Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(183)

Side by Side Diff: third_party/sqlite/src/src/malloc.c

Issue 694353003: Get `gn gen` to succeed on Windows (Closed) Base URL: https://github.com/domokit/mojo.git@master
Patch Set: remove GYP_DEFINES code Created 6 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/sqlite/src/src/main.c ('k') | third_party/sqlite/src/src/mem0.c » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** Memory allocation functions used throughout sqlite.
14 */
15 #include "sqliteInt.h"
16 #include <stdarg.h>
17
18 /*
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
22 */
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25 return sqlite3PcacheReleaseMemory(n);
26 #else
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28 ** is a no-op returning zero if SQLite is not compiled with
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30 UNUSED_PARAMETER(n);
31 return 0;
32 #endif
33 }
34
35 /*
36 ** An instance of the following object records the location of
37 ** each unused scratch buffer.
38 */
39 typedef struct ScratchFreeslot {
40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */
41 } ScratchFreeslot;
42
43 /*
44 ** State information local to the memory allocation subsystem.
45 */
46 static SQLITE_WSD struct Mem0Global {
47 sqlite3_mutex *mutex; /* Mutex to serialize access */
48
49 /*
50 ** The alarm callback and its arguments. The mem0.mutex lock will
51 ** be held while the callback is running. Recursive calls into
52 ** the memory subsystem are allowed, but no new callbacks will be
53 ** issued.
54 */
55 sqlite3_int64 alarmThreshold;
56 void (*alarmCallback)(void*, sqlite3_int64,int);
57 void *alarmArg;
58
59 /*
60 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory
61 ** (so that a range test can be used to determine if an allocation
62 ** being freed came from pScratch) and a pointer to the list of
63 ** unused scratch allocations.
64 */
65 void *pScratchEnd;
66 ScratchFreeslot *pScratchFree;
67 u32 nScratchFree;
68
69 /*
70 ** True if heap is nearly "full" where "full" is defined by the
71 ** sqlite3_soft_heap_limit() setting.
72 */
73 int nearlyFull;
74 } mem0 = { 0, 0, 0, 0, 0, 0, 0, 0 };
75
76 #define mem0 GLOBAL(struct Mem0Global, mem0)
77
78 /*
79 ** This routine runs when the memory allocator sees that the
80 ** total memory allocation is about to exceed the soft heap
81 ** limit.
82 */
83 static void softHeapLimitEnforcer(
84 void *NotUsed,
85 sqlite3_int64 NotUsed2,
86 int allocSize
87 ){
88 UNUSED_PARAMETER2(NotUsed, NotUsed2);
89 sqlite3_release_memory(allocSize);
90 }
91
92 /*
93 ** Change the alarm callback
94 */
95 static int sqlite3MemoryAlarm(
96 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
97 void *pArg,
98 sqlite3_int64 iThreshold
99 ){
100 int nUsed;
101 sqlite3_mutex_enter(mem0.mutex);
102 mem0.alarmCallback = xCallback;
103 mem0.alarmArg = pArg;
104 mem0.alarmThreshold = iThreshold;
105 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
106 mem0.nearlyFull = (iThreshold>0 && iThreshold<=nUsed);
107 sqlite3_mutex_leave(mem0.mutex);
108 return SQLITE_OK;
109 }
110
111 #ifndef SQLITE_OMIT_DEPRECATED
112 /*
113 ** Deprecated external interface. Internal/core SQLite code
114 ** should call sqlite3MemoryAlarm.
115 */
116 int sqlite3_memory_alarm(
117 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
118 void *pArg,
119 sqlite3_int64 iThreshold
120 ){
121 return sqlite3MemoryAlarm(xCallback, pArg, iThreshold);
122 }
123 #endif
124
125 /*
126 ** Set the soft heap-size limit for the library. Passing a zero or
127 ** negative value indicates no limit.
128 */
129 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
130 sqlite3_int64 priorLimit;
131 sqlite3_int64 excess;
132 #ifndef SQLITE_OMIT_AUTOINIT
133 sqlite3_initialize();
134 #endif
135 sqlite3_mutex_enter(mem0.mutex);
136 priorLimit = mem0.alarmThreshold;
137 sqlite3_mutex_leave(mem0.mutex);
138 if( n<0 ) return priorLimit;
139 if( n>0 ){
140 sqlite3MemoryAlarm(softHeapLimitEnforcer, 0, n);
141 }else{
142 sqlite3MemoryAlarm(0, 0, 0);
143 }
144 excess = sqlite3_memory_used() - n;
145 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
146 return priorLimit;
147 }
148 void sqlite3_soft_heap_limit(int n){
149 if( n<0 ) n = 0;
150 sqlite3_soft_heap_limit64(n);
151 }
152
153 /*
154 ** Initialize the memory allocation subsystem.
155 */
156 int sqlite3MallocInit(void){
157 if( sqlite3GlobalConfig.m.xMalloc==0 ){
158 sqlite3MemSetDefault();
159 }
160 memset(&mem0, 0, sizeof(mem0));
161 if( sqlite3GlobalConfig.bCoreMutex ){
162 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
163 }
164 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100
165 && sqlite3GlobalConfig.nScratch>0 ){
166 int i, n, sz;
167 ScratchFreeslot *pSlot;
168 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch);
169 sqlite3GlobalConfig.szScratch = sz;
170 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch;
171 n = sqlite3GlobalConfig.nScratch;
172 mem0.pScratchFree = pSlot;
173 mem0.nScratchFree = n;
174 for(i=0; i<n-1; i++){
175 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot);
176 pSlot = pSlot->pNext;
177 }
178 pSlot->pNext = 0;
179 mem0.pScratchEnd = (void*)&pSlot[1];
180 }else{
181 mem0.pScratchEnd = 0;
182 sqlite3GlobalConfig.pScratch = 0;
183 sqlite3GlobalConfig.szScratch = 0;
184 sqlite3GlobalConfig.nScratch = 0;
185 }
186 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
187 || sqlite3GlobalConfig.nPage<1 ){
188 sqlite3GlobalConfig.pPage = 0;
189 sqlite3GlobalConfig.szPage = 0;
190 sqlite3GlobalConfig.nPage = 0;
191 }
192 return sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
193 }
194
195 /*
196 ** Return true if the heap is currently under memory pressure - in other
197 ** words if the amount of heap used is close to the limit set by
198 ** sqlite3_soft_heap_limit().
199 */
200 int sqlite3HeapNearlyFull(void){
201 return mem0.nearlyFull;
202 }
203
204 /*
205 ** Deinitialize the memory allocation subsystem.
206 */
207 void sqlite3MallocEnd(void){
208 if( sqlite3GlobalConfig.m.xShutdown ){
209 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
210 }
211 memset(&mem0, 0, sizeof(mem0));
212 }
213
214 /*
215 ** Return the amount of memory currently checked out.
216 */
217 sqlite3_int64 sqlite3_memory_used(void){
218 int n, mx;
219 sqlite3_int64 res;
220 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, 0);
221 res = (sqlite3_int64)n; /* Work around bug in Borland C. Ticket #3216 */
222 return res;
223 }
224
225 /*
226 ** Return the maximum amount of memory that has ever been
227 ** checked out since either the beginning of this process
228 ** or since the most recent reset.
229 */
230 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
231 int n, mx;
232 sqlite3_int64 res;
233 sqlite3_status(SQLITE_STATUS_MEMORY_USED, &n, &mx, resetFlag);
234 res = (sqlite3_int64)mx; /* Work around bug in Borland C. Ticket #3216 */
235 return res;
236 }
237
238 /*
239 ** Trigger the alarm
240 */
241 static void sqlite3MallocAlarm(int nByte){
242 void (*xCallback)(void*,sqlite3_int64,int);
243 sqlite3_int64 nowUsed;
244 void *pArg;
245 if( mem0.alarmCallback==0 ) return;
246 xCallback = mem0.alarmCallback;
247 nowUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
248 pArg = mem0.alarmArg;
249 mem0.alarmCallback = 0;
250 sqlite3_mutex_leave(mem0.mutex);
251 xCallback(pArg, nowUsed, nByte);
252 sqlite3_mutex_enter(mem0.mutex);
253 mem0.alarmCallback = xCallback;
254 mem0.alarmArg = pArg;
255 }
256
257 /*
258 ** Do a memory allocation with statistics and alarms. Assume the
259 ** lock is already held.
260 */
261 static int mallocWithAlarm(int n, void **pp){
262 int nFull;
263 void *p;
264 assert( sqlite3_mutex_held(mem0.mutex) );
265 nFull = sqlite3GlobalConfig.m.xRoundup(n);
266 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, n);
267 if( mem0.alarmCallback!=0 ){
268 int nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
269 if( nUsed+nFull >= mem0.alarmThreshold ){
270 mem0.nearlyFull = 1;
271 sqlite3MallocAlarm(nFull);
272 }else{
273 mem0.nearlyFull = 0;
274 }
275 }
276 p = sqlite3GlobalConfig.m.xMalloc(nFull);
277 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
278 if( p==0 && mem0.alarmCallback ){
279 sqlite3MallocAlarm(nFull);
280 p = sqlite3GlobalConfig.m.xMalloc(nFull);
281 }
282 #endif
283 if( p ){
284 nFull = sqlite3MallocSize(p);
285 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nFull);
286 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, 1);
287 }
288 *pp = p;
289 return nFull;
290 }
291
292 /*
293 ** Allocate memory. This routine is like sqlite3_malloc() except that it
294 ** assumes the memory subsystem has already been initialized.
295 */
296 void *sqlite3Malloc(int n){
297 void *p;
298 if( n<=0 /* IMP: R-65312-04917 */
299 || n>=0x7fffff00
300 ){
301 /* A memory allocation of a number of bytes which is near the maximum
302 ** signed integer value might cause an integer overflow inside of the
303 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving
304 ** 255 bytes of overhead. SQLite itself will never use anything near
305 ** this amount. The only way to reach the limit is with sqlite3_malloc() */
306 p = 0;
307 }else if( sqlite3GlobalConfig.bMemstat ){
308 sqlite3_mutex_enter(mem0.mutex);
309 mallocWithAlarm(n, &p);
310 sqlite3_mutex_leave(mem0.mutex);
311 }else{
312 p = sqlite3GlobalConfig.m.xMalloc(n);
313 }
314 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-04675-44850 */
315 return p;
316 }
317
318 /*
319 ** This version of the memory allocation is for use by the application.
320 ** First make sure the memory subsystem is initialized, then do the
321 ** allocation.
322 */
323 void *sqlite3_malloc(int n){
324 #ifndef SQLITE_OMIT_AUTOINIT
325 if( sqlite3_initialize() ) return 0;
326 #endif
327 return sqlite3Malloc(n);
328 }
329
330 /*
331 ** Each thread may only have a single outstanding allocation from
332 ** xScratchMalloc(). We verify this constraint in the single-threaded
333 ** case by setting scratchAllocOut to 1 when an allocation
334 ** is outstanding clearing it when the allocation is freed.
335 */
336 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
337 static int scratchAllocOut = 0;
338 #endif
339
340
341 /*
342 ** Allocate memory that is to be used and released right away.
343 ** This routine is similar to alloca() in that it is not intended
344 ** for situations where the memory might be held long-term. This
345 ** routine is intended to get memory to old large transient data
346 ** structures that would not normally fit on the stack of an
347 ** embedded processor.
348 */
349 void *sqlite3ScratchMalloc(int n){
350 void *p;
351 assert( n>0 );
352
353 sqlite3_mutex_enter(mem0.mutex);
354 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){
355 p = mem0.pScratchFree;
356 mem0.pScratchFree = mem0.pScratchFree->pNext;
357 mem0.nScratchFree--;
358 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, 1);
359 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
360 sqlite3_mutex_leave(mem0.mutex);
361 }else{
362 if( sqlite3GlobalConfig.bMemstat ){
363 sqlite3StatusSet(SQLITE_STATUS_SCRATCH_SIZE, n);
364 n = mallocWithAlarm(n, &p);
365 if( p ) sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, n);
366 sqlite3_mutex_leave(mem0.mutex);
367 }else{
368 sqlite3_mutex_leave(mem0.mutex);
369 p = sqlite3GlobalConfig.m.xMalloc(n);
370 }
371 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH);
372 }
373 assert( sqlite3_mutex_notheld(mem0.mutex) );
374
375
376 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
377 /* Verify that no more than two scratch allocations per thread
378 ** are outstanding at one time. (This is only checked in the
379 ** single-threaded case since checking in the multi-threaded case
380 ** would be much more complicated.) */
381 assert( scratchAllocOut<=1 );
382 if( p ) scratchAllocOut++;
383 #endif
384
385 return p;
386 }
387 void sqlite3ScratchFree(void *p){
388 if( p ){
389
390 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG)
391 /* Verify that no more than two scratch allocation per thread
392 ** is outstanding at one time. (This is only checked in the
393 ** single-threaded case since checking in the multi-threaded case
394 ** would be much more complicated.) */
395 assert( scratchAllocOut>=1 && scratchAllocOut<=2 );
396 scratchAllocOut--;
397 #endif
398
399 if( p>=sqlite3GlobalConfig.pScratch && p<mem0.pScratchEnd ){
400 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */
401 ScratchFreeslot *pSlot;
402 pSlot = (ScratchFreeslot*)p;
403 sqlite3_mutex_enter(mem0.mutex);
404 pSlot->pNext = mem0.pScratchFree;
405 mem0.pScratchFree = pSlot;
406 mem0.nScratchFree++;
407 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch );
408 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_USED, -1);
409 sqlite3_mutex_leave(mem0.mutex);
410 }else{
411 /* Release memory back to the heap */
412 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) );
413 assert( sqlite3MemdebugNoType(p, ~MEMTYPE_SCRATCH) );
414 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
415 if( sqlite3GlobalConfig.bMemstat ){
416 int iSize = sqlite3MallocSize(p);
417 sqlite3_mutex_enter(mem0.mutex);
418 sqlite3StatusAdd(SQLITE_STATUS_SCRATCH_OVERFLOW, -iSize);
419 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -iSize);
420 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
421 sqlite3GlobalConfig.m.xFree(p);
422 sqlite3_mutex_leave(mem0.mutex);
423 }else{
424 sqlite3GlobalConfig.m.xFree(p);
425 }
426 }
427 }
428 }
429
430 /*
431 ** TRUE if p is a lookaside memory allocation from db
432 */
433 #ifndef SQLITE_OMIT_LOOKASIDE
434 static int isLookaside(sqlite3 *db, void *p){
435 return p && p>=db->lookaside.pStart && p<db->lookaside.pEnd;
436 }
437 #else
438 #define isLookaside(A,B) 0
439 #endif
440
441 /*
442 ** Return the size of a memory allocation previously obtained from
443 ** sqlite3Malloc() or sqlite3_malloc().
444 */
445 int sqlite3MallocSize(void *p){
446 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
447 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
448 return sqlite3GlobalConfig.m.xSize(p);
449 }
450 int sqlite3DbMallocSize(sqlite3 *db, void *p){
451 assert( db==0 || sqlite3_mutex_held(db->mutex) );
452 if( db && isLookaside(db, p) ){
453 return db->lookaside.sz;
454 }else{
455 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
456 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
457 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
458 return sqlite3GlobalConfig.m.xSize(p);
459 }
460 }
461
462 /*
463 ** Free memory previously obtained from sqlite3Malloc().
464 */
465 void sqlite3_free(void *p){
466 if( p==0 ) return; /* IMP: R-49053-54554 */
467 assert( sqlite3MemdebugNoType(p, MEMTYPE_DB) );
468 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
469 if( sqlite3GlobalConfig.bMemstat ){
470 sqlite3_mutex_enter(mem0.mutex);
471 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, -sqlite3MallocSize(p));
472 sqlite3StatusAdd(SQLITE_STATUS_MALLOC_COUNT, -1);
473 sqlite3GlobalConfig.m.xFree(p);
474 sqlite3_mutex_leave(mem0.mutex);
475 }else{
476 sqlite3GlobalConfig.m.xFree(p);
477 }
478 }
479
480 /*
481 ** Free memory that might be associated with a particular database
482 ** connection.
483 */
484 void sqlite3DbFree(sqlite3 *db, void *p){
485 assert( db==0 || sqlite3_mutex_held(db->mutex) );
486 if( db ){
487 if( db->pnBytesFreed ){
488 *db->pnBytesFreed += sqlite3DbMallocSize(db, p);
489 return;
490 }
491 if( isLookaside(db, p) ){
492 LookasideSlot *pBuf = (LookasideSlot*)p;
493 pBuf->pNext = db->lookaside.pFree;
494 db->lookaside.pFree = pBuf;
495 db->lookaside.nOut--;
496 return;
497 }
498 }
499 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
500 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
501 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
502 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
503 sqlite3_free(p);
504 }
505
506 /*
507 ** Change the size of an existing memory allocation
508 */
509 void *sqlite3Realloc(void *pOld, int nBytes){
510 int nOld, nNew;
511 void *pNew;
512 if( pOld==0 ){
513 return sqlite3Malloc(nBytes); /* IMP: R-28354-25769 */
514 }
515 if( nBytes<=0 ){
516 sqlite3_free(pOld); /* IMP: R-31593-10574 */
517 return 0;
518 }
519 if( nBytes>=0x7fffff00 ){
520 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
521 return 0;
522 }
523 nOld = sqlite3MallocSize(pOld);
524 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
525 ** argument to xRealloc is always a value returned by a prior call to
526 ** xRoundup. */
527 nNew = sqlite3GlobalConfig.m.xRoundup(nBytes);
528 if( nOld==nNew ){
529 pNew = pOld;
530 }else if( sqlite3GlobalConfig.bMemstat ){
531 sqlite3_mutex_enter(mem0.mutex);
532 sqlite3StatusSet(SQLITE_STATUS_MALLOC_SIZE, nBytes);
533 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)+nNew-nOld >=
534 mem0.alarmThreshold ){
535 sqlite3MallocAlarm(nNew-nOld);
536 }
537 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
538 assert( sqlite3MemdebugNoType(pOld, ~MEMTYPE_HEAP) );
539 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
540 if( pNew==0 && mem0.alarmCallback ){
541 sqlite3MallocAlarm(nBytes);
542 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
543 }
544 if( pNew ){
545 nNew = sqlite3MallocSize(pNew);
546 sqlite3StatusAdd(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
547 }
548 sqlite3_mutex_leave(mem0.mutex);
549 }else{
550 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
551 }
552 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-04675-44850 */
553 return pNew;
554 }
555
556 /*
557 ** The public interface to sqlite3Realloc. Make sure that the memory
558 ** subsystem is initialized prior to invoking sqliteRealloc.
559 */
560 void *sqlite3_realloc(void *pOld, int n){
561 #ifndef SQLITE_OMIT_AUTOINIT
562 if( sqlite3_initialize() ) return 0;
563 #endif
564 return sqlite3Realloc(pOld, n);
565 }
566
567
568 /*
569 ** Allocate and zero memory.
570 */
571 void *sqlite3MallocZero(int n){
572 void *p = sqlite3Malloc(n);
573 if( p ){
574 memset(p, 0, n);
575 }
576 return p;
577 }
578
579 /*
580 ** Allocate and zero memory. If the allocation fails, make
581 ** the mallocFailed flag in the connection pointer.
582 */
583 void *sqlite3DbMallocZero(sqlite3 *db, int n){
584 void *p = sqlite3DbMallocRaw(db, n);
585 if( p ){
586 memset(p, 0, n);
587 }
588 return p;
589 }
590
591 /*
592 ** Allocate and zero memory. If the allocation fails, make
593 ** the mallocFailed flag in the connection pointer.
594 **
595 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
596 ** failure on the same database connection) then always return 0.
597 ** Hence for a particular database connection, once malloc starts
598 ** failing, it fails consistently until mallocFailed is reset.
599 ** This is an important assumption. There are many places in the
600 ** code that do things like this:
601 **
602 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
603 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
604 ** if( b ) a[10] = 9;
605 **
606 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
607 ** that all prior mallocs (ex: "a") worked too.
608 */
609 void *sqlite3DbMallocRaw(sqlite3 *db, int n){
610 void *p;
611 assert( db==0 || sqlite3_mutex_held(db->mutex) );
612 assert( db==0 || db->pnBytesFreed==0 );
613 #ifndef SQLITE_OMIT_LOOKASIDE
614 if( db ){
615 LookasideSlot *pBuf;
616 if( db->mallocFailed ){
617 return 0;
618 }
619 if( db->lookaside.bEnabled ){
620 if( n>db->lookaside.sz ){
621 db->lookaside.anStat[1]++;
622 }else if( (pBuf = db->lookaside.pFree)==0 ){
623 db->lookaside.anStat[2]++;
624 }else{
625 db->lookaside.pFree = pBuf->pNext;
626 db->lookaside.nOut++;
627 db->lookaside.anStat[0]++;
628 if( db->lookaside.nOut>db->lookaside.mxOut ){
629 db->lookaside.mxOut = db->lookaside.nOut;
630 }
631 return (void*)pBuf;
632 }
633 }
634 }
635 #else
636 if( db && db->mallocFailed ){
637 return 0;
638 }
639 #endif
640 p = sqlite3Malloc(n);
641 if( !p && db ){
642 db->mallocFailed = 1;
643 }
644 sqlite3MemdebugSetType(p, MEMTYPE_DB |
645 ((db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
646 return p;
647 }
648
649 /*
650 ** Resize the block of memory pointed to by p to n bytes. If the
651 ** resize fails, set the mallocFailed flag in the connection object.
652 */
653 void *sqlite3DbRealloc(sqlite3 *db, void *p, int n){
654 void *pNew = 0;
655 assert( db!=0 );
656 assert( sqlite3_mutex_held(db->mutex) );
657 if( db->mallocFailed==0 ){
658 if( p==0 ){
659 return sqlite3DbMallocRaw(db, n);
660 }
661 if( isLookaside(db, p) ){
662 if( n<=db->lookaside.sz ){
663 return p;
664 }
665 pNew = sqlite3DbMallocRaw(db, n);
666 if( pNew ){
667 memcpy(pNew, p, db->lookaside.sz);
668 sqlite3DbFree(db, p);
669 }
670 }else{
671 assert( sqlite3MemdebugHasType(p, MEMTYPE_DB) );
672 assert( sqlite3MemdebugHasType(p, MEMTYPE_LOOKASIDE|MEMTYPE_HEAP) );
673 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
674 pNew = sqlite3_realloc(p, n);
675 if( !pNew ){
676 sqlite3MemdebugSetType(p, MEMTYPE_DB|MEMTYPE_HEAP);
677 db->mallocFailed = 1;
678 }
679 sqlite3MemdebugSetType(pNew, MEMTYPE_DB |
680 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
681 }
682 }
683 return pNew;
684 }
685
686 /*
687 ** Attempt to reallocate p. If the reallocation fails, then free p
688 ** and set the mallocFailed flag in the database connection.
689 */
690 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, int n){
691 void *pNew;
692 pNew = sqlite3DbRealloc(db, p, n);
693 if( !pNew ){
694 sqlite3DbFree(db, p);
695 }
696 return pNew;
697 }
698
699 /*
700 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
701 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
702 ** is because when memory debugging is turned on, these two functions are
703 ** called via macros that record the current file and line number in the
704 ** ThreadData structure.
705 */
706 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
707 char *zNew;
708 size_t n;
709 if( z==0 ){
710 return 0;
711 }
712 n = sqlite3Strlen30(z) + 1;
713 assert( (n&0x7fffffff)==n );
714 zNew = sqlite3DbMallocRaw(db, (int)n);
715 if( zNew ){
716 memcpy(zNew, z, n);
717 }
718 return zNew;
719 }
720 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, int n){
721 char *zNew;
722 if( z==0 ){
723 return 0;
724 }
725 assert( (n&0x7fffffff)==n );
726 zNew = sqlite3DbMallocRaw(db, n+1);
727 if( zNew ){
728 memcpy(zNew, z, n);
729 zNew[n] = 0;
730 }
731 return zNew;
732 }
733
734 /*
735 ** Create a string from the zFromat argument and the va_list that follows.
736 ** Store the string in memory obtained from sqliteMalloc() and make *pz
737 ** point to that string.
738 */
739 void sqlite3SetString(char **pz, sqlite3 *db, const char *zFormat, ...){
740 va_list ap;
741 char *z;
742
743 va_start(ap, zFormat);
744 z = sqlite3VMPrintf(db, zFormat, ap);
745 va_end(ap);
746 sqlite3DbFree(db, *pz);
747 *pz = z;
748 }
749
750
751 /*
752 ** This function must be called before exiting any API function (i.e.
753 ** returning control to the user) that has called sqlite3_malloc or
754 ** sqlite3_realloc.
755 **
756 ** The returned value is normally a copy of the second argument to this
757 ** function. However, if a malloc() failure has occurred since the previous
758 ** invocation SQLITE_NOMEM is returned instead.
759 **
760 ** If the first argument, db, is not NULL and a malloc() error has occurred,
761 ** then the connection error-code (the value returned by sqlite3_errcode())
762 ** is set to SQLITE_NOMEM.
763 */
764 int sqlite3ApiExit(sqlite3* db, int rc){
765 /* If the db handle is not NULL, then we must hold the connection handle
766 ** mutex here. Otherwise the read (and possible write) of db->mallocFailed
767 ** is unsafe, as is the call to sqlite3Error().
768 */
769 assert( !db || sqlite3_mutex_held(db->mutex) );
770 if( db && (db->mallocFailed || rc==SQLITE_IOERR_NOMEM) ){
771 sqlite3Error(db, SQLITE_NOMEM, 0);
772 db->mallocFailed = 0;
773 rc = SQLITE_NOMEM;
774 }
775 return rc & (db ? db->errMask : 0xff);
776 }
OLDNEW
« no previous file with comments | « third_party/sqlite/src/src/main.c ('k') | third_party/sqlite/src/src/mem0.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698