OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ** This file contains all sources (including headers) to the LEMON |
| 3 ** LALR(1) parser generator. The sources have been combined into a |
| 4 ** single file to make it easy to include LEMON in the source tree |
| 5 ** and Makefile of another program. |
| 6 ** |
| 7 ** The author of this program disclaims copyright. |
| 8 */ |
| 9 #include <stdio.h> |
| 10 #include <stdarg.h> |
| 11 #include <string.h> |
| 12 #include <ctype.h> |
| 13 #include <stdlib.h> |
| 14 #include <assert.h> |
| 15 |
| 16 #ifndef __WIN32__ |
| 17 # if defined(_WIN32) || defined(WIN32) |
| 18 # define __WIN32__ |
| 19 # endif |
| 20 #endif |
| 21 |
| 22 #ifdef __WIN32__ |
| 23 #ifdef __cplusplus |
| 24 extern "C" { |
| 25 #endif |
| 26 extern int access(const char *path, int mode); |
| 27 #ifdef __cplusplus |
| 28 } |
| 29 #endif |
| 30 #else |
| 31 #include <unistd.h> |
| 32 #endif |
| 33 |
| 34 /* #define PRIVATE static */ |
| 35 #define PRIVATE |
| 36 |
| 37 #ifdef TEST |
| 38 #define MAXRHS 5 /* Set low to exercise exception code */ |
| 39 #else |
| 40 #define MAXRHS 1000 |
| 41 #endif |
| 42 |
| 43 static int showPrecedenceConflict = 0; |
| 44 static const char **made_files = NULL; |
| 45 static int made_files_count = 0; |
| 46 static int successful_exit = 0; |
| 47 static void LemonAtExit(void) |
| 48 { |
| 49 /* if we failed, delete (most) files we made, to unconfuse build tools. */ |
| 50 int i; |
| 51 for (i = 0; i < made_files_count; i++) { |
| 52 if (!successful_exit) { |
| 53 remove(made_files[i]); |
| 54 } |
| 55 } |
| 56 free(made_files); |
| 57 made_files_count = 0; |
| 58 made_files = NULL; |
| 59 } |
| 60 |
| 61 static char *msort(char*,char**,int(*)(const char*,const char*)); |
| 62 |
| 63 /* |
| 64 ** Compilers are getting increasingly pedantic about type conversions |
| 65 ** as C evolves ever closer to Ada.... To work around the latest problems |
| 66 ** we have to define the following variant of strlen(). |
| 67 */ |
| 68 #define lemonStrlen(X) ((int)strlen(X)) |
| 69 |
| 70 /* a few forward declarations... */ |
| 71 struct rule; |
| 72 struct lemon; |
| 73 struct action; |
| 74 |
| 75 static struct action *Action_new(void); |
| 76 static struct action *Action_sort(struct action *); |
| 77 |
| 78 /********** From the file "build.h" ************************************/ |
| 79 void FindRulePrecedences(); |
| 80 void FindFirstSets(); |
| 81 void FindStates(); |
| 82 void FindLinks(); |
| 83 void FindFollowSets(); |
| 84 void FindActions(); |
| 85 |
| 86 /********* From the file "configlist.h" *********************************/ |
| 87 void Configlist_init(void); |
| 88 struct config *Configlist_add(struct rule *, int); |
| 89 struct config *Configlist_addbasis(struct rule *, int); |
| 90 void Configlist_closure(struct lemon *); |
| 91 void Configlist_sort(void); |
| 92 void Configlist_sortbasis(void); |
| 93 struct config *Configlist_return(void); |
| 94 struct config *Configlist_basis(void); |
| 95 void Configlist_eat(struct config *); |
| 96 void Configlist_reset(void); |
| 97 |
| 98 /********* From the file "error.h" ***************************************/ |
| 99 void ErrorMsg(const char *, int,const char *, ...); |
| 100 |
| 101 /****** From the file "option.h" ******************************************/ |
| 102 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, |
| 103 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; |
| 104 struct s_options { |
| 105 enum option_type type; |
| 106 const char *label; |
| 107 char *arg; |
| 108 const char *message; |
| 109 }; |
| 110 int OptInit(char**,struct s_options*,FILE*); |
| 111 int OptNArgs(void); |
| 112 char *OptArg(int); |
| 113 void OptErr(int); |
| 114 void OptPrint(void); |
| 115 |
| 116 /******** From the file "parse.h" *****************************************/ |
| 117 void Parse(struct lemon *lemp); |
| 118 |
| 119 /********* From the file "plink.h" ***************************************/ |
| 120 struct plink *Plink_new(void); |
| 121 void Plink_add(struct plink **, struct config *); |
| 122 void Plink_copy(struct plink **, struct plink *); |
| 123 void Plink_delete(struct plink *); |
| 124 |
| 125 /********** From the file "report.h" *************************************/ |
| 126 void Reprint(struct lemon *); |
| 127 void ReportOutput(struct lemon *); |
| 128 void ReportTable(struct lemon *, int); |
| 129 void ReportHeader(struct lemon *); |
| 130 void CompressTables(struct lemon *); |
| 131 void ResortStates(struct lemon *); |
| 132 |
| 133 /********** From the file "set.h" ****************************************/ |
| 134 void SetSize(int); /* All sets will be of size N */ |
| 135 char *SetNew(void); /* A new set for element 0..N */ |
| 136 void SetFree(char*); /* Deallocate a set */ |
| 137 |
| 138 char *SetNew(void); /* A new set for element 0..N */ |
| 139 int SetAdd(char*,int); /* Add element to a set */ |
| 140 int SetUnion(char *,char *); /* A <- A U B, thru element N */ |
| 141 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ |
| 142 |
| 143 /********** From the file "struct.h" *************************************/ |
| 144 /* |
| 145 ** Principal data structures for the LEMON parser generator. |
| 146 */ |
| 147 |
| 148 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; |
| 149 |
| 150 /* Symbols (terminals and nonterminals) of the grammar are stored |
| 151 ** in the following: */ |
| 152 enum symbol_type { |
| 153 TERMINAL, |
| 154 NONTERMINAL, |
| 155 MULTITERMINAL |
| 156 }; |
| 157 enum e_assoc { |
| 158 LEFT, |
| 159 RIGHT, |
| 160 NONE, |
| 161 UNK |
| 162 }; |
| 163 struct symbol { |
| 164 const char *name; /* Name of the symbol */ |
| 165 int index; /* Index number for this symbol */ |
| 166 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ |
| 167 struct rule *rule; /* Linked list of rules of this (if an NT) */ |
| 168 struct symbol *fallback; /* fallback token in case this token doesn't parse */ |
| 169 int prec; /* Precedence if defined (-1 otherwise) */ |
| 170 enum e_assoc assoc; /* Associativity if precedence is defined */ |
| 171 char *firstset; /* First-set for all rules of this symbol */ |
| 172 Boolean lambda; /* True if NT and can generate an empty string */ |
| 173 int useCnt; /* Number of times used */ |
| 174 char *destructor; /* Code which executes whenever this symbol is |
| 175 ** popped from the stack during error processing */ |
| 176 int destLineno; /* Line number for start of destructor */ |
| 177 char *datatype; /* The data type of information held by this |
| 178 ** object. Only used if type==NONTERMINAL */ |
| 179 int dtnum; /* The data type number. In the parser, the value |
| 180 ** stack is a union. The .yy%d element of this |
| 181 ** union is the correct data type for this object */ |
| 182 /* The following fields are used by MULTITERMINALs only */ |
| 183 int nsubsym; /* Number of constituent symbols in the MULTI */ |
| 184 struct symbol **subsym; /* Array of constituent symbols */ |
| 185 }; |
| 186 |
| 187 /* Each production rule in the grammar is stored in the following |
| 188 ** structure. */ |
| 189 struct rule { |
| 190 struct symbol *lhs; /* Left-hand side of the rule */ |
| 191 const char *lhsalias; /* Alias for the LHS (NULL if none) */ |
| 192 int lhsStart; /* True if left-hand side is the start symbol */ |
| 193 int ruleline; /* Line number for the rule */ |
| 194 int nrhs; /* Number of RHS symbols */ |
| 195 struct symbol **rhs; /* The RHS symbols */ |
| 196 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ |
| 197 int line; /* Line number at which code begins */ |
| 198 const char *code; /* The code executed when this rule is reduced */ |
| 199 struct symbol *precsym; /* Precedence symbol for this rule */ |
| 200 int index; /* An index number for this rule */ |
| 201 Boolean canReduce; /* True if this rule is ever reduced */ |
| 202 struct rule *nextlhs; /* Next rule with the same LHS */ |
| 203 struct rule *next; /* Next rule in the global list */ |
| 204 }; |
| 205 |
| 206 /* A configuration is a production rule of the grammar together with |
| 207 ** a mark (dot) showing how much of that rule has been processed so far. |
| 208 ** Configurations also contain a follow-set which is a list of terminal |
| 209 ** symbols which are allowed to immediately follow the end of the rule. |
| 210 ** Every configuration is recorded as an instance of the following: */ |
| 211 enum cfgstatus { |
| 212 COMPLETE, |
| 213 INCOMPLETE |
| 214 }; |
| 215 struct config { |
| 216 struct rule *rp; /* The rule upon which the configuration is based */ |
| 217 int dot; /* The parse point */ |
| 218 char *fws; /* Follow-set for this configuration only */ |
| 219 struct plink *fplp; /* Follow-set forward propagation links */ |
| 220 struct plink *bplp; /* Follow-set backwards propagation links */ |
| 221 struct state *stp; /* Pointer to state which contains this */ |
| 222 enum cfgstatus status; /* used during followset and shift computations */ |
| 223 struct config *next; /* Next configuration in the state */ |
| 224 struct config *bp; /* The next basis configuration */ |
| 225 }; |
| 226 |
| 227 enum e_action { |
| 228 SHIFT, |
| 229 ACCEPT, |
| 230 REDUCE, |
| 231 ERROR, |
| 232 SSCONFLICT, /* A shift/shift conflict */ |
| 233 SRCONFLICT, /* Was a reduce, but part of a conflict */ |
| 234 RRCONFLICT, /* Was a reduce, but part of a conflict */ |
| 235 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ |
| 236 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ |
| 237 NOT_USED /* Deleted by compression */ |
| 238 }; |
| 239 |
| 240 /* Every shift or reduce operation is stored as one of the following */ |
| 241 struct action { |
| 242 struct symbol *sp; /* The look-ahead symbol */ |
| 243 enum e_action type; |
| 244 union { |
| 245 struct state *stp; /* The new state, if a shift */ |
| 246 struct rule *rp; /* The rule, if a reduce */ |
| 247 } x; |
| 248 struct action *next; /* Next action for this state */ |
| 249 struct action *collide; /* Next action with the same hash */ |
| 250 }; |
| 251 |
| 252 /* Each state of the generated parser's finite state machine |
| 253 ** is encoded as an instance of the following structure. */ |
| 254 struct state { |
| 255 struct config *bp; /* The basis configurations for this state */ |
| 256 struct config *cfp; /* All configurations in this set */ |
| 257 int statenum; /* Sequential number for this state */ |
| 258 struct action *ap; /* Array of actions for this state */ |
| 259 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ |
| 260 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ |
| 261 int iDflt; /* Default action */ |
| 262 }; |
| 263 #define NO_OFFSET (-2147483647) |
| 264 |
| 265 /* A followset propagation link indicates that the contents of one |
| 266 ** configuration followset should be propagated to another whenever |
| 267 ** the first changes. */ |
| 268 struct plink { |
| 269 struct config *cfp; /* The configuration to which linked */ |
| 270 struct plink *next; /* The next propagate link */ |
| 271 }; |
| 272 |
| 273 /* The state vector for the entire parser generator is recorded as |
| 274 ** follows. (LEMON uses no global variables and makes little use of |
| 275 ** static variables. Fields in the following structure can be thought |
| 276 ** of as begin global variables in the program.) */ |
| 277 struct lemon { |
| 278 struct state **sorted; /* Table of states sorted by state number */ |
| 279 struct rule *rule; /* List of all rules */ |
| 280 int nstate; /* Number of states */ |
| 281 int nrule; /* Number of rules */ |
| 282 int nsymbol; /* Number of terminal and nonterminal symbols */ |
| 283 int nterminal; /* Number of terminal symbols */ |
| 284 struct symbol **symbols; /* Sorted array of pointers to symbols */ |
| 285 int errorcnt; /* Number of errors */ |
| 286 struct symbol *errsym; /* The error symbol */ |
| 287 struct symbol *wildcard; /* Token that matches anything */ |
| 288 char *name; /* Name of the generated parser */ |
| 289 char *arg; /* Declaration of the 3th argument to parser */ |
| 290 char *tokentype; /* Type of terminal symbols in the parser stack */ |
| 291 char *vartype; /* The default type of non-terminal symbols */ |
| 292 char *start; /* Name of the start symbol for the grammar */ |
| 293 char *stacksize; /* Size of the parser stack */ |
| 294 char *include; /* Code to put at the start of the C file */ |
| 295 char *error; /* Code to execute when an error is seen */ |
| 296 char *overflow; /* Code to execute on a stack overflow */ |
| 297 char *failure; /* Code to execute on parser failure */ |
| 298 char *accept; /* Code to execute when the parser excepts */ |
| 299 char *extracode; /* Code appended to the generated file */ |
| 300 char *tokendest; /* Code to execute to destroy token data */ |
| 301 char *vardest; /* Code for the default non-terminal destructor */ |
| 302 char *filename; /* Name of the input file */ |
| 303 char *outname; /* Name of the current output file */ |
| 304 char *tokenprefix; /* A prefix added to token names in the .h file */ |
| 305 int nconflict; /* Number of parsing conflicts */ |
| 306 int tablesize; /* Size of the parse tables */ |
| 307 int basisflag; /* Print only basis configurations */ |
| 308 int has_fallback; /* True if any %fallback is seen in the grammar */ |
| 309 int nolinenosflag; /* True if #line statements should not be printed */ |
| 310 char *argv0; /* Name of the program */ |
| 311 }; |
| 312 |
| 313 #define MemoryCheck(X) if((X)==0){ \ |
| 314 extern void memory_error(); \ |
| 315 memory_error(); \ |
| 316 } |
| 317 |
| 318 /**************** From the file "table.h" *********************************/ |
| 319 /* |
| 320 ** All code in this file has been automatically generated |
| 321 ** from a specification in the file |
| 322 ** "table.q" |
| 323 ** by the associative array code building program "aagen". |
| 324 ** Do not edit this file! Instead, edit the specification |
| 325 ** file, then rerun aagen. |
| 326 */ |
| 327 /* |
| 328 ** Code for processing tables in the LEMON parser generator. |
| 329 */ |
| 330 /* Routines for handling a strings */ |
| 331 |
| 332 const char *Strsafe(const char *); |
| 333 |
| 334 void Strsafe_init(void); |
| 335 int Strsafe_insert(const char *); |
| 336 const char *Strsafe_find(const char *); |
| 337 |
| 338 /* Routines for handling symbols of the grammar */ |
| 339 |
| 340 struct symbol *Symbol_new(const char *); |
| 341 int Symbolcmpp(const void *, const void *); |
| 342 void Symbol_init(void); |
| 343 int Symbol_insert(struct symbol *, const char *); |
| 344 struct symbol *Symbol_find(const char *); |
| 345 struct symbol *Symbol_Nth(int); |
| 346 int Symbol_count(void); |
| 347 struct symbol **Symbol_arrayof(void); |
| 348 |
| 349 /* Routines to manage the state table */ |
| 350 |
| 351 int Configcmp(const char *, const char *); |
| 352 struct state *State_new(void); |
| 353 void State_init(void); |
| 354 int State_insert(struct state *, struct config *); |
| 355 struct state *State_find(struct config *); |
| 356 struct state **State_arrayof(/* */); |
| 357 |
| 358 /* Routines used for efficiency in Configlist_add */ |
| 359 |
| 360 void Configtable_init(void); |
| 361 int Configtable_insert(struct config *); |
| 362 struct config *Configtable_find(struct config *); |
| 363 void Configtable_clear(int(*)(struct config *)); |
| 364 |
| 365 /****************** From the file "action.c" *******************************/ |
| 366 /* |
| 367 ** Routines processing parser actions in the LEMON parser generator. |
| 368 */ |
| 369 |
| 370 /* Allocate a new parser action */ |
| 371 static struct action *Action_new(void){ |
| 372 static struct action *freelist = 0; |
| 373 struct action *newaction; |
| 374 |
| 375 if( freelist==0 ){ |
| 376 int i; |
| 377 int amt = 100; |
| 378 freelist = (struct action *)calloc(amt, sizeof(struct action)); |
| 379 if( freelist==0 ){ |
| 380 fprintf(stderr,"Unable to allocate memory for a new parser action."); |
| 381 exit(1); |
| 382 } |
| 383 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
| 384 freelist[amt-1].next = 0; |
| 385 } |
| 386 newaction = freelist; |
| 387 freelist = freelist->next; |
| 388 return newaction; |
| 389 } |
| 390 |
| 391 /* Compare two actions for sorting purposes. Return negative, zero, or |
| 392 ** positive if the first action is less than, equal to, or greater than |
| 393 ** the first |
| 394 */ |
| 395 static int actioncmp( |
| 396 struct action *ap1, |
| 397 struct action *ap2 |
| 398 ){ |
| 399 int rc; |
| 400 rc = ap1->sp->index - ap2->sp->index; |
| 401 if( rc==0 ){ |
| 402 rc = (int)ap1->type - (int)ap2->type; |
| 403 } |
| 404 if( rc==0 && ap1->type==REDUCE ){ |
| 405 rc = ap1->x.rp->index - ap2->x.rp->index; |
| 406 } |
| 407 if( rc==0 ){ |
| 408 rc = (int) (ap2 - ap1); |
| 409 } |
| 410 return rc; |
| 411 } |
| 412 |
| 413 /* Sort parser actions */ |
| 414 static struct action *Action_sort( |
| 415 struct action *ap |
| 416 ){ |
| 417 ap = (struct action *)msort((char *)ap,(char **)&ap->next, |
| 418 (int(*)(const char*,const char*))actioncmp); |
| 419 return ap; |
| 420 } |
| 421 |
| 422 void Action_add( |
| 423 struct action **app, |
| 424 enum e_action type, |
| 425 struct symbol *sp, |
| 426 char *arg |
| 427 ){ |
| 428 struct action *newaction; |
| 429 newaction = Action_new(); |
| 430 newaction->next = *app; |
| 431 *app = newaction; |
| 432 newaction->type = type; |
| 433 newaction->sp = sp; |
| 434 if( type==SHIFT ){ |
| 435 newaction->x.stp = (struct state *)arg; |
| 436 }else{ |
| 437 newaction->x.rp = (struct rule *)arg; |
| 438 } |
| 439 } |
| 440 /********************** New code to implement the "acttab" module ***********/ |
| 441 /* |
| 442 ** This module implements routines use to construct the yy_action[] table. |
| 443 */ |
| 444 |
| 445 /* |
| 446 ** The state of the yy_action table under construction is an instance of |
| 447 ** the following structure. |
| 448 ** |
| 449 ** The yy_action table maps the pair (state_number, lookahead) into an |
| 450 ** action_number. The table is an array of integers pairs. The state_number |
| 451 ** determines an initial offset into the yy_action array. The lookahead |
| 452 ** value is then added to this initial offset to get an index X into the |
| 453 ** yy_action array. If the aAction[X].lookahead equals the value of the |
| 454 ** of the lookahead input, then the value of the action_number output is |
| 455 ** aAction[X].action. If the lookaheads do not match then the |
| 456 ** default action for the state_number is returned. |
| 457 ** |
| 458 ** All actions associated with a single state_number are first entered |
| 459 ** into aLookahead[] using multiple calls to acttab_action(). Then the |
| 460 ** actions for that single state_number are placed into the aAction[] |
| 461 ** array with a single call to acttab_insert(). The acttab_insert() call |
| 462 ** also resets the aLookahead[] array in preparation for the next |
| 463 ** state number. |
| 464 */ |
| 465 struct lookahead_action { |
| 466 int lookahead; /* Value of the lookahead token */ |
| 467 int action; /* Action to take on the given lookahead */ |
| 468 }; |
| 469 typedef struct acttab acttab; |
| 470 struct acttab { |
| 471 int nAction; /* Number of used slots in aAction[] */ |
| 472 int nActionAlloc; /* Slots allocated for aAction[] */ |
| 473 struct lookahead_action |
| 474 *aAction, /* The yy_action[] table under construction */ |
| 475 *aLookahead; /* A single new transaction set */ |
| 476 int mnLookahead; /* Minimum aLookahead[].lookahead */ |
| 477 int mnAction; /* Action associated with mnLookahead */ |
| 478 int mxLookahead; /* Maximum aLookahead[].lookahead */ |
| 479 int nLookahead; /* Used slots in aLookahead[] */ |
| 480 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ |
| 481 }; |
| 482 |
| 483 /* Return the number of entries in the yy_action table */ |
| 484 #define acttab_size(X) ((X)->nAction) |
| 485 |
| 486 /* The value for the N-th entry in yy_action */ |
| 487 #define acttab_yyaction(X,N) ((X)->aAction[N].action) |
| 488 |
| 489 /* The value for the N-th entry in yy_lookahead */ |
| 490 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) |
| 491 |
| 492 /* Free all memory associated with the given acttab */ |
| 493 void acttab_free(acttab *p){ |
| 494 free( p->aAction ); |
| 495 free( p->aLookahead ); |
| 496 free( p ); |
| 497 } |
| 498 |
| 499 /* Allocate a new acttab structure */ |
| 500 acttab *acttab_alloc(void){ |
| 501 acttab *p = (acttab *) calloc( 1, sizeof(*p) ); |
| 502 if( p==0 ){ |
| 503 fprintf(stderr,"Unable to allocate memory for a new acttab."); |
| 504 exit(1); |
| 505 } |
| 506 memset(p, 0, sizeof(*p)); |
| 507 return p; |
| 508 } |
| 509 |
| 510 /* Add a new action to the current transaction set. |
| 511 ** |
| 512 ** This routine is called once for each lookahead for a particular |
| 513 ** state. |
| 514 */ |
| 515 void acttab_action(acttab *p, int lookahead, int action){ |
| 516 if( p->nLookahead>=p->nLookaheadAlloc ){ |
| 517 p->nLookaheadAlloc += 25; |
| 518 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, |
| 519 sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); |
| 520 if( p->aLookahead==0 ){ |
| 521 fprintf(stderr,"malloc failed\n"); |
| 522 exit(1); |
| 523 } |
| 524 } |
| 525 if( p->nLookahead==0 ){ |
| 526 p->mxLookahead = lookahead; |
| 527 p->mnLookahead = lookahead; |
| 528 p->mnAction = action; |
| 529 }else{ |
| 530 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; |
| 531 if( p->mnLookahead>lookahead ){ |
| 532 p->mnLookahead = lookahead; |
| 533 p->mnAction = action; |
| 534 } |
| 535 } |
| 536 p->aLookahead[p->nLookahead].lookahead = lookahead; |
| 537 p->aLookahead[p->nLookahead].action = action; |
| 538 p->nLookahead++; |
| 539 } |
| 540 |
| 541 /* |
| 542 ** Add the transaction set built up with prior calls to acttab_action() |
| 543 ** into the current action table. Then reset the transaction set back |
| 544 ** to an empty set in preparation for a new round of acttab_action() calls. |
| 545 ** |
| 546 ** Return the offset into the action table of the new transaction. |
| 547 */ |
| 548 int acttab_insert(acttab *p){ |
| 549 int i, j, k, n; |
| 550 assert( p->nLookahead>0 ); |
| 551 |
| 552 /* Make sure we have enough space to hold the expanded action table |
| 553 ** in the worst case. The worst case occurs if the transaction set |
| 554 ** must be appended to the current action table |
| 555 */ |
| 556 n = p->mxLookahead + 1; |
| 557 if( p->nAction + n >= p->nActionAlloc ){ |
| 558 int oldAlloc = p->nActionAlloc; |
| 559 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; |
| 560 p->aAction = (struct lookahead_action *) realloc( p->aAction, |
| 561 sizeof(p->aAction[0])*p->nActionAlloc); |
| 562 if( p->aAction==0 ){ |
| 563 fprintf(stderr,"malloc failed\n"); |
| 564 exit(1); |
| 565 } |
| 566 for(i=oldAlloc; i<p->nActionAlloc; i++){ |
| 567 p->aAction[i].lookahead = -1; |
| 568 p->aAction[i].action = -1; |
| 569 } |
| 570 } |
| 571 |
| 572 /* Scan the existing action table looking for an offset that is a |
| 573 ** duplicate of the current transaction set. Fall out of the loop |
| 574 ** if and when the duplicate is found. |
| 575 ** |
| 576 ** i is the index in p->aAction[] where p->mnLookahead is inserted. |
| 577 */ |
| 578 for(i=p->nAction-1; i>=0; i--){ |
| 579 if( p->aAction[i].lookahead==p->mnLookahead ){ |
| 580 /* All lookaheads and actions in the aLookahead[] transaction |
| 581 ** must match against the candidate aAction[i] entry. */ |
| 582 if( p->aAction[i].action!=p->mnAction ) continue; |
| 583 for(j=0; j<p->nLookahead; j++){ |
| 584 k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
| 585 if( k<0 || k>=p->nAction ) break; |
| 586 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; |
| 587 if( p->aLookahead[j].action!=p->aAction[k].action ) break; |
| 588 } |
| 589 if( j<p->nLookahead ) continue; |
| 590 |
| 591 /* No possible lookahead value that is not in the aLookahead[] |
| 592 ** transaction is allowed to match aAction[i] */ |
| 593 n = 0; |
| 594 for(j=0; j<p->nAction; j++){ |
| 595 if( p->aAction[j].lookahead<0 ) continue; |
| 596 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; |
| 597 } |
| 598 if( n==p->nLookahead ){ |
| 599 break; /* An exact match is found at offset i */ |
| 600 } |
| 601 } |
| 602 } |
| 603 |
| 604 /* If no existing offsets exactly match the current transaction, find an |
| 605 ** an empty offset in the aAction[] table in which we can add the |
| 606 ** aLookahead[] transaction. |
| 607 */ |
| 608 if( i<0 ){ |
| 609 /* Look for holes in the aAction[] table that fit the current |
| 610 ** aLookahead[] transaction. Leave i set to the offset of the hole. |
| 611 ** If no holes are found, i is left at p->nAction, which means the |
| 612 ** transaction will be appended. */ |
| 613 for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){ |
| 614 if( p->aAction[i].lookahead<0 ){ |
| 615 for(j=0; j<p->nLookahead; j++){ |
| 616 k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
| 617 if( k<0 ) break; |
| 618 if( p->aAction[k].lookahead>=0 ) break; |
| 619 } |
| 620 if( j<p->nLookahead ) continue; |
| 621 for(j=0; j<p->nAction; j++){ |
| 622 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; |
| 623 } |
| 624 if( j==p->nAction ){ |
| 625 break; /* Fits in empty slots */ |
| 626 } |
| 627 } |
| 628 } |
| 629 } |
| 630 /* Insert transaction set at index i. */ |
| 631 for(j=0; j<p->nLookahead; j++){ |
| 632 k = p->aLookahead[j].lookahead - p->mnLookahead + i; |
| 633 p->aAction[k] = p->aLookahead[j]; |
| 634 if( k>=p->nAction ) p->nAction = k+1; |
| 635 } |
| 636 p->nLookahead = 0; |
| 637 |
| 638 /* Return the offset that is added to the lookahead in order to get the |
| 639 ** index into yy_action of the action */ |
| 640 return i - p->mnLookahead; |
| 641 } |
| 642 |
| 643 /********************** From the file "build.c" *****************************/ |
| 644 /* |
| 645 ** Routines to construction the finite state machine for the LEMON |
| 646 ** parser generator. |
| 647 */ |
| 648 |
| 649 /* Find a precedence symbol of every rule in the grammar. |
| 650 ** |
| 651 ** Those rules which have a precedence symbol coded in the input |
| 652 ** grammar using the "[symbol]" construct will already have the |
| 653 ** rp->precsym field filled. Other rules take as their precedence |
| 654 ** symbol the first RHS symbol with a defined precedence. If there |
| 655 ** are not RHS symbols with a defined precedence, the precedence |
| 656 ** symbol field is left blank. |
| 657 */ |
| 658 void FindRulePrecedences(struct lemon *xp) |
| 659 { |
| 660 struct rule *rp; |
| 661 for(rp=xp->rule; rp; rp=rp->next){ |
| 662 if( rp->precsym==0 ){ |
| 663 int i, j; |
| 664 for(i=0; i<rp->nrhs && rp->precsym==0; i++){ |
| 665 struct symbol *sp = rp->rhs[i]; |
| 666 if( sp->type==MULTITERMINAL ){ |
| 667 for(j=0; j<sp->nsubsym; j++){ |
| 668 if( sp->subsym[j]->prec>=0 ){ |
| 669 rp->precsym = sp->subsym[j]; |
| 670 break; |
| 671 } |
| 672 } |
| 673 }else if( sp->prec>=0 ){ |
| 674 rp->precsym = rp->rhs[i]; |
| 675 } |
| 676 } |
| 677 } |
| 678 } |
| 679 return; |
| 680 } |
| 681 |
| 682 /* Find all nonterminals which will generate the empty string. |
| 683 ** Then go back and compute the first sets of every nonterminal. |
| 684 ** The first set is the set of all terminal symbols which can begin |
| 685 ** a string generated by that nonterminal. |
| 686 */ |
| 687 void FindFirstSets(struct lemon *lemp) |
| 688 { |
| 689 int i, j; |
| 690 struct rule *rp; |
| 691 int progress; |
| 692 |
| 693 for(i=0; i<lemp->nsymbol; i++){ |
| 694 lemp->symbols[i]->lambda = LEMON_FALSE; |
| 695 } |
| 696 for(i=lemp->nterminal; i<lemp->nsymbol; i++){ |
| 697 lemp->symbols[i]->firstset = SetNew(); |
| 698 } |
| 699 |
| 700 /* First compute all lambdas */ |
| 701 do{ |
| 702 progress = 0; |
| 703 for(rp=lemp->rule; rp; rp=rp->next){ |
| 704 if( rp->lhs->lambda ) continue; |
| 705 for(i=0; i<rp->nrhs; i++){ |
| 706 struct symbol *sp = rp->rhs[i]; |
| 707 if( sp->type!=TERMINAL || sp->lambda==LEMON_FALSE ) break; |
| 708 } |
| 709 if( i==rp->nrhs ){ |
| 710 rp->lhs->lambda = LEMON_TRUE; |
| 711 progress = 1; |
| 712 } |
| 713 } |
| 714 }while( progress ); |
| 715 |
| 716 /* Now compute all first sets */ |
| 717 do{ |
| 718 struct symbol *s1, *s2; |
| 719 progress = 0; |
| 720 for(rp=lemp->rule; rp; rp=rp->next){ |
| 721 s1 = rp->lhs; |
| 722 for(i=0; i<rp->nrhs; i++){ |
| 723 s2 = rp->rhs[i]; |
| 724 if( s2->type==TERMINAL ){ |
| 725 progress += SetAdd(s1->firstset,s2->index); |
| 726 break; |
| 727 }else if( s2->type==MULTITERMINAL ){ |
| 728 for(j=0; j<s2->nsubsym; j++){ |
| 729 progress += SetAdd(s1->firstset,s2->subsym[j]->index); |
| 730 } |
| 731 break; |
| 732 }else if( s1==s2 ){ |
| 733 if( s1->lambda==LEMON_FALSE ) break; |
| 734 }else{ |
| 735 progress += SetUnion(s1->firstset,s2->firstset); |
| 736 if( s2->lambda==LEMON_FALSE ) break; |
| 737 } |
| 738 } |
| 739 } |
| 740 }while( progress ); |
| 741 return; |
| 742 } |
| 743 |
| 744 /* Compute all LR(0) states for the grammar. Links |
| 745 ** are added to between some states so that the LR(1) follow sets |
| 746 ** can be computed later. |
| 747 */ |
| 748 PRIVATE struct state *getstate(struct lemon *); /* forward reference */ |
| 749 void FindStates(struct lemon *lemp) |
| 750 { |
| 751 struct symbol *sp; |
| 752 struct rule *rp; |
| 753 |
| 754 Configlist_init(); |
| 755 |
| 756 /* Find the start symbol */ |
| 757 if( lemp->start ){ |
| 758 sp = Symbol_find(lemp->start); |
| 759 if( sp==0 ){ |
| 760 ErrorMsg(lemp->filename,0, |
| 761 "The specified start symbol \"%s\" is not \ |
| 762 in a nonterminal of the grammar. \"%s\" will be used as the start \ |
| 763 symbol instead.",lemp->start,lemp->rule->lhs->name); |
| 764 lemp->errorcnt++; |
| 765 sp = lemp->rule->lhs; |
| 766 } |
| 767 }else{ |
| 768 sp = lemp->rule->lhs; |
| 769 } |
| 770 |
| 771 /* Make sure the start symbol doesn't occur on the right-hand side of |
| 772 ** any rule. Report an error if it does. (YACC would generate a new |
| 773 ** start symbol in this case.) */ |
| 774 for(rp=lemp->rule; rp; rp=rp->next){ |
| 775 int i; |
| 776 for(i=0; i<rp->nrhs; i++){ |
| 777 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ |
| 778 ErrorMsg(lemp->filename,0, |
| 779 "The start symbol \"%s\" occurs on the \ |
| 780 right-hand side of a rule. This will result in a parser which \ |
| 781 does not work properly.",sp->name); |
| 782 lemp->errorcnt++; |
| 783 } |
| 784 } |
| 785 } |
| 786 |
| 787 /* The basis configuration set for the first state |
| 788 ** is all rules which have the start symbol as their |
| 789 ** left-hand side */ |
| 790 for(rp=sp->rule; rp; rp=rp->nextlhs){ |
| 791 struct config *newcfp; |
| 792 rp->lhsStart = 1; |
| 793 newcfp = Configlist_addbasis(rp,0); |
| 794 SetAdd(newcfp->fws,0); |
| 795 } |
| 796 |
| 797 /* Compute the first state. All other states will be |
| 798 ** computed automatically during the computation of the first one. |
| 799 ** The returned pointer to the first state is not used. */ |
| 800 (void)getstate(lemp); |
| 801 return; |
| 802 } |
| 803 |
| 804 /* Return a pointer to a state which is described by the configuration |
| 805 ** list which has been built from calls to Configlist_add. |
| 806 */ |
| 807 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ |
| 808 PRIVATE struct state *getstate(struct lemon *lemp) |
| 809 { |
| 810 struct config *cfp, *bp; |
| 811 struct state *stp; |
| 812 |
| 813 /* Extract the sorted basis of the new state. The basis was constructed |
| 814 ** by prior calls to "Configlist_addbasis()". */ |
| 815 Configlist_sortbasis(); |
| 816 bp = Configlist_basis(); |
| 817 |
| 818 /* Get a state with the same basis */ |
| 819 stp = State_find(bp); |
| 820 if( stp ){ |
| 821 /* A state with the same basis already exists! Copy all the follow-set |
| 822 ** propagation links from the state under construction into the |
| 823 ** preexisting state, then return a pointer to the preexisting state */ |
| 824 struct config *x, *y; |
| 825 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ |
| 826 Plink_copy(&y->bplp,x->bplp); |
| 827 Plink_delete(x->fplp); |
| 828 x->fplp = x->bplp = 0; |
| 829 } |
| 830 cfp = Configlist_return(); |
| 831 Configlist_eat(cfp); |
| 832 }else{ |
| 833 /* This really is a new state. Construct all the details */ |
| 834 Configlist_closure(lemp); /* Compute the configuration closure */ |
| 835 Configlist_sort(); /* Sort the configuration closure */ |
| 836 cfp = Configlist_return(); /* Get a pointer to the config list */ |
| 837 stp = State_new(); /* A new state structure */ |
| 838 MemoryCheck(stp); |
| 839 stp->bp = bp; /* Remember the configuration basis */ |
| 840 stp->cfp = cfp; /* Remember the configuration closure */ |
| 841 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ |
| 842 stp->ap = 0; /* No actions, yet. */ |
| 843 State_insert(stp,stp->bp); /* Add to the state table */ |
| 844 buildshifts(lemp,stp); /* Recursively compute successor states */ |
| 845 } |
| 846 return stp; |
| 847 } |
| 848 |
| 849 /* |
| 850 ** Return true if two symbols are the same. |
| 851 */ |
| 852 int same_symbol(struct symbol *a, struct symbol *b) |
| 853 { |
| 854 int i; |
| 855 if( a==b ) return 1; |
| 856 if( a->type!=MULTITERMINAL ) return 0; |
| 857 if( b->type!=MULTITERMINAL ) return 0; |
| 858 if( a->nsubsym!=b->nsubsym ) return 0; |
| 859 for(i=0; i<a->nsubsym; i++){ |
| 860 if( a->subsym[i]!=b->subsym[i] ) return 0; |
| 861 } |
| 862 return 1; |
| 863 } |
| 864 |
| 865 /* Construct all successor states to the given state. A "successor" |
| 866 ** state is any state which can be reached by a shift action. |
| 867 */ |
| 868 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) |
| 869 { |
| 870 struct config *cfp; /* For looping thru the config closure of "stp" */ |
| 871 struct config *bcfp; /* For the inner loop on config closure of "stp" */ |
| 872 struct config *newcfg; /* */ |
| 873 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ |
| 874 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ |
| 875 struct state *newstp; /* A pointer to a successor state */ |
| 876 |
| 877 /* Each configuration becomes complete after it contibutes to a successor |
| 878 ** state. Initially, all configurations are incomplete */ |
| 879 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; |
| 880 |
| 881 /* Loop through all configurations of the state "stp" */ |
| 882 for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
| 883 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ |
| 884 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ |
| 885 Configlist_reset(); /* Reset the new config set */ |
| 886 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ |
| 887 |
| 888 /* For every configuration in the state "stp" which has the symbol "sp" |
| 889 ** following its dot, add the same configuration to the basis set under |
| 890 ** construction but with the dot shifted one symbol to the right. */ |
| 891 for(bcfp=cfp; bcfp; bcfp=bcfp->next){ |
| 892 if( bcfp->status==COMPLETE ) continue; /* Already used */ |
| 893 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ |
| 894 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ |
| 895 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ |
| 896 bcfp->status = COMPLETE; /* Mark this config as used */ |
| 897 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); |
| 898 Plink_add(&newcfg->bplp,bcfp); |
| 899 } |
| 900 |
| 901 /* Get a pointer to the state described by the basis configuration set |
| 902 ** constructed in the preceding loop */ |
| 903 newstp = getstate(lemp); |
| 904 |
| 905 /* The state "newstp" is reached from the state "stp" by a shift action |
| 906 ** on the symbol "sp" */ |
| 907 if( sp->type==MULTITERMINAL ){ |
| 908 int i; |
| 909 for(i=0; i<sp->nsubsym; i++){ |
| 910 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); |
| 911 } |
| 912 }else{ |
| 913 Action_add(&stp->ap,SHIFT,sp,(char *)newstp); |
| 914 } |
| 915 } |
| 916 } |
| 917 |
| 918 /* |
| 919 ** Construct the propagation links |
| 920 */ |
| 921 void FindLinks(struct lemon *lemp) |
| 922 { |
| 923 int i; |
| 924 struct config *cfp, *other; |
| 925 struct state *stp; |
| 926 struct plink *plp; |
| 927 |
| 928 /* Housekeeping detail: |
| 929 ** Add to every propagate link a pointer back to the state to |
| 930 ** which the link is attached. */ |
| 931 for(i=0; i<lemp->nstate; i++){ |
| 932 stp = lemp->sorted[i]; |
| 933 for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
| 934 cfp->stp = stp; |
| 935 } |
| 936 } |
| 937 |
| 938 /* Convert all backlinks into forward links. Only the forward |
| 939 ** links are used in the follow-set computation. */ |
| 940 for(i=0; i<lemp->nstate; i++){ |
| 941 stp = lemp->sorted[i]; |
| 942 for(cfp=stp->cfp; cfp; cfp=cfp->next){ |
| 943 for(plp=cfp->bplp; plp; plp=plp->next){ |
| 944 other = plp->cfp; |
| 945 Plink_add(&other->fplp,cfp); |
| 946 } |
| 947 } |
| 948 } |
| 949 } |
| 950 |
| 951 /* Compute all followsets. |
| 952 ** |
| 953 ** A followset is the set of all symbols which can come immediately |
| 954 ** after a configuration. |
| 955 */ |
| 956 void FindFollowSets(struct lemon *lemp) |
| 957 { |
| 958 int i; |
| 959 struct config *cfp; |
| 960 struct plink *plp; |
| 961 int progress; |
| 962 int change; |
| 963 |
| 964 for(i=0; i<lemp->nstate; i++){ |
| 965 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
| 966 cfp->status = INCOMPLETE; |
| 967 } |
| 968 } |
| 969 |
| 970 do{ |
| 971 progress = 0; |
| 972 for(i=0; i<lemp->nstate; i++){ |
| 973 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ |
| 974 if( cfp->status==COMPLETE ) continue; |
| 975 for(plp=cfp->fplp; plp; plp=plp->next){ |
| 976 change = SetUnion(plp->cfp->fws,cfp->fws); |
| 977 if( change ){ |
| 978 plp->cfp->status = INCOMPLETE; |
| 979 progress = 1; |
| 980 } |
| 981 } |
| 982 cfp->status = COMPLETE; |
| 983 } |
| 984 } |
| 985 }while( progress ); |
| 986 } |
| 987 |
| 988 static int resolve_conflict(struct action *,struct action *, struct symbol *); |
| 989 |
| 990 /* Compute the reduce actions, and resolve conflicts. |
| 991 */ |
| 992 void FindActions(struct lemon *lemp) |
| 993 { |
| 994 int i,j; |
| 995 struct config *cfp; |
| 996 struct state *stp; |
| 997 struct symbol *sp; |
| 998 struct rule *rp; |
| 999 |
| 1000 /* Add all of the reduce actions |
| 1001 ** A reduce action is added for each element of the followset of |
| 1002 ** a configuration which has its dot at the extreme right. |
| 1003 */ |
| 1004 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ |
| 1005 stp = lemp->sorted[i]; |
| 1006 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ |
| 1007 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ |
| 1008 for(j=0; j<lemp->nterminal; j++){ |
| 1009 if( SetFind(cfp->fws,j) ){ |
| 1010 /* Add a reduce action to the state "stp" which will reduce by the |
| 1011 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ |
| 1012 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); |
| 1013 } |
| 1014 } |
| 1015 } |
| 1016 } |
| 1017 } |
| 1018 |
| 1019 /* Add the accepting token */ |
| 1020 if( lemp->start ){ |
| 1021 sp = Symbol_find(lemp->start); |
| 1022 if( sp==0 ) sp = lemp->rule->lhs; |
| 1023 }else{ |
| 1024 sp = lemp->rule->lhs; |
| 1025 } |
| 1026 /* Add to the first state (which is always the starting state of the |
| 1027 ** finite state machine) an action to ACCEPT if the lookahead is the |
| 1028 ** start nonterminal. */ |
| 1029 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); |
| 1030 |
| 1031 /* Resolve conflicts */ |
| 1032 for(i=0; i<lemp->nstate; i++){ |
| 1033 struct action *ap, *nap; |
| 1034 struct state *stp; |
| 1035 stp = lemp->sorted[i]; |
| 1036 /* assert( stp->ap ); */ |
| 1037 stp->ap = Action_sort(stp->ap); |
| 1038 for(ap=stp->ap; ap && ap->next; ap=ap->next){ |
| 1039 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ |
| 1040 /* The two actions "ap" and "nap" have the same lookahead. |
| 1041 ** Figure out which one should be used */ |
| 1042 lemp->nconflict += resolve_conflict(ap,nap,lemp->errsym); |
| 1043 } |
| 1044 } |
| 1045 } |
| 1046 |
| 1047 /* Report an error for each rule that can never be reduced. */ |
| 1048 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; |
| 1049 for(i=0; i<lemp->nstate; i++){ |
| 1050 struct action *ap; |
| 1051 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ |
| 1052 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; |
| 1053 } |
| 1054 } |
| 1055 for(rp=lemp->rule; rp; rp=rp->next){ |
| 1056 if( rp->canReduce ) continue; |
| 1057 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); |
| 1058 lemp->errorcnt++; |
| 1059 } |
| 1060 } |
| 1061 |
| 1062 /* Resolve a conflict between the two given actions. If the |
| 1063 ** conflict can't be resolved, return non-zero. |
| 1064 ** |
| 1065 ** NO LONGER TRUE: |
| 1066 ** To resolve a conflict, first look to see if either action |
| 1067 ** is on an error rule. In that case, take the action which |
| 1068 ** is not associated with the error rule. If neither or both |
| 1069 ** actions are associated with an error rule, then try to |
| 1070 ** use precedence to resolve the conflict. |
| 1071 ** |
| 1072 ** If either action is a SHIFT, then it must be apx. This |
| 1073 ** function won't work if apx->type==REDUCE and apy->type==SHIFT. |
| 1074 */ |
| 1075 static int resolve_conflict( |
| 1076 struct action *apx, |
| 1077 struct action *apy, |
| 1078 struct symbol *errsym /* The error symbol (if defined. NULL otherwise) */ |
| 1079 ){ |
| 1080 struct symbol *spx, *spy; |
| 1081 int errcnt = 0; |
| 1082 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ |
| 1083 if( apx->type==SHIFT && apy->type==SHIFT ){ |
| 1084 apy->type = SSCONFLICT; |
| 1085 errcnt++; |
| 1086 } |
| 1087 if( apx->type==SHIFT && apy->type==REDUCE ){ |
| 1088 spx = apx->sp; |
| 1089 spy = apy->x.rp->precsym; |
| 1090 if( spy==0 || spx->prec<0 || spy->prec<0 ){ |
| 1091 /* Not enough precedence information. */ |
| 1092 apy->type = SRCONFLICT; |
| 1093 errcnt++; |
| 1094 }else if( spx->prec>spy->prec ){ /* higher precedence wins */ |
| 1095 apy->type = RD_RESOLVED; |
| 1096 }else if( spx->prec<spy->prec ){ |
| 1097 apx->type = SH_RESOLVED; |
| 1098 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ |
| 1099 apy->type = RD_RESOLVED; /* associativity */ |
| 1100 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ |
| 1101 apx->type = SH_RESOLVED; |
| 1102 }else{ |
| 1103 assert( spx->prec==spy->prec && spx->assoc==NONE ); |
| 1104 apy->type = SRCONFLICT; |
| 1105 errcnt++; |
| 1106 } |
| 1107 }else if( apx->type==REDUCE && apy->type==REDUCE ){ |
| 1108 spx = apx->x.rp->precsym; |
| 1109 spy = apy->x.rp->precsym; |
| 1110 if( spx==0 || spy==0 || spx->prec<0 || |
| 1111 spy->prec<0 || spx->prec==spy->prec ){ |
| 1112 apy->type = RRCONFLICT; |
| 1113 errcnt++; |
| 1114 }else if( spx->prec>spy->prec ){ |
| 1115 apy->type = RD_RESOLVED; |
| 1116 }else if( spx->prec<spy->prec ){ |
| 1117 apx->type = RD_RESOLVED; |
| 1118 } |
| 1119 }else{ |
| 1120 assert( |
| 1121 apx->type==SH_RESOLVED || |
| 1122 apx->type==RD_RESOLVED || |
| 1123 apx->type==SSCONFLICT || |
| 1124 apx->type==SRCONFLICT || |
| 1125 apx->type==RRCONFLICT || |
| 1126 apy->type==SH_RESOLVED || |
| 1127 apy->type==RD_RESOLVED || |
| 1128 apy->type==SSCONFLICT || |
| 1129 apy->type==SRCONFLICT || |
| 1130 apy->type==RRCONFLICT |
| 1131 ); |
| 1132 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before |
| 1133 ** REDUCEs on the list. If we reach this point it must be because |
| 1134 ** the parser conflict had already been resolved. */ |
| 1135 } |
| 1136 return errcnt; |
| 1137 } |
| 1138 /********************* From the file "configlist.c" *************************/ |
| 1139 /* |
| 1140 ** Routines to processing a configuration list and building a state |
| 1141 ** in the LEMON parser generator. |
| 1142 */ |
| 1143 |
| 1144 static struct config *freelist = 0; /* List of free configurations */ |
| 1145 static struct config *current = 0; /* Top of list of configurations */ |
| 1146 static struct config **currentend = 0; /* Last on list of configs */ |
| 1147 static struct config *basis = 0; /* Top of list of basis configs */ |
| 1148 static struct config **basisend = 0; /* End of list of basis configs */ |
| 1149 |
| 1150 /* Return a pointer to a new configuration */ |
| 1151 PRIVATE struct config *newconfig(){ |
| 1152 struct config *newcfg; |
| 1153 if( freelist==0 ){ |
| 1154 int i; |
| 1155 int amt = 3; |
| 1156 freelist = (struct config *)calloc( amt, sizeof(struct config) ); |
| 1157 if( freelist==0 ){ |
| 1158 fprintf(stderr,"Unable to allocate memory for a new configuration."); |
| 1159 exit(1); |
| 1160 } |
| 1161 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; |
| 1162 freelist[amt-1].next = 0; |
| 1163 } |
| 1164 newcfg = freelist; |
| 1165 freelist = freelist->next; |
| 1166 return newcfg; |
| 1167 } |
| 1168 |
| 1169 /* The configuration "old" is no longer used */ |
| 1170 PRIVATE void deleteconfig(struct config *old) |
| 1171 { |
| 1172 old->next = freelist; |
| 1173 freelist = old; |
| 1174 } |
| 1175 |
| 1176 /* Initialized the configuration list builder */ |
| 1177 void Configlist_init(){ |
| 1178 current = 0; |
| 1179 currentend = ¤t; |
| 1180 basis = 0; |
| 1181 basisend = &basis; |
| 1182 Configtable_init(); |
| 1183 return; |
| 1184 } |
| 1185 |
| 1186 /* Initialized the configuration list builder */ |
| 1187 void Configlist_reset(){ |
| 1188 current = 0; |
| 1189 currentend = ¤t; |
| 1190 basis = 0; |
| 1191 basisend = &basis; |
| 1192 Configtable_clear(0); |
| 1193 return; |
| 1194 } |
| 1195 |
| 1196 /* Add another configuration to the configuration list */ |
| 1197 struct config *Configlist_add( |
| 1198 struct rule *rp, /* The rule */ |
| 1199 int dot /* Index into the RHS of the rule where the dot goes */ |
| 1200 ){ |
| 1201 struct config *cfp, model; |
| 1202 |
| 1203 assert( currentend!=0 ); |
| 1204 model.rp = rp; |
| 1205 model.dot = dot; |
| 1206 cfp = Configtable_find(&model); |
| 1207 if( cfp==0 ){ |
| 1208 cfp = newconfig(); |
| 1209 cfp->rp = rp; |
| 1210 cfp->dot = dot; |
| 1211 cfp->fws = SetNew(); |
| 1212 cfp->stp = 0; |
| 1213 cfp->fplp = cfp->bplp = 0; |
| 1214 cfp->next = 0; |
| 1215 cfp->bp = 0; |
| 1216 *currentend = cfp; |
| 1217 currentend = &cfp->next; |
| 1218 Configtable_insert(cfp); |
| 1219 } |
| 1220 return cfp; |
| 1221 } |
| 1222 |
| 1223 /* Add a basis configuration to the configuration list */ |
| 1224 struct config *Configlist_addbasis(struct rule *rp, int dot) |
| 1225 { |
| 1226 struct config *cfp, model; |
| 1227 |
| 1228 assert( basisend!=0 ); |
| 1229 assert( currentend!=0 ); |
| 1230 model.rp = rp; |
| 1231 model.dot = dot; |
| 1232 cfp = Configtable_find(&model); |
| 1233 if( cfp==0 ){ |
| 1234 cfp = newconfig(); |
| 1235 cfp->rp = rp; |
| 1236 cfp->dot = dot; |
| 1237 cfp->fws = SetNew(); |
| 1238 cfp->stp = 0; |
| 1239 cfp->fplp = cfp->bplp = 0; |
| 1240 cfp->next = 0; |
| 1241 cfp->bp = 0; |
| 1242 *currentend = cfp; |
| 1243 currentend = &cfp->next; |
| 1244 *basisend = cfp; |
| 1245 basisend = &cfp->bp; |
| 1246 Configtable_insert(cfp); |
| 1247 } |
| 1248 return cfp; |
| 1249 } |
| 1250 |
| 1251 /* Compute the closure of the configuration list */ |
| 1252 void Configlist_closure(struct lemon *lemp) |
| 1253 { |
| 1254 struct config *cfp, *newcfp; |
| 1255 struct rule *rp, *newrp; |
| 1256 struct symbol *sp, *xsp; |
| 1257 int i, dot; |
| 1258 |
| 1259 assert( currentend!=0 ); |
| 1260 for(cfp=current; cfp; cfp=cfp->next){ |
| 1261 rp = cfp->rp; |
| 1262 dot = cfp->dot; |
| 1263 if( dot>=rp->nrhs ) continue; |
| 1264 sp = rp->rhs[dot]; |
| 1265 if( sp->type==NONTERMINAL ){ |
| 1266 if( sp->rule==0 && sp!=lemp->errsym ){ |
| 1267 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", |
| 1268 sp->name); |
| 1269 lemp->errorcnt++; |
| 1270 } |
| 1271 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ |
| 1272 newcfp = Configlist_add(newrp,0); |
| 1273 for(i=dot+1; i<rp->nrhs; i++){ |
| 1274 xsp = rp->rhs[i]; |
| 1275 if( xsp->type==TERMINAL ){ |
| 1276 SetAdd(newcfp->fws,xsp->index); |
| 1277 break; |
| 1278 }else if( xsp->type==MULTITERMINAL ){ |
| 1279 int k; |
| 1280 for(k=0; k<xsp->nsubsym; k++){ |
| 1281 SetAdd(newcfp->fws, xsp->subsym[k]->index); |
| 1282 } |
| 1283 break; |
| 1284 }else{ |
| 1285 SetUnion(newcfp->fws,xsp->firstset); |
| 1286 if( xsp->lambda==LEMON_FALSE ) break; |
| 1287 } |
| 1288 } |
| 1289 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); |
| 1290 } |
| 1291 } |
| 1292 } |
| 1293 return; |
| 1294 } |
| 1295 |
| 1296 /* Sort the configuration list */ |
| 1297 void Configlist_sort(){ |
| 1298 current = (struct config *)msort((char *)current,(char **)&(current->next),Con
figcmp); |
| 1299 currentend = 0; |
| 1300 return; |
| 1301 } |
| 1302 |
| 1303 /* Sort the basis configuration list */ |
| 1304 void Configlist_sortbasis(){ |
| 1305 basis = (struct config *)msort((char *)current,(char **)&(current->bp),Configc
mp); |
| 1306 basisend = 0; |
| 1307 return; |
| 1308 } |
| 1309 |
| 1310 /* Return a pointer to the head of the configuration list and |
| 1311 ** reset the list */ |
| 1312 struct config *Configlist_return(){ |
| 1313 struct config *old; |
| 1314 old = current; |
| 1315 current = 0; |
| 1316 currentend = 0; |
| 1317 return old; |
| 1318 } |
| 1319 |
| 1320 /* Return a pointer to the head of the configuration list and |
| 1321 ** reset the list */ |
| 1322 struct config *Configlist_basis(){ |
| 1323 struct config *old; |
| 1324 old = basis; |
| 1325 basis = 0; |
| 1326 basisend = 0; |
| 1327 return old; |
| 1328 } |
| 1329 |
| 1330 /* Free all elements of the given configuration list */ |
| 1331 void Configlist_eat(struct config *cfp) |
| 1332 { |
| 1333 struct config *nextcfp; |
| 1334 for(; cfp; cfp=nextcfp){ |
| 1335 nextcfp = cfp->next; |
| 1336 assert( cfp->fplp==0 ); |
| 1337 assert( cfp->bplp==0 ); |
| 1338 if( cfp->fws ) SetFree(cfp->fws); |
| 1339 deleteconfig(cfp); |
| 1340 } |
| 1341 return; |
| 1342 } |
| 1343 /***************** From the file "error.c" *********************************/ |
| 1344 /* |
| 1345 ** Code for printing error message. |
| 1346 */ |
| 1347 |
| 1348 void ErrorMsg(const char *filename, int lineno, const char *format, ...){ |
| 1349 va_list ap; |
| 1350 fprintf(stderr, "%s:%d: ", filename, lineno); |
| 1351 va_start(ap, format); |
| 1352 vfprintf(stderr,format,ap); |
| 1353 va_end(ap); |
| 1354 fprintf(stderr, "\n"); |
| 1355 } |
| 1356 /**************** From the file "main.c" ************************************/ |
| 1357 /* |
| 1358 ** Main program file for the LEMON parser generator. |
| 1359 */ |
| 1360 |
| 1361 /* Report an out-of-memory condition and abort. This function |
| 1362 ** is used mostly by the "MemoryCheck" macro in struct.h |
| 1363 */ |
| 1364 void memory_error(){ |
| 1365 fprintf(stderr,"Out of memory. Aborting...\n"); |
| 1366 exit(1); |
| 1367 } |
| 1368 |
| 1369 static int nDefine = 0; /* Number of -D options on the command line */ |
| 1370 static char **azDefine = 0; /* Name of the -D macros */ |
| 1371 |
| 1372 /* This routine is called with the argument to each -D command-line option. |
| 1373 ** Add the macro defined to the azDefine array. |
| 1374 */ |
| 1375 static void handle_D_option(char *z){ |
| 1376 char **paz; |
| 1377 nDefine++; |
| 1378 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); |
| 1379 if( azDefine==0 ){ |
| 1380 fprintf(stderr,"out of memory\n"); |
| 1381 exit(1); |
| 1382 } |
| 1383 paz = &azDefine[nDefine-1]; |
| 1384 *paz = (char *) malloc( lemonStrlen(z)+1 ); |
| 1385 if( *paz==0 ){ |
| 1386 fprintf(stderr,"out of memory\n"); |
| 1387 exit(1); |
| 1388 } |
| 1389 strcpy(*paz, z); |
| 1390 for(z=*paz; *z && *z!='='; z++){} |
| 1391 *z = 0; |
| 1392 } |
| 1393 |
| 1394 static char *user_templatename = NULL; |
| 1395 static void handle_T_option(char *z){ |
| 1396 user_templatename = (char *) malloc( lemonStrlen(z)+1 ); |
| 1397 if( user_templatename==0 ){ |
| 1398 memory_error(); |
| 1399 } |
| 1400 strcpy(user_templatename, z); |
| 1401 } |
| 1402 |
| 1403 /* The main program. Parse the command line and do it... */ |
| 1404 int main(int argc, char **argv) |
| 1405 { |
| 1406 static int version = 0; |
| 1407 static int rpflag = 0; |
| 1408 static int basisflag = 0; |
| 1409 static int compress = 0; |
| 1410 static int quiet = 0; |
| 1411 static int statistics = 0; |
| 1412 static int mhflag = 0; |
| 1413 static int nolinenosflag = 0; |
| 1414 static int noResort = 0; |
| 1415 static struct s_options options[] = { |
| 1416 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, |
| 1417 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, |
| 1418 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, |
| 1419 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, |
| 1420 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, |
| 1421 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, |
| 1422 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, |
| 1423 {OPT_FLAG, "p", (char*)&showPrecedenceConflict, |
| 1424 "Show conflicts resolved by precedence rules"}, |
| 1425 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, |
| 1426 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, |
| 1427 {OPT_FLAG, "s", (char*)&statistics, |
| 1428 "Print parser stats to standard output."}, |
| 1429 {OPT_FLAG, "x", (char*)&version, "Print the version number."}, |
| 1430 {OPT_FLAG,0,0,0} |
| 1431 }; |
| 1432 int i; |
| 1433 int exitcode; |
| 1434 struct lemon lem; |
| 1435 |
| 1436 atexit(LemonAtExit); |
| 1437 |
| 1438 OptInit(argv,options,stderr); |
| 1439 if( version ){ |
| 1440 printf("Lemon version 1.0\n"); |
| 1441 exit(0); |
| 1442 } |
| 1443 if( OptNArgs()!=1 ){ |
| 1444 fprintf(stderr,"Exactly one filename argument is required.\n"); |
| 1445 exit(1); |
| 1446 } |
| 1447 memset(&lem, 0, sizeof(lem)); |
| 1448 lem.errorcnt = 0; |
| 1449 |
| 1450 /* Initialize the machine */ |
| 1451 Strsafe_init(); |
| 1452 Symbol_init(); |
| 1453 State_init(); |
| 1454 lem.argv0 = argv[0]; |
| 1455 lem.filename = OptArg(0); |
| 1456 lem.basisflag = basisflag; |
| 1457 lem.nolinenosflag = nolinenosflag; |
| 1458 Symbol_new("$"); |
| 1459 lem.errsym = Symbol_new("error"); |
| 1460 lem.errsym->useCnt = 0; |
| 1461 |
| 1462 /* Parse the input file */ |
| 1463 Parse(&lem); |
| 1464 if( lem.errorcnt ) exit(lem.errorcnt); |
| 1465 if( lem.nrule==0 ){ |
| 1466 fprintf(stderr,"Empty grammar.\n"); |
| 1467 exit(1); |
| 1468 } |
| 1469 |
| 1470 /* Count and index the symbols of the grammar */ |
| 1471 lem.nsymbol = Symbol_count(); |
| 1472 Symbol_new("{default}"); |
| 1473 lem.symbols = Symbol_arrayof(); |
| 1474 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i; |
| 1475 qsort(lem.symbols,lem.nsymbol+1,sizeof(struct symbol*), Symbolcmpp); |
| 1476 for(i=0; i<=lem.nsymbol; i++) lem.symbols[i]->index = i; |
| 1477 for(i=1; isupper(lem.symbols[i]->name[0]); i++); |
| 1478 lem.nterminal = i; |
| 1479 |
| 1480 /* Generate a reprint of the grammar, if requested on the command line */ |
| 1481 if( rpflag ){ |
| 1482 Reprint(&lem); |
| 1483 }else{ |
| 1484 /* Initialize the size for all follow and first sets */ |
| 1485 SetSize(lem.nterminal+1); |
| 1486 |
| 1487 /* Find the precedence for every production rule (that has one) */ |
| 1488 FindRulePrecedences(&lem); |
| 1489 |
| 1490 /* Compute the lambda-nonterminals and the first-sets for every |
| 1491 ** nonterminal */ |
| 1492 FindFirstSets(&lem); |
| 1493 |
| 1494 /* Compute all LR(0) states. Also record follow-set propagation |
| 1495 ** links so that the follow-set can be computed later */ |
| 1496 lem.nstate = 0; |
| 1497 FindStates(&lem); |
| 1498 lem.sorted = State_arrayof(); |
| 1499 |
| 1500 /* Tie up loose ends on the propagation links */ |
| 1501 FindLinks(&lem); |
| 1502 |
| 1503 /* Compute the follow set of every reducible configuration */ |
| 1504 FindFollowSets(&lem); |
| 1505 |
| 1506 /* Compute the action tables */ |
| 1507 FindActions(&lem); |
| 1508 |
| 1509 /* Compress the action tables */ |
| 1510 if( compress==0 ) CompressTables(&lem); |
| 1511 |
| 1512 /* Reorder and renumber the states so that states with fewer choices |
| 1513 ** occur at the end. This is an optimization that helps make the |
| 1514 ** generated parser tables smaller. */ |
| 1515 if( noResort==0 ) ResortStates(&lem); |
| 1516 |
| 1517 /* Generate a report of the parser generated. (the "y.output" file) */ |
| 1518 if( !quiet ) ReportOutput(&lem); |
| 1519 |
| 1520 /* Generate the source code for the parser */ |
| 1521 ReportTable(&lem, mhflag); |
| 1522 |
| 1523 /* Produce a header file for use by the scanner. (This step is |
| 1524 ** omitted if the "-m" option is used because makeheaders will |
| 1525 ** generate the file for us.) */ |
| 1526 if( !mhflag ) ReportHeader(&lem); |
| 1527 } |
| 1528 if( statistics ){ |
| 1529 printf("Parser statistics: %d terminals, %d nonterminals, %d rules\n", |
| 1530 lem.nterminal, lem.nsymbol - lem.nterminal, lem.nrule); |
| 1531 printf(" %d states, %d parser table entries, %d conflicts\
n", |
| 1532 lem.nstate, lem.tablesize, lem.nconflict); |
| 1533 } |
| 1534 if( lem.nconflict > 0 ){ |
| 1535 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); |
| 1536 } |
| 1537 |
| 1538 /* return 0 on success, 1 on failure. */ |
| 1539 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; |
| 1540 successful_exit = (exitcode == 0); |
| 1541 exit(exitcode); |
| 1542 return (exitcode); |
| 1543 } |
| 1544 /******************** From the file "msort.c" *******************************/ |
| 1545 /* |
| 1546 ** A generic merge-sort program. |
| 1547 ** |
| 1548 ** USAGE: |
| 1549 ** Let "ptr" be a pointer to some structure which is at the head of |
| 1550 ** a null-terminated list. Then to sort the list call: |
| 1551 ** |
| 1552 ** ptr = msort(ptr,&(ptr->next),cmpfnc); |
| 1553 ** |
| 1554 ** In the above, "cmpfnc" is a pointer to a function which compares |
| 1555 ** two instances of the structure and returns an integer, as in |
| 1556 ** strcmp. The second argument is a pointer to the pointer to the |
| 1557 ** second element of the linked list. This address is used to compute |
| 1558 ** the offset to the "next" field within the structure. The offset to |
| 1559 ** the "next" field must be constant for all structures in the list. |
| 1560 ** |
| 1561 ** The function returns a new pointer which is the head of the list |
| 1562 ** after sorting. |
| 1563 ** |
| 1564 ** ALGORITHM: |
| 1565 ** Merge-sort. |
| 1566 */ |
| 1567 |
| 1568 /* |
| 1569 ** Return a pointer to the next structure in the linked list. |
| 1570 */ |
| 1571 #define NEXT(A) (*(char**)(((unsigned long)A)+offset)) |
| 1572 |
| 1573 /* |
| 1574 ** Inputs: |
| 1575 ** a: A sorted, null-terminated linked list. (May be null). |
| 1576 ** b: A sorted, null-terminated linked list. (May be null). |
| 1577 ** cmp: A pointer to the comparison function. |
| 1578 ** offset: Offset in the structure to the "next" field. |
| 1579 ** |
| 1580 ** Return Value: |
| 1581 ** A pointer to the head of a sorted list containing the elements |
| 1582 ** of both a and b. |
| 1583 ** |
| 1584 ** Side effects: |
| 1585 ** The "next" pointers for elements in the lists a and b are |
| 1586 ** changed. |
| 1587 */ |
| 1588 static char *merge( |
| 1589 char *a, |
| 1590 char *b, |
| 1591 int (*cmp)(const char*,const char*), |
| 1592 int offset |
| 1593 ){ |
| 1594 char *ptr, *head; |
| 1595 |
| 1596 if( a==0 ){ |
| 1597 head = b; |
| 1598 }else if( b==0 ){ |
| 1599 head = a; |
| 1600 }else{ |
| 1601 if( (*cmp)(a,b)<=0 ){ |
| 1602 ptr = a; |
| 1603 a = NEXT(a); |
| 1604 }else{ |
| 1605 ptr = b; |
| 1606 b = NEXT(b); |
| 1607 } |
| 1608 head = ptr; |
| 1609 while( a && b ){ |
| 1610 if( (*cmp)(a,b)<=0 ){ |
| 1611 NEXT(ptr) = a; |
| 1612 ptr = a; |
| 1613 a = NEXT(a); |
| 1614 }else{ |
| 1615 NEXT(ptr) = b; |
| 1616 ptr = b; |
| 1617 b = NEXT(b); |
| 1618 } |
| 1619 } |
| 1620 if( a ) NEXT(ptr) = a; |
| 1621 else NEXT(ptr) = b; |
| 1622 } |
| 1623 return head; |
| 1624 } |
| 1625 |
| 1626 /* |
| 1627 ** Inputs: |
| 1628 ** list: Pointer to a singly-linked list of structures. |
| 1629 ** next: Pointer to pointer to the second element of the list. |
| 1630 ** cmp: A comparison function. |
| 1631 ** |
| 1632 ** Return Value: |
| 1633 ** A pointer to the head of a sorted list containing the elements |
| 1634 ** orginally in list. |
| 1635 ** |
| 1636 ** Side effects: |
| 1637 ** The "next" pointers for elements in list are changed. |
| 1638 */ |
| 1639 #define LISTSIZE 30 |
| 1640 static char *msort( |
| 1641 char *list, |
| 1642 char **next, |
| 1643 int (*cmp)(const char*,const char*) |
| 1644 ){ |
| 1645 unsigned long offset; |
| 1646 char *ep; |
| 1647 char *set[LISTSIZE]; |
| 1648 int i; |
| 1649 offset = (unsigned long)next - (unsigned long)list; |
| 1650 for(i=0; i<LISTSIZE; i++) set[i] = 0; |
| 1651 while( list ){ |
| 1652 ep = list; |
| 1653 list = NEXT(list); |
| 1654 NEXT(ep) = 0; |
| 1655 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ |
| 1656 ep = merge(ep,set[i],cmp,offset); |
| 1657 set[i] = 0; |
| 1658 } |
| 1659 set[i] = ep; |
| 1660 } |
| 1661 ep = 0; |
| 1662 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); |
| 1663 return ep; |
| 1664 } |
| 1665 /************************ From the file "option.c" **************************/ |
| 1666 static char **argv; |
| 1667 static struct s_options *op; |
| 1668 static FILE *errstream; |
| 1669 |
| 1670 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) |
| 1671 |
| 1672 /* |
| 1673 ** Print the command line with a carrot pointing to the k-th character |
| 1674 ** of the n-th field. |
| 1675 */ |
| 1676 static void errline(int n, int k, FILE *err) |
| 1677 { |
| 1678 int spcnt, i; |
| 1679 if( argv[0] ) fprintf(err,"%s",argv[0]); |
| 1680 spcnt = lemonStrlen(argv[0]) + 1; |
| 1681 for(i=1; i<n && argv[i]; i++){ |
| 1682 fprintf(err," %s",argv[i]); |
| 1683 spcnt += lemonStrlen(argv[i])+1; |
| 1684 } |
| 1685 spcnt += k; |
| 1686 for(; argv[i]; i++) fprintf(err," %s",argv[i]); |
| 1687 if( spcnt<20 ){ |
| 1688 fprintf(err,"\n%*s^-- here\n",spcnt,""); |
| 1689 }else{ |
| 1690 fprintf(err,"\n%*shere --^\n",spcnt-7,""); |
| 1691 } |
| 1692 } |
| 1693 |
| 1694 /* |
| 1695 ** Return the index of the N-th non-switch argument. Return -1 |
| 1696 ** if N is out of range. |
| 1697 */ |
| 1698 static int argindex(int n) |
| 1699 { |
| 1700 int i; |
| 1701 int dashdash = 0; |
| 1702 if( argv!=0 && *argv!=0 ){ |
| 1703 for(i=1; argv[i]; i++){ |
| 1704 if( dashdash || !ISOPT(argv[i]) ){ |
| 1705 if( n==0 ) return i; |
| 1706 n--; |
| 1707 } |
| 1708 if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
| 1709 } |
| 1710 } |
| 1711 return -1; |
| 1712 } |
| 1713 |
| 1714 static char emsg[] = "Command line syntax error: "; |
| 1715 |
| 1716 /* |
| 1717 ** Process a flag command line argument. |
| 1718 */ |
| 1719 static int handleflags(int i, FILE *err) |
| 1720 { |
| 1721 int v; |
| 1722 int errcnt = 0; |
| 1723 int j; |
| 1724 for(j=0; op[j].label; j++){ |
| 1725 if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break; |
| 1726 } |
| 1727 v = argv[i][0]=='-' ? 1 : 0; |
| 1728 if( op[j].label==0 ){ |
| 1729 if( err ){ |
| 1730 fprintf(err,"%sundefined option.\n",emsg); |
| 1731 errline(i,1,err); |
| 1732 } |
| 1733 errcnt++; |
| 1734 }else if( op[j].type==OPT_FLAG ){ |
| 1735 *((int*)op[j].arg) = v; |
| 1736 }else if( op[j].type==OPT_FFLAG ){ |
| 1737 (*(void(*)(int))(op[j].arg))(v); |
| 1738 }else if( op[j].type==OPT_FSTR ){ |
| 1739 (*(void(*)(char *))(op[j].arg))(&argv[i][2]); |
| 1740 }else{ |
| 1741 if( err ){ |
| 1742 fprintf(err,"%smissing argument on switch.\n",emsg); |
| 1743 errline(i,1,err); |
| 1744 } |
| 1745 errcnt++; |
| 1746 } |
| 1747 return errcnt; |
| 1748 } |
| 1749 |
| 1750 /* |
| 1751 ** Process a command line switch which has an argument. |
| 1752 */ |
| 1753 static int handleswitch(int i, FILE *err) |
| 1754 { |
| 1755 int lv = 0; |
| 1756 double dv = 0.0; |
| 1757 char *sv = 0, *end; |
| 1758 char *cp; |
| 1759 int j; |
| 1760 int errcnt = 0; |
| 1761 cp = strchr(argv[i],'='); |
| 1762 assert( cp!=0 ); |
| 1763 *cp = 0; |
| 1764 for(j=0; op[j].label; j++){ |
| 1765 if( strcmp(argv[i],op[j].label)==0 ) break; |
| 1766 } |
| 1767 *cp = '='; |
| 1768 if( op[j].label==0 ){ |
| 1769 if( err ){ |
| 1770 fprintf(err,"%sundefined option.\n",emsg); |
| 1771 errline(i,0,err); |
| 1772 } |
| 1773 errcnt++; |
| 1774 }else{ |
| 1775 cp++; |
| 1776 switch( op[j].type ){ |
| 1777 case OPT_FLAG: |
| 1778 case OPT_FFLAG: |
| 1779 if( err ){ |
| 1780 fprintf(err,"%soption requires an argument.\n",emsg); |
| 1781 errline(i,0,err); |
| 1782 } |
| 1783 errcnt++; |
| 1784 break; |
| 1785 case OPT_DBL: |
| 1786 case OPT_FDBL: |
| 1787 dv = strtod(cp,&end); |
| 1788 if( *end ){ |
| 1789 if( err ){ |
| 1790 fprintf(err,"%sillegal character in floating-point argument.\n",emsg
); |
| 1791 errline(i,((unsigned long)end)-(unsigned long)argv[i],err); |
| 1792 } |
| 1793 errcnt++; |
| 1794 } |
| 1795 break; |
| 1796 case OPT_INT: |
| 1797 case OPT_FINT: |
| 1798 lv = strtol(cp,&end,0); |
| 1799 if( *end ){ |
| 1800 if( err ){ |
| 1801 fprintf(err,"%sillegal character in integer argument.\n",emsg); |
| 1802 errline(i,((unsigned long)end)-(unsigned long)argv[i],err); |
| 1803 } |
| 1804 errcnt++; |
| 1805 } |
| 1806 break; |
| 1807 case OPT_STR: |
| 1808 case OPT_FSTR: |
| 1809 sv = cp; |
| 1810 break; |
| 1811 } |
| 1812 switch( op[j].type ){ |
| 1813 case OPT_FLAG: |
| 1814 case OPT_FFLAG: |
| 1815 break; |
| 1816 case OPT_DBL: |
| 1817 *(double*)(op[j].arg) = dv; |
| 1818 break; |
| 1819 case OPT_FDBL: |
| 1820 (*(void(*)(double))(op[j].arg))(dv); |
| 1821 break; |
| 1822 case OPT_INT: |
| 1823 *(int*)(op[j].arg) = lv; |
| 1824 break; |
| 1825 case OPT_FINT: |
| 1826 (*(void(*)(int))(op[j].arg))((int)lv); |
| 1827 break; |
| 1828 case OPT_STR: |
| 1829 *(char**)(op[j].arg) = sv; |
| 1830 break; |
| 1831 case OPT_FSTR: |
| 1832 (*(void(*)(char *))(op[j].arg))(sv); |
| 1833 break; |
| 1834 } |
| 1835 } |
| 1836 return errcnt; |
| 1837 } |
| 1838 |
| 1839 int OptInit(char **a, struct s_options *o, FILE *err) |
| 1840 { |
| 1841 int errcnt = 0; |
| 1842 argv = a; |
| 1843 op = o; |
| 1844 errstream = err; |
| 1845 if( argv && *argv && op ){ |
| 1846 int i; |
| 1847 for(i=1; argv[i]; i++){ |
| 1848 if( argv[i][0]=='+' || argv[i][0]=='-' ){ |
| 1849 errcnt += handleflags(i,err); |
| 1850 }else if( strchr(argv[i],'=') ){ |
| 1851 errcnt += handleswitch(i,err); |
| 1852 } |
| 1853 } |
| 1854 } |
| 1855 if( errcnt>0 ){ |
| 1856 fprintf(err,"Valid command line options for \"%s\" are:\n",*a); |
| 1857 OptPrint(); |
| 1858 exit(1); |
| 1859 } |
| 1860 return 0; |
| 1861 } |
| 1862 |
| 1863 int OptNArgs(){ |
| 1864 int cnt = 0; |
| 1865 int dashdash = 0; |
| 1866 int i; |
| 1867 if( argv!=0 && argv[0]!=0 ){ |
| 1868 for(i=1; argv[i]; i++){ |
| 1869 if( dashdash || !ISOPT(argv[i]) ) cnt++; |
| 1870 if( strcmp(argv[i],"--")==0 ) dashdash = 1; |
| 1871 } |
| 1872 } |
| 1873 return cnt; |
| 1874 } |
| 1875 |
| 1876 char *OptArg(int n) |
| 1877 { |
| 1878 int i; |
| 1879 i = argindex(n); |
| 1880 return i>=0 ? argv[i] : 0; |
| 1881 } |
| 1882 |
| 1883 void OptErr(int n) |
| 1884 { |
| 1885 int i; |
| 1886 i = argindex(n); |
| 1887 if( i>=0 ) errline(i,0,errstream); |
| 1888 } |
| 1889 |
| 1890 void OptPrint(){ |
| 1891 int i; |
| 1892 int max, len; |
| 1893 max = 0; |
| 1894 for(i=0; op[i].label; i++){ |
| 1895 len = lemonStrlen(op[i].label) + 1; |
| 1896 switch( op[i].type ){ |
| 1897 case OPT_FLAG: |
| 1898 case OPT_FFLAG: |
| 1899 break; |
| 1900 case OPT_INT: |
| 1901 case OPT_FINT: |
| 1902 len += 9; /* length of "<integer>" */ |
| 1903 break; |
| 1904 case OPT_DBL: |
| 1905 case OPT_FDBL: |
| 1906 len += 6; /* length of "<real>" */ |
| 1907 break; |
| 1908 case OPT_STR: |
| 1909 case OPT_FSTR: |
| 1910 len += 8; /* length of "<string>" */ |
| 1911 break; |
| 1912 } |
| 1913 if( len>max ) max = len; |
| 1914 } |
| 1915 for(i=0; op[i].label; i++){ |
| 1916 switch( op[i].type ){ |
| 1917 case OPT_FLAG: |
| 1918 case OPT_FFLAG: |
| 1919 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); |
| 1920 break; |
| 1921 case OPT_INT: |
| 1922 case OPT_FINT: |
| 1923 fprintf(errstream," %s=<integer>%*s %s\n",op[i].label, |
| 1924 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message); |
| 1925 break; |
| 1926 case OPT_DBL: |
| 1927 case OPT_FDBL: |
| 1928 fprintf(errstream," %s=<real>%*s %s\n",op[i].label, |
| 1929 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message); |
| 1930 break; |
| 1931 case OPT_STR: |
| 1932 case OPT_FSTR: |
| 1933 fprintf(errstream," %s=<string>%*s %s\n",op[i].label, |
| 1934 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message); |
| 1935 break; |
| 1936 } |
| 1937 } |
| 1938 } |
| 1939 /*********************** From the file "parse.c" ****************************/ |
| 1940 /* |
| 1941 ** Input file parser for the LEMON parser generator. |
| 1942 */ |
| 1943 |
| 1944 /* The state of the parser */ |
| 1945 enum e_state { |
| 1946 INITIALIZE, |
| 1947 WAITING_FOR_DECL_OR_RULE, |
| 1948 WAITING_FOR_DECL_KEYWORD, |
| 1949 WAITING_FOR_DECL_ARG, |
| 1950 WAITING_FOR_PRECEDENCE_SYMBOL, |
| 1951 WAITING_FOR_ARROW, |
| 1952 IN_RHS, |
| 1953 LHS_ALIAS_1, |
| 1954 LHS_ALIAS_2, |
| 1955 LHS_ALIAS_3, |
| 1956 RHS_ALIAS_1, |
| 1957 RHS_ALIAS_2, |
| 1958 PRECEDENCE_MARK_1, |
| 1959 PRECEDENCE_MARK_2, |
| 1960 RESYNC_AFTER_RULE_ERROR, |
| 1961 RESYNC_AFTER_DECL_ERROR, |
| 1962 WAITING_FOR_DESTRUCTOR_SYMBOL, |
| 1963 WAITING_FOR_DATATYPE_SYMBOL, |
| 1964 WAITING_FOR_FALLBACK_ID, |
| 1965 WAITING_FOR_WILDCARD_ID |
| 1966 }; |
| 1967 struct pstate { |
| 1968 char *filename; /* Name of the input file */ |
| 1969 int tokenlineno; /* Linenumber at which current token starts */ |
| 1970 int errorcnt; /* Number of errors so far */ |
| 1971 char *tokenstart; /* Text of current token */ |
| 1972 struct lemon *gp; /* Global state vector */ |
| 1973 enum e_state state; /* The state of the parser */ |
| 1974 struct symbol *fallback; /* The fallback token */ |
| 1975 struct symbol *lhs; /* Left-hand side of current rule */ |
| 1976 const char *lhsalias; /* Alias for the LHS */ |
| 1977 int nrhs; /* Number of right-hand side symbols seen */ |
| 1978 struct symbol *rhs[MAXRHS]; /* RHS symbols */ |
| 1979 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ |
| 1980 struct rule *prevrule; /* Previous rule parsed */ |
| 1981 const char *declkeyword; /* Keyword of a declaration */ |
| 1982 char **declargslot; /* Where the declaration argument should be put */ |
| 1983 int insertLineMacro; /* Add #line before declaration insert */ |
| 1984 int *decllinenoslot; /* Where to write declaration line number */ |
| 1985 enum e_assoc declassoc; /* Assign this association to decl arguments */ |
| 1986 int preccounter; /* Assign this precedence to decl arguments */ |
| 1987 struct rule *firstrule; /* Pointer to first rule in the grammar */ |
| 1988 struct rule *lastrule; /* Pointer to the most recently parsed rule */ |
| 1989 }; |
| 1990 |
| 1991 /* Parse a single token */ |
| 1992 static void parseonetoken(struct pstate *psp) |
| 1993 { |
| 1994 const char *x; |
| 1995 x = Strsafe(psp->tokenstart); /* Save the token permanently */ |
| 1996 #if 0 |
| 1997 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, |
| 1998 x,psp->state); |
| 1999 #endif |
| 2000 switch( psp->state ){ |
| 2001 case INITIALIZE: |
| 2002 psp->prevrule = 0; |
| 2003 psp->preccounter = 0; |
| 2004 psp->firstrule = psp->lastrule = 0; |
| 2005 psp->gp->nrule = 0; |
| 2006 /* Fall thru to next case */ |
| 2007 case WAITING_FOR_DECL_OR_RULE: |
| 2008 if( x[0]=='%' ){ |
| 2009 psp->state = WAITING_FOR_DECL_KEYWORD; |
| 2010 }else if( islower(x[0]) ){ |
| 2011 psp->lhs = Symbol_new(x); |
| 2012 psp->nrhs = 0; |
| 2013 psp->lhsalias = 0; |
| 2014 psp->state = WAITING_FOR_ARROW; |
| 2015 }else if( x[0]=='{' ){ |
| 2016 if( psp->prevrule==0 ){ |
| 2017 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2018 "There is no prior rule opon which to attach the code \ |
| 2019 fragment which begins on this line."); |
| 2020 psp->errorcnt++; |
| 2021 }else if( psp->prevrule->code!=0 ){ |
| 2022 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2023 "Code fragment beginning on this line is not the first \ |
| 2024 to follow the previous rule."); |
| 2025 psp->errorcnt++; |
| 2026 }else{ |
| 2027 psp->prevrule->line = psp->tokenlineno; |
| 2028 psp->prevrule->code = &x[1]; |
| 2029 } |
| 2030 }else if( x[0]=='[' ){ |
| 2031 psp->state = PRECEDENCE_MARK_1; |
| 2032 }else{ |
| 2033 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2034 "Token \"%s\" should be either \"%%\" or a nonterminal name.", |
| 2035 x); |
| 2036 psp->errorcnt++; |
| 2037 } |
| 2038 break; |
| 2039 case PRECEDENCE_MARK_1: |
| 2040 if( !isupper(x[0]) ){ |
| 2041 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2042 "The precedence symbol must be a terminal."); |
| 2043 psp->errorcnt++; |
| 2044 }else if( psp->prevrule==0 ){ |
| 2045 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2046 "There is no prior rule to assign precedence \"[%s]\".",x); |
| 2047 psp->errorcnt++; |
| 2048 }else if( psp->prevrule->precsym!=0 ){ |
| 2049 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2050 "Precedence mark on this line is not the first \ |
| 2051 to follow the previous rule."); |
| 2052 psp->errorcnt++; |
| 2053 }else{ |
| 2054 psp->prevrule->precsym = Symbol_new(x); |
| 2055 } |
| 2056 psp->state = PRECEDENCE_MARK_2; |
| 2057 break; |
| 2058 case PRECEDENCE_MARK_2: |
| 2059 if( x[0]!=']' ){ |
| 2060 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2061 "Missing \"]\" on precedence mark."); |
| 2062 psp->errorcnt++; |
| 2063 } |
| 2064 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2065 break; |
| 2066 case WAITING_FOR_ARROW: |
| 2067 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
| 2068 psp->state = IN_RHS; |
| 2069 }else if( x[0]=='(' ){ |
| 2070 psp->state = LHS_ALIAS_1; |
| 2071 }else{ |
| 2072 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2073 "Expected to see a \":\" following the LHS symbol \"%s\".", |
| 2074 psp->lhs->name); |
| 2075 psp->errorcnt++; |
| 2076 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2077 } |
| 2078 break; |
| 2079 case LHS_ALIAS_1: |
| 2080 if( isalpha(x[0]) ){ |
| 2081 psp->lhsalias = x; |
| 2082 psp->state = LHS_ALIAS_2; |
| 2083 }else{ |
| 2084 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2085 "\"%s\" is not a valid alias for the LHS \"%s\"\n", |
| 2086 x,psp->lhs->name); |
| 2087 psp->errorcnt++; |
| 2088 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2089 } |
| 2090 break; |
| 2091 case LHS_ALIAS_2: |
| 2092 if( x[0]==')' ){ |
| 2093 psp->state = LHS_ALIAS_3; |
| 2094 }else{ |
| 2095 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2096 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
| 2097 psp->errorcnt++; |
| 2098 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2099 } |
| 2100 break; |
| 2101 case LHS_ALIAS_3: |
| 2102 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ |
| 2103 psp->state = IN_RHS; |
| 2104 }else{ |
| 2105 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2106 "Missing \"->\" following: \"%s(%s)\".", |
| 2107 psp->lhs->name,psp->lhsalias); |
| 2108 psp->errorcnt++; |
| 2109 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2110 } |
| 2111 break; |
| 2112 case IN_RHS: |
| 2113 if( x[0]=='.' ){ |
| 2114 struct rule *rp; |
| 2115 rp = (struct rule *)calloc( sizeof(struct rule) + |
| 2116 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); |
| 2117 if( rp==0 ){ |
| 2118 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2119 "Can't allocate enough memory for this rule."); |
| 2120 psp->errorcnt++; |
| 2121 psp->prevrule = 0; |
| 2122 }else{ |
| 2123 int i; |
| 2124 rp->ruleline = psp->tokenlineno; |
| 2125 rp->rhs = (struct symbol**)&rp[1]; |
| 2126 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); |
| 2127 for(i=0; i<psp->nrhs; i++){ |
| 2128 rp->rhs[i] = psp->rhs[i]; |
| 2129 rp->rhsalias[i] = psp->alias[i]; |
| 2130 } |
| 2131 rp->lhs = psp->lhs; |
| 2132 rp->lhsalias = psp->lhsalias; |
| 2133 rp->nrhs = psp->nrhs; |
| 2134 rp->code = 0; |
| 2135 rp->precsym = 0; |
| 2136 rp->index = psp->gp->nrule++; |
| 2137 rp->nextlhs = rp->lhs->rule; |
| 2138 rp->lhs->rule = rp; |
| 2139 rp->next = 0; |
| 2140 if( psp->firstrule==0 ){ |
| 2141 psp->firstrule = psp->lastrule = rp; |
| 2142 }else{ |
| 2143 psp->lastrule->next = rp; |
| 2144 psp->lastrule = rp; |
| 2145 } |
| 2146 psp->prevrule = rp; |
| 2147 } |
| 2148 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2149 }else if( isalpha(x[0]) ){ |
| 2150 if( psp->nrhs>=MAXRHS ){ |
| 2151 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2152 "Too many symbols on RHS of rule beginning at \"%s\".", |
| 2153 x); |
| 2154 psp->errorcnt++; |
| 2155 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2156 }else{ |
| 2157 psp->rhs[psp->nrhs] = Symbol_new(x); |
| 2158 psp->alias[psp->nrhs] = 0; |
| 2159 psp->nrhs++; |
| 2160 } |
| 2161 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ |
| 2162 struct symbol *msp = psp->rhs[psp->nrhs-1]; |
| 2163 if( msp->type!=MULTITERMINAL ){ |
| 2164 struct symbol *origsp = msp; |
| 2165 msp = (struct symbol *) calloc(1,sizeof(*msp)); |
| 2166 memset(msp, 0, sizeof(*msp)); |
| 2167 msp->type = MULTITERMINAL; |
| 2168 msp->nsubsym = 1; |
| 2169 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); |
| 2170 msp->subsym[0] = origsp; |
| 2171 msp->name = origsp->name; |
| 2172 psp->rhs[psp->nrhs-1] = msp; |
| 2173 } |
| 2174 msp->nsubsym++; |
| 2175 msp->subsym = (struct symbol **) realloc(msp->subsym, |
| 2176 sizeof(struct symbol*)*msp->nsubsym); |
| 2177 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); |
| 2178 if( islower(x[1]) || islower(msp->subsym[0]->name[0]) ){ |
| 2179 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2180 "Cannot form a compound containing a non-terminal"); |
| 2181 psp->errorcnt++; |
| 2182 } |
| 2183 }else if( x[0]=='(' && psp->nrhs>0 ){ |
| 2184 psp->state = RHS_ALIAS_1; |
| 2185 }else{ |
| 2186 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2187 "Illegal character on RHS of rule: \"%s\".",x); |
| 2188 psp->errorcnt++; |
| 2189 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2190 } |
| 2191 break; |
| 2192 case RHS_ALIAS_1: |
| 2193 if( isalpha(x[0]) ){ |
| 2194 psp->alias[psp->nrhs-1] = x; |
| 2195 psp->state = RHS_ALIAS_2; |
| 2196 }else{ |
| 2197 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2198 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", |
| 2199 x,psp->rhs[psp->nrhs-1]->name); |
| 2200 psp->errorcnt++; |
| 2201 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2202 } |
| 2203 break; |
| 2204 case RHS_ALIAS_2: |
| 2205 if( x[0]==')' ){ |
| 2206 psp->state = IN_RHS; |
| 2207 }else{ |
| 2208 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2209 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); |
| 2210 psp->errorcnt++; |
| 2211 psp->state = RESYNC_AFTER_RULE_ERROR; |
| 2212 } |
| 2213 break; |
| 2214 case WAITING_FOR_DECL_KEYWORD: |
| 2215 if( isalpha(x[0]) ){ |
| 2216 psp->declkeyword = x; |
| 2217 psp->declargslot = 0; |
| 2218 psp->decllinenoslot = 0; |
| 2219 psp->insertLineMacro = 1; |
| 2220 psp->state = WAITING_FOR_DECL_ARG; |
| 2221 if( strcmp(x,"name")==0 ){ |
| 2222 psp->declargslot = &(psp->gp->name); |
| 2223 psp->insertLineMacro = 0; |
| 2224 }else if( strcmp(x,"include")==0 ){ |
| 2225 psp->declargslot = &(psp->gp->include); |
| 2226 }else if( strcmp(x,"code")==0 ){ |
| 2227 psp->declargslot = &(psp->gp->extracode); |
| 2228 }else if( strcmp(x,"token_destructor")==0 ){ |
| 2229 psp->declargslot = &psp->gp->tokendest; |
| 2230 }else if( strcmp(x,"default_destructor")==0 ){ |
| 2231 psp->declargslot = &psp->gp->vardest; |
| 2232 }else if( strcmp(x,"token_prefix")==0 ){ |
| 2233 psp->declargslot = &psp->gp->tokenprefix; |
| 2234 psp->insertLineMacro = 0; |
| 2235 }else if( strcmp(x,"syntax_error")==0 ){ |
| 2236 psp->declargslot = &(psp->gp->error); |
| 2237 }else if( strcmp(x,"parse_accept")==0 ){ |
| 2238 psp->declargslot = &(psp->gp->accept); |
| 2239 }else if( strcmp(x,"parse_failure")==0 ){ |
| 2240 psp->declargslot = &(psp->gp->failure); |
| 2241 }else if( strcmp(x,"stack_overflow")==0 ){ |
| 2242 psp->declargslot = &(psp->gp->overflow); |
| 2243 }else if( strcmp(x,"extra_argument")==0 ){ |
| 2244 psp->declargslot = &(psp->gp->arg); |
| 2245 psp->insertLineMacro = 0; |
| 2246 }else if( strcmp(x,"token_type")==0 ){ |
| 2247 psp->declargslot = &(psp->gp->tokentype); |
| 2248 psp->insertLineMacro = 0; |
| 2249 }else if( strcmp(x,"default_type")==0 ){ |
| 2250 psp->declargslot = &(psp->gp->vartype); |
| 2251 psp->insertLineMacro = 0; |
| 2252 }else if( strcmp(x,"stack_size")==0 ){ |
| 2253 psp->declargslot = &(psp->gp->stacksize); |
| 2254 psp->insertLineMacro = 0; |
| 2255 }else if( strcmp(x,"start_symbol")==0 ){ |
| 2256 psp->declargslot = &(psp->gp->start); |
| 2257 psp->insertLineMacro = 0; |
| 2258 }else if( strcmp(x,"left")==0 ){ |
| 2259 psp->preccounter++; |
| 2260 psp->declassoc = LEFT; |
| 2261 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
| 2262 }else if( strcmp(x,"right")==0 ){ |
| 2263 psp->preccounter++; |
| 2264 psp->declassoc = RIGHT; |
| 2265 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
| 2266 }else if( strcmp(x,"nonassoc")==0 ){ |
| 2267 psp->preccounter++; |
| 2268 psp->declassoc = NONE; |
| 2269 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; |
| 2270 }else if( strcmp(x,"destructor")==0 ){ |
| 2271 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; |
| 2272 }else if( strcmp(x,"type")==0 ){ |
| 2273 psp->state = WAITING_FOR_DATATYPE_SYMBOL; |
| 2274 }else if( strcmp(x,"fallback")==0 ){ |
| 2275 psp->fallback = 0; |
| 2276 psp->state = WAITING_FOR_FALLBACK_ID; |
| 2277 }else if( strcmp(x,"wildcard")==0 ){ |
| 2278 psp->state = WAITING_FOR_WILDCARD_ID; |
| 2279 }else{ |
| 2280 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2281 "Unknown declaration keyword: \"%%%s\".",x); |
| 2282 psp->errorcnt++; |
| 2283 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2284 } |
| 2285 }else{ |
| 2286 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2287 "Illegal declaration keyword: \"%s\".",x); |
| 2288 psp->errorcnt++; |
| 2289 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2290 } |
| 2291 break; |
| 2292 case WAITING_FOR_DESTRUCTOR_SYMBOL: |
| 2293 if( !isalpha(x[0]) ){ |
| 2294 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2295 "Symbol name missing after %%destructor keyword"); |
| 2296 psp->errorcnt++; |
| 2297 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2298 }else{ |
| 2299 struct symbol *sp = Symbol_new(x); |
| 2300 psp->declargslot = &sp->destructor; |
| 2301 psp->decllinenoslot = &sp->destLineno; |
| 2302 psp->insertLineMacro = 1; |
| 2303 psp->state = WAITING_FOR_DECL_ARG; |
| 2304 } |
| 2305 break; |
| 2306 case WAITING_FOR_DATATYPE_SYMBOL: |
| 2307 if( !isalpha(x[0]) ){ |
| 2308 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2309 "Symbol name missing after %%type keyword"); |
| 2310 psp->errorcnt++; |
| 2311 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2312 }else{ |
| 2313 struct symbol *sp = Symbol_find(x); |
| 2314 if((sp) && (sp->datatype)){ |
| 2315 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2316 "Symbol %%type \"%s\" already defined", x); |
| 2317 psp->errorcnt++; |
| 2318 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2319 }else{ |
| 2320 if (!sp){ |
| 2321 sp = Symbol_new(x); |
| 2322 } |
| 2323 psp->declargslot = &sp->datatype; |
| 2324 psp->insertLineMacro = 0; |
| 2325 psp->state = WAITING_FOR_DECL_ARG; |
| 2326 } |
| 2327 } |
| 2328 break; |
| 2329 case WAITING_FOR_PRECEDENCE_SYMBOL: |
| 2330 if( x[0]=='.' ){ |
| 2331 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2332 }else if( isupper(x[0]) ){ |
| 2333 struct symbol *sp; |
| 2334 sp = Symbol_new(x); |
| 2335 if( sp->prec>=0 ){ |
| 2336 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2337 "Symbol \"%s\" has already be given a precedence.",x); |
| 2338 psp->errorcnt++; |
| 2339 }else{ |
| 2340 sp->prec = psp->preccounter; |
| 2341 sp->assoc = psp->declassoc; |
| 2342 } |
| 2343 }else{ |
| 2344 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2345 "Can't assign a precedence to \"%s\".",x); |
| 2346 psp->errorcnt++; |
| 2347 } |
| 2348 break; |
| 2349 case WAITING_FOR_DECL_ARG: |
| 2350 if( x[0]=='{' || x[0]=='\"' || isalnum(x[0]) ){ |
| 2351 const char *zOld, *zNew; |
| 2352 char *zBuf, *z; |
| 2353 int nOld, n, nLine, nNew, nBack; |
| 2354 int addLineMacro; |
| 2355 char zLine[50]; |
| 2356 zNew = x; |
| 2357 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; |
| 2358 nNew = lemonStrlen(zNew); |
| 2359 if( *psp->declargslot ){ |
| 2360 zOld = *psp->declargslot; |
| 2361 }else{ |
| 2362 zOld = ""; |
| 2363 } |
| 2364 nOld = lemonStrlen(zOld); |
| 2365 n = nOld + nNew + 20; |
| 2366 addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && |
| 2367 (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); |
| 2368 if( addLineMacro ){ |
| 2369 for(z=psp->filename, nBack=0; *z; z++){ |
| 2370 if( *z=='\\' ) nBack++; |
| 2371 } |
| 2372 sprintf(zLine, "#line %d ", psp->tokenlineno); |
| 2373 nLine = lemonStrlen(zLine); |
| 2374 n += nLine + lemonStrlen(psp->filename) + nBack; |
| 2375 } |
| 2376 *psp->declargslot = (char *) realloc(*psp->declargslot, n); |
| 2377 zBuf = *psp->declargslot + nOld; |
| 2378 if( addLineMacro ){ |
| 2379 if( nOld && zBuf[-1]!='\n' ){ |
| 2380 *(zBuf++) = '\n'; |
| 2381 } |
| 2382 memcpy(zBuf, zLine, nLine); |
| 2383 zBuf += nLine; |
| 2384 *(zBuf++) = '"'; |
| 2385 for(z=psp->filename; *z; z++){ |
| 2386 if( *z=='\\' ){ |
| 2387 *(zBuf++) = '\\'; |
| 2388 } |
| 2389 *(zBuf++) = *z; |
| 2390 } |
| 2391 *(zBuf++) = '"'; |
| 2392 *(zBuf++) = '\n'; |
| 2393 } |
| 2394 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ |
| 2395 psp->decllinenoslot[0] = psp->tokenlineno; |
| 2396 } |
| 2397 memcpy(zBuf, zNew, nNew); |
| 2398 zBuf += nNew; |
| 2399 *zBuf = 0; |
| 2400 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2401 }else{ |
| 2402 ErrorMsg(psp->filename,psp->tokenlineno, |
| 2403 "Illegal argument to %%%s: %s",psp->declkeyword,x); |
| 2404 psp->errorcnt++; |
| 2405 psp->state = RESYNC_AFTER_DECL_ERROR; |
| 2406 } |
| 2407 break; |
| 2408 case WAITING_FOR_FALLBACK_ID: |
| 2409 if( x[0]=='.' ){ |
| 2410 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2411 }else if( !isupper(x[0]) ){ |
| 2412 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2413 "%%fallback argument \"%s\" should be a token", x); |
| 2414 psp->errorcnt++; |
| 2415 }else{ |
| 2416 struct symbol *sp = Symbol_new(x); |
| 2417 if( psp->fallback==0 ){ |
| 2418 psp->fallback = sp; |
| 2419 }else if( sp->fallback ){ |
| 2420 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2421 "More than one fallback assigned to token %s", x); |
| 2422 psp->errorcnt++; |
| 2423 }else{ |
| 2424 sp->fallback = psp->fallback; |
| 2425 psp->gp->has_fallback = 1; |
| 2426 } |
| 2427 } |
| 2428 break; |
| 2429 case WAITING_FOR_WILDCARD_ID: |
| 2430 if( x[0]=='.' ){ |
| 2431 psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2432 }else if( !isupper(x[0]) ){ |
| 2433 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2434 "%%wildcard argument \"%s\" should be a token", x); |
| 2435 psp->errorcnt++; |
| 2436 }else{ |
| 2437 struct symbol *sp = Symbol_new(x); |
| 2438 if( psp->gp->wildcard==0 ){ |
| 2439 psp->gp->wildcard = sp; |
| 2440 }else{ |
| 2441 ErrorMsg(psp->filename, psp->tokenlineno, |
| 2442 "Extra wildcard to token: %s", x); |
| 2443 psp->errorcnt++; |
| 2444 } |
| 2445 } |
| 2446 break; |
| 2447 case RESYNC_AFTER_RULE_ERROR: |
| 2448 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2449 ** break; */ |
| 2450 case RESYNC_AFTER_DECL_ERROR: |
| 2451 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; |
| 2452 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; |
| 2453 break; |
| 2454 } |
| 2455 } |
| 2456 |
| 2457 /* Run the preprocessor over the input file text. The global variables |
| 2458 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined |
| 2459 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and |
| 2460 ** comments them out. Text in between is also commented out as appropriate. |
| 2461 */ |
| 2462 static void preprocess_input(char *z){ |
| 2463 int i, j, k, n; |
| 2464 int exclude = 0; |
| 2465 int start = 0; |
| 2466 int lineno = 1; |
| 2467 int start_lineno = 1; |
| 2468 for(i=0; z[i]; i++){ |
| 2469 if( z[i]=='\n' ) lineno++; |
| 2470 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; |
| 2471 if( strncmp(&z[i],"%endif",6)==0 && isspace(z[i+6]) ){ |
| 2472 if( exclude ){ |
| 2473 exclude--; |
| 2474 if( exclude==0 ){ |
| 2475 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; |
| 2476 } |
| 2477 } |
| 2478 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
| 2479 }else if( (strncmp(&z[i],"%ifdef",6)==0 && isspace(z[i+6])) |
| 2480 || (strncmp(&z[i],"%ifndef",7)==0 && isspace(z[i+7])) ){ |
| 2481 if( exclude ){ |
| 2482 exclude++; |
| 2483 }else{ |
| 2484 for(j=i+7; isspace(z[j]); j++){} |
| 2485 for(n=0; z[j+n] && !isspace(z[j+n]); n++){} |
| 2486 exclude = 1; |
| 2487 for(k=0; k<nDefine; k++){ |
| 2488 if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){ |
| 2489 exclude = 0; |
| 2490 break; |
| 2491 } |
| 2492 } |
| 2493 if( z[i+3]=='n' ) exclude = !exclude; |
| 2494 if( exclude ){ |
| 2495 start = i; |
| 2496 start_lineno = lineno; |
| 2497 } |
| 2498 } |
| 2499 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; |
| 2500 } |
| 2501 } |
| 2502 if( exclude ){ |
| 2503 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno); |
| 2504 exit(1); |
| 2505 } |
| 2506 } |
| 2507 |
| 2508 /* In spite of its name, this function is really a scanner. It read |
| 2509 ** in the entire input file (all at once) then tokenizes it. Each |
| 2510 ** token is passed to the function "parseonetoken" which builds all |
| 2511 ** the appropriate data structures in the global state vector "gp". |
| 2512 */ |
| 2513 void Parse(struct lemon *gp) |
| 2514 { |
| 2515 struct pstate ps; |
| 2516 FILE *fp; |
| 2517 char *filebuf; |
| 2518 int filesize; |
| 2519 int lineno; |
| 2520 int c; |
| 2521 char *cp, *nextcp; |
| 2522 int startline = 0; |
| 2523 |
| 2524 memset(&ps, '\0', sizeof(ps)); |
| 2525 ps.gp = gp; |
| 2526 ps.filename = gp->filename; |
| 2527 ps.errorcnt = 0; |
| 2528 ps.state = INITIALIZE; |
| 2529 |
| 2530 /* Begin by reading the input file */ |
| 2531 fp = fopen(ps.filename,"rb"); |
| 2532 if( fp==0 ){ |
| 2533 ErrorMsg(ps.filename,0,"Can't open this file for reading."); |
| 2534 gp->errorcnt++; |
| 2535 return; |
| 2536 } |
| 2537 fseek(fp,0,2); |
| 2538 filesize = ftell(fp); |
| 2539 rewind(fp); |
| 2540 filebuf = (char *)malloc( filesize+1 ); |
| 2541 if( filebuf==0 ){ |
| 2542 ErrorMsg(ps.filename,0,"Can't allocate %d of memory to hold this file.", |
| 2543 filesize+1); |
| 2544 gp->errorcnt++; |
| 2545 return; |
| 2546 } |
| 2547 if( fread(filebuf,1,filesize,fp)!=filesize ){ |
| 2548 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", |
| 2549 filesize); |
| 2550 free(filebuf); |
| 2551 gp->errorcnt++; |
| 2552 return; |
| 2553 } |
| 2554 fclose(fp); |
| 2555 filebuf[filesize] = 0; |
| 2556 |
| 2557 /* Make an initial pass through the file to handle %ifdef and %ifndef */ |
| 2558 preprocess_input(filebuf); |
| 2559 |
| 2560 /* Now scan the text of the input file */ |
| 2561 lineno = 1; |
| 2562 for(cp=filebuf; (c= *cp)!=0; ){ |
| 2563 if( c=='\n' ) lineno++; /* Keep track of the line number */ |
| 2564 if( isspace(c) ){ cp++; continue; } /* Skip all white space */ |
| 2565 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ |
| 2566 cp+=2; |
| 2567 while( (c= *cp)!=0 && c!='\n' ) cp++; |
| 2568 continue; |
| 2569 } |
| 2570 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ |
| 2571 cp+=2; |
| 2572 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ |
| 2573 if( c=='\n' ) lineno++; |
| 2574 cp++; |
| 2575 } |
| 2576 if( c ) cp++; |
| 2577 continue; |
| 2578 } |
| 2579 ps.tokenstart = cp; /* Mark the beginning of the token */ |
| 2580 ps.tokenlineno = lineno; /* Linenumber on which token begins */ |
| 2581 if( c=='\"' ){ /* String literals */ |
| 2582 cp++; |
| 2583 while( (c= *cp)!=0 && c!='\"' ){ |
| 2584 if( c=='\n' ) lineno++; |
| 2585 cp++; |
| 2586 } |
| 2587 if( c==0 ){ |
| 2588 ErrorMsg(ps.filename,startline, |
| 2589 "String starting on this line is not terminated before the end of the file."); |
| 2590 ps.errorcnt++; |
| 2591 nextcp = cp; |
| 2592 }else{ |
| 2593 nextcp = cp+1; |
| 2594 } |
| 2595 }else if( c=='{' ){ /* A block of C code */ |
| 2596 int level; |
| 2597 cp++; |
| 2598 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ |
| 2599 if( c=='\n' ) lineno++; |
| 2600 else if( c=='{' ) level++; |
| 2601 else if( c=='}' ) level--; |
| 2602 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ |
| 2603 int prevc; |
| 2604 cp = &cp[2]; |
| 2605 prevc = 0; |
| 2606 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ |
| 2607 if( c=='\n' ) lineno++; |
| 2608 prevc = c; |
| 2609 cp++; |
| 2610 } |
| 2611 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ |
| 2612 cp = &cp[2]; |
| 2613 while( (c= *cp)!=0 && c!='\n' ) cp++; |
| 2614 if( c ) lineno++; |
| 2615 }else if( c=='\'' || c=='\"' ){ /* String a character literals */ |
| 2616 int startchar, prevc; |
| 2617 startchar = c; |
| 2618 prevc = 0; |
| 2619 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ |
| 2620 if( c=='\n' ) lineno++; |
| 2621 if( prevc=='\\' ) prevc = 0; |
| 2622 else prevc = c; |
| 2623 } |
| 2624 } |
| 2625 } |
| 2626 if( c==0 ){ |
| 2627 ErrorMsg(ps.filename,ps.tokenlineno, |
| 2628 "C code starting on this line is not terminated before the end of the file."); |
| 2629 ps.errorcnt++; |
| 2630 nextcp = cp; |
| 2631 }else{ |
| 2632 nextcp = cp+1; |
| 2633 } |
| 2634 }else if( isalnum(c) ){ /* Identifiers */ |
| 2635 while( (c= *cp)!=0 && (isalnum(c) || c=='_') ) cp++; |
| 2636 nextcp = cp; |
| 2637 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ |
| 2638 cp += 3; |
| 2639 nextcp = cp; |
| 2640 }else if( (c=='/' || c=='|') && isalpha(cp[1]) ){ |
| 2641 cp += 2; |
| 2642 while( (c = *cp)!=0 && (isalnum(c) || c=='_') ) cp++; |
| 2643 nextcp = cp; |
| 2644 }else{ /* All other (one character) operators */ |
| 2645 cp++; |
| 2646 nextcp = cp; |
| 2647 } |
| 2648 c = *cp; |
| 2649 *cp = 0; /* Null terminate the token */ |
| 2650 parseonetoken(&ps); /* Parse the token */ |
| 2651 *cp = c; /* Restore the buffer */ |
| 2652 cp = nextcp; |
| 2653 } |
| 2654 free(filebuf); /* Release the buffer after parsing */ |
| 2655 gp->rule = ps.firstrule; |
| 2656 gp->errorcnt = ps.errorcnt; |
| 2657 } |
| 2658 /*************************** From the file "plink.c" *********************/ |
| 2659 /* |
| 2660 ** Routines processing configuration follow-set propagation links |
| 2661 ** in the LEMON parser generator. |
| 2662 */ |
| 2663 static struct plink *plink_freelist = 0; |
| 2664 |
| 2665 /* Allocate a new plink */ |
| 2666 struct plink *Plink_new(){ |
| 2667 struct plink *newlink; |
| 2668 |
| 2669 if( plink_freelist==0 ){ |
| 2670 int i; |
| 2671 int amt = 100; |
| 2672 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); |
| 2673 if( plink_freelist==0 ){ |
| 2674 fprintf(stderr, |
| 2675 "Unable to allocate memory for a new follow-set propagation link.\n"); |
| 2676 exit(1); |
| 2677 } |
| 2678 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; |
| 2679 plink_freelist[amt-1].next = 0; |
| 2680 } |
| 2681 newlink = plink_freelist; |
| 2682 plink_freelist = plink_freelist->next; |
| 2683 return newlink; |
| 2684 } |
| 2685 |
| 2686 /* Add a plink to a plink list */ |
| 2687 void Plink_add(struct plink **plpp, struct config *cfp) |
| 2688 { |
| 2689 struct plink *newlink; |
| 2690 newlink = Plink_new(); |
| 2691 newlink->next = *plpp; |
| 2692 *plpp = newlink; |
| 2693 newlink->cfp = cfp; |
| 2694 } |
| 2695 |
| 2696 /* Transfer every plink on the list "from" to the list "to" */ |
| 2697 void Plink_copy(struct plink **to, struct plink *from) |
| 2698 { |
| 2699 struct plink *nextpl; |
| 2700 while( from ){ |
| 2701 nextpl = from->next; |
| 2702 from->next = *to; |
| 2703 *to = from; |
| 2704 from = nextpl; |
| 2705 } |
| 2706 } |
| 2707 |
| 2708 /* Delete every plink on the list */ |
| 2709 void Plink_delete(struct plink *plp) |
| 2710 { |
| 2711 struct plink *nextpl; |
| 2712 |
| 2713 while( plp ){ |
| 2714 nextpl = plp->next; |
| 2715 plp->next = plink_freelist; |
| 2716 plink_freelist = plp; |
| 2717 plp = nextpl; |
| 2718 } |
| 2719 } |
| 2720 /*********************** From the file "report.c" **************************/ |
| 2721 /* |
| 2722 ** Procedures for generating reports and tables in the LEMON parser generator. |
| 2723 */ |
| 2724 |
| 2725 /* Generate a filename with the given suffix. Space to hold the |
| 2726 ** name comes from malloc() and must be freed by the calling |
| 2727 ** function. |
| 2728 */ |
| 2729 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) |
| 2730 { |
| 2731 char *name; |
| 2732 char *cp; |
| 2733 |
| 2734 name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); |
| 2735 if( name==0 ){ |
| 2736 fprintf(stderr,"Can't allocate space for a filename.\n"); |
| 2737 exit(1); |
| 2738 } |
| 2739 strcpy(name,lemp->filename); |
| 2740 cp = strrchr(name,'.'); |
| 2741 if( cp ) *cp = 0; |
| 2742 strcat(name,suffix); |
| 2743 return name; |
| 2744 } |
| 2745 |
| 2746 /* Open a file with a name based on the name of the input file, |
| 2747 ** but with a different (specified) suffix, and return a pointer |
| 2748 ** to the stream */ |
| 2749 PRIVATE FILE *file_open( |
| 2750 struct lemon *lemp, |
| 2751 const char *suffix, |
| 2752 const char *mode |
| 2753 ){ |
| 2754 FILE *fp; |
| 2755 |
| 2756 if( lemp->outname ) free(lemp->outname); |
| 2757 lemp->outname = file_makename(lemp, suffix); |
| 2758 fp = fopen(lemp->outname,mode); |
| 2759 if( fp==0 && *mode=='w' ){ |
| 2760 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); |
| 2761 lemp->errorcnt++; |
| 2762 return 0; |
| 2763 } |
| 2764 |
| 2765 /* Add files we create to a list, so we can delete them if we fail. This |
| 2766 ** is to keep makefiles from getting confused. We don't include .out files, |
| 2767 ** though: this is debug information, and you don't want it deleted if there |
| 2768 ** was an error you need to track down. |
| 2769 */ |
| 2770 if(( *mode=='w' ) && (strcmp(suffix, ".out") != 0)){ |
| 2771 const char **ptr = (const char **) |
| 2772 realloc(made_files, sizeof (const char **) * (made_files_count + 1)); |
| 2773 const char *fname = Strsafe(lemp->outname); |
| 2774 if ((ptr == NULL) || (fname == NULL)) { |
| 2775 free(ptr); |
| 2776 memory_error(); |
| 2777 } |
| 2778 made_files = ptr; |
| 2779 made_files[made_files_count++] = fname; |
| 2780 } |
| 2781 return fp; |
| 2782 } |
| 2783 |
| 2784 /* Duplicate the input file without comments and without actions |
| 2785 ** on rules */ |
| 2786 void Reprint(struct lemon *lemp) |
| 2787 { |
| 2788 struct rule *rp; |
| 2789 struct symbol *sp; |
| 2790 int i, j, maxlen, len, ncolumns, skip; |
| 2791 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); |
| 2792 maxlen = 10; |
| 2793 for(i=0; i<lemp->nsymbol; i++){ |
| 2794 sp = lemp->symbols[i]; |
| 2795 len = lemonStrlen(sp->name); |
| 2796 if( len>maxlen ) maxlen = len; |
| 2797 } |
| 2798 ncolumns = 76/(maxlen+5); |
| 2799 if( ncolumns<1 ) ncolumns = 1; |
| 2800 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; |
| 2801 for(i=0; i<skip; i++){ |
| 2802 printf("//"); |
| 2803 for(j=i; j<lemp->nsymbol; j+=skip){ |
| 2804 sp = lemp->symbols[j]; |
| 2805 assert( sp->index==j ); |
| 2806 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); |
| 2807 } |
| 2808 printf("\n"); |
| 2809 } |
| 2810 for(rp=lemp->rule; rp; rp=rp->next){ |
| 2811 printf("%s",rp->lhs->name); |
| 2812 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ |
| 2813 printf(" ::="); |
| 2814 for(i=0; i<rp->nrhs; i++){ |
| 2815 sp = rp->rhs[i]; |
| 2816 printf(" %s", sp->name); |
| 2817 if( sp->type==MULTITERMINAL ){ |
| 2818 for(j=1; j<sp->nsubsym; j++){ |
| 2819 printf("|%s", sp->subsym[j]->name); |
| 2820 } |
| 2821 } |
| 2822 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ |
| 2823 } |
| 2824 printf("."); |
| 2825 if( rp->precsym ) printf(" [%s]",rp->precsym->name); |
| 2826 /* if( rp->code ) printf("\n %s",rp->code); */ |
| 2827 printf("\n"); |
| 2828 } |
| 2829 } |
| 2830 |
| 2831 void ConfigPrint(FILE *fp, struct config *cfp) |
| 2832 { |
| 2833 struct rule *rp; |
| 2834 struct symbol *sp; |
| 2835 int i, j; |
| 2836 rp = cfp->rp; |
| 2837 fprintf(fp,"%s ::=",rp->lhs->name); |
| 2838 for(i=0; i<=rp->nrhs; i++){ |
| 2839 if( i==cfp->dot ) fprintf(fp," *"); |
| 2840 if( i==rp->nrhs ) break; |
| 2841 sp = rp->rhs[i]; |
| 2842 fprintf(fp," %s", sp->name); |
| 2843 if( sp->type==MULTITERMINAL ){ |
| 2844 for(j=1; j<sp->nsubsym; j++){ |
| 2845 fprintf(fp,"|%s",sp->subsym[j]->name); |
| 2846 } |
| 2847 } |
| 2848 } |
| 2849 } |
| 2850 |
| 2851 /* #define TEST */ |
| 2852 #if 0 |
| 2853 /* Print a set */ |
| 2854 PRIVATE void SetPrint(out,set,lemp) |
| 2855 FILE *out; |
| 2856 char *set; |
| 2857 struct lemon *lemp; |
| 2858 { |
| 2859 int i; |
| 2860 char *spacer; |
| 2861 spacer = ""; |
| 2862 fprintf(out,"%12s[",""); |
| 2863 for(i=0; i<lemp->nterminal; i++){ |
| 2864 if( SetFind(set,i) ){ |
| 2865 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); |
| 2866 spacer = " "; |
| 2867 } |
| 2868 } |
| 2869 fprintf(out,"]\n"); |
| 2870 } |
| 2871 |
| 2872 /* Print a plink chain */ |
| 2873 PRIVATE void PlinkPrint(out,plp,tag) |
| 2874 FILE *out; |
| 2875 struct plink *plp; |
| 2876 char *tag; |
| 2877 { |
| 2878 while( plp ){ |
| 2879 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); |
| 2880 ConfigPrint(out,plp->cfp); |
| 2881 fprintf(out,"\n"); |
| 2882 plp = plp->next; |
| 2883 } |
| 2884 } |
| 2885 #endif |
| 2886 |
| 2887 /* Print an action to the given file descriptor. Return FALSE if |
| 2888 ** nothing was actually printed. |
| 2889 */ |
| 2890 int PrintAction(struct action *ap, FILE *fp, int indent){ |
| 2891 int result = 1; |
| 2892 switch( ap->type ){ |
| 2893 case SHIFT: |
| 2894 fprintf(fp,"%*s shift %d",indent,ap->sp->name,ap->x.stp->statenum); |
| 2895 break; |
| 2896 case REDUCE: |
| 2897 fprintf(fp,"%*s reduce %d",indent,ap->sp->name,ap->x.rp->index); |
| 2898 break; |
| 2899 case ACCEPT: |
| 2900 fprintf(fp,"%*s accept",indent,ap->sp->name); |
| 2901 break; |
| 2902 case ERROR: |
| 2903 fprintf(fp,"%*s error",indent,ap->sp->name); |
| 2904 break; |
| 2905 case SRCONFLICT: |
| 2906 case RRCONFLICT: |
| 2907 fprintf(fp,"%*s reduce %-3d ** Parsing conflict **", |
| 2908 indent,ap->sp->name,ap->x.rp->index); |
| 2909 break; |
| 2910 case SSCONFLICT: |
| 2911 fprintf(fp,"%*s shift %-3d ** Parsing conflict **", |
| 2912 indent,ap->sp->name,ap->x.stp->statenum); |
| 2913 break; |
| 2914 case SH_RESOLVED: |
| 2915 if( showPrecedenceConflict ){ |
| 2916 fprintf(fp,"%*s shift %-3d -- dropped by precedence", |
| 2917 indent,ap->sp->name,ap->x.stp->statenum); |
| 2918 }else{ |
| 2919 result = 0; |
| 2920 } |
| 2921 break; |
| 2922 case RD_RESOLVED: |
| 2923 if( showPrecedenceConflict ){ |
| 2924 fprintf(fp,"%*s reduce %-3d -- dropped by precedence", |
| 2925 indent,ap->sp->name,ap->x.rp->index); |
| 2926 }else{ |
| 2927 result = 0; |
| 2928 } |
| 2929 break; |
| 2930 case NOT_USED: |
| 2931 result = 0; |
| 2932 break; |
| 2933 } |
| 2934 return result; |
| 2935 } |
| 2936 |
| 2937 /* Generate the "y.output" log file */ |
| 2938 void ReportOutput(struct lemon *lemp) |
| 2939 { |
| 2940 int i; |
| 2941 struct state *stp; |
| 2942 struct config *cfp; |
| 2943 struct action *ap; |
| 2944 FILE *fp; |
| 2945 |
| 2946 fp = file_open(lemp,".out","wb"); |
| 2947 if( fp==0 ) return; |
| 2948 for(i=0; i<lemp->nstate; i++){ |
| 2949 stp = lemp->sorted[i]; |
| 2950 fprintf(fp,"State %d:\n",stp->statenum); |
| 2951 if( lemp->basisflag ) cfp=stp->bp; |
| 2952 else cfp=stp->cfp; |
| 2953 while( cfp ){ |
| 2954 char buf[20]; |
| 2955 if( cfp->dot==cfp->rp->nrhs ){ |
| 2956 sprintf(buf,"(%d)",cfp->rp->index); |
| 2957 fprintf(fp," %5s ",buf); |
| 2958 }else{ |
| 2959 fprintf(fp," "); |
| 2960 } |
| 2961 ConfigPrint(fp,cfp); |
| 2962 fprintf(fp,"\n"); |
| 2963 #if 0 |
| 2964 SetPrint(fp,cfp->fws,lemp); |
| 2965 PlinkPrint(fp,cfp->fplp,"To "); |
| 2966 PlinkPrint(fp,cfp->bplp,"From"); |
| 2967 #endif |
| 2968 if( lemp->basisflag ) cfp=cfp->bp; |
| 2969 else cfp=cfp->next; |
| 2970 } |
| 2971 fprintf(fp,"\n"); |
| 2972 for(ap=stp->ap; ap; ap=ap->next){ |
| 2973 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); |
| 2974 } |
| 2975 fprintf(fp,"\n"); |
| 2976 } |
| 2977 fprintf(fp, "----------------------------------------------------\n"); |
| 2978 fprintf(fp, "Symbols:\n"); |
| 2979 for(i=0; i<lemp->nsymbol; i++){ |
| 2980 int j; |
| 2981 struct symbol *sp; |
| 2982 |
| 2983 sp = lemp->symbols[i]; |
| 2984 fprintf(fp, " %3d: %s", i, sp->name); |
| 2985 if( sp->type==NONTERMINAL ){ |
| 2986 fprintf(fp, ":"); |
| 2987 if( sp->lambda ){ |
| 2988 fprintf(fp, " <lambda>"); |
| 2989 } |
| 2990 for(j=0; j<lemp->nterminal; j++){ |
| 2991 if( sp->firstset && SetFind(sp->firstset, j) ){ |
| 2992 fprintf(fp, " %s", lemp->symbols[j]->name); |
| 2993 } |
| 2994 } |
| 2995 } |
| 2996 fprintf(fp, "\n"); |
| 2997 } |
| 2998 fclose(fp); |
| 2999 return; |
| 3000 } |
| 3001 |
| 3002 /* Search for the file "name" which is in the same directory as |
| 3003 ** the exacutable */ |
| 3004 PRIVATE char *pathsearch(char *argv0, char *name, int modemask) |
| 3005 { |
| 3006 const char *pathlist; |
| 3007 char *pathbufptr; |
| 3008 char *pathbuf; |
| 3009 char *path,*cp; |
| 3010 char c; |
| 3011 |
| 3012 #ifdef __WIN32__ |
| 3013 cp = strrchr(argv0,'\\'); |
| 3014 #else |
| 3015 cp = strrchr(argv0,'/'); |
| 3016 #endif |
| 3017 if( cp ){ |
| 3018 c = *cp; |
| 3019 *cp = 0; |
| 3020 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); |
| 3021 if( path ) sprintf(path,"%s/%s",argv0,name); |
| 3022 *cp = c; |
| 3023 }else{ |
| 3024 pathlist = getenv("PATH"); |
| 3025 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; |
| 3026 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); |
| 3027 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); |
| 3028 if( (pathbuf != 0) && (path!=0) ){ |
| 3029 pathbufptr = pathbuf; |
| 3030 strcpy(pathbuf, pathlist); |
| 3031 while( *pathbuf ){ |
| 3032 cp = strchr(pathbuf,':'); |
| 3033 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; |
| 3034 c = *cp; |
| 3035 *cp = 0; |
| 3036 sprintf(path,"%s/%s",pathbuf,name); |
| 3037 *cp = c; |
| 3038 if( c==0 ) pathbuf[0] = 0; |
| 3039 else pathbuf = &cp[1]; |
| 3040 if( access(path,modemask)==0 ) break; |
| 3041 } |
| 3042 free(pathbufptr); |
| 3043 } |
| 3044 } |
| 3045 return path; |
| 3046 } |
| 3047 |
| 3048 /* Given an action, compute the integer value for that action |
| 3049 ** which is to be put in the action table of the generated machine. |
| 3050 ** Return negative if no action should be generated. |
| 3051 */ |
| 3052 PRIVATE int compute_action(struct lemon *lemp, struct action *ap) |
| 3053 { |
| 3054 int act; |
| 3055 switch( ap->type ){ |
| 3056 case SHIFT: act = ap->x.stp->statenum; break; |
| 3057 case REDUCE: act = ap->x.rp->index + lemp->nstate; break; |
| 3058 case ERROR: act = lemp->nstate + lemp->nrule; break; |
| 3059 case ACCEPT: act = lemp->nstate + lemp->nrule + 1; break; |
| 3060 default: act = -1; break; |
| 3061 } |
| 3062 return act; |
| 3063 } |
| 3064 |
| 3065 #define LINESIZE 1000 |
| 3066 /* The next cluster of routines are for reading the template file |
| 3067 ** and writing the results to the generated parser */ |
| 3068 /* The first function transfers data from "in" to "out" until |
| 3069 ** a line is seen which begins with "%%". The line number is |
| 3070 ** tracked. |
| 3071 ** |
| 3072 ** if name!=0, then any word that begin with "Parse" is changed to |
| 3073 ** begin with *name instead. |
| 3074 */ |
| 3075 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) |
| 3076 { |
| 3077 int i, iStart; |
| 3078 char line[LINESIZE]; |
| 3079 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ |
| 3080 (*lineno)++; |
| 3081 iStart = 0; |
| 3082 if( name ){ |
| 3083 for(i=0; line[i]; i++){ |
| 3084 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 |
| 3085 && (i==0 || !isalpha(line[i-1])) |
| 3086 ){ |
| 3087 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); |
| 3088 fprintf(out,"%s",name); |
| 3089 i += 4; |
| 3090 iStart = i+1; |
| 3091 } |
| 3092 } |
| 3093 } |
| 3094 fprintf(out,"%s",&line[iStart]); |
| 3095 } |
| 3096 } |
| 3097 |
| 3098 /* The next function finds the template file and opens it, returning |
| 3099 ** a pointer to the opened file. */ |
| 3100 PRIVATE FILE *tplt_open(struct lemon *lemp) |
| 3101 { |
| 3102 static char templatename[] = "lempar.c"; |
| 3103 char buf[1000]; |
| 3104 FILE *in; |
| 3105 char *tpltname; |
| 3106 char *cp; |
| 3107 |
| 3108 /* first, see if user specified a template filename on the command line. */ |
| 3109 if (user_templatename != 0) { |
| 3110 if( access(user_templatename,004)==-1 ){ |
| 3111 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", |
| 3112 user_templatename); |
| 3113 lemp->errorcnt++; |
| 3114 return 0; |
| 3115 } |
| 3116 in = fopen(user_templatename,"rb"); |
| 3117 if( in==0 ){ |
| 3118 fprintf(stderr,"Can't open the template file \"%s\".\n",user_templatename)
; |
| 3119 lemp->errorcnt++; |
| 3120 return 0; |
| 3121 } |
| 3122 return in; |
| 3123 } |
| 3124 |
| 3125 cp = strrchr(lemp->filename,'.'); |
| 3126 if( cp ){ |
| 3127 sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); |
| 3128 }else{ |
| 3129 sprintf(buf,"%s.lt",lemp->filename); |
| 3130 } |
| 3131 if( access(buf,004)==0 ){ |
| 3132 tpltname = buf; |
| 3133 }else if( access(templatename,004)==0 ){ |
| 3134 tpltname = templatename; |
| 3135 }else{ |
| 3136 tpltname = pathsearch(lemp->argv0,templatename,0); |
| 3137 } |
| 3138 if( tpltname==0 ){ |
| 3139 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", |
| 3140 templatename); |
| 3141 lemp->errorcnt++; |
| 3142 return 0; |
| 3143 } |
| 3144 in = fopen(tpltname,"rb"); |
| 3145 if( in==0 ){ |
| 3146 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); |
| 3147 lemp->errorcnt++; |
| 3148 return 0; |
| 3149 } |
| 3150 return in; |
| 3151 } |
| 3152 |
| 3153 /* Print a #line directive line to the output file. */ |
| 3154 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) |
| 3155 { |
| 3156 fprintf(out,"#line %d \"",lineno); |
| 3157 while( *filename ){ |
| 3158 if( *filename == '\\' ) putc('\\',out); |
| 3159 putc(*filename,out); |
| 3160 filename++; |
| 3161 } |
| 3162 fprintf(out,"\"\n"); |
| 3163 } |
| 3164 |
| 3165 /* Print a string to the file and keep the linenumber up to date */ |
| 3166 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) |
| 3167 { |
| 3168 if( str==0 ) return; |
| 3169 while( *str ){ |
| 3170 putc(*str,out); |
| 3171 if( *str=='\n' ) (*lineno)++; |
| 3172 str++; |
| 3173 } |
| 3174 if( str[-1]!='\n' ){ |
| 3175 putc('\n',out); |
| 3176 (*lineno)++; |
| 3177 } |
| 3178 if (!lemp->nolinenosflag) { |
| 3179 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
| 3180 } |
| 3181 return; |
| 3182 } |
| 3183 |
| 3184 /* |
| 3185 ** The following routine emits code for the destructor for the |
| 3186 ** symbol sp |
| 3187 */ |
| 3188 void emit_destructor_code( |
| 3189 FILE *out, |
| 3190 struct symbol *sp, |
| 3191 struct lemon *lemp, |
| 3192 int *lineno |
| 3193 ){ |
| 3194 char *cp = 0; |
| 3195 |
| 3196 if( sp->type==TERMINAL ){ |
| 3197 cp = lemp->tokendest; |
| 3198 if( cp==0 ) return; |
| 3199 fprintf(out,"{\n"); (*lineno)++; |
| 3200 }else if( sp->destructor ){ |
| 3201 cp = sp->destructor; |
| 3202 fprintf(out,"{\n"); (*lineno)++; |
| 3203 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,sp->destLineno,lemp
->filename); } |
| 3204 }else if( lemp->vardest ){ |
| 3205 cp = lemp->vardest; |
| 3206 if( cp==0 ) return; |
| 3207 fprintf(out,"{\n"); (*lineno)++; |
| 3208 }else{ |
| 3209 assert( 0 ); /* Cannot happen */ |
| 3210 } |
| 3211 for(; *cp; cp++){ |
| 3212 if( *cp=='$' && cp[1]=='$' ){ |
| 3213 fprintf(out,"(yypminor->yy%d)",sp->dtnum); |
| 3214 cp++; |
| 3215 continue; |
| 3216 } |
| 3217 if( *cp=='\n' ) (*lineno)++; |
| 3218 fputc(*cp,out); |
| 3219 } |
| 3220 fprintf(out,"\n"); (*lineno)++; |
| 3221 if (!lemp->nolinenosflag) { |
| 3222 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); |
| 3223 } |
| 3224 fprintf(out,"}\n"); (*lineno)++; |
| 3225 return; |
| 3226 } |
| 3227 |
| 3228 /* |
| 3229 ** Return TRUE (non-zero) if the given symbol has a destructor. |
| 3230 */ |
| 3231 int has_destructor(struct symbol *sp, struct lemon *lemp) |
| 3232 { |
| 3233 int ret; |
| 3234 if( sp->type==TERMINAL ){ |
| 3235 ret = lemp->tokendest!=0; |
| 3236 }else{ |
| 3237 ret = lemp->vardest!=0 || sp->destructor!=0; |
| 3238 } |
| 3239 return ret; |
| 3240 } |
| 3241 |
| 3242 /* |
| 3243 ** Append text to a dynamically allocated string. If zText is 0 then |
| 3244 ** reset the string to be empty again. Always return the complete text |
| 3245 ** of the string (which is overwritten with each call). |
| 3246 ** |
| 3247 ** n bytes of zText are stored. If n==0 then all of zText up to the first |
| 3248 ** \000 terminator is stored. zText can contain up to two instances of |
| 3249 ** %d. The values of p1 and p2 are written into the first and second |
| 3250 ** %d. |
| 3251 ** |
| 3252 ** If n==-1, then the previous character is overwritten. |
| 3253 */ |
| 3254 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ |
| 3255 static char empty[1] = { 0 }; |
| 3256 static char *z = 0; |
| 3257 static int alloced = 0; |
| 3258 static int used = 0; |
| 3259 int c; |
| 3260 char zInt[40]; |
| 3261 if( zText==0 ){ |
| 3262 used = 0; |
| 3263 return z; |
| 3264 } |
| 3265 if( n<=0 ){ |
| 3266 if( n<0 ){ |
| 3267 used += n; |
| 3268 assert( used>=0 ); |
| 3269 } |
| 3270 n = lemonStrlen(zText); |
| 3271 } |
| 3272 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ |
| 3273 alloced = n + sizeof(zInt)*2 + used + 200; |
| 3274 z = (char *) realloc(z, alloced); |
| 3275 } |
| 3276 if( z==0 ) return empty; |
| 3277 while( n-- > 0 ){ |
| 3278 c = *(zText++); |
| 3279 if( c=='%' && n>0 && zText[0]=='d' ){ |
| 3280 sprintf(zInt, "%d", p1); |
| 3281 p1 = p2; |
| 3282 strcpy(&z[used], zInt); |
| 3283 used += lemonStrlen(&z[used]); |
| 3284 zText++; |
| 3285 n--; |
| 3286 }else{ |
| 3287 z[used++] = c; |
| 3288 } |
| 3289 } |
| 3290 z[used] = 0; |
| 3291 return z; |
| 3292 } |
| 3293 |
| 3294 /* |
| 3295 ** zCode is a string that is the action associated with a rule. Expand |
| 3296 ** the symbols in this string so that the refer to elements of the parser |
| 3297 ** stack. |
| 3298 */ |
| 3299 PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){ |
| 3300 char *cp, *xp; |
| 3301 int i; |
| 3302 char lhsused = 0; /* True if the LHS element has been used */ |
| 3303 char used[MAXRHS]; /* True for each RHS element which is used */ |
| 3304 |
| 3305 for(i=0; i<rp->nrhs; i++) used[i] = 0; |
| 3306 lhsused = 0; |
| 3307 |
| 3308 if( rp->code==0 ){ |
| 3309 static char newlinestr[2] = { '\n', '\0' }; |
| 3310 rp->code = newlinestr; |
| 3311 rp->line = rp->ruleline; |
| 3312 } |
| 3313 |
| 3314 append_str(0,0,0,0); |
| 3315 |
| 3316 /* This const cast is wrong but harmless, if we're careful. */ |
| 3317 for(cp=(char *)rp->code; *cp; cp++){ |
| 3318 if( isalpha(*cp) && (cp==rp->code || (!isalnum(cp[-1]) && cp[-1]!='_')) ){ |
| 3319 char saved; |
| 3320 for(xp= &cp[1]; isalnum(*xp) || *xp=='_'; xp++); |
| 3321 saved = *xp; |
| 3322 *xp = 0; |
| 3323 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ |
| 3324 append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0); |
| 3325 cp = xp; |
| 3326 lhsused = 1; |
| 3327 }else{ |
| 3328 for(i=0; i<rp->nrhs; i++){ |
| 3329 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ |
| 3330 if( cp!=rp->code && cp[-1]=='@' ){ |
| 3331 /* If the argument is of the form @X then substituted |
| 3332 ** the token number of X, not the value of X */ |
| 3333 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); |
| 3334 }else{ |
| 3335 struct symbol *sp = rp->rhs[i]; |
| 3336 int dtnum; |
| 3337 if( sp->type==MULTITERMINAL ){ |
| 3338 dtnum = sp->subsym[0]->dtnum; |
| 3339 }else{ |
| 3340 dtnum = sp->dtnum; |
| 3341 } |
| 3342 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); |
| 3343 } |
| 3344 cp = xp; |
| 3345 used[i] = 1; |
| 3346 break; |
| 3347 } |
| 3348 } |
| 3349 } |
| 3350 *xp = saved; |
| 3351 } |
| 3352 append_str(cp, 1, 0, 0); |
| 3353 } /* End loop */ |
| 3354 |
| 3355 /* Check to make sure the LHS has been used */ |
| 3356 if( rp->lhsalias && !lhsused ){ |
| 3357 ErrorMsg(lemp->filename,rp->ruleline, |
| 3358 "Label \"%s\" for \"%s(%s)\" is never used.", |
| 3359 rp->lhsalias,rp->lhs->name,rp->lhsalias); |
| 3360 lemp->errorcnt++; |
| 3361 } |
| 3362 |
| 3363 /* Generate destructor code for RHS symbols which are not used in the |
| 3364 ** reduce code */ |
| 3365 for(i=0; i<rp->nrhs; i++){ |
| 3366 if( rp->rhsalias[i] && !used[i] ){ |
| 3367 ErrorMsg(lemp->filename,rp->ruleline, |
| 3368 "Label %s for \"%s(%s)\" is never used.", |
| 3369 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); |
| 3370 lemp->errorcnt++; |
| 3371 }else if( rp->rhsalias[i]==0 ){ |
| 3372 if( has_destructor(rp->rhs[i],lemp) ){ |
| 3373 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, |
| 3374 rp->rhs[i]->index,i-rp->nrhs+1); |
| 3375 }else{ |
| 3376 /* No destructor defined for this term */ |
| 3377 } |
| 3378 } |
| 3379 } |
| 3380 if( rp->code ){ |
| 3381 cp = append_str(0,0,0,0); |
| 3382 rp->code = Strsafe(cp?cp:""); |
| 3383 } |
| 3384 } |
| 3385 |
| 3386 /* |
| 3387 ** Generate code which executes when the rule "rp" is reduced. Write |
| 3388 ** the code to "out". Make sure lineno stays up-to-date. |
| 3389 */ |
| 3390 PRIVATE void emit_code( |
| 3391 FILE *out, |
| 3392 struct rule *rp, |
| 3393 struct lemon *lemp, |
| 3394 int *lineno |
| 3395 ){ |
| 3396 const char *cp; |
| 3397 |
| 3398 /* Generate code to do the reduce action */ |
| 3399 if( rp->code ){ |
| 3400 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,rp->line,lemp->file
name); } |
| 3401 fprintf(out,"{%s",rp->code); |
| 3402 for(cp=rp->code; *cp; cp++){ |
| 3403 if( *cp=='\n' ) (*lineno)++; |
| 3404 } /* End loop */ |
| 3405 fprintf(out,"}\n"); (*lineno)++; |
| 3406 if (!lemp->nolinenosflag) { (*lineno)++; tplt_linedir(out,*lineno,lemp->outna
me); } |
| 3407 } /* End if( rp->code ) */ |
| 3408 |
| 3409 return; |
| 3410 } |
| 3411 |
| 3412 /* |
| 3413 ** Print the definition of the union used for the parser's data stack. |
| 3414 ** This union contains fields for every possible data type for tokens |
| 3415 ** and nonterminals. In the process of computing and printing this |
| 3416 ** union, also set the ".dtnum" field of every terminal and nonterminal |
| 3417 ** symbol. |
| 3418 */ |
| 3419 void print_stack_union( |
| 3420 FILE *out, /* The output stream */ |
| 3421 struct lemon *lemp, /* The main info structure for this parser */ |
| 3422 int *plineno, /* Pointer to the line number */ |
| 3423 int mhflag /* True if generating makeheaders output */ |
| 3424 ){ |
| 3425 int lineno = *plineno; /* The line number of the output */ |
| 3426 char **types; /* A hash table of datatypes */ |
| 3427 int arraysize; /* Size of the "types" array */ |
| 3428 int maxdtlength; /* Maximum length of any ".datatype" field. */ |
| 3429 char *stddt; /* Standardized name for a datatype */ |
| 3430 int i,j; /* Loop counters */ |
| 3431 int hash; /* For hashing the name of a type */ |
| 3432 const char *name; /* Name of the parser */ |
| 3433 |
| 3434 /* Allocate and initialize types[] and allocate stddt[] */ |
| 3435 arraysize = lemp->nsymbol * 2; |
| 3436 types = (char**)calloc( arraysize, sizeof(char*) ); |
| 3437 for(i=0; i<arraysize; i++) types[i] = 0; |
| 3438 maxdtlength = 0; |
| 3439 if( lemp->vartype ){ |
| 3440 maxdtlength = lemonStrlen(lemp->vartype); |
| 3441 } |
| 3442 for(i=0; i<lemp->nsymbol; i++){ |
| 3443 int len; |
| 3444 struct symbol *sp = lemp->symbols[i]; |
| 3445 if( sp->datatype==0 ) continue; |
| 3446 len = lemonStrlen(sp->datatype); |
| 3447 if( len>maxdtlength ) maxdtlength = len; |
| 3448 } |
| 3449 stddt = (char*)malloc( maxdtlength*2 + 1 ); |
| 3450 if( types==0 || stddt==0 ){ |
| 3451 fprintf(stderr,"Out of memory.\n"); |
| 3452 exit(1); |
| 3453 } |
| 3454 |
| 3455 /* Build a hash table of datatypes. The ".dtnum" field of each symbol |
| 3456 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is |
| 3457 ** used for terminal symbols. If there is no %default_type defined then |
| 3458 ** 0 is also used as the .dtnum value for nonterminals which do not specify |
| 3459 ** a datatype using the %type directive. |
| 3460 */ |
| 3461 for(i=0; i<lemp->nsymbol; i++){ |
| 3462 struct symbol *sp = lemp->symbols[i]; |
| 3463 char *cp; |
| 3464 if( sp==lemp->errsym ){ |
| 3465 sp->dtnum = arraysize+1; |
| 3466 continue; |
| 3467 } |
| 3468 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ |
| 3469 sp->dtnum = 0; |
| 3470 continue; |
| 3471 } |
| 3472 cp = sp->datatype; |
| 3473 if( cp==0 ) cp = lemp->vartype; |
| 3474 j = 0; |
| 3475 while( isspace(*cp) ) cp++; |
| 3476 while( *cp ) stddt[j++] = *cp++; |
| 3477 while( j>0 && isspace(stddt[j-1]) ) j--; |
| 3478 stddt[j] = 0; |
| 3479 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ |
| 3480 sp->dtnum = 0; |
| 3481 continue; |
| 3482 } |
| 3483 hash = 0; |
| 3484 for(j=0; stddt[j]; j++){ |
| 3485 hash = hash*53 + stddt[j]; |
| 3486 } |
| 3487 hash = (hash & 0x7fffffff)%arraysize; |
| 3488 while( types[hash] ){ |
| 3489 if( strcmp(types[hash],stddt)==0 ){ |
| 3490 sp->dtnum = hash + 1; |
| 3491 break; |
| 3492 } |
| 3493 hash++; |
| 3494 if( hash>=arraysize ) hash = 0; |
| 3495 } |
| 3496 if( types[hash]==0 ){ |
| 3497 sp->dtnum = hash + 1; |
| 3498 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); |
| 3499 if( types[hash]==0 ){ |
| 3500 fprintf(stderr,"Out of memory.\n"); |
| 3501 exit(1); |
| 3502 } |
| 3503 strcpy(types[hash],stddt); |
| 3504 } |
| 3505 } |
| 3506 |
| 3507 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ |
| 3508 name = lemp->name ? lemp->name : "Parse"; |
| 3509 lineno = *plineno; |
| 3510 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } |
| 3511 fprintf(out,"#define %sTOKENTYPE %s\n",name, |
| 3512 lemp->tokentype?lemp->tokentype:"void*"); lineno++; |
| 3513 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } |
| 3514 fprintf(out,"typedef union {\n"); lineno++; |
| 3515 fprintf(out," int yyinit;\n"); lineno++; |
| 3516 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; |
| 3517 for(i=0; i<arraysize; i++){ |
| 3518 if( types[i]==0 ) continue; |
| 3519 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; |
| 3520 free(types[i]); |
| 3521 } |
| 3522 if( lemp->errsym->useCnt ){ |
| 3523 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; |
| 3524 } |
| 3525 free(stddt); |
| 3526 free(types); |
| 3527 fprintf(out,"} YYMINORTYPE;\n"); lineno++; |
| 3528 *plineno = lineno; |
| 3529 } |
| 3530 |
| 3531 /* |
| 3532 ** Return the name of a C datatype able to represent values between |
| 3533 ** lwr and upr, inclusive. |
| 3534 */ |
| 3535 static const char *minimum_size_type(int lwr, int upr){ |
| 3536 if( lwr>=0 ){ |
| 3537 if( upr<=255 ){ |
| 3538 return "unsigned char"; |
| 3539 }else if( upr<65535 ){ |
| 3540 return "unsigned short int"; |
| 3541 }else{ |
| 3542 return "unsigned int"; |
| 3543 } |
| 3544 }else if( lwr>=-127 && upr<=127 ){ |
| 3545 return "signed char"; |
| 3546 }else if( lwr>=-32767 && upr<32767 ){ |
| 3547 return "short"; |
| 3548 }else{ |
| 3549 return "int"; |
| 3550 } |
| 3551 } |
| 3552 |
| 3553 /* |
| 3554 ** Each state contains a set of token transaction and a set of |
| 3555 ** nonterminal transactions. Each of these sets makes an instance |
| 3556 ** of the following structure. An array of these structures is used |
| 3557 ** to order the creation of entries in the yy_action[] table. |
| 3558 */ |
| 3559 struct axset { |
| 3560 struct state *stp; /* A pointer to a state */ |
| 3561 int isTkn; /* True to use tokens. False for non-terminals */ |
| 3562 int nAction; /* Number of actions */ |
| 3563 int iOrder; /* Original order of action sets */ |
| 3564 }; |
| 3565 |
| 3566 /* |
| 3567 ** Compare to axset structures for sorting purposes |
| 3568 */ |
| 3569 static int axset_compare(const void *a, const void *b){ |
| 3570 struct axset *p1 = (struct axset*)a; |
| 3571 struct axset *p2 = (struct axset*)b; |
| 3572 int c; |
| 3573 c = p2->nAction - p1->nAction; |
| 3574 if( c==0 ){ |
| 3575 c = p2->iOrder - p1->iOrder; |
| 3576 } |
| 3577 assert( c!=0 || p1==p2 ); |
| 3578 return c; |
| 3579 } |
| 3580 |
| 3581 /* |
| 3582 ** Write text on "out" that describes the rule "rp". |
| 3583 */ |
| 3584 static void writeRuleText(FILE *out, struct rule *rp){ |
| 3585 int j; |
| 3586 fprintf(out,"%s ::=", rp->lhs->name); |
| 3587 for(j=0; j<rp->nrhs; j++){ |
| 3588 struct symbol *sp = rp->rhs[j]; |
| 3589 fprintf(out," %s", sp->name); |
| 3590 if( sp->type==MULTITERMINAL ){ |
| 3591 int k; |
| 3592 for(k=1; k<sp->nsubsym; k++){ |
| 3593 fprintf(out,"|%s",sp->subsym[k]->name); |
| 3594 } |
| 3595 } |
| 3596 } |
| 3597 } |
| 3598 |
| 3599 |
| 3600 /* Generate C source code for the parser */ |
| 3601 void ReportTable( |
| 3602 struct lemon *lemp, |
| 3603 int mhflag /* Output in makeheaders format if true */ |
| 3604 ){ |
| 3605 FILE *out, *in; |
| 3606 char line[LINESIZE]; |
| 3607 int lineno; |
| 3608 struct state *stp; |
| 3609 struct action *ap; |
| 3610 struct rule *rp; |
| 3611 struct acttab *pActtab; |
| 3612 int i, j, n; |
| 3613 const char *name; |
| 3614 int mnTknOfst, mxTknOfst; |
| 3615 int mnNtOfst, mxNtOfst; |
| 3616 struct axset *ax; |
| 3617 |
| 3618 in = tplt_open(lemp); |
| 3619 if( in==0 ) return; |
| 3620 out = file_open(lemp,".c","wb"); |
| 3621 if( out==0 ){ |
| 3622 fclose(in); |
| 3623 return; |
| 3624 } |
| 3625 lineno = 1; |
| 3626 tplt_xfer(lemp->name,in,out,&lineno); |
| 3627 |
| 3628 /* Generate the include code, if any */ |
| 3629 tplt_print(out,lemp,lemp->include,&lineno); |
| 3630 if( mhflag ){ |
| 3631 char *name = file_makename(lemp, ".h"); |
| 3632 fprintf(out,"#include \"%s\"\n", name); lineno++; |
| 3633 free(name); |
| 3634 } |
| 3635 tplt_xfer(lemp->name,in,out,&lineno); |
| 3636 |
| 3637 /* Generate #defines for all tokens */ |
| 3638 if( mhflag ){ |
| 3639 const char *prefix; |
| 3640 fprintf(out,"#if INTERFACE\n"); lineno++; |
| 3641 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
| 3642 else prefix = ""; |
| 3643 for(i=1; i<lemp->nterminal; i++){ |
| 3644 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
| 3645 lineno++; |
| 3646 } |
| 3647 fprintf(out,"#endif\n"); lineno++; |
| 3648 } |
| 3649 tplt_xfer(lemp->name,in,out,&lineno); |
| 3650 |
| 3651 /* Generate the defines */ |
| 3652 fprintf(out,"#define YYCODETYPE %s\n", |
| 3653 minimum_size_type(0, lemp->nsymbol+1)); lineno++; |
| 3654 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; |
| 3655 fprintf(out,"#define YYACTIONTYPE %s\n", |
| 3656 minimum_size_type(0, lemp->nstate+lemp->nrule+5)); lineno++; |
| 3657 if( lemp->wildcard ){ |
| 3658 fprintf(out,"#define YYWILDCARD %d\n", |
| 3659 lemp->wildcard->index); lineno++; |
| 3660 } |
| 3661 print_stack_union(out,lemp,&lineno,mhflag); |
| 3662 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; |
| 3663 if( lemp->stacksize ){ |
| 3664 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; |
| 3665 }else{ |
| 3666 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; |
| 3667 } |
| 3668 fprintf(out, "#endif\n"); lineno++; |
| 3669 if( mhflag ){ |
| 3670 fprintf(out,"#if INTERFACE\n"); lineno++; |
| 3671 } |
| 3672 name = lemp->name ? lemp->name : "Parse"; |
| 3673 if( lemp->arg && lemp->arg[0] ){ |
| 3674 int i; |
| 3675 i = lemonStrlen(lemp->arg); |
| 3676 while( i>=1 && isspace(lemp->arg[i-1]) ) i--; |
| 3677 while( i>=1 && (isalnum(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; |
| 3678 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; |
| 3679 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; |
| 3680 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", |
| 3681 name,lemp->arg,&lemp->arg[i]); lineno++; |
| 3682 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", |
| 3683 name,&lemp->arg[i],&lemp->arg[i]); lineno++; |
| 3684 }else{ |
| 3685 fprintf(out,"#define %sARG_SDECL\n",name); lineno++; |
| 3686 fprintf(out,"#define %sARG_PDECL\n",name); lineno++; |
| 3687 fprintf(out,"#define %sARG_FETCH\n",name); lineno++; |
| 3688 fprintf(out,"#define %sARG_STORE\n",name); lineno++; |
| 3689 } |
| 3690 if( mhflag ){ |
| 3691 fprintf(out,"#endif\n"); lineno++; |
| 3692 } |
| 3693 fprintf(out,"#define YYNSTATE %d\n",lemp->nstate); lineno++; |
| 3694 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; |
| 3695 if( lemp->errsym->useCnt ){ |
| 3696 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; |
| 3697 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; |
| 3698 } |
| 3699 if( lemp->has_fallback ){ |
| 3700 fprintf(out,"#define YYFALLBACK 1\n"); lineno++; |
| 3701 } |
| 3702 tplt_xfer(lemp->name,in,out,&lineno); |
| 3703 |
| 3704 /* Generate the action table and its associates: |
| 3705 ** |
| 3706 ** yy_action[] A single table containing all actions. |
| 3707 ** yy_lookahead[] A table containing the lookahead for each entry in |
| 3708 ** yy_action. Used to detect hash collisions. |
| 3709 ** yy_shift_ofst[] For each state, the offset into yy_action for |
| 3710 ** shifting terminals. |
| 3711 ** yy_reduce_ofst[] For each state, the offset into yy_action for |
| 3712 ** shifting non-terminals after a reduce. |
| 3713 ** yy_default[] Default action for each state. |
| 3714 */ |
| 3715 |
| 3716 /* Compute the actions on all states and count them up */ |
| 3717 ax = (struct axset *) calloc(lemp->nstate*2, sizeof(ax[0])); |
| 3718 if( ax==0 ){ |
| 3719 fprintf(stderr,"malloc failed\n"); |
| 3720 exit(1); |
| 3721 } |
| 3722 for(i=0; i<lemp->nstate; i++){ |
| 3723 stp = lemp->sorted[i]; |
| 3724 ax[i*2].stp = stp; |
| 3725 ax[i*2].isTkn = 1; |
| 3726 ax[i*2].nAction = stp->nTknAct; |
| 3727 ax[i*2+1].stp = stp; |
| 3728 ax[i*2+1].isTkn = 0; |
| 3729 ax[i*2+1].nAction = stp->nNtAct; |
| 3730 } |
| 3731 mxTknOfst = mnTknOfst = 0; |
| 3732 mxNtOfst = mnNtOfst = 0; |
| 3733 |
| 3734 /* Compute the action table. In order to try to keep the size of the |
| 3735 ** action table to a minimum, the heuristic of placing the largest action |
| 3736 ** sets first is used. |
| 3737 */ |
| 3738 for(i=0; i<lemp->nstate*2; i++) ax[i].iOrder = i; |
| 3739 qsort(ax, lemp->nstate*2, sizeof(ax[0]), axset_compare); |
| 3740 pActtab = acttab_alloc(); |
| 3741 for(i=0; i<lemp->nstate*2 && ax[i].nAction>0; i++){ |
| 3742 stp = ax[i].stp; |
| 3743 if( ax[i].isTkn ){ |
| 3744 for(ap=stp->ap; ap; ap=ap->next){ |
| 3745 int action; |
| 3746 if( ap->sp->index>=lemp->nterminal ) continue; |
| 3747 action = compute_action(lemp, ap); |
| 3748 if( action<0 ) continue; |
| 3749 acttab_action(pActtab, ap->sp->index, action); |
| 3750 } |
| 3751 stp->iTknOfst = acttab_insert(pActtab); |
| 3752 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; |
| 3753 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; |
| 3754 }else{ |
| 3755 for(ap=stp->ap; ap; ap=ap->next){ |
| 3756 int action; |
| 3757 if( ap->sp->index<lemp->nterminal ) continue; |
| 3758 if( ap->sp->index==lemp->nsymbol ) continue; |
| 3759 action = compute_action(lemp, ap); |
| 3760 if( action<0 ) continue; |
| 3761 acttab_action(pActtab, ap->sp->index, action); |
| 3762 } |
| 3763 stp->iNtOfst = acttab_insert(pActtab); |
| 3764 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; |
| 3765 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; |
| 3766 } |
| 3767 } |
| 3768 free(ax); |
| 3769 |
| 3770 /* Output the yy_action table */ |
| 3771 n = acttab_size(pActtab); |
| 3772 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; |
| 3773 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; |
| 3774 for(i=j=0; i<n; i++){ |
| 3775 int action = acttab_yyaction(pActtab, i); |
| 3776 if( action<0 ) action = lemp->nstate + lemp->nrule + 2; |
| 3777 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 3778 fprintf(out, " %4d,", action); |
| 3779 if( j==9 || i==n-1 ){ |
| 3780 fprintf(out, "\n"); lineno++; |
| 3781 j = 0; |
| 3782 }else{ |
| 3783 j++; |
| 3784 } |
| 3785 } |
| 3786 fprintf(out, "};\n"); lineno++; |
| 3787 |
| 3788 /* Output the yy_lookahead table */ |
| 3789 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; |
| 3790 for(i=j=0; i<n; i++){ |
| 3791 int la = acttab_yylookahead(pActtab, i); |
| 3792 if( la<0 ) la = lemp->nsymbol; |
| 3793 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 3794 fprintf(out, " %4d,", la); |
| 3795 if( j==9 || i==n-1 ){ |
| 3796 fprintf(out, "\n"); lineno++; |
| 3797 j = 0; |
| 3798 }else{ |
| 3799 j++; |
| 3800 } |
| 3801 } |
| 3802 fprintf(out, "};\n"); lineno++; |
| 3803 |
| 3804 /* Output the yy_shift_ofst[] table */ |
| 3805 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++; |
| 3806 n = lemp->nstate; |
| 3807 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; |
| 3808 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; |
| 3809 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; |
| 3810 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; |
| 3811 fprintf(out, "static const %s yy_shift_ofst[] = {\n", |
| 3812 minimum_size_type(mnTknOfst-1, mxTknOfst)); lineno++; |
| 3813 for(i=j=0; i<n; i++){ |
| 3814 int ofst; |
| 3815 stp = lemp->sorted[i]; |
| 3816 ofst = stp->iTknOfst; |
| 3817 if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1; |
| 3818 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 3819 fprintf(out, " %4d,", ofst); |
| 3820 if( j==9 || i==n-1 ){ |
| 3821 fprintf(out, "\n"); lineno++; |
| 3822 j = 0; |
| 3823 }else{ |
| 3824 j++; |
| 3825 } |
| 3826 } |
| 3827 fprintf(out, "};\n"); lineno++; |
| 3828 |
| 3829 /* Output the yy_reduce_ofst[] table */ |
| 3830 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; |
| 3831 n = lemp->nstate; |
| 3832 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; |
| 3833 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; |
| 3834 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; |
| 3835 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; |
| 3836 fprintf(out, "static const %s yy_reduce_ofst[] = {\n", |
| 3837 minimum_size_type(mnNtOfst-1, mxNtOfst)); lineno++; |
| 3838 for(i=j=0; i<n; i++){ |
| 3839 int ofst; |
| 3840 stp = lemp->sorted[i]; |
| 3841 ofst = stp->iNtOfst; |
| 3842 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; |
| 3843 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 3844 fprintf(out, " %4d,", ofst); |
| 3845 if( j==9 || i==n-1 ){ |
| 3846 fprintf(out, "\n"); lineno++; |
| 3847 j = 0; |
| 3848 }else{ |
| 3849 j++; |
| 3850 } |
| 3851 } |
| 3852 fprintf(out, "};\n"); lineno++; |
| 3853 |
| 3854 /* Output the default action table */ |
| 3855 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; |
| 3856 n = lemp->nstate; |
| 3857 for(i=j=0; i<n; i++){ |
| 3858 stp = lemp->sorted[i]; |
| 3859 if( j==0 ) fprintf(out," /* %5d */ ", i); |
| 3860 fprintf(out, " %4d,", stp->iDflt); |
| 3861 if( j==9 || i==n-1 ){ |
| 3862 fprintf(out, "\n"); lineno++; |
| 3863 j = 0; |
| 3864 }else{ |
| 3865 j++; |
| 3866 } |
| 3867 } |
| 3868 fprintf(out, "};\n"); lineno++; |
| 3869 tplt_xfer(lemp->name,in,out,&lineno); |
| 3870 |
| 3871 /* Generate the table of fallback tokens. |
| 3872 */ |
| 3873 if( lemp->has_fallback ){ |
| 3874 int mx = lemp->nterminal - 1; |
| 3875 while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } |
| 3876 for(i=0; i<=mx; i++){ |
| 3877 struct symbol *p = lemp->symbols[i]; |
| 3878 if( p->fallback==0 ){ |
| 3879 fprintf(out, " 0, /* %10s => nothing */\n", p->name); |
| 3880 }else{ |
| 3881 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, |
| 3882 p->name, p->fallback->name); |
| 3883 } |
| 3884 lineno++; |
| 3885 } |
| 3886 } |
| 3887 tplt_xfer(lemp->name, in, out, &lineno); |
| 3888 |
| 3889 /* Generate a table containing the symbolic name of every symbol |
| 3890 */ |
| 3891 for(i=0; i<lemp->nsymbol; i++){ |
| 3892 sprintf(line,"\"%s\",",lemp->symbols[i]->name); |
| 3893 fprintf(out," %-15s",line); |
| 3894 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } |
| 3895 } |
| 3896 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } |
| 3897 tplt_xfer(lemp->name,in,out,&lineno); |
| 3898 |
| 3899 /* Generate a table containing a text string that describes every |
| 3900 ** rule in the rule set of the grammar. This information is used |
| 3901 ** when tracing REDUCE actions. |
| 3902 */ |
| 3903 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ |
| 3904 assert( rp->index==i ); |
| 3905 fprintf(out," /* %3d */ \"", i); |
| 3906 writeRuleText(out, rp); |
| 3907 fprintf(out,"\",\n"); lineno++; |
| 3908 } |
| 3909 tplt_xfer(lemp->name,in,out,&lineno); |
| 3910 |
| 3911 /* Generate code which executes every time a symbol is popped from |
| 3912 ** the stack while processing errors or while destroying the parser. |
| 3913 ** (In other words, generate the %destructor actions) |
| 3914 */ |
| 3915 if( lemp->tokendest ){ |
| 3916 int once = 1; |
| 3917 for(i=0; i<lemp->nsymbol; i++){ |
| 3918 struct symbol *sp = lemp->symbols[i]; |
| 3919 if( sp==0 || sp->type!=TERMINAL ) continue; |
| 3920 if( once ){ |
| 3921 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; |
| 3922 once = 0; |
| 3923 } |
| 3924 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
| 3925 } |
| 3926 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); |
| 3927 if( i<lemp->nsymbol ){ |
| 3928 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
| 3929 fprintf(out," break;\n"); lineno++; |
| 3930 } |
| 3931 } |
| 3932 if( lemp->vardest ){ |
| 3933 struct symbol *dflt_sp = 0; |
| 3934 int once = 1; |
| 3935 for(i=0; i<lemp->nsymbol; i++){ |
| 3936 struct symbol *sp = lemp->symbols[i]; |
| 3937 if( sp==0 || sp->type==TERMINAL || |
| 3938 sp->index<=0 || sp->destructor!=0 ) continue; |
| 3939 if( once ){ |
| 3940 fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++; |
| 3941 once = 0; |
| 3942 } |
| 3943 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
| 3944 dflt_sp = sp; |
| 3945 } |
| 3946 if( dflt_sp!=0 ){ |
| 3947 emit_destructor_code(out,dflt_sp,lemp,&lineno); |
| 3948 } |
| 3949 fprintf(out," break;\n"); lineno++; |
| 3950 } |
| 3951 for(i=0; i<lemp->nsymbol; i++){ |
| 3952 struct symbol *sp = lemp->symbols[i]; |
| 3953 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; |
| 3954 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; |
| 3955 |
| 3956 /* Combine duplicate destructors into a single case */ |
| 3957 for(j=i+1; j<lemp->nsymbol; j++){ |
| 3958 struct symbol *sp2 = lemp->symbols[j]; |
| 3959 if( sp2 && sp2->type!=TERMINAL && sp2->destructor |
| 3960 && sp2->dtnum==sp->dtnum |
| 3961 && strcmp(sp->destructor,sp2->destructor)==0 ){ |
| 3962 fprintf(out," case %d: /* %s */\n", |
| 3963 sp2->index, sp2->name); lineno++; |
| 3964 sp2->destructor = 0; |
| 3965 } |
| 3966 } |
| 3967 |
| 3968 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); |
| 3969 fprintf(out," break;\n"); lineno++; |
| 3970 } |
| 3971 tplt_xfer(lemp->name,in,out,&lineno); |
| 3972 |
| 3973 /* Generate code which executes whenever the parser stack overflows */ |
| 3974 tplt_print(out,lemp,lemp->overflow,&lineno); |
| 3975 tplt_xfer(lemp->name,in,out,&lineno); |
| 3976 |
| 3977 /* Generate the table of rule information |
| 3978 ** |
| 3979 ** Note: This code depends on the fact that rules are number |
| 3980 ** sequentually beginning with 0. |
| 3981 */ |
| 3982 for(rp=lemp->rule; rp; rp=rp->next){ |
| 3983 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; |
| 3984 } |
| 3985 tplt_xfer(lemp->name,in,out,&lineno); |
| 3986 |
| 3987 /* Generate code which execution during each REDUCE action */ |
| 3988 for(rp=lemp->rule; rp; rp=rp->next){ |
| 3989 translate_code(lemp, rp); |
| 3990 } |
| 3991 /* First output rules other than the default: rule */ |
| 3992 for(rp=lemp->rule; rp; rp=rp->next){ |
| 3993 struct rule *rp2; /* Other rules with the same action */ |
| 3994 if( rp->code==0 ) continue; |
| 3995 if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */ |
| 3996 fprintf(out," case %d: /* ", rp->index); |
| 3997 writeRuleText(out, rp); |
| 3998 fprintf(out, " */\n"); lineno++; |
| 3999 for(rp2=rp->next; rp2; rp2=rp2->next){ |
| 4000 if( rp2->code==rp->code ){ |
| 4001 fprintf(out," case %d: /* ", rp2->index); |
| 4002 writeRuleText(out, rp2); |
| 4003 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++; |
| 4004 rp2->code = 0; |
| 4005 } |
| 4006 } |
| 4007 emit_code(out,rp,lemp,&lineno); |
| 4008 fprintf(out," break;\n"); lineno++; |
| 4009 rp->code = 0; |
| 4010 } |
| 4011 /* Finally, output the default: rule. We choose as the default: all |
| 4012 ** empty actions. */ |
| 4013 fprintf(out," default:\n"); lineno++; |
| 4014 for(rp=lemp->rule; rp; rp=rp->next){ |
| 4015 if( rp->code==0 ) continue; |
| 4016 assert( rp->code[0]=='\n' && rp->code[1]==0 ); |
| 4017 fprintf(out," /* (%d) ", rp->index); |
| 4018 writeRuleText(out, rp); |
| 4019 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++; |
| 4020 } |
| 4021 fprintf(out," break;\n"); lineno++; |
| 4022 tplt_xfer(lemp->name,in,out,&lineno); |
| 4023 |
| 4024 /* Generate code which executes if a parse fails */ |
| 4025 tplt_print(out,lemp,lemp->failure,&lineno); |
| 4026 tplt_xfer(lemp->name,in,out,&lineno); |
| 4027 |
| 4028 /* Generate code which executes when a syntax error occurs */ |
| 4029 tplt_print(out,lemp,lemp->error,&lineno); |
| 4030 tplt_xfer(lemp->name,in,out,&lineno); |
| 4031 |
| 4032 /* Generate code which executes when the parser accepts its input */ |
| 4033 tplt_print(out,lemp,lemp->accept,&lineno); |
| 4034 tplt_xfer(lemp->name,in,out,&lineno); |
| 4035 |
| 4036 /* Append any addition code the user desires */ |
| 4037 tplt_print(out,lemp,lemp->extracode,&lineno); |
| 4038 |
| 4039 fclose(in); |
| 4040 fclose(out); |
| 4041 return; |
| 4042 } |
| 4043 |
| 4044 /* Generate a header file for the parser */ |
| 4045 void ReportHeader(struct lemon *lemp) |
| 4046 { |
| 4047 FILE *out, *in; |
| 4048 const char *prefix; |
| 4049 char line[LINESIZE]; |
| 4050 char pattern[LINESIZE]; |
| 4051 int i; |
| 4052 |
| 4053 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; |
| 4054 else prefix = ""; |
| 4055 in = file_open(lemp,".h","rb"); |
| 4056 if( in ){ |
| 4057 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ |
| 4058 sprintf(pattern,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
| 4059 if( strcmp(line,pattern) ) break; |
| 4060 } |
| 4061 fclose(in); |
| 4062 if( i==lemp->nterminal ){ |
| 4063 /* No change in the file. Don't rewrite it. */ |
| 4064 return; |
| 4065 } |
| 4066 } |
| 4067 out = file_open(lemp,".h","wb"); |
| 4068 if( out ){ |
| 4069 for(i=1; i<lemp->nterminal; i++){ |
| 4070 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); |
| 4071 } |
| 4072 fclose(out); |
| 4073 } |
| 4074 return; |
| 4075 } |
| 4076 |
| 4077 /* Reduce the size of the action tables, if possible, by making use |
| 4078 ** of defaults. |
| 4079 ** |
| 4080 ** In this version, we take the most frequent REDUCE action and make |
| 4081 ** it the default. Except, there is no default if the wildcard token |
| 4082 ** is a possible look-ahead. |
| 4083 */ |
| 4084 void CompressTables(struct lemon *lemp) |
| 4085 { |
| 4086 struct state *stp; |
| 4087 struct action *ap, *ap2; |
| 4088 struct rule *rp, *rp2, *rbest; |
| 4089 int nbest, n; |
| 4090 int i; |
| 4091 int usesWildcard; |
| 4092 |
| 4093 for(i=0; i<lemp->nstate; i++){ |
| 4094 stp = lemp->sorted[i]; |
| 4095 nbest = 0; |
| 4096 rbest = 0; |
| 4097 usesWildcard = 0; |
| 4098 |
| 4099 for(ap=stp->ap; ap; ap=ap->next){ |
| 4100 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ |
| 4101 usesWildcard = 1; |
| 4102 } |
| 4103 if( ap->type!=REDUCE ) continue; |
| 4104 rp = ap->x.rp; |
| 4105 if( rp->lhsStart ) continue; |
| 4106 if( rp==rbest ) continue; |
| 4107 n = 1; |
| 4108 for(ap2=ap->next; ap2; ap2=ap2->next){ |
| 4109 if( ap2->type!=REDUCE ) continue; |
| 4110 rp2 = ap2->x.rp; |
| 4111 if( rp2==rbest ) continue; |
| 4112 if( rp2==rp ) n++; |
| 4113 } |
| 4114 if( n>nbest ){ |
| 4115 nbest = n; |
| 4116 rbest = rp; |
| 4117 } |
| 4118 } |
| 4119 |
| 4120 /* Do not make a default if the number of rules to default |
| 4121 ** is not at least 1 or if the wildcard token is a possible |
| 4122 ** lookahead. |
| 4123 */ |
| 4124 if( nbest<1 || usesWildcard ) continue; |
| 4125 |
| 4126 |
| 4127 /* Combine matching REDUCE actions into a single default */ |
| 4128 for(ap=stp->ap; ap; ap=ap->next){ |
| 4129 if( ap->type==REDUCE && ap->x.rp==rbest ) break; |
| 4130 } |
| 4131 assert( ap ); |
| 4132 ap->sp = Symbol_new("{default}"); |
| 4133 for(ap=ap->next; ap; ap=ap->next){ |
| 4134 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; |
| 4135 } |
| 4136 stp->ap = Action_sort(stp->ap); |
| 4137 } |
| 4138 } |
| 4139 |
| 4140 |
| 4141 /* |
| 4142 ** Compare two states for sorting purposes. The smaller state is the |
| 4143 ** one with the most non-terminal actions. If they have the same number |
| 4144 ** of non-terminal actions, then the smaller is the one with the most |
| 4145 ** token actions. |
| 4146 */ |
| 4147 static int stateResortCompare(const void *a, const void *b){ |
| 4148 const struct state *pA = *(const struct state**)a; |
| 4149 const struct state *pB = *(const struct state**)b; |
| 4150 int n; |
| 4151 |
| 4152 n = pB->nNtAct - pA->nNtAct; |
| 4153 if( n==0 ){ |
| 4154 n = pB->nTknAct - pA->nTknAct; |
| 4155 if( n==0 ){ |
| 4156 n = pB->statenum - pA->statenum; |
| 4157 } |
| 4158 } |
| 4159 assert( n!=0 ); |
| 4160 return n; |
| 4161 } |
| 4162 |
| 4163 |
| 4164 /* |
| 4165 ** Renumber and resort states so that states with fewer choices |
| 4166 ** occur at the end. Except, keep state 0 as the first state. |
| 4167 */ |
| 4168 void ResortStates(struct lemon *lemp) |
| 4169 { |
| 4170 int i; |
| 4171 struct state *stp; |
| 4172 struct action *ap; |
| 4173 |
| 4174 for(i=0; i<lemp->nstate; i++){ |
| 4175 stp = lemp->sorted[i]; |
| 4176 stp->nTknAct = stp->nNtAct = 0; |
| 4177 stp->iDflt = lemp->nstate + lemp->nrule; |
| 4178 stp->iTknOfst = NO_OFFSET; |
| 4179 stp->iNtOfst = NO_OFFSET; |
| 4180 for(ap=stp->ap; ap; ap=ap->next){ |
| 4181 if( compute_action(lemp,ap)>=0 ){ |
| 4182 if( ap->sp->index<lemp->nterminal ){ |
| 4183 stp->nTknAct++; |
| 4184 }else if( ap->sp->index<lemp->nsymbol ){ |
| 4185 stp->nNtAct++; |
| 4186 }else{ |
| 4187 stp->iDflt = compute_action(lemp, ap); |
| 4188 } |
| 4189 } |
| 4190 } |
| 4191 } |
| 4192 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), |
| 4193 stateResortCompare); |
| 4194 for(i=0; i<lemp->nstate; i++){ |
| 4195 lemp->sorted[i]->statenum = i; |
| 4196 } |
| 4197 } |
| 4198 |
| 4199 |
| 4200 /***************** From the file "set.c" ************************************/ |
| 4201 /* |
| 4202 ** Set manipulation routines for the LEMON parser generator. |
| 4203 */ |
| 4204 |
| 4205 static int size = 0; |
| 4206 |
| 4207 /* Set the set size */ |
| 4208 void SetSize(int n) |
| 4209 { |
| 4210 size = n+1; |
| 4211 } |
| 4212 |
| 4213 /* Allocate a new set */ |
| 4214 char *SetNew(){ |
| 4215 char *s; |
| 4216 s = (char*)calloc( size, 1); |
| 4217 if( s==0 ){ |
| 4218 extern void memory_error(); |
| 4219 memory_error(); |
| 4220 } |
| 4221 return s; |
| 4222 } |
| 4223 |
| 4224 /* Deallocate a set */ |
| 4225 void SetFree(char *s) |
| 4226 { |
| 4227 free(s); |
| 4228 } |
| 4229 |
| 4230 /* Add a new element to the set. Return TRUE if the element was added |
| 4231 ** and FALSE if it was already there. */ |
| 4232 int SetAdd(char *s, int e) |
| 4233 { |
| 4234 int rv; |
| 4235 assert( e>=0 && e<size ); |
| 4236 rv = s[e]; |
| 4237 s[e] = 1; |
| 4238 return !rv; |
| 4239 } |
| 4240 |
| 4241 /* Add every element of s2 to s1. Return TRUE if s1 changes. */ |
| 4242 int SetUnion(char *s1, char *s2) |
| 4243 { |
| 4244 int i, progress; |
| 4245 progress = 0; |
| 4246 for(i=0; i<size; i++){ |
| 4247 if( s2[i]==0 ) continue; |
| 4248 if( s1[i]==0 ){ |
| 4249 progress = 1; |
| 4250 s1[i] = 1; |
| 4251 } |
| 4252 } |
| 4253 return progress; |
| 4254 } |
| 4255 /********************** From the file "table.c" ****************************/ |
| 4256 /* |
| 4257 ** All code in this file has been automatically generated |
| 4258 ** from a specification in the file |
| 4259 ** "table.q" |
| 4260 ** by the associative array code building program "aagen". |
| 4261 ** Do not edit this file! Instead, edit the specification |
| 4262 ** file, then rerun aagen. |
| 4263 */ |
| 4264 /* |
| 4265 ** Code for processing tables in the LEMON parser generator. |
| 4266 */ |
| 4267 |
| 4268 PRIVATE int strhash(const char *x) |
| 4269 { |
| 4270 int h = 0; |
| 4271 while( *x) h = h*13 + *(x++); |
| 4272 return h; |
| 4273 } |
| 4274 |
| 4275 /* Works like strdup, sort of. Save a string in malloced memory, but |
| 4276 ** keep strings in a table so that the same string is not in more |
| 4277 ** than one place. |
| 4278 */ |
| 4279 const char *Strsafe(const char *y) |
| 4280 { |
| 4281 const char *z; |
| 4282 char *cpy; |
| 4283 |
| 4284 if( y==0 ) return 0; |
| 4285 z = Strsafe_find(y); |
| 4286 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){ |
| 4287 strcpy(cpy,y); |
| 4288 z = cpy; |
| 4289 Strsafe_insert(z); |
| 4290 } |
| 4291 MemoryCheck(z); |
| 4292 return z; |
| 4293 } |
| 4294 |
| 4295 /* There is one instance of the following structure for each |
| 4296 ** associative array of type "x1". |
| 4297 */ |
| 4298 struct s_x1 { |
| 4299 int size; /* The number of available slots. */ |
| 4300 /* Must be a power of 2 greater than or */ |
| 4301 /* equal to 1 */ |
| 4302 int count; /* Number of currently slots filled */ |
| 4303 struct s_x1node *tbl; /* The data stored here */ |
| 4304 struct s_x1node **ht; /* Hash table for lookups */ |
| 4305 }; |
| 4306 |
| 4307 /* There is one instance of this structure for every data element |
| 4308 ** in an associative array of type "x1". |
| 4309 */ |
| 4310 typedef struct s_x1node { |
| 4311 const char *data; /* The data */ |
| 4312 struct s_x1node *next; /* Next entry with the same hash */ |
| 4313 struct s_x1node **from; /* Previous link */ |
| 4314 } x1node; |
| 4315 |
| 4316 /* There is only one instance of the array, which is the following */ |
| 4317 static struct s_x1 *x1a; |
| 4318 |
| 4319 /* Allocate a new associative array */ |
| 4320 void Strsafe_init(){ |
| 4321 if( x1a ) return; |
| 4322 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); |
| 4323 if( x1a ){ |
| 4324 x1a->size = 1024; |
| 4325 x1a->count = 0; |
| 4326 x1a->tbl = (x1node*)malloc( |
| 4327 (sizeof(x1node) + sizeof(x1node*))*1024 ); |
| 4328 if( x1a->tbl==0 ){ |
| 4329 free(x1a); |
| 4330 x1a = 0; |
| 4331 }else{ |
| 4332 int i; |
| 4333 x1a->ht = (x1node**)&(x1a->tbl[1024]); |
| 4334 for(i=0; i<1024; i++) x1a->ht[i] = 0; |
| 4335 } |
| 4336 } |
| 4337 } |
| 4338 /* Insert a new record into the array. Return TRUE if successful. |
| 4339 ** Prior data with the same key is NOT overwritten */ |
| 4340 int Strsafe_insert(const char *data) |
| 4341 { |
| 4342 x1node *np; |
| 4343 int h; |
| 4344 int ph; |
| 4345 |
| 4346 if( x1a==0 ) return 0; |
| 4347 ph = strhash(data); |
| 4348 h = ph & (x1a->size-1); |
| 4349 np = x1a->ht[h]; |
| 4350 while( np ){ |
| 4351 if( strcmp(np->data,data)==0 ){ |
| 4352 /* An existing entry with the same key is found. */ |
| 4353 /* Fail because overwrite is not allows. */ |
| 4354 return 0; |
| 4355 } |
| 4356 np = np->next; |
| 4357 } |
| 4358 if( x1a->count>=x1a->size ){ |
| 4359 /* Need to make the hash table bigger */ |
| 4360 int i,size; |
| 4361 struct s_x1 array; |
| 4362 array.size = size = x1a->size*2; |
| 4363 array.count = x1a->count; |
| 4364 array.tbl = (x1node*)malloc( |
| 4365 (sizeof(x1node) + sizeof(x1node*))*size ); |
| 4366 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| 4367 array.ht = (x1node**)&(array.tbl[size]); |
| 4368 for(i=0; i<size; i++) array.ht[i] = 0; |
| 4369 for(i=0; i<x1a->count; i++){ |
| 4370 x1node *oldnp, *newnp; |
| 4371 oldnp = &(x1a->tbl[i]); |
| 4372 h = strhash(oldnp->data) & (size-1); |
| 4373 newnp = &(array.tbl[i]); |
| 4374 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| 4375 newnp->next = array.ht[h]; |
| 4376 newnp->data = oldnp->data; |
| 4377 newnp->from = &(array.ht[h]); |
| 4378 array.ht[h] = newnp; |
| 4379 } |
| 4380 free(x1a->tbl); |
| 4381 *x1a = array; |
| 4382 } |
| 4383 /* Insert the new data */ |
| 4384 h = ph & (x1a->size-1); |
| 4385 np = &(x1a->tbl[x1a->count++]); |
| 4386 np->data = data; |
| 4387 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); |
| 4388 np->next = x1a->ht[h]; |
| 4389 x1a->ht[h] = np; |
| 4390 np->from = &(x1a->ht[h]); |
| 4391 return 1; |
| 4392 } |
| 4393 |
| 4394 /* Return a pointer to data assigned to the given key. Return NULL |
| 4395 ** if no such key. */ |
| 4396 const char *Strsafe_find(const char *key) |
| 4397 { |
| 4398 int h; |
| 4399 x1node *np; |
| 4400 |
| 4401 if( x1a==0 ) return 0; |
| 4402 h = strhash(key) & (x1a->size-1); |
| 4403 np = x1a->ht[h]; |
| 4404 while( np ){ |
| 4405 if( strcmp(np->data,key)==0 ) break; |
| 4406 np = np->next; |
| 4407 } |
| 4408 return np ? np->data : 0; |
| 4409 } |
| 4410 |
| 4411 /* Return a pointer to the (terminal or nonterminal) symbol "x". |
| 4412 ** Create a new symbol if this is the first time "x" has been seen. |
| 4413 */ |
| 4414 struct symbol *Symbol_new(const char *x) |
| 4415 { |
| 4416 struct symbol *sp; |
| 4417 |
| 4418 sp = Symbol_find(x); |
| 4419 if( sp==0 ){ |
| 4420 sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); |
| 4421 MemoryCheck(sp); |
| 4422 sp->name = Strsafe(x); |
| 4423 sp->type = isupper(*x) ? TERMINAL : NONTERMINAL; |
| 4424 sp->rule = 0; |
| 4425 sp->fallback = 0; |
| 4426 sp->prec = -1; |
| 4427 sp->assoc = UNK; |
| 4428 sp->firstset = 0; |
| 4429 sp->lambda = LEMON_FALSE; |
| 4430 sp->destructor = 0; |
| 4431 sp->destLineno = 0; |
| 4432 sp->datatype = 0; |
| 4433 sp->useCnt = 0; |
| 4434 Symbol_insert(sp,sp->name); |
| 4435 } |
| 4436 sp->useCnt++; |
| 4437 return sp; |
| 4438 } |
| 4439 |
| 4440 /* Compare two symbols for working purposes |
| 4441 ** |
| 4442 ** Symbols that begin with upper case letters (terminals or tokens) |
| 4443 ** must sort before symbols that begin with lower case letters |
| 4444 ** (non-terminals). Other than that, the order does not matter. |
| 4445 ** |
| 4446 ** We find experimentally that leaving the symbols in their original |
| 4447 ** order (the order they appeared in the grammar file) gives the |
| 4448 ** smallest parser tables in SQLite. |
| 4449 */ |
| 4450 int Symbolcmpp(const void *_a, const void *_b) |
| 4451 { |
| 4452 const struct symbol **a = (const struct symbol **) _a; |
| 4453 const struct symbol **b = (const struct symbol **) _b; |
| 4454 int i1 = (**a).index + 10000000*((**a).name[0]>'Z'); |
| 4455 int i2 = (**b).index + 10000000*((**b).name[0]>'Z'); |
| 4456 assert( i1!=i2 || strcmp((**a).name,(**b).name)==0 ); |
| 4457 return i1-i2; |
| 4458 } |
| 4459 |
| 4460 /* There is one instance of the following structure for each |
| 4461 ** associative array of type "x2". |
| 4462 */ |
| 4463 struct s_x2 { |
| 4464 int size; /* The number of available slots. */ |
| 4465 /* Must be a power of 2 greater than or */ |
| 4466 /* equal to 1 */ |
| 4467 int count; /* Number of currently slots filled */ |
| 4468 struct s_x2node *tbl; /* The data stored here */ |
| 4469 struct s_x2node **ht; /* Hash table for lookups */ |
| 4470 }; |
| 4471 |
| 4472 /* There is one instance of this structure for every data element |
| 4473 ** in an associative array of type "x2". |
| 4474 */ |
| 4475 typedef struct s_x2node { |
| 4476 struct symbol *data; /* The data */ |
| 4477 const char *key; /* The key */ |
| 4478 struct s_x2node *next; /* Next entry with the same hash */ |
| 4479 struct s_x2node **from; /* Previous link */ |
| 4480 } x2node; |
| 4481 |
| 4482 /* There is only one instance of the array, which is the following */ |
| 4483 static struct s_x2 *x2a; |
| 4484 |
| 4485 /* Allocate a new associative array */ |
| 4486 void Symbol_init(){ |
| 4487 if( x2a ) return; |
| 4488 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); |
| 4489 if( x2a ){ |
| 4490 x2a->size = 128; |
| 4491 x2a->count = 0; |
| 4492 x2a->tbl = (x2node*)malloc( |
| 4493 (sizeof(x2node) + sizeof(x2node*))*128 ); |
| 4494 if( x2a->tbl==0 ){ |
| 4495 free(x2a); |
| 4496 x2a = 0; |
| 4497 }else{ |
| 4498 int i; |
| 4499 x2a->ht = (x2node**)&(x2a->tbl[128]); |
| 4500 for(i=0; i<128; i++) x2a->ht[i] = 0; |
| 4501 } |
| 4502 } |
| 4503 } |
| 4504 /* Insert a new record into the array. Return TRUE if successful. |
| 4505 ** Prior data with the same key is NOT overwritten */ |
| 4506 int Symbol_insert(struct symbol *data, const char *key) |
| 4507 { |
| 4508 x2node *np; |
| 4509 int h; |
| 4510 int ph; |
| 4511 |
| 4512 if( x2a==0 ) return 0; |
| 4513 ph = strhash(key); |
| 4514 h = ph & (x2a->size-1); |
| 4515 np = x2a->ht[h]; |
| 4516 while( np ){ |
| 4517 if( strcmp(np->key,key)==0 ){ |
| 4518 /* An existing entry with the same key is found. */ |
| 4519 /* Fail because overwrite is not allows. */ |
| 4520 return 0; |
| 4521 } |
| 4522 np = np->next; |
| 4523 } |
| 4524 if( x2a->count>=x2a->size ){ |
| 4525 /* Need to make the hash table bigger */ |
| 4526 int i,size; |
| 4527 struct s_x2 array; |
| 4528 array.size = size = x2a->size*2; |
| 4529 array.count = x2a->count; |
| 4530 array.tbl = (x2node*)malloc( |
| 4531 (sizeof(x2node) + sizeof(x2node*))*size ); |
| 4532 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| 4533 array.ht = (x2node**)&(array.tbl[size]); |
| 4534 for(i=0; i<size; i++) array.ht[i] = 0; |
| 4535 for(i=0; i<x2a->count; i++){ |
| 4536 x2node *oldnp, *newnp; |
| 4537 oldnp = &(x2a->tbl[i]); |
| 4538 h = strhash(oldnp->key) & (size-1); |
| 4539 newnp = &(array.tbl[i]); |
| 4540 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| 4541 newnp->next = array.ht[h]; |
| 4542 newnp->key = oldnp->key; |
| 4543 newnp->data = oldnp->data; |
| 4544 newnp->from = &(array.ht[h]); |
| 4545 array.ht[h] = newnp; |
| 4546 } |
| 4547 free(x2a->tbl); |
| 4548 *x2a = array; |
| 4549 } |
| 4550 /* Insert the new data */ |
| 4551 h = ph & (x2a->size-1); |
| 4552 np = &(x2a->tbl[x2a->count++]); |
| 4553 np->key = key; |
| 4554 np->data = data; |
| 4555 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); |
| 4556 np->next = x2a->ht[h]; |
| 4557 x2a->ht[h] = np; |
| 4558 np->from = &(x2a->ht[h]); |
| 4559 return 1; |
| 4560 } |
| 4561 |
| 4562 /* Return a pointer to data assigned to the given key. Return NULL |
| 4563 ** if no such key. */ |
| 4564 struct symbol *Symbol_find(const char *key) |
| 4565 { |
| 4566 int h; |
| 4567 x2node *np; |
| 4568 |
| 4569 if( x2a==0 ) return 0; |
| 4570 h = strhash(key) & (x2a->size-1); |
| 4571 np = x2a->ht[h]; |
| 4572 while( np ){ |
| 4573 if( strcmp(np->key,key)==0 ) break; |
| 4574 np = np->next; |
| 4575 } |
| 4576 return np ? np->data : 0; |
| 4577 } |
| 4578 |
| 4579 /* Return the n-th data. Return NULL if n is out of range. */ |
| 4580 struct symbol *Symbol_Nth(int n) |
| 4581 { |
| 4582 struct symbol *data; |
| 4583 if( x2a && n>0 && n<=x2a->count ){ |
| 4584 data = x2a->tbl[n-1].data; |
| 4585 }else{ |
| 4586 data = 0; |
| 4587 } |
| 4588 return data; |
| 4589 } |
| 4590 |
| 4591 /* Return the size of the array */ |
| 4592 int Symbol_count() |
| 4593 { |
| 4594 return x2a ? x2a->count : 0; |
| 4595 } |
| 4596 |
| 4597 /* Return an array of pointers to all data in the table. |
| 4598 ** The array is obtained from malloc. Return NULL if memory allocation |
| 4599 ** problems, or if the array is empty. */ |
| 4600 struct symbol **Symbol_arrayof() |
| 4601 { |
| 4602 struct symbol **array; |
| 4603 int i,size; |
| 4604 if( x2a==0 ) return 0; |
| 4605 size = x2a->count; |
| 4606 array = (struct symbol **)calloc(size, sizeof(struct symbol *)); |
| 4607 if( array ){ |
| 4608 for(i=0; i<size; i++) array[i] = x2a->tbl[i].data; |
| 4609 } |
| 4610 return array; |
| 4611 } |
| 4612 |
| 4613 /* Compare two configurations */ |
| 4614 int Configcmp(const char *_a,const char *_b) |
| 4615 { |
| 4616 const struct config *a = (struct config *) _a; |
| 4617 const struct config *b = (struct config *) _b; |
| 4618 int x; |
| 4619 x = a->rp->index - b->rp->index; |
| 4620 if( x==0 ) x = a->dot - b->dot; |
| 4621 return x; |
| 4622 } |
| 4623 |
| 4624 /* Compare two states */ |
| 4625 PRIVATE int statecmp(struct config *a, struct config *b) |
| 4626 { |
| 4627 int rc; |
| 4628 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ |
| 4629 rc = a->rp->index - b->rp->index; |
| 4630 if( rc==0 ) rc = a->dot - b->dot; |
| 4631 } |
| 4632 if( rc==0 ){ |
| 4633 if( a ) rc = 1; |
| 4634 if( b ) rc = -1; |
| 4635 } |
| 4636 return rc; |
| 4637 } |
| 4638 |
| 4639 /* Hash a state */ |
| 4640 PRIVATE int statehash(struct config *a) |
| 4641 { |
| 4642 int h=0; |
| 4643 while( a ){ |
| 4644 h = h*571 + a->rp->index*37 + a->dot; |
| 4645 a = a->bp; |
| 4646 } |
| 4647 return h; |
| 4648 } |
| 4649 |
| 4650 /* Allocate a new state structure */ |
| 4651 struct state *State_new() |
| 4652 { |
| 4653 struct state *newstate; |
| 4654 newstate = (struct state *)calloc(1, sizeof(struct state) ); |
| 4655 MemoryCheck(newstate); |
| 4656 return newstate; |
| 4657 } |
| 4658 |
| 4659 /* There is one instance of the following structure for each |
| 4660 ** associative array of type "x3". |
| 4661 */ |
| 4662 struct s_x3 { |
| 4663 int size; /* The number of available slots. */ |
| 4664 /* Must be a power of 2 greater than or */ |
| 4665 /* equal to 1 */ |
| 4666 int count; /* Number of currently slots filled */ |
| 4667 struct s_x3node *tbl; /* The data stored here */ |
| 4668 struct s_x3node **ht; /* Hash table for lookups */ |
| 4669 }; |
| 4670 |
| 4671 /* There is one instance of this structure for every data element |
| 4672 ** in an associative array of type "x3". |
| 4673 */ |
| 4674 typedef struct s_x3node { |
| 4675 struct state *data; /* The data */ |
| 4676 struct config *key; /* The key */ |
| 4677 struct s_x3node *next; /* Next entry with the same hash */ |
| 4678 struct s_x3node **from; /* Previous link */ |
| 4679 } x3node; |
| 4680 |
| 4681 /* There is only one instance of the array, which is the following */ |
| 4682 static struct s_x3 *x3a; |
| 4683 |
| 4684 /* Allocate a new associative array */ |
| 4685 void State_init(){ |
| 4686 if( x3a ) return; |
| 4687 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); |
| 4688 if( x3a ){ |
| 4689 x3a->size = 128; |
| 4690 x3a->count = 0; |
| 4691 x3a->tbl = (x3node*)malloc( |
| 4692 (sizeof(x3node) + sizeof(x3node*))*128 ); |
| 4693 if( x3a->tbl==0 ){ |
| 4694 free(x3a); |
| 4695 x3a = 0; |
| 4696 }else{ |
| 4697 int i; |
| 4698 x3a->ht = (x3node**)&(x3a->tbl[128]); |
| 4699 for(i=0; i<128; i++) x3a->ht[i] = 0; |
| 4700 } |
| 4701 } |
| 4702 } |
| 4703 /* Insert a new record into the array. Return TRUE if successful. |
| 4704 ** Prior data with the same key is NOT overwritten */ |
| 4705 int State_insert(struct state *data, struct config *key) |
| 4706 { |
| 4707 x3node *np; |
| 4708 int h; |
| 4709 int ph; |
| 4710 |
| 4711 if( x3a==0 ) return 0; |
| 4712 ph = statehash(key); |
| 4713 h = ph & (x3a->size-1); |
| 4714 np = x3a->ht[h]; |
| 4715 while( np ){ |
| 4716 if( statecmp(np->key,key)==0 ){ |
| 4717 /* An existing entry with the same key is found. */ |
| 4718 /* Fail because overwrite is not allows. */ |
| 4719 return 0; |
| 4720 } |
| 4721 np = np->next; |
| 4722 } |
| 4723 if( x3a->count>=x3a->size ){ |
| 4724 /* Need to make the hash table bigger */ |
| 4725 int i,size; |
| 4726 struct s_x3 array; |
| 4727 array.size = size = x3a->size*2; |
| 4728 array.count = x3a->count; |
| 4729 array.tbl = (x3node*)malloc( |
| 4730 (sizeof(x3node) + sizeof(x3node*))*size ); |
| 4731 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| 4732 array.ht = (x3node**)&(array.tbl[size]); |
| 4733 for(i=0; i<size; i++) array.ht[i] = 0; |
| 4734 for(i=0; i<x3a->count; i++){ |
| 4735 x3node *oldnp, *newnp; |
| 4736 oldnp = &(x3a->tbl[i]); |
| 4737 h = statehash(oldnp->key) & (size-1); |
| 4738 newnp = &(array.tbl[i]); |
| 4739 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| 4740 newnp->next = array.ht[h]; |
| 4741 newnp->key = oldnp->key; |
| 4742 newnp->data = oldnp->data; |
| 4743 newnp->from = &(array.ht[h]); |
| 4744 array.ht[h] = newnp; |
| 4745 } |
| 4746 free(x3a->tbl); |
| 4747 *x3a = array; |
| 4748 } |
| 4749 /* Insert the new data */ |
| 4750 h = ph & (x3a->size-1); |
| 4751 np = &(x3a->tbl[x3a->count++]); |
| 4752 np->key = key; |
| 4753 np->data = data; |
| 4754 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); |
| 4755 np->next = x3a->ht[h]; |
| 4756 x3a->ht[h] = np; |
| 4757 np->from = &(x3a->ht[h]); |
| 4758 return 1; |
| 4759 } |
| 4760 |
| 4761 /* Return a pointer to data assigned to the given key. Return NULL |
| 4762 ** if no such key. */ |
| 4763 struct state *State_find(struct config *key) |
| 4764 { |
| 4765 int h; |
| 4766 x3node *np; |
| 4767 |
| 4768 if( x3a==0 ) return 0; |
| 4769 h = statehash(key) & (x3a->size-1); |
| 4770 np = x3a->ht[h]; |
| 4771 while( np ){ |
| 4772 if( statecmp(np->key,key)==0 ) break; |
| 4773 np = np->next; |
| 4774 } |
| 4775 return np ? np->data : 0; |
| 4776 } |
| 4777 |
| 4778 /* Return an array of pointers to all data in the table. |
| 4779 ** The array is obtained from malloc. Return NULL if memory allocation |
| 4780 ** problems, or if the array is empty. */ |
| 4781 struct state **State_arrayof() |
| 4782 { |
| 4783 struct state **array; |
| 4784 int i,size; |
| 4785 if( x3a==0 ) return 0; |
| 4786 size = x3a->count; |
| 4787 array = (struct state **)malloc( sizeof(struct state *)*size ); |
| 4788 if( array ){ |
| 4789 for(i=0; i<size; i++) array[i] = x3a->tbl[i].data; |
| 4790 } |
| 4791 return array; |
| 4792 } |
| 4793 |
| 4794 /* Hash a configuration */ |
| 4795 PRIVATE int confighash(struct config *a) |
| 4796 { |
| 4797 int h=0; |
| 4798 h = h*571 + a->rp->index*37 + a->dot; |
| 4799 return h; |
| 4800 } |
| 4801 |
| 4802 /* There is one instance of the following structure for each |
| 4803 ** associative array of type "x4". |
| 4804 */ |
| 4805 struct s_x4 { |
| 4806 int size; /* The number of available slots. */ |
| 4807 /* Must be a power of 2 greater than or */ |
| 4808 /* equal to 1 */ |
| 4809 int count; /* Number of currently slots filled */ |
| 4810 struct s_x4node *tbl; /* The data stored here */ |
| 4811 struct s_x4node **ht; /* Hash table for lookups */ |
| 4812 }; |
| 4813 |
| 4814 /* There is one instance of this structure for every data element |
| 4815 ** in an associative array of type "x4". |
| 4816 */ |
| 4817 typedef struct s_x4node { |
| 4818 struct config *data; /* The data */ |
| 4819 struct s_x4node *next; /* Next entry with the same hash */ |
| 4820 struct s_x4node **from; /* Previous link */ |
| 4821 } x4node; |
| 4822 |
| 4823 /* There is only one instance of the array, which is the following */ |
| 4824 static struct s_x4 *x4a; |
| 4825 |
| 4826 /* Allocate a new associative array */ |
| 4827 void Configtable_init(){ |
| 4828 if( x4a ) return; |
| 4829 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); |
| 4830 if( x4a ){ |
| 4831 x4a->size = 64; |
| 4832 x4a->count = 0; |
| 4833 x4a->tbl = (x4node*)malloc( |
| 4834 (sizeof(x4node) + sizeof(x4node*))*64 ); |
| 4835 if( x4a->tbl==0 ){ |
| 4836 free(x4a); |
| 4837 x4a = 0; |
| 4838 }else{ |
| 4839 int i; |
| 4840 x4a->ht = (x4node**)&(x4a->tbl[64]); |
| 4841 for(i=0; i<64; i++) x4a->ht[i] = 0; |
| 4842 } |
| 4843 } |
| 4844 } |
| 4845 /* Insert a new record into the array. Return TRUE if successful. |
| 4846 ** Prior data with the same key is NOT overwritten */ |
| 4847 int Configtable_insert(struct config *data) |
| 4848 { |
| 4849 x4node *np; |
| 4850 int h; |
| 4851 int ph; |
| 4852 |
| 4853 if( x4a==0 ) return 0; |
| 4854 ph = confighash(data); |
| 4855 h = ph & (x4a->size-1); |
| 4856 np = x4a->ht[h]; |
| 4857 while( np ){ |
| 4858 if( Configcmp((const char *) np->data,(const char *) data)==0 ){ |
| 4859 /* An existing entry with the same key is found. */ |
| 4860 /* Fail because overwrite is not allows. */ |
| 4861 return 0; |
| 4862 } |
| 4863 np = np->next; |
| 4864 } |
| 4865 if( x4a->count>=x4a->size ){ |
| 4866 /* Need to make the hash table bigger */ |
| 4867 int i,size; |
| 4868 struct s_x4 array; |
| 4869 array.size = size = x4a->size*2; |
| 4870 array.count = x4a->count; |
| 4871 array.tbl = (x4node*)malloc( |
| 4872 (sizeof(x4node) + sizeof(x4node*))*size ); |
| 4873 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ |
| 4874 array.ht = (x4node**)&(array.tbl[size]); |
| 4875 for(i=0; i<size; i++) array.ht[i] = 0; |
| 4876 for(i=0; i<x4a->count; i++){ |
| 4877 x4node *oldnp, *newnp; |
| 4878 oldnp = &(x4a->tbl[i]); |
| 4879 h = confighash(oldnp->data) & (size-1); |
| 4880 newnp = &(array.tbl[i]); |
| 4881 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); |
| 4882 newnp->next = array.ht[h]; |
| 4883 newnp->data = oldnp->data; |
| 4884 newnp->from = &(array.ht[h]); |
| 4885 array.ht[h] = newnp; |
| 4886 } |
| 4887 free(x4a->tbl); |
| 4888 *x4a = array; |
| 4889 } |
| 4890 /* Insert the new data */ |
| 4891 h = ph & (x4a->size-1); |
| 4892 np = &(x4a->tbl[x4a->count++]); |
| 4893 np->data = data; |
| 4894 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); |
| 4895 np->next = x4a->ht[h]; |
| 4896 x4a->ht[h] = np; |
| 4897 np->from = &(x4a->ht[h]); |
| 4898 return 1; |
| 4899 } |
| 4900 |
| 4901 /* Return a pointer to data assigned to the given key. Return NULL |
| 4902 ** if no such key. */ |
| 4903 struct config *Configtable_find(struct config *key) |
| 4904 { |
| 4905 int h; |
| 4906 x4node *np; |
| 4907 |
| 4908 if( x4a==0 ) return 0; |
| 4909 h = confighash(key) & (x4a->size-1); |
| 4910 np = x4a->ht[h]; |
| 4911 while( np ){ |
| 4912 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; |
| 4913 np = np->next; |
| 4914 } |
| 4915 return np ? np->data : 0; |
| 4916 } |
| 4917 |
| 4918 /* Remove all data from the table. Pass each data to the function "f" |
| 4919 ** as it is removed. ("f" may be null to avoid this step.) */ |
| 4920 void Configtable_clear(int(*f)(struct config *)) |
| 4921 { |
| 4922 int i; |
| 4923 if( x4a==0 || x4a->count==0 ) return; |
| 4924 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); |
| 4925 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; |
| 4926 x4a->count = 0; |
| 4927 return; |
| 4928 } |
OLD | NEW |