Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(1006)

Unified Diff: src/runtime/runtime-numbers.cc

Issue 598913004: Split more runtime functions into seperate files. (Closed) Base URL: https://v8.googlecode.com/svn/branches/bleeding_edge
Patch Set: Created 6 years, 3 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « src/runtime/runtime-maths.cc ('k') | src/runtime/runtime-strings.cc » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/runtime/runtime-numbers.cc
diff --git a/src/runtime/runtime-numbers.cc b/src/runtime/runtime-numbers.cc
new file mode 100644
index 0000000000000000000000000000000000000000..3286aa6f131a5047474093cf8d62d1d3e0012848
--- /dev/null
+++ b/src/runtime/runtime-numbers.cc
@@ -0,0 +1,565 @@
+// Copyright 2014 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/v8.h"
+
+#include "src/arguments.h"
+#include "src/codegen.h"
+#include "src/misc-intrinsics.h"
+#include "src/runtime/runtime.h"
+#include "src/runtime/runtime-utils.h"
+
+
+#ifndef _STLP_VENDOR_CSTD
+// STLPort doesn't import fpclassify and isless into the std namespace.
+using std::fpclassify;
+using std::isless;
+#endif
+
+namespace v8 {
+namespace internal {
+
+RUNTIME_FUNCTION(Runtime_NumberToRadixString) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_SMI_ARG_CHECKED(radix, 1);
+ RUNTIME_ASSERT(2 <= radix && radix <= 36);
+
+ // Fast case where the result is a one character string.
+ if (args[0]->IsSmi()) {
+ int value = args.smi_at(0);
+ if (value >= 0 && value < radix) {
+ // Character array used for conversion.
+ static const char kCharTable[] = "0123456789abcdefghijklmnopqrstuvwxyz";
+ return *isolate->factory()->LookupSingleCharacterStringFromCode(
+ kCharTable[value]);
+ }
+ }
+
+ // Slow case.
+ CONVERT_DOUBLE_ARG_CHECKED(value, 0);
+ if (std::isnan(value)) {
+ return isolate->heap()->nan_string();
+ }
+ if (std::isinf(value)) {
+ if (value < 0) {
+ return isolate->heap()->minus_infinity_string();
+ }
+ return isolate->heap()->infinity_string();
+ }
+ char* str = DoubleToRadixCString(value, radix);
+ Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
+ DeleteArray(str);
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToFixed) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_DOUBLE_ARG_CHECKED(value, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
+ int f = FastD2IChecked(f_number);
+ // See DoubleToFixedCString for these constants:
+ RUNTIME_ASSERT(f >= 0 && f <= 20);
+ RUNTIME_ASSERT(!Double(value).IsSpecial());
+ char* str = DoubleToFixedCString(value, f);
+ Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
+ DeleteArray(str);
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToExponential) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_DOUBLE_ARG_CHECKED(value, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
+ int f = FastD2IChecked(f_number);
+ RUNTIME_ASSERT(f >= -1 && f <= 20);
+ RUNTIME_ASSERT(!Double(value).IsSpecial());
+ char* str = DoubleToExponentialCString(value, f);
+ Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
+ DeleteArray(str);
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToPrecision) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_DOUBLE_ARG_CHECKED(value, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(f_number, 1);
+ int f = FastD2IChecked(f_number);
+ RUNTIME_ASSERT(f >= 1 && f <= 21);
+ RUNTIME_ASSERT(!Double(value).IsSpecial());
+ char* str = DoubleToPrecisionCString(value, f);
+ Handle<String> result = isolate->factory()->NewStringFromAsciiChecked(str);
+ DeleteArray(str);
+ return *result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_IsValidSmi) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_NUMBER_CHECKED(int32_t, number, Int32, args[0]);
+ return isolate->heap()->ToBoolean(Smi::IsValid(number));
+}
+
+
+static bool AreDigits(const uint8_t* s, int from, int to) {
+ for (int i = from; i < to; i++) {
+ if (s[i] < '0' || s[i] > '9') return false;
+ }
+
+ return true;
+}
+
+
+static int ParseDecimalInteger(const uint8_t* s, int from, int to) {
+ DCHECK(to - from < 10); // Overflow is not possible.
+ DCHECK(from < to);
+ int d = s[from] - '0';
+
+ for (int i = from + 1; i < to; i++) {
+ d = 10 * d + (s[i] - '0');
+ }
+
+ return d;
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringToNumber) {
+ HandleScope handle_scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+ subject = String::Flatten(subject);
+
+ // Fast case: short integer or some sorts of junk values.
+ if (subject->IsSeqOneByteString()) {
+ int len = subject->length();
+ if (len == 0) return Smi::FromInt(0);
+
+ DisallowHeapAllocation no_gc;
+ uint8_t const* data = Handle<SeqOneByteString>::cast(subject)->GetChars();
+ bool minus = (data[0] == '-');
+ int start_pos = (minus ? 1 : 0);
+
+ if (start_pos == len) {
+ return isolate->heap()->nan_value();
+ } else if (data[start_pos] > '9') {
+ // Fast check for a junk value. A valid string may start from a
+ // whitespace, a sign ('+' or '-'), the decimal point, a decimal digit
+ // or the 'I' character ('Infinity'). All of that have codes not greater
+ // than '9' except 'I' and &nbsp;.
+ if (data[start_pos] != 'I' && data[start_pos] != 0xa0) {
+ return isolate->heap()->nan_value();
+ }
+ } else if (len - start_pos < 10 && AreDigits(data, start_pos, len)) {
+ // The maximal/minimal smi has 10 digits. If the string has less digits
+ // we know it will fit into the smi-data type.
+ int d = ParseDecimalInteger(data, start_pos, len);
+ if (minus) {
+ if (d == 0) return isolate->heap()->minus_zero_value();
+ d = -d;
+ } else if (!subject->HasHashCode() && len <= String::kMaxArrayIndexSize &&
+ (len == 1 || data[0] != '0')) {
+ // String hash is not calculated yet but all the data are present.
+ // Update the hash field to speed up sequential convertions.
+ uint32_t hash = StringHasher::MakeArrayIndexHash(d, len);
+#ifdef DEBUG
+ subject->Hash(); // Force hash calculation.
+ DCHECK_EQ(static_cast<int>(subject->hash_field()),
+ static_cast<int>(hash));
+#endif
+ subject->set_hash_field(hash);
+ }
+ return Smi::FromInt(d);
+ }
+ }
+
+ // Slower case.
+ int flags = ALLOW_HEX;
+ if (FLAG_harmony_numeric_literals) {
+ // The current spec draft has not updated "ToNumber Applied to the String
+ // Type", https://bugs.ecmascript.org/show_bug.cgi?id=1584
+ flags |= ALLOW_OCTAL | ALLOW_BINARY;
+ }
+
+ return *isolate->factory()->NewNumber(
+ StringToDouble(isolate->unicode_cache(), *subject, flags));
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringParseInt) {
+ HandleScope handle_scope(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+ CONVERT_NUMBER_CHECKED(int, radix, Int32, args[1]);
+ RUNTIME_ASSERT(radix == 0 || (2 <= radix && radix <= 36));
+
+ subject = String::Flatten(subject);
+ double value;
+
+ {
+ DisallowHeapAllocation no_gc;
+ String::FlatContent flat = subject->GetFlatContent();
+
+ // ECMA-262 section 15.1.2.3, empty string is NaN
+ if (flat.IsOneByte()) {
+ value =
+ StringToInt(isolate->unicode_cache(), flat.ToOneByteVector(), radix);
+ } else {
+ value = StringToInt(isolate->unicode_cache(), flat.ToUC16Vector(), radix);
+ }
+ }
+
+ return *isolate->factory()->NewNumber(value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_StringParseFloat) {
+ HandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_HANDLE_CHECKED(String, subject, 0);
+
+ subject = String::Flatten(subject);
+ double value = StringToDouble(isolate->unicode_cache(), *subject,
+ ALLOW_TRAILING_JUNK, base::OS::nan_value());
+
+ return *isolate->factory()->NewNumber(value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToStringRT) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
+
+ return *isolate->factory()->NumberToString(number);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToStringSkipCache) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_NUMBER_ARG_HANDLE_CHECKED(number, 0);
+
+ return *isolate->factory()->NumberToString(number, false);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToInteger) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_DOUBLE_ARG_CHECKED(number, 0);
+ return *isolate->factory()->NewNumber(DoubleToInteger(number));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToIntegerMapMinusZero) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_DOUBLE_ARG_CHECKED(number, 0);
+ double double_value = DoubleToInteger(number);
+ // Map both -0 and +0 to +0.
+ if (double_value == 0) double_value = 0;
+
+ return *isolate->factory()->NewNumber(double_value);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToJSUint32) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_NUMBER_CHECKED(int32_t, number, Uint32, args[0]);
+ return *isolate->factory()->NewNumberFromUint(number);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberToJSInt32) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_DOUBLE_ARG_CHECKED(number, 0);
+ return *isolate->factory()->NewNumberFromInt(DoubleToInt32(number));
+}
+
+
+// Converts a Number to a Smi, if possible. Returns NaN if the number is not
+// a small integer.
+RUNTIME_FUNCTION(Runtime_NumberToSmi) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 1);
+ CONVERT_ARG_CHECKED(Object, obj, 0);
+ if (obj->IsSmi()) {
+ return obj;
+ }
+ if (obj->IsHeapNumber()) {
+ double value = HeapNumber::cast(obj)->value();
+ int int_value = FastD2I(value);
+ if (value == FastI2D(int_value) && Smi::IsValid(int_value)) {
+ return Smi::FromInt(int_value);
+ }
+ }
+ return isolate->heap()->nan_value();
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberAdd) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ return *isolate->factory()->NewNumber(x + y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberSub) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ return *isolate->factory()->NewNumber(x - y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberMul) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ return *isolate->factory()->NewNumber(x * y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberUnaryMinus) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 1);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ return *isolate->factory()->NewNumber(-x);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberDiv) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ return *isolate->factory()->NewNumber(x / y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberMod) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ return *isolate->factory()->NewNumber(modulo(x, y));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberImul) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ // We rely on implementation-defined behavior below, but at least not on
+ // undefined behavior.
+ CONVERT_NUMBER_CHECKED(uint32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(uint32_t, y, Int32, args[1]);
+ int32_t product = static_cast<int32_t>(x * y);
+ return *isolate->factory()->NewNumberFromInt(product);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberOr) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return *isolate->factory()->NewNumberFromInt(x | y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberAnd) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return *isolate->factory()->NewNumberFromInt(x & y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberXor) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return *isolate->factory()->NewNumberFromInt(x ^ y);
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberShl) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return *isolate->factory()->NewNumberFromInt(x << (y & 0x1f));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberShr) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(uint32_t, x, Uint32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return *isolate->factory()->NewNumberFromUint(x >> (y & 0x1f));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberSar) {
+ HandleScope scope(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_NUMBER_CHECKED(int32_t, x, Int32, args[0]);
+ CONVERT_NUMBER_CHECKED(int32_t, y, Int32, args[1]);
+ return *isolate->factory()->NewNumberFromInt(
+ ArithmeticShiftRight(x, y & 0x1f));
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberEquals) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ if (std::isnan(x)) return Smi::FromInt(NOT_EQUAL);
+ if (std::isnan(y)) return Smi::FromInt(NOT_EQUAL);
+ if (x == y) return Smi::FromInt(EQUAL);
+ Object* result;
+ if ((fpclassify(x) == FP_ZERO) && (fpclassify(y) == FP_ZERO)) {
+ result = Smi::FromInt(EQUAL);
+ } else {
+ result = Smi::FromInt(NOT_EQUAL);
+ }
+ return result;
+}
+
+
+RUNTIME_FUNCTION(Runtime_NumberCompare) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 3);
+
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0);
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1);
+ CONVERT_ARG_HANDLE_CHECKED(Object, uncomparable_result, 2)
+ if (std::isnan(x) || std::isnan(y)) return *uncomparable_result;
+ if (x == y) return Smi::FromInt(EQUAL);
+ if (isless(x, y)) return Smi::FromInt(LESS);
+ return Smi::FromInt(GREATER);
+}
+
+
+// Compare two Smis as if they were converted to strings and then
+// compared lexicographically.
+RUNTIME_FUNCTION(Runtime_SmiLexicographicCompare) {
+ SealHandleScope shs(isolate);
+ DCHECK(args.length() == 2);
+ CONVERT_SMI_ARG_CHECKED(x_value, 0);
+ CONVERT_SMI_ARG_CHECKED(y_value, 1);
+
+ // If the integers are equal so are the string representations.
+ if (x_value == y_value) return Smi::FromInt(EQUAL);
+
+ // If one of the integers is zero the normal integer order is the
+ // same as the lexicographic order of the string representations.
+ if (x_value == 0 || y_value == 0)
+ return Smi::FromInt(x_value < y_value ? LESS : GREATER);
+
+ // If only one of the integers is negative the negative number is
+ // smallest because the char code of '-' is less than the char code
+ // of any digit. Otherwise, we make both values positive.
+
+ // Use unsigned values otherwise the logic is incorrect for -MIN_INT on
+ // architectures using 32-bit Smis.
+ uint32_t x_scaled = x_value;
+ uint32_t y_scaled = y_value;
+ if (x_value < 0 || y_value < 0) {
+ if (y_value >= 0) return Smi::FromInt(LESS);
+ if (x_value >= 0) return Smi::FromInt(GREATER);
+ x_scaled = -x_value;
+ y_scaled = -y_value;
+ }
+
+ static const uint32_t kPowersOf10[] = {
+ 1, 10, 100, 1000,
+ 10 * 1000, 100 * 1000, 1000 * 1000, 10 * 1000 * 1000,
+ 100 * 1000 * 1000, 1000 * 1000 * 1000};
+
+ // If the integers have the same number of decimal digits they can be
+ // compared directly as the numeric order is the same as the
+ // lexicographic order. If one integer has fewer digits, it is scaled
+ // by some power of 10 to have the same number of digits as the longer
+ // integer. If the scaled integers are equal it means the shorter
+ // integer comes first in the lexicographic order.
+
+ // From http://graphics.stanford.edu/~seander/bithacks.html#IntegerLog10
+ int x_log2 = IntegerLog2(x_scaled);
+ int x_log10 = ((x_log2 + 1) * 1233) >> 12;
+ x_log10 -= x_scaled < kPowersOf10[x_log10];
+
+ int y_log2 = IntegerLog2(y_scaled);
+ int y_log10 = ((y_log2 + 1) * 1233) >> 12;
+ y_log10 -= y_scaled < kPowersOf10[y_log10];
+
+ int tie = EQUAL;
+
+ if (x_log10 < y_log10) {
+ // X has fewer digits. We would like to simply scale up X but that
+ // might overflow, e.g when comparing 9 with 1_000_000_000, 9 would
+ // be scaled up to 9_000_000_000. So we scale up by the next
+ // smallest power and scale down Y to drop one digit. It is OK to
+ // drop one digit from the longer integer since the final digit is
+ // past the length of the shorter integer.
+ x_scaled *= kPowersOf10[y_log10 - x_log10 - 1];
+ y_scaled /= 10;
+ tie = LESS;
+ } else if (y_log10 < x_log10) {
+ y_scaled *= kPowersOf10[x_log10 - y_log10 - 1];
+ x_scaled /= 10;
+ tie = GREATER;
+ }
+
+ if (x_scaled < y_scaled) return Smi::FromInt(LESS);
+ if (x_scaled > y_scaled) return Smi::FromInt(GREATER);
+ return Smi::FromInt(tie);
+}
+
+
+RUNTIME_FUNCTION(RuntimeReference_NumberToString) {
+ SealHandleScope shs(isolate);
+ return __RT_impl_Runtime_NumberToStringRT(args, isolate);
+}
+}
+} // namespace v8::internal
« no previous file with comments | « src/runtime/runtime-maths.cc ('k') | src/runtime/runtime-strings.cc » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698