| Index: src/core/SkPath.cpp
|
| diff --git a/src/core/SkPath.cpp b/src/core/SkPath.cpp
|
| index f772717e2fba99525fa15e936c71465241646f0f..882d1b750796e8b98b372b05f4b7f1354cdaec2b 100644
|
| --- a/src/core/SkPath.cpp
|
| +++ b/src/core/SkPath.cpp
|
| @@ -1106,7 +1106,7 @@ void SkPath::addRRect(const SkRRect& rrect, Direction dir) {
|
| fDirection = this->hasOnlyMoveTos() ? dir : kUnknown_Direction;
|
|
|
| SkAutoPathBoundsUpdate apbu(this, bounds);
|
| - SkAutoDisableDirectionCheck(this);
|
| + SkAutoDisableDirectionCheck addc(this);
|
|
|
| this->incReserve(21);
|
| if (kCW_Direction == dir) {
|
| @@ -1179,7 +1179,7 @@ void SkPath::addRoundRect(const SkRect& rect, SkScalar rx, SkScalar ry,
|
| fDirection = this->hasOnlyMoveTos() ? dir : kUnknown_Direction;
|
|
|
| SkAutoPathBoundsUpdate apbu(this, rect);
|
| - SkAutoDisableDirectionCheck(this);
|
| + SkAutoDisableDirectionCheck addc(this);
|
|
|
| if (skip_hori) {
|
| rx = halfW;
|
| @@ -1511,45 +1511,6 @@ static int pts_in_verb(unsigned verb) {
|
| return gPtsInVerb[verb];
|
| }
|
|
|
| -// ignore the initial moveto, and stop when the 1st contour ends
|
| -void SkPath::pathTo(const SkPath& path) {
|
| - int i, vcount = path.fPathRef->countVerbs();
|
| - // exit early if the path is empty, or just has a moveTo.
|
| - if (vcount < 2) {
|
| - return;
|
| - }
|
| -
|
| - SkPathRef::Editor(&fPathRef, vcount, path.countPoints());
|
| -
|
| - fIsOval = false;
|
| -
|
| - const uint8_t* verbs = path.fPathRef->verbs();
|
| - // skip the initial moveTo
|
| - const SkPoint* pts = path.fPathRef->points() + 1;
|
| - const SkScalar* conicWeight = path.fPathRef->conicWeights();
|
| -
|
| - SkASSERT(verbs[~0] == kMove_Verb);
|
| - for (i = 1; i < vcount; i++) {
|
| - switch (verbs[~i]) {
|
| - case kLine_Verb:
|
| - this->lineTo(pts[0].fX, pts[0].fY);
|
| - break;
|
| - case kQuad_Verb:
|
| - this->quadTo(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY);
|
| - break;
|
| - case kConic_Verb:
|
| - this->conicTo(pts[0], pts[1], *conicWeight++);
|
| - break;
|
| - case kCubic_Verb:
|
| - this->cubicTo(pts[0].fX, pts[0].fY, pts[1].fX, pts[1].fY, pts[2].fX, pts[2].fY);
|
| - break;
|
| - case kClose_Verb:
|
| - return;
|
| - }
|
| - pts += pts_in_verb(verbs[~i]);
|
| - }
|
| -}
|
| -
|
| // ignore the last point of the 1st contour
|
| void SkPath::reversePathTo(const SkPath& path) {
|
| int i, vcount = path.fPathRef->countVerbs();
|
| @@ -1755,6 +1716,7 @@ void SkPath::transform(const SkMatrix& matrix, SkPath* dst) const {
|
| } else if (det2x2 > 0) {
|
| dst->fDirection = fDirection;
|
| } else {
|
| + dst->fConvexity = kUnknown_Convexity;
|
| dst->fDirection = kUnknown_Direction;
|
| }
|
| }
|
| @@ -2319,9 +2281,7 @@ static bool AlmostEqual(SkScalar compA, SkScalar compB) {
|
| if (!SkScalarIsFinite(compA) || !SkScalarIsFinite(compB)) {
|
| return false;
|
| }
|
| - if (sk_float_abs(compA) <= FLT_EPSILON && sk_float_abs(compB) <= FLT_EPSILON) {
|
| - return true;
|
| - }
|
| + // no need to check for small numbers because SkPath::Iter has removed degenerate values
|
| int aBits = SkFloatAs2sCompliment(compA);
|
| int bBits = SkFloatAs2sCompliment(compB);
|
| return aBits < bBits + epsilon && bBits < aBits + epsilon;
|
| @@ -2632,64 +2592,7 @@ static int find_min_max_x_at_y(const SkPoint pts[], int index, int n,
|
| }
|
|
|
| static void crossToDir(SkScalar cross, SkPath::Direction* dir) {
|
| - if (dir) {
|
| - *dir = cross > 0 ? SkPath::kCW_Direction : SkPath::kCCW_Direction;
|
| - }
|
| -}
|
| -
|
| -#if 0
|
| -#include "SkString.h"
|
| -#include "../utils/SkParsePath.h"
|
| -static void dumpPath(const SkPath& path) {
|
| - SkString str;
|
| - SkParsePath::ToSVGString(path, &str);
|
| - SkDebugf("%s\n", str.c_str());
|
| -}
|
| -#endif
|
| -
|
| -namespace {
|
| -// for use with convex_dir_test
|
| -double mul(double a, double b) { return a * b; }
|
| -SkScalar mul(SkScalar a, SkScalar b) { return SkScalarMul(a, b); }
|
| -double toDouble(SkScalar a) { return SkScalarToDouble(a); }
|
| -SkScalar toScalar(SkScalar a) { return a; }
|
| -
|
| -// determines the winding direction of a convex polygon with the precision
|
| -// of T. CAST_SCALAR casts an SkScalar to T.
|
| -template <typename T, T (CAST_SCALAR)(SkScalar)>
|
| -bool convex_dir_test(int n, const SkPoint pts[], SkPath::Direction* dir) {
|
| - // we find the first three points that form a non-degenerate
|
| - // triangle. If there are no such points then the path is
|
| - // degenerate. The first is always point 0. Now we find the second
|
| - // point.
|
| - int i = 0;
|
| - enum { kX = 0, kY = 1 };
|
| - T v0[2];
|
| - while (1) {
|
| - v0[kX] = CAST_SCALAR(pts[i].fX) - CAST_SCALAR(pts[0].fX);
|
| - v0[kY] = CAST_SCALAR(pts[i].fY) - CAST_SCALAR(pts[0].fY);
|
| - if (v0[kX] || v0[kY]) {
|
| - break;
|
| - }
|
| - if (++i == n - 1) {
|
| - return false;
|
| - }
|
| - }
|
| - // now find a third point that is not colinear with the first two
|
| - // points and check the orientation of the triangle (which will be
|
| - // the same as the orientation of the path).
|
| - for (++i; i < n; ++i) {
|
| - T v1[2];
|
| - v1[kX] = CAST_SCALAR(pts[i].fX) - CAST_SCALAR(pts[0].fX);
|
| - v1[kY] = CAST_SCALAR(pts[i].fY) - CAST_SCALAR(pts[0].fY);
|
| - T cross = mul(v0[kX], v1[kY]) - mul(v0[kY], v1[kX]);
|
| - if (0 != cross) {
|
| - *dir = cross > 0 ? SkPath::kCW_Direction : SkPath::kCCW_Direction;
|
| - return true;
|
| - }
|
| - }
|
| - return false;
|
| -}
|
| + *dir = cross > 0 ? SkPath::kCW_Direction : SkPath::kCCW_Direction;
|
| }
|
|
|
| /*
|
| @@ -2701,15 +2604,18 @@ bool convex_dir_test(int n, const SkPoint pts[], SkPath::Direction* dir) {
|
| * its cross product.
|
| */
|
| bool SkPath::cheapComputeDirection(Direction* dir) const {
|
| -// dumpPath(*this);
|
| - // don't want to pay the cost for computing this if it
|
| - // is unknown, so we don't call isConvex()
|
| -
|
| if (kUnknown_Direction != fDirection) {
|
| *dir = static_cast<Direction>(fDirection);
|
| return true;
|
| }
|
| - const Convexity conv = this->getConvexityOrUnknown();
|
| +
|
| + // don't want to pay the cost for computing this if it
|
| + // is unknown, so we don't call isConvex()
|
| + if (kConvex_Convexity == this->getConvexityOrUnknown()) {
|
| + SkASSERT(kUnknown_Direction == fDirection);
|
| + *dir = static_cast<Direction>(fDirection);
|
| + return false;
|
| + }
|
|
|
| ContourIter iter(*fPathRef.get());
|
|
|
| @@ -2725,73 +2631,57 @@ bool SkPath::cheapComputeDirection(Direction* dir) const {
|
|
|
| const SkPoint* pts = iter.pts();
|
| SkScalar cross = 0;
|
| - if (kConvex_Convexity == conv) {
|
| - // We try first at scalar precision, and then again at double
|
| - // precision. This is because the vectors computed between distant
|
| - // points may lose too much precision.
|
| - if (convex_dir_test<SkScalar, toScalar>(n, pts, dir)) {
|
| - fDirection = *dir;
|
| - return true;
|
| - }
|
| - if (convex_dir_test<double, toDouble>(n, pts, dir)) {
|
| - fDirection = *dir;
|
| - return true;
|
| - } else {
|
| - return false;
|
| + int index = find_max_y(pts, n);
|
| + if (pts[index].fY < ymax) {
|
| + continue;
|
| + }
|
| +
|
| + // If there is more than 1 distinct point at the y-max, we take the
|
| + // x-min and x-max of them and just subtract to compute the dir.
|
| + if (pts[(index + 1) % n].fY == pts[index].fY) {
|
| + int maxIndex;
|
| + int minIndex = find_min_max_x_at_y(pts, index, n, &maxIndex);
|
| + if (minIndex == maxIndex) {
|
| + goto TRY_CROSSPROD;
|
| }
|
| + SkASSERT(pts[minIndex].fY == pts[index].fY);
|
| + SkASSERT(pts[maxIndex].fY == pts[index].fY);
|
| + SkASSERT(pts[minIndex].fX <= pts[maxIndex].fX);
|
| + // we just subtract the indices, and let that auto-convert to
|
| + // SkScalar, since we just want - or + to signal the direction.
|
| + cross = minIndex - maxIndex;
|
| } else {
|
| - int index = find_max_y(pts, n);
|
| - if (pts[index].fY < ymax) {
|
| + TRY_CROSSPROD:
|
| + // Find a next and prev index to use for the cross-product test,
|
| + // but we try to find pts that form non-zero vectors from pts[index]
|
| + //
|
| + // Its possible that we can't find two non-degenerate vectors, so
|
| + // we have to guard our search (e.g. all the pts could be in the
|
| + // same place).
|
| +
|
| + // we pass n - 1 instead of -1 so we don't foul up % operator by
|
| + // passing it a negative LH argument.
|
| + int prev = find_diff_pt(pts, index, n, n - 1);
|
| + if (prev == index) {
|
| + // completely degenerate, skip to next contour
|
| continue;
|
| }
|
| -
|
| - // If there is more than 1 distinct point at the y-max, we take the
|
| - // x-min and x-max of them and just subtract to compute the dir.
|
| - if (pts[(index + 1) % n].fY == pts[index].fY) {
|
| - int maxIndex;
|
| - int minIndex = find_min_max_x_at_y(pts, index, n, &maxIndex);
|
| - if (minIndex == maxIndex) {
|
| - goto TRY_CROSSPROD;
|
| - }
|
| - SkASSERT(pts[minIndex].fY == pts[index].fY);
|
| - SkASSERT(pts[maxIndex].fY == pts[index].fY);
|
| - SkASSERT(pts[minIndex].fX <= pts[maxIndex].fX);
|
| - // we just subtract the indices, and let that auto-convert to
|
| - // SkScalar, since we just want - or + to signal the direction.
|
| - cross = minIndex - maxIndex;
|
| - } else {
|
| - TRY_CROSSPROD:
|
| - // Find a next and prev index to use for the cross-product test,
|
| - // but we try to find pts that form non-zero vectors from pts[index]
|
| - //
|
| - // Its possible that we can't find two non-degenerate vectors, so
|
| - // we have to guard our search (e.g. all the pts could be in the
|
| - // same place).
|
| -
|
| - // we pass n - 1 instead of -1 so we don't foul up % operator by
|
| - // passing it a negative LH argument.
|
| - int prev = find_diff_pt(pts, index, n, n - 1);
|
| - if (prev == index) {
|
| - // completely degenerate, skip to next contour
|
| - continue;
|
| - }
|
| - int next = find_diff_pt(pts, index, n, 1);
|
| - SkASSERT(next != index);
|
| - cross = cross_prod(pts[prev], pts[index], pts[next]);
|
| - // if we get a zero and the points are horizontal, then we look at the spread in
|
| - // x-direction. We really should continue to walk away from the degeneracy until
|
| - // there is a divergence.
|
| - if (0 == cross && pts[prev].fY == pts[index].fY && pts[next].fY == pts[index].fY) {
|
| - // construct the subtract so we get the correct Direction below
|
| - cross = pts[index].fX - pts[next].fX;
|
| - }
|
| + int next = find_diff_pt(pts, index, n, 1);
|
| + SkASSERT(next != index);
|
| + cross = cross_prod(pts[prev], pts[index], pts[next]);
|
| + // if we get a zero and the points are horizontal, then we look at the spread in
|
| + // x-direction. We really should continue to walk away from the degeneracy until
|
| + // there is a divergence.
|
| + if (0 == cross && pts[prev].fY == pts[index].fY && pts[next].fY == pts[index].fY) {
|
| + // construct the subtract so we get the correct Direction below
|
| + cross = pts[index].fX - pts[next].fX;
|
| }
|
| + }
|
|
|
| - if (cross) {
|
| - // record our best guess so far
|
| - ymax = pts[index].fY;
|
| - ymaxCross = cross;
|
| - }
|
| + if (cross) {
|
| + // record our best guess so far
|
| + ymax = pts[index].fY;
|
| + ymaxCross = cross;
|
| }
|
| }
|
| if (ymaxCross) {
|
| @@ -2803,259 +2693,3 @@ bool SkPath::cheapComputeDirection(Direction* dir) const {
|
| }
|
| }
|
|
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -static SkScalar eval_cubic_coeff(SkScalar A, SkScalar B, SkScalar C,
|
| - SkScalar D, SkScalar t) {
|
| - return SkScalarMulAdd(SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C), t, D);
|
| -}
|
| -
|
| -static SkScalar eval_cubic_pts(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
|
| - SkScalar t) {
|
| - SkScalar A = c3 + 3*(c1 - c2) - c0;
|
| - SkScalar B = 3*(c2 - c1 - c1 + c0);
|
| - SkScalar C = 3*(c1 - c0);
|
| - SkScalar D = c0;
|
| - return eval_cubic_coeff(A, B, C, D, t);
|
| -}
|
| -
|
| -/* Given 4 cubic points (either Xs or Ys), and a target X or Y, compute the
|
| - t value such that cubic(t) = target
|
| - */
|
| -static bool chopMonoCubicAt(SkScalar c0, SkScalar c1, SkScalar c2, SkScalar c3,
|
| - SkScalar target, SkScalar* t) {
|
| - // SkASSERT(c0 <= c1 && c1 <= c2 && c2 <= c3);
|
| - SkASSERT(c0 < target && target < c3);
|
| -
|
| - SkScalar D = c0 - target;
|
| - SkScalar A = c3 + 3*(c1 - c2) - c0;
|
| - SkScalar B = 3*(c2 - c1 - c1 + c0);
|
| - SkScalar C = 3*(c1 - c0);
|
| -
|
| - const SkScalar TOLERANCE = SK_Scalar1 / 4096;
|
| - SkScalar minT = 0;
|
| - SkScalar maxT = SK_Scalar1;
|
| - SkScalar mid;
|
| - int i;
|
| - for (i = 0; i < 16; i++) {
|
| - mid = SkScalarAve(minT, maxT);
|
| - SkScalar delta = eval_cubic_coeff(A, B, C, D, mid);
|
| - if (delta < 0) {
|
| - minT = mid;
|
| - delta = -delta;
|
| - } else {
|
| - maxT = mid;
|
| - }
|
| - if (delta < TOLERANCE) {
|
| - break;
|
| - }
|
| - }
|
| - *t = mid;
|
| - return true;
|
| -}
|
| -
|
| -template <size_t N> static void find_minmax(const SkPoint pts[],
|
| - SkScalar* minPtr, SkScalar* maxPtr) {
|
| - SkScalar min, max;
|
| - min = max = pts[0].fX;
|
| - for (size_t i = 1; i < N; ++i) {
|
| - min = SkMinScalar(min, pts[i].fX);
|
| - max = SkMaxScalar(max, pts[i].fX);
|
| - }
|
| - *minPtr = min;
|
| - *maxPtr = max;
|
| -}
|
| -
|
| -static int winding_mono_cubic(const SkPoint pts[], SkScalar x, SkScalar y) {
|
| - SkPoint storage[4];
|
| -
|
| - int dir = 1;
|
| - if (pts[0].fY > pts[3].fY) {
|
| - storage[0] = pts[3];
|
| - storage[1] = pts[2];
|
| - storage[2] = pts[1];
|
| - storage[3] = pts[0];
|
| - pts = storage;
|
| - dir = -1;
|
| - }
|
| - if (y < pts[0].fY || y >= pts[3].fY) {
|
| - return 0;
|
| - }
|
| -
|
| - // quickreject or quickaccept
|
| - SkScalar min, max;
|
| - find_minmax<4>(pts, &min, &max);
|
| - if (x < min) {
|
| - return 0;
|
| - }
|
| - if (x > max) {
|
| - return dir;
|
| - }
|
| -
|
| - // compute the actual x(t) value
|
| - SkScalar t, xt;
|
| - if (chopMonoCubicAt(pts[0].fY, pts[1].fY, pts[2].fY, pts[3].fY, y, &t)) {
|
| - xt = eval_cubic_pts(pts[0].fX, pts[1].fX, pts[2].fX, pts[3].fX, t);
|
| - } else {
|
| - SkScalar mid = SkScalarAve(pts[0].fY, pts[3].fY);
|
| - xt = y < mid ? pts[0].fX : pts[3].fX;
|
| - }
|
| - return xt < x ? dir : 0;
|
| -}
|
| -
|
| -static int winding_cubic(const SkPoint pts[], SkScalar x, SkScalar y) {
|
| - SkPoint dst[10];
|
| - int n = SkChopCubicAtYExtrema(pts, dst);
|
| - int w = 0;
|
| - for (int i = 0; i <= n; ++i) {
|
| - w += winding_mono_cubic(&dst[i * 3], x, y);
|
| - }
|
| - return w;
|
| -}
|
| -
|
| -static int winding_mono_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
|
| - SkScalar y0 = pts[0].fY;
|
| - SkScalar y2 = pts[2].fY;
|
| -
|
| - int dir = 1;
|
| - if (y0 > y2) {
|
| - SkTSwap(y0, y2);
|
| - dir = -1;
|
| - }
|
| - if (y < y0 || y >= y2) {
|
| - return 0;
|
| - }
|
| -
|
| - // bounds check on X (not required. is it faster?)
|
| -#if 0
|
| - if (pts[0].fX > x && pts[1].fX > x && pts[2].fX > x) {
|
| - return 0;
|
| - }
|
| -#endif
|
| -
|
| - SkScalar roots[2];
|
| - int n = SkFindUnitQuadRoots(pts[0].fY - 2 * pts[1].fY + pts[2].fY,
|
| - 2 * (pts[1].fY - pts[0].fY),
|
| - pts[0].fY - y,
|
| - roots);
|
| - SkASSERT(n <= 1);
|
| - SkScalar xt;
|
| - if (0 == n) {
|
| - SkScalar mid = SkScalarAve(y0, y2);
|
| - // Need [0] and [2] if dir == 1
|
| - // and [2] and [0] if dir == -1
|
| - xt = y < mid ? pts[1 - dir].fX : pts[dir - 1].fX;
|
| - } else {
|
| - SkScalar t = roots[0];
|
| - SkScalar C = pts[0].fX;
|
| - SkScalar A = pts[2].fX - 2 * pts[1].fX + C;
|
| - SkScalar B = 2 * (pts[1].fX - C);
|
| - xt = SkScalarMulAdd(SkScalarMulAdd(A, t, B), t, C);
|
| - }
|
| - return xt < x ? dir : 0;
|
| -}
|
| -
|
| -static bool is_mono_quad(SkScalar y0, SkScalar y1, SkScalar y2) {
|
| - // return SkScalarSignAsInt(y0 - y1) + SkScalarSignAsInt(y1 - y2) != 0;
|
| - if (y0 == y1) {
|
| - return true;
|
| - }
|
| - if (y0 < y1) {
|
| - return y1 <= y2;
|
| - } else {
|
| - return y1 >= y2;
|
| - }
|
| -}
|
| -
|
| -static int winding_quad(const SkPoint pts[], SkScalar x, SkScalar y) {
|
| - SkPoint dst[5];
|
| - int n = 0;
|
| -
|
| - if (!is_mono_quad(pts[0].fY, pts[1].fY, pts[2].fY)) {
|
| - n = SkChopQuadAtYExtrema(pts, dst);
|
| - pts = dst;
|
| - }
|
| - int w = winding_mono_quad(pts, x, y);
|
| - if (n > 0) {
|
| - w += winding_mono_quad(&pts[2], x, y);
|
| - }
|
| - return w;
|
| -}
|
| -
|
| -static int winding_line(const SkPoint pts[], SkScalar x, SkScalar y) {
|
| - SkScalar x0 = pts[0].fX;
|
| - SkScalar y0 = pts[0].fY;
|
| - SkScalar x1 = pts[1].fX;
|
| - SkScalar y1 = pts[1].fY;
|
| -
|
| - SkScalar dy = y1 - y0;
|
| -
|
| - int dir = 1;
|
| - if (y0 > y1) {
|
| - SkTSwap(y0, y1);
|
| - dir = -1;
|
| - }
|
| - if (y < y0 || y >= y1) {
|
| - return 0;
|
| - }
|
| -
|
| - SkScalar cross = SkScalarMul(x1 - x0, y - pts[0].fY) -
|
| - SkScalarMul(dy, x - pts[0].fX);
|
| -
|
| - if (SkScalarSignAsInt(cross) == dir) {
|
| - dir = 0;
|
| - }
|
| - return dir;
|
| -}
|
| -
|
| -static bool contains_inclusive(const SkRect& r, SkScalar x, SkScalar y) {
|
| - return r.fLeft <= x && x <= r.fRight && r.fTop <= y && y <= r.fBottom;
|
| -}
|
| -
|
| -bool SkPath::contains(SkScalar x, SkScalar y) const {
|
| - bool isInverse = this->isInverseFillType();
|
| - if (this->isEmpty()) {
|
| - return isInverse;
|
| - }
|
| -
|
| - if (!contains_inclusive(this->getBounds(), x, y)) {
|
| - return isInverse;
|
| - }
|
| -
|
| - SkPath::Iter iter(*this, true);
|
| - bool done = false;
|
| - int w = 0;
|
| - do {
|
| - SkPoint pts[4];
|
| - switch (iter.next(pts, false)) {
|
| - case SkPath::kMove_Verb:
|
| - case SkPath::kClose_Verb:
|
| - break;
|
| - case SkPath::kLine_Verb:
|
| - w += winding_line(pts, x, y);
|
| - break;
|
| - case SkPath::kQuad_Verb:
|
| - w += winding_quad(pts, x, y);
|
| - break;
|
| - case SkPath::kConic_Verb:
|
| - SkASSERT(0);
|
| - break;
|
| - case SkPath::kCubic_Verb:
|
| - w += winding_cubic(pts, x, y);
|
| - break;
|
| - case SkPath::kDone_Verb:
|
| - done = true;
|
| - break;
|
| - }
|
| - } while (!done);
|
| -
|
| - switch (this->getFillType()) {
|
| - case SkPath::kEvenOdd_FillType:
|
| - case SkPath::kInverseEvenOdd_FillType:
|
| - w &= 1;
|
| - break;
|
| - default:
|
| - break;
|
| - }
|
| - return SkToBool(w);
|
| -}
|
|
|