Index: src/runtime/runtime-maths.cc |
diff --git a/src/runtime/runtime-maths.cc b/src/runtime/runtime-maths.cc |
new file mode 100644 |
index 0000000000000000000000000000000000000000..16acb390f22448957da0080bf21b53e8d2457517 |
--- /dev/null |
+++ b/src/runtime/runtime-maths.cc |
@@ -0,0 +1,247 @@ |
+// Copyright 2014 the V8 project authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
+ |
+#include "src/v8.h" |
+ |
+#include "src/arguments.h" |
+#include "src/assembler.h" |
+#include "src/codegen.h" |
+#include "src/runtime/runtime.h" |
+#include "src/runtime/runtime-utils.h" |
+#include "third_party/fdlibm/fdlibm.h" |
+ |
+ |
+namespace v8 { |
+namespace internal { |
+ |
+#define RUNTIME_UNARY_MATH(Name, name) \ |
+ RUNTIME_FUNCTION(Runtime_Math##Name) { \ |
+ HandleScope scope(isolate); \ |
+ DCHECK(args.length() == 1); \ |
+ isolate->counters()->math_##name()->Increment(); \ |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); \ |
+ return *isolate->factory()->NewHeapNumber(std::name(x)); \ |
+ } |
+ |
+RUNTIME_UNARY_MATH(Acos, acos) |
+RUNTIME_UNARY_MATH(Asin, asin) |
+RUNTIME_UNARY_MATH(Atan, atan) |
+RUNTIME_UNARY_MATH(LogRT, log) |
+#undef RUNTIME_UNARY_MATH |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_DoubleHi) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 1); |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ uint64_t integer = double_to_uint64(x); |
+ integer = (integer >> 32) & 0xFFFFFFFFu; |
+ return *isolate->factory()->NewNumber(static_cast<int32_t>(integer)); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_DoubleLo) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 1); |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ return *isolate->factory()->NewNumber( |
+ static_cast<int32_t>(double_to_uint64(x) & 0xFFFFFFFFu)); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_ConstructDouble) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 2); |
+ CONVERT_NUMBER_CHECKED(uint32_t, hi, Uint32, args[0]); |
+ CONVERT_NUMBER_CHECKED(uint32_t, lo, Uint32, args[1]); |
+ uint64_t result = (static_cast<uint64_t>(hi) << 32) | lo; |
+ return *isolate->factory()->NewNumber(uint64_to_double(result)); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_RemPiO2) { |
+ HandleScope handle_scope(isolate); |
+ DCHECK(args.length() == 1); |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ Factory* factory = isolate->factory(); |
+ double y[2]; |
+ int n = fdlibm::rempio2(x, y); |
+ Handle<FixedArray> array = factory->NewFixedArray(3); |
+ Handle<HeapNumber> y0 = factory->NewHeapNumber(y[0]); |
+ Handle<HeapNumber> y1 = factory->NewHeapNumber(y[1]); |
+ array->set(0, Smi::FromInt(n)); |
+ array->set(1, *y0); |
+ array->set(2, *y1); |
+ return *factory->NewJSArrayWithElements(array); |
+} |
+ |
+ |
+static const double kPiDividedBy4 = 0.78539816339744830962; |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_MathAtan2) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 2); |
+ isolate->counters()->math_atan2()->Increment(); |
+ |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
+ double result; |
+ if (std::isinf(x) && std::isinf(y)) { |
+ // Make sure that the result in case of two infinite arguments |
+ // is a multiple of Pi / 4. The sign of the result is determined |
+ // by the first argument (x) and the sign of the second argument |
+ // determines the multiplier: one or three. |
+ int multiplier = (x < 0) ? -1 : 1; |
+ if (y < 0) multiplier *= 3; |
+ result = multiplier * kPiDividedBy4; |
+ } else { |
+ result = std::atan2(x, y); |
+ } |
+ return *isolate->factory()->NewNumber(result); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_MathExpRT) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 1); |
+ isolate->counters()->math_exp()->Increment(); |
+ |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ lazily_initialize_fast_exp(); |
+ return *isolate->factory()->NewNumber(fast_exp(x)); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_MathFloorRT) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 1); |
+ isolate->counters()->math_floor()->Increment(); |
+ |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ return *isolate->factory()->NewNumber(Floor(x)); |
+} |
+ |
+ |
+// Slow version of Math.pow. We check for fast paths for special cases. |
+// Used if VFP3 is not available. |
+RUNTIME_FUNCTION(Runtime_MathPowSlow) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 2); |
+ isolate->counters()->math_pow()->Increment(); |
+ |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ |
+ // If the second argument is a smi, it is much faster to call the |
+ // custom powi() function than the generic pow(). |
+ if (args[1]->IsSmi()) { |
+ int y = args.smi_at(1); |
+ return *isolate->factory()->NewNumber(power_double_int(x, y)); |
+ } |
+ |
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
+ double result = power_helper(x, y); |
+ if (std::isnan(result)) return isolate->heap()->nan_value(); |
+ return *isolate->factory()->NewNumber(result); |
+} |
+ |
+ |
+// Fast version of Math.pow if we know that y is not an integer and y is not |
+// -0.5 or 0.5. Used as slow case from full codegen. |
+RUNTIME_FUNCTION(Runtime_MathPowRT) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 2); |
+ isolate->counters()->math_pow()->Increment(); |
+ |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ CONVERT_DOUBLE_ARG_CHECKED(y, 1); |
+ if (y == 0) { |
+ return Smi::FromInt(1); |
+ } else { |
+ double result = power_double_double(x, y); |
+ if (std::isnan(result)) return isolate->heap()->nan_value(); |
+ return *isolate->factory()->NewNumber(result); |
+ } |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_RoundNumber) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 1); |
+ CONVERT_NUMBER_ARG_HANDLE_CHECKED(input, 0); |
+ isolate->counters()->math_round()->Increment(); |
+ |
+ if (!input->IsHeapNumber()) { |
+ DCHECK(input->IsSmi()); |
+ return *input; |
+ } |
+ |
+ Handle<HeapNumber> number = Handle<HeapNumber>::cast(input); |
+ |
+ double value = number->value(); |
+ int exponent = number->get_exponent(); |
+ int sign = number->get_sign(); |
+ |
+ if (exponent < -1) { |
+ // Number in range ]-0.5..0.5[. These always round to +/-zero. |
+ if (sign) return isolate->heap()->minus_zero_value(); |
+ return Smi::FromInt(0); |
+ } |
+ |
+ // We compare with kSmiValueSize - 2 because (2^30 - 0.1) has exponent 29 and |
+ // should be rounded to 2^30, which is not smi (for 31-bit smis, similar |
+ // argument holds for 32-bit smis). |
+ if (!sign && exponent < kSmiValueSize - 2) { |
+ return Smi::FromInt(static_cast<int>(value + 0.5)); |
+ } |
+ |
+ // If the magnitude is big enough, there's no place for fraction part. If we |
+ // try to add 0.5 to this number, 1.0 will be added instead. |
+ if (exponent >= 52) { |
+ return *number; |
+ } |
+ |
+ if (sign && value >= -0.5) return isolate->heap()->minus_zero_value(); |
+ |
+ // Do not call NumberFromDouble() to avoid extra checks. |
+ return *isolate->factory()->NewNumber(Floor(value + 0.5)); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_MathSqrtRT) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 1); |
+ isolate->counters()->math_sqrt()->Increment(); |
+ |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ return *isolate->factory()->NewNumber(fast_sqrt(x)); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(Runtime_MathFround) { |
+ HandleScope scope(isolate); |
+ DCHECK(args.length() == 1); |
+ |
+ CONVERT_DOUBLE_ARG_CHECKED(x, 0); |
+ float xf = DoubleToFloat32(x); |
+ return *isolate->factory()->NewNumber(xf); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_MathPow) { |
+ SealHandleScope shs(isolate); |
+ return __RT_impl_Runtime_MathPowSlow(args, isolate); |
+} |
+ |
+ |
+RUNTIME_FUNCTION(RuntimeReference_IsMinusZero) { |
+ SealHandleScope shs(isolate); |
+ DCHECK(args.length() == 1); |
+ CONVERT_ARG_CHECKED(Object, obj, 0); |
+ if (!obj->IsHeapNumber()) return isolate->heap()->false_value(); |
+ HeapNumber* number = HeapNumber::cast(obj); |
+ return isolate->heap()->ToBoolean(IsMinusZero(number->value())); |
+} |
+} |
+} // namespace v8::internal |