection pointer. |
| 594 ** |
| 595 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc |
| 596 ** failure on the same database connection) then always return 0. |
| 597 ** Hence for a particular database connection, once malloc starts |
| 598 ** failing, it fails consistently until mallocFailed is reset. |
| 599 ** This is an important assumption. There are many places in the |
| 600 ** code that do things like this: |
| 601 ** |
| 602 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); |
| 603 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); |
| 604 ** if( b ) a[10] = 9; |
| 605 ** |
| 606 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed |
| 607 ** that all prior mallocs (ex: "a") worked too. |
| 608 */ |
| 609 void *sqlite3DbMallocRaw(sqlite3 *db, int n){ |
| 610 void *p; |
| 611 assert( db==0 || sqlite3_mutex_held(db->mutex) ); |
| 612 assert( db==0 || db->pnBytesFreed==0 ); |
| 613 #ifndef SQLITE_OMIT_LOOKASIDE |
| 614 if( db ){ |
| 615 LookasideSlot *pBuf; |
| 616 if( db->mallocFailed ){ |
| 617 return 0; |
| 618 } |
| 619 if( db->lookaside.bEnabled ){ |
| 620 if( n>db->lookaside.sz ){ |
| 621 db->lookaside.anStat[1]++; |
| 622 }else if( (pBuf = db->lookaside.pFree)==0 ){ |
| 623 db->lookaside.anStat[2]++; |
| 624 }else{ |
| 625 db->lookaside.pFree = pBuf->pNext; |
| 626 db->lookaside.nOut++; |
| 627 db->lookaside.anStat[0]++; |
| 628 if( db->lookaside.nOut>db->lookaside.mxOut ){ |
| 629 db->lookaside.mxOut = db->lookaside.nOut; |
| 630 } |
| 631 return (void*)pBuf; |
| 632 } |
| 633 } |
| 634 } |
| 635 #else |
| 636 if( db && db->mallocFailed ){ |
| 637 return 0; |
| 638 } |
| 639 #endif |
| 640 p = sqlite3Malloc(n); |
| 641 if( !p && db ){ |
| 642 db->mallocFailed = 1; |
| 643 } |
| 644 sqlite3MemdebugSetType(p, MEMTYPE_DB | |
| 645 ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); |
| 646 return p; |
| 647 } |
| 648 |
| 649 /* |
| 650 ** Resize the block of memory pointed to by p to n bytes. If the |
| 651 ** resize fails, set the mallocFailed flag in the connection object. |
| 652 */ |
| 653 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){ |
| 654 void *pNew = 0; |
| 655 assert( db!=0 ); |
| 656 assert( sqlite3_mutex_held(db->mutex) ); |
| 657 if( db->mallocFailed==0 ){ |
| 658 if( p==0 ){ |
| 659 return sqlite3DbMallocRaw(db, n); |
| 660 } |
| 661 if( isLookaside(db, p) ){ |
| 662 if( n<=db->lookaside.sz ){ |
| 663 return p; |
| 664 } |
| 665 pNew = sqlite3DbMallocRaw(db, n); |
| 666 if( pNew ){ |
| 667 memcpy(pNew, p, db->lookaside.sz); |
| 668 sqlite3DbFree(db, p); |
| 669 } |
| 670 }else{ |
| 671 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) ); |
| 672 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) ); |
| 673 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); |
| 674 pNew = sqlite3_realloc(p, n); |
| 675 if( !pNew ){ |
| 676 sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP); |
| 677 db->mallocFailed = 1; |
| 678 } |
| 679 sqlite3MemdebugSetType(pNew, MEMTYPE_DB | |
| 680 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); |
| 681 } |
| 682 } |
| 683 return pNew; |
| 684 } |
| 685 |
| 686 /* |
| 687 ** Attempt to reallocate p. If the reallocation fails, then free p |
| 688 ** and set the mallocFailed flag in the database connection. |
| 689 */ |
| 690 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){ |
| 691 void *pNew; |
| 692 pNew = sqlite3DbRealloc(db, p, n); |
| 693 if( !pNew ){ |
| 694 sqlite3DbFree(db, p); |
| 695 } |
| 696 return pNew; |
| 697 } |
| 698 |
| 699 /* |
| 700 ** Make a copy of a string in memory obtained from sqliteMalloc(). These |
| 701 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This |
| 702 ** is because when memory debugging is turned on, these two functions are |
| 703 ** called via macros that record the current file and line number in the |
| 704 ** ThreadData structure. |
| 705 */ |
| 706 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ |
| 707 char *zNew; |
| 708 size_t n; |
| 709 if( z==0 ){ |
| 710 return 0; |
| 711 } |
| 712 n = sqlite3Strlen30(z) + 1; |
| 713 assert( (n&0x7fffffff)==n ); |
| 714 zNew = sqlite3DbMallocRaw(db, (int)n); |
| 715 if( zNew ){ |
| 716 memcpy(zNew, z, n); |
| 717 } |
| 718 return zNew; |
| 719 } |
| 720 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){ |
| 721 char *zNew; |
| 722 if( z==0 ){ |
| 723 return 0; |
| 724 } |
| 725 assert( (n&0x7fffffff)==n ); |
| 726 zNew = sqlite3DbMallocRaw(db, n+1); |
| 727 if( zNew ){ |
| 728 memcpy(zNew, z, n); |
| 729 zNew[n] = 0; |
| 730 } |
| 731 return zNew; |
| 732 } |
| 733 |
| 734 /* |
| 735 ** Create a string from the zFromat argument and the va_list that follows. |
| 736 ** Store the string in memory obtained from sqliteMalloc() and make *pz |
| 737 ** point to that string. |
| 738 */ |
| 739 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){ |
| 740 va_list ap; |
| 741 char *z; |
| 742 |
| 743 va_start(ap, zFormat); |
| 744 z = sqlite3VMPrintf(db, zFormat, ap); |
| 745 va_end(ap); |
| 746 sqlite3DbFree(db, *pz); |
| 747 *pz = z; |
| 748 } |
| 749 |
| 750 |
| 751 /* |
| 752 ** This function must be called before exiting any API function (i.e. |
| 753 ** returning control to the user) that has called sqlite3_malloc or |
| 754 ** sqlite3_realloc. |
| 755 ** |
| 756 ** The returned value is normally a copy of the second argument to this |
| 757 ** function. However, if a malloc() failure has occurred since the previous |
| 758 ** invocation SQLITE_NOMEM is returned instead. |
| 759 ** |
| 760 ** If the first argument, db, is not NULL and a malloc() error has occurred, |
| 761 ** then the connection error-code (the value returned by sqlite3_errcode()) |
| 762 ** is set to SQLITE_NOMEM. |
| 763 */ |
| 764 int sqlite3ApiExit(sqlite3* db, int rc){ |
| 765 /* If the db handle is not NULL, then we must hold the connection handle |
| 766 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed |
| 767 ** is unsafe, as is the call to sqlite3Error(). |
| 768 */ |
| 769 assert( !db || sqlite3_mutex_held(db->mutex) ); |
| 770 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){ |
| 771 sqlite3Error(db, SQLITE_NOMEM, 0); |
| 772 db->mallocFailed = 0; |
| 773 rc = SQLITE_NOMEM; |
| 774 } |
| 775 return rc & (db ? db->errMask : 0xff); |
| 776 } |
OLD | NEW |