| Index: third_party/sqlite/src/src/insert.c
|
| diff --git a/third_party/sqlite/src/src/insert.c b/third_party/sqlite/src/src/insert.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..588a84f36d0be3b2a15639a4ed222072e3343c58
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/src/insert.c
|
| @@ -0,0 +1,1830 @@
|
| +/*
|
| +** 2001 September 15
|
| +**
|
| +** The author disclaims copyright to this source code. In place of
|
| +** a legal notice, here is a blessing:
|
| +**
|
| +** May you do good and not evil.
|
| +** May you find forgiveness for yourself and forgive others.
|
| +** May you share freely, never taking more than you give.
|
| +**
|
| +*************************************************************************
|
| +** This file contains C code routines that are called by the parser
|
| +** to handle INSERT statements in SQLite.
|
| +*/
|
| +#include "sqliteInt.h"
|
| +
|
| +/*
|
| +** Generate code that will open a table for reading.
|
| +*/
|
| +void sqlite3OpenTable(
|
| + Parse *p, /* Generate code into this VDBE */
|
| + int iCur, /* The cursor number of the table */
|
| + int iDb, /* The database index in sqlite3.aDb[] */
|
| + Table *pTab, /* The table to be opened */
|
| + int opcode /* OP_OpenRead or OP_OpenWrite */
|
| +){
|
| + Vdbe *v;
|
| + if( IsVirtual(pTab) ) return;
|
| + v = sqlite3GetVdbe(p);
|
| + assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
|
| + sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName);
|
| + sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb);
|
| + sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32);
|
| + VdbeComment((v, "%s", pTab->zName));
|
| +}
|
| +
|
| +/*
|
| +** Return a pointer to the column affinity string associated with index
|
| +** pIdx. A column affinity string has one character for each column in
|
| +** the table, according to the affinity of the column:
|
| +**
|
| +** Character Column affinity
|
| +** ------------------------------
|
| +** 'a' TEXT
|
| +** 'b' NONE
|
| +** 'c' NUMERIC
|
| +** 'd' INTEGER
|
| +** 'e' REAL
|
| +**
|
| +** An extra 'b' is appended to the end of the string to cover the
|
| +** rowid that appears as the last column in every index.
|
| +**
|
| +** Memory for the buffer containing the column index affinity string
|
| +** is managed along with the rest of the Index structure. It will be
|
| +** released when sqlite3DeleteIndex() is called.
|
| +*/
|
| +const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){
|
| + if( !pIdx->zColAff ){
|
| + /* The first time a column affinity string for a particular index is
|
| + ** required, it is allocated and populated here. It is then stored as
|
| + ** a member of the Index structure for subsequent use.
|
| + **
|
| + ** The column affinity string will eventually be deleted by
|
| + ** sqliteDeleteIndex() when the Index structure itself is cleaned
|
| + ** up.
|
| + */
|
| + int n;
|
| + Table *pTab = pIdx->pTable;
|
| + sqlite3 *db = sqlite3VdbeDb(v);
|
| + pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2);
|
| + if( !pIdx->zColAff ){
|
| + db->mallocFailed = 1;
|
| + return 0;
|
| + }
|
| + for(n=0; n<pIdx->nColumn; n++){
|
| + pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity;
|
| + }
|
| + pIdx->zColAff[n++] = SQLITE_AFF_NONE;
|
| + pIdx->zColAff[n] = 0;
|
| + }
|
| +
|
| + return pIdx->zColAff;
|
| +}
|
| +
|
| +/*
|
| +** Set P4 of the most recently inserted opcode to a column affinity
|
| +** string for table pTab. A column affinity string has one character
|
| +** for each column indexed by the index, according to the affinity of the
|
| +** column:
|
| +**
|
| +** Character Column affinity
|
| +** ------------------------------
|
| +** 'a' TEXT
|
| +** 'b' NONE
|
| +** 'c' NUMERIC
|
| +** 'd' INTEGER
|
| +** 'e' REAL
|
| +*/
|
| +void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){
|
| + /* The first time a column affinity string for a particular table
|
| + ** is required, it is allocated and populated here. It is then
|
| + ** stored as a member of the Table structure for subsequent use.
|
| + **
|
| + ** The column affinity string will eventually be deleted by
|
| + ** sqlite3DeleteTable() when the Table structure itself is cleaned up.
|
| + */
|
| + if( !pTab->zColAff ){
|
| + char *zColAff;
|
| + int i;
|
| + sqlite3 *db = sqlite3VdbeDb(v);
|
| +
|
| + zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
|
| + if( !zColAff ){
|
| + db->mallocFailed = 1;
|
| + return;
|
| + }
|
| +
|
| + for(i=0; i<pTab->nCol; i++){
|
| + zColAff[i] = pTab->aCol[i].affinity;
|
| + }
|
| + zColAff[pTab->nCol] = '\0';
|
| +
|
| + pTab->zColAff = zColAff;
|
| + }
|
| +
|
| + sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT);
|
| +}
|
| +
|
| +/*
|
| +** Return non-zero if the table pTab in database iDb or any of its indices
|
| +** have been opened at any point in the VDBE program beginning at location
|
| +** iStartAddr throught the end of the program. This is used to see if
|
| +** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
|
| +** run without using temporary table for the results of the SELECT.
|
| +*/
|
| +static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){
|
| + Vdbe *v = sqlite3GetVdbe(p);
|
| + int i;
|
| + int iEnd = sqlite3VdbeCurrentAddr(v);
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
|
| +#endif
|
| +
|
| + for(i=iStartAddr; i<iEnd; i++){
|
| + VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
|
| + assert( pOp!=0 );
|
| + if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
|
| + Index *pIndex;
|
| + int tnum = pOp->p2;
|
| + if( tnum==pTab->tnum ){
|
| + return 1;
|
| + }
|
| + for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
|
| + if( tnum==pIndex->tnum ){
|
| + return 1;
|
| + }
|
| + }
|
| + }
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
|
| + assert( pOp->p4.pVtab!=0 );
|
| + assert( pOp->p4type==P4_VTAB );
|
| + return 1;
|
| + }
|
| +#endif
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +#ifndef SQLITE_OMIT_AUTOINCREMENT
|
| +/*
|
| +** Locate or create an AutoincInfo structure associated with table pTab
|
| +** which is in database iDb. Return the register number for the register
|
| +** that holds the maximum rowid.
|
| +**
|
| +** There is at most one AutoincInfo structure per table even if the
|
| +** same table is autoincremented multiple times due to inserts within
|
| +** triggers. A new AutoincInfo structure is created if this is the
|
| +** first use of table pTab. On 2nd and subsequent uses, the original
|
| +** AutoincInfo structure is used.
|
| +**
|
| +** Three memory locations are allocated:
|
| +**
|
| +** (1) Register to hold the name of the pTab table.
|
| +** (2) Register to hold the maximum ROWID of pTab.
|
| +** (3) Register to hold the rowid in sqlite_sequence of pTab
|
| +**
|
| +** The 2nd register is the one that is returned. That is all the
|
| +** insert routine needs to know about.
|
| +*/
|
| +static int autoIncBegin(
|
| + Parse *pParse, /* Parsing context */
|
| + int iDb, /* Index of the database holding pTab */
|
| + Table *pTab /* The table we are writing to */
|
| +){
|
| + int memId = 0; /* Register holding maximum rowid */
|
| + if( pTab->tabFlags & TF_Autoincrement ){
|
| + Parse *pToplevel = sqlite3ParseToplevel(pParse);
|
| + AutoincInfo *pInfo;
|
| +
|
| + pInfo = pToplevel->pAinc;
|
| + while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
|
| + if( pInfo==0 ){
|
| + pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo));
|
| + if( pInfo==0 ) return 0;
|
| + pInfo->pNext = pToplevel->pAinc;
|
| + pToplevel->pAinc = pInfo;
|
| + pInfo->pTab = pTab;
|
| + pInfo->iDb = iDb;
|
| + pToplevel->nMem++; /* Register to hold name of table */
|
| + pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
|
| + pToplevel->nMem++; /* Rowid in sqlite_sequence */
|
| + }
|
| + memId = pInfo->regCtr;
|
| + }
|
| + return memId;
|
| +}
|
| +
|
| +/*
|
| +** This routine generates code that will initialize all of the
|
| +** register used by the autoincrement tracker.
|
| +*/
|
| +void sqlite3AutoincrementBegin(Parse *pParse){
|
| + AutoincInfo *p; /* Information about an AUTOINCREMENT */
|
| + sqlite3 *db = pParse->db; /* The database connection */
|
| + Db *pDb; /* Database only autoinc table */
|
| + int memId; /* Register holding max rowid */
|
| + int addr; /* A VDBE address */
|
| + Vdbe *v = pParse->pVdbe; /* VDBE under construction */
|
| +
|
| + /* This routine is never called during trigger-generation. It is
|
| + ** only called from the top-level */
|
| + assert( pParse->pTriggerTab==0 );
|
| + assert( pParse==sqlite3ParseToplevel(pParse) );
|
| +
|
| + assert( v ); /* We failed long ago if this is not so */
|
| + for(p = pParse->pAinc; p; p = p->pNext){
|
| + pDb = &db->aDb[p->iDb];
|
| + memId = p->regCtr;
|
| + assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
|
| + sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
|
| + addr = sqlite3VdbeCurrentAddr(v);
|
| + sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0);
|
| + sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9);
|
| + sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId);
|
| + sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId);
|
| + sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL);
|
| + sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
|
| + sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9);
|
| + sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, memId);
|
| + sqlite3VdbeAddOp0(v, OP_Close);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Update the maximum rowid for an autoincrement calculation.
|
| +**
|
| +** This routine should be called when the top of the stack holds a
|
| +** new rowid that is about to be inserted. If that new rowid is
|
| +** larger than the maximum rowid in the memId memory cell, then the
|
| +** memory cell is updated. The stack is unchanged.
|
| +*/
|
| +static void autoIncStep(Parse *pParse, int memId, int regRowid){
|
| + if( memId>0 ){
|
| + sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** This routine generates the code needed to write autoincrement
|
| +** maximum rowid values back into the sqlite_sequence register.
|
| +** Every statement that might do an INSERT into an autoincrement
|
| +** table (either directly or through triggers) needs to call this
|
| +** routine just before the "exit" code.
|
| +*/
|
| +void sqlite3AutoincrementEnd(Parse *pParse){
|
| + AutoincInfo *p;
|
| + Vdbe *v = pParse->pVdbe;
|
| + sqlite3 *db = pParse->db;
|
| +
|
| + assert( v );
|
| + for(p = pParse->pAinc; p; p = p->pNext){
|
| + Db *pDb = &db->aDb[p->iDb];
|
| + int j1, j2, j3, j4, j5;
|
| + int iRec;
|
| + int memId = p->regCtr;
|
| +
|
| + iRec = sqlite3GetTempReg(pParse);
|
| + assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
|
| + sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
|
| + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1);
|
| + j2 = sqlite3VdbeAddOp0(v, OP_Rewind);
|
| + j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec);
|
| + j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec);
|
| + sqlite3VdbeAddOp2(v, OP_Next, 0, j3);
|
| + sqlite3VdbeJumpHere(v, j2);
|
| + sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1);
|
| + j5 = sqlite3VdbeAddOp0(v, OP_Goto);
|
| + sqlite3VdbeJumpHere(v, j4);
|
| + sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1);
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + sqlite3VdbeJumpHere(v, j5);
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
|
| + sqlite3VdbeAddOp0(v, OP_Close);
|
| + sqlite3ReleaseTempReg(pParse, iRec);
|
| + }
|
| +}
|
| +#else
|
| +/*
|
| +** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
|
| +** above are all no-ops
|
| +*/
|
| +# define autoIncBegin(A,B,C) (0)
|
| +# define autoIncStep(A,B,C)
|
| +#endif /* SQLITE_OMIT_AUTOINCREMENT */
|
| +
|
| +
|
| +/* Forward declaration */
|
| +static int xferOptimization(
|
| + Parse *pParse, /* Parser context */
|
| + Table *pDest, /* The table we are inserting into */
|
| + Select *pSelect, /* A SELECT statement to use as the data source */
|
| + int onError, /* How to handle constraint errors */
|
| + int iDbDest /* The database of pDest */
|
| +);
|
| +
|
| +/*
|
| +** This routine is call to handle SQL of the following forms:
|
| +**
|
| +** insert into TABLE (IDLIST) values(EXPRLIST)
|
| +** insert into TABLE (IDLIST) select
|
| +**
|
| +** The IDLIST following the table name is always optional. If omitted,
|
| +** then a list of all columns for the table is substituted. The IDLIST
|
| +** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted.
|
| +**
|
| +** The pList parameter holds EXPRLIST in the first form of the INSERT
|
| +** statement above, and pSelect is NULL. For the second form, pList is
|
| +** NULL and pSelect is a pointer to the select statement used to generate
|
| +** data for the insert.
|
| +**
|
| +** The code generated follows one of four templates. For a simple
|
| +** select with data coming from a VALUES clause, the code executes
|
| +** once straight down through. Pseudo-code follows (we call this
|
| +** the "1st template"):
|
| +**
|
| +** open write cursor to <table> and its indices
|
| +** puts VALUES clause expressions onto the stack
|
| +** write the resulting record into <table>
|
| +** cleanup
|
| +**
|
| +** The three remaining templates assume the statement is of the form
|
| +**
|
| +** INSERT INTO <table> SELECT ...
|
| +**
|
| +** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
|
| +** in other words if the SELECT pulls all columns from a single table
|
| +** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
|
| +** if <table2> and <table1> are distinct tables but have identical
|
| +** schemas, including all the same indices, then a special optimization
|
| +** is invoked that copies raw records from <table2> over to <table1>.
|
| +** See the xferOptimization() function for the implementation of this
|
| +** template. This is the 2nd template.
|
| +**
|
| +** open a write cursor to <table>
|
| +** open read cursor on <table2>
|
| +** transfer all records in <table2> over to <table>
|
| +** close cursors
|
| +** foreach index on <table>
|
| +** open a write cursor on the <table> index
|
| +** open a read cursor on the corresponding <table2> index
|
| +** transfer all records from the read to the write cursors
|
| +** close cursors
|
| +** end foreach
|
| +**
|
| +** The 3rd template is for when the second template does not apply
|
| +** and the SELECT clause does not read from <table> at any time.
|
| +** The generated code follows this template:
|
| +**
|
| +** EOF <- 0
|
| +** X <- A
|
| +** goto B
|
| +** A: setup for the SELECT
|
| +** loop over the rows in the SELECT
|
| +** load values into registers R..R+n
|
| +** yield X
|
| +** end loop
|
| +** cleanup after the SELECT
|
| +** EOF <- 1
|
| +** yield X
|
| +** goto A
|
| +** B: open write cursor to <table> and its indices
|
| +** C: yield X
|
| +** if EOF goto D
|
| +** insert the select result into <table> from R..R+n
|
| +** goto C
|
| +** D: cleanup
|
| +**
|
| +** The 4th template is used if the insert statement takes its
|
| +** values from a SELECT but the data is being inserted into a table
|
| +** that is also read as part of the SELECT. In the third form,
|
| +** we have to use a intermediate table to store the results of
|
| +** the select. The template is like this:
|
| +**
|
| +** EOF <- 0
|
| +** X <- A
|
| +** goto B
|
| +** A: setup for the SELECT
|
| +** loop over the tables in the SELECT
|
| +** load value into register R..R+n
|
| +** yield X
|
| +** end loop
|
| +** cleanup after the SELECT
|
| +** EOF <- 1
|
| +** yield X
|
| +** halt-error
|
| +** B: open temp table
|
| +** L: yield X
|
| +** if EOF goto M
|
| +** insert row from R..R+n into temp table
|
| +** goto L
|
| +** M: open write cursor to <table> and its indices
|
| +** rewind temp table
|
| +** C: loop over rows of intermediate table
|
| +** transfer values form intermediate table into <table>
|
| +** end loop
|
| +** D: cleanup
|
| +*/
|
| +void sqlite3Insert(
|
| + Parse *pParse, /* Parser context */
|
| + SrcList *pTabList, /* Name of table into which we are inserting */
|
| + ExprList *pList, /* List of values to be inserted */
|
| + Select *pSelect, /* A SELECT statement to use as the data source */
|
| + IdList *pColumn, /* Column names corresponding to IDLIST. */
|
| + int onError /* How to handle constraint errors */
|
| +){
|
| + sqlite3 *db; /* The main database structure */
|
| + Table *pTab; /* The table to insert into. aka TABLE */
|
| + char *zTab; /* Name of the table into which we are inserting */
|
| + const char *zDb; /* Name of the database holding this table */
|
| + int i, j, idx; /* Loop counters */
|
| + Vdbe *v; /* Generate code into this virtual machine */
|
| + Index *pIdx; /* For looping over indices of the table */
|
| + int nColumn; /* Number of columns in the data */
|
| + int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
|
| + int baseCur = 0; /* VDBE Cursor number for pTab */
|
| + int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
|
| + int endOfLoop; /* Label for the end of the insertion loop */
|
| + int useTempTable = 0; /* Store SELECT results in intermediate table */
|
| + int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
|
| + int addrInsTop = 0; /* Jump to label "D" */
|
| + int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
|
| + int addrSelect = 0; /* Address of coroutine that implements the SELECT */
|
| + SelectDest dest; /* Destination for SELECT on rhs of INSERT */
|
| + int iDb; /* Index of database holding TABLE */
|
| + Db *pDb; /* The database containing table being inserted into */
|
| + int appendFlag = 0; /* True if the insert is likely to be an append */
|
| +
|
| + /* Register allocations */
|
| + int regFromSelect = 0;/* Base register for data coming from SELECT */
|
| + int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
|
| + int regRowCount = 0; /* Memory cell used for the row counter */
|
| + int regIns; /* Block of regs holding rowid+data being inserted */
|
| + int regRowid; /* registers holding insert rowid */
|
| + int regData; /* register holding first column to insert */
|
| + int regEof = 0; /* Register recording end of SELECT data */
|
| + int *aRegIdx = 0; /* One register allocated to each index */
|
| +
|
| +#ifndef SQLITE_OMIT_TRIGGER
|
| + int isView; /* True if attempting to insert into a view */
|
| + Trigger *pTrigger; /* List of triggers on pTab, if required */
|
| + int tmask; /* Mask of trigger times */
|
| +#endif
|
| +
|
| + db = pParse->db;
|
| + memset(&dest, 0, sizeof(dest));
|
| + if( pParse->nErr || db->mallocFailed ){
|
| + goto insert_cleanup;
|
| + }
|
| +
|
| + /* Locate the table into which we will be inserting new information.
|
| + */
|
| + assert( pTabList->nSrc==1 );
|
| + zTab = pTabList->a[0].zName;
|
| + if( NEVER(zTab==0) ) goto insert_cleanup;
|
| + pTab = sqlite3SrcListLookup(pParse, pTabList);
|
| + if( pTab==0 ){
|
| + goto insert_cleanup;
|
| + }
|
| + iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
|
| + assert( iDb<db->nDb );
|
| + pDb = &db->aDb[iDb];
|
| + zDb = pDb->zName;
|
| + if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){
|
| + goto insert_cleanup;
|
| + }
|
| +
|
| + /* Figure out if we have any triggers and if the table being
|
| + ** inserted into is a view
|
| + */
|
| +#ifndef SQLITE_OMIT_TRIGGER
|
| + pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
|
| + isView = pTab->pSelect!=0;
|
| +#else
|
| +# define pTrigger 0
|
| +# define tmask 0
|
| +# define isView 0
|
| +#endif
|
| +#ifdef SQLITE_OMIT_VIEW
|
| +# undef isView
|
| +# define isView 0
|
| +#endif
|
| + assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
|
| +
|
| + /* If pTab is really a view, make sure it has been initialized.
|
| + ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual
|
| + ** module table).
|
| + */
|
| + if( sqlite3ViewGetColumnNames(pParse, pTab) ){
|
| + goto insert_cleanup;
|
| + }
|
| +
|
| + /* Ensure that:
|
| + * (a) the table is not read-only,
|
| + * (b) that if it is a view then ON INSERT triggers exist
|
| + */
|
| + if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
|
| + goto insert_cleanup;
|
| + }
|
| +
|
| + /* Allocate a VDBE
|
| + */
|
| + v = sqlite3GetVdbe(pParse);
|
| + if( v==0 ) goto insert_cleanup;
|
| + if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
|
| + sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
|
| +
|
| +#ifndef SQLITE_OMIT_XFER_OPT
|
| + /* If the statement is of the form
|
| + **
|
| + ** INSERT INTO <table1> SELECT * FROM <table2>;
|
| + **
|
| + ** Then special optimizations can be applied that make the transfer
|
| + ** very fast and which reduce fragmentation of indices.
|
| + **
|
| + ** This is the 2nd template.
|
| + */
|
| + if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
|
| + assert( !pTrigger );
|
| + assert( pList==0 );
|
| + goto insert_end;
|
| + }
|
| +#endif /* SQLITE_OMIT_XFER_OPT */
|
| +
|
| + /* If this is an AUTOINCREMENT table, look up the sequence number in the
|
| + ** sqlite_sequence table and store it in memory cell regAutoinc.
|
| + */
|
| + regAutoinc = autoIncBegin(pParse, iDb, pTab);
|
| +
|
| + /* Figure out how many columns of data are supplied. If the data
|
| + ** is coming from a SELECT statement, then generate a co-routine that
|
| + ** produces a single row of the SELECT on each invocation. The
|
| + ** co-routine is the common header to the 3rd and 4th templates.
|
| + */
|
| + if( pSelect ){
|
| + /* Data is coming from a SELECT. Generate code to implement that SELECT
|
| + ** as a co-routine. The code is common to both the 3rd and 4th
|
| + ** templates:
|
| + **
|
| + ** EOF <- 0
|
| + ** X <- A
|
| + ** goto B
|
| + ** A: setup for the SELECT
|
| + ** loop over the tables in the SELECT
|
| + ** load value into register R..R+n
|
| + ** yield X
|
| + ** end loop
|
| + ** cleanup after the SELECT
|
| + ** EOF <- 1
|
| + ** yield X
|
| + ** halt-error
|
| + **
|
| + ** On each invocation of the co-routine, it puts a single row of the
|
| + ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1.
|
| + ** (These output registers are allocated by sqlite3Select().) When
|
| + ** the SELECT completes, it sets the EOF flag stored in regEof.
|
| + */
|
| + int rc, j1;
|
| +
|
| + regEof = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */
|
| + VdbeComment((v, "SELECT eof flag"));
|
| + sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem);
|
| + addrSelect = sqlite3VdbeCurrentAddr(v)+2;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm);
|
| + j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
| + VdbeComment((v, "Jump over SELECT coroutine"));
|
| +
|
| + /* Resolve the expressions in the SELECT statement and execute it. */
|
| + rc = sqlite3Select(pParse, pSelect, &dest);
|
| + assert( pParse->nErr==0 || rc );
|
| + if( rc || NEVER(pParse->nErr) || db->mallocFailed ){
|
| + goto insert_cleanup;
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */
|
| + sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */
|
| + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort);
|
| + VdbeComment((v, "End of SELECT coroutine"));
|
| + sqlite3VdbeJumpHere(v, j1); /* label B: */
|
| +
|
| + regFromSelect = dest.iMem;
|
| + assert( pSelect->pEList );
|
| + nColumn = pSelect->pEList->nExpr;
|
| + assert( dest.nMem==nColumn );
|
| +
|
| + /* Set useTempTable to TRUE if the result of the SELECT statement
|
| + ** should be written into a temporary table (template 4). Set to
|
| + ** FALSE if each* row of the SELECT can be written directly into
|
| + ** the destination table (template 3).
|
| + **
|
| + ** A temp table must be used if the table being updated is also one
|
| + ** of the tables being read by the SELECT statement. Also use a
|
| + ** temp table in the case of row triggers.
|
| + */
|
| + if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){
|
| + useTempTable = 1;
|
| + }
|
| +
|
| + if( useTempTable ){
|
| + /* Invoke the coroutine to extract information from the SELECT
|
| + ** and add it to a transient table srcTab. The code generated
|
| + ** here is from the 4th template:
|
| + **
|
| + ** B: open temp table
|
| + ** L: yield X
|
| + ** if EOF goto M
|
| + ** insert row from R..R+n into temp table
|
| + ** goto L
|
| + ** M: ...
|
| + */
|
| + int regRec; /* Register to hold packed record */
|
| + int regTempRowid; /* Register to hold temp table ROWID */
|
| + int addrTop; /* Label "L" */
|
| + int addrIf; /* Address of jump to M */
|
| +
|
| + srcTab = pParse->nTab++;
|
| + regRec = sqlite3GetTempReg(pParse);
|
| + regTempRowid = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
|
| + addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
|
| + addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof);
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
|
| + sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop);
|
| + sqlite3VdbeJumpHere(v, addrIf);
|
| + sqlite3ReleaseTempReg(pParse, regRec);
|
| + sqlite3ReleaseTempReg(pParse, regTempRowid);
|
| + }
|
| + }else{
|
| + /* This is the case if the data for the INSERT is coming from a VALUES
|
| + ** clause
|
| + */
|
| + NameContext sNC;
|
| + memset(&sNC, 0, sizeof(sNC));
|
| + sNC.pParse = pParse;
|
| + srcTab = -1;
|
| + assert( useTempTable==0 );
|
| + nColumn = pList ? pList->nExpr : 0;
|
| + for(i=0; i<nColumn; i++){
|
| + if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){
|
| + goto insert_cleanup;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Make sure the number of columns in the source data matches the number
|
| + ** of columns to be inserted into the table.
|
| + */
|
| + if( IsVirtual(pTab) ){
|
| + for(i=0; i<pTab->nCol; i++){
|
| + nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0);
|
| + }
|
| + }
|
| + if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
|
| + sqlite3ErrorMsg(pParse,
|
| + "table %S has %d columns but %d values were supplied",
|
| + pTabList, 0, pTab->nCol-nHidden, nColumn);
|
| + goto insert_cleanup;
|
| + }
|
| + if( pColumn!=0 && nColumn!=pColumn->nId ){
|
| + sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
|
| + goto insert_cleanup;
|
| + }
|
| +
|
| + /* If the INSERT statement included an IDLIST term, then make sure
|
| + ** all elements of the IDLIST really are columns of the table and
|
| + ** remember the column indices.
|
| + **
|
| + ** If the table has an INTEGER PRIMARY KEY column and that column
|
| + ** is named in the IDLIST, then record in the keyColumn variable
|
| + ** the index into IDLIST of the primary key column. keyColumn is
|
| + ** the index of the primary key as it appears in IDLIST, not as
|
| + ** is appears in the original table. (The index of the primary
|
| + ** key in the original table is pTab->iPKey.)
|
| + */
|
| + if( pColumn ){
|
| + for(i=0; i<pColumn->nId; i++){
|
| + pColumn->a[i].idx = -1;
|
| + }
|
| + for(i=0; i<pColumn->nId; i++){
|
| + for(j=0; j<pTab->nCol; j++){
|
| + if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
|
| + pColumn->a[i].idx = j;
|
| + if( j==pTab->iPKey ){
|
| + keyColumn = i;
|
| + }
|
| + break;
|
| + }
|
| + }
|
| + if( j>=pTab->nCol ){
|
| + if( sqlite3IsRowid(pColumn->a[i].zName) ){
|
| + keyColumn = i;
|
| + }else{
|
| + sqlite3ErrorMsg(pParse, "table %S has no column named %s",
|
| + pTabList, 0, pColumn->a[i].zName);
|
| + pParse->checkSchema = 1;
|
| + goto insert_cleanup;
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* If there is no IDLIST term but the table has an integer primary
|
| + ** key, the set the keyColumn variable to the primary key column index
|
| + ** in the original table definition.
|
| + */
|
| + if( pColumn==0 && nColumn>0 ){
|
| + keyColumn = pTab->iPKey;
|
| + }
|
| +
|
| + /* Initialize the count of rows to be inserted
|
| + */
|
| + if( db->flags & SQLITE_CountRows ){
|
| + regRowCount = ++pParse->nMem;
|
| + sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
|
| + }
|
| +
|
| + /* If this is not a view, open the table and and all indices */
|
| + if( !isView ){
|
| + int nIdx;
|
| +
|
| + baseCur = pParse->nTab;
|
| + nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite);
|
| + aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1));
|
| + if( aRegIdx==0 ){
|
| + goto insert_cleanup;
|
| + }
|
| + for(i=0; i<nIdx; i++){
|
| + aRegIdx[i] = ++pParse->nMem;
|
| + }
|
| + }
|
| +
|
| + /* This is the top of the main insertion loop */
|
| + if( useTempTable ){
|
| + /* This block codes the top of loop only. The complete loop is the
|
| + ** following pseudocode (template 4):
|
| + **
|
| + ** rewind temp table
|
| + ** C: loop over rows of intermediate table
|
| + ** transfer values form intermediate table into <table>
|
| + ** end loop
|
| + ** D: ...
|
| + */
|
| + addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab);
|
| + addrCont = sqlite3VdbeCurrentAddr(v);
|
| + }else if( pSelect ){
|
| + /* This block codes the top of loop only. The complete loop is the
|
| + ** following pseudocode (template 3):
|
| + **
|
| + ** C: yield X
|
| + ** if EOF goto D
|
| + ** insert the select result into <table> from R..R+n
|
| + ** goto C
|
| + ** D: ...
|
| + */
|
| + addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm);
|
| + addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof);
|
| + }
|
| +
|
| + /* Allocate registers for holding the rowid of the new row,
|
| + ** the content of the new row, and the assemblied row record.
|
| + */
|
| + regRowid = regIns = pParse->nMem+1;
|
| + pParse->nMem += pTab->nCol + 1;
|
| + if( IsVirtual(pTab) ){
|
| + regRowid++;
|
| + pParse->nMem++;
|
| + }
|
| + regData = regRowid+1;
|
| +
|
| + /* Run the BEFORE and INSTEAD OF triggers, if there are any
|
| + */
|
| + endOfLoop = sqlite3VdbeMakeLabel(v);
|
| + if( tmask & TRIGGER_BEFORE ){
|
| + int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
|
| +
|
| + /* build the NEW.* reference row. Note that if there is an INTEGER
|
| + ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
|
| + ** translated into a unique ID for the row. But on a BEFORE trigger,
|
| + ** we do not know what the unique ID will be (because the insert has
|
| + ** not happened yet) so we substitute a rowid of -1
|
| + */
|
| + if( keyColumn<0 ){
|
| + sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
|
| + }else{
|
| + int j1;
|
| + if( useTempTable ){
|
| + sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols);
|
| + }else{
|
| + assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
| + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols);
|
| + }
|
| + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols);
|
| + sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols);
|
| + }
|
| +
|
| + /* Cannot have triggers on a virtual table. If it were possible,
|
| + ** this block would have to account for hidden column.
|
| + */
|
| + assert( !IsVirtual(pTab) );
|
| +
|
| + /* Create the new column data
|
| + */
|
| + for(i=0; i<pTab->nCol; i++){
|
| + if( pColumn==0 ){
|
| + j = i;
|
| + }else{
|
| + for(j=0; j<pColumn->nId; j++){
|
| + if( pColumn->a[j].idx==i ) break;
|
| + }
|
| + }
|
| + if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){
|
| + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1);
|
| + }else if( useTempTable ){
|
| + sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1);
|
| + }else{
|
| + assert( pSelect==0 ); /* Otherwise useTempTable is true */
|
| + sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1);
|
| + }
|
| + }
|
| +
|
| + /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
|
| + ** do not attempt any conversions before assembling the record.
|
| + ** If this is a real table, attempt conversions as required by the
|
| + ** table column affinities.
|
| + */
|
| + if( !isView ){
|
| + sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol);
|
| + sqlite3TableAffinityStr(v, pTab);
|
| + }
|
| +
|
| + /* Fire BEFORE or INSTEAD OF triggers */
|
| + sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
|
| + pTab, regCols-pTab->nCol-1, onError, endOfLoop);
|
| +
|
| + sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
|
| + }
|
| +
|
| + /* Push the record number for the new entry onto the stack. The
|
| + ** record number is a randomly generate integer created by NewRowid
|
| + ** except when the table has an INTEGER PRIMARY KEY column, in which
|
| + ** case the record number is the same as that column.
|
| + */
|
| + if( !isView ){
|
| + if( IsVirtual(pTab) ){
|
| + /* The row that the VUpdate opcode will delete: none */
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
|
| + }
|
| + if( keyColumn>=0 ){
|
| + if( useTempTable ){
|
| + sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid);
|
| + }else if( pSelect ){
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid);
|
| + }else{
|
| + VdbeOp *pOp;
|
| + sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid);
|
| + pOp = sqlite3VdbeGetOp(v, -1);
|
| + if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){
|
| + appendFlag = 1;
|
| + pOp->opcode = OP_NewRowid;
|
| + pOp->p1 = baseCur;
|
| + pOp->p2 = regRowid;
|
| + pOp->p3 = regAutoinc;
|
| + }
|
| + }
|
| + /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
|
| + ** to generate a unique primary key value.
|
| + */
|
| + if( !appendFlag ){
|
| + int j1;
|
| + if( !IsVirtual(pTab) ){
|
| + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid);
|
| + sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + }else{
|
| + j1 = sqlite3VdbeCurrentAddr(v);
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2);
|
| + }
|
| + sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid);
|
| + }
|
| + }else if( IsVirtual(pTab) ){
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
|
| + }else{
|
| + sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc);
|
| + appendFlag = 1;
|
| + }
|
| + autoIncStep(pParse, regAutoinc, regRowid);
|
| +
|
| + /* Push onto the stack, data for all columns of the new entry, beginning
|
| + ** with the first column.
|
| + */
|
| + nHidden = 0;
|
| + for(i=0; i<pTab->nCol; i++){
|
| + int iRegStore = regRowid+1+i;
|
| + if( i==pTab->iPKey ){
|
| + /* The value of the INTEGER PRIMARY KEY column is always a NULL.
|
| + ** Whenever this column is read, the record number will be substituted
|
| + ** in its place. So will fill this column with a NULL to avoid
|
| + ** taking up data space with information that will never be used. */
|
| + sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore);
|
| + continue;
|
| + }
|
| + if( pColumn==0 ){
|
| + if( IsHiddenColumn(&pTab->aCol[i]) ){
|
| + assert( IsVirtual(pTab) );
|
| + j = -1;
|
| + nHidden++;
|
| + }else{
|
| + j = i - nHidden;
|
| + }
|
| + }else{
|
| + for(j=0; j<pColumn->nId; j++){
|
| + if( pColumn->a[j].idx==i ) break;
|
| + }
|
| + }
|
| + if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){
|
| + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore);
|
| + }else if( useTempTable ){
|
| + sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore);
|
| + }else if( pSelect ){
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore);
|
| + }else{
|
| + sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore);
|
| + }
|
| + }
|
| +
|
| + /* Generate code to check constraints and generate index keys and
|
| + ** do the insertion.
|
| + */
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( IsVirtual(pTab) ){
|
| + const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
|
| + sqlite3VtabMakeWritable(pParse, pTab);
|
| + sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
|
| + sqlite3MayAbort(pParse);
|
| + }else
|
| +#endif
|
| + {
|
| + int isReplace; /* Set to true if constraints may cause a replace */
|
| + sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx,
|
| + keyColumn>=0, 0, onError, endOfLoop, &isReplace
|
| + );
|
| + sqlite3FkCheck(pParse, pTab, 0, regIns);
|
| + sqlite3CompleteInsertion(
|
| + pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0
|
| + );
|
| + }
|
| + }
|
| +
|
| + /* Update the count of rows that are inserted
|
| + */
|
| + if( (db->flags & SQLITE_CountRows)!=0 ){
|
| + sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
|
| + }
|
| +
|
| + if( pTrigger ){
|
| + /* Code AFTER triggers */
|
| + sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
|
| + pTab, regData-2-pTab->nCol, onError, endOfLoop);
|
| + }
|
| +
|
| + /* The bottom of the main insertion loop, if the data source
|
| + ** is a SELECT statement.
|
| + */
|
| + sqlite3VdbeResolveLabel(v, endOfLoop);
|
| + if( useTempTable ){
|
| + sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont);
|
| + sqlite3VdbeJumpHere(v, addrInsTop);
|
| + sqlite3VdbeAddOp1(v, OP_Close, srcTab);
|
| + }else if( pSelect ){
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont);
|
| + sqlite3VdbeJumpHere(v, addrInsTop);
|
| + }
|
| +
|
| + if( !IsVirtual(pTab) && !isView ){
|
| + /* Close all tables opened */
|
| + sqlite3VdbeAddOp1(v, OP_Close, baseCur);
|
| + for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){
|
| + sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur);
|
| + }
|
| + }
|
| +
|
| +insert_end:
|
| + /* Update the sqlite_sequence table by storing the content of the
|
| + ** maximum rowid counter values recorded while inserting into
|
| + ** autoincrement tables.
|
| + */
|
| + if( pParse->nested==0 && pParse->pTriggerTab==0 ){
|
| + sqlite3AutoincrementEnd(pParse);
|
| + }
|
| +
|
| + /*
|
| + ** Return the number of rows inserted. If this routine is
|
| + ** generating code because of a call to sqlite3NestedParse(), do not
|
| + ** invoke the callback function.
|
| + */
|
| + if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){
|
| + sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
|
| + sqlite3VdbeSetNumCols(v, 1);
|
| + sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
|
| + }
|
| +
|
| +insert_cleanup:
|
| + sqlite3SrcListDelete(db, pTabList);
|
| + sqlite3ExprListDelete(db, pList);
|
| + sqlite3SelectDelete(db, pSelect);
|
| + sqlite3IdListDelete(db, pColumn);
|
| + sqlite3DbFree(db, aRegIdx);
|
| +}
|
| +
|
| +/* Make sure "isView" and other macros defined above are undefined. Otherwise
|
| +** thely may interfere with compilation of other functions in this file
|
| +** (or in another file, if this file becomes part of the amalgamation). */
|
| +#ifdef isView
|
| + #undef isView
|
| +#endif
|
| +#ifdef pTrigger
|
| + #undef pTrigger
|
| +#endif
|
| +#ifdef tmask
|
| + #undef tmask
|
| +#endif
|
| +
|
| +
|
| +/*
|
| +** Generate code to do constraint checks prior to an INSERT or an UPDATE.
|
| +**
|
| +** The input is a range of consecutive registers as follows:
|
| +**
|
| +** 1. The rowid of the row after the update.
|
| +**
|
| +** 2. The data in the first column of the entry after the update.
|
| +**
|
| +** i. Data from middle columns...
|
| +**
|
| +** N. The data in the last column of the entry after the update.
|
| +**
|
| +** The regRowid parameter is the index of the register containing (1).
|
| +**
|
| +** If isUpdate is true and rowidChng is non-zero, then rowidChng contains
|
| +** the address of a register containing the rowid before the update takes
|
| +** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate
|
| +** is false, indicating an INSERT statement, then a non-zero rowidChng
|
| +** indicates that the rowid was explicitly specified as part of the
|
| +** INSERT statement. If rowidChng is false, it means that the rowid is
|
| +** computed automatically in an insert or that the rowid value is not
|
| +** modified by an update.
|
| +**
|
| +** The code generated by this routine store new index entries into
|
| +** registers identified by aRegIdx[]. No index entry is created for
|
| +** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
|
| +** the same as the order of indices on the linked list of indices
|
| +** attached to the table.
|
| +**
|
| +** This routine also generates code to check constraints. NOT NULL,
|
| +** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
|
| +** then the appropriate action is performed. There are five possible
|
| +** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
|
| +**
|
| +** Constraint type Action What Happens
|
| +** --------------- ---------- ----------------------------------------
|
| +** any ROLLBACK The current transaction is rolled back and
|
| +** sqlite3_exec() returns immediately with a
|
| +** return code of SQLITE_CONSTRAINT.
|
| +**
|
| +** any ABORT Back out changes from the current command
|
| +** only (do not do a complete rollback) then
|
| +** cause sqlite3_exec() to return immediately
|
| +** with SQLITE_CONSTRAINT.
|
| +**
|
| +** any FAIL Sqlite_exec() returns immediately with a
|
| +** return code of SQLITE_CONSTRAINT. The
|
| +** transaction is not rolled back and any
|
| +** prior changes are retained.
|
| +**
|
| +** any IGNORE The record number and data is popped from
|
| +** the stack and there is an immediate jump
|
| +** to label ignoreDest.
|
| +**
|
| +** NOT NULL REPLACE The NULL value is replace by the default
|
| +** value for that column. If the default value
|
| +** is NULL, the action is the same as ABORT.
|
| +**
|
| +** UNIQUE REPLACE The other row that conflicts with the row
|
| +** being inserted is removed.
|
| +**
|
| +** CHECK REPLACE Illegal. The results in an exception.
|
| +**
|
| +** Which action to take is determined by the overrideError parameter.
|
| +** Or if overrideError==OE_Default, then the pParse->onError parameter
|
| +** is used. Or if pParse->onError==OE_Default then the onError value
|
| +** for the constraint is used.
|
| +**
|
| +** The calling routine must open a read/write cursor for pTab with
|
| +** cursor number "baseCur". All indices of pTab must also have open
|
| +** read/write cursors with cursor number baseCur+i for the i-th cursor.
|
| +** Except, if there is no possibility of a REPLACE action then
|
| +** cursors do not need to be open for indices where aRegIdx[i]==0.
|
| +*/
|
| +void sqlite3GenerateConstraintChecks(
|
| + Parse *pParse, /* The parser context */
|
| + Table *pTab, /* the table into which we are inserting */
|
| + int baseCur, /* Index of a read/write cursor pointing at pTab */
|
| + int regRowid, /* Index of the range of input registers */
|
| + int *aRegIdx, /* Register used by each index. 0 for unused indices */
|
| + int rowidChng, /* True if the rowid might collide with existing entry */
|
| + int isUpdate, /* True for UPDATE, False for INSERT */
|
| + int overrideError, /* Override onError to this if not OE_Default */
|
| + int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
|
| + int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */
|
| +){
|
| + int i; /* loop counter */
|
| + Vdbe *v; /* VDBE under constrution */
|
| + int nCol; /* Number of columns */
|
| + int onError; /* Conflict resolution strategy */
|
| + int j1; /* Addresss of jump instruction */
|
| + int j2 = 0, j3; /* Addresses of jump instructions */
|
| + int regData; /* Register containing first data column */
|
| + int iCur; /* Table cursor number */
|
| + Index *pIdx; /* Pointer to one of the indices */
|
| + int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
|
| + int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid;
|
| +
|
| + v = sqlite3GetVdbe(pParse);
|
| + assert( v!=0 );
|
| + assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
| + nCol = pTab->nCol;
|
| + regData = regRowid + 1;
|
| +
|
| + /* Test all NOT NULL constraints.
|
| + */
|
| + for(i=0; i<nCol; i++){
|
| + if( i==pTab->iPKey ){
|
| + continue;
|
| + }
|
| + onError = pTab->aCol[i].notNull;
|
| + if( onError==OE_None ) continue;
|
| + if( overrideError!=OE_Default ){
|
| + onError = overrideError;
|
| + }else if( onError==OE_Default ){
|
| + onError = OE_Abort;
|
| + }
|
| + if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){
|
| + onError = OE_Abort;
|
| + }
|
| + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
| + || onError==OE_Ignore || onError==OE_Replace );
|
| + switch( onError ){
|
| + case OE_Abort:
|
| + sqlite3MayAbort(pParse);
|
| + case OE_Rollback:
|
| + case OE_Fail: {
|
| + char *zMsg;
|
| + sqlite3VdbeAddOp3(v, OP_HaltIfNull,
|
| + SQLITE_CONSTRAINT, onError, regData+i);
|
| + zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL",
|
| + pTab->zName, pTab->aCol[i].zName);
|
| + sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC);
|
| + break;
|
| + }
|
| + case OE_Ignore: {
|
| + sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest);
|
| + break;
|
| + }
|
| + default: {
|
| + assert( onError==OE_Replace );
|
| + j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i);
|
| + sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i);
|
| + sqlite3VdbeJumpHere(v, j1);
|
| + break;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Test all CHECK constraints
|
| + */
|
| +#ifndef SQLITE_OMIT_CHECK
|
| + if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){
|
| + int allOk = sqlite3VdbeMakeLabel(v);
|
| + pParse->ckBase = regData;
|
| + sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL);
|
| + onError = overrideError!=OE_Default ? overrideError : OE_Abort;
|
| + if( onError==OE_Ignore ){
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
| + }else{
|
| + if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */
|
| + sqlite3HaltConstraint(pParse, onError, 0, 0);
|
| + }
|
| + sqlite3VdbeResolveLabel(v, allOk);
|
| + }
|
| +#endif /* !defined(SQLITE_OMIT_CHECK) */
|
| +
|
| + /* If we have an INTEGER PRIMARY KEY, make sure the primary key
|
| + ** of the new record does not previously exist. Except, if this
|
| + ** is an UPDATE and the primary key is not changing, that is OK.
|
| + */
|
| + if( rowidChng ){
|
| + onError = pTab->keyConf;
|
| + if( overrideError!=OE_Default ){
|
| + onError = overrideError;
|
| + }else if( onError==OE_Default ){
|
| + onError = OE_Abort;
|
| + }
|
| +
|
| + if( isUpdate ){
|
| + j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng);
|
| + }
|
| + j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid);
|
| + switch( onError ){
|
| + default: {
|
| + onError = OE_Abort;
|
| + /* Fall thru into the next case */
|
| + }
|
| + case OE_Rollback:
|
| + case OE_Abort:
|
| + case OE_Fail: {
|
| + sqlite3HaltConstraint(
|
| + pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
|
| + break;
|
| + }
|
| + case OE_Replace: {
|
| + /* If there are DELETE triggers on this table and the
|
| + ** recursive-triggers flag is set, call GenerateRowDelete() to
|
| + ** remove the conflicting row from the the table. This will fire
|
| + ** the triggers and remove both the table and index b-tree entries.
|
| + **
|
| + ** Otherwise, if there are no triggers or the recursive-triggers
|
| + ** flag is not set, but the table has one or more indexes, call
|
| + ** GenerateRowIndexDelete(). This removes the index b-tree entries
|
| + ** only. The table b-tree entry will be replaced by the new entry
|
| + ** when it is inserted.
|
| + **
|
| + ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
|
| + ** also invoke MultiWrite() to indicate that this VDBE may require
|
| + ** statement rollback (if the statement is aborted after the delete
|
| + ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
|
| + ** but being more selective here allows statements like:
|
| + **
|
| + ** REPLACE INTO t(rowid) VALUES($newrowid)
|
| + **
|
| + ** to run without a statement journal if there are no indexes on the
|
| + ** table.
|
| + */
|
| + Trigger *pTrigger = 0;
|
| + if( pParse->db->flags&SQLITE_RecTriggers ){
|
| + pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
|
| + }
|
| + if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){
|
| + sqlite3MultiWrite(pParse);
|
| + sqlite3GenerateRowDelete(
|
| + pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace
|
| + );
|
| + }else if( pTab->pIndex ){
|
| + sqlite3MultiWrite(pParse);
|
| + sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0);
|
| + }
|
| + seenReplace = 1;
|
| + break;
|
| + }
|
| + case OE_Ignore: {
|
| + assert( seenReplace==0 );
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
| + break;
|
| + }
|
| + }
|
| + sqlite3VdbeJumpHere(v, j3);
|
| + if( isUpdate ){
|
| + sqlite3VdbeJumpHere(v, j2);
|
| + }
|
| + }
|
| +
|
| + /* Test all UNIQUE constraints by creating entries for each UNIQUE
|
| + ** index and making sure that duplicate entries do not already exist.
|
| + ** Add the new records to the indices as we go.
|
| + */
|
| + for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){
|
| + int regIdx;
|
| + int regR;
|
| +
|
| + if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */
|
| +
|
| + /* Create a key for accessing the index entry */
|
| + regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1);
|
| + for(i=0; i<pIdx->nColumn; i++){
|
| + int idx = pIdx->aiColumn[i];
|
| + if( idx==pTab->iPKey ){
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
|
| + }else{
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i);
|
| + }
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i);
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]);
|
| + sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT);
|
| + sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1);
|
| +
|
| + /* Find out what action to take in case there is an indexing conflict */
|
| + onError = pIdx->onError;
|
| + if( onError==OE_None ){
|
| + sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
|
| + continue; /* pIdx is not a UNIQUE index */
|
| + }
|
| + if( overrideError!=OE_Default ){
|
| + onError = overrideError;
|
| + }else if( onError==OE_Default ){
|
| + onError = OE_Abort;
|
| + }
|
| + if( seenReplace ){
|
| + if( onError==OE_Ignore ) onError = OE_Replace;
|
| + else if( onError==OE_Fail ) onError = OE_Abort;
|
| + }
|
| +
|
| + /* Check to see if the new index entry will be unique */
|
| + regR = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR);
|
| + j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0,
|
| + regR, SQLITE_INT_TO_PTR(regIdx),
|
| + P4_INT32);
|
| + sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1);
|
| +
|
| + /* Generate code that executes if the new index entry is not unique */
|
| + assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
|
| + || onError==OE_Ignore || onError==OE_Replace );
|
| + switch( onError ){
|
| + case OE_Rollback:
|
| + case OE_Abort:
|
| + case OE_Fail: {
|
| + int j;
|
| + StrAccum errMsg;
|
| + const char *zSep;
|
| + char *zErr;
|
| +
|
| + sqlite3StrAccumInit(&errMsg, 0, 0, 200);
|
| + errMsg.db = pParse->db;
|
| + zSep = pIdx->nColumn>1 ? "columns " : "column ";
|
| + for(j=0; j<pIdx->nColumn; j++){
|
| + char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
|
| + sqlite3StrAccumAppend(&errMsg, zSep, -1);
|
| + zSep = ", ";
|
| + sqlite3StrAccumAppend(&errMsg, zCol, -1);
|
| + }
|
| + sqlite3StrAccumAppend(&errMsg,
|
| + pIdx->nColumn>1 ? " are not unique" : " is not unique", -1);
|
| + zErr = sqlite3StrAccumFinish(&errMsg);
|
| + sqlite3HaltConstraint(pParse, onError, zErr, 0);
|
| + sqlite3DbFree(errMsg.db, zErr);
|
| + break;
|
| + }
|
| + case OE_Ignore: {
|
| + assert( seenReplace==0 );
|
| + sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest);
|
| + break;
|
| + }
|
| + default: {
|
| + Trigger *pTrigger = 0;
|
| + assert( onError==OE_Replace );
|
| + sqlite3MultiWrite(pParse);
|
| + if( pParse->db->flags&SQLITE_RecTriggers ){
|
| + pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
|
| + }
|
| + sqlite3GenerateRowDelete(
|
| + pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace
|
| + );
|
| + seenReplace = 1;
|
| + break;
|
| + }
|
| + }
|
| + sqlite3VdbeJumpHere(v, j3);
|
| + sqlite3ReleaseTempReg(pParse, regR);
|
| + }
|
| +
|
| + if( pbMayReplace ){
|
| + *pbMayReplace = seenReplace;
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** This routine generates code to finish the INSERT or UPDATE operation
|
| +** that was started by a prior call to sqlite3GenerateConstraintChecks.
|
| +** A consecutive range of registers starting at regRowid contains the
|
| +** rowid and the content to be inserted.
|
| +**
|
| +** The arguments to this routine should be the same as the first six
|
| +** arguments to sqlite3GenerateConstraintChecks.
|
| +*/
|
| +void sqlite3CompleteInsertion(
|
| + Parse *pParse, /* The parser context */
|
| + Table *pTab, /* the table into which we are inserting */
|
| + int baseCur, /* Index of a read/write cursor pointing at pTab */
|
| + int regRowid, /* Range of content */
|
| + int *aRegIdx, /* Register used by each index. 0 for unused indices */
|
| + int isUpdate, /* True for UPDATE, False for INSERT */
|
| + int appendBias, /* True if this is likely to be an append */
|
| + int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
|
| +){
|
| + int i;
|
| + Vdbe *v;
|
| + int nIdx;
|
| + Index *pIdx;
|
| + u8 pik_flags;
|
| + int regData;
|
| + int regRec;
|
| +
|
| + v = sqlite3GetVdbe(pParse);
|
| + assert( v!=0 );
|
| + assert( pTab->pSelect==0 ); /* This table is not a VIEW */
|
| + for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){}
|
| + for(i=nIdx-1; i>=0; i--){
|
| + if( aRegIdx[i]==0 ) continue;
|
| + sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]);
|
| + if( useSeekResult ){
|
| + sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
|
| + }
|
| + }
|
| + regData = regRowid + 1;
|
| + regRec = sqlite3GetTempReg(pParse);
|
| + sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec);
|
| + sqlite3TableAffinityStr(v, pTab);
|
| + sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol);
|
| + if( pParse->nested ){
|
| + pik_flags = 0;
|
| + }else{
|
| + pik_flags = OPFLAG_NCHANGE;
|
| + pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID);
|
| + }
|
| + if( appendBias ){
|
| + pik_flags |= OPFLAG_APPEND;
|
| + }
|
| + if( useSeekResult ){
|
| + pik_flags |= OPFLAG_USESEEKRESULT;
|
| + }
|
| + sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid);
|
| + if( !pParse->nested ){
|
| + sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT);
|
| + }
|
| + sqlite3VdbeChangeP5(v, pik_flags);
|
| +}
|
| +
|
| +/*
|
| +** Generate code that will open cursors for a table and for all
|
| +** indices of that table. The "baseCur" parameter is the cursor number used
|
| +** for the table. Indices are opened on subsequent cursors.
|
| +**
|
| +** Return the number of indices on the table.
|
| +*/
|
| +int sqlite3OpenTableAndIndices(
|
| + Parse *pParse, /* Parsing context */
|
| + Table *pTab, /* Table to be opened */
|
| + int baseCur, /* Cursor number assigned to the table */
|
| + int op /* OP_OpenRead or OP_OpenWrite */
|
| +){
|
| + int i;
|
| + int iDb;
|
| + Index *pIdx;
|
| + Vdbe *v;
|
| +
|
| + if( IsVirtual(pTab) ) return 0;
|
| + iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
|
| + v = sqlite3GetVdbe(pParse);
|
| + assert( v!=0 );
|
| + sqlite3OpenTable(pParse, baseCur, iDb, pTab, op);
|
| + for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
|
| + KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx);
|
| + assert( pIdx->pSchema==pTab->pSchema );
|
| + sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb,
|
| + (char*)pKey, P4_KEYINFO_HANDOFF);
|
| + VdbeComment((v, "%s", pIdx->zName));
|
| + }
|
| + if( pParse->nTab<baseCur+i ){
|
| + pParse->nTab = baseCur+i;
|
| + }
|
| + return i-1;
|
| +}
|
| +
|
| +
|
| +#ifdef SQLITE_TEST
|
| +/*
|
| +** The following global variable is incremented whenever the
|
| +** transfer optimization is used. This is used for testing
|
| +** purposes only - to make sure the transfer optimization really
|
| +** is happening when it is suppose to.
|
| +*/
|
| +int sqlite3_xferopt_count;
|
| +#endif /* SQLITE_TEST */
|
| +
|
| +
|
| +#ifndef SQLITE_OMIT_XFER_OPT
|
| +/*
|
| +** Check to collation names to see if they are compatible.
|
| +*/
|
| +static int xferCompatibleCollation(const char *z1, const char *z2){
|
| + if( z1==0 ){
|
| + return z2==0;
|
| + }
|
| + if( z2==0 ){
|
| + return 0;
|
| + }
|
| + return sqlite3StrICmp(z1, z2)==0;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Check to see if index pSrc is compatible as a source of data
|
| +** for index pDest in an insert transfer optimization. The rules
|
| +** for a compatible index:
|
| +**
|
| +** * The index is over the same set of columns
|
| +** * The same DESC and ASC markings occurs on all columns
|
| +** * The same onError processing (OE_Abort, OE_Ignore, etc)
|
| +** * The same collating sequence on each column
|
| +*/
|
| +static int xferCompatibleIndex(Index *pDest, Index *pSrc){
|
| + int i;
|
| + assert( pDest && pSrc );
|
| + assert( pDest->pTable!=pSrc->pTable );
|
| + if( pDest->nColumn!=pSrc->nColumn ){
|
| + return 0; /* Different number of columns */
|
| + }
|
| + if( pDest->onError!=pSrc->onError ){
|
| + return 0; /* Different conflict resolution strategies */
|
| + }
|
| + for(i=0; i<pSrc->nColumn; i++){
|
| + if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
|
| + return 0; /* Different columns indexed */
|
| + }
|
| + if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
|
| + return 0; /* Different sort orders */
|
| + }
|
| + if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){
|
| + return 0; /* Different collating sequences */
|
| + }
|
| + }
|
| +
|
| + /* If no test above fails then the indices must be compatible */
|
| + return 1;
|
| +}
|
| +
|
| +/*
|
| +** Attempt the transfer optimization on INSERTs of the form
|
| +**
|
| +** INSERT INTO tab1 SELECT * FROM tab2;
|
| +**
|
| +** This optimization is only attempted if
|
| +**
|
| +** (1) tab1 and tab2 have identical schemas including all the
|
| +** same indices and constraints
|
| +**
|
| +** (2) tab1 and tab2 are different tables
|
| +**
|
| +** (3) There must be no triggers on tab1
|
| +**
|
| +** (4) The result set of the SELECT statement is "*"
|
| +**
|
| +** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY,
|
| +** or LIMIT clause.
|
| +**
|
| +** (6) The SELECT statement is a simple (not a compound) select that
|
| +** contains only tab2 in its FROM clause
|
| +**
|
| +** This method for implementing the INSERT transfers raw records from
|
| +** tab2 over to tab1. The columns are not decoded. Raw records from
|
| +** the indices of tab2 are transfered to tab1 as well. In so doing,
|
| +** the resulting tab1 has much less fragmentation.
|
| +**
|
| +** This routine returns TRUE if the optimization is attempted. If any
|
| +** of the conditions above fail so that the optimization should not
|
| +** be attempted, then this routine returns FALSE.
|
| +*/
|
| +static int xferOptimization(
|
| + Parse *pParse, /* Parser context */
|
| + Table *pDest, /* The table we are inserting into */
|
| + Select *pSelect, /* A SELECT statement to use as the data source */
|
| + int onError, /* How to handle constraint errors */
|
| + int iDbDest /* The database of pDest */
|
| +){
|
| + ExprList *pEList; /* The result set of the SELECT */
|
| + Table *pSrc; /* The table in the FROM clause of SELECT */
|
| + Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
|
| + struct SrcList_item *pItem; /* An element of pSelect->pSrc */
|
| + int i; /* Loop counter */
|
| + int iDbSrc; /* The database of pSrc */
|
| + int iSrc, iDest; /* Cursors from source and destination */
|
| + int addr1, addr2; /* Loop addresses */
|
| + int emptyDestTest; /* Address of test for empty pDest */
|
| + int emptySrcTest; /* Address of test for empty pSrc */
|
| + Vdbe *v; /* The VDBE we are building */
|
| + KeyInfo *pKey; /* Key information for an index */
|
| + int regAutoinc; /* Memory register used by AUTOINC */
|
| + int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
|
| + int regData, regRowid; /* Registers holding data and rowid */
|
| +
|
| + if( pSelect==0 ){
|
| + return 0; /* Must be of the form INSERT INTO ... SELECT ... */
|
| + }
|
| + if( sqlite3TriggerList(pParse, pDest) ){
|
| + return 0; /* tab1 must not have triggers */
|
| + }
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( pDest->tabFlags & TF_Virtual ){
|
| + return 0; /* tab1 must not be a virtual table */
|
| + }
|
| +#endif
|
| + if( onError==OE_Default ){
|
| + onError = OE_Abort;
|
| + }
|
| + if( onError!=OE_Abort && onError!=OE_Rollback ){
|
| + return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */
|
| + }
|
| + assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
|
| + if( pSelect->pSrc->nSrc!=1 ){
|
| + return 0; /* FROM clause must have exactly one term */
|
| + }
|
| + if( pSelect->pSrc->a[0].pSelect ){
|
| + return 0; /* FROM clause cannot contain a subquery */
|
| + }
|
| + if( pSelect->pWhere ){
|
| + return 0; /* SELECT may not have a WHERE clause */
|
| + }
|
| + if( pSelect->pOrderBy ){
|
| + return 0; /* SELECT may not have an ORDER BY clause */
|
| + }
|
| + /* Do not need to test for a HAVING clause. If HAVING is present but
|
| + ** there is no ORDER BY, we will get an error. */
|
| + if( pSelect->pGroupBy ){
|
| + return 0; /* SELECT may not have a GROUP BY clause */
|
| + }
|
| + if( pSelect->pLimit ){
|
| + return 0; /* SELECT may not have a LIMIT clause */
|
| + }
|
| + assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */
|
| + if( pSelect->pPrior ){
|
| + return 0; /* SELECT may not be a compound query */
|
| + }
|
| + if( pSelect->selFlags & SF_Distinct ){
|
| + return 0; /* SELECT may not be DISTINCT */
|
| + }
|
| + pEList = pSelect->pEList;
|
| + assert( pEList!=0 );
|
| + if( pEList->nExpr!=1 ){
|
| + return 0; /* The result set must have exactly one column */
|
| + }
|
| + assert( pEList->a[0].pExpr );
|
| + if( pEList->a[0].pExpr->op!=TK_ALL ){
|
| + return 0; /* The result set must be the special operator "*" */
|
| + }
|
| +
|
| + /* At this point we have established that the statement is of the
|
| + ** correct syntactic form to participate in this optimization. Now
|
| + ** we have to check the semantics.
|
| + */
|
| + pItem = pSelect->pSrc->a;
|
| + pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase);
|
| + if( pSrc==0 ){
|
| + return 0; /* FROM clause does not contain a real table */
|
| + }
|
| + if( pSrc==pDest ){
|
| + return 0; /* tab1 and tab2 may not be the same table */
|
| + }
|
| +#ifndef SQLITE_OMIT_VIRTUALTABLE
|
| + if( pSrc->tabFlags & TF_Virtual ){
|
| + return 0; /* tab2 must not be a virtual table */
|
| + }
|
| +#endif
|
| + if( pSrc->pSelect ){
|
| + return 0; /* tab2 may not be a view */
|
| + }
|
| + if( pDest->nCol!=pSrc->nCol ){
|
| + return 0; /* Number of columns must be the same in tab1 and tab2 */
|
| + }
|
| + if( pDest->iPKey!=pSrc->iPKey ){
|
| + return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
|
| + }
|
| + for(i=0; i<pDest->nCol; i++){
|
| + if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){
|
| + return 0; /* Affinity must be the same on all columns */
|
| + }
|
| + if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){
|
| + return 0; /* Collating sequence must be the same on all columns */
|
| + }
|
| + if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){
|
| + return 0; /* tab2 must be NOT NULL if tab1 is */
|
| + }
|
| + }
|
| + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
| + if( pDestIdx->onError!=OE_None ){
|
| + destHasUniqueIdx = 1;
|
| + }
|
| + for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
|
| + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
| + }
|
| + if( pSrcIdx==0 ){
|
| + return 0; /* pDestIdx has no corresponding index in pSrc */
|
| + }
|
| + }
|
| +#ifndef SQLITE_OMIT_CHECK
|
| + if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){
|
| + return 0; /* Tables have different CHECK constraints. Ticket #2252 */
|
| + }
|
| +#endif
|
| +
|
| + /* If we get this far, it means either:
|
| + **
|
| + ** * We can always do the transfer if the table contains an
|
| + ** an integer primary key
|
| + **
|
| + ** * We can conditionally do the transfer if the destination
|
| + ** table is empty.
|
| + */
|
| +#ifdef SQLITE_TEST
|
| + sqlite3_xferopt_count++;
|
| +#endif
|
| + iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema);
|
| + v = sqlite3GetVdbe(pParse);
|
| + sqlite3CodeVerifySchema(pParse, iDbSrc);
|
| + iSrc = pParse->nTab++;
|
| + iDest = pParse->nTab++;
|
| + regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
|
| + sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
|
| + if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){
|
| + /* If tables do not have an INTEGER PRIMARY KEY and there
|
| + ** are indices to be copied and the destination is not empty,
|
| + ** we have to disallow the transfer optimization because the
|
| + ** the rowids might change which will mess up indexing.
|
| + **
|
| + ** Or if the destination has a UNIQUE index and is not empty,
|
| + ** we also disallow the transfer optimization because we cannot
|
| + ** insure that all entries in the union of DEST and SRC will be
|
| + ** unique.
|
| + */
|
| + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0);
|
| + emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + }else{
|
| + emptyDestTest = 0;
|
| + }
|
| + sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
|
| + emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
|
| + regData = sqlite3GetTempReg(pParse);
|
| + regRowid = sqlite3GetTempReg(pParse);
|
| + if( pDest->iPKey>=0 ){
|
| + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
|
| + addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
|
| + sqlite3HaltConstraint(
|
| + pParse, onError, "PRIMARY KEY must be unique", P4_STATIC);
|
| + sqlite3VdbeJumpHere(v, addr2);
|
| + autoIncStep(pParse, regAutoinc, regRowid);
|
| + }else if( pDest->pIndex==0 ){
|
| + addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
|
| + }else{
|
| + addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
|
| + assert( (pDest->tabFlags & TF_Autoincrement)==0 );
|
| + }
|
| + sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData);
|
| + sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid);
|
| + sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND);
|
| + sqlite3VdbeChangeP4(v, -1, pDest->zName, 0);
|
| + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1);
|
| + for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
|
| + for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
|
| + if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
|
| + }
|
| + assert( pSrcIdx );
|
| + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
|
| + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
| + pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx);
|
| + sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc,
|
| + (char*)pKey, P4_KEYINFO_HANDOFF);
|
| + VdbeComment((v, "%s", pSrcIdx->zName));
|
| + pKey = sqlite3IndexKeyinfo(pParse, pDestIdx);
|
| + sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest,
|
| + (char*)pKey, P4_KEYINFO_HANDOFF);
|
| + VdbeComment((v, "%s", pDestIdx->zName));
|
| + addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0);
|
| + sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData);
|
| + sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1);
|
| + sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1);
|
| + sqlite3VdbeJumpHere(v, addr1);
|
| + }
|
| + sqlite3VdbeJumpHere(v, emptySrcTest);
|
| + sqlite3ReleaseTempReg(pParse, regRowid);
|
| + sqlite3ReleaseTempReg(pParse, regData);
|
| + sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
|
| + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
| + if( emptyDestTest ){
|
| + sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
|
| + sqlite3VdbeJumpHere(v, emptyDestTest);
|
| + sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
|
| + return 0;
|
| + }else{
|
| + return 1;
|
| + }
|
| +}
|
| +#endif /* SQLITE_OMIT_XFER_OPT */
|
|
|