OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** 2001 September 15 |
| 3 ** |
| 4 ** The author disclaims copyright to this source code. In place of |
| 5 ** a legal notice, here is a blessing: |
| 6 ** |
| 7 ** May you do good and not evil. |
| 8 ** May you find forgiveness for yourself and forgive others. |
| 9 ** May you share freely, never taking more than you give. |
| 10 ** |
| 11 ************************************************************************* |
| 12 ** This file contains C code routines that are called by the parser |
| 13 ** to handle INSERT statements in SQLite. |
| 14 */ |
| 15 #include "sqliteInt.h" |
| 16 |
| 17 /* |
| 18 ** Generate code that will open a table for reading. |
| 19 */ |
| 20 void sqlite3OpenTable( |
| 21 Parse *p, /* Generate code into this VDBE */ |
| 22 int iCur, /* The cursor number of the table */ |
| 23 int iDb, /* The database index in sqlite3.aDb[] */ |
| 24 Table *pTab, /* The table to be opened */ |
| 25 int opcode /* OP_OpenRead or OP_OpenWrite */ |
| 26 ){ |
| 27 Vdbe *v; |
| 28 if( IsVirtual(pTab) ) return; |
| 29 v = sqlite3GetVdbe(p); |
| 30 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead ); |
| 31 sqlite3TableLock(p, iDb, pTab->tnum, (opcode==OP_OpenWrite)?1:0, pTab->zName); |
| 32 sqlite3VdbeAddOp3(v, opcode, iCur, pTab->tnum, iDb); |
| 33 sqlite3VdbeChangeP4(v, -1, SQLITE_INT_TO_PTR(pTab->nCol), P4_INT32); |
| 34 VdbeComment((v, "%s", pTab->zName)); |
| 35 } |
| 36 |
| 37 /* |
| 38 ** Return a pointer to the column affinity string associated with index |
| 39 ** pIdx. A column affinity string has one character for each column in |
| 40 ** the table, according to the affinity of the column: |
| 41 ** |
| 42 ** Character Column affinity |
| 43 ** ------------------------------ |
| 44 ** 'a' TEXT |
| 45 ** 'b' NONE |
| 46 ** 'c' NUMERIC |
| 47 ** 'd' INTEGER |
| 48 ** 'e' REAL |
| 49 ** |
| 50 ** An extra 'b' is appended to the end of the string to cover the |
| 51 ** rowid that appears as the last column in every index. |
| 52 ** |
| 53 ** Memory for the buffer containing the column index affinity string |
| 54 ** is managed along with the rest of the Index structure. It will be |
| 55 ** released when sqlite3DeleteIndex() is called. |
| 56 */ |
| 57 const char *sqlite3IndexAffinityStr(Vdbe *v, Index *pIdx){ |
| 58 if( !pIdx->zColAff ){ |
| 59 /* The first time a column affinity string for a particular index is |
| 60 ** required, it is allocated and populated here. It is then stored as |
| 61 ** a member of the Index structure for subsequent use. |
| 62 ** |
| 63 ** The column affinity string will eventually be deleted by |
| 64 ** sqliteDeleteIndex() when the Index structure itself is cleaned |
| 65 ** up. |
| 66 */ |
| 67 int n; |
| 68 Table *pTab = pIdx->pTable; |
| 69 sqlite3 *db = sqlite3VdbeDb(v); |
| 70 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+2); |
| 71 if( !pIdx->zColAff ){ |
| 72 db->mallocFailed = 1; |
| 73 return 0; |
| 74 } |
| 75 for(n=0; n<pIdx->nColumn; n++){ |
| 76 pIdx->zColAff[n] = pTab->aCol[pIdx->aiColumn[n]].affinity; |
| 77 } |
| 78 pIdx->zColAff[n++] = SQLITE_AFF_NONE; |
| 79 pIdx->zColAff[n] = 0; |
| 80 } |
| 81 |
| 82 return pIdx->zColAff; |
| 83 } |
| 84 |
| 85 /* |
| 86 ** Set P4 of the most recently inserted opcode to a column affinity |
| 87 ** string for table pTab. A column affinity string has one character |
| 88 ** for each column indexed by the index, according to the affinity of the |
| 89 ** column: |
| 90 ** |
| 91 ** Character Column affinity |
| 92 ** ------------------------------ |
| 93 ** 'a' TEXT |
| 94 ** 'b' NONE |
| 95 ** 'c' NUMERIC |
| 96 ** 'd' INTEGER |
| 97 ** 'e' REAL |
| 98 */ |
| 99 void sqlite3TableAffinityStr(Vdbe *v, Table *pTab){ |
| 100 /* The first time a column affinity string for a particular table |
| 101 ** is required, it is allocated and populated here. It is then |
| 102 ** stored as a member of the Table structure for subsequent use. |
| 103 ** |
| 104 ** The column affinity string will eventually be deleted by |
| 105 ** sqlite3DeleteTable() when the Table structure itself is cleaned up. |
| 106 */ |
| 107 if( !pTab->zColAff ){ |
| 108 char *zColAff; |
| 109 int i; |
| 110 sqlite3 *db = sqlite3VdbeDb(v); |
| 111 |
| 112 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1); |
| 113 if( !zColAff ){ |
| 114 db->mallocFailed = 1; |
| 115 return; |
| 116 } |
| 117 |
| 118 for(i=0; i<pTab->nCol; i++){ |
| 119 zColAff[i] = pTab->aCol[i].affinity; |
| 120 } |
| 121 zColAff[pTab->nCol] = '\0'; |
| 122 |
| 123 pTab->zColAff = zColAff; |
| 124 } |
| 125 |
| 126 sqlite3VdbeChangeP4(v, -1, pTab->zColAff, P4_TRANSIENT); |
| 127 } |
| 128 |
| 129 /* |
| 130 ** Return non-zero if the table pTab in database iDb or any of its indices |
| 131 ** have been opened at any point in the VDBE program beginning at location |
| 132 ** iStartAddr throught the end of the program. This is used to see if |
| 133 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can |
| 134 ** run without using temporary table for the results of the SELECT. |
| 135 */ |
| 136 static int readsTable(Parse *p, int iStartAddr, int iDb, Table *pTab){ |
| 137 Vdbe *v = sqlite3GetVdbe(p); |
| 138 int i; |
| 139 int iEnd = sqlite3VdbeCurrentAddr(v); |
| 140 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 141 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0; |
| 142 #endif |
| 143 |
| 144 for(i=iStartAddr; i<iEnd; i++){ |
| 145 VdbeOp *pOp = sqlite3VdbeGetOp(v, i); |
| 146 assert( pOp!=0 ); |
| 147 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){ |
| 148 Index *pIndex; |
| 149 int tnum = pOp->p2; |
| 150 if( tnum==pTab->tnum ){ |
| 151 return 1; |
| 152 } |
| 153 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){ |
| 154 if( tnum==pIndex->tnum ){ |
| 155 return 1; |
| 156 } |
| 157 } |
| 158 } |
| 159 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 160 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){ |
| 161 assert( pOp->p4.pVtab!=0 ); |
| 162 assert( pOp->p4type==P4_VTAB ); |
| 163 return 1; |
| 164 } |
| 165 #endif |
| 166 } |
| 167 return 0; |
| 168 } |
| 169 |
| 170 #ifndef SQLITE_OMIT_AUTOINCREMENT |
| 171 /* |
| 172 ** Locate or create an AutoincInfo structure associated with table pTab |
| 173 ** which is in database iDb. Return the register number for the register |
| 174 ** that holds the maximum rowid. |
| 175 ** |
| 176 ** There is at most one AutoincInfo structure per table even if the |
| 177 ** same table is autoincremented multiple times due to inserts within |
| 178 ** triggers. A new AutoincInfo structure is created if this is the |
| 179 ** first use of table pTab. On 2nd and subsequent uses, the original |
| 180 ** AutoincInfo structure is used. |
| 181 ** |
| 182 ** Three memory locations are allocated: |
| 183 ** |
| 184 ** (1) Register to hold the name of the pTab table. |
| 185 ** (2) Register to hold the maximum ROWID of pTab. |
| 186 ** (3) Register to hold the rowid in sqlite_sequence of pTab |
| 187 ** |
| 188 ** The 2nd register is the one that is returned. That is all the |
| 189 ** insert routine needs to know about. |
| 190 */ |
| 191 static int autoIncBegin( |
| 192 Parse *pParse, /* Parsing context */ |
| 193 int iDb, /* Index of the database holding pTab */ |
| 194 Table *pTab /* The table we are writing to */ |
| 195 ){ |
| 196 int memId = 0; /* Register holding maximum rowid */ |
| 197 if( pTab->tabFlags & TF_Autoincrement ){ |
| 198 Parse *pToplevel = sqlite3ParseToplevel(pParse); |
| 199 AutoincInfo *pInfo; |
| 200 |
| 201 pInfo = pToplevel->pAinc; |
| 202 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; } |
| 203 if( pInfo==0 ){ |
| 204 pInfo = sqlite3DbMallocRaw(pParse->db, sizeof(*pInfo)); |
| 205 if( pInfo==0 ) return 0; |
| 206 pInfo->pNext = pToplevel->pAinc; |
| 207 pToplevel->pAinc = pInfo; |
| 208 pInfo->pTab = pTab; |
| 209 pInfo->iDb = iDb; |
| 210 pToplevel->nMem++; /* Register to hold name of table */ |
| 211 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */ |
| 212 pToplevel->nMem++; /* Rowid in sqlite_sequence */ |
| 213 } |
| 214 memId = pInfo->regCtr; |
| 215 } |
| 216 return memId; |
| 217 } |
| 218 |
| 219 /* |
| 220 ** This routine generates code that will initialize all of the |
| 221 ** register used by the autoincrement tracker. |
| 222 */ |
| 223 void sqlite3AutoincrementBegin(Parse *pParse){ |
| 224 AutoincInfo *p; /* Information about an AUTOINCREMENT */ |
| 225 sqlite3 *db = pParse->db; /* The database connection */ |
| 226 Db *pDb; /* Database only autoinc table */ |
| 227 int memId; /* Register holding max rowid */ |
| 228 int addr; /* A VDBE address */ |
| 229 Vdbe *v = pParse->pVdbe; /* VDBE under construction */ |
| 230 |
| 231 /* This routine is never called during trigger-generation. It is |
| 232 ** only called from the top-level */ |
| 233 assert( pParse->pTriggerTab==0 ); |
| 234 assert( pParse==sqlite3ParseToplevel(pParse) ); |
| 235 |
| 236 assert( v ); /* We failed long ago if this is not so */ |
| 237 for(p = pParse->pAinc; p; p = p->pNext){ |
| 238 pDb = &db->aDb[p->iDb]; |
| 239 memId = p->regCtr; |
| 240 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
| 241 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead); |
| 242 addr = sqlite3VdbeCurrentAddr(v); |
| 243 sqlite3VdbeAddOp4(v, OP_String8, 0, memId-1, 0, p->pTab->zName, 0); |
| 244 sqlite3VdbeAddOp2(v, OP_Rewind, 0, addr+9); |
| 245 sqlite3VdbeAddOp3(v, OP_Column, 0, 0, memId); |
| 246 sqlite3VdbeAddOp3(v, OP_Ne, memId-1, addr+7, memId); |
| 247 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); |
| 248 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); |
| 249 sqlite3VdbeAddOp3(v, OP_Column, 0, 1, memId); |
| 250 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr+9); |
| 251 sqlite3VdbeAddOp2(v, OP_Next, 0, addr+2); |
| 252 sqlite3VdbeAddOp2(v, OP_Integer, 0, memId); |
| 253 sqlite3VdbeAddOp0(v, OP_Close); |
| 254 } |
| 255 } |
| 256 |
| 257 /* |
| 258 ** Update the maximum rowid for an autoincrement calculation. |
| 259 ** |
| 260 ** This routine should be called when the top of the stack holds a |
| 261 ** new rowid that is about to be inserted. If that new rowid is |
| 262 ** larger than the maximum rowid in the memId memory cell, then the |
| 263 ** memory cell is updated. The stack is unchanged. |
| 264 */ |
| 265 static void autoIncStep(Parse *pParse, int memId, int regRowid){ |
| 266 if( memId>0 ){ |
| 267 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid); |
| 268 } |
| 269 } |
| 270 |
| 271 /* |
| 272 ** This routine generates the code needed to write autoincrement |
| 273 ** maximum rowid values back into the sqlite_sequence register. |
| 274 ** Every statement that might do an INSERT into an autoincrement |
| 275 ** table (either directly or through triggers) needs to call this |
| 276 ** routine just before the "exit" code. |
| 277 */ |
| 278 void sqlite3AutoincrementEnd(Parse *pParse){ |
| 279 AutoincInfo *p; |
| 280 Vdbe *v = pParse->pVdbe; |
| 281 sqlite3 *db = pParse->db; |
| 282 |
| 283 assert( v ); |
| 284 for(p = pParse->pAinc; p; p = p->pNext){ |
| 285 Db *pDb = &db->aDb[p->iDb]; |
| 286 int j1, j2, j3, j4, j5; |
| 287 int iRec; |
| 288 int memId = p->regCtr; |
| 289 |
| 290 iRec = sqlite3GetTempReg(pParse); |
| 291 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) ); |
| 292 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite); |
| 293 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, memId+1); |
| 294 j2 = sqlite3VdbeAddOp0(v, OP_Rewind); |
| 295 j3 = sqlite3VdbeAddOp3(v, OP_Column, 0, 0, iRec); |
| 296 j4 = sqlite3VdbeAddOp3(v, OP_Eq, memId-1, 0, iRec); |
| 297 sqlite3VdbeAddOp2(v, OP_Next, 0, j3); |
| 298 sqlite3VdbeJumpHere(v, j2); |
| 299 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, memId+1); |
| 300 j5 = sqlite3VdbeAddOp0(v, OP_Goto); |
| 301 sqlite3VdbeJumpHere(v, j4); |
| 302 sqlite3VdbeAddOp2(v, OP_Rowid, 0, memId+1); |
| 303 sqlite3VdbeJumpHere(v, j1); |
| 304 sqlite3VdbeJumpHere(v, j5); |
| 305 sqlite3VdbeAddOp3(v, OP_MakeRecord, memId-1, 2, iRec); |
| 306 sqlite3VdbeAddOp3(v, OP_Insert, 0, iRec, memId+1); |
| 307 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); |
| 308 sqlite3VdbeAddOp0(v, OP_Close); |
| 309 sqlite3ReleaseTempReg(pParse, iRec); |
| 310 } |
| 311 } |
| 312 #else |
| 313 /* |
| 314 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines |
| 315 ** above are all no-ops |
| 316 */ |
| 317 # define autoIncBegin(A,B,C) (0) |
| 318 # define autoIncStep(A,B,C) |
| 319 #endif /* SQLITE_OMIT_AUTOINCREMENT */ |
| 320 |
| 321 |
| 322 /* Forward declaration */ |
| 323 static int xferOptimization( |
| 324 Parse *pParse, /* Parser context */ |
| 325 Table *pDest, /* The table we are inserting into */ |
| 326 Select *pSelect, /* A SELECT statement to use as the data source */ |
| 327 int onError, /* How to handle constraint errors */ |
| 328 int iDbDest /* The database of pDest */ |
| 329 ); |
| 330 |
| 331 /* |
| 332 ** This routine is call to handle SQL of the following forms: |
| 333 ** |
| 334 ** insert into TABLE (IDLIST) values(EXPRLIST) |
| 335 ** insert into TABLE (IDLIST) select |
| 336 ** |
| 337 ** The IDLIST following the table name is always optional. If omitted, |
| 338 ** then a list of all columns for the table is substituted. The IDLIST |
| 339 ** appears in the pColumn parameter. pColumn is NULL if IDLIST is omitted. |
| 340 ** |
| 341 ** The pList parameter holds EXPRLIST in the first form of the INSERT |
| 342 ** statement above, and pSelect is NULL. For the second form, pList is |
| 343 ** NULL and pSelect is a pointer to the select statement used to generate |
| 344 ** data for the insert. |
| 345 ** |
| 346 ** The code generated follows one of four templates. For a simple |
| 347 ** select with data coming from a VALUES clause, the code executes |
| 348 ** once straight down through. Pseudo-code follows (we call this |
| 349 ** the "1st template"): |
| 350 ** |
| 351 ** open write cursor to <table> and its indices |
| 352 ** puts VALUES clause expressions onto the stack |
| 353 ** write the resulting record into <table> |
| 354 ** cleanup |
| 355 ** |
| 356 ** The three remaining templates assume the statement is of the form |
| 357 ** |
| 358 ** INSERT INTO <table> SELECT ... |
| 359 ** |
| 360 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" - |
| 361 ** in other words if the SELECT pulls all columns from a single table |
| 362 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and |
| 363 ** if <table2> and <table1> are distinct tables but have identical |
| 364 ** schemas, including all the same indices, then a special optimization |
| 365 ** is invoked that copies raw records from <table2> over to <table1>. |
| 366 ** See the xferOptimization() function for the implementation of this |
| 367 ** template. This is the 2nd template. |
| 368 ** |
| 369 ** open a write cursor to <table> |
| 370 ** open read cursor on <table2> |
| 371 ** transfer all records in <table2> over to <table> |
| 372 ** close cursors |
| 373 ** foreach index on <table> |
| 374 ** open a write cursor on the <table> index |
| 375 ** open a read cursor on the corresponding <table2> index |
| 376 ** transfer all records from the read to the write cursors |
| 377 ** close cursors |
| 378 ** end foreach |
| 379 ** |
| 380 ** The 3rd template is for when the second template does not apply |
| 381 ** and the SELECT clause does not read from <table> at any time. |
| 382 ** The generated code follows this template: |
| 383 ** |
| 384 ** EOF <- 0 |
| 385 ** X <- A |
| 386 ** goto B |
| 387 ** A: setup for the SELECT |
| 388 ** loop over the rows in the SELECT |
| 389 ** load values into registers R..R+n |
| 390 ** yield X |
| 391 ** end loop |
| 392 ** cleanup after the SELECT |
| 393 ** EOF <- 1 |
| 394 ** yield X |
| 395 ** goto A |
| 396 ** B: open write cursor to <table> and its indices |
| 397 ** C: yield X |
| 398 ** if EOF goto D |
| 399 ** insert the select result into <table> from R..R+n |
| 400 ** goto C |
| 401 ** D: cleanup |
| 402 ** |
| 403 ** The 4th template is used if the insert statement takes its |
| 404 ** values from a SELECT but the data is being inserted into a table |
| 405 ** that is also read as part of the SELECT. In the third form, |
| 406 ** we have to use a intermediate table to store the results of |
| 407 ** the select. The template is like this: |
| 408 ** |
| 409 ** EOF <- 0 |
| 410 ** X <- A |
| 411 ** goto B |
| 412 ** A: setup for the SELECT |
| 413 ** loop over the tables in the SELECT |
| 414 ** load value into register R..R+n |
| 415 ** yield X |
| 416 ** end loop |
| 417 ** cleanup after the SELECT |
| 418 ** EOF <- 1 |
| 419 ** yield X |
| 420 ** halt-error |
| 421 ** B: open temp table |
| 422 ** L: yield X |
| 423 ** if EOF goto M |
| 424 ** insert row from R..R+n into temp table |
| 425 ** goto L |
| 426 ** M: open write cursor to <table> and its indices |
| 427 ** rewind temp table |
| 428 ** C: loop over rows of intermediate table |
| 429 ** transfer values form intermediate table into <table> |
| 430 ** end loop |
| 431 ** D: cleanup |
| 432 */ |
| 433 void sqlite3Insert( |
| 434 Parse *pParse, /* Parser context */ |
| 435 SrcList *pTabList, /* Name of table into which we are inserting */ |
| 436 ExprList *pList, /* List of values to be inserted */ |
| 437 Select *pSelect, /* A SELECT statement to use as the data source */ |
| 438 IdList *pColumn, /* Column names corresponding to IDLIST. */ |
| 439 int onError /* How to handle constraint errors */ |
| 440 ){ |
| 441 sqlite3 *db; /* The main database structure */ |
| 442 Table *pTab; /* The table to insert into. aka TABLE */ |
| 443 char *zTab; /* Name of the table into which we are inserting */ |
| 444 const char *zDb; /* Name of the database holding this table */ |
| 445 int i, j, idx; /* Loop counters */ |
| 446 Vdbe *v; /* Generate code into this virtual machine */ |
| 447 Index *pIdx; /* For looping over indices of the table */ |
| 448 int nColumn; /* Number of columns in the data */ |
| 449 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */ |
| 450 int baseCur = 0; /* VDBE Cursor number for pTab */ |
| 451 int keyColumn = -1; /* Column that is the INTEGER PRIMARY KEY */ |
| 452 int endOfLoop; /* Label for the end of the insertion loop */ |
| 453 int useTempTable = 0; /* Store SELECT results in intermediate table */ |
| 454 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */ |
| 455 int addrInsTop = 0; /* Jump to label "D" */ |
| 456 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */ |
| 457 int addrSelect = 0; /* Address of coroutine that implements the SELECT */ |
| 458 SelectDest dest; /* Destination for SELECT on rhs of INSERT */ |
| 459 int iDb; /* Index of database holding TABLE */ |
| 460 Db *pDb; /* The database containing table being inserted into */ |
| 461 int appendFlag = 0; /* True if the insert is likely to be an append */ |
| 462 |
| 463 /* Register allocations */ |
| 464 int regFromSelect = 0;/* Base register for data coming from SELECT */ |
| 465 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */ |
| 466 int regRowCount = 0; /* Memory cell used for the row counter */ |
| 467 int regIns; /* Block of regs holding rowid+data being inserted */ |
| 468 int regRowid; /* registers holding insert rowid */ |
| 469 int regData; /* register holding first column to insert */ |
| 470 int regEof = 0; /* Register recording end of SELECT data */ |
| 471 int *aRegIdx = 0; /* One register allocated to each index */ |
| 472 |
| 473 #ifndef SQLITE_OMIT_TRIGGER |
| 474 int isView; /* True if attempting to insert into a view */ |
| 475 Trigger *pTrigger; /* List of triggers on pTab, if required */ |
| 476 int tmask; /* Mask of trigger times */ |
| 477 #endif |
| 478 |
| 479 db = pParse->db; |
| 480 memset(&dest, 0, sizeof(dest)); |
| 481 if( pParse->nErr || db->mallocFailed ){ |
| 482 goto insert_cleanup; |
| 483 } |
| 484 |
| 485 /* Locate the table into which we will be inserting new information. |
| 486 */ |
| 487 assert( pTabList->nSrc==1 ); |
| 488 zTab = pTabList->a[0].zName; |
| 489 if( NEVER(zTab==0) ) goto insert_cleanup; |
| 490 pTab = sqlite3SrcListLookup(pParse, pTabList); |
| 491 if( pTab==0 ){ |
| 492 goto insert_cleanup; |
| 493 } |
| 494 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); |
| 495 assert( iDb<db->nDb ); |
| 496 pDb = &db->aDb[iDb]; |
| 497 zDb = pDb->zName; |
| 498 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0, zDb) ){ |
| 499 goto insert_cleanup; |
| 500 } |
| 501 |
| 502 /* Figure out if we have any triggers and if the table being |
| 503 ** inserted into is a view |
| 504 */ |
| 505 #ifndef SQLITE_OMIT_TRIGGER |
| 506 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask); |
| 507 isView = pTab->pSelect!=0; |
| 508 #else |
| 509 # define pTrigger 0 |
| 510 # define tmask 0 |
| 511 # define isView 0 |
| 512 #endif |
| 513 #ifdef SQLITE_OMIT_VIEW |
| 514 # undef isView |
| 515 # define isView 0 |
| 516 #endif |
| 517 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) ); |
| 518 |
| 519 /* If pTab is really a view, make sure it has been initialized. |
| 520 ** ViewGetColumnNames() is a no-op if pTab is not a view (or virtual |
| 521 ** module table). |
| 522 */ |
| 523 if( sqlite3ViewGetColumnNames(pParse, pTab) ){ |
| 524 goto insert_cleanup; |
| 525 } |
| 526 |
| 527 /* Ensure that: |
| 528 * (a) the table is not read-only, |
| 529 * (b) that if it is a view then ON INSERT triggers exist |
| 530 */ |
| 531 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){ |
| 532 goto insert_cleanup; |
| 533 } |
| 534 |
| 535 /* Allocate a VDBE |
| 536 */ |
| 537 v = sqlite3GetVdbe(pParse); |
| 538 if( v==0 ) goto insert_cleanup; |
| 539 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v); |
| 540 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb); |
| 541 |
| 542 #ifndef SQLITE_OMIT_XFER_OPT |
| 543 /* If the statement is of the form |
| 544 ** |
| 545 ** INSERT INTO <table1> SELECT * FROM <table2>; |
| 546 ** |
| 547 ** Then special optimizations can be applied that make the transfer |
| 548 ** very fast and which reduce fragmentation of indices. |
| 549 ** |
| 550 ** This is the 2nd template. |
| 551 */ |
| 552 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){ |
| 553 assert( !pTrigger ); |
| 554 assert( pList==0 ); |
| 555 goto insert_end; |
| 556 } |
| 557 #endif /* SQLITE_OMIT_XFER_OPT */ |
| 558 |
| 559 /* If this is an AUTOINCREMENT table, look up the sequence number in the |
| 560 ** sqlite_sequence table and store it in memory cell regAutoinc. |
| 561 */ |
| 562 regAutoinc = autoIncBegin(pParse, iDb, pTab); |
| 563 |
| 564 /* Figure out how many columns of data are supplied. If the data |
| 565 ** is coming from a SELECT statement, then generate a co-routine that |
| 566 ** produces a single row of the SELECT on each invocation. The |
| 567 ** co-routine is the common header to the 3rd and 4th templates. |
| 568 */ |
| 569 if( pSelect ){ |
| 570 /* Data is coming from a SELECT. Generate code to implement that SELECT |
| 571 ** as a co-routine. The code is common to both the 3rd and 4th |
| 572 ** templates: |
| 573 ** |
| 574 ** EOF <- 0 |
| 575 ** X <- A |
| 576 ** goto B |
| 577 ** A: setup for the SELECT |
| 578 ** loop over the tables in the SELECT |
| 579 ** load value into register R..R+n |
| 580 ** yield X |
| 581 ** end loop |
| 582 ** cleanup after the SELECT |
| 583 ** EOF <- 1 |
| 584 ** yield X |
| 585 ** halt-error |
| 586 ** |
| 587 ** On each invocation of the co-routine, it puts a single row of the |
| 588 ** SELECT result into registers dest.iMem...dest.iMem+dest.nMem-1. |
| 589 ** (These output registers are allocated by sqlite3Select().) When |
| 590 ** the SELECT completes, it sets the EOF flag stored in regEof. |
| 591 */ |
| 592 int rc, j1; |
| 593 |
| 594 regEof = ++pParse->nMem; |
| 595 sqlite3VdbeAddOp2(v, OP_Integer, 0, regEof); /* EOF <- 0 */ |
| 596 VdbeComment((v, "SELECT eof flag")); |
| 597 sqlite3SelectDestInit(&dest, SRT_Coroutine, ++pParse->nMem); |
| 598 addrSelect = sqlite3VdbeCurrentAddr(v)+2; |
| 599 sqlite3VdbeAddOp2(v, OP_Integer, addrSelect-1, dest.iParm); |
| 600 j1 = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); |
| 601 VdbeComment((v, "Jump over SELECT coroutine")); |
| 602 |
| 603 /* Resolve the expressions in the SELECT statement and execute it. */ |
| 604 rc = sqlite3Select(pParse, pSelect, &dest); |
| 605 assert( pParse->nErr==0 || rc ); |
| 606 if( rc || NEVER(pParse->nErr) || db->mallocFailed ){ |
| 607 goto insert_cleanup; |
| 608 } |
| 609 sqlite3VdbeAddOp2(v, OP_Integer, 1, regEof); /* EOF <- 1 */ |
| 610 sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); /* yield X */ |
| 611 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_INTERNAL, OE_Abort); |
| 612 VdbeComment((v, "End of SELECT coroutine")); |
| 613 sqlite3VdbeJumpHere(v, j1); /* label B: */ |
| 614 |
| 615 regFromSelect = dest.iMem; |
| 616 assert( pSelect->pEList ); |
| 617 nColumn = pSelect->pEList->nExpr; |
| 618 assert( dest.nMem==nColumn ); |
| 619 |
| 620 /* Set useTempTable to TRUE if the result of the SELECT statement |
| 621 ** should be written into a temporary table (template 4). Set to |
| 622 ** FALSE if each* row of the SELECT can be written directly into |
| 623 ** the destination table (template 3). |
| 624 ** |
| 625 ** A temp table must be used if the table being updated is also one |
| 626 ** of the tables being read by the SELECT statement. Also use a |
| 627 ** temp table in the case of row triggers. |
| 628 */ |
| 629 if( pTrigger || readsTable(pParse, addrSelect, iDb, pTab) ){ |
| 630 useTempTable = 1; |
| 631 } |
| 632 |
| 633 if( useTempTable ){ |
| 634 /* Invoke the coroutine to extract information from the SELECT |
| 635 ** and add it to a transient table srcTab. The code generated |
| 636 ** here is from the 4th template: |
| 637 ** |
| 638 ** B: open temp table |
| 639 ** L: yield X |
| 640 ** if EOF goto M |
| 641 ** insert row from R..R+n into temp table |
| 642 ** goto L |
| 643 ** M: ... |
| 644 */ |
| 645 int regRec; /* Register to hold packed record */ |
| 646 int regTempRowid; /* Register to hold temp table ROWID */ |
| 647 int addrTop; /* Label "L" */ |
| 648 int addrIf; /* Address of jump to M */ |
| 649 |
| 650 srcTab = pParse->nTab++; |
| 651 regRec = sqlite3GetTempReg(pParse); |
| 652 regTempRowid = sqlite3GetTempReg(pParse); |
| 653 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn); |
| 654 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); |
| 655 addrIf = sqlite3VdbeAddOp1(v, OP_If, regEof); |
| 656 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec); |
| 657 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid); |
| 658 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid); |
| 659 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrTop); |
| 660 sqlite3VdbeJumpHere(v, addrIf); |
| 661 sqlite3ReleaseTempReg(pParse, regRec); |
| 662 sqlite3ReleaseTempReg(pParse, regTempRowid); |
| 663 } |
| 664 }else{ |
| 665 /* This is the case if the data for the INSERT is coming from a VALUES |
| 666 ** clause |
| 667 */ |
| 668 NameContext sNC; |
| 669 memset(&sNC, 0, sizeof(sNC)); |
| 670 sNC.pParse = pParse; |
| 671 srcTab = -1; |
| 672 assert( useTempTable==0 ); |
| 673 nColumn = pList ? pList->nExpr : 0; |
| 674 for(i=0; i<nColumn; i++){ |
| 675 if( sqlite3ResolveExprNames(&sNC, pList->a[i].pExpr) ){ |
| 676 goto insert_cleanup; |
| 677 } |
| 678 } |
| 679 } |
| 680 |
| 681 /* Make sure the number of columns in the source data matches the number |
| 682 ** of columns to be inserted into the table. |
| 683 */ |
| 684 if( IsVirtual(pTab) ){ |
| 685 for(i=0; i<pTab->nCol; i++){ |
| 686 nHidden += (IsHiddenColumn(&pTab->aCol[i]) ? 1 : 0); |
| 687 } |
| 688 } |
| 689 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){ |
| 690 sqlite3ErrorMsg(pParse, |
| 691 "table %S has %d columns but %d values were supplied", |
| 692 pTabList, 0, pTab->nCol-nHidden, nColumn); |
| 693 goto insert_cleanup; |
| 694 } |
| 695 if( pColumn!=0 && nColumn!=pColumn->nId ){ |
| 696 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId); |
| 697 goto insert_cleanup; |
| 698 } |
| 699 |
| 700 /* If the INSERT statement included an IDLIST term, then make sure |
| 701 ** all elements of the IDLIST really are columns of the table and |
| 702 ** remember the column indices. |
| 703 ** |
| 704 ** If the table has an INTEGER PRIMARY KEY column and that column |
| 705 ** is named in the IDLIST, then record in the keyColumn variable |
| 706 ** the index into IDLIST of the primary key column. keyColumn is |
| 707 ** the index of the primary key as it appears in IDLIST, not as |
| 708 ** is appears in the original table. (The index of the primary |
| 709 ** key in the original table is pTab->iPKey.) |
| 710 */ |
| 711 if( pColumn ){ |
| 712 for(i=0; i<pColumn->nId; i++){ |
| 713 pColumn->a[i].idx = -1; |
| 714 } |
| 715 for(i=0; i<pColumn->nId; i++){ |
| 716 for(j=0; j<pTab->nCol; j++){ |
| 717 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){ |
| 718 pColumn->a[i].idx = j; |
| 719 if( j==pTab->iPKey ){ |
| 720 keyColumn = i; |
| 721 } |
| 722 break; |
| 723 } |
| 724 } |
| 725 if( j>=pTab->nCol ){ |
| 726 if( sqlite3IsRowid(pColumn->a[i].zName) ){ |
| 727 keyColumn = i; |
| 728 }else{ |
| 729 sqlite3ErrorMsg(pParse, "table %S has no column named %s", |
| 730 pTabList, 0, pColumn->a[i].zName); |
| 731 pParse->checkSchema = 1; |
| 732 goto insert_cleanup; |
| 733 } |
| 734 } |
| 735 } |
| 736 } |
| 737 |
| 738 /* If there is no IDLIST term but the table has an integer primary |
| 739 ** key, the set the keyColumn variable to the primary key column index |
| 740 ** in the original table definition. |
| 741 */ |
| 742 if( pColumn==0 && nColumn>0 ){ |
| 743 keyColumn = pTab->iPKey; |
| 744 } |
| 745 |
| 746 /* Initialize the count of rows to be inserted |
| 747 */ |
| 748 if( db->flags & SQLITE_CountRows ){ |
| 749 regRowCount = ++pParse->nMem; |
| 750 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount); |
| 751 } |
| 752 |
| 753 /* If this is not a view, open the table and and all indices */ |
| 754 if( !isView ){ |
| 755 int nIdx; |
| 756 |
| 757 baseCur = pParse->nTab; |
| 758 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, baseCur, OP_OpenWrite); |
| 759 aRegIdx = sqlite3DbMallocRaw(db, sizeof(int)*(nIdx+1)); |
| 760 if( aRegIdx==0 ){ |
| 761 goto insert_cleanup; |
| 762 } |
| 763 for(i=0; i<nIdx; i++){ |
| 764 aRegIdx[i] = ++pParse->nMem; |
| 765 } |
| 766 } |
| 767 |
| 768 /* This is the top of the main insertion loop */ |
| 769 if( useTempTable ){ |
| 770 /* This block codes the top of loop only. The complete loop is the |
| 771 ** following pseudocode (template 4): |
| 772 ** |
| 773 ** rewind temp table |
| 774 ** C: loop over rows of intermediate table |
| 775 ** transfer values form intermediate table into <table> |
| 776 ** end loop |
| 777 ** D: ... |
| 778 */ |
| 779 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); |
| 780 addrCont = sqlite3VdbeCurrentAddr(v); |
| 781 }else if( pSelect ){ |
| 782 /* This block codes the top of loop only. The complete loop is the |
| 783 ** following pseudocode (template 3): |
| 784 ** |
| 785 ** C: yield X |
| 786 ** if EOF goto D |
| 787 ** insert the select result into <table> from R..R+n |
| 788 ** goto C |
| 789 ** D: ... |
| 790 */ |
| 791 addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iParm); |
| 792 addrInsTop = sqlite3VdbeAddOp1(v, OP_If, regEof); |
| 793 } |
| 794 |
| 795 /* Allocate registers for holding the rowid of the new row, |
| 796 ** the content of the new row, and the assemblied row record. |
| 797 */ |
| 798 regRowid = regIns = pParse->nMem+1; |
| 799 pParse->nMem += pTab->nCol + 1; |
| 800 if( IsVirtual(pTab) ){ |
| 801 regRowid++; |
| 802 pParse->nMem++; |
| 803 } |
| 804 regData = regRowid+1; |
| 805 |
| 806 /* Run the BEFORE and INSTEAD OF triggers, if there are any |
| 807 */ |
| 808 endOfLoop = sqlite3VdbeMakeLabel(v); |
| 809 if( tmask & TRIGGER_BEFORE ){ |
| 810 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1); |
| 811 |
| 812 /* build the NEW.* reference row. Note that if there is an INTEGER |
| 813 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be |
| 814 ** translated into a unique ID for the row. But on a BEFORE trigger, |
| 815 ** we do not know what the unique ID will be (because the insert has |
| 816 ** not happened yet) so we substitute a rowid of -1 |
| 817 */ |
| 818 if( keyColumn<0 ){ |
| 819 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
| 820 }else{ |
| 821 int j1; |
| 822 if( useTempTable ){ |
| 823 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regCols); |
| 824 }else{ |
| 825 assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
| 826 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regCols); |
| 827 } |
| 828 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); |
| 829 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols); |
| 830 sqlite3VdbeJumpHere(v, j1); |
| 831 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); |
| 832 } |
| 833 |
| 834 /* Cannot have triggers on a virtual table. If it were possible, |
| 835 ** this block would have to account for hidden column. |
| 836 */ |
| 837 assert( !IsVirtual(pTab) ); |
| 838 |
| 839 /* Create the new column data |
| 840 */ |
| 841 for(i=0; i<pTab->nCol; i++){ |
| 842 if( pColumn==0 ){ |
| 843 j = i; |
| 844 }else{ |
| 845 for(j=0; j<pColumn->nId; j++){ |
| 846 if( pColumn->a[j].idx==i ) break; |
| 847 } |
| 848 } |
| 849 if( (!useTempTable && !pList) || (pColumn && j>=pColumn->nId) ){ |
| 850 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regCols+i+1); |
| 851 }else if( useTempTable ){ |
| 852 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, regCols+i+1); |
| 853 }else{ |
| 854 assert( pSelect==0 ); /* Otherwise useTempTable is true */ |
| 855 sqlite3ExprCodeAndCache(pParse, pList->a[j].pExpr, regCols+i+1); |
| 856 } |
| 857 } |
| 858 |
| 859 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger, |
| 860 ** do not attempt any conversions before assembling the record. |
| 861 ** If this is a real table, attempt conversions as required by the |
| 862 ** table column affinities. |
| 863 */ |
| 864 if( !isView ){ |
| 865 sqlite3VdbeAddOp2(v, OP_Affinity, regCols+1, pTab->nCol); |
| 866 sqlite3TableAffinityStr(v, pTab); |
| 867 } |
| 868 |
| 869 /* Fire BEFORE or INSTEAD OF triggers */ |
| 870 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE, |
| 871 pTab, regCols-pTab->nCol-1, onError, endOfLoop); |
| 872 |
| 873 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1); |
| 874 } |
| 875 |
| 876 /* Push the record number for the new entry onto the stack. The |
| 877 ** record number is a randomly generate integer created by NewRowid |
| 878 ** except when the table has an INTEGER PRIMARY KEY column, in which |
| 879 ** case the record number is the same as that column. |
| 880 */ |
| 881 if( !isView ){ |
| 882 if( IsVirtual(pTab) ){ |
| 883 /* The row that the VUpdate opcode will delete: none */ |
| 884 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns); |
| 885 } |
| 886 if( keyColumn>=0 ){ |
| 887 if( useTempTable ){ |
| 888 sqlite3VdbeAddOp3(v, OP_Column, srcTab, keyColumn, regRowid); |
| 889 }else if( pSelect ){ |
| 890 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+keyColumn, regRowid); |
| 891 }else{ |
| 892 VdbeOp *pOp; |
| 893 sqlite3ExprCode(pParse, pList->a[keyColumn].pExpr, regRowid); |
| 894 pOp = sqlite3VdbeGetOp(v, -1); |
| 895 if( ALWAYS(pOp) && pOp->opcode==OP_Null && !IsVirtual(pTab) ){ |
| 896 appendFlag = 1; |
| 897 pOp->opcode = OP_NewRowid; |
| 898 pOp->p1 = baseCur; |
| 899 pOp->p2 = regRowid; |
| 900 pOp->p3 = regAutoinc; |
| 901 } |
| 902 } |
| 903 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid |
| 904 ** to generate a unique primary key value. |
| 905 */ |
| 906 if( !appendFlag ){ |
| 907 int j1; |
| 908 if( !IsVirtual(pTab) ){ |
| 909 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); |
| 910 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); |
| 911 sqlite3VdbeJumpHere(v, j1); |
| 912 }else{ |
| 913 j1 = sqlite3VdbeCurrentAddr(v); |
| 914 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, j1+2); |
| 915 } |
| 916 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); |
| 917 } |
| 918 }else if( IsVirtual(pTab) ){ |
| 919 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid); |
| 920 }else{ |
| 921 sqlite3VdbeAddOp3(v, OP_NewRowid, baseCur, regRowid, regAutoinc); |
| 922 appendFlag = 1; |
| 923 } |
| 924 autoIncStep(pParse, regAutoinc, regRowid); |
| 925 |
| 926 /* Push onto the stack, data for all columns of the new entry, beginning |
| 927 ** with the first column. |
| 928 */ |
| 929 nHidden = 0; |
| 930 for(i=0; i<pTab->nCol; i++){ |
| 931 int iRegStore = regRowid+1+i; |
| 932 if( i==pTab->iPKey ){ |
| 933 /* The value of the INTEGER PRIMARY KEY column is always a NULL. |
| 934 ** Whenever this column is read, the record number will be substituted |
| 935 ** in its place. So will fill this column with a NULL to avoid |
| 936 ** taking up data space with information that will never be used. */ |
| 937 sqlite3VdbeAddOp2(v, OP_Null, 0, iRegStore); |
| 938 continue; |
| 939 } |
| 940 if( pColumn==0 ){ |
| 941 if( IsHiddenColumn(&pTab->aCol[i]) ){ |
| 942 assert( IsVirtual(pTab) ); |
| 943 j = -1; |
| 944 nHidden++; |
| 945 }else{ |
| 946 j = i - nHidden; |
| 947 } |
| 948 }else{ |
| 949 for(j=0; j<pColumn->nId; j++){ |
| 950 if( pColumn->a[j].idx==i ) break; |
| 951 } |
| 952 } |
| 953 if( j<0 || nColumn==0 || (pColumn && j>=pColumn->nId) ){ |
| 954 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, iRegStore); |
| 955 }else if( useTempTable ){ |
| 956 sqlite3VdbeAddOp3(v, OP_Column, srcTab, j, iRegStore); |
| 957 }else if( pSelect ){ |
| 958 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+j, iRegStore); |
| 959 }else{ |
| 960 sqlite3ExprCode(pParse, pList->a[j].pExpr, iRegStore); |
| 961 } |
| 962 } |
| 963 |
| 964 /* Generate code to check constraints and generate index keys and |
| 965 ** do the insertion. |
| 966 */ |
| 967 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 968 if( IsVirtual(pTab) ){ |
| 969 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); |
| 970 sqlite3VtabMakeWritable(pParse, pTab); |
| 971 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB); |
| 972 sqlite3MayAbort(pParse); |
| 973 }else |
| 974 #endif |
| 975 { |
| 976 int isReplace; /* Set to true if constraints may cause a replace */ |
| 977 sqlite3GenerateConstraintChecks(pParse, pTab, baseCur, regIns, aRegIdx, |
| 978 keyColumn>=0, 0, onError, endOfLoop, &isReplace |
| 979 ); |
| 980 sqlite3FkCheck(pParse, pTab, 0, regIns); |
| 981 sqlite3CompleteInsertion( |
| 982 pParse, pTab, baseCur, regIns, aRegIdx, 0, appendFlag, isReplace==0 |
| 983 ); |
| 984 } |
| 985 } |
| 986 |
| 987 /* Update the count of rows that are inserted |
| 988 */ |
| 989 if( (db->flags & SQLITE_CountRows)!=0 ){ |
| 990 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1); |
| 991 } |
| 992 |
| 993 if( pTrigger ){ |
| 994 /* Code AFTER triggers */ |
| 995 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER, |
| 996 pTab, regData-2-pTab->nCol, onError, endOfLoop); |
| 997 } |
| 998 |
| 999 /* The bottom of the main insertion loop, if the data source |
| 1000 ** is a SELECT statement. |
| 1001 */ |
| 1002 sqlite3VdbeResolveLabel(v, endOfLoop); |
| 1003 if( useTempTable ){ |
| 1004 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); |
| 1005 sqlite3VdbeJumpHere(v, addrInsTop); |
| 1006 sqlite3VdbeAddOp1(v, OP_Close, srcTab); |
| 1007 }else if( pSelect ){ |
| 1008 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrCont); |
| 1009 sqlite3VdbeJumpHere(v, addrInsTop); |
| 1010 } |
| 1011 |
| 1012 if( !IsVirtual(pTab) && !isView ){ |
| 1013 /* Close all tables opened */ |
| 1014 sqlite3VdbeAddOp1(v, OP_Close, baseCur); |
| 1015 for(idx=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, idx++){ |
| 1016 sqlite3VdbeAddOp1(v, OP_Close, idx+baseCur); |
| 1017 } |
| 1018 } |
| 1019 |
| 1020 insert_end: |
| 1021 /* Update the sqlite_sequence table by storing the content of the |
| 1022 ** maximum rowid counter values recorded while inserting into |
| 1023 ** autoincrement tables. |
| 1024 */ |
| 1025 if( pParse->nested==0 && pParse->pTriggerTab==0 ){ |
| 1026 sqlite3AutoincrementEnd(pParse); |
| 1027 } |
| 1028 |
| 1029 /* |
| 1030 ** Return the number of rows inserted. If this routine is |
| 1031 ** generating code because of a call to sqlite3NestedParse(), do not |
| 1032 ** invoke the callback function. |
| 1033 */ |
| 1034 if( (db->flags&SQLITE_CountRows) && !pParse->nested && !pParse->pTriggerTab ){ |
| 1035 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1); |
| 1036 sqlite3VdbeSetNumCols(v, 1); |
| 1037 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC); |
| 1038 } |
| 1039 |
| 1040 insert_cleanup: |
| 1041 sqlite3SrcListDelete(db, pTabList); |
| 1042 sqlite3ExprListDelete(db, pList); |
| 1043 sqlite3SelectDelete(db, pSelect); |
| 1044 sqlite3IdListDelete(db, pColumn); |
| 1045 sqlite3DbFree(db, aRegIdx); |
| 1046 } |
| 1047 |
| 1048 /* Make sure "isView" and other macros defined above are undefined. Otherwise |
| 1049 ** thely may interfere with compilation of other functions in this file |
| 1050 ** (or in another file, if this file becomes part of the amalgamation). */ |
| 1051 #ifdef isView |
| 1052 #undef isView |
| 1053 #endif |
| 1054 #ifdef pTrigger |
| 1055 #undef pTrigger |
| 1056 #endif |
| 1057 #ifdef tmask |
| 1058 #undef tmask |
| 1059 #endif |
| 1060 |
| 1061 |
| 1062 /* |
| 1063 ** Generate code to do constraint checks prior to an INSERT or an UPDATE. |
| 1064 ** |
| 1065 ** The input is a range of consecutive registers as follows: |
| 1066 ** |
| 1067 ** 1. The rowid of the row after the update. |
| 1068 ** |
| 1069 ** 2. The data in the first column of the entry after the update. |
| 1070 ** |
| 1071 ** i. Data from middle columns... |
| 1072 ** |
| 1073 ** N. The data in the last column of the entry after the update. |
| 1074 ** |
| 1075 ** The regRowid parameter is the index of the register containing (1). |
| 1076 ** |
| 1077 ** If isUpdate is true and rowidChng is non-zero, then rowidChng contains |
| 1078 ** the address of a register containing the rowid before the update takes |
| 1079 ** place. isUpdate is true for UPDATEs and false for INSERTs. If isUpdate |
| 1080 ** is false, indicating an INSERT statement, then a non-zero rowidChng |
| 1081 ** indicates that the rowid was explicitly specified as part of the |
| 1082 ** INSERT statement. If rowidChng is false, it means that the rowid is |
| 1083 ** computed automatically in an insert or that the rowid value is not |
| 1084 ** modified by an update. |
| 1085 ** |
| 1086 ** The code generated by this routine store new index entries into |
| 1087 ** registers identified by aRegIdx[]. No index entry is created for |
| 1088 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is |
| 1089 ** the same as the order of indices on the linked list of indices |
| 1090 ** attached to the table. |
| 1091 ** |
| 1092 ** This routine also generates code to check constraints. NOT NULL, |
| 1093 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails, |
| 1094 ** then the appropriate action is performed. There are five possible |
| 1095 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE. |
| 1096 ** |
| 1097 ** Constraint type Action What Happens |
| 1098 ** --------------- ---------- ---------------------------------------- |
| 1099 ** any ROLLBACK The current transaction is rolled back and |
| 1100 ** sqlite3_exec() returns immediately with a |
| 1101 ** return code of SQLITE_CONSTRAINT. |
| 1102 ** |
| 1103 ** any ABORT Back out changes from the current command |
| 1104 ** only (do not do a complete rollback) then |
| 1105 ** cause sqlite3_exec() to return immediately |
| 1106 ** with SQLITE_CONSTRAINT. |
| 1107 ** |
| 1108 ** any FAIL Sqlite_exec() returns immediately with a |
| 1109 ** return code of SQLITE_CONSTRAINT. The |
| 1110 ** transaction is not rolled back and any |
| 1111 ** prior changes are retained. |
| 1112 ** |
| 1113 ** any IGNORE The record number and data is popped from |
| 1114 ** the stack and there is an immediate jump |
| 1115 ** to label ignoreDest. |
| 1116 ** |
| 1117 ** NOT NULL REPLACE The NULL value is replace by the default |
| 1118 ** value for that column. If the default value |
| 1119 ** is NULL, the action is the same as ABORT. |
| 1120 ** |
| 1121 ** UNIQUE REPLACE The other row that conflicts with the row |
| 1122 ** being inserted is removed. |
| 1123 ** |
| 1124 ** CHECK REPLACE Illegal. The results in an exception. |
| 1125 ** |
| 1126 ** Which action to take is determined by the overrideError parameter. |
| 1127 ** Or if overrideError==OE_Default, then the pParse->onError parameter |
| 1128 ** is used. Or if pParse->onError==OE_Default then the onError value |
| 1129 ** for the constraint is used. |
| 1130 ** |
| 1131 ** The calling routine must open a read/write cursor for pTab with |
| 1132 ** cursor number "baseCur". All indices of pTab must also have open |
| 1133 ** read/write cursors with cursor number baseCur+i for the i-th cursor. |
| 1134 ** Except, if there is no possibility of a REPLACE action then |
| 1135 ** cursors do not need to be open for indices where aRegIdx[i]==0. |
| 1136 */ |
| 1137 void sqlite3GenerateConstraintChecks( |
| 1138 Parse *pParse, /* The parser context */ |
| 1139 Table *pTab, /* the table into which we are inserting */ |
| 1140 int baseCur, /* Index of a read/write cursor pointing at pTab */ |
| 1141 int regRowid, /* Index of the range of input registers */ |
| 1142 int *aRegIdx, /* Register used by each index. 0 for unused indices */ |
| 1143 int rowidChng, /* True if the rowid might collide with existing entry */ |
| 1144 int isUpdate, /* True for UPDATE, False for INSERT */ |
| 1145 int overrideError, /* Override onError to this if not OE_Default */ |
| 1146 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */ |
| 1147 int *pbMayReplace /* OUT: Set to true if constraint may cause a replace */ |
| 1148 ){ |
| 1149 int i; /* loop counter */ |
| 1150 Vdbe *v; /* VDBE under constrution */ |
| 1151 int nCol; /* Number of columns */ |
| 1152 int onError; /* Conflict resolution strategy */ |
| 1153 int j1; /* Addresss of jump instruction */ |
| 1154 int j2 = 0, j3; /* Addresses of jump instructions */ |
| 1155 int regData; /* Register containing first data column */ |
| 1156 int iCur; /* Table cursor number */ |
| 1157 Index *pIdx; /* Pointer to one of the indices */ |
| 1158 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */ |
| 1159 int regOldRowid = (rowidChng && isUpdate) ? rowidChng : regRowid; |
| 1160 |
| 1161 v = sqlite3GetVdbe(pParse); |
| 1162 assert( v!=0 ); |
| 1163 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
| 1164 nCol = pTab->nCol; |
| 1165 regData = regRowid + 1; |
| 1166 |
| 1167 /* Test all NOT NULL constraints. |
| 1168 */ |
| 1169 for(i=0; i<nCol; i++){ |
| 1170 if( i==pTab->iPKey ){ |
| 1171 continue; |
| 1172 } |
| 1173 onError = pTab->aCol[i].notNull; |
| 1174 if( onError==OE_None ) continue; |
| 1175 if( overrideError!=OE_Default ){ |
| 1176 onError = overrideError; |
| 1177 }else if( onError==OE_Default ){ |
| 1178 onError = OE_Abort; |
| 1179 } |
| 1180 if( onError==OE_Replace && pTab->aCol[i].pDflt==0 ){ |
| 1181 onError = OE_Abort; |
| 1182 } |
| 1183 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
| 1184 || onError==OE_Ignore || onError==OE_Replace ); |
| 1185 switch( onError ){ |
| 1186 case OE_Abort: |
| 1187 sqlite3MayAbort(pParse); |
| 1188 case OE_Rollback: |
| 1189 case OE_Fail: { |
| 1190 char *zMsg; |
| 1191 sqlite3VdbeAddOp3(v, OP_HaltIfNull, |
| 1192 SQLITE_CONSTRAINT, onError, regData+i); |
| 1193 zMsg = sqlite3MPrintf(pParse->db, "%s.%s may not be NULL", |
| 1194 pTab->zName, pTab->aCol[i].zName); |
| 1195 sqlite3VdbeChangeP4(v, -1, zMsg, P4_DYNAMIC); |
| 1196 break; |
| 1197 } |
| 1198 case OE_Ignore: { |
| 1199 sqlite3VdbeAddOp2(v, OP_IsNull, regData+i, ignoreDest); |
| 1200 break; |
| 1201 } |
| 1202 default: { |
| 1203 assert( onError==OE_Replace ); |
| 1204 j1 = sqlite3VdbeAddOp1(v, OP_NotNull, regData+i); |
| 1205 sqlite3ExprCode(pParse, pTab->aCol[i].pDflt, regData+i); |
| 1206 sqlite3VdbeJumpHere(v, j1); |
| 1207 break; |
| 1208 } |
| 1209 } |
| 1210 } |
| 1211 |
| 1212 /* Test all CHECK constraints |
| 1213 */ |
| 1214 #ifndef SQLITE_OMIT_CHECK |
| 1215 if( pTab->pCheck && (pParse->db->flags & SQLITE_IgnoreChecks)==0 ){ |
| 1216 int allOk = sqlite3VdbeMakeLabel(v); |
| 1217 pParse->ckBase = regData; |
| 1218 sqlite3ExprIfTrue(pParse, pTab->pCheck, allOk, SQLITE_JUMPIFNULL); |
| 1219 onError = overrideError!=OE_Default ? overrideError : OE_Abort; |
| 1220 if( onError==OE_Ignore ){ |
| 1221 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
| 1222 }else{ |
| 1223 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-15569-63625 */ |
| 1224 sqlite3HaltConstraint(pParse, onError, 0, 0); |
| 1225 } |
| 1226 sqlite3VdbeResolveLabel(v, allOk); |
| 1227 } |
| 1228 #endif /* !defined(SQLITE_OMIT_CHECK) */ |
| 1229 |
| 1230 /* If we have an INTEGER PRIMARY KEY, make sure the primary key |
| 1231 ** of the new record does not previously exist. Except, if this |
| 1232 ** is an UPDATE and the primary key is not changing, that is OK. |
| 1233 */ |
| 1234 if( rowidChng ){ |
| 1235 onError = pTab->keyConf; |
| 1236 if( overrideError!=OE_Default ){ |
| 1237 onError = overrideError; |
| 1238 }else if( onError==OE_Default ){ |
| 1239 onError = OE_Abort; |
| 1240 } |
| 1241 |
| 1242 if( isUpdate ){ |
| 1243 j2 = sqlite3VdbeAddOp3(v, OP_Eq, regRowid, 0, rowidChng); |
| 1244 } |
| 1245 j3 = sqlite3VdbeAddOp3(v, OP_NotExists, baseCur, 0, regRowid); |
| 1246 switch( onError ){ |
| 1247 default: { |
| 1248 onError = OE_Abort; |
| 1249 /* Fall thru into the next case */ |
| 1250 } |
| 1251 case OE_Rollback: |
| 1252 case OE_Abort: |
| 1253 case OE_Fail: { |
| 1254 sqlite3HaltConstraint( |
| 1255 pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); |
| 1256 break; |
| 1257 } |
| 1258 case OE_Replace: { |
| 1259 /* If there are DELETE triggers on this table and the |
| 1260 ** recursive-triggers flag is set, call GenerateRowDelete() to |
| 1261 ** remove the conflicting row from the the table. This will fire |
| 1262 ** the triggers and remove both the table and index b-tree entries. |
| 1263 ** |
| 1264 ** Otherwise, if there are no triggers or the recursive-triggers |
| 1265 ** flag is not set, but the table has one or more indexes, call |
| 1266 ** GenerateRowIndexDelete(). This removes the index b-tree entries |
| 1267 ** only. The table b-tree entry will be replaced by the new entry |
| 1268 ** when it is inserted. |
| 1269 ** |
| 1270 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called, |
| 1271 ** also invoke MultiWrite() to indicate that this VDBE may require |
| 1272 ** statement rollback (if the statement is aborted after the delete |
| 1273 ** takes place). Earlier versions called sqlite3MultiWrite() regardless, |
| 1274 ** but being more selective here allows statements like: |
| 1275 ** |
| 1276 ** REPLACE INTO t(rowid) VALUES($newrowid) |
| 1277 ** |
| 1278 ** to run without a statement journal if there are no indexes on the |
| 1279 ** table. |
| 1280 */ |
| 1281 Trigger *pTrigger = 0; |
| 1282 if( pParse->db->flags&SQLITE_RecTriggers ){ |
| 1283 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
| 1284 } |
| 1285 if( pTrigger || sqlite3FkRequired(pParse, pTab, 0, 0) ){ |
| 1286 sqlite3MultiWrite(pParse); |
| 1287 sqlite3GenerateRowDelete( |
| 1288 pParse, pTab, baseCur, regRowid, 0, pTrigger, OE_Replace |
| 1289 ); |
| 1290 }else if( pTab->pIndex ){ |
| 1291 sqlite3MultiWrite(pParse); |
| 1292 sqlite3GenerateRowIndexDelete(pParse, pTab, baseCur, 0); |
| 1293 } |
| 1294 seenReplace = 1; |
| 1295 break; |
| 1296 } |
| 1297 case OE_Ignore: { |
| 1298 assert( seenReplace==0 ); |
| 1299 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
| 1300 break; |
| 1301 } |
| 1302 } |
| 1303 sqlite3VdbeJumpHere(v, j3); |
| 1304 if( isUpdate ){ |
| 1305 sqlite3VdbeJumpHere(v, j2); |
| 1306 } |
| 1307 } |
| 1308 |
| 1309 /* Test all UNIQUE constraints by creating entries for each UNIQUE |
| 1310 ** index and making sure that duplicate entries do not already exist. |
| 1311 ** Add the new records to the indices as we go. |
| 1312 */ |
| 1313 for(iCur=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, iCur++){ |
| 1314 int regIdx; |
| 1315 int regR; |
| 1316 |
| 1317 if( aRegIdx[iCur]==0 ) continue; /* Skip unused indices */ |
| 1318 |
| 1319 /* Create a key for accessing the index entry */ |
| 1320 regIdx = sqlite3GetTempRange(pParse, pIdx->nColumn+1); |
| 1321 for(i=0; i<pIdx->nColumn; i++){ |
| 1322 int idx = pIdx->aiColumn[i]; |
| 1323 if( idx==pTab->iPKey ){ |
| 1324 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); |
| 1325 }else{ |
| 1326 sqlite3VdbeAddOp2(v, OP_SCopy, regData+idx, regIdx+i); |
| 1327 } |
| 1328 } |
| 1329 sqlite3VdbeAddOp2(v, OP_SCopy, regRowid, regIdx+i); |
| 1330 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn+1, aRegIdx[iCur]); |
| 1331 sqlite3VdbeChangeP4(v, -1, sqlite3IndexAffinityStr(v, pIdx), P4_TRANSIENT); |
| 1332 sqlite3ExprCacheAffinityChange(pParse, regIdx, pIdx->nColumn+1); |
| 1333 |
| 1334 /* Find out what action to take in case there is an indexing conflict */ |
| 1335 onError = pIdx->onError; |
| 1336 if( onError==OE_None ){ |
| 1337 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); |
| 1338 continue; /* pIdx is not a UNIQUE index */ |
| 1339 } |
| 1340 if( overrideError!=OE_Default ){ |
| 1341 onError = overrideError; |
| 1342 }else if( onError==OE_Default ){ |
| 1343 onError = OE_Abort; |
| 1344 } |
| 1345 if( seenReplace ){ |
| 1346 if( onError==OE_Ignore ) onError = OE_Replace; |
| 1347 else if( onError==OE_Fail ) onError = OE_Abort; |
| 1348 } |
| 1349 |
| 1350 /* Check to see if the new index entry will be unique */ |
| 1351 regR = sqlite3GetTempReg(pParse); |
| 1352 sqlite3VdbeAddOp2(v, OP_SCopy, regOldRowid, regR); |
| 1353 j3 = sqlite3VdbeAddOp4(v, OP_IsUnique, baseCur+iCur+1, 0, |
| 1354 regR, SQLITE_INT_TO_PTR(regIdx), |
| 1355 P4_INT32); |
| 1356 sqlite3ReleaseTempRange(pParse, regIdx, pIdx->nColumn+1); |
| 1357 |
| 1358 /* Generate code that executes if the new index entry is not unique */ |
| 1359 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail |
| 1360 || onError==OE_Ignore || onError==OE_Replace ); |
| 1361 switch( onError ){ |
| 1362 case OE_Rollback: |
| 1363 case OE_Abort: |
| 1364 case OE_Fail: { |
| 1365 int j; |
| 1366 StrAccum errMsg; |
| 1367 const char *zSep; |
| 1368 char *zErr; |
| 1369 |
| 1370 sqlite3StrAccumInit(&errMsg, 0, 0, 200); |
| 1371 errMsg.db = pParse->db; |
| 1372 zSep = pIdx->nColumn>1 ? "columns " : "column "; |
| 1373 for(j=0; j<pIdx->nColumn; j++){ |
| 1374 char *zCol = pTab->aCol[pIdx->aiColumn[j]].zName; |
| 1375 sqlite3StrAccumAppend(&errMsg, zSep, -1); |
| 1376 zSep = ", "; |
| 1377 sqlite3StrAccumAppend(&errMsg, zCol, -1); |
| 1378 } |
| 1379 sqlite3StrAccumAppend(&errMsg, |
| 1380 pIdx->nColumn>1 ? " are not unique" : " is not unique", -1); |
| 1381 zErr = sqlite3StrAccumFinish(&errMsg); |
| 1382 sqlite3HaltConstraint(pParse, onError, zErr, 0); |
| 1383 sqlite3DbFree(errMsg.db, zErr); |
| 1384 break; |
| 1385 } |
| 1386 case OE_Ignore: { |
| 1387 assert( seenReplace==0 ); |
| 1388 sqlite3VdbeAddOp2(v, OP_Goto, 0, ignoreDest); |
| 1389 break; |
| 1390 } |
| 1391 default: { |
| 1392 Trigger *pTrigger = 0; |
| 1393 assert( onError==OE_Replace ); |
| 1394 sqlite3MultiWrite(pParse); |
| 1395 if( pParse->db->flags&SQLITE_RecTriggers ){ |
| 1396 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0); |
| 1397 } |
| 1398 sqlite3GenerateRowDelete( |
| 1399 pParse, pTab, baseCur, regR, 0, pTrigger, OE_Replace |
| 1400 ); |
| 1401 seenReplace = 1; |
| 1402 break; |
| 1403 } |
| 1404 } |
| 1405 sqlite3VdbeJumpHere(v, j3); |
| 1406 sqlite3ReleaseTempReg(pParse, regR); |
| 1407 } |
| 1408 |
| 1409 if( pbMayReplace ){ |
| 1410 *pbMayReplace = seenReplace; |
| 1411 } |
| 1412 } |
| 1413 |
| 1414 /* |
| 1415 ** This routine generates code to finish the INSERT or UPDATE operation |
| 1416 ** that was started by a prior call to sqlite3GenerateConstraintChecks. |
| 1417 ** A consecutive range of registers starting at regRowid contains the |
| 1418 ** rowid and the content to be inserted. |
| 1419 ** |
| 1420 ** The arguments to this routine should be the same as the first six |
| 1421 ** arguments to sqlite3GenerateConstraintChecks. |
| 1422 */ |
| 1423 void sqlite3CompleteInsertion( |
| 1424 Parse *pParse, /* The parser context */ |
| 1425 Table *pTab, /* the table into which we are inserting */ |
| 1426 int baseCur, /* Index of a read/write cursor pointing at pTab */ |
| 1427 int regRowid, /* Range of content */ |
| 1428 int *aRegIdx, /* Register used by each index. 0 for unused indices */ |
| 1429 int isUpdate, /* True for UPDATE, False for INSERT */ |
| 1430 int appendBias, /* True if this is likely to be an append */ |
| 1431 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */ |
| 1432 ){ |
| 1433 int i; |
| 1434 Vdbe *v; |
| 1435 int nIdx; |
| 1436 Index *pIdx; |
| 1437 u8 pik_flags; |
| 1438 int regData; |
| 1439 int regRec; |
| 1440 |
| 1441 v = sqlite3GetVdbe(pParse); |
| 1442 assert( v!=0 ); |
| 1443 assert( pTab->pSelect==0 ); /* This table is not a VIEW */ |
| 1444 for(nIdx=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, nIdx++){} |
| 1445 for(i=nIdx-1; i>=0; i--){ |
| 1446 if( aRegIdx[i]==0 ) continue; |
| 1447 sqlite3VdbeAddOp2(v, OP_IdxInsert, baseCur+i+1, aRegIdx[i]); |
| 1448 if( useSeekResult ){ |
| 1449 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); |
| 1450 } |
| 1451 } |
| 1452 regData = regRowid + 1; |
| 1453 regRec = sqlite3GetTempReg(pParse); |
| 1454 sqlite3VdbeAddOp3(v, OP_MakeRecord, regData, pTab->nCol, regRec); |
| 1455 sqlite3TableAffinityStr(v, pTab); |
| 1456 sqlite3ExprCacheAffinityChange(pParse, regData, pTab->nCol); |
| 1457 if( pParse->nested ){ |
| 1458 pik_flags = 0; |
| 1459 }else{ |
| 1460 pik_flags = OPFLAG_NCHANGE; |
| 1461 pik_flags |= (isUpdate?OPFLAG_ISUPDATE:OPFLAG_LASTROWID); |
| 1462 } |
| 1463 if( appendBias ){ |
| 1464 pik_flags |= OPFLAG_APPEND; |
| 1465 } |
| 1466 if( useSeekResult ){ |
| 1467 pik_flags |= OPFLAG_USESEEKRESULT; |
| 1468 } |
| 1469 sqlite3VdbeAddOp3(v, OP_Insert, baseCur, regRec, regRowid); |
| 1470 if( !pParse->nested ){ |
| 1471 sqlite3VdbeChangeP4(v, -1, pTab->zName, P4_TRANSIENT); |
| 1472 } |
| 1473 sqlite3VdbeChangeP5(v, pik_flags); |
| 1474 } |
| 1475 |
| 1476 /* |
| 1477 ** Generate code that will open cursors for a table and for all |
| 1478 ** indices of that table. The "baseCur" parameter is the cursor number used |
| 1479 ** for the table. Indices are opened on subsequent cursors. |
| 1480 ** |
| 1481 ** Return the number of indices on the table. |
| 1482 */ |
| 1483 int sqlite3OpenTableAndIndices( |
| 1484 Parse *pParse, /* Parsing context */ |
| 1485 Table *pTab, /* Table to be opened */ |
| 1486 int baseCur, /* Cursor number assigned to the table */ |
| 1487 int op /* OP_OpenRead or OP_OpenWrite */ |
| 1488 ){ |
| 1489 int i; |
| 1490 int iDb; |
| 1491 Index *pIdx; |
| 1492 Vdbe *v; |
| 1493 |
| 1494 if( IsVirtual(pTab) ) return 0; |
| 1495 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); |
| 1496 v = sqlite3GetVdbe(pParse); |
| 1497 assert( v!=0 ); |
| 1498 sqlite3OpenTable(pParse, baseCur, iDb, pTab, op); |
| 1499 for(i=1, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){ |
| 1500 KeyInfo *pKey = sqlite3IndexKeyinfo(pParse, pIdx); |
| 1501 assert( pIdx->pSchema==pTab->pSchema ); |
| 1502 sqlite3VdbeAddOp4(v, op, i+baseCur, pIdx->tnum, iDb, |
| 1503 (char*)pKey, P4_KEYINFO_HANDOFF); |
| 1504 VdbeComment((v, "%s", pIdx->zName)); |
| 1505 } |
| 1506 if( pParse->nTab<baseCur+i ){ |
| 1507 pParse->nTab = baseCur+i; |
| 1508 } |
| 1509 return i-1; |
| 1510 } |
| 1511 |
| 1512 |
| 1513 #ifdef SQLITE_TEST |
| 1514 /* |
| 1515 ** The following global variable is incremented whenever the |
| 1516 ** transfer optimization is used. This is used for testing |
| 1517 ** purposes only - to make sure the transfer optimization really |
| 1518 ** is happening when it is suppose to. |
| 1519 */ |
| 1520 int sqlite3_xferopt_count; |
| 1521 #endif /* SQLITE_TEST */ |
| 1522 |
| 1523 |
| 1524 #ifndef SQLITE_OMIT_XFER_OPT |
| 1525 /* |
| 1526 ** Check to collation names to see if they are compatible. |
| 1527 */ |
| 1528 static int xferCompatibleCollation(const char *z1, const char *z2){ |
| 1529 if( z1==0 ){ |
| 1530 return z2==0; |
| 1531 } |
| 1532 if( z2==0 ){ |
| 1533 return 0; |
| 1534 } |
| 1535 return sqlite3StrICmp(z1, z2)==0; |
| 1536 } |
| 1537 |
| 1538 |
| 1539 /* |
| 1540 ** Check to see if index pSrc is compatible as a source of data |
| 1541 ** for index pDest in an insert transfer optimization. The rules |
| 1542 ** for a compatible index: |
| 1543 ** |
| 1544 ** * The index is over the same set of columns |
| 1545 ** * The same DESC and ASC markings occurs on all columns |
| 1546 ** * The same onError processing (OE_Abort, OE_Ignore, etc) |
| 1547 ** * The same collating sequence on each column |
| 1548 */ |
| 1549 static int xferCompatibleIndex(Index *pDest, Index *pSrc){ |
| 1550 int i; |
| 1551 assert( pDest && pSrc ); |
| 1552 assert( pDest->pTable!=pSrc->pTable ); |
| 1553 if( pDest->nColumn!=pSrc->nColumn ){ |
| 1554 return 0; /* Different number of columns */ |
| 1555 } |
| 1556 if( pDest->onError!=pSrc->onError ){ |
| 1557 return 0; /* Different conflict resolution strategies */ |
| 1558 } |
| 1559 for(i=0; i<pSrc->nColumn; i++){ |
| 1560 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){ |
| 1561 return 0; /* Different columns indexed */ |
| 1562 } |
| 1563 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){ |
| 1564 return 0; /* Different sort orders */ |
| 1565 } |
| 1566 if( !xferCompatibleCollation(pSrc->azColl[i],pDest->azColl[i]) ){ |
| 1567 return 0; /* Different collating sequences */ |
| 1568 } |
| 1569 } |
| 1570 |
| 1571 /* If no test above fails then the indices must be compatible */ |
| 1572 return 1; |
| 1573 } |
| 1574 |
| 1575 /* |
| 1576 ** Attempt the transfer optimization on INSERTs of the form |
| 1577 ** |
| 1578 ** INSERT INTO tab1 SELECT * FROM tab2; |
| 1579 ** |
| 1580 ** This optimization is only attempted if |
| 1581 ** |
| 1582 ** (1) tab1 and tab2 have identical schemas including all the |
| 1583 ** same indices and constraints |
| 1584 ** |
| 1585 ** (2) tab1 and tab2 are different tables |
| 1586 ** |
| 1587 ** (3) There must be no triggers on tab1 |
| 1588 ** |
| 1589 ** (4) The result set of the SELECT statement is "*" |
| 1590 ** |
| 1591 ** (5) The SELECT statement has no WHERE, HAVING, ORDER BY, GROUP BY, |
| 1592 ** or LIMIT clause. |
| 1593 ** |
| 1594 ** (6) The SELECT statement is a simple (not a compound) select that |
| 1595 ** contains only tab2 in its FROM clause |
| 1596 ** |
| 1597 ** This method for implementing the INSERT transfers raw records from |
| 1598 ** tab2 over to tab1. The columns are not decoded. Raw records from |
| 1599 ** the indices of tab2 are transfered to tab1 as well. In so doing, |
| 1600 ** the resulting tab1 has much less fragmentation. |
| 1601 ** |
| 1602 ** This routine returns TRUE if the optimization is attempted. If any |
| 1603 ** of the conditions above fail so that the optimization should not |
| 1604 ** be attempted, then this routine returns FALSE. |
| 1605 */ |
| 1606 static int xferOptimization( |
| 1607 Parse *pParse, /* Parser context */ |
| 1608 Table *pDest, /* The table we are inserting into */ |
| 1609 Select *pSelect, /* A SELECT statement to use as the data source */ |
| 1610 int onError, /* How to handle constraint errors */ |
| 1611 int iDbDest /* The database of pDest */ |
| 1612 ){ |
| 1613 ExprList *pEList; /* The result set of the SELECT */ |
| 1614 Table *pSrc; /* The table in the FROM clause of SELECT */ |
| 1615 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */ |
| 1616 struct SrcList_item *pItem; /* An element of pSelect->pSrc */ |
| 1617 int i; /* Loop counter */ |
| 1618 int iDbSrc; /* The database of pSrc */ |
| 1619 int iSrc, iDest; /* Cursors from source and destination */ |
| 1620 int addr1, addr2; /* Loop addresses */ |
| 1621 int emptyDestTest; /* Address of test for empty pDest */ |
| 1622 int emptySrcTest; /* Address of test for empty pSrc */ |
| 1623 Vdbe *v; /* The VDBE we are building */ |
| 1624 KeyInfo *pKey; /* Key information for an index */ |
| 1625 int regAutoinc; /* Memory register used by AUTOINC */ |
| 1626 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */ |
| 1627 int regData, regRowid; /* Registers holding data and rowid */ |
| 1628 |
| 1629 if( pSelect==0 ){ |
| 1630 return 0; /* Must be of the form INSERT INTO ... SELECT ... */ |
| 1631 } |
| 1632 if( sqlite3TriggerList(pParse, pDest) ){ |
| 1633 return 0; /* tab1 must not have triggers */ |
| 1634 } |
| 1635 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1636 if( pDest->tabFlags & TF_Virtual ){ |
| 1637 return 0; /* tab1 must not be a virtual table */ |
| 1638 } |
| 1639 #endif |
| 1640 if( onError==OE_Default ){ |
| 1641 onError = OE_Abort; |
| 1642 } |
| 1643 if( onError!=OE_Abort && onError!=OE_Rollback ){ |
| 1644 return 0; /* Cannot do OR REPLACE or OR IGNORE or OR FAIL */ |
| 1645 } |
| 1646 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */ |
| 1647 if( pSelect->pSrc->nSrc!=1 ){ |
| 1648 return 0; /* FROM clause must have exactly one term */ |
| 1649 } |
| 1650 if( pSelect->pSrc->a[0].pSelect ){ |
| 1651 return 0; /* FROM clause cannot contain a subquery */ |
| 1652 } |
| 1653 if( pSelect->pWhere ){ |
| 1654 return 0; /* SELECT may not have a WHERE clause */ |
| 1655 } |
| 1656 if( pSelect->pOrderBy ){ |
| 1657 return 0; /* SELECT may not have an ORDER BY clause */ |
| 1658 } |
| 1659 /* Do not need to test for a HAVING clause. If HAVING is present but |
| 1660 ** there is no ORDER BY, we will get an error. */ |
| 1661 if( pSelect->pGroupBy ){ |
| 1662 return 0; /* SELECT may not have a GROUP BY clause */ |
| 1663 } |
| 1664 if( pSelect->pLimit ){ |
| 1665 return 0; /* SELECT may not have a LIMIT clause */ |
| 1666 } |
| 1667 assert( pSelect->pOffset==0 ); /* Must be so if pLimit==0 */ |
| 1668 if( pSelect->pPrior ){ |
| 1669 return 0; /* SELECT may not be a compound query */ |
| 1670 } |
| 1671 if( pSelect->selFlags & SF_Distinct ){ |
| 1672 return 0; /* SELECT may not be DISTINCT */ |
| 1673 } |
| 1674 pEList = pSelect->pEList; |
| 1675 assert( pEList!=0 ); |
| 1676 if( pEList->nExpr!=1 ){ |
| 1677 return 0; /* The result set must have exactly one column */ |
| 1678 } |
| 1679 assert( pEList->a[0].pExpr ); |
| 1680 if( pEList->a[0].pExpr->op!=TK_ALL ){ |
| 1681 return 0; /* The result set must be the special operator "*" */ |
| 1682 } |
| 1683 |
| 1684 /* At this point we have established that the statement is of the |
| 1685 ** correct syntactic form to participate in this optimization. Now |
| 1686 ** we have to check the semantics. |
| 1687 */ |
| 1688 pItem = pSelect->pSrc->a; |
| 1689 pSrc = sqlite3LocateTable(pParse, 0, pItem->zName, pItem->zDatabase); |
| 1690 if( pSrc==0 ){ |
| 1691 return 0; /* FROM clause does not contain a real table */ |
| 1692 } |
| 1693 if( pSrc==pDest ){ |
| 1694 return 0; /* tab1 and tab2 may not be the same table */ |
| 1695 } |
| 1696 #ifndef SQLITE_OMIT_VIRTUALTABLE |
| 1697 if( pSrc->tabFlags & TF_Virtual ){ |
| 1698 return 0; /* tab2 must not be a virtual table */ |
| 1699 } |
| 1700 #endif |
| 1701 if( pSrc->pSelect ){ |
| 1702 return 0; /* tab2 may not be a view */ |
| 1703 } |
| 1704 if( pDest->nCol!=pSrc->nCol ){ |
| 1705 return 0; /* Number of columns must be the same in tab1 and tab2 */ |
| 1706 } |
| 1707 if( pDest->iPKey!=pSrc->iPKey ){ |
| 1708 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */ |
| 1709 } |
| 1710 for(i=0; i<pDest->nCol; i++){ |
| 1711 if( pDest->aCol[i].affinity!=pSrc->aCol[i].affinity ){ |
| 1712 return 0; /* Affinity must be the same on all columns */ |
| 1713 } |
| 1714 if( !xferCompatibleCollation(pDest->aCol[i].zColl, pSrc->aCol[i].zColl) ){ |
| 1715 return 0; /* Collating sequence must be the same on all columns */ |
| 1716 } |
| 1717 if( pDest->aCol[i].notNull && !pSrc->aCol[i].notNull ){ |
| 1718 return 0; /* tab2 must be NOT NULL if tab1 is */ |
| 1719 } |
| 1720 } |
| 1721 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ |
| 1722 if( pDestIdx->onError!=OE_None ){ |
| 1723 destHasUniqueIdx = 1; |
| 1724 } |
| 1725 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){ |
| 1726 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; |
| 1727 } |
| 1728 if( pSrcIdx==0 ){ |
| 1729 return 0; /* pDestIdx has no corresponding index in pSrc */ |
| 1730 } |
| 1731 } |
| 1732 #ifndef SQLITE_OMIT_CHECK |
| 1733 if( pDest->pCheck && sqlite3ExprCompare(pSrc->pCheck, pDest->pCheck) ){ |
| 1734 return 0; /* Tables have different CHECK constraints. Ticket #2252 */ |
| 1735 } |
| 1736 #endif |
| 1737 |
| 1738 /* If we get this far, it means either: |
| 1739 ** |
| 1740 ** * We can always do the transfer if the table contains an |
| 1741 ** an integer primary key |
| 1742 ** |
| 1743 ** * We can conditionally do the transfer if the destination |
| 1744 ** table is empty. |
| 1745 */ |
| 1746 #ifdef SQLITE_TEST |
| 1747 sqlite3_xferopt_count++; |
| 1748 #endif |
| 1749 iDbSrc = sqlite3SchemaToIndex(pParse->db, pSrc->pSchema); |
| 1750 v = sqlite3GetVdbe(pParse); |
| 1751 sqlite3CodeVerifySchema(pParse, iDbSrc); |
| 1752 iSrc = pParse->nTab++; |
| 1753 iDest = pParse->nTab++; |
| 1754 regAutoinc = autoIncBegin(pParse, iDbDest, pDest); |
| 1755 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite); |
| 1756 if( (pDest->iPKey<0 && pDest->pIndex!=0) || destHasUniqueIdx ){ |
| 1757 /* If tables do not have an INTEGER PRIMARY KEY and there |
| 1758 ** are indices to be copied and the destination is not empty, |
| 1759 ** we have to disallow the transfer optimization because the |
| 1760 ** the rowids might change which will mess up indexing. |
| 1761 ** |
| 1762 ** Or if the destination has a UNIQUE index and is not empty, |
| 1763 ** we also disallow the transfer optimization because we cannot |
| 1764 ** insure that all entries in the union of DEST and SRC will be |
| 1765 ** unique. |
| 1766 */ |
| 1767 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); |
| 1768 emptyDestTest = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0); |
| 1769 sqlite3VdbeJumpHere(v, addr1); |
| 1770 }else{ |
| 1771 emptyDestTest = 0; |
| 1772 } |
| 1773 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead); |
| 1774 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); |
| 1775 regData = sqlite3GetTempReg(pParse); |
| 1776 regRowid = sqlite3GetTempReg(pParse); |
| 1777 if( pDest->iPKey>=0 ){ |
| 1778 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
| 1779 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid); |
| 1780 sqlite3HaltConstraint( |
| 1781 pParse, onError, "PRIMARY KEY must be unique", P4_STATIC); |
| 1782 sqlite3VdbeJumpHere(v, addr2); |
| 1783 autoIncStep(pParse, regAutoinc, regRowid); |
| 1784 }else if( pDest->pIndex==0 ){ |
| 1785 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid); |
| 1786 }else{ |
| 1787 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid); |
| 1788 assert( (pDest->tabFlags & TF_Autoincrement)==0 ); |
| 1789 } |
| 1790 sqlite3VdbeAddOp2(v, OP_RowData, iSrc, regData); |
| 1791 sqlite3VdbeAddOp3(v, OP_Insert, iDest, regData, regRowid); |
| 1792 sqlite3VdbeChangeP5(v, OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND); |
| 1793 sqlite3VdbeChangeP4(v, -1, pDest->zName, 0); |
| 1794 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); |
| 1795 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){ |
| 1796 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){ |
| 1797 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break; |
| 1798 } |
| 1799 assert( pSrcIdx ); |
| 1800 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
| 1801 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
| 1802 pKey = sqlite3IndexKeyinfo(pParse, pSrcIdx); |
| 1803 sqlite3VdbeAddOp4(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc, |
| 1804 (char*)pKey, P4_KEYINFO_HANDOFF); |
| 1805 VdbeComment((v, "%s", pSrcIdx->zName)); |
| 1806 pKey = sqlite3IndexKeyinfo(pParse, pDestIdx); |
| 1807 sqlite3VdbeAddOp4(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest, |
| 1808 (char*)pKey, P4_KEYINFO_HANDOFF); |
| 1809 VdbeComment((v, "%s", pDestIdx->zName)); |
| 1810 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); |
| 1811 sqlite3VdbeAddOp2(v, OP_RowKey, iSrc, regData); |
| 1812 sqlite3VdbeAddOp3(v, OP_IdxInsert, iDest, regData, 1); |
| 1813 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); |
| 1814 sqlite3VdbeJumpHere(v, addr1); |
| 1815 } |
| 1816 sqlite3VdbeJumpHere(v, emptySrcTest); |
| 1817 sqlite3ReleaseTempReg(pParse, regRowid); |
| 1818 sqlite3ReleaseTempReg(pParse, regData); |
| 1819 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0); |
| 1820 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
| 1821 if( emptyDestTest ){ |
| 1822 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0); |
| 1823 sqlite3VdbeJumpHere(v, emptyDestTest); |
| 1824 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0); |
| 1825 return 0; |
| 1826 }else{ |
| 1827 return 1; |
| 1828 } |
| 1829 } |
| 1830 #endif /* SQLITE_OMIT_XFER_OPT */ |
OLD | NEW |