| Index: third_party/sqlite/src/tool/lemon.c
|
| diff --git a/third_party/sqlite/src/tool/lemon.c b/third_party/sqlite/src/tool/lemon.c
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..898022e28c1589b5c99bac7a990422dce6e089e4
|
| --- /dev/null
|
| +++ b/third_party/sqlite/src/tool/lemon.c
|
| @@ -0,0 +1,4928 @@
|
| +/*
|
| +** This file contains all sources (including headers) to the LEMON
|
| +** LALR(1) parser generator. The sources have been combined into a
|
| +** single file to make it easy to include LEMON in the source tree
|
| +** and Makefile of another program.
|
| +**
|
| +** The author of this program disclaims copyright.
|
| +*/
|
| +#include <stdio.h>
|
| +#include <stdarg.h>
|
| +#include <string.h>
|
| +#include <ctype.h>
|
| +#include <stdlib.h>
|
| +#include <assert.h>
|
| +
|
| +#ifndef __WIN32__
|
| +# if defined(_WIN32) || defined(WIN32)
|
| +# define __WIN32__
|
| +# endif
|
| +#endif
|
| +
|
| +#ifdef __WIN32__
|
| +#ifdef __cplusplus
|
| +extern "C" {
|
| +#endif
|
| +extern int access(const char *path, int mode);
|
| +#ifdef __cplusplus
|
| +}
|
| +#endif
|
| +#else
|
| +#include <unistd.h>
|
| +#endif
|
| +
|
| +/* #define PRIVATE static */
|
| +#define PRIVATE
|
| +
|
| +#ifdef TEST
|
| +#define MAXRHS 5 /* Set low to exercise exception code */
|
| +#else
|
| +#define MAXRHS 1000
|
| +#endif
|
| +
|
| +static int showPrecedenceConflict = 0;
|
| +static const char **made_files = NULL;
|
| +static int made_files_count = 0;
|
| +static int successful_exit = 0;
|
| +static void LemonAtExit(void)
|
| +{
|
| + /* if we failed, delete (most) files we made, to unconfuse build tools. */
|
| + int i;
|
| + for (i = 0; i < made_files_count; i++) {
|
| + if (!successful_exit) {
|
| + remove(made_files[i]);
|
| + }
|
| + }
|
| + free(made_files);
|
| + made_files_count = 0;
|
| + made_files = NULL;
|
| +}
|
| +
|
| +static char *msort(char*,char**,int(*)(const char*,const char*));
|
| +
|
| +/*
|
| +** Compilers are getting increasingly pedantic about type conversions
|
| +** as C evolves ever closer to Ada.... To work around the latest problems
|
| +** we have to define the following variant of strlen().
|
| +*/
|
| +#define lemonStrlen(X) ((int)strlen(X))
|
| +
|
| +/* a few forward declarations... */
|
| +struct rule;
|
| +struct lemon;
|
| +struct action;
|
| +
|
| +static struct action *Action_new(void);
|
| +static struct action *Action_sort(struct action *);
|
| +
|
| +/********** From the file "build.h" ************************************/
|
| +void FindRulePrecedences();
|
| +void FindFirstSets();
|
| +void FindStates();
|
| +void FindLinks();
|
| +void FindFollowSets();
|
| +void FindActions();
|
| +
|
| +/********* From the file "configlist.h" *********************************/
|
| +void Configlist_init(void);
|
| +struct config *Configlist_add(struct rule *, int);
|
| +struct config *Configlist_addbasis(struct rule *, int);
|
| +void Configlist_closure(struct lemon *);
|
| +void Configlist_sort(void);
|
| +void Configlist_sortbasis(void);
|
| +struct config *Configlist_return(void);
|
| +struct config *Configlist_basis(void);
|
| +void Configlist_eat(struct config *);
|
| +void Configlist_reset(void);
|
| +
|
| +/********* From the file "error.h" ***************************************/
|
| +void ErrorMsg(const char *, int,const char *, ...);
|
| +
|
| +/****** From the file "option.h" ******************************************/
|
| +enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
|
| + OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
|
| +struct s_options {
|
| + enum option_type type;
|
| + const char *label;
|
| + char *arg;
|
| + const char *message;
|
| +};
|
| +int OptInit(char**,struct s_options*,FILE*);
|
| +int OptNArgs(void);
|
| +char *OptArg(int);
|
| +void OptErr(int);
|
| +void OptPrint(void);
|
| +
|
| +/******** From the file "parse.h" *****************************************/
|
| +void Parse(struct lemon *lemp);
|
| +
|
| +/********* From the file "plink.h" ***************************************/
|
| +struct plink *Plink_new(void);
|
| +void Plink_add(struct plink **, struct config *);
|
| +void Plink_copy(struct plink **, struct plink *);
|
| +void Plink_delete(struct plink *);
|
| +
|
| +/********** From the file "report.h" *************************************/
|
| +void Reprint(struct lemon *);
|
| +void ReportOutput(struct lemon *);
|
| +void ReportTable(struct lemon *, int);
|
| +void ReportHeader(struct lemon *);
|
| +void CompressTables(struct lemon *);
|
| +void ResortStates(struct lemon *);
|
| +
|
| +/********** From the file "set.h" ****************************************/
|
| +void SetSize(int); /* All sets will be of size N */
|
| +char *SetNew(void); /* A new set for element 0..N */
|
| +void SetFree(char*); /* Deallocate a set */
|
| +
|
| +char *SetNew(void); /* A new set for element 0..N */
|
| +int SetAdd(char*,int); /* Add element to a set */
|
| +int SetUnion(char *,char *); /* A <- A U B, thru element N */
|
| +#define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
|
| +
|
| +/********** From the file "struct.h" *************************************/
|
| +/*
|
| +** Principal data structures for the LEMON parser generator.
|
| +*/
|
| +
|
| +typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
|
| +
|
| +/* Symbols (terminals and nonterminals) of the grammar are stored
|
| +** in the following: */
|
| +enum symbol_type {
|
| + TERMINAL,
|
| + NONTERMINAL,
|
| + MULTITERMINAL
|
| +};
|
| +enum e_assoc {
|
| + LEFT,
|
| + RIGHT,
|
| + NONE,
|
| + UNK
|
| +};
|
| +struct symbol {
|
| + const char *name; /* Name of the symbol */
|
| + int index; /* Index number for this symbol */
|
| + enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
|
| + struct rule *rule; /* Linked list of rules of this (if an NT) */
|
| + struct symbol *fallback; /* fallback token in case this token doesn't parse */
|
| + int prec; /* Precedence if defined (-1 otherwise) */
|
| + enum e_assoc assoc; /* Associativity if precedence is defined */
|
| + char *firstset; /* First-set for all rules of this symbol */
|
| + Boolean lambda; /* True if NT and can generate an empty string */
|
| + int useCnt; /* Number of times used */
|
| + char *destructor; /* Code which executes whenever this symbol is
|
| + ** popped from the stack during error processing */
|
| + int destLineno; /* Line number for start of destructor */
|
| + char *datatype; /* The data type of information held by this
|
| + ** object. Only used if type==NONTERMINAL */
|
| + int dtnum; /* The data type number. In the parser, the value
|
| + ** stack is a union. The .yy%d element of this
|
| + ** union is the correct data type for this object */
|
| + /* The following fields are used by MULTITERMINALs only */
|
| + int nsubsym; /* Number of constituent symbols in the MULTI */
|
| + struct symbol **subsym; /* Array of constituent symbols */
|
| +};
|
| +
|
| +/* Each production rule in the grammar is stored in the following
|
| +** structure. */
|
| +struct rule {
|
| + struct symbol *lhs; /* Left-hand side of the rule */
|
| + const char *lhsalias; /* Alias for the LHS (NULL if none) */
|
| + int lhsStart; /* True if left-hand side is the start symbol */
|
| + int ruleline; /* Line number for the rule */
|
| + int nrhs; /* Number of RHS symbols */
|
| + struct symbol **rhs; /* The RHS symbols */
|
| + const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
|
| + int line; /* Line number at which code begins */
|
| + const char *code; /* The code executed when this rule is reduced */
|
| + struct symbol *precsym; /* Precedence symbol for this rule */
|
| + int index; /* An index number for this rule */
|
| + Boolean canReduce; /* True if this rule is ever reduced */
|
| + struct rule *nextlhs; /* Next rule with the same LHS */
|
| + struct rule *next; /* Next rule in the global list */
|
| +};
|
| +
|
| +/* A configuration is a production rule of the grammar together with
|
| +** a mark (dot) showing how much of that rule has been processed so far.
|
| +** Configurations also contain a follow-set which is a list of terminal
|
| +** symbols which are allowed to immediately follow the end of the rule.
|
| +** Every configuration is recorded as an instance of the following: */
|
| +enum cfgstatus {
|
| + COMPLETE,
|
| + INCOMPLETE
|
| +};
|
| +struct config {
|
| + struct rule *rp; /* The rule upon which the configuration is based */
|
| + int dot; /* The parse point */
|
| + char *fws; /* Follow-set for this configuration only */
|
| + struct plink *fplp; /* Follow-set forward propagation links */
|
| + struct plink *bplp; /* Follow-set backwards propagation links */
|
| + struct state *stp; /* Pointer to state which contains this */
|
| + enum cfgstatus status; /* used during followset and shift computations */
|
| + struct config *next; /* Next configuration in the state */
|
| + struct config *bp; /* The next basis configuration */
|
| +};
|
| +
|
| +enum e_action {
|
| + SHIFT,
|
| + ACCEPT,
|
| + REDUCE,
|
| + ERROR,
|
| + SSCONFLICT, /* A shift/shift conflict */
|
| + SRCONFLICT, /* Was a reduce, but part of a conflict */
|
| + RRCONFLICT, /* Was a reduce, but part of a conflict */
|
| + SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
|
| + RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
|
| + NOT_USED /* Deleted by compression */
|
| +};
|
| +
|
| +/* Every shift or reduce operation is stored as one of the following */
|
| +struct action {
|
| + struct symbol *sp; /* The look-ahead symbol */
|
| + enum e_action type;
|
| + union {
|
| + struct state *stp; /* The new state, if a shift */
|
| + struct rule *rp; /* The rule, if a reduce */
|
| + } x;
|
| + struct action *next; /* Next action for this state */
|
| + struct action *collide; /* Next action with the same hash */
|
| +};
|
| +
|
| +/* Each state of the generated parser's finite state machine
|
| +** is encoded as an instance of the following structure. */
|
| +struct state {
|
| + struct config *bp; /* The basis configurations for this state */
|
| + struct config *cfp; /* All configurations in this set */
|
| + int statenum; /* Sequential number for this state */
|
| + struct action *ap; /* Array of actions for this state */
|
| + int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
|
| + int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
|
| + int iDflt; /* Default action */
|
| +};
|
| +#define NO_OFFSET (-2147483647)
|
| +
|
| +/* A followset propagation link indicates that the contents of one
|
| +** configuration followset should be propagated to another whenever
|
| +** the first changes. */
|
| +struct plink {
|
| + struct config *cfp; /* The configuration to which linked */
|
| + struct plink *next; /* The next propagate link */
|
| +};
|
| +
|
| +/* The state vector for the entire parser generator is recorded as
|
| +** follows. (LEMON uses no global variables and makes little use of
|
| +** static variables. Fields in the following structure can be thought
|
| +** of as begin global variables in the program.) */
|
| +struct lemon {
|
| + struct state **sorted; /* Table of states sorted by state number */
|
| + struct rule *rule; /* List of all rules */
|
| + int nstate; /* Number of states */
|
| + int nrule; /* Number of rules */
|
| + int nsymbol; /* Number of terminal and nonterminal symbols */
|
| + int nterminal; /* Number of terminal symbols */
|
| + struct symbol **symbols; /* Sorted array of pointers to symbols */
|
| + int errorcnt; /* Number of errors */
|
| + struct symbol *errsym; /* The error symbol */
|
| + struct symbol *wildcard; /* Token that matches anything */
|
| + char *name; /* Name of the generated parser */
|
| + char *arg; /* Declaration of the 3th argument to parser */
|
| + char *tokentype; /* Type of terminal symbols in the parser stack */
|
| + char *vartype; /* The default type of non-terminal symbols */
|
| + char *start; /* Name of the start symbol for the grammar */
|
| + char *stacksize; /* Size of the parser stack */
|
| + char *include; /* Code to put at the start of the C file */
|
| + char *error; /* Code to execute when an error is seen */
|
| + char *overflow; /* Code to execute on a stack overflow */
|
| + char *failure; /* Code to execute on parser failure */
|
| + char *accept; /* Code to execute when the parser excepts */
|
| + char *extracode; /* Code appended to the generated file */
|
| + char *tokendest; /* Code to execute to destroy token data */
|
| + char *vardest; /* Code for the default non-terminal destructor */
|
| + char *filename; /* Name of the input file */
|
| + char *outname; /* Name of the current output file */
|
| + char *tokenprefix; /* A prefix added to token names in the .h file */
|
| + int nconflict; /* Number of parsing conflicts */
|
| + int tablesize; /* Size of the parse tables */
|
| + int basisflag; /* Print only basis configurations */
|
| + int has_fallback; /* True if any %fallback is seen in the grammar */
|
| + int nolinenosflag; /* True if #line statements should not be printed */
|
| + char *argv0; /* Name of the program */
|
| +};
|
| +
|
| +#define MemoryCheck(X) if((X)==0){ \
|
| + extern void memory_error(); \
|
| + memory_error(); \
|
| +}
|
| +
|
| +/**************** From the file "table.h" *********************************/
|
| +/*
|
| +** All code in this file has been automatically generated
|
| +** from a specification in the file
|
| +** "table.q"
|
| +** by the associative array code building program "aagen".
|
| +** Do not edit this file! Instead, edit the specification
|
| +** file, then rerun aagen.
|
| +*/
|
| +/*
|
| +** Code for processing tables in the LEMON parser generator.
|
| +*/
|
| +/* Routines for handling a strings */
|
| +
|
| +const char *Strsafe(const char *);
|
| +
|
| +void Strsafe_init(void);
|
| +int Strsafe_insert(const char *);
|
| +const char *Strsafe_find(const char *);
|
| +
|
| +/* Routines for handling symbols of the grammar */
|
| +
|
| +struct symbol *Symbol_new(const char *);
|
| +int Symbolcmpp(const void *, const void *);
|
| +void Symbol_init(void);
|
| +int Symbol_insert(struct symbol *, const char *);
|
| +struct symbol *Symbol_find(const char *);
|
| +struct symbol *Symbol_Nth(int);
|
| +int Symbol_count(void);
|
| +struct symbol **Symbol_arrayof(void);
|
| +
|
| +/* Routines to manage the state table */
|
| +
|
| +int Configcmp(const char *, const char *);
|
| +struct state *State_new(void);
|
| +void State_init(void);
|
| +int State_insert(struct state *, struct config *);
|
| +struct state *State_find(struct config *);
|
| +struct state **State_arrayof(/* */);
|
| +
|
| +/* Routines used for efficiency in Configlist_add */
|
| +
|
| +void Configtable_init(void);
|
| +int Configtable_insert(struct config *);
|
| +struct config *Configtable_find(struct config *);
|
| +void Configtable_clear(int(*)(struct config *));
|
| +
|
| +/****************** From the file "action.c" *******************************/
|
| +/*
|
| +** Routines processing parser actions in the LEMON parser generator.
|
| +*/
|
| +
|
| +/* Allocate a new parser action */
|
| +static struct action *Action_new(void){
|
| + static struct action *freelist = 0;
|
| + struct action *newaction;
|
| +
|
| + if( freelist==0 ){
|
| + int i;
|
| + int amt = 100;
|
| + freelist = (struct action *)calloc(amt, sizeof(struct action));
|
| + if( freelist==0 ){
|
| + fprintf(stderr,"Unable to allocate memory for a new parser action.");
|
| + exit(1);
|
| + }
|
| + for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
|
| + freelist[amt-1].next = 0;
|
| + }
|
| + newaction = freelist;
|
| + freelist = freelist->next;
|
| + return newaction;
|
| +}
|
| +
|
| +/* Compare two actions for sorting purposes. Return negative, zero, or
|
| +** positive if the first action is less than, equal to, or greater than
|
| +** the first
|
| +*/
|
| +static int actioncmp(
|
| + struct action *ap1,
|
| + struct action *ap2
|
| +){
|
| + int rc;
|
| + rc = ap1->sp->index - ap2->sp->index;
|
| + if( rc==0 ){
|
| + rc = (int)ap1->type - (int)ap2->type;
|
| + }
|
| + if( rc==0 && ap1->type==REDUCE ){
|
| + rc = ap1->x.rp->index - ap2->x.rp->index;
|
| + }
|
| + if( rc==0 ){
|
| + rc = (int) (ap2 - ap1);
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/* Sort parser actions */
|
| +static struct action *Action_sort(
|
| + struct action *ap
|
| +){
|
| + ap = (struct action *)msort((char *)ap,(char **)&ap->next,
|
| + (int(*)(const char*,const char*))actioncmp);
|
| + return ap;
|
| +}
|
| +
|
| +void Action_add(
|
| + struct action **app,
|
| + enum e_action type,
|
| + struct symbol *sp,
|
| + char *arg
|
| +){
|
| + struct action *newaction;
|
| + newaction = Action_new();
|
| + newaction->next = *app;
|
| + *app = newaction;
|
| + newaction->type = type;
|
| + newaction->sp = sp;
|
| + if( type==SHIFT ){
|
| + newaction->x.stp = (struct state *)arg;
|
| + }else{
|
| + newaction->x.rp = (struct rule *)arg;
|
| + }
|
| +}
|
| +/********************** New code to implement the "acttab" module ***********/
|
| +/*
|
| +** This module implements routines use to construct the yy_action[] table.
|
| +*/
|
| +
|
| +/*
|
| +** The state of the yy_action table under construction is an instance of
|
| +** the following structure.
|
| +**
|
| +** The yy_action table maps the pair (state_number, lookahead) into an
|
| +** action_number. The table is an array of integers pairs. The state_number
|
| +** determines an initial offset into the yy_action array. The lookahead
|
| +** value is then added to this initial offset to get an index X into the
|
| +** yy_action array. If the aAction[X].lookahead equals the value of the
|
| +** of the lookahead input, then the value of the action_number output is
|
| +** aAction[X].action. If the lookaheads do not match then the
|
| +** default action for the state_number is returned.
|
| +**
|
| +** All actions associated with a single state_number are first entered
|
| +** into aLookahead[] using multiple calls to acttab_action(). Then the
|
| +** actions for that single state_number are placed into the aAction[]
|
| +** array with a single call to acttab_insert(). The acttab_insert() call
|
| +** also resets the aLookahead[] array in preparation for the next
|
| +** state number.
|
| +*/
|
| +struct lookahead_action {
|
| + int lookahead; /* Value of the lookahead token */
|
| + int action; /* Action to take on the given lookahead */
|
| +};
|
| +typedef struct acttab acttab;
|
| +struct acttab {
|
| + int nAction; /* Number of used slots in aAction[] */
|
| + int nActionAlloc; /* Slots allocated for aAction[] */
|
| + struct lookahead_action
|
| + *aAction, /* The yy_action[] table under construction */
|
| + *aLookahead; /* A single new transaction set */
|
| + int mnLookahead; /* Minimum aLookahead[].lookahead */
|
| + int mnAction; /* Action associated with mnLookahead */
|
| + int mxLookahead; /* Maximum aLookahead[].lookahead */
|
| + int nLookahead; /* Used slots in aLookahead[] */
|
| + int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
|
| +};
|
| +
|
| +/* Return the number of entries in the yy_action table */
|
| +#define acttab_size(X) ((X)->nAction)
|
| +
|
| +/* The value for the N-th entry in yy_action */
|
| +#define acttab_yyaction(X,N) ((X)->aAction[N].action)
|
| +
|
| +/* The value for the N-th entry in yy_lookahead */
|
| +#define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
|
| +
|
| +/* Free all memory associated with the given acttab */
|
| +void acttab_free(acttab *p){
|
| + free( p->aAction );
|
| + free( p->aLookahead );
|
| + free( p );
|
| +}
|
| +
|
| +/* Allocate a new acttab structure */
|
| +acttab *acttab_alloc(void){
|
| + acttab *p = (acttab *) calloc( 1, sizeof(*p) );
|
| + if( p==0 ){
|
| + fprintf(stderr,"Unable to allocate memory for a new acttab.");
|
| + exit(1);
|
| + }
|
| + memset(p, 0, sizeof(*p));
|
| + return p;
|
| +}
|
| +
|
| +/* Add a new action to the current transaction set.
|
| +**
|
| +** This routine is called once for each lookahead for a particular
|
| +** state.
|
| +*/
|
| +void acttab_action(acttab *p, int lookahead, int action){
|
| + if( p->nLookahead>=p->nLookaheadAlloc ){
|
| + p->nLookaheadAlloc += 25;
|
| + p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
|
| + sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
|
| + if( p->aLookahead==0 ){
|
| + fprintf(stderr,"malloc failed\n");
|
| + exit(1);
|
| + }
|
| + }
|
| + if( p->nLookahead==0 ){
|
| + p->mxLookahead = lookahead;
|
| + p->mnLookahead = lookahead;
|
| + p->mnAction = action;
|
| + }else{
|
| + if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
|
| + if( p->mnLookahead>lookahead ){
|
| + p->mnLookahead = lookahead;
|
| + p->mnAction = action;
|
| + }
|
| + }
|
| + p->aLookahead[p->nLookahead].lookahead = lookahead;
|
| + p->aLookahead[p->nLookahead].action = action;
|
| + p->nLookahead++;
|
| +}
|
| +
|
| +/*
|
| +** Add the transaction set built up with prior calls to acttab_action()
|
| +** into the current action table. Then reset the transaction set back
|
| +** to an empty set in preparation for a new round of acttab_action() calls.
|
| +**
|
| +** Return the offset into the action table of the new transaction.
|
| +*/
|
| +int acttab_insert(acttab *p){
|
| + int i, j, k, n;
|
| + assert( p->nLookahead>0 );
|
| +
|
| + /* Make sure we have enough space to hold the expanded action table
|
| + ** in the worst case. The worst case occurs if the transaction set
|
| + ** must be appended to the current action table
|
| + */
|
| + n = p->mxLookahead + 1;
|
| + if( p->nAction + n >= p->nActionAlloc ){
|
| + int oldAlloc = p->nActionAlloc;
|
| + p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
|
| + p->aAction = (struct lookahead_action *) realloc( p->aAction,
|
| + sizeof(p->aAction[0])*p->nActionAlloc);
|
| + if( p->aAction==0 ){
|
| + fprintf(stderr,"malloc failed\n");
|
| + exit(1);
|
| + }
|
| + for(i=oldAlloc; i<p->nActionAlloc; i++){
|
| + p->aAction[i].lookahead = -1;
|
| + p->aAction[i].action = -1;
|
| + }
|
| + }
|
| +
|
| + /* Scan the existing action table looking for an offset that is a
|
| + ** duplicate of the current transaction set. Fall out of the loop
|
| + ** if and when the duplicate is found.
|
| + **
|
| + ** i is the index in p->aAction[] where p->mnLookahead is inserted.
|
| + */
|
| + for(i=p->nAction-1; i>=0; i--){
|
| + if( p->aAction[i].lookahead==p->mnLookahead ){
|
| + /* All lookaheads and actions in the aLookahead[] transaction
|
| + ** must match against the candidate aAction[i] entry. */
|
| + if( p->aAction[i].action!=p->mnAction ) continue;
|
| + for(j=0; j<p->nLookahead; j++){
|
| + k = p->aLookahead[j].lookahead - p->mnLookahead + i;
|
| + if( k<0 || k>=p->nAction ) break;
|
| + if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
|
| + if( p->aLookahead[j].action!=p->aAction[k].action ) break;
|
| + }
|
| + if( j<p->nLookahead ) continue;
|
| +
|
| + /* No possible lookahead value that is not in the aLookahead[]
|
| + ** transaction is allowed to match aAction[i] */
|
| + n = 0;
|
| + for(j=0; j<p->nAction; j++){
|
| + if( p->aAction[j].lookahead<0 ) continue;
|
| + if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
|
| + }
|
| + if( n==p->nLookahead ){
|
| + break; /* An exact match is found at offset i */
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* If no existing offsets exactly match the current transaction, find an
|
| + ** an empty offset in the aAction[] table in which we can add the
|
| + ** aLookahead[] transaction.
|
| + */
|
| + if( i<0 ){
|
| + /* Look for holes in the aAction[] table that fit the current
|
| + ** aLookahead[] transaction. Leave i set to the offset of the hole.
|
| + ** If no holes are found, i is left at p->nAction, which means the
|
| + ** transaction will be appended. */
|
| + for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){
|
| + if( p->aAction[i].lookahead<0 ){
|
| + for(j=0; j<p->nLookahead; j++){
|
| + k = p->aLookahead[j].lookahead - p->mnLookahead + i;
|
| + if( k<0 ) break;
|
| + if( p->aAction[k].lookahead>=0 ) break;
|
| + }
|
| + if( j<p->nLookahead ) continue;
|
| + for(j=0; j<p->nAction; j++){
|
| + if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
|
| + }
|
| + if( j==p->nAction ){
|
| + break; /* Fits in empty slots */
|
| + }
|
| + }
|
| + }
|
| + }
|
| + /* Insert transaction set at index i. */
|
| + for(j=0; j<p->nLookahead; j++){
|
| + k = p->aLookahead[j].lookahead - p->mnLookahead + i;
|
| + p->aAction[k] = p->aLookahead[j];
|
| + if( k>=p->nAction ) p->nAction = k+1;
|
| + }
|
| + p->nLookahead = 0;
|
| +
|
| + /* Return the offset that is added to the lookahead in order to get the
|
| + ** index into yy_action of the action */
|
| + return i - p->mnLookahead;
|
| +}
|
| +
|
| +/********************** From the file "build.c" *****************************/
|
| +/*
|
| +** Routines to construction the finite state machine for the LEMON
|
| +** parser generator.
|
| +*/
|
| +
|
| +/* Find a precedence symbol of every rule in the grammar.
|
| +**
|
| +** Those rules which have a precedence symbol coded in the input
|
| +** grammar using the "[symbol]" construct will already have the
|
| +** rp->precsym field filled. Other rules take as their precedence
|
| +** symbol the first RHS symbol with a defined precedence. If there
|
| +** are not RHS symbols with a defined precedence, the precedence
|
| +** symbol field is left blank.
|
| +*/
|
| +void FindRulePrecedences(struct lemon *xp)
|
| +{
|
| + struct rule *rp;
|
| + for(rp=xp->rule; rp; rp=rp->next){
|
| + if( rp->precsym==0 ){
|
| + int i, j;
|
| + for(i=0; i<rp->nrhs && rp->precsym==0; i++){
|
| + struct symbol *sp = rp->rhs[i];
|
| + if( sp->type==MULTITERMINAL ){
|
| + for(j=0; j<sp->nsubsym; j++){
|
| + if( sp->subsym[j]->prec>=0 ){
|
| + rp->precsym = sp->subsym[j];
|
| + break;
|
| + }
|
| + }
|
| + }else if( sp->prec>=0 ){
|
| + rp->precsym = rp->rhs[i];
|
| + }
|
| + }
|
| + }
|
| + }
|
| + return;
|
| +}
|
| +
|
| +/* Find all nonterminals which will generate the empty string.
|
| +** Then go back and compute the first sets of every nonterminal.
|
| +** The first set is the set of all terminal symbols which can begin
|
| +** a string generated by that nonterminal.
|
| +*/
|
| +void FindFirstSets(struct lemon *lemp)
|
| +{
|
| + int i, j;
|
| + struct rule *rp;
|
| + int progress;
|
| +
|
| + for(i=0; i<lemp->nsymbol; i++){
|
| + lemp->symbols[i]->lambda = LEMON_FALSE;
|
| + }
|
| + for(i=lemp->nterminal; i<lemp->nsymbol; i++){
|
| + lemp->symbols[i]->firstset = SetNew();
|
| + }
|
| +
|
| + /* First compute all lambdas */
|
| + do{
|
| + progress = 0;
|
| + for(rp=lemp->rule; rp; rp=rp->next){
|
| + if( rp->lhs->lambda ) continue;
|
| + for(i=0; i<rp->nrhs; i++){
|
| + struct symbol *sp = rp->rhs[i];
|
| + if( sp->type!=TERMINAL || sp->lambda==LEMON_FALSE ) break;
|
| + }
|
| + if( i==rp->nrhs ){
|
| + rp->lhs->lambda = LEMON_TRUE;
|
| + progress = 1;
|
| + }
|
| + }
|
| + }while( progress );
|
| +
|
| + /* Now compute all first sets */
|
| + do{
|
| + struct symbol *s1, *s2;
|
| + progress = 0;
|
| + for(rp=lemp->rule; rp; rp=rp->next){
|
| + s1 = rp->lhs;
|
| + for(i=0; i<rp->nrhs; i++){
|
| + s2 = rp->rhs[i];
|
| + if( s2->type==TERMINAL ){
|
| + progress += SetAdd(s1->firstset,s2->index);
|
| + break;
|
| + }else if( s2->type==MULTITERMINAL ){
|
| + for(j=0; j<s2->nsubsym; j++){
|
| + progress += SetAdd(s1->firstset,s2->subsym[j]->index);
|
| + }
|
| + break;
|
| + }else if( s1==s2 ){
|
| + if( s1->lambda==LEMON_FALSE ) break;
|
| + }else{
|
| + progress += SetUnion(s1->firstset,s2->firstset);
|
| + if( s2->lambda==LEMON_FALSE ) break;
|
| + }
|
| + }
|
| + }
|
| + }while( progress );
|
| + return;
|
| +}
|
| +
|
| +/* Compute all LR(0) states for the grammar. Links
|
| +** are added to between some states so that the LR(1) follow sets
|
| +** can be computed later.
|
| +*/
|
| +PRIVATE struct state *getstate(struct lemon *); /* forward reference */
|
| +void FindStates(struct lemon *lemp)
|
| +{
|
| + struct symbol *sp;
|
| + struct rule *rp;
|
| +
|
| + Configlist_init();
|
| +
|
| + /* Find the start symbol */
|
| + if( lemp->start ){
|
| + sp = Symbol_find(lemp->start);
|
| + if( sp==0 ){
|
| + ErrorMsg(lemp->filename,0,
|
| +"The specified start symbol \"%s\" is not \
|
| +in a nonterminal of the grammar. \"%s\" will be used as the start \
|
| +symbol instead.",lemp->start,lemp->rule->lhs->name);
|
| + lemp->errorcnt++;
|
| + sp = lemp->rule->lhs;
|
| + }
|
| + }else{
|
| + sp = lemp->rule->lhs;
|
| + }
|
| +
|
| + /* Make sure the start symbol doesn't occur on the right-hand side of
|
| + ** any rule. Report an error if it does. (YACC would generate a new
|
| + ** start symbol in this case.) */
|
| + for(rp=lemp->rule; rp; rp=rp->next){
|
| + int i;
|
| + for(i=0; i<rp->nrhs; i++){
|
| + if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
|
| + ErrorMsg(lemp->filename,0,
|
| +"The start symbol \"%s\" occurs on the \
|
| +right-hand side of a rule. This will result in a parser which \
|
| +does not work properly.",sp->name);
|
| + lemp->errorcnt++;
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* The basis configuration set for the first state
|
| + ** is all rules which have the start symbol as their
|
| + ** left-hand side */
|
| + for(rp=sp->rule; rp; rp=rp->nextlhs){
|
| + struct config *newcfp;
|
| + rp->lhsStart = 1;
|
| + newcfp = Configlist_addbasis(rp,0);
|
| + SetAdd(newcfp->fws,0);
|
| + }
|
| +
|
| + /* Compute the first state. All other states will be
|
| + ** computed automatically during the computation of the first one.
|
| + ** The returned pointer to the first state is not used. */
|
| + (void)getstate(lemp);
|
| + return;
|
| +}
|
| +
|
| +/* Return a pointer to a state which is described by the configuration
|
| +** list which has been built from calls to Configlist_add.
|
| +*/
|
| +PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
|
| +PRIVATE struct state *getstate(struct lemon *lemp)
|
| +{
|
| + struct config *cfp, *bp;
|
| + struct state *stp;
|
| +
|
| + /* Extract the sorted basis of the new state. The basis was constructed
|
| + ** by prior calls to "Configlist_addbasis()". */
|
| + Configlist_sortbasis();
|
| + bp = Configlist_basis();
|
| +
|
| + /* Get a state with the same basis */
|
| + stp = State_find(bp);
|
| + if( stp ){
|
| + /* A state with the same basis already exists! Copy all the follow-set
|
| + ** propagation links from the state under construction into the
|
| + ** preexisting state, then return a pointer to the preexisting state */
|
| + struct config *x, *y;
|
| + for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
|
| + Plink_copy(&y->bplp,x->bplp);
|
| + Plink_delete(x->fplp);
|
| + x->fplp = x->bplp = 0;
|
| + }
|
| + cfp = Configlist_return();
|
| + Configlist_eat(cfp);
|
| + }else{
|
| + /* This really is a new state. Construct all the details */
|
| + Configlist_closure(lemp); /* Compute the configuration closure */
|
| + Configlist_sort(); /* Sort the configuration closure */
|
| + cfp = Configlist_return(); /* Get a pointer to the config list */
|
| + stp = State_new(); /* A new state structure */
|
| + MemoryCheck(stp);
|
| + stp->bp = bp; /* Remember the configuration basis */
|
| + stp->cfp = cfp; /* Remember the configuration closure */
|
| + stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
|
| + stp->ap = 0; /* No actions, yet. */
|
| + State_insert(stp,stp->bp); /* Add to the state table */
|
| + buildshifts(lemp,stp); /* Recursively compute successor states */
|
| + }
|
| + return stp;
|
| +}
|
| +
|
| +/*
|
| +** Return true if two symbols are the same.
|
| +*/
|
| +int same_symbol(struct symbol *a, struct symbol *b)
|
| +{
|
| + int i;
|
| + if( a==b ) return 1;
|
| + if( a->type!=MULTITERMINAL ) return 0;
|
| + if( b->type!=MULTITERMINAL ) return 0;
|
| + if( a->nsubsym!=b->nsubsym ) return 0;
|
| + for(i=0; i<a->nsubsym; i++){
|
| + if( a->subsym[i]!=b->subsym[i] ) return 0;
|
| + }
|
| + return 1;
|
| +}
|
| +
|
| +/* Construct all successor states to the given state. A "successor"
|
| +** state is any state which can be reached by a shift action.
|
| +*/
|
| +PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
|
| +{
|
| + struct config *cfp; /* For looping thru the config closure of "stp" */
|
| + struct config *bcfp; /* For the inner loop on config closure of "stp" */
|
| + struct config *newcfg; /* */
|
| + struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
|
| + struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
|
| + struct state *newstp; /* A pointer to a successor state */
|
| +
|
| + /* Each configuration becomes complete after it contibutes to a successor
|
| + ** state. Initially, all configurations are incomplete */
|
| + for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
|
| +
|
| + /* Loop through all configurations of the state "stp" */
|
| + for(cfp=stp->cfp; cfp; cfp=cfp->next){
|
| + if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
|
| + if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
|
| + Configlist_reset(); /* Reset the new config set */
|
| + sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
|
| +
|
| + /* For every configuration in the state "stp" which has the symbol "sp"
|
| + ** following its dot, add the same configuration to the basis set under
|
| + ** construction but with the dot shifted one symbol to the right. */
|
| + for(bcfp=cfp; bcfp; bcfp=bcfp->next){
|
| + if( bcfp->status==COMPLETE ) continue; /* Already used */
|
| + if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
|
| + bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
|
| + if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
|
| + bcfp->status = COMPLETE; /* Mark this config as used */
|
| + newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
|
| + Plink_add(&newcfg->bplp,bcfp);
|
| + }
|
| +
|
| + /* Get a pointer to the state described by the basis configuration set
|
| + ** constructed in the preceding loop */
|
| + newstp = getstate(lemp);
|
| +
|
| + /* The state "newstp" is reached from the state "stp" by a shift action
|
| + ** on the symbol "sp" */
|
| + if( sp->type==MULTITERMINAL ){
|
| + int i;
|
| + for(i=0; i<sp->nsubsym; i++){
|
| + Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
|
| + }
|
| + }else{
|
| + Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
|
| + }
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Construct the propagation links
|
| +*/
|
| +void FindLinks(struct lemon *lemp)
|
| +{
|
| + int i;
|
| + struct config *cfp, *other;
|
| + struct state *stp;
|
| + struct plink *plp;
|
| +
|
| + /* Housekeeping detail:
|
| + ** Add to every propagate link a pointer back to the state to
|
| + ** which the link is attached. */
|
| + for(i=0; i<lemp->nstate; i++){
|
| + stp = lemp->sorted[i];
|
| + for(cfp=stp->cfp; cfp; cfp=cfp->next){
|
| + cfp->stp = stp;
|
| + }
|
| + }
|
| +
|
| + /* Convert all backlinks into forward links. Only the forward
|
| + ** links are used in the follow-set computation. */
|
| + for(i=0; i<lemp->nstate; i++){
|
| + stp = lemp->sorted[i];
|
| + for(cfp=stp->cfp; cfp; cfp=cfp->next){
|
| + for(plp=cfp->bplp; plp; plp=plp->next){
|
| + other = plp->cfp;
|
| + Plink_add(&other->fplp,cfp);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/* Compute all followsets.
|
| +**
|
| +** A followset is the set of all symbols which can come immediately
|
| +** after a configuration.
|
| +*/
|
| +void FindFollowSets(struct lemon *lemp)
|
| +{
|
| + int i;
|
| + struct config *cfp;
|
| + struct plink *plp;
|
| + int progress;
|
| + int change;
|
| +
|
| + for(i=0; i<lemp->nstate; i++){
|
| + for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
|
| + cfp->status = INCOMPLETE;
|
| + }
|
| + }
|
| +
|
| + do{
|
| + progress = 0;
|
| + for(i=0; i<lemp->nstate; i++){
|
| + for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
|
| + if( cfp->status==COMPLETE ) continue;
|
| + for(plp=cfp->fplp; plp; plp=plp->next){
|
| + change = SetUnion(plp->cfp->fws,cfp->fws);
|
| + if( change ){
|
| + plp->cfp->status = INCOMPLETE;
|
| + progress = 1;
|
| + }
|
| + }
|
| + cfp->status = COMPLETE;
|
| + }
|
| + }
|
| + }while( progress );
|
| +}
|
| +
|
| +static int resolve_conflict(struct action *,struct action *, struct symbol *);
|
| +
|
| +/* Compute the reduce actions, and resolve conflicts.
|
| +*/
|
| +void FindActions(struct lemon *lemp)
|
| +{
|
| + int i,j;
|
| + struct config *cfp;
|
| + struct state *stp;
|
| + struct symbol *sp;
|
| + struct rule *rp;
|
| +
|
| + /* Add all of the reduce actions
|
| + ** A reduce action is added for each element of the followset of
|
| + ** a configuration which has its dot at the extreme right.
|
| + */
|
| + for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
|
| + stp = lemp->sorted[i];
|
| + for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
|
| + if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
|
| + for(j=0; j<lemp->nterminal; j++){
|
| + if( SetFind(cfp->fws,j) ){
|
| + /* Add a reduce action to the state "stp" which will reduce by the
|
| + ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
|
| + Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Add the accepting token */
|
| + if( lemp->start ){
|
| + sp = Symbol_find(lemp->start);
|
| + if( sp==0 ) sp = lemp->rule->lhs;
|
| + }else{
|
| + sp = lemp->rule->lhs;
|
| + }
|
| + /* Add to the first state (which is always the starting state of the
|
| + ** finite state machine) an action to ACCEPT if the lookahead is the
|
| + ** start nonterminal. */
|
| + Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
|
| +
|
| + /* Resolve conflicts */
|
| + for(i=0; i<lemp->nstate; i++){
|
| + struct action *ap, *nap;
|
| + struct state *stp;
|
| + stp = lemp->sorted[i];
|
| + /* assert( stp->ap ); */
|
| + stp->ap = Action_sort(stp->ap);
|
| + for(ap=stp->ap; ap && ap->next; ap=ap->next){
|
| + for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
|
| + /* The two actions "ap" and "nap" have the same lookahead.
|
| + ** Figure out which one should be used */
|
| + lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym);
|
| + }
|
| + }
|
| + }
|
| +
|
| + /* Report an error for each rule that can never be reduced. */
|
| + for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
|
| + for(i=0; i<lemp->nstate; i++){
|
| + struct action *ap;
|
| + for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
|
| + if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
|
| + }
|
| + }
|
| + for(rp=lemp->rule; rp; rp=rp->next){
|
| + if( rp->canReduce ) continue;
|
| + ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
|
| + lemp->errorcnt++;
|
| + }
|
| +}
|
| +
|
| +/* Resolve a conflict between the two given actions. If the
|
| +** conflict can't be resolved, return non-zero.
|
| +**
|
| +** NO LONGER TRUE:
|
| +** To resolve a conflict, first look to see if either action
|
| +** is on an error rule. In that case, take the action which
|
| +** is not associated with the error rule. If neither or both
|
| +** actions are associated with an error rule, then try to
|
| +** use precedence to resolve the conflict.
|
| +**
|
| +** If either action is a SHIFT, then it must be apx. This
|
| +** function won't work if apx->type==REDUCE and apy->type==SHIFT.
|
| +*/
|
| +static int resolve_conflict(
|
| + struct action *apx,
|
| + struct action *apy,
|
| + struct symbol *errsym /* The error symbol (if defined. NULL otherwise) */
|
| +){
|
| + struct symbol *spx, *spy;
|
| + int errcnt = 0;
|
| + assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
|
| + if( apx->type==SHIFT && apy->type==SHIFT ){
|
| + apy->type = SSCONFLICT;
|
| + errcnt++;
|
| + }
|
| + if( apx->type==SHIFT && apy->type==REDUCE ){
|
| + spx = apx->sp;
|
| + spy = apy->x.rp->precsym;
|
| + if( spy==0 || spx->prec<0 || spy->prec<0 ){
|
| + /* Not enough precedence information. */
|
| + apy->type = SRCONFLICT;
|
| + errcnt++;
|
| + }else if( spx->prec>spy->prec ){ /* higher precedence wins */
|
| + apy->type = RD_RESOLVED;
|
| + }else if( spx->prec<spy->prec ){
|
| + apx->type = SH_RESOLVED;
|
| + }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
|
| + apy->type = RD_RESOLVED; /* associativity */
|
| + }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
|
| + apx->type = SH_RESOLVED;
|
| + }else{
|
| + assert( spx->prec==spy->prec && spx->assoc==NONE );
|
| + apy->type = SRCONFLICT;
|
| + errcnt++;
|
| + }
|
| + }else if( apx->type==REDUCE && apy->type==REDUCE ){
|
| + spx = apx->x.rp->precsym;
|
| + spy = apy->x.rp->precsym;
|
| + if( spx==0 || spy==0 || spx->prec<0 ||
|
| + spy->prec<0 || spx->prec==spy->prec ){
|
| + apy->type = RRCONFLICT;
|
| + errcnt++;
|
| + }else if( spx->prec>spy->prec ){
|
| + apy->type = RD_RESOLVED;
|
| + }else if( spx->prec<spy->prec ){
|
| + apx->type = RD_RESOLVED;
|
| + }
|
| + }else{
|
| + assert(
|
| + apx->type==SH_RESOLVED ||
|
| + apx->type==RD_RESOLVED ||
|
| + apx->type==SSCONFLICT ||
|
| + apx->type==SRCONFLICT ||
|
| + apx->type==RRCONFLICT ||
|
| + apy->type==SH_RESOLVED ||
|
| + apy->type==RD_RESOLVED ||
|
| + apy->type==SSCONFLICT ||
|
| + apy->type==SRCONFLICT ||
|
| + apy->type==RRCONFLICT
|
| + );
|
| + /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
|
| + ** REDUCEs on the list. If we reach this point it must be because
|
| + ** the parser conflict had already been resolved. */
|
| + }
|
| + return errcnt;
|
| +}
|
| +/********************* From the file "configlist.c" *************************/
|
| +/*
|
| +** Routines to processing a configuration list and building a state
|
| +** in the LEMON parser generator.
|
| +*/
|
| +
|
| +static struct config *freelist = 0; /* List of free configurations */
|
| +static struct config *current = 0; /* Top of list of configurations */
|
| +static struct config **currentend = 0; /* Last on list of configs */
|
| +static struct config *basis = 0; /* Top of list of basis configs */
|
| +static struct config **basisend = 0; /* End of list of basis configs */
|
| +
|
| +/* Return a pointer to a new configuration */
|
| +PRIVATE struct config *newconfig(){
|
| + struct config *newcfg;
|
| + if( freelist==0 ){
|
| + int i;
|
| + int amt = 3;
|
| + freelist = (struct config *)calloc( amt, sizeof(struct config) );
|
| + if( freelist==0 ){
|
| + fprintf(stderr,"Unable to allocate memory for a new configuration.");
|
| + exit(1);
|
| + }
|
| + for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1];
|
| + freelist[amt-1].next = 0;
|
| + }
|
| + newcfg = freelist;
|
| + freelist = freelist->next;
|
| + return newcfg;
|
| +}
|
| +
|
| +/* The configuration "old" is no longer used */
|
| +PRIVATE void deleteconfig(struct config *old)
|
| +{
|
| + old->next = freelist;
|
| + freelist = old;
|
| +}
|
| +
|
| +/* Initialized the configuration list builder */
|
| +void Configlist_init(){
|
| + current = 0;
|
| + currentend = ¤t;
|
| + basis = 0;
|
| + basisend = &basis;
|
| + Configtable_init();
|
| + return;
|
| +}
|
| +
|
| +/* Initialized the configuration list builder */
|
| +void Configlist_reset(){
|
| + current = 0;
|
| + currentend = ¤t;
|
| + basis = 0;
|
| + basisend = &basis;
|
| + Configtable_clear(0);
|
| + return;
|
| +}
|
| +
|
| +/* Add another configuration to the configuration list */
|
| +struct config *Configlist_add(
|
| + struct rule *rp, /* The rule */
|
| + int dot /* Index into the RHS of the rule where the dot goes */
|
| +){
|
| + struct config *cfp, model;
|
| +
|
| + assert( currentend!=0 );
|
| + model.rp = rp;
|
| + model.dot = dot;
|
| + cfp = Configtable_find(&model);
|
| + if( cfp==0 ){
|
| + cfp = newconfig();
|
| + cfp->rp = rp;
|
| + cfp->dot = dot;
|
| + cfp->fws = SetNew();
|
| + cfp->stp = 0;
|
| + cfp->fplp = cfp->bplp = 0;
|
| + cfp->next = 0;
|
| + cfp->bp = 0;
|
| + *currentend = cfp;
|
| + currentend = &cfp->next;
|
| + Configtable_insert(cfp);
|
| + }
|
| + return cfp;
|
| +}
|
| +
|
| +/* Add a basis configuration to the configuration list */
|
| +struct config *Configlist_addbasis(struct rule *rp, int dot)
|
| +{
|
| + struct config *cfp, model;
|
| +
|
| + assert( basisend!=0 );
|
| + assert( currentend!=0 );
|
| + model.rp = rp;
|
| + model.dot = dot;
|
| + cfp = Configtable_find(&model);
|
| + if( cfp==0 ){
|
| + cfp = newconfig();
|
| + cfp->rp = rp;
|
| + cfp->dot = dot;
|
| + cfp->fws = SetNew();
|
| + cfp->stp = 0;
|
| + cfp->fplp = cfp->bplp = 0;
|
| + cfp->next = 0;
|
| + cfp->bp = 0;
|
| + *currentend = cfp;
|
| + currentend = &cfp->next;
|
| + *basisend = cfp;
|
| + basisend = &cfp->bp;
|
| + Configtable_insert(cfp);
|
| + }
|
| + return cfp;
|
| +}
|
| +
|
| +/* Compute the closure of the configuration list */
|
| +void Configlist_closure(struct lemon *lemp)
|
| +{
|
| + struct config *cfp, *newcfp;
|
| + struct rule *rp, *newrp;
|
| + struct symbol *sp, *xsp;
|
| + int i, dot;
|
| +
|
| + assert( currentend!=0 );
|
| + for(cfp=current; cfp; cfp=cfp->next){
|
| + rp = cfp->rp;
|
| + dot = cfp->dot;
|
| + if( dot>=rp->nrhs ) continue;
|
| + sp = rp->rhs[dot];
|
| + if( sp->type==NONTERMINAL ){
|
| + if( sp->rule==0 && sp!=lemp->errsym ){
|
| + ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
|
| + sp->name);
|
| + lemp->errorcnt++;
|
| + }
|
| + for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
|
| + newcfp = Configlist_add(newrp,0);
|
| + for(i=dot+1; i<rp->nrhs; i++){
|
| + xsp = rp->rhs[i];
|
| + if( xsp->type==TERMINAL ){
|
| + SetAdd(newcfp->fws,xsp->index);
|
| + break;
|
| + }else if( xsp->type==MULTITERMINAL ){
|
| + int k;
|
| + for(k=0; k<xsp->nsubsym; k++){
|
| + SetAdd(newcfp->fws, xsp->subsym[k]->index);
|
| + }
|
| + break;
|
| + }else{
|
| + SetUnion(newcfp->fws,xsp->firstset);
|
| + if( xsp->lambda==LEMON_FALSE ) break;
|
| + }
|
| + }
|
| + if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
|
| + }
|
| + }
|
| + }
|
| + return;
|
| +}
|
| +
|
| +/* Sort the configuration list */
|
| +void Configlist_sort(){
|
| + current = (struct config *)msort((char *)current,(char **)&(current->next),Configcmp);
|
| + currentend = 0;
|
| + return;
|
| +}
|
| +
|
| +/* Sort the basis configuration list */
|
| +void Configlist_sortbasis(){
|
| + basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configcmp);
|
| + basisend = 0;
|
| + return;
|
| +}
|
| +
|
| +/* Return a pointer to the head of the configuration list and
|
| +** reset the list */
|
| +struct config *Configlist_return(){
|
| + struct config *old;
|
| + old = current;
|
| + current = 0;
|
| + currentend = 0;
|
| + return old;
|
| +}
|
| +
|
| +/* Return a pointer to the head of the configuration list and
|
| +** reset the list */
|
| +struct config *Configlist_basis(){
|
| + struct config *old;
|
| + old = basis;
|
| + basis = 0;
|
| + basisend = 0;
|
| + return old;
|
| +}
|
| +
|
| +/* Free all elements of the given configuration list */
|
| +void Configlist_eat(struct config *cfp)
|
| +{
|
| + struct config *nextcfp;
|
| + for(; cfp; cfp=nextcfp){
|
| + nextcfp = cfp->next;
|
| + assert( cfp->fplp==0 );
|
| + assert( cfp->bplp==0 );
|
| + if( cfp->fws ) SetFree(cfp->fws);
|
| + deleteconfig(cfp);
|
| + }
|
| + return;
|
| +}
|
| +/***************** From the file "error.c" *********************************/
|
| +/*
|
| +** Code for printing error message.
|
| +*/
|
| +
|
| +void ErrorMsg(const char *filename, int lineno, const char *format, ...){
|
| + va_list ap;
|
| + fprintf(stderr, "%s:%d: ", filename, lineno);
|
| + va_start(ap, format);
|
| + vfprintf(stderr,format,ap);
|
| + va_end(ap);
|
| + fprintf(stderr, "\n");
|
| +}
|
| +/**************** From the file "main.c" ************************************/
|
| +/*
|
| +** Main program file for the LEMON parser generator.
|
| +*/
|
| +
|
| +/* Report an out-of-memory condition and abort. This function
|
| +** is used mostly by the "MemoryCheck" macro in struct.h
|
| +*/
|
| +void memory_error(){
|
| + fprintf(stderr,"Out of memory. Aborting...\n");
|
| + exit(1);
|
| +}
|
| +
|
| +static int nDefine = 0; /* Number of -D options on the command line */
|
| +static char **azDefine = 0; /* Name of the -D macros */
|
| +
|
| +/* This routine is called with the argument to each -D command-line option.
|
| +** Add the macro defined to the azDefine array.
|
| +*/
|
| +static void handle_D_option(char *z){
|
| + char **paz;
|
| + nDefine++;
|
| + azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
|
| + if( azDefine==0 ){
|
| + fprintf(stderr,"out of memory\n");
|
| + exit(1);
|
| + }
|
| + paz = &azDefine[nDefine-1];
|
| + *paz = (char *) malloc( lemonStrlen(z)+1 );
|
| + if( *paz==0 ){
|
| + fprintf(stderr,"out of memory\n");
|
| + exit(1);
|
| + }
|
| + strcpy(*paz, z);
|
| + for(z=*paz; *z && *z!='='; z++){}
|
| + *z = 0;
|
| +}
|
| +
|
| +static char *user_templatename = NULL;
|
| +static void handle_T_option(char *z){
|
| + user_templatename = (char *) malloc( lemonStrlen(z)+1 );
|
| + if( user_templatename==0 ){
|
| + memory_error();
|
| + }
|
| + strcpy(user_templatename, z);
|
| +}
|
| +
|
| +/* The main program. Parse the command line and do it... */
|
| +int main(int argc, char **argv)
|
| +{
|
| + static int version = 0;
|
| + static int rpflag = 0;
|
| + static int basisflag = 0;
|
| + static int compress = 0;
|
| + static int quiet = 0;
|
| + static int statistics = 0;
|
| + static int mhflag = 0;
|
| + static int nolinenosflag = 0;
|
| + static int noResort = 0;
|
| + static struct s_options options[] = {
|
| + {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
|
| + {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
|
| + {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
|
| + {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
|
| + {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
|
| + {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
|
| + {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
|
| + {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
|
| + "Show conflicts resolved by precedence rules"},
|
| + {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
|
| + {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
|
| + {OPT_FLAG, "s", (char*)&statistics,
|
| + "Print parser stats to standard output."},
|
| + {OPT_FLAG, "x", (char*)&version, "Print the version number."},
|
| + {OPT_FLAG,0,0,0}
|
| + };
|
| + int i;
|
| + int exitcode;
|
| + struct lemon lem;
|
| +
|
| + atexit(LemonAtExit);
|
| +
|
| + OptInit(argv,options,stderr);
|
| + if( version ){
|
| + printf("Lemon version 1.0\n");
|
| + exit(0);
|
| + }
|
| + if( OptNArgs()!=1 ){
|
| + fprintf(stderr,"Exactly one filename argument is required.\n");
|
| + exit(1);
|
| + }
|
| + memset(&lem, 0, sizeof(lem));
|
| + lem.errorcnt = 0;
|
| +
|
| + /* Initialize the machine */
|
| + Strsafe_init();
|
| + Symbol_init();
|
| + State_init();
|
| + lem.argv0 = argv[0];
|
| + lem.filename = OptArg(0);
|
| + lem.basisflag = basisflag;
|
| + lem.nolinenosflag = nolinenosflag;
|
| + Symbol_new("$");
|
| + lem.errsym = Symbol_new("error");
|
| + lem.errsym->useCnt = 0;
|
| +
|
| + /* Parse the input file */
|
| + Parse(&lem);
|
| + if( lem.errorcnt ) exit(lem.errorcnt);
|
| + if( lem.nrule==0 ){
|
| + fprintf(stderr,"Empty grammar.\n");
|
| + exit(1);
|
| + }
|
| +
|
| + /* Count and index the symbols of the grammar */
|
| + lem.nsymbol = Symbol_count();
|
| + Symbol_new("{default}");
|
| + lem.symbols = Symbol_arrayof();
|
| + for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
|
| + qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*), Symbolcmpp);
|
| + for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i;
|
| + for(i=1; isupper(lem.symbols[i]->name[0]); i++);
|
| + lem.nterminal = i;
|
| +
|
| + /* Generate a reprint of the grammar, if requested on the command line */
|
| + if( rpflag ){
|
| + Reprint(&lem);
|
| + }else{
|
| + /* Initialize the size for all follow and first sets */
|
| + SetSize(lem.nterminal+1);
|
| +
|
| + /* Find the precedence for every production rule (that has one) */
|
| + FindRulePrecedences(&lem);
|
| +
|
| + /* Compute the lambda-nonterminals and the first-sets for every
|
| + ** nonterminal */
|
| + FindFirstSets(&lem);
|
| +
|
| + /* Compute all LR(0) states. Also record follow-set propagation
|
| + ** links so that the follow-set can be computed later */
|
| + lem.nstate = 0;
|
| + FindStates(&lem);
|
| + lem.sorted = State_arrayof();
|
| +
|
| + /* Tie up loose ends on the propagation links */
|
| + FindLinks(&lem);
|
| +
|
| + /* Compute the follow set of every reducible configuration */
|
| + FindFollowSets(&lem);
|
| +
|
| + /* Compute the action tables */
|
| + FindActions(&lem);
|
| +
|
| + /* Compress the action tables */
|
| + if( compress==0 ) CompressTables(&lem);
|
| +
|
| + /* Reorder and renumber the states so that states with fewer choices
|
| + ** occur at the end. This is an optimization that helps make the
|
| + ** generated parser tables smaller. */
|
| + if( noResort==0 ) ResortStates(&lem);
|
| +
|
| + /* Generate a report of the parser generated. (the "y.output" file) */
|
| + if( !quiet ) ReportOutput(&lem);
|
| +
|
| + /* Generate the source code for the parser */
|
| + ReportTable(&lem, mhflag);
|
| +
|
| + /* Produce a header file for use by the scanner. (This step is
|
| + ** omitted if the "-m" option is used because makeheaders will
|
| + ** generate the file for us.) */
|
| + if( !mhflag ) ReportHeader(&lem);
|
| + }
|
| + if( statistics ){
|
| + printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n",
|
| + lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule);
|
| + printf(" %d states, %d parser table entries, %d conflicts\n",
|
| + lem.nstate, lem.tablesize, lem.nconflict);
|
| + }
|
| + if( lem.nconflict > 0 ){
|
| + fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
|
| + }
|
| +
|
| + /* return 0 on success, 1 on failure. */
|
| + exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
|
| + successful_exit = (exitcode == 0);
|
| + exit(exitcode);
|
| + return (exitcode);
|
| +}
|
| +/******************** From the file "msort.c" *******************************/
|
| +/*
|
| +** A generic merge-sort program.
|
| +**
|
| +** USAGE:
|
| +** Let "ptr" be a pointer to some structure which is at the head of
|
| +** a null-terminated list. Then to sort the list call:
|
| +**
|
| +** ptr = msort(ptr,&(ptr->next),cmpfnc);
|
| +**
|
| +** In the above, "cmpfnc" is a pointer to a function which compares
|
| +** two instances of the structure and returns an integer, as in
|
| +** strcmp. The second argument is a pointer to the pointer to the
|
| +** second element of the linked list. This address is used to compute
|
| +** the offset to the "next" field within the structure. The offset to
|
| +** the "next" field must be constant for all structures in the list.
|
| +**
|
| +** The function returns a new pointer which is the head of the list
|
| +** after sorting.
|
| +**
|
| +** ALGORITHM:
|
| +** Merge-sort.
|
| +*/
|
| +
|
| +/*
|
| +** Return a pointer to the next structure in the linked list.
|
| +*/
|
| +#define NEXT(A) (*(char**)(((unsigned long)A)+offset))
|
| +
|
| +/*
|
| +** Inputs:
|
| +** a: A sorted, null-terminated linked list. (May be null).
|
| +** b: A sorted, null-terminated linked list. (May be null).
|
| +** cmp: A pointer to the comparison function.
|
| +** offset: Offset in the structure to the "next" field.
|
| +**
|
| +** Return Value:
|
| +** A pointer to the head of a sorted list containing the elements
|
| +** of both a and b.
|
| +**
|
| +** Side effects:
|
| +** The "next" pointers for elements in the lists a and b are
|
| +** changed.
|
| +*/
|
| +static char *merge(
|
| + char *a,
|
| + char *b,
|
| + int (*cmp)(const char*,const char*),
|
| + int offset
|
| +){
|
| + char *ptr, *head;
|
| +
|
| + if( a==0 ){
|
| + head = b;
|
| + }else if( b==0 ){
|
| + head = a;
|
| + }else{
|
| + if( (*cmp)(a,b)<=0 ){
|
| + ptr = a;
|
| + a = NEXT(a);
|
| + }else{
|
| + ptr = b;
|
| + b = NEXT(b);
|
| + }
|
| + head = ptr;
|
| + while( a && b ){
|
| + if( (*cmp)(a,b)<=0 ){
|
| + NEXT(ptr) = a;
|
| + ptr = a;
|
| + a = NEXT(a);
|
| + }else{
|
| + NEXT(ptr) = b;
|
| + ptr = b;
|
| + b = NEXT(b);
|
| + }
|
| + }
|
| + if( a ) NEXT(ptr) = a;
|
| + else NEXT(ptr) = b;
|
| + }
|
| + return head;
|
| +}
|
| +
|
| +/*
|
| +** Inputs:
|
| +** list: Pointer to a singly-linked list of structures.
|
| +** next: Pointer to pointer to the second element of the list.
|
| +** cmp: A comparison function.
|
| +**
|
| +** Return Value:
|
| +** A pointer to the head of a sorted list containing the elements
|
| +** orginally in list.
|
| +**
|
| +** Side effects:
|
| +** The "next" pointers for elements in list are changed.
|
| +*/
|
| +#define LISTSIZE 30
|
| +static char *msort(
|
| + char *list,
|
| + char **next,
|
| + int (*cmp)(const char*,const char*)
|
| +){
|
| + unsigned long offset;
|
| + char *ep;
|
| + char *set[LISTSIZE];
|
| + int i;
|
| + offset = (unsigned long)next - (unsigned long)list;
|
| + for(i=0; i<LISTSIZE; i++) set[i] = 0;
|
| + while( list ){
|
| + ep = list;
|
| + list = NEXT(list);
|
| + NEXT(ep) = 0;
|
| + for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
|
| + ep = merge(ep,set[i],cmp,offset);
|
| + set[i] = 0;
|
| + }
|
| + set[i] = ep;
|
| + }
|
| + ep = 0;
|
| + for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
|
| + return ep;
|
| +}
|
| +/************************ From the file "option.c" **************************/
|
| +static char **argv;
|
| +static struct s_options *op;
|
| +static FILE *errstream;
|
| +
|
| +#define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
|
| +
|
| +/*
|
| +** Print the command line with a carrot pointing to the k-th character
|
| +** of the n-th field.
|
| +*/
|
| +static void errline(int n, int k, FILE *err)
|
| +{
|
| + int spcnt, i;
|
| + if( argv[0] ) fprintf(err,"%s",argv[0]);
|
| + spcnt = lemonStrlen(argv[0]) + 1;
|
| + for(i=1; i<n && argv[i]; i++){
|
| + fprintf(err," %s",argv[i]);
|
| + spcnt += lemonStrlen(argv[i])+1;
|
| + }
|
| + spcnt += k;
|
| + for(; argv[i]; i++) fprintf(err," %s",argv[i]);
|
| + if( spcnt<20 ){
|
| + fprintf(err,"\n%*s^-- here\n",spcnt,"");
|
| + }else{
|
| + fprintf(err,"\n%*shere --^\n",spcnt-7,"");
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Return the index of the N-th non-switch argument. Return -1
|
| +** if N is out of range.
|
| +*/
|
| +static int argindex(int n)
|
| +{
|
| + int i;
|
| + int dashdash = 0;
|
| + if( argv!=0 && *argv!=0 ){
|
| + for(i=1; argv[i]; i++){
|
| + if( dashdash || !ISOPT(argv[i]) ){
|
| + if( n==0 ) return i;
|
| + n--;
|
| + }
|
| + if( strcmp(argv[i],"--")==0 ) dashdash = 1;
|
| + }
|
| + }
|
| + return -1;
|
| +}
|
| +
|
| +static char emsg[] = "Command line syntax error: ";
|
| +
|
| +/*
|
| +** Process a flag command line argument.
|
| +*/
|
| +static int handleflags(int i, FILE *err)
|
| +{
|
| + int v;
|
| + int errcnt = 0;
|
| + int j;
|
| + for(j=0; op[j].label; j++){
|
| + if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
|
| + }
|
| + v = argv[i][0]=='-' ? 1 : 0;
|
| + if( op[j].label==0 ){
|
| + if( err ){
|
| + fprintf(err,"%sundefined option.\n",emsg);
|
| + errline(i,1,err);
|
| + }
|
| + errcnt++;
|
| + }else if( op[j].type==OPT_FLAG ){
|
| + *((int*)op[j].arg) = v;
|
| + }else if( op[j].type==OPT_FFLAG ){
|
| + (*(void(*)(int))(op[j].arg))(v);
|
| + }else if( op[j].type==OPT_FSTR ){
|
| + (*(void(*)(char *))(op[j].arg))(&argv[i][2]);
|
| + }else{
|
| + if( err ){
|
| + fprintf(err,"%smissing argument on switch.\n",emsg);
|
| + errline(i,1,err);
|
| + }
|
| + errcnt++;
|
| + }
|
| + return errcnt;
|
| +}
|
| +
|
| +/*
|
| +** Process a command line switch which has an argument.
|
| +*/
|
| +static int handleswitch(int i, FILE *err)
|
| +{
|
| + int lv = 0;
|
| + double dv = 0.0;
|
| + char *sv = 0, *end;
|
| + char *cp;
|
| + int j;
|
| + int errcnt = 0;
|
| + cp = strchr(argv[i],'=');
|
| + assert( cp!=0 );
|
| + *cp = 0;
|
| + for(j=0; op[j].label; j++){
|
| + if( strcmp(argv[i],op[j].label)==0 ) break;
|
| + }
|
| + *cp = '=';
|
| + if( op[j].label==0 ){
|
| + if( err ){
|
| + fprintf(err,"%sundefined option.\n",emsg);
|
| + errline(i,0,err);
|
| + }
|
| + errcnt++;
|
| + }else{
|
| + cp++;
|
| + switch( op[j].type ){
|
| + case OPT_FLAG:
|
| + case OPT_FFLAG:
|
| + if( err ){
|
| + fprintf(err,"%soption requires an argument.\n",emsg);
|
| + errline(i,0,err);
|
| + }
|
| + errcnt++;
|
| + break;
|
| + case OPT_DBL:
|
| + case OPT_FDBL:
|
| + dv = strtod(cp,&end);
|
| + if( *end ){
|
| + if( err ){
|
| + fprintf(err,"%sillegal character in floating-point argument.\n",emsg);
|
| + errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
|
| + }
|
| + errcnt++;
|
| + }
|
| + break;
|
| + case OPT_INT:
|
| + case OPT_FINT:
|
| + lv = strtol(cp,&end,0);
|
| + if( *end ){
|
| + if( err ){
|
| + fprintf(err,"%sillegal character in integer argument.\n",emsg);
|
| + errline(i,((unsigned long)end)-(unsigned long)argv[i],err);
|
| + }
|
| + errcnt++;
|
| + }
|
| + break;
|
| + case OPT_STR:
|
| + case OPT_FSTR:
|
| + sv = cp;
|
| + break;
|
| + }
|
| + switch( op[j].type ){
|
| + case OPT_FLAG:
|
| + case OPT_FFLAG:
|
| + break;
|
| + case OPT_DBL:
|
| + *(double*)(op[j].arg) = dv;
|
| + break;
|
| + case OPT_FDBL:
|
| + (*(void(*)(double))(op[j].arg))(dv);
|
| + break;
|
| + case OPT_INT:
|
| + *(int*)(op[j].arg) = lv;
|
| + break;
|
| + case OPT_FINT:
|
| + (*(void(*)(int))(op[j].arg))((int)lv);
|
| + break;
|
| + case OPT_STR:
|
| + *(char**)(op[j].arg) = sv;
|
| + break;
|
| + case OPT_FSTR:
|
| + (*(void(*)(char *))(op[j].arg))(sv);
|
| + break;
|
| + }
|
| + }
|
| + return errcnt;
|
| +}
|
| +
|
| +int OptInit(char **a, struct s_options *o, FILE *err)
|
| +{
|
| + int errcnt = 0;
|
| + argv = a;
|
| + op = o;
|
| + errstream = err;
|
| + if( argv && *argv && op ){
|
| + int i;
|
| + for(i=1; argv[i]; i++){
|
| + if( argv[i][0]=='+' || argv[i][0]=='-' ){
|
| + errcnt += handleflags(i,err);
|
| + }else if( strchr(argv[i],'=') ){
|
| + errcnt += handleswitch(i,err);
|
| + }
|
| + }
|
| + }
|
| + if( errcnt>0 ){
|
| + fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
|
| + OptPrint();
|
| + exit(1);
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +int OptNArgs(){
|
| + int cnt = 0;
|
| + int dashdash = 0;
|
| + int i;
|
| + if( argv!=0 && argv[0]!=0 ){
|
| + for(i=1; argv[i]; i++){
|
| + if( dashdash || !ISOPT(argv[i]) ) cnt++;
|
| + if( strcmp(argv[i],"--")==0 ) dashdash = 1;
|
| + }
|
| + }
|
| + return cnt;
|
| +}
|
| +
|
| +char *OptArg(int n)
|
| +{
|
| + int i;
|
| + i = argindex(n);
|
| + return i>=0 ? argv[i] : 0;
|
| +}
|
| +
|
| +void OptErr(int n)
|
| +{
|
| + int i;
|
| + i = argindex(n);
|
| + if( i>=0 ) errline(i,0,errstream);
|
| +}
|
| +
|
| +void OptPrint(){
|
| + int i;
|
| + int max, len;
|
| + max = 0;
|
| + for(i=0; op[i].label; i++){
|
| + len = lemonStrlen(op[i].label) + 1;
|
| + switch( op[i].type ){
|
| + case OPT_FLAG:
|
| + case OPT_FFLAG:
|
| + break;
|
| + case OPT_INT:
|
| + case OPT_FINT:
|
| + len += 9; /* length of "<integer>" */
|
| + break;
|
| + case OPT_DBL:
|
| + case OPT_FDBL:
|
| + len += 6; /* length of "<real>" */
|
| + break;
|
| + case OPT_STR:
|
| + case OPT_FSTR:
|
| + len += 8; /* length of "<string>" */
|
| + break;
|
| + }
|
| + if( len>max ) max = len;
|
| + }
|
| + for(i=0; op[i].label; i++){
|
| + switch( op[i].type ){
|
| + case OPT_FLAG:
|
| + case OPT_FFLAG:
|
| + fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
|
| + break;
|
| + case OPT_INT:
|
| + case OPT_FINT:
|
| + fprintf(errstream," %s=<integer>%*s %s\n",op[i].label,
|
| + (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
|
| + break;
|
| + case OPT_DBL:
|
| + case OPT_FDBL:
|
| + fprintf(errstream," %s=<real>%*s %s\n",op[i].label,
|
| + (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
|
| + break;
|
| + case OPT_STR:
|
| + case OPT_FSTR:
|
| + fprintf(errstream," %s=<string>%*s %s\n",op[i].label,
|
| + (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +/*********************** From the file "parse.c" ****************************/
|
| +/*
|
| +** Input file parser for the LEMON parser generator.
|
| +*/
|
| +
|
| +/* The state of the parser */
|
| +enum e_state {
|
| + INITIALIZE,
|
| + WAITING_FOR_DECL_OR_RULE,
|
| + WAITING_FOR_DECL_KEYWORD,
|
| + WAITING_FOR_DECL_ARG,
|
| + WAITING_FOR_PRECEDENCE_SYMBOL,
|
| + WAITING_FOR_ARROW,
|
| + IN_RHS,
|
| + LHS_ALIAS_1,
|
| + LHS_ALIAS_2,
|
| + LHS_ALIAS_3,
|
| + RHS_ALIAS_1,
|
| + RHS_ALIAS_2,
|
| + PRECEDENCE_MARK_1,
|
| + PRECEDENCE_MARK_2,
|
| + RESYNC_AFTER_RULE_ERROR,
|
| + RESYNC_AFTER_DECL_ERROR,
|
| + WAITING_FOR_DESTRUCTOR_SYMBOL,
|
| + WAITING_FOR_DATATYPE_SYMBOL,
|
| + WAITING_FOR_FALLBACK_ID,
|
| + WAITING_FOR_WILDCARD_ID
|
| +};
|
| +struct pstate {
|
| + char *filename; /* Name of the input file */
|
| + int tokenlineno; /* Linenumber at which current token starts */
|
| + int errorcnt; /* Number of errors so far */
|
| + char *tokenstart; /* Text of current token */
|
| + struct lemon *gp; /* Global state vector */
|
| + enum e_state state; /* The state of the parser */
|
| + struct symbol *fallback; /* The fallback token */
|
| + struct symbol *lhs; /* Left-hand side of current rule */
|
| + const char *lhsalias; /* Alias for the LHS */
|
| + int nrhs; /* Number of right-hand side symbols seen */
|
| + struct symbol *rhs[MAXRHS]; /* RHS symbols */
|
| + const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
|
| + struct rule *prevrule; /* Previous rule parsed */
|
| + const char *declkeyword; /* Keyword of a declaration */
|
| + char **declargslot; /* Where the declaration argument should be put */
|
| + int insertLineMacro; /* Add #line before declaration insert */
|
| + int *decllinenoslot; /* Where to write declaration line number */
|
| + enum e_assoc declassoc; /* Assign this association to decl arguments */
|
| + int preccounter; /* Assign this precedence to decl arguments */
|
| + struct rule *firstrule; /* Pointer to first rule in the grammar */
|
| + struct rule *lastrule; /* Pointer to the most recently parsed rule */
|
| +};
|
| +
|
| +/* Parse a single token */
|
| +static void parseonetoken(struct pstate *psp)
|
| +{
|
| + const char *x;
|
| + x = Strsafe(psp->tokenstart); /* Save the token permanently */
|
| +#if 0
|
| + printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
|
| + x,psp->state);
|
| +#endif
|
| + switch( psp->state ){
|
| + case INITIALIZE:
|
| + psp->prevrule = 0;
|
| + psp->preccounter = 0;
|
| + psp->firstrule = psp->lastrule = 0;
|
| + psp->gp->nrule = 0;
|
| + /* Fall thru to next case */
|
| + case WAITING_FOR_DECL_OR_RULE:
|
| + if( x[0]=='%' ){
|
| + psp->state = WAITING_FOR_DECL_KEYWORD;
|
| + }else if( islower(x[0]) ){
|
| + psp->lhs = Symbol_new(x);
|
| + psp->nrhs = 0;
|
| + psp->lhsalias = 0;
|
| + psp->state = WAITING_FOR_ARROW;
|
| + }else if( x[0]=='{' ){
|
| + if( psp->prevrule==0 ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| +"There is no prior rule opon which to attach the code \
|
| +fragment which begins on this line.");
|
| + psp->errorcnt++;
|
| + }else if( psp->prevrule->code!=0 ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| +"Code fragment beginning on this line is not the first \
|
| +to follow the previous rule.");
|
| + psp->errorcnt++;
|
| + }else{
|
| + psp->prevrule->line = psp->tokenlineno;
|
| + psp->prevrule->code = &x[1];
|
| + }
|
| + }else if( x[0]=='[' ){
|
| + psp->state = PRECEDENCE_MARK_1;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Token \"%s\" should be either \"%%\" or a nonterminal name.",
|
| + x);
|
| + psp->errorcnt++;
|
| + }
|
| + break;
|
| + case PRECEDENCE_MARK_1:
|
| + if( !isupper(x[0]) ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "The precedence symbol must be a terminal.");
|
| + psp->errorcnt++;
|
| + }else if( psp->prevrule==0 ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "There is no prior rule to assign precedence \"[%s]\".",x);
|
| + psp->errorcnt++;
|
| + }else if( psp->prevrule->precsym!=0 ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| +"Precedence mark on this line is not the first \
|
| +to follow the previous rule.");
|
| + psp->errorcnt++;
|
| + }else{
|
| + psp->prevrule->precsym = Symbol_new(x);
|
| + }
|
| + psp->state = PRECEDENCE_MARK_2;
|
| + break;
|
| + case PRECEDENCE_MARK_2:
|
| + if( x[0]!=']' ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Missing \"]\" on precedence mark.");
|
| + psp->errorcnt++;
|
| + }
|
| + psp->state = WAITING_FOR_DECL_OR_RULE;
|
| + break;
|
| + case WAITING_FOR_ARROW:
|
| + if( x[0]==':' && x[1]==':' && x[2]=='=' ){
|
| + psp->state = IN_RHS;
|
| + }else if( x[0]=='(' ){
|
| + psp->state = LHS_ALIAS_1;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Expected to see a \":\" following the LHS symbol \"%s\".",
|
| + psp->lhs->name);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_RULE_ERROR;
|
| + }
|
| + break;
|
| + case LHS_ALIAS_1:
|
| + if( isalpha(x[0]) ){
|
| + psp->lhsalias = x;
|
| + psp->state = LHS_ALIAS_2;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "\"%s\" is not a valid alias for the LHS \"%s\"\n",
|
| + x,psp->lhs->name);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_RULE_ERROR;
|
| + }
|
| + break;
|
| + case LHS_ALIAS_2:
|
| + if( x[0]==')' ){
|
| + psp->state = LHS_ALIAS_3;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_RULE_ERROR;
|
| + }
|
| + break;
|
| + case LHS_ALIAS_3:
|
| + if( x[0]==':' && x[1]==':' && x[2]=='=' ){
|
| + psp->state = IN_RHS;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Missing \"->\" following: \"%s(%s)\".",
|
| + psp->lhs->name,psp->lhsalias);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_RULE_ERROR;
|
| + }
|
| + break;
|
| + case IN_RHS:
|
| + if( x[0]=='.' ){
|
| + struct rule *rp;
|
| + rp = (struct rule *)calloc( sizeof(struct rule) +
|
| + sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
|
| + if( rp==0 ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Can't allocate enough memory for this rule.");
|
| + psp->errorcnt++;
|
| + psp->prevrule = 0;
|
| + }else{
|
| + int i;
|
| + rp->ruleline = psp->tokenlineno;
|
| + rp->rhs = (struct symbol**)&rp[1];
|
| + rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
|
| + for(i=0; i<psp->nrhs; i++){
|
| + rp->rhs[i] = psp->rhs[i];
|
| + rp->rhsalias[i] = psp->alias[i];
|
| + }
|
| + rp->lhs = psp->lhs;
|
| + rp->lhsalias = psp->lhsalias;
|
| + rp->nrhs = psp->nrhs;
|
| + rp->code = 0;
|
| + rp->precsym = 0;
|
| + rp->index = psp->gp->nrule++;
|
| + rp->nextlhs = rp->lhs->rule;
|
| + rp->lhs->rule = rp;
|
| + rp->next = 0;
|
| + if( psp->firstrule==0 ){
|
| + psp->firstrule = psp->lastrule = rp;
|
| + }else{
|
| + psp->lastrule->next = rp;
|
| + psp->lastrule = rp;
|
| + }
|
| + psp->prevrule = rp;
|
| + }
|
| + psp->state = WAITING_FOR_DECL_OR_RULE;
|
| + }else if( isalpha(x[0]) ){
|
| + if( psp->nrhs>=MAXRHS ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Too many symbols on RHS of rule beginning at \"%s\".",
|
| + x);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_RULE_ERROR;
|
| + }else{
|
| + psp->rhs[psp->nrhs] = Symbol_new(x);
|
| + psp->alias[psp->nrhs] = 0;
|
| + psp->nrhs++;
|
| + }
|
| + }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){
|
| + struct symbol *msp = psp->rhs[psp->nrhs-1];
|
| + if( msp->type!=MULTITERMINAL ){
|
| + struct symbol *origsp = msp;
|
| + msp = (struct symbol *) calloc(1,sizeof(*msp));
|
| + memset(msp, 0, sizeof(*msp));
|
| + msp->type = MULTITERMINAL;
|
| + msp->nsubsym = 1;
|
| + msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
|
| + msp->subsym[0] = origsp;
|
| + msp->name = origsp->name;
|
| + psp->rhs[psp->nrhs-1] = msp;
|
| + }
|
| + msp->nsubsym++;
|
| + msp->subsym = (struct symbol **) realloc(msp->subsym,
|
| + sizeof(struct symbol*)*msp->nsubsym);
|
| + msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
|
| + if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Cannot form a compound containing a non-terminal");
|
| + psp->errorcnt++;
|
| + }
|
| + }else if( x[0]=='(' && psp->nrhs>0 ){
|
| + psp->state = RHS_ALIAS_1;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Illegal character on RHS of rule: \"%s\".",x);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_RULE_ERROR;
|
| + }
|
| + break;
|
| + case RHS_ALIAS_1:
|
| + if( isalpha(x[0]) ){
|
| + psp->alias[psp->nrhs-1] = x;
|
| + psp->state = RHS_ALIAS_2;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
|
| + x,psp->rhs[psp->nrhs-1]->name);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_RULE_ERROR;
|
| + }
|
| + break;
|
| + case RHS_ALIAS_2:
|
| + if( x[0]==')' ){
|
| + psp->state = IN_RHS;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_RULE_ERROR;
|
| + }
|
| + break;
|
| + case WAITING_FOR_DECL_KEYWORD:
|
| + if( isalpha(x[0]) ){
|
| + psp->declkeyword = x;
|
| + psp->declargslot = 0;
|
| + psp->decllinenoslot = 0;
|
| + psp->insertLineMacro = 1;
|
| + psp->state = WAITING_FOR_DECL_ARG;
|
| + if( strcmp(x,"name")==0 ){
|
| + psp->declargslot = &(psp->gp->name);
|
| + psp->insertLineMacro = 0;
|
| + }else if( strcmp(x,"include")==0 ){
|
| + psp->declargslot = &(psp->gp->include);
|
| + }else if( strcmp(x,"code")==0 ){
|
| + psp->declargslot = &(psp->gp->extracode);
|
| + }else if( strcmp(x,"token_destructor")==0 ){
|
| + psp->declargslot = &psp->gp->tokendest;
|
| + }else if( strcmp(x,"default_destructor")==0 ){
|
| + psp->declargslot = &psp->gp->vardest;
|
| + }else if( strcmp(x,"token_prefix")==0 ){
|
| + psp->declargslot = &psp->gp->tokenprefix;
|
| + psp->insertLineMacro = 0;
|
| + }else if( strcmp(x,"syntax_error")==0 ){
|
| + psp->declargslot = &(psp->gp->error);
|
| + }else if( strcmp(x,"parse_accept")==0 ){
|
| + psp->declargslot = &(psp->gp->accept);
|
| + }else if( strcmp(x,"parse_failure")==0 ){
|
| + psp->declargslot = &(psp->gp->failure);
|
| + }else if( strcmp(x,"stack_overflow")==0 ){
|
| + psp->declargslot = &(psp->gp->overflow);
|
| + }else if( strcmp(x,"extra_argument")==0 ){
|
| + psp->declargslot = &(psp->gp->arg);
|
| + psp->insertLineMacro = 0;
|
| + }else if( strcmp(x,"token_type")==0 ){
|
| + psp->declargslot = &(psp->gp->tokentype);
|
| + psp->insertLineMacro = 0;
|
| + }else if( strcmp(x,"default_type")==0 ){
|
| + psp->declargslot = &(psp->gp->vartype);
|
| + psp->insertLineMacro = 0;
|
| + }else if( strcmp(x,"stack_size")==0 ){
|
| + psp->declargslot = &(psp->gp->stacksize);
|
| + psp->insertLineMacro = 0;
|
| + }else if( strcmp(x,"start_symbol")==0 ){
|
| + psp->declargslot = &(psp->gp->start);
|
| + psp->insertLineMacro = 0;
|
| + }else if( strcmp(x,"left")==0 ){
|
| + psp->preccounter++;
|
| + psp->declassoc = LEFT;
|
| + psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
|
| + }else if( strcmp(x,"right")==0 ){
|
| + psp->preccounter++;
|
| + psp->declassoc = RIGHT;
|
| + psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
|
| + }else if( strcmp(x,"nonassoc")==0 ){
|
| + psp->preccounter++;
|
| + psp->declassoc = NONE;
|
| + psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
|
| + }else if( strcmp(x,"destructor")==0 ){
|
| + psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
|
| + }else if( strcmp(x,"type")==0 ){
|
| + psp->state = WAITING_FOR_DATATYPE_SYMBOL;
|
| + }else if( strcmp(x,"fallback")==0 ){
|
| + psp->fallback = 0;
|
| + psp->state = WAITING_FOR_FALLBACK_ID;
|
| + }else if( strcmp(x,"wildcard")==0 ){
|
| + psp->state = WAITING_FOR_WILDCARD_ID;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Unknown declaration keyword: \"%%%s\".",x);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_DECL_ERROR;
|
| + }
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Illegal declaration keyword: \"%s\".",x);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_DECL_ERROR;
|
| + }
|
| + break;
|
| + case WAITING_FOR_DESTRUCTOR_SYMBOL:
|
| + if( !isalpha(x[0]) ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Symbol name missing after %%destructor keyword");
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_DECL_ERROR;
|
| + }else{
|
| + struct symbol *sp = Symbol_new(x);
|
| + psp->declargslot = &sp->destructor;
|
| + psp->decllinenoslot = &sp->destLineno;
|
| + psp->insertLineMacro = 1;
|
| + psp->state = WAITING_FOR_DECL_ARG;
|
| + }
|
| + break;
|
| + case WAITING_FOR_DATATYPE_SYMBOL:
|
| + if( !isalpha(x[0]) ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Symbol name missing after %%type keyword");
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_DECL_ERROR;
|
| + }else{
|
| + struct symbol *sp = Symbol_find(x);
|
| + if((sp) && (sp->datatype)){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Symbol %%type \"%s\" already defined", x);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_DECL_ERROR;
|
| + }else{
|
| + if (!sp){
|
| + sp = Symbol_new(x);
|
| + }
|
| + psp->declargslot = &sp->datatype;
|
| + psp->insertLineMacro = 0;
|
| + psp->state = WAITING_FOR_DECL_ARG;
|
| + }
|
| + }
|
| + break;
|
| + case WAITING_FOR_PRECEDENCE_SYMBOL:
|
| + if( x[0]=='.' ){
|
| + psp->state = WAITING_FOR_DECL_OR_RULE;
|
| + }else if( isupper(x[0]) ){
|
| + struct symbol *sp;
|
| + sp = Symbol_new(x);
|
| + if( sp->prec>=0 ){
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Symbol \"%s\" has already be given a precedence.",x);
|
| + psp->errorcnt++;
|
| + }else{
|
| + sp->prec = psp->preccounter;
|
| + sp->assoc = psp->declassoc;
|
| + }
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Can't assign a precedence to \"%s\".",x);
|
| + psp->errorcnt++;
|
| + }
|
| + break;
|
| + case WAITING_FOR_DECL_ARG:
|
| + if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){
|
| + const char *zOld, *zNew;
|
| + char *zBuf, *z;
|
| + int nOld, n, nLine, nNew, nBack;
|
| + int addLineMacro;
|
| + char zLine[50];
|
| + zNew = x;
|
| + if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
|
| + nNew = lemonStrlen(zNew);
|
| + if( *psp->declargslot ){
|
| + zOld = *psp->declargslot;
|
| + }else{
|
| + zOld = "";
|
| + }
|
| + nOld = lemonStrlen(zOld);
|
| + n = nOld + nNew + 20;
|
| + addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro &&
|
| + (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
|
| + if( addLineMacro ){
|
| + for(z=psp->filename, nBack=0; *z; z++){
|
| + if( *z=='\\' ) nBack++;
|
| + }
|
| + sprintf(zLine, "#line %d ", psp->tokenlineno);
|
| + nLine = lemonStrlen(zLine);
|
| + n += nLine + lemonStrlen(psp->filename) + nBack;
|
| + }
|
| + *psp->declargslot = (char *) realloc(*psp->declargslot, n);
|
| + zBuf = *psp->declargslot + nOld;
|
| + if( addLineMacro ){
|
| + if( nOld && zBuf[-1]!='\n' ){
|
| + *(zBuf++) = '\n';
|
| + }
|
| + memcpy(zBuf, zLine, nLine);
|
| + zBuf += nLine;
|
| + *(zBuf++) = '"';
|
| + for(z=psp->filename; *z; z++){
|
| + if( *z=='\\' ){
|
| + *(zBuf++) = '\\';
|
| + }
|
| + *(zBuf++) = *z;
|
| + }
|
| + *(zBuf++) = '"';
|
| + *(zBuf++) = '\n';
|
| + }
|
| + if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
|
| + psp->decllinenoslot[0] = psp->tokenlineno;
|
| + }
|
| + memcpy(zBuf, zNew, nNew);
|
| + zBuf += nNew;
|
| + *zBuf = 0;
|
| + psp->state = WAITING_FOR_DECL_OR_RULE;
|
| + }else{
|
| + ErrorMsg(psp->filename,psp->tokenlineno,
|
| + "Illegal argument to %%%s: %s",psp->declkeyword,x);
|
| + psp->errorcnt++;
|
| + psp->state = RESYNC_AFTER_DECL_ERROR;
|
| + }
|
| + break;
|
| + case WAITING_FOR_FALLBACK_ID:
|
| + if( x[0]=='.' ){
|
| + psp->state = WAITING_FOR_DECL_OR_RULE;
|
| + }else if( !isupper(x[0]) ){
|
| + ErrorMsg(psp->filename, psp->tokenlineno,
|
| + "%%fallback argument \"%s\" should be a token", x);
|
| + psp->errorcnt++;
|
| + }else{
|
| + struct symbol *sp = Symbol_new(x);
|
| + if( psp->fallback==0 ){
|
| + psp->fallback = sp;
|
| + }else if( sp->fallback ){
|
| + ErrorMsg(psp->filename, psp->tokenlineno,
|
| + "More than one fallback assigned to token %s", x);
|
| + psp->errorcnt++;
|
| + }else{
|
| + sp->fallback = psp->fallback;
|
| + psp->gp->has_fallback = 1;
|
| + }
|
| + }
|
| + break;
|
| + case WAITING_FOR_WILDCARD_ID:
|
| + if( x[0]=='.' ){
|
| + psp->state = WAITING_FOR_DECL_OR_RULE;
|
| + }else if( !isupper(x[0]) ){
|
| + ErrorMsg(psp->filename, psp->tokenlineno,
|
| + "%%wildcard argument \"%s\" should be a token", x);
|
| + psp->errorcnt++;
|
| + }else{
|
| + struct symbol *sp = Symbol_new(x);
|
| + if( psp->gp->wildcard==0 ){
|
| + psp->gp->wildcard = sp;
|
| + }else{
|
| + ErrorMsg(psp->filename, psp->tokenlineno,
|
| + "Extra wildcard to token: %s", x);
|
| + psp->errorcnt++;
|
| + }
|
| + }
|
| + break;
|
| + case RESYNC_AFTER_RULE_ERROR:
|
| +/* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
|
| +** break; */
|
| + case RESYNC_AFTER_DECL_ERROR:
|
| + if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
|
| + if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
|
| + break;
|
| + }
|
| +}
|
| +
|
| +/* Run the preprocessor over the input file text. The global variables
|
| +** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
|
| +** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
|
| +** comments them out. Text in between is also commented out as appropriate.
|
| +*/
|
| +static void preprocess_input(char *z){
|
| + int i, j, k, n;
|
| + int exclude = 0;
|
| + int start = 0;
|
| + int lineno = 1;
|
| + int start_lineno = 1;
|
| + for(i=0; z[i]; i++){
|
| + if( z[i]=='\n' ) lineno++;
|
| + if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
|
| + if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){
|
| + if( exclude ){
|
| + exclude--;
|
| + if( exclude==0 ){
|
| + for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
|
| + }
|
| + }
|
| + for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
|
| + }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6]))
|
| + || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){
|
| + if( exclude ){
|
| + exclude++;
|
| + }else{
|
| + for(j=i+7; isspace(z[j]); j++){}
|
| + for(n=0; z[j+n] && !isspace(z[j+n]); n++){}
|
| + exclude = 1;
|
| + for(k=0; k<nDefine; k++){
|
| + if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){
|
| + exclude = 0;
|
| + break;
|
| + }
|
| + }
|
| + if( z[i+3]=='n' ) exclude = !exclude;
|
| + if( exclude ){
|
| + start = i;
|
| + start_lineno = lineno;
|
| + }
|
| + }
|
| + for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
|
| + }
|
| + }
|
| + if( exclude ){
|
| + fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
|
| + exit(1);
|
| + }
|
| +}
|
| +
|
| +/* In spite of its name, this function is really a scanner. It read
|
| +** in the entire input file (all at once) then tokenizes it. Each
|
| +** token is passed to the function "parseonetoken" which builds all
|
| +** the appropriate data structures in the global state vector "gp".
|
| +*/
|
| +void Parse(struct lemon *gp)
|
| +{
|
| + struct pstate ps;
|
| + FILE *fp;
|
| + char *filebuf;
|
| + int filesize;
|
| + int lineno;
|
| + int c;
|
| + char *cp, *nextcp;
|
| + int startline = 0;
|
| +
|
| + memset(&ps, '\0', sizeof(ps));
|
| + ps.gp = gp;
|
| + ps.filename = gp->filename;
|
| + ps.errorcnt = 0;
|
| + ps.state = INITIALIZE;
|
| +
|
| + /* Begin by reading the input file */
|
| + fp = fopen(ps.filename,"rb");
|
| + if( fp==0 ){
|
| + ErrorMsg(ps.filename,0,"Can't open this file for reading.");
|
| + gp->errorcnt++;
|
| + return;
|
| + }
|
| + fseek(fp,0,2);
|
| + filesize = ftell(fp);
|
| + rewind(fp);
|
| + filebuf = (char *)malloc( filesize+1 );
|
| + if( filebuf==0 ){
|
| + ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.",
|
| + filesize+1);
|
| + gp->errorcnt++;
|
| + return;
|
| + }
|
| + if( fread(filebuf,1,filesize,fp)!=filesize ){
|
| + ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
|
| + filesize);
|
| + free(filebuf);
|
| + gp->errorcnt++;
|
| + return;
|
| + }
|
| + fclose(fp);
|
| + filebuf[filesize] = 0;
|
| +
|
| + /* Make an initial pass through the file to handle %ifdef and %ifndef */
|
| + preprocess_input(filebuf);
|
| +
|
| + /* Now scan the text of the input file */
|
| + lineno = 1;
|
| + for(cp=filebuf; (c= *cp)!=0; ){
|
| + if( c=='\n' ) lineno++; /* Keep track of the line number */
|
| + if( isspace(c) ){ cp++; continue; } /* Skip all white space */
|
| + if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
|
| + cp+=2;
|
| + while( (c= *cp)!=0 && c!='\n' ) cp++;
|
| + continue;
|
| + }
|
| + if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
|
| + cp+=2;
|
| + while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
|
| + if( c=='\n' ) lineno++;
|
| + cp++;
|
| + }
|
| + if( c ) cp++;
|
| + continue;
|
| + }
|
| + ps.tokenstart = cp; /* Mark the beginning of the token */
|
| + ps.tokenlineno = lineno; /* Linenumber on which token begins */
|
| + if( c=='\"' ){ /* String literals */
|
| + cp++;
|
| + while( (c= *cp)!=0 && c!='\"' ){
|
| + if( c=='\n' ) lineno++;
|
| + cp++;
|
| + }
|
| + if( c==0 ){
|
| + ErrorMsg(ps.filename,startline,
|
| +"String starting on this line is not terminated before the end of the file.");
|
| + ps.errorcnt++;
|
| + nextcp = cp;
|
| + }else{
|
| + nextcp = cp+1;
|
| + }
|
| + }else if( c=='{' ){ /* A block of C code */
|
| + int level;
|
| + cp++;
|
| + for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
|
| + if( c=='\n' ) lineno++;
|
| + else if( c=='{' ) level++;
|
| + else if( c=='}' ) level--;
|
| + else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
|
| + int prevc;
|
| + cp = &cp[2];
|
| + prevc = 0;
|
| + while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
|
| + if( c=='\n' ) lineno++;
|
| + prevc = c;
|
| + cp++;
|
| + }
|
| + }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
|
| + cp = &cp[2];
|
| + while( (c= *cp)!=0 && c!='\n' ) cp++;
|
| + if( c ) lineno++;
|
| + }else if( c=='\'' || c=='\"' ){ /* String a character literals */
|
| + int startchar, prevc;
|
| + startchar = c;
|
| + prevc = 0;
|
| + for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
|
| + if( c=='\n' ) lineno++;
|
| + if( prevc=='\\' ) prevc = 0;
|
| + else prevc = c;
|
| + }
|
| + }
|
| + }
|
| + if( c==0 ){
|
| + ErrorMsg(ps.filename,ps.tokenlineno,
|
| +"C code starting on this line is not terminated before the end of the file.");
|
| + ps.errorcnt++;
|
| + nextcp = cp;
|
| + }else{
|
| + nextcp = cp+1;
|
| + }
|
| + }else if( isalnum(c) ){ /* Identifiers */
|
| + while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
|
| + nextcp = cp;
|
| + }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
|
| + cp += 3;
|
| + nextcp = cp;
|
| + }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){
|
| + cp += 2;
|
| + while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++;
|
| + nextcp = cp;
|
| + }else{ /* All other (one character) operators */
|
| + cp++;
|
| + nextcp = cp;
|
| + }
|
| + c = *cp;
|
| + *cp = 0; /* Null terminate the token */
|
| + parseonetoken(&ps); /* Parse the token */
|
| + *cp = c; /* Restore the buffer */
|
| + cp = nextcp;
|
| + }
|
| + free(filebuf); /* Release the buffer after parsing */
|
| + gp->rule = ps.firstrule;
|
| + gp->errorcnt = ps.errorcnt;
|
| +}
|
| +/*************************** From the file "plink.c" *********************/
|
| +/*
|
| +** Routines processing configuration follow-set propagation links
|
| +** in the LEMON parser generator.
|
| +*/
|
| +static struct plink *plink_freelist = 0;
|
| +
|
| +/* Allocate a new plink */
|
| +struct plink *Plink_new(){
|
| + struct plink *newlink;
|
| +
|
| + if( plink_freelist==0 ){
|
| + int i;
|
| + int amt = 100;
|
| + plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
|
| + if( plink_freelist==0 ){
|
| + fprintf(stderr,
|
| + "Unable to allocate memory for a new follow-set propagation link.\n");
|
| + exit(1);
|
| + }
|
| + for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
|
| + plink_freelist[amt-1].next = 0;
|
| + }
|
| + newlink = plink_freelist;
|
| + plink_freelist = plink_freelist->next;
|
| + return newlink;
|
| +}
|
| +
|
| +/* Add a plink to a plink list */
|
| +void Plink_add(struct plink **plpp, struct config *cfp)
|
| +{
|
| + struct plink *newlink;
|
| + newlink = Plink_new();
|
| + newlink->next = *plpp;
|
| + *plpp = newlink;
|
| + newlink->cfp = cfp;
|
| +}
|
| +
|
| +/* Transfer every plink on the list "from" to the list "to" */
|
| +void Plink_copy(struct plink **to, struct plink *from)
|
| +{
|
| + struct plink *nextpl;
|
| + while( from ){
|
| + nextpl = from->next;
|
| + from->next = *to;
|
| + *to = from;
|
| + from = nextpl;
|
| + }
|
| +}
|
| +
|
| +/* Delete every plink on the list */
|
| +void Plink_delete(struct plink *plp)
|
| +{
|
| + struct plink *nextpl;
|
| +
|
| + while( plp ){
|
| + nextpl = plp->next;
|
| + plp->next = plink_freelist;
|
| + plink_freelist = plp;
|
| + plp = nextpl;
|
| + }
|
| +}
|
| +/*********************** From the file "report.c" **************************/
|
| +/*
|
| +** Procedures for generating reports and tables in the LEMON parser generator.
|
| +*/
|
| +
|
| +/* Generate a filename with the given suffix. Space to hold the
|
| +** name comes from malloc() and must be freed by the calling
|
| +** function.
|
| +*/
|
| +PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
|
| +{
|
| + char *name;
|
| + char *cp;
|
| +
|
| + name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 );
|
| + if( name==0 ){
|
| + fprintf(stderr,"Can't allocate space for a filename.\n");
|
| + exit(1);
|
| + }
|
| + strcpy(name,lemp->filename);
|
| + cp = strrchr(name,'.');
|
| + if( cp ) *cp = 0;
|
| + strcat(name,suffix);
|
| + return name;
|
| +}
|
| +
|
| +/* Open a file with a name based on the name of the input file,
|
| +** but with a different (specified) suffix, and return a pointer
|
| +** to the stream */
|
| +PRIVATE FILE *file_open(
|
| + struct lemon *lemp,
|
| + const char *suffix,
|
| + const char *mode
|
| +){
|
| + FILE *fp;
|
| +
|
| + if( lemp->outname ) free(lemp->outname);
|
| + lemp->outname = file_makename(lemp, suffix);
|
| + fp = fopen(lemp->outname,mode);
|
| + if( fp==0 && *mode=='w' ){
|
| + fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
|
| + lemp->errorcnt++;
|
| + return 0;
|
| + }
|
| +
|
| + /* Add files we create to a list, so we can delete them if we fail. This
|
| + ** is to keep makefiles from getting confused. We don't include .out files,
|
| + ** though: this is debug information, and you don't want it deleted if there
|
| + ** was an error you need to track down.
|
| + */
|
| + if(( *mode=='w' ) && (strcmp(suffix, ".out") != 0)){
|
| + const char **ptr = (const char **)
|
| + realloc(made_files, sizeof (const char **) * (made_files_count + 1));
|
| + const char *fname = Strsafe(lemp->outname);
|
| + if ((ptr == NULL) || (fname == NULL)) {
|
| + free(ptr);
|
| + memory_error();
|
| + }
|
| + made_files = ptr;
|
| + made_files[made_files_count++] = fname;
|
| + }
|
| + return fp;
|
| +}
|
| +
|
| +/* Duplicate the input file without comments and without actions
|
| +** on rules */
|
| +void Reprint(struct lemon *lemp)
|
| +{
|
| + struct rule *rp;
|
| + struct symbol *sp;
|
| + int i, j, maxlen, len, ncolumns, skip;
|
| + printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
|
| + maxlen = 10;
|
| + for(i=0; i<lemp->nsymbol; i++){
|
| + sp = lemp->symbols[i];
|
| + len = lemonStrlen(sp->name);
|
| + if( len>maxlen ) maxlen = len;
|
| + }
|
| + ncolumns = 76/(maxlen+5);
|
| + if( ncolumns<1 ) ncolumns = 1;
|
| + skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
|
| + for(i=0; i<skip; i++){
|
| + printf("//");
|
| + for(j=i; j<lemp->nsymbol; j+=skip){
|
| + sp = lemp->symbols[j];
|
| + assert( sp->index==j );
|
| + printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
|
| + }
|
| + printf("\n");
|
| + }
|
| + for(rp=lemp->rule; rp; rp=rp->next){
|
| + printf("%s",rp->lhs->name);
|
| + /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */
|
| + printf(" ::=");
|
| + for(i=0; i<rp->nrhs; i++){
|
| + sp = rp->rhs[i];
|
| + printf(" %s", sp->name);
|
| + if( sp->type==MULTITERMINAL ){
|
| + for(j=1; j<sp->nsubsym; j++){
|
| + printf("|%s", sp->subsym[j]->name);
|
| + }
|
| + }
|
| + /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */
|
| + }
|
| + printf(".");
|
| + if( rp->precsym ) printf(" [%s]",rp->precsym->name);
|
| + /* if( rp->code ) printf("\n %s",rp->code); */
|
| + printf("\n");
|
| + }
|
| +}
|
| +
|
| +void ConfigPrint(FILE *fp, struct config *cfp)
|
| +{
|
| + struct rule *rp;
|
| + struct symbol *sp;
|
| + int i, j;
|
| + rp = cfp->rp;
|
| + fprintf(fp,"%s ::=",rp->lhs->name);
|
| + for(i=0; i<=rp->nrhs; i++){
|
| + if( i==cfp->dot ) fprintf(fp," *");
|
| + if( i==rp->nrhs ) break;
|
| + sp = rp->rhs[i];
|
| + fprintf(fp," %s", sp->name);
|
| + if( sp->type==MULTITERMINAL ){
|
| + for(j=1; j<sp->nsubsym; j++){
|
| + fprintf(fp,"|%s",sp->subsym[j]->name);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +/* #define TEST */
|
| +#if 0
|
| +/* Print a set */
|
| +PRIVATE void SetPrint(out,set,lemp)
|
| +FILE *out;
|
| +char *set;
|
| +struct lemon *lemp;
|
| +{
|
| + int i;
|
| + char *spacer;
|
| + spacer = "";
|
| + fprintf(out,"%12s[","");
|
| + for(i=0; i<lemp->nterminal; i++){
|
| + if( SetFind(set,i) ){
|
| + fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
|
| + spacer = " ";
|
| + }
|
| + }
|
| + fprintf(out,"]\n");
|
| +}
|
| +
|
| +/* Print a plink chain */
|
| +PRIVATE void PlinkPrint(out,plp,tag)
|
| +FILE *out;
|
| +struct plink *plp;
|
| +char *tag;
|
| +{
|
| + while( plp ){
|
| + fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
|
| + ConfigPrint(out,plp->cfp);
|
| + fprintf(out,"\n");
|
| + plp = plp->next;
|
| + }
|
| +}
|
| +#endif
|
| +
|
| +/* Print an action to the given file descriptor. Return FALSE if
|
| +** nothing was actually printed.
|
| +*/
|
| +int PrintAction(struct action *ap, FILE *fp, int indent){
|
| + int result = 1;
|
| + switch( ap->type ){
|
| + case SHIFT:
|
| + fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum);
|
| + break;
|
| + case REDUCE:
|
| + fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index);
|
| + break;
|
| + case ACCEPT:
|
| + fprintf(fp,"%*s accept",indent,ap->sp->name);
|
| + break;
|
| + case ERROR:
|
| + fprintf(fp,"%*s error",indent,ap->sp->name);
|
| + break;
|
| + case SRCONFLICT:
|
| + case RRCONFLICT:
|
| + fprintf(fp,"%*s reduce %-3d ** Parsing conflict **",
|
| + indent,ap->sp->name,ap->x.rp->index);
|
| + break;
|
| + case SSCONFLICT:
|
| + fprintf(fp,"%*s shift %-3d ** Parsing conflict **",
|
| + indent,ap->sp->name,ap->x.stp->statenum);
|
| + break;
|
| + case SH_RESOLVED:
|
| + if( showPrecedenceConflict ){
|
| + fprintf(fp,"%*s shift %-3d -- dropped by precedence",
|
| + indent,ap->sp->name,ap->x.stp->statenum);
|
| + }else{
|
| + result = 0;
|
| + }
|
| + break;
|
| + case RD_RESOLVED:
|
| + if( showPrecedenceConflict ){
|
| + fprintf(fp,"%*s reduce %-3d -- dropped by precedence",
|
| + indent,ap->sp->name,ap->x.rp->index);
|
| + }else{
|
| + result = 0;
|
| + }
|
| + break;
|
| + case NOT_USED:
|
| + result = 0;
|
| + break;
|
| + }
|
| + return result;
|
| +}
|
| +
|
| +/* Generate the "y.output" log file */
|
| +void ReportOutput(struct lemon *lemp)
|
| +{
|
| + int i;
|
| + struct state *stp;
|
| + struct config *cfp;
|
| + struct action *ap;
|
| + FILE *fp;
|
| +
|
| + fp = file_open(lemp,".out","wb");
|
| + if( fp==0 ) return;
|
| + for(i=0; i<lemp->nstate; i++){
|
| + stp = lemp->sorted[i];
|
| + fprintf(fp,"State %d:\n",stp->statenum);
|
| + if( lemp->basisflag ) cfp=stp->bp;
|
| + else cfp=stp->cfp;
|
| + while( cfp ){
|
| + char buf[20];
|
| + if( cfp->dot==cfp->rp->nrhs ){
|
| + sprintf(buf,"(%d)",cfp->rp->index);
|
| + fprintf(fp," %5s ",buf);
|
| + }else{
|
| + fprintf(fp," ");
|
| + }
|
| + ConfigPrint(fp,cfp);
|
| + fprintf(fp,"\n");
|
| +#if 0
|
| + SetPrint(fp,cfp->fws,lemp);
|
| + PlinkPrint(fp,cfp->fplp,"To ");
|
| + PlinkPrint(fp,cfp->bplp,"From");
|
| +#endif
|
| + if( lemp->basisflag ) cfp=cfp->bp;
|
| + else cfp=cfp->next;
|
| + }
|
| + fprintf(fp,"\n");
|
| + for(ap=stp->ap; ap; ap=ap->next){
|
| + if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
|
| + }
|
| + fprintf(fp,"\n");
|
| + }
|
| + fprintf(fp, "----------------------------------------------------\n");
|
| + fprintf(fp, "Symbols:\n");
|
| + for(i=0; i<lemp->nsymbol; i++){
|
| + int j;
|
| + struct symbol *sp;
|
| +
|
| + sp = lemp->symbols[i];
|
| + fprintf(fp, " %3d: %s", i, sp->name);
|
| + if( sp->type==NONTERMINAL ){
|
| + fprintf(fp, ":");
|
| + if( sp->lambda ){
|
| + fprintf(fp, " <lambda>");
|
| + }
|
| + for(j=0; j<lemp->nterminal; j++){
|
| + if( sp->firstset && SetFind(sp->firstset, j) ){
|
| + fprintf(fp, " %s", lemp->symbols[j]->name);
|
| + }
|
| + }
|
| + }
|
| + fprintf(fp, "\n");
|
| + }
|
| + fclose(fp);
|
| + return;
|
| +}
|
| +
|
| +/* Search for the file "name" which is in the same directory as
|
| +** the exacutable */
|
| +PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
|
| +{
|
| + const char *pathlist;
|
| + char *pathbufptr;
|
| + char *pathbuf;
|
| + char *path,*cp;
|
| + char c;
|
| +
|
| +#ifdef __WIN32__
|
| + cp = strrchr(argv0,'\\');
|
| +#else
|
| + cp = strrchr(argv0,'/');
|
| +#endif
|
| + if( cp ){
|
| + c = *cp;
|
| + *cp = 0;
|
| + path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
|
| + if( path ) sprintf(path,"%s/%s",argv0,name);
|
| + *cp = c;
|
| + }else{
|
| + pathlist = getenv("PATH");
|
| + if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
|
| + pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
|
| + path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
|
| + if( (pathbuf != 0) && (path!=0) ){
|
| + pathbufptr = pathbuf;
|
| + strcpy(pathbuf, pathlist);
|
| + while( *pathbuf ){
|
| + cp = strchr(pathbuf,':');
|
| + if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
|
| + c = *cp;
|
| + *cp = 0;
|
| + sprintf(path,"%s/%s",pathbuf,name);
|
| + *cp = c;
|
| + if( c==0 ) pathbuf[0] = 0;
|
| + else pathbuf = &cp[1];
|
| + if( access(path,modemask)==0 ) break;
|
| + }
|
| + free(pathbufptr);
|
| + }
|
| + }
|
| + return path;
|
| +}
|
| +
|
| +/* Given an action, compute the integer value for that action
|
| +** which is to be put in the action table of the generated machine.
|
| +** Return negative if no action should be generated.
|
| +*/
|
| +PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
|
| +{
|
| + int act;
|
| + switch( ap->type ){
|
| + case SHIFT: act = ap->x.stp->statenum; break;
|
| + case REDUCE: act = ap->x.rp->index + lemp->nstate; break;
|
| + case ERROR: act = lemp->nstate + lemp->nrule; break;
|
| + case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break;
|
| + default: act = -1; break;
|
| + }
|
| + return act;
|
| +}
|
| +
|
| +#define LINESIZE 1000
|
| +/* The next cluster of routines are for reading the template file
|
| +** and writing the results to the generated parser */
|
| +/* The first function transfers data from "in" to "out" until
|
| +** a line is seen which begins with "%%". The line number is
|
| +** tracked.
|
| +**
|
| +** if name!=0, then any word that begin with "Parse" is changed to
|
| +** begin with *name instead.
|
| +*/
|
| +PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
|
| +{
|
| + int i, iStart;
|
| + char line[LINESIZE];
|
| + while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
|
| + (*lineno)++;
|
| + iStart = 0;
|
| + if( name ){
|
| + for(i=0; line[i]; i++){
|
| + if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
|
| + && (i==0 || !isalpha(line[i-1]))
|
| + ){
|
| + if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
|
| + fprintf(out,"%s",name);
|
| + i += 4;
|
| + iStart = i+1;
|
| + }
|
| + }
|
| + }
|
| + fprintf(out,"%s",&line[iStart]);
|
| + }
|
| +}
|
| +
|
| +/* The next function finds the template file and opens it, returning
|
| +** a pointer to the opened file. */
|
| +PRIVATE FILE *tplt_open(struct lemon *lemp)
|
| +{
|
| + static char templatename[] = "lempar.c";
|
| + char buf[1000];
|
| + FILE *in;
|
| + char *tpltname;
|
| + char *cp;
|
| +
|
| + /* first, see if user specified a template filename on the command line. */
|
| + if (user_templatename != 0) {
|
| + if( access(user_templatename,004)==-1 ){
|
| + fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
|
| + user_templatename);
|
| + lemp->errorcnt++;
|
| + return 0;
|
| + }
|
| + in = fopen(user_templatename,"rb");
|
| + if( in==0 ){
|
| + fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename);
|
| + lemp->errorcnt++;
|
| + return 0;
|
| + }
|
| + return in;
|
| + }
|
| +
|
| + cp = strrchr(lemp->filename,'.');
|
| + if( cp ){
|
| + sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
|
| + }else{
|
| + sprintf(buf,"%s.lt",lemp->filename);
|
| + }
|
| + if( access(buf,004)==0 ){
|
| + tpltname = buf;
|
| + }else if( access(templatename,004)==0 ){
|
| + tpltname = templatename;
|
| + }else{
|
| + tpltname = pathsearch(lemp->argv0,templatename,0);
|
| + }
|
| + if( tpltname==0 ){
|
| + fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
|
| + templatename);
|
| + lemp->errorcnt++;
|
| + return 0;
|
| + }
|
| + in = fopen(tpltname,"rb");
|
| + if( in==0 ){
|
| + fprintf(stderr,"Can't open the template file \"%s\".\n",templatename);
|
| + lemp->errorcnt++;
|
| + return 0;
|
| + }
|
| + return in;
|
| +}
|
| +
|
| +/* Print a #line directive line to the output file. */
|
| +PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
|
| +{
|
| + fprintf(out,"#line %d \"",lineno);
|
| + while( *filename ){
|
| + if( *filename == '\\' ) putc('\\',out);
|
| + putc(*filename,out);
|
| + filename++;
|
| + }
|
| + fprintf(out,"\"\n");
|
| +}
|
| +
|
| +/* Print a string to the file and keep the linenumber up to date */
|
| +PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
|
| +{
|
| + if( str==0 ) return;
|
| + while( *str ){
|
| + putc(*str,out);
|
| + if( *str=='\n' ) (*lineno)++;
|
| + str++;
|
| + }
|
| + if( str[-1]!='\n' ){
|
| + putc('\n',out);
|
| + (*lineno)++;
|
| + }
|
| + if (!lemp->nolinenosflag) {
|
| + (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
|
| + }
|
| + return;
|
| +}
|
| +
|
| +/*
|
| +** The following routine emits code for the destructor for the
|
| +** symbol sp
|
| +*/
|
| +void emit_destructor_code(
|
| + FILE *out,
|
| + struct symbol *sp,
|
| + struct lemon *lemp,
|
| + int *lineno
|
| +){
|
| + char *cp = 0;
|
| +
|
| + if( sp->type==TERMINAL ){
|
| + cp = lemp->tokendest;
|
| + if( cp==0 ) return;
|
| + fprintf(out,"{\n"); (*lineno)++;
|
| + }else if( sp->destructor ){
|
| + cp = sp->destructor;
|
| + fprintf(out,"{\n"); (*lineno)++;
|
| + if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp->filename); }
|
| + }else if( lemp->vardest ){
|
| + cp = lemp->vardest;
|
| + if( cp==0 ) return;
|
| + fprintf(out,"{\n"); (*lineno)++;
|
| + }else{
|
| + assert( 0 ); /* Cannot happen */
|
| + }
|
| + for(; *cp; cp++){
|
| + if( *cp=='$' && cp[1]=='$' ){
|
| + fprintf(out,"(yypminor->yy%d)",sp->dtnum);
|
| + cp++;
|
| + continue;
|
| + }
|
| + if( *cp=='\n' ) (*lineno)++;
|
| + fputc(*cp,out);
|
| + }
|
| + fprintf(out,"\n"); (*lineno)++;
|
| + if (!lemp->nolinenosflag) {
|
| + (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
|
| + }
|
| + fprintf(out,"}\n"); (*lineno)++;
|
| + return;
|
| +}
|
| +
|
| +/*
|
| +** Return TRUE (non-zero) if the given symbol has a destructor.
|
| +*/
|
| +int has_destructor(struct symbol *sp, struct lemon *lemp)
|
| +{
|
| + int ret;
|
| + if( sp->type==TERMINAL ){
|
| + ret = lemp->tokendest!=0;
|
| + }else{
|
| + ret = lemp->vardest!=0 || sp->destructor!=0;
|
| + }
|
| + return ret;
|
| +}
|
| +
|
| +/*
|
| +** Append text to a dynamically allocated string. If zText is 0 then
|
| +** reset the string to be empty again. Always return the complete text
|
| +** of the string (which is overwritten with each call).
|
| +**
|
| +** n bytes of zText are stored. If n==0 then all of zText up to the first
|
| +** \000 terminator is stored. zText can contain up to two instances of
|
| +** %d. The values of p1 and p2 are written into the first and second
|
| +** %d.
|
| +**
|
| +** If n==-1, then the previous character is overwritten.
|
| +*/
|
| +PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
|
| + static char empty[1] = { 0 };
|
| + static char *z = 0;
|
| + static int alloced = 0;
|
| + static int used = 0;
|
| + int c;
|
| + char zInt[40];
|
| + if( zText==0 ){
|
| + used = 0;
|
| + return z;
|
| + }
|
| + if( n<=0 ){
|
| + if( n<0 ){
|
| + used += n;
|
| + assert( used>=0 );
|
| + }
|
| + n = lemonStrlen(zText);
|
| + }
|
| + if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
|
| + alloced = n + sizeof(zInt)*2 + used + 200;
|
| + z = (char *) realloc(z, alloced);
|
| + }
|
| + if( z==0 ) return empty;
|
| + while( n-- > 0 ){
|
| + c = *(zText++);
|
| + if( c=='%' && n>0 && zText[0]=='d' ){
|
| + sprintf(zInt, "%d", p1);
|
| + p1 = p2;
|
| + strcpy(&z[used], zInt);
|
| + used += lemonStrlen(&z[used]);
|
| + zText++;
|
| + n--;
|
| + }else{
|
| + z[used++] = c;
|
| + }
|
| + }
|
| + z[used] = 0;
|
| + return z;
|
| +}
|
| +
|
| +/*
|
| +** zCode is a string that is the action associated with a rule. Expand
|
| +** the symbols in this string so that the refer to elements of the parser
|
| +** stack.
|
| +*/
|
| +PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){
|
| + char *cp, *xp;
|
| + int i;
|
| + char lhsused = 0; /* True if the LHS element has been used */
|
| + char used[MAXRHS]; /* True for each RHS element which is used */
|
| +
|
| + for(i=0; i<rp->nrhs; i++) used[i] = 0;
|
| + lhsused = 0;
|
| +
|
| + if( rp->code==0 ){
|
| + static char newlinestr[2] = { '\n', '\0' };
|
| + rp->code = newlinestr;
|
| + rp->line = rp->ruleline;
|
| + }
|
| +
|
| + append_str(0,0,0,0);
|
| +
|
| + /* This const cast is wrong but harmless, if we're careful. */
|
| + for(cp=(char *)rp->code; *cp; cp++){
|
| + if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){
|
| + char saved;
|
| + for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++);
|
| + saved = *xp;
|
| + *xp = 0;
|
| + if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
|
| + append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0);
|
| + cp = xp;
|
| + lhsused = 1;
|
| + }else{
|
| + for(i=0; i<rp->nrhs; i++){
|
| + if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
|
| + if( cp!=rp->code && cp[-1]=='@' ){
|
| + /* If the argument is of the form @X then substituted
|
| + ** the token number of X, not the value of X */
|
| + append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
|
| + }else{
|
| + struct symbol *sp = rp->rhs[i];
|
| + int dtnum;
|
| + if( sp->type==MULTITERMINAL ){
|
| + dtnum = sp->subsym[0]->dtnum;
|
| + }else{
|
| + dtnum = sp->dtnum;
|
| + }
|
| + append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
|
| + }
|
| + cp = xp;
|
| + used[i] = 1;
|
| + break;
|
| + }
|
| + }
|
| + }
|
| + *xp = saved;
|
| + }
|
| + append_str(cp, 1, 0, 0);
|
| + } /* End loop */
|
| +
|
| + /* Check to make sure the LHS has been used */
|
| + if( rp->lhsalias && !lhsused ){
|
| + ErrorMsg(lemp->filename,rp->ruleline,
|
| + "Label \"%s\" for \"%s(%s)\" is never used.",
|
| + rp->lhsalias,rp->lhs->name,rp->lhsalias);
|
| + lemp->errorcnt++;
|
| + }
|
| +
|
| + /* Generate destructor code for RHS symbols which are not used in the
|
| + ** reduce code */
|
| + for(i=0; i<rp->nrhs; i++){
|
| + if( rp->rhsalias[i] && !used[i] ){
|
| + ErrorMsg(lemp->filename,rp->ruleline,
|
| + "Label %s for \"%s(%s)\" is never used.",
|
| + rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
|
| + lemp->errorcnt++;
|
| + }else if( rp->rhsalias[i]==0 ){
|
| + if( has_destructor(rp->rhs[i],lemp) ){
|
| + append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
|
| + rp->rhs[i]->index,i-rp->nrhs+1);
|
| + }else{
|
| + /* No destructor defined for this term */
|
| + }
|
| + }
|
| + }
|
| + if( rp->code ){
|
| + cp = append_str(0,0,0,0);
|
| + rp->code = Strsafe(cp?cp:"");
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Generate code which executes when the rule "rp" is reduced. Write
|
| +** the code to "out". Make sure lineno stays up-to-date.
|
| +*/
|
| +PRIVATE void emit_code(
|
| + FILE *out,
|
| + struct rule *rp,
|
| + struct lemon *lemp,
|
| + int *lineno
|
| +){
|
| + const char *cp;
|
| +
|
| + /* Generate code to do the reduce action */
|
| + if( rp->code ){
|
| + if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->filename); }
|
| + fprintf(out,"{%s",rp->code);
|
| + for(cp=rp->code; *cp; cp++){
|
| + if( *cp=='\n' ) (*lineno)++;
|
| + } /* End loop */
|
| + fprintf(out,"}\n"); (*lineno)++;
|
| + if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); }
|
| + } /* End if( rp->code ) */
|
| +
|
| + return;
|
| +}
|
| +
|
| +/*
|
| +** Print the definition of the union used for the parser's data stack.
|
| +** This union contains fields for every possible data type for tokens
|
| +** and nonterminals. In the process of computing and printing this
|
| +** union, also set the ".dtnum" field of every terminal and nonterminal
|
| +** symbol.
|
| +*/
|
| +void print_stack_union(
|
| + FILE *out, /* The output stream */
|
| + struct lemon *lemp, /* The main info structure for this parser */
|
| + int *plineno, /* Pointer to the line number */
|
| + int mhflag /* True if generating makeheaders output */
|
| +){
|
| + int lineno = *plineno; /* The line number of the output */
|
| + char **types; /* A hash table of datatypes */
|
| + int arraysize; /* Size of the "types" array */
|
| + int maxdtlength; /* Maximum length of any ".datatype" field. */
|
| + char *stddt; /* Standardized name for a datatype */
|
| + int i,j; /* Loop counters */
|
| + int hash; /* For hashing the name of a type */
|
| + const char *name; /* Name of the parser */
|
| +
|
| + /* Allocate and initialize types[] and allocate stddt[] */
|
| + arraysize = lemp->nsymbol * 2;
|
| + types = (char**)calloc( arraysize, sizeof(char*) );
|
| + for(i=0; i<arraysize; i++) types[i] = 0;
|
| + maxdtlength = 0;
|
| + if( lemp->vartype ){
|
| + maxdtlength = lemonStrlen(lemp->vartype);
|
| + }
|
| + for(i=0; i<lemp->nsymbol; i++){
|
| + int len;
|
| + struct symbol *sp = lemp->symbols[i];
|
| + if( sp->datatype==0 ) continue;
|
| + len = lemonStrlen(sp->datatype);
|
| + if( len>maxdtlength ) maxdtlength = len;
|
| + }
|
| + stddt = (char*)malloc( maxdtlength*2 + 1 );
|
| + if( types==0 || stddt==0 ){
|
| + fprintf(stderr,"Out of memory.\n");
|
| + exit(1);
|
| + }
|
| +
|
| + /* Build a hash table of datatypes. The ".dtnum" field of each symbol
|
| + ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
|
| + ** used for terminal symbols. If there is no %default_type defined then
|
| + ** 0 is also used as the .dtnum value for nonterminals which do not specify
|
| + ** a datatype using the %type directive.
|
| + */
|
| + for(i=0; i<lemp->nsymbol; i++){
|
| + struct symbol *sp = lemp->symbols[i];
|
| + char *cp;
|
| + if( sp==lemp->errsym ){
|
| + sp->dtnum = arraysize+1;
|
| + continue;
|
| + }
|
| + if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
|
| + sp->dtnum = 0;
|
| + continue;
|
| + }
|
| + cp = sp->datatype;
|
| + if( cp==0 ) cp = lemp->vartype;
|
| + j = 0;
|
| + while( isspace(*cp) ) cp++;
|
| + while( *cp ) stddt[j++] = *cp++;
|
| + while( j>0 && isspace(stddt[j-1]) ) j--;
|
| + stddt[j] = 0;
|
| + if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
|
| + sp->dtnum = 0;
|
| + continue;
|
| + }
|
| + hash = 0;
|
| + for(j=0; stddt[j]; j++){
|
| + hash = hash*53 + stddt[j];
|
| + }
|
| + hash = (hash & 0x7fffffff)%arraysize;
|
| + while( types[hash] ){
|
| + if( strcmp(types[hash],stddt)==0 ){
|
| + sp->dtnum = hash + 1;
|
| + break;
|
| + }
|
| + hash++;
|
| + if( hash>=arraysize ) hash = 0;
|
| + }
|
| + if( types[hash]==0 ){
|
| + sp->dtnum = hash + 1;
|
| + types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
|
| + if( types[hash]==0 ){
|
| + fprintf(stderr,"Out of memory.\n");
|
| + exit(1);
|
| + }
|
| + strcpy(types[hash],stddt);
|
| + }
|
| + }
|
| +
|
| + /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
|
| + name = lemp->name ? lemp->name : "Parse";
|
| + lineno = *plineno;
|
| + if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
|
| + fprintf(out,"#define %sTOKENTYPE %s\n",name,
|
| + lemp->tokentype?lemp->tokentype:"void*"); lineno++;
|
| + if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
|
| + fprintf(out,"typedef union {\n"); lineno++;
|
| + fprintf(out," int yyinit;\n"); lineno++;
|
| + fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
|
| + for(i=0; i<arraysize; i++){
|
| + if( types[i]==0 ) continue;
|
| + fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
|
| + free(types[i]);
|
| + }
|
| + if( lemp->errsym->useCnt ){
|
| + fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
|
| + }
|
| + free(stddt);
|
| + free(types);
|
| + fprintf(out,"} YYMINORTYPE;\n"); lineno++;
|
| + *plineno = lineno;
|
| +}
|
| +
|
| +/*
|
| +** Return the name of a C datatype able to represent values between
|
| +** lwr and upr, inclusive.
|
| +*/
|
| +static const char *minimum_size_type(int lwr, int upr){
|
| + if( lwr>=0 ){
|
| + if( upr<=255 ){
|
| + return "unsigned char";
|
| + }else if( upr<65535 ){
|
| + return "unsigned short int";
|
| + }else{
|
| + return "unsigned int";
|
| + }
|
| + }else if( lwr>=-127 && upr<=127 ){
|
| + return "signed char";
|
| + }else if( lwr>=-32767 && upr<32767 ){
|
| + return "short";
|
| + }else{
|
| + return "int";
|
| + }
|
| +}
|
| +
|
| +/*
|
| +** Each state contains a set of token transaction and a set of
|
| +** nonterminal transactions. Each of these sets makes an instance
|
| +** of the following structure. An array of these structures is used
|
| +** to order the creation of entries in the yy_action[] table.
|
| +*/
|
| +struct axset {
|
| + struct state *stp; /* A pointer to a state */
|
| + int isTkn; /* True to use tokens. False for non-terminals */
|
| + int nAction; /* Number of actions */
|
| + int iOrder; /* Original order of action sets */
|
| +};
|
| +
|
| +/*
|
| +** Compare to axset structures for sorting purposes
|
| +*/
|
| +static int axset_compare(const void *a, const void *b){
|
| + struct axset *p1 = (struct axset*)a;
|
| + struct axset *p2 = (struct axset*)b;
|
| + int c;
|
| + c = p2->nAction - p1->nAction;
|
| + if( c==0 ){
|
| + c = p2->iOrder - p1->iOrder;
|
| + }
|
| + assert( c!=0 || p1==p2 );
|
| + return c;
|
| +}
|
| +
|
| +/*
|
| +** Write text on "out" that describes the rule "rp".
|
| +*/
|
| +static void writeRuleText(FILE *out, struct rule *rp){
|
| + int j;
|
| + fprintf(out,"%s ::=", rp->lhs->name);
|
| + for(j=0; j<rp->nrhs; j++){
|
| + struct symbol *sp = rp->rhs[j];
|
| + fprintf(out," %s", sp->name);
|
| + if( sp->type==MULTITERMINAL ){
|
| + int k;
|
| + for(k=1; k<sp->nsubsym; k++){
|
| + fprintf(out,"|%s",sp->subsym[k]->name);
|
| + }
|
| + }
|
| + }
|
| +}
|
| +
|
| +
|
| +/* Generate C source code for the parser */
|
| +void ReportTable(
|
| + struct lemon *lemp,
|
| + int mhflag /* Output in makeheaders format if true */
|
| +){
|
| + FILE *out, *in;
|
| + char line[LINESIZE];
|
| + int lineno;
|
| + struct state *stp;
|
| + struct action *ap;
|
| + struct rule *rp;
|
| + struct acttab *pActtab;
|
| + int i, j, n;
|
| + const char *name;
|
| + int mnTknOfst, mxTknOfst;
|
| + int mnNtOfst, mxNtOfst;
|
| + struct axset *ax;
|
| +
|
| + in = tplt_open(lemp);
|
| + if( in==0 ) return;
|
| + out = file_open(lemp,".c","wb");
|
| + if( out==0 ){
|
| + fclose(in);
|
| + return;
|
| + }
|
| + lineno = 1;
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate the include code, if any */
|
| + tplt_print(out,lemp,lemp->include,&lineno);
|
| + if( mhflag ){
|
| + char *name = file_makename(lemp, ".h");
|
| + fprintf(out,"#include \"%s\"\n", name); lineno++;
|
| + free(name);
|
| + }
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate #defines for all tokens */
|
| + if( mhflag ){
|
| + const char *prefix;
|
| + fprintf(out,"#if INTERFACE\n"); lineno++;
|
| + if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
|
| + else prefix = "";
|
| + for(i=1; i<lemp->nterminal; i++){
|
| + fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
|
| + lineno++;
|
| + }
|
| + fprintf(out,"#endif\n"); lineno++;
|
| + }
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate the defines */
|
| + fprintf(out,"#define YYCODETYPE %s\n",
|
| + minimum_size_type(0, lemp->nsymbol+1)); lineno++;
|
| + fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++;
|
| + fprintf(out,"#define YYACTIONTYPE %s\n",
|
| + minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++;
|
| + if( lemp->wildcard ){
|
| + fprintf(out,"#define YYWILDCARD %d\n",
|
| + lemp->wildcard->index); lineno++;
|
| + }
|
| + print_stack_union(out,lemp,&lineno,mhflag);
|
| + fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
|
| + if( lemp->stacksize ){
|
| + fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
|
| + }else{
|
| + fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
|
| + }
|
| + fprintf(out, "#endif\n"); lineno++;
|
| + if( mhflag ){
|
| + fprintf(out,"#if INTERFACE\n"); lineno++;
|
| + }
|
| + name = lemp->name ? lemp->name : "Parse";
|
| + if( lemp->arg && lemp->arg[0] ){
|
| + int i;
|
| + i = lemonStrlen(lemp->arg);
|
| + while( i>=1 && isspace(lemp->arg[i-1]) ) i--;
|
| + while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
|
| + fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
|
| + fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
|
| + fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n",
|
| + name,lemp->arg,&lemp->arg[i]); lineno++;
|
| + fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n",
|
| + name,&lemp->arg[i],&lemp->arg[i]); lineno++;
|
| + }else{
|
| + fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
|
| + fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
|
| + fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
|
| + fprintf(out,"#define %sARG_STORE\n",name); lineno++;
|
| + }
|
| + if( mhflag ){
|
| + fprintf(out,"#endif\n"); lineno++;
|
| + }
|
| + fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++;
|
| + fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
|
| + if( lemp->errsym->useCnt ){
|
| + fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
|
| + fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
|
| + }
|
| + if( lemp->has_fallback ){
|
| + fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
|
| + }
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate the action table and its associates:
|
| + **
|
| + ** yy_action[] A single table containing all actions.
|
| + ** yy_lookahead[] A table containing the lookahead for each entry in
|
| + ** yy_action. Used to detect hash collisions.
|
| + ** yy_shift_ofst[] For each state, the offset into yy_action for
|
| + ** shifting terminals.
|
| + ** yy_reduce_ofst[] For each state, the offset into yy_action for
|
| + ** shifting non-terminals after a reduce.
|
| + ** yy_default[] Default action for each state.
|
| + */
|
| +
|
| + /* Compute the actions on all states and count them up */
|
| + ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0]));
|
| + if( ax==0 ){
|
| + fprintf(stderr,"malloc failed\n");
|
| + exit(1);
|
| + }
|
| + for(i=0; i<lemp->nstate; i++){
|
| + stp = lemp->sorted[i];
|
| + ax[i*2].stp = stp;
|
| + ax[i*2].isTkn = 1;
|
| + ax[i*2].nAction = stp->nTknAct;
|
| + ax[i*2+1].stp = stp;
|
| + ax[i*2+1].isTkn = 0;
|
| + ax[i*2+1].nAction = stp->nNtAct;
|
| + }
|
| + mxTknOfst = mnTknOfst = 0;
|
| + mxNtOfst = mnNtOfst = 0;
|
| +
|
| + /* Compute the action table. In order to try to keep the size of the
|
| + ** action table to a minimum, the heuristic of placing the largest action
|
| + ** sets first is used.
|
| + */
|
| + for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i;
|
| + qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare);
|
| + pActtab = acttab_alloc();
|
| + for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){
|
| + stp = ax[i].stp;
|
| + if( ax[i].isTkn ){
|
| + for(ap=stp->ap; ap; ap=ap->next){
|
| + int action;
|
| + if( ap->sp->index>=lemp->nterminal ) continue;
|
| + action = compute_action(lemp, ap);
|
| + if( action<0 ) continue;
|
| + acttab_action(pActtab, ap->sp->index, action);
|
| + }
|
| + stp->iTknOfst = acttab_insert(pActtab);
|
| + if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
|
| + if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
|
| + }else{
|
| + for(ap=stp->ap; ap; ap=ap->next){
|
| + int action;
|
| + if( ap->sp->index<lemp->nterminal ) continue;
|
| + if( ap->sp->index==lemp->nsymbol ) continue;
|
| + action = compute_action(lemp, ap);
|
| + if( action<0 ) continue;
|
| + acttab_action(pActtab, ap->sp->index, action);
|
| + }
|
| + stp->iNtOfst = acttab_insert(pActtab);
|
| + if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
|
| + if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
|
| + }
|
| + }
|
| + free(ax);
|
| +
|
| + /* Output the yy_action table */
|
| + n = acttab_size(pActtab);
|
| + fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
|
| + fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
|
| + for(i=j=0; i<n; i++){
|
| + int action = acttab_yyaction(pActtab, i);
|
| + if( action<0 ) action = lemp->nstate + lemp->nrule + 2;
|
| + if( j==0 ) fprintf(out," /* %5d */ ", i);
|
| + fprintf(out, " %4d,", action);
|
| + if( j==9 || i==n-1 ){
|
| + fprintf(out, "\n"); lineno++;
|
| + j = 0;
|
| + }else{
|
| + j++;
|
| + }
|
| + }
|
| + fprintf(out, "};\n"); lineno++;
|
| +
|
| + /* Output the yy_lookahead table */
|
| + fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
|
| + for(i=j=0; i<n; i++){
|
| + int la = acttab_yylookahead(pActtab, i);
|
| + if( la<0 ) la = lemp->nsymbol;
|
| + if( j==0 ) fprintf(out," /* %5d */ ", i);
|
| + fprintf(out, " %4d,", la);
|
| + if( j==9 || i==n-1 ){
|
| + fprintf(out, "\n"); lineno++;
|
| + j = 0;
|
| + }else{
|
| + j++;
|
| + }
|
| + }
|
| + fprintf(out, "};\n"); lineno++;
|
| +
|
| + /* Output the yy_shift_ofst[] table */
|
| + fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++;
|
| + n = lemp->nstate;
|
| + while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
|
| + fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
|
| + fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
|
| + fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
|
| + fprintf(out, "static const %s yy_shift_ofst[] = {\n",
|
| + minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++;
|
| + for(i=j=0; i<n; i++){
|
| + int ofst;
|
| + stp = lemp->sorted[i];
|
| + ofst = stp->iTknOfst;
|
| + if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1;
|
| + if( j==0 ) fprintf(out," /* %5d */ ", i);
|
| + fprintf(out, " %4d,", ofst);
|
| + if( j==9 || i==n-1 ){
|
| + fprintf(out, "\n"); lineno++;
|
| + j = 0;
|
| + }else{
|
| + j++;
|
| + }
|
| + }
|
| + fprintf(out, "};\n"); lineno++;
|
| +
|
| + /* Output the yy_reduce_ofst[] table */
|
| + fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++;
|
| + n = lemp->nstate;
|
| + while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
|
| + fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
|
| + fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
|
| + fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
|
| + fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
|
| + minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++;
|
| + for(i=j=0; i<n; i++){
|
| + int ofst;
|
| + stp = lemp->sorted[i];
|
| + ofst = stp->iNtOfst;
|
| + if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
|
| + if( j==0 ) fprintf(out," /* %5d */ ", i);
|
| + fprintf(out, " %4d,", ofst);
|
| + if( j==9 || i==n-1 ){
|
| + fprintf(out, "\n"); lineno++;
|
| + j = 0;
|
| + }else{
|
| + j++;
|
| + }
|
| + }
|
| + fprintf(out, "};\n"); lineno++;
|
| +
|
| + /* Output the default action table */
|
| + fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
|
| + n = lemp->nstate;
|
| + for(i=j=0; i<n; i++){
|
| + stp = lemp->sorted[i];
|
| + if( j==0 ) fprintf(out," /* %5d */ ", i);
|
| + fprintf(out, " %4d,", stp->iDflt);
|
| + if( j==9 || i==n-1 ){
|
| + fprintf(out, "\n"); lineno++;
|
| + j = 0;
|
| + }else{
|
| + j++;
|
| + }
|
| + }
|
| + fprintf(out, "};\n"); lineno++;
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate the table of fallback tokens.
|
| + */
|
| + if( lemp->has_fallback ){
|
| + int mx = lemp->nterminal - 1;
|
| + while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; }
|
| + for(i=0; i<=mx; i++){
|
| + struct symbol *p = lemp->symbols[i];
|
| + if( p->fallback==0 ){
|
| + fprintf(out, " 0, /* %10s => nothing */\n", p->name);
|
| + }else{
|
| + fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
|
| + p->name, p->fallback->name);
|
| + }
|
| + lineno++;
|
| + }
|
| + }
|
| + tplt_xfer(lemp->name, in, out, &lineno);
|
| +
|
| + /* Generate a table containing the symbolic name of every symbol
|
| + */
|
| + for(i=0; i<lemp->nsymbol; i++){
|
| + sprintf(line,"\"%s\",",lemp->symbols[i]->name);
|
| + fprintf(out," %-15s",line);
|
| + if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; }
|
| + }
|
| + if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; }
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate a table containing a text string that describes every
|
| + ** rule in the rule set of the grammar. This information is used
|
| + ** when tracing REDUCE actions.
|
| + */
|
| + for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
|
| + assert( rp->index==i );
|
| + fprintf(out," /* %3d */ \"", i);
|
| + writeRuleText(out, rp);
|
| + fprintf(out,"\",\n"); lineno++;
|
| + }
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate code which executes every time a symbol is popped from
|
| + ** the stack while processing errors or while destroying the parser.
|
| + ** (In other words, generate the %destructor actions)
|
| + */
|
| + if( lemp->tokendest ){
|
| + int once = 1;
|
| + for(i=0; i<lemp->nsymbol; i++){
|
| + struct symbol *sp = lemp->symbols[i];
|
| + if( sp==0 || sp->type!=TERMINAL ) continue;
|
| + if( once ){
|
| + fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
|
| + once = 0;
|
| + }
|
| + fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
|
| + }
|
| + for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
|
| + if( i<lemp->nsymbol ){
|
| + emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
|
| + fprintf(out," break;\n"); lineno++;
|
| + }
|
| + }
|
| + if( lemp->vardest ){
|
| + struct symbol *dflt_sp = 0;
|
| + int once = 1;
|
| + for(i=0; i<lemp->nsymbol; i++){
|
| + struct symbol *sp = lemp->symbols[i];
|
| + if( sp==0 || sp->type==TERMINAL ||
|
| + sp->index<=0 || sp->destructor!=0 ) continue;
|
| + if( once ){
|
| + fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++;
|
| + once = 0;
|
| + }
|
| + fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
|
| + dflt_sp = sp;
|
| + }
|
| + if( dflt_sp!=0 ){
|
| + emit_destructor_code(out,dflt_sp,lemp,&lineno);
|
| + }
|
| + fprintf(out," break;\n"); lineno++;
|
| + }
|
| + for(i=0; i<lemp->nsymbol; i++){
|
| + struct symbol *sp = lemp->symbols[i];
|
| + if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
|
| + fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
|
| +
|
| + /* Combine duplicate destructors into a single case */
|
| + for(j=i+1; j<lemp->nsymbol; j++){
|
| + struct symbol *sp2 = lemp->symbols[j];
|
| + if( sp2 && sp2->type!=TERMINAL && sp2->destructor
|
| + && sp2->dtnum==sp->dtnum
|
| + && strcmp(sp->destructor,sp2->destructor)==0 ){
|
| + fprintf(out," case %d: /* %s */\n",
|
| + sp2->index, sp2->name); lineno++;
|
| + sp2->destructor = 0;
|
| + }
|
| + }
|
| +
|
| + emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
|
| + fprintf(out," break;\n"); lineno++;
|
| + }
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate code which executes whenever the parser stack overflows */
|
| + tplt_print(out,lemp,lemp->overflow,&lineno);
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate the table of rule information
|
| + **
|
| + ** Note: This code depends on the fact that rules are number
|
| + ** sequentually beginning with 0.
|
| + */
|
| + for(rp=lemp->rule; rp; rp=rp->next){
|
| + fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++;
|
| + }
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate code which execution during each REDUCE action */
|
| + for(rp=lemp->rule; rp; rp=rp->next){
|
| + translate_code(lemp, rp);
|
| + }
|
| + /* First output rules other than the default: rule */
|
| + for(rp=lemp->rule; rp; rp=rp->next){
|
| + struct rule *rp2; /* Other rules with the same action */
|
| + if( rp->code==0 ) continue;
|
| + if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */
|
| + fprintf(out," case %d: /* ", rp->index);
|
| + writeRuleText(out, rp);
|
| + fprintf(out, " */\n"); lineno++;
|
| + for(rp2=rp->next; rp2; rp2=rp2->next){
|
| + if( rp2->code==rp->code ){
|
| + fprintf(out," case %d: /* ", rp2->index);
|
| + writeRuleText(out, rp2);
|
| + fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++;
|
| + rp2->code = 0;
|
| + }
|
| + }
|
| + emit_code(out,rp,lemp,&lineno);
|
| + fprintf(out," break;\n"); lineno++;
|
| + rp->code = 0;
|
| + }
|
| + /* Finally, output the default: rule. We choose as the default: all
|
| + ** empty actions. */
|
| + fprintf(out," default:\n"); lineno++;
|
| + for(rp=lemp->rule; rp; rp=rp->next){
|
| + if( rp->code==0 ) continue;
|
| + assert( rp->code[0]=='\n' && rp->code[1]==0 );
|
| + fprintf(out," /* (%d) ", rp->index);
|
| + writeRuleText(out, rp);
|
| + fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++;
|
| + }
|
| + fprintf(out," break;\n"); lineno++;
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate code which executes if a parse fails */
|
| + tplt_print(out,lemp,lemp->failure,&lineno);
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate code which executes when a syntax error occurs */
|
| + tplt_print(out,lemp,lemp->error,&lineno);
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Generate code which executes when the parser accepts its input */
|
| + tplt_print(out,lemp,lemp->accept,&lineno);
|
| + tplt_xfer(lemp->name,in,out,&lineno);
|
| +
|
| + /* Append any addition code the user desires */
|
| + tplt_print(out,lemp,lemp->extracode,&lineno);
|
| +
|
| + fclose(in);
|
| + fclose(out);
|
| + return;
|
| +}
|
| +
|
| +/* Generate a header file for the parser */
|
| +void ReportHeader(struct lemon *lemp)
|
| +{
|
| + FILE *out, *in;
|
| + const char *prefix;
|
| + char line[LINESIZE];
|
| + char pattern[LINESIZE];
|
| + int i;
|
| +
|
| + if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
|
| + else prefix = "";
|
| + in = file_open(lemp,".h","rb");
|
| + if( in ){
|
| + for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
|
| + sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
|
| + if( strcmp(line,pattern) ) break;
|
| + }
|
| + fclose(in);
|
| + if( i==lemp->nterminal ){
|
| + /* No change in the file. Don't rewrite it. */
|
| + return;
|
| + }
|
| + }
|
| + out = file_open(lemp,".h","wb");
|
| + if( out ){
|
| + for(i=1; i<lemp->nterminal; i++){
|
| + fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
|
| + }
|
| + fclose(out);
|
| + }
|
| + return;
|
| +}
|
| +
|
| +/* Reduce the size of the action tables, if possible, by making use
|
| +** of defaults.
|
| +**
|
| +** In this version, we take the most frequent REDUCE action and make
|
| +** it the default. Except, there is no default if the wildcard token
|
| +** is a possible look-ahead.
|
| +*/
|
| +void CompressTables(struct lemon *lemp)
|
| +{
|
| + struct state *stp;
|
| + struct action *ap, *ap2;
|
| + struct rule *rp, *rp2, *rbest;
|
| + int nbest, n;
|
| + int i;
|
| + int usesWildcard;
|
| +
|
| + for(i=0; i<lemp->nstate; i++){
|
| + stp = lemp->sorted[i];
|
| + nbest = 0;
|
| + rbest = 0;
|
| + usesWildcard = 0;
|
| +
|
| + for(ap=stp->ap; ap; ap=ap->next){
|
| + if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
|
| + usesWildcard = 1;
|
| + }
|
| + if( ap->type!=REDUCE ) continue;
|
| + rp = ap->x.rp;
|
| + if( rp->lhsStart ) continue;
|
| + if( rp==rbest ) continue;
|
| + n = 1;
|
| + for(ap2=ap->next; ap2; ap2=ap2->next){
|
| + if( ap2->type!=REDUCE ) continue;
|
| + rp2 = ap2->x.rp;
|
| + if( rp2==rbest ) continue;
|
| + if( rp2==rp ) n++;
|
| + }
|
| + if( n>nbest ){
|
| + nbest = n;
|
| + rbest = rp;
|
| + }
|
| + }
|
| +
|
| + /* Do not make a default if the number of rules to default
|
| + ** is not at least 1 or if the wildcard token is a possible
|
| + ** lookahead.
|
| + */
|
| + if( nbest<1 || usesWildcard ) continue;
|
| +
|
| +
|
| + /* Combine matching REDUCE actions into a single default */
|
| + for(ap=stp->ap; ap; ap=ap->next){
|
| + if( ap->type==REDUCE && ap->x.rp==rbest ) break;
|
| + }
|
| + assert( ap );
|
| + ap->sp = Symbol_new("{default}");
|
| + for(ap=ap->next; ap; ap=ap->next){
|
| + if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
|
| + }
|
| + stp->ap = Action_sort(stp->ap);
|
| + }
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Compare two states for sorting purposes. The smaller state is the
|
| +** one with the most non-terminal actions. If they have the same number
|
| +** of non-terminal actions, then the smaller is the one with the most
|
| +** token actions.
|
| +*/
|
| +static int stateResortCompare(const void *a, const void *b){
|
| + const struct state *pA = *(const struct state**)a;
|
| + const struct state *pB = *(const struct state**)b;
|
| + int n;
|
| +
|
| + n = pB->nNtAct - pA->nNtAct;
|
| + if( n==0 ){
|
| + n = pB->nTknAct - pA->nTknAct;
|
| + if( n==0 ){
|
| + n = pB->statenum - pA->statenum;
|
| + }
|
| + }
|
| + assert( n!=0 );
|
| + return n;
|
| +}
|
| +
|
| +
|
| +/*
|
| +** Renumber and resort states so that states with fewer choices
|
| +** occur at the end. Except, keep state 0 as the first state.
|
| +*/
|
| +void ResortStates(struct lemon *lemp)
|
| +{
|
| + int i;
|
| + struct state *stp;
|
| + struct action *ap;
|
| +
|
| + for(i=0; i<lemp->nstate; i++){
|
| + stp = lemp->sorted[i];
|
| + stp->nTknAct = stp->nNtAct = 0;
|
| + stp->iDflt = lemp->nstate + lemp->nrule;
|
| + stp->iTknOfst = NO_OFFSET;
|
| + stp->iNtOfst = NO_OFFSET;
|
| + for(ap=stp->ap; ap; ap=ap->next){
|
| + if( compute_action(lemp,ap)>=0 ){
|
| + if( ap->sp->index<lemp->nterminal ){
|
| + stp->nTknAct++;
|
| + }else if( ap->sp->index<lemp->nsymbol ){
|
| + stp->nNtAct++;
|
| + }else{
|
| + stp->iDflt = compute_action(lemp, ap);
|
| + }
|
| + }
|
| + }
|
| + }
|
| + qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
|
| + stateResortCompare);
|
| + for(i=0; i<lemp->nstate; i++){
|
| + lemp->sorted[i]->statenum = i;
|
| + }
|
| +}
|
| +
|
| +
|
| +/***************** From the file "set.c" ************************************/
|
| +/*
|
| +** Set manipulation routines for the LEMON parser generator.
|
| +*/
|
| +
|
| +static int size = 0;
|
| +
|
| +/* Set the set size */
|
| +void SetSize(int n)
|
| +{
|
| + size = n+1;
|
| +}
|
| +
|
| +/* Allocate a new set */
|
| +char *SetNew(){
|
| + char *s;
|
| + s = (char*)calloc( size, 1);
|
| + if( s==0 ){
|
| + extern void memory_error();
|
| + memory_error();
|
| + }
|
| + return s;
|
| +}
|
| +
|
| +/* Deallocate a set */
|
| +void SetFree(char *s)
|
| +{
|
| + free(s);
|
| +}
|
| +
|
| +/* Add a new element to the set. Return TRUE if the element was added
|
| +** and FALSE if it was already there. */
|
| +int SetAdd(char *s, int e)
|
| +{
|
| + int rv;
|
| + assert( e>=0 && e<size );
|
| + rv = s[e];
|
| + s[e] = 1;
|
| + return !rv;
|
| +}
|
| +
|
| +/* Add every element of s2 to s1. Return TRUE if s1 changes. */
|
| +int SetUnion(char *s1, char *s2)
|
| +{
|
| + int i, progress;
|
| + progress = 0;
|
| + for(i=0; i<size; i++){
|
| + if( s2[i]==0 ) continue;
|
| + if( s1[i]==0 ){
|
| + progress = 1;
|
| + s1[i] = 1;
|
| + }
|
| + }
|
| + return progress;
|
| +}
|
| +/********************** From the file "table.c" ****************************/
|
| +/*
|
| +** All code in this file has been automatically generated
|
| +** from a specification in the file
|
| +** "table.q"
|
| +** by the associative array code building program "aagen".
|
| +** Do not edit this file! Instead, edit the specification
|
| +** file, then rerun aagen.
|
| +*/
|
| +/*
|
| +** Code for processing tables in the LEMON parser generator.
|
| +*/
|
| +
|
| +PRIVATE int strhash(const char *x)
|
| +{
|
| + int h = 0;
|
| + while( *x) h = h*13 + *(x++);
|
| + return h;
|
| +}
|
| +
|
| +/* Works like strdup, sort of. Save a string in malloced memory, but
|
| +** keep strings in a table so that the same string is not in more
|
| +** than one place.
|
| +*/
|
| +const char *Strsafe(const char *y)
|
| +{
|
| + const char *z;
|
| + char *cpy;
|
| +
|
| + if( y==0 ) return 0;
|
| + z = Strsafe_find(y);
|
| + if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
|
| + strcpy(cpy,y);
|
| + z = cpy;
|
| + Strsafe_insert(z);
|
| + }
|
| + MemoryCheck(z);
|
| + return z;
|
| +}
|
| +
|
| +/* There is one instance of the following structure for each
|
| +** associative array of type "x1".
|
| +*/
|
| +struct s_x1 {
|
| + int size; /* The number of available slots. */
|
| + /* Must be a power of 2 greater than or */
|
| + /* equal to 1 */
|
| + int count; /* Number of currently slots filled */
|
| + struct s_x1node *tbl; /* The data stored here */
|
| + struct s_x1node **ht; /* Hash table for lookups */
|
| +};
|
| +
|
| +/* There is one instance of this structure for every data element
|
| +** in an associative array of type "x1".
|
| +*/
|
| +typedef struct s_x1node {
|
| + const char *data; /* The data */
|
| + struct s_x1node *next; /* Next entry with the same hash */
|
| + struct s_x1node **from; /* Previous link */
|
| +} x1node;
|
| +
|
| +/* There is only one instance of the array, which is the following */
|
| +static struct s_x1 *x1a;
|
| +
|
| +/* Allocate a new associative array */
|
| +void Strsafe_init(){
|
| + if( x1a ) return;
|
| + x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
|
| + if( x1a ){
|
| + x1a->size = 1024;
|
| + x1a->count = 0;
|
| + x1a->tbl = (x1node*)malloc(
|
| + (sizeof(x1node) + sizeof(x1node*))*1024 );
|
| + if( x1a->tbl==0 ){
|
| + free(x1a);
|
| + x1a = 0;
|
| + }else{
|
| + int i;
|
| + x1a->ht = (x1node**)&(x1a->tbl[1024]);
|
| + for(i=0; i<1024; i++) x1a->ht[i] = 0;
|
| + }
|
| + }
|
| +}
|
| +/* Insert a new record into the array. Return TRUE if successful.
|
| +** Prior data with the same key is NOT overwritten */
|
| +int Strsafe_insert(const char *data)
|
| +{
|
| + x1node *np;
|
| + int h;
|
| + int ph;
|
| +
|
| + if( x1a==0 ) return 0;
|
| + ph = strhash(data);
|
| + h = ph & (x1a->size-1);
|
| + np = x1a->ht[h];
|
| + while( np ){
|
| + if( strcmp(np->data,data)==0 ){
|
| + /* An existing entry with the same key is found. */
|
| + /* Fail because overwrite is not allows. */
|
| + return 0;
|
| + }
|
| + np = np->next;
|
| + }
|
| + if( x1a->count>=x1a->size ){
|
| + /* Need to make the hash table bigger */
|
| + int i,size;
|
| + struct s_x1 array;
|
| + array.size = size = x1a->size*2;
|
| + array.count = x1a->count;
|
| + array.tbl = (x1node*)malloc(
|
| + (sizeof(x1node) + sizeof(x1node*))*size );
|
| + if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
| + array.ht = (x1node**)&(array.tbl[size]);
|
| + for(i=0; i<size; i++) array.ht[i] = 0;
|
| + for(i=0; i<x1a->count; i++){
|
| + x1node *oldnp, *newnp;
|
| + oldnp = &(x1a->tbl[i]);
|
| + h = strhash(oldnp->data) & (size-1);
|
| + newnp = &(array.tbl[i]);
|
| + if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
| + newnp->next = array.ht[h];
|
| + newnp->data = oldnp->data;
|
| + newnp->from = &(array.ht[h]);
|
| + array.ht[h] = newnp;
|
| + }
|
| + free(x1a->tbl);
|
| + *x1a = array;
|
| + }
|
| + /* Insert the new data */
|
| + h = ph & (x1a->size-1);
|
| + np = &(x1a->tbl[x1a->count++]);
|
| + np->data = data;
|
| + if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
|
| + np->next = x1a->ht[h];
|
| + x1a->ht[h] = np;
|
| + np->from = &(x1a->ht[h]);
|
| + return 1;
|
| +}
|
| +
|
| +/* Return a pointer to data assigned to the given key. Return NULL
|
| +** if no such key. */
|
| +const char *Strsafe_find(const char *key)
|
| +{
|
| + int h;
|
| + x1node *np;
|
| +
|
| + if( x1a==0 ) return 0;
|
| + h = strhash(key) & (x1a->size-1);
|
| + np = x1a->ht[h];
|
| + while( np ){
|
| + if( strcmp(np->data,key)==0 ) break;
|
| + np = np->next;
|
| + }
|
| + return np ? np->data : 0;
|
| +}
|
| +
|
| +/* Return a pointer to the (terminal or nonterminal) symbol "x".
|
| +** Create a new symbol if this is the first time "x" has been seen.
|
| +*/
|
| +struct symbol *Symbol_new(const char *x)
|
| +{
|
| + struct symbol *sp;
|
| +
|
| + sp = Symbol_find(x);
|
| + if( sp==0 ){
|
| + sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
|
| + MemoryCheck(sp);
|
| + sp->name = Strsafe(x);
|
| + sp->type = isupper(*x) ? TERMINAL : NONTERMINAL;
|
| + sp->rule = 0;
|
| + sp->fallback = 0;
|
| + sp->prec = -1;
|
| + sp->assoc = UNK;
|
| + sp->firstset = 0;
|
| + sp->lambda = LEMON_FALSE;
|
| + sp->destructor = 0;
|
| + sp->destLineno = 0;
|
| + sp->datatype = 0;
|
| + sp->useCnt = 0;
|
| + Symbol_insert(sp,sp->name);
|
| + }
|
| + sp->useCnt++;
|
| + return sp;
|
| +}
|
| +
|
| +/* Compare two symbols for working purposes
|
| +**
|
| +** Symbols that begin with upper case letters (terminals or tokens)
|
| +** must sort before symbols that begin with lower case letters
|
| +** (non-terminals). Other than that, the order does not matter.
|
| +**
|
| +** We find experimentally that leaving the symbols in their original
|
| +** order (the order they appeared in the grammar file) gives the
|
| +** smallest parser tables in SQLite.
|
| +*/
|
| +int Symbolcmpp(const void *_a, const void *_b)
|
| +{
|
| + const struct symbol **a = (const struct symbol **) _a;
|
| + const struct symbol **b = (const struct symbol **) _b;
|
| + int i1 = (**a).index + 10000000*((**a).name[0]>'Z');
|
| + int i2 = (**b).index + 10000000*((**b).name[0]>'Z');
|
| + assert( i1!=i2 || strcmp((**a).name,(**b).name)==0 );
|
| + return i1-i2;
|
| +}
|
| +
|
| +/* There is one instance of the following structure for each
|
| +** associative array of type "x2".
|
| +*/
|
| +struct s_x2 {
|
| + int size; /* The number of available slots. */
|
| + /* Must be a power of 2 greater than or */
|
| + /* equal to 1 */
|
| + int count; /* Number of currently slots filled */
|
| + struct s_x2node *tbl; /* The data stored here */
|
| + struct s_x2node **ht; /* Hash table for lookups */
|
| +};
|
| +
|
| +/* There is one instance of this structure for every data element
|
| +** in an associative array of type "x2".
|
| +*/
|
| +typedef struct s_x2node {
|
| + struct symbol *data; /* The data */
|
| + const char *key; /* The key */
|
| + struct s_x2node *next; /* Next entry with the same hash */
|
| + struct s_x2node **from; /* Previous link */
|
| +} x2node;
|
| +
|
| +/* There is only one instance of the array, which is the following */
|
| +static struct s_x2 *x2a;
|
| +
|
| +/* Allocate a new associative array */
|
| +void Symbol_init(){
|
| + if( x2a ) return;
|
| + x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
|
| + if( x2a ){
|
| + x2a->size = 128;
|
| + x2a->count = 0;
|
| + x2a->tbl = (x2node*)malloc(
|
| + (sizeof(x2node) + sizeof(x2node*))*128 );
|
| + if( x2a->tbl==0 ){
|
| + free(x2a);
|
| + x2a = 0;
|
| + }else{
|
| + int i;
|
| + x2a->ht = (x2node**)&(x2a->tbl[128]);
|
| + for(i=0; i<128; i++) x2a->ht[i] = 0;
|
| + }
|
| + }
|
| +}
|
| +/* Insert a new record into the array. Return TRUE if successful.
|
| +** Prior data with the same key is NOT overwritten */
|
| +int Symbol_insert(struct symbol *data, const char *key)
|
| +{
|
| + x2node *np;
|
| + int h;
|
| + int ph;
|
| +
|
| + if( x2a==0 ) return 0;
|
| + ph = strhash(key);
|
| + h = ph & (x2a->size-1);
|
| + np = x2a->ht[h];
|
| + while( np ){
|
| + if( strcmp(np->key,key)==0 ){
|
| + /* An existing entry with the same key is found. */
|
| + /* Fail because overwrite is not allows. */
|
| + return 0;
|
| + }
|
| + np = np->next;
|
| + }
|
| + if( x2a->count>=x2a->size ){
|
| + /* Need to make the hash table bigger */
|
| + int i,size;
|
| + struct s_x2 array;
|
| + array.size = size = x2a->size*2;
|
| + array.count = x2a->count;
|
| + array.tbl = (x2node*)malloc(
|
| + (sizeof(x2node) + sizeof(x2node*))*size );
|
| + if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
| + array.ht = (x2node**)&(array.tbl[size]);
|
| + for(i=0; i<size; i++) array.ht[i] = 0;
|
| + for(i=0; i<x2a->count; i++){
|
| + x2node *oldnp, *newnp;
|
| + oldnp = &(x2a->tbl[i]);
|
| + h = strhash(oldnp->key) & (size-1);
|
| + newnp = &(array.tbl[i]);
|
| + if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
| + newnp->next = array.ht[h];
|
| + newnp->key = oldnp->key;
|
| + newnp->data = oldnp->data;
|
| + newnp->from = &(array.ht[h]);
|
| + array.ht[h] = newnp;
|
| + }
|
| + free(x2a->tbl);
|
| + *x2a = array;
|
| + }
|
| + /* Insert the new data */
|
| + h = ph & (x2a->size-1);
|
| + np = &(x2a->tbl[x2a->count++]);
|
| + np->key = key;
|
| + np->data = data;
|
| + if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
|
| + np->next = x2a->ht[h];
|
| + x2a->ht[h] = np;
|
| + np->from = &(x2a->ht[h]);
|
| + return 1;
|
| +}
|
| +
|
| +/* Return a pointer to data assigned to the given key. Return NULL
|
| +** if no such key. */
|
| +struct symbol *Symbol_find(const char *key)
|
| +{
|
| + int h;
|
| + x2node *np;
|
| +
|
| + if( x2a==0 ) return 0;
|
| + h = strhash(key) & (x2a->size-1);
|
| + np = x2a->ht[h];
|
| + while( np ){
|
| + if( strcmp(np->key,key)==0 ) break;
|
| + np = np->next;
|
| + }
|
| + return np ? np->data : 0;
|
| +}
|
| +
|
| +/* Return the n-th data. Return NULL if n is out of range. */
|
| +struct symbol *Symbol_Nth(int n)
|
| +{
|
| + struct symbol *data;
|
| + if( x2a && n>0 && n<=x2a->count ){
|
| + data = x2a->tbl[n-1].data;
|
| + }else{
|
| + data = 0;
|
| + }
|
| + return data;
|
| +}
|
| +
|
| +/* Return the size of the array */
|
| +int Symbol_count()
|
| +{
|
| + return x2a ? x2a->count : 0;
|
| +}
|
| +
|
| +/* Return an array of pointers to all data in the table.
|
| +** The array is obtained from malloc. Return NULL if memory allocation
|
| +** problems, or if the array is empty. */
|
| +struct symbol **Symbol_arrayof()
|
| +{
|
| + struct symbol **array;
|
| + int i,size;
|
| + if( x2a==0 ) return 0;
|
| + size = x2a->count;
|
| + array = (struct symbol **)calloc(size, sizeof(struct symbol *));
|
| + if( array ){
|
| + for(i=0; i<size; i++) array[i] = x2a->tbl[i].data;
|
| + }
|
| + return array;
|
| +}
|
| +
|
| +/* Compare two configurations */
|
| +int Configcmp(const char *_a,const char *_b)
|
| +{
|
| + const struct config *a = (struct config *) _a;
|
| + const struct config *b = (struct config *) _b;
|
| + int x;
|
| + x = a->rp->index - b->rp->index;
|
| + if( x==0 ) x = a->dot - b->dot;
|
| + return x;
|
| +}
|
| +
|
| +/* Compare two states */
|
| +PRIVATE int statecmp(struct config *a, struct config *b)
|
| +{
|
| + int rc;
|
| + for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
|
| + rc = a->rp->index - b->rp->index;
|
| + if( rc==0 ) rc = a->dot - b->dot;
|
| + }
|
| + if( rc==0 ){
|
| + if( a ) rc = 1;
|
| + if( b ) rc = -1;
|
| + }
|
| + return rc;
|
| +}
|
| +
|
| +/* Hash a state */
|
| +PRIVATE int statehash(struct config *a)
|
| +{
|
| + int h=0;
|
| + while( a ){
|
| + h = h*571 + a->rp->index*37 + a->dot;
|
| + a = a->bp;
|
| + }
|
| + return h;
|
| +}
|
| +
|
| +/* Allocate a new state structure */
|
| +struct state *State_new()
|
| +{
|
| + struct state *newstate;
|
| + newstate = (struct state *)calloc(1, sizeof(struct state) );
|
| + MemoryCheck(newstate);
|
| + return newstate;
|
| +}
|
| +
|
| +/* There is one instance of the following structure for each
|
| +** associative array of type "x3".
|
| +*/
|
| +struct s_x3 {
|
| + int size; /* The number of available slots. */
|
| + /* Must be a power of 2 greater than or */
|
| + /* equal to 1 */
|
| + int count; /* Number of currently slots filled */
|
| + struct s_x3node *tbl; /* The data stored here */
|
| + struct s_x3node **ht; /* Hash table for lookups */
|
| +};
|
| +
|
| +/* There is one instance of this structure for every data element
|
| +** in an associative array of type "x3".
|
| +*/
|
| +typedef struct s_x3node {
|
| + struct state *data; /* The data */
|
| + struct config *key; /* The key */
|
| + struct s_x3node *next; /* Next entry with the same hash */
|
| + struct s_x3node **from; /* Previous link */
|
| +} x3node;
|
| +
|
| +/* There is only one instance of the array, which is the following */
|
| +static struct s_x3 *x3a;
|
| +
|
| +/* Allocate a new associative array */
|
| +void State_init(){
|
| + if( x3a ) return;
|
| + x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
|
| + if( x3a ){
|
| + x3a->size = 128;
|
| + x3a->count = 0;
|
| + x3a->tbl = (x3node*)malloc(
|
| + (sizeof(x3node) + sizeof(x3node*))*128 );
|
| + if( x3a->tbl==0 ){
|
| + free(x3a);
|
| + x3a = 0;
|
| + }else{
|
| + int i;
|
| + x3a->ht = (x3node**)&(x3a->tbl[128]);
|
| + for(i=0; i<128; i++) x3a->ht[i] = 0;
|
| + }
|
| + }
|
| +}
|
| +/* Insert a new record into the array. Return TRUE if successful.
|
| +** Prior data with the same key is NOT overwritten */
|
| +int State_insert(struct state *data, struct config *key)
|
| +{
|
| + x3node *np;
|
| + int h;
|
| + int ph;
|
| +
|
| + if( x3a==0 ) return 0;
|
| + ph = statehash(key);
|
| + h = ph & (x3a->size-1);
|
| + np = x3a->ht[h];
|
| + while( np ){
|
| + if( statecmp(np->key,key)==0 ){
|
| + /* An existing entry with the same key is found. */
|
| + /* Fail because overwrite is not allows. */
|
| + return 0;
|
| + }
|
| + np = np->next;
|
| + }
|
| + if( x3a->count>=x3a->size ){
|
| + /* Need to make the hash table bigger */
|
| + int i,size;
|
| + struct s_x3 array;
|
| + array.size = size = x3a->size*2;
|
| + array.count = x3a->count;
|
| + array.tbl = (x3node*)malloc(
|
| + (sizeof(x3node) + sizeof(x3node*))*size );
|
| + if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
| + array.ht = (x3node**)&(array.tbl[size]);
|
| + for(i=0; i<size; i++) array.ht[i] = 0;
|
| + for(i=0; i<x3a->count; i++){
|
| + x3node *oldnp, *newnp;
|
| + oldnp = &(x3a->tbl[i]);
|
| + h = statehash(oldnp->key) & (size-1);
|
| + newnp = &(array.tbl[i]);
|
| + if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
| + newnp->next = array.ht[h];
|
| + newnp->key = oldnp->key;
|
| + newnp->data = oldnp->data;
|
| + newnp->from = &(array.ht[h]);
|
| + array.ht[h] = newnp;
|
| + }
|
| + free(x3a->tbl);
|
| + *x3a = array;
|
| + }
|
| + /* Insert the new data */
|
| + h = ph & (x3a->size-1);
|
| + np = &(x3a->tbl[x3a->count++]);
|
| + np->key = key;
|
| + np->data = data;
|
| + if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
|
| + np->next = x3a->ht[h];
|
| + x3a->ht[h] = np;
|
| + np->from = &(x3a->ht[h]);
|
| + return 1;
|
| +}
|
| +
|
| +/* Return a pointer to data assigned to the given key. Return NULL
|
| +** if no such key. */
|
| +struct state *State_find(struct config *key)
|
| +{
|
| + int h;
|
| + x3node *np;
|
| +
|
| + if( x3a==0 ) return 0;
|
| + h = statehash(key) & (x3a->size-1);
|
| + np = x3a->ht[h];
|
| + while( np ){
|
| + if( statecmp(np->key,key)==0 ) break;
|
| + np = np->next;
|
| + }
|
| + return np ? np->data : 0;
|
| +}
|
| +
|
| +/* Return an array of pointers to all data in the table.
|
| +** The array is obtained from malloc. Return NULL if memory allocation
|
| +** problems, or if the array is empty. */
|
| +struct state **State_arrayof()
|
| +{
|
| + struct state **array;
|
| + int i,size;
|
| + if( x3a==0 ) return 0;
|
| + size = x3a->count;
|
| + array = (struct state **)malloc( sizeof(struct state *)*size );
|
| + if( array ){
|
| + for(i=0; i<size; i++) array[i] = x3a->tbl[i].data;
|
| + }
|
| + return array;
|
| +}
|
| +
|
| +/* Hash a configuration */
|
| +PRIVATE int confighash(struct config *a)
|
| +{
|
| + int h=0;
|
| + h = h*571 + a->rp->index*37 + a->dot;
|
| + return h;
|
| +}
|
| +
|
| +/* There is one instance of the following structure for each
|
| +** associative array of type "x4".
|
| +*/
|
| +struct s_x4 {
|
| + int size; /* The number of available slots. */
|
| + /* Must be a power of 2 greater than or */
|
| + /* equal to 1 */
|
| + int count; /* Number of currently slots filled */
|
| + struct s_x4node *tbl; /* The data stored here */
|
| + struct s_x4node **ht; /* Hash table for lookups */
|
| +};
|
| +
|
| +/* There is one instance of this structure for every data element
|
| +** in an associative array of type "x4".
|
| +*/
|
| +typedef struct s_x4node {
|
| + struct config *data; /* The data */
|
| + struct s_x4node *next; /* Next entry with the same hash */
|
| + struct s_x4node **from; /* Previous link */
|
| +} x4node;
|
| +
|
| +/* There is only one instance of the array, which is the following */
|
| +static struct s_x4 *x4a;
|
| +
|
| +/* Allocate a new associative array */
|
| +void Configtable_init(){
|
| + if( x4a ) return;
|
| + x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
|
| + if( x4a ){
|
| + x4a->size = 64;
|
| + x4a->count = 0;
|
| + x4a->tbl = (x4node*)malloc(
|
| + (sizeof(x4node) + sizeof(x4node*))*64 );
|
| + if( x4a->tbl==0 ){
|
| + free(x4a);
|
| + x4a = 0;
|
| + }else{
|
| + int i;
|
| + x4a->ht = (x4node**)&(x4a->tbl[64]);
|
| + for(i=0; i<64; i++) x4a->ht[i] = 0;
|
| + }
|
| + }
|
| +}
|
| +/* Insert a new record into the array. Return TRUE if successful.
|
| +** Prior data with the same key is NOT overwritten */
|
| +int Configtable_insert(struct config *data)
|
| +{
|
| + x4node *np;
|
| + int h;
|
| + int ph;
|
| +
|
| + if( x4a==0 ) return 0;
|
| + ph = confighash(data);
|
| + h = ph & (x4a->size-1);
|
| + np = x4a->ht[h];
|
| + while( np ){
|
| + if( Configcmp((const char *) np->data,(const char *) data)==0 ){
|
| + /* An existing entry with the same key is found. */
|
| + /* Fail because overwrite is not allows. */
|
| + return 0;
|
| + }
|
| + np = np->next;
|
| + }
|
| + if( x4a->count>=x4a->size ){
|
| + /* Need to make the hash table bigger */
|
| + int i,size;
|
| + struct s_x4 array;
|
| + array.size = size = x4a->size*2;
|
| + array.count = x4a->count;
|
| + array.tbl = (x4node*)malloc(
|
| + (sizeof(x4node) + sizeof(x4node*))*size );
|
| + if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
|
| + array.ht = (x4node**)&(array.tbl[size]);
|
| + for(i=0; i<size; i++) array.ht[i] = 0;
|
| + for(i=0; i<x4a->count; i++){
|
| + x4node *oldnp, *newnp;
|
| + oldnp = &(x4a->tbl[i]);
|
| + h = confighash(oldnp->data) & (size-1);
|
| + newnp = &(array.tbl[i]);
|
| + if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
|
| + newnp->next = array.ht[h];
|
| + newnp->data = oldnp->data;
|
| + newnp->from = &(array.ht[h]);
|
| + array.ht[h] = newnp;
|
| + }
|
| + free(x4a->tbl);
|
| + *x4a = array;
|
| + }
|
| + /* Insert the new data */
|
| + h = ph & (x4a->size-1);
|
| + np = &(x4a->tbl[x4a->count++]);
|
| + np->data = data;
|
| + if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
|
| + np->next = x4a->ht[h];
|
| + x4a->ht[h] = np;
|
| + np->from = &(x4a->ht[h]);
|
| + return 1;
|
| +}
|
| +
|
| +/* Return a pointer to data assigned to the given key. Return NULL
|
| +** if no such key. */
|
| +struct config *Configtable_find(struct config *key)
|
| +{
|
| + int h;
|
| + x4node *np;
|
| +
|
| + if( x4a==0 ) return 0;
|
| + h = confighash(key) & (x4a->size-1);
|
| + np = x4a->ht[h];
|
| + while( np ){
|
| + if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
|
| + np = np->next;
|
| + }
|
| + return np ? np->data : 0;
|
| +}
|
| +
|
| +/* Remove all data from the table. Pass each data to the function "f"
|
| +** as it is removed. ("f" may be null to avoid this step.) */
|
| +void Configtable_clear(int(*f)(struct config *))
|
| +{
|
| + int i;
|
| + if( x4a==0 || x4a->count==0 ) return;
|
| + if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
|
| + for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
|
| + x4a->count = 0;
|
| + return;
|
| +}
|
|
|