OLD | NEW |
---|---|
1 // Copyright 2012 the V8 project authors. All rights reserved. | 1 // Copyright 2012 the V8 project authors. All rights reserved. |
danno
2014/10/20 08:28:43
Here and elsewhere, please change the year to 2014
andrew_low
2014/11/07 18:03:17
Done.
| |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
5 #include "src/v8.h" | 5 #include "src/v8.h" |
6 | 6 |
7 #if V8_TARGET_ARCH_ARM | 7 #if V8_TARGET_ARCH_PPC |
8 | 8 |
9 #include "src/base/bits.h" | 9 #include "src/base/bits.h" |
10 #include "src/bootstrapper.h" | 10 #include "src/bootstrapper.h" |
11 #include "src/code-stubs.h" | 11 #include "src/code-stubs.h" |
12 #include "src/codegen.h" | 12 #include "src/codegen.h" |
13 #include "src/ic/handler-compiler.h" | 13 #include "src/ic/handler-compiler.h" |
14 #include "src/ic/ic.h" | 14 #include "src/ic/ic.h" |
15 #include "src/isolate.h" | 15 #include "src/isolate.h" |
16 #include "src/jsregexp.h" | 16 #include "src/jsregexp.h" |
17 #include "src/regexp-macro-assembler.h" | 17 #include "src/regexp-macro-assembler.h" |
18 #include "src/runtime.h" | 18 #include "src/runtime/runtime.h" |
19 | 19 |
20 namespace v8 { | 20 namespace v8 { |
21 namespace internal { | 21 namespace internal { |
22 | 22 |
23 | 23 |
24 static void InitializeArrayConstructorDescriptor( | 24 static void InitializeArrayConstructorDescriptor( |
25 Isolate* isolate, CodeStubDescriptor* descriptor, | 25 Isolate* isolate, CodeStubDescriptor* descriptor, |
26 int constant_stack_parameter_count) { | 26 int constant_stack_parameter_count) { |
27 Address deopt_handler = Runtime::FunctionForId( | 27 Address deopt_handler = |
28 Runtime::kArrayConstructor)->entry; | 28 Runtime::FunctionForId(Runtime::kArrayConstructor)->entry; |
29 | 29 |
30 if (constant_stack_parameter_count == 0) { | 30 if (constant_stack_parameter_count == 0) { |
31 descriptor->Initialize(deopt_handler, constant_stack_parameter_count, | 31 descriptor->Initialize(deopt_handler, constant_stack_parameter_count, |
32 JS_FUNCTION_STUB_MODE); | 32 JS_FUNCTION_STUB_MODE); |
33 } else { | 33 } else { |
34 descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count, | 34 descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count, |
35 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); | 35 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); |
36 } | 36 } |
37 } | 37 } |
38 | 38 |
39 | 39 |
40 static void InitializeInternalArrayConstructorDescriptor( | 40 static void InitializeInternalArrayConstructorDescriptor( |
41 Isolate* isolate, CodeStubDescriptor* descriptor, | 41 Isolate* isolate, CodeStubDescriptor* descriptor, |
42 int constant_stack_parameter_count) { | 42 int constant_stack_parameter_count) { |
43 Address deopt_handler = Runtime::FunctionForId( | 43 Address deopt_handler = |
44 Runtime::kInternalArrayConstructor)->entry; | 44 Runtime::FunctionForId(Runtime::kInternalArrayConstructor)->entry; |
45 | 45 |
46 if (constant_stack_parameter_count == 0) { | 46 if (constant_stack_parameter_count == 0) { |
47 descriptor->Initialize(deopt_handler, constant_stack_parameter_count, | 47 descriptor->Initialize(deopt_handler, constant_stack_parameter_count, |
48 JS_FUNCTION_STUB_MODE); | 48 JS_FUNCTION_STUB_MODE); |
49 } else { | 49 } else { |
50 descriptor->Initialize(r0, deopt_handler, constant_stack_parameter_count, | 50 descriptor->Initialize(r3, deopt_handler, constant_stack_parameter_count, |
51 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); | 51 JS_FUNCTION_STUB_MODE, PASS_ARGUMENTS); |
52 } | 52 } |
53 } | 53 } |
54 | 54 |
55 | 55 |
56 void ArrayNoArgumentConstructorStub::InitializeDescriptor( | 56 void ArrayNoArgumentConstructorStub::InitializeDescriptor( |
57 CodeStubDescriptor* descriptor) { | 57 CodeStubDescriptor* descriptor) { |
58 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0); | 58 InitializeArrayConstructorDescriptor(isolate(), descriptor, 0); |
59 } | 59 } |
60 | 60 |
(...skipping 24 matching lines...) Expand all Loading... | |
85 | 85 |
86 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor( | 86 void InternalArrayNArgumentsConstructorStub::InitializeDescriptor( |
87 CodeStubDescriptor* descriptor) { | 87 CodeStubDescriptor* descriptor) { |
88 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1); | 88 InitializeInternalArrayConstructorDescriptor(isolate(), descriptor, -1); |
89 } | 89 } |
90 | 90 |
91 | 91 |
92 #define __ ACCESS_MASM(masm) | 92 #define __ ACCESS_MASM(masm) |
93 | 93 |
94 | 94 |
95 static void EmitIdenticalObjectComparison(MacroAssembler* masm, | 95 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, |
96 Label* slow, | |
97 Condition cond); | 96 Condition cond); |
98 static void EmitSmiNonsmiComparison(MacroAssembler* masm, | 97 static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, |
99 Register lhs, | 98 Register rhs, Label* lhs_not_nan, |
100 Register rhs, | 99 Label* slow, bool strict); |
101 Label* lhs_not_nan, | 100 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, |
102 Label* slow, | |
103 bool strict); | |
104 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, | |
105 Register lhs, | |
106 Register rhs); | 101 Register rhs); |
107 | 102 |
108 | 103 |
109 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, | 104 void HydrogenCodeStub::GenerateLightweightMiss(MacroAssembler* masm, |
110 ExternalReference miss) { | 105 ExternalReference miss) { |
111 // Update the static counter each time a new code stub is generated. | 106 // Update the static counter each time a new code stub is generated. |
112 isolate()->counters()->code_stubs()->Increment(); | 107 isolate()->counters()->code_stubs()->Increment(); |
113 | 108 |
114 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); | 109 CallInterfaceDescriptor descriptor = GetCallInterfaceDescriptor(); |
115 int param_count = descriptor.GetEnvironmentParameterCount(); | 110 int param_count = descriptor.GetEnvironmentParameterCount(); |
116 { | 111 { |
117 // Call the runtime system in a fresh internal frame. | 112 // Call the runtime system in a fresh internal frame. |
118 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 113 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
119 DCHECK(param_count == 0 || | 114 DCHECK(param_count == 0 || |
120 r0.is(descriptor.GetEnvironmentParameterRegister(param_count - 1))); | 115 r3.is(descriptor.GetEnvironmentParameterRegister(param_count - 1))); |
121 // Push arguments | 116 // Push arguments |
122 for (int i = 0; i < param_count; ++i) { | 117 for (int i = 0; i < param_count; ++i) { |
123 __ push(descriptor.GetEnvironmentParameterRegister(i)); | 118 __ push(descriptor.GetEnvironmentParameterRegister(i)); |
124 } | 119 } |
125 __ CallExternalReference(miss, param_count); | 120 __ CallExternalReference(miss, param_count); |
126 } | 121 } |
127 | 122 |
128 __ Ret(); | 123 __ Ret(); |
129 } | 124 } |
130 | 125 |
131 | 126 |
132 void DoubleToIStub::Generate(MacroAssembler* masm) { | 127 void DoubleToIStub::Generate(MacroAssembler* masm) { |
133 Label out_of_range, only_low, negate, done; | 128 Label out_of_range, only_low, negate, done, fastpath_done; |
134 Register input_reg = source(); | 129 Register input_reg = source(); |
135 Register result_reg = destination(); | 130 Register result_reg = destination(); |
136 DCHECK(is_truncating()); | 131 DCHECK(is_truncating()); |
137 | 132 |
138 int double_offset = offset(); | 133 int double_offset = offset(); |
139 // Account for saved regs if input is sp. | |
140 if (input_reg.is(sp)) double_offset += 3 * kPointerSize; | |
141 | 134 |
135 // Immediate values for this stub fit in instructions, so it's safe to use ip. | |
142 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); | 136 Register scratch = GetRegisterThatIsNotOneOf(input_reg, result_reg); |
143 Register scratch_low = | 137 Register scratch_low = |
144 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); | 138 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch); |
145 Register scratch_high = | 139 Register scratch_high = |
146 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low); | 140 GetRegisterThatIsNotOneOf(input_reg, result_reg, scratch, scratch_low); |
147 LowDwVfpRegister double_scratch = kScratchDoubleReg; | 141 DoubleRegister double_scratch = kScratchDoubleReg; |
148 | 142 |
149 __ Push(scratch_high, scratch_low, scratch); | 143 __ push(scratch); |
144 // Account for saved regs if input is sp. | |
145 if (input_reg.is(sp)) double_offset += kPointerSize; | |
150 | 146 |
151 if (!skip_fastpath()) { | 147 if (!skip_fastpath()) { |
152 // Load double input. | 148 // Load double input. |
153 __ vldr(double_scratch, MemOperand(input_reg, double_offset)); | 149 __ lfd(double_scratch, MemOperand(input_reg, double_offset)); |
154 __ vmov(scratch_low, scratch_high, double_scratch); | |
155 | 150 |
156 // Do fast-path convert from double to int. | 151 // Do fast-path convert from double to int. |
157 __ vcvt_s32_f64(double_scratch.low(), double_scratch); | 152 __ ConvertDoubleToInt64(double_scratch, |
158 __ vmov(result_reg, double_scratch.low()); | 153 #if !V8_TARGET_ARCH_PPC64 |
154 scratch, | |
155 #endif | |
156 result_reg, d0); | |
159 | 157 |
160 // If result is not saturated (0x7fffffff or 0x80000000), we are done. | 158 // Test for overflow |
161 __ sub(scratch, result_reg, Operand(1)); | 159 #if V8_TARGET_ARCH_PPC64 |
danno
2014/10/20 08:28:43
Here and elsewhere where possible, can you turn th
andrew_low
2014/11/07 18:03:17
I understand the request, but this seems to be a s
| |
162 __ cmp(scratch, Operand(0x7ffffffe)); | 160 __ TestIfInt32(result_reg, scratch, r0); |
163 __ b(lt, &done); | 161 #else |
164 } else { | 162 __ TestIfInt32(scratch, result_reg, r0); |
165 // We've already done MacroAssembler::TryFastTruncatedDoubleToILoad, so we | 163 #endif |
166 // know exponent > 31, so we can skip the vcvt_s32_f64 which will saturate. | 164 __ beq(&fastpath_done); |
167 if (double_offset == 0) { | |
168 __ ldm(ia, input_reg, scratch_low.bit() | scratch_high.bit()); | |
169 } else { | |
170 __ ldr(scratch_low, MemOperand(input_reg, double_offset)); | |
171 __ ldr(scratch_high, MemOperand(input_reg, double_offset + kIntSize)); | |
172 } | |
173 } | 165 } |
174 | 166 |
175 __ Ubfx(scratch, scratch_high, | 167 __ Push(scratch_high, scratch_low); |
176 HeapNumber::kExponentShift, HeapNumber::kExponentBits); | 168 // Account for saved regs if input is sp. |
169 if (input_reg.is(sp)) double_offset += 2 * kPointerSize; | |
170 | |
171 __ lwz(scratch_high, | |
172 MemOperand(input_reg, double_offset + Register::kExponentOffset)); | |
173 __ lwz(scratch_low, | |
174 MemOperand(input_reg, double_offset + Register::kMantissaOffset)); | |
175 | |
176 __ ExtractBitMask(scratch, scratch_high, HeapNumber::kExponentMask); | |
177 // Load scratch with exponent - 1. This is faster than loading | 177 // Load scratch with exponent - 1. This is faster than loading |
178 // with exponent because Bias + 1 = 1024 which is an *ARM* immediate value. | 178 // with exponent because Bias + 1 = 1024 which is a *PPC* immediate value. |
179 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); | 179 STATIC_ASSERT(HeapNumber::kExponentBias + 1 == 1024); |
180 __ sub(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); | 180 __ subi(scratch, scratch, Operand(HeapNumber::kExponentBias + 1)); |
181 // If exponent is greater than or equal to 84, the 32 less significant | 181 // If exponent is greater than or equal to 84, the 32 less significant |
182 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), | 182 // bits are 0s (2^84 = 1, 52 significant bits, 32 uncoded bits), |
183 // the result is 0. | 183 // the result is 0. |
184 // Compare exponent with 84 (compare exponent - 1 with 83). | 184 // Compare exponent with 84 (compare exponent - 1 with 83). |
185 __ cmp(scratch, Operand(83)); | 185 __ cmpi(scratch, Operand(83)); |
186 __ b(ge, &out_of_range); | 186 __ bge(&out_of_range); |
187 | 187 |
188 // If we reach this code, 31 <= exponent <= 83. | 188 // If we reach this code, 31 <= exponent <= 83. |
189 // So, we don't have to handle cases where 0 <= exponent <= 20 for | 189 // So, we don't have to handle cases where 0 <= exponent <= 20 for |
190 // which we would need to shift right the high part of the mantissa. | 190 // which we would need to shift right the high part of the mantissa. |
191 // Scratch contains exponent - 1. | 191 // Scratch contains exponent - 1. |
192 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). | 192 // Load scratch with 52 - exponent (load with 51 - (exponent - 1)). |
193 __ rsb(scratch, scratch, Operand(51), SetCC); | 193 __ subfic(scratch, scratch, Operand(51)); |
194 __ b(ls, &only_low); | 194 __ cmpi(scratch, Operand::Zero()); |
195 __ ble(&only_low); | |
195 // 21 <= exponent <= 51, shift scratch_low and scratch_high | 196 // 21 <= exponent <= 51, shift scratch_low and scratch_high |
196 // to generate the result. | 197 // to generate the result. |
197 __ mov(scratch_low, Operand(scratch_low, LSR, scratch)); | 198 __ srw(scratch_low, scratch_low, scratch); |
198 // Scratch contains: 52 - exponent. | 199 // Scratch contains: 52 - exponent. |
199 // We needs: exponent - 20. | 200 // We needs: exponent - 20. |
200 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. | 201 // So we use: 32 - scratch = 32 - 52 + exponent = exponent - 20. |
201 __ rsb(scratch, scratch, Operand(32)); | 202 __ subfic(scratch, scratch, Operand(32)); |
202 __ Ubfx(result_reg, scratch_high, | 203 __ ExtractBitMask(result_reg, scratch_high, HeapNumber::kMantissaMask); |
203 0, HeapNumber::kMantissaBitsInTopWord); | |
204 // Set the implicit 1 before the mantissa part in scratch_high. | 204 // Set the implicit 1 before the mantissa part in scratch_high. |
205 __ orr(result_reg, result_reg, | 205 STATIC_ASSERT(HeapNumber::kMantissaBitsInTopWord >= 16); |
206 Operand(1 << HeapNumber::kMantissaBitsInTopWord)); | 206 __ oris(result_reg, result_reg, |
207 __ orr(result_reg, scratch_low, Operand(result_reg, LSL, scratch)); | 207 Operand(1 << ((HeapNumber::kMantissaBitsInTopWord) - 16))); |
208 __ slw(r0, result_reg, scratch); | |
209 __ orx(result_reg, scratch_low, r0); | |
208 __ b(&negate); | 210 __ b(&negate); |
209 | 211 |
210 __ bind(&out_of_range); | 212 __ bind(&out_of_range); |
211 __ mov(result_reg, Operand::Zero()); | 213 __ mov(result_reg, Operand::Zero()); |
212 __ b(&done); | 214 __ b(&done); |
213 | 215 |
214 __ bind(&only_low); | 216 __ bind(&only_low); |
215 // 52 <= exponent <= 83, shift only scratch_low. | 217 // 52 <= exponent <= 83, shift only scratch_low. |
216 // On entry, scratch contains: 52 - exponent. | 218 // On entry, scratch contains: 52 - exponent. |
217 __ rsb(scratch, scratch, Operand::Zero()); | 219 __ neg(scratch, scratch); |
218 __ mov(result_reg, Operand(scratch_low, LSL, scratch)); | 220 __ slw(result_reg, scratch_low, scratch); |
219 | 221 |
220 __ bind(&negate); | 222 __ bind(&negate); |
221 // If input was positive, scratch_high ASR 31 equals 0 and | 223 // If input was positive, scratch_high ASR 31 equals 0 and |
222 // scratch_high LSR 31 equals zero. | 224 // scratch_high LSR 31 equals zero. |
223 // New result = (result eor 0) + 0 = result. | 225 // New result = (result eor 0) + 0 = result. |
224 // If the input was negative, we have to negate the result. | 226 // If the input was negative, we have to negate the result. |
225 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1. | 227 // Input_high ASR 31 equals 0xffffffff and scratch_high LSR 31 equals 1. |
226 // New result = (result eor 0xffffffff) + 1 = 0 - result. | 228 // New result = (result eor 0xffffffff) + 1 = 0 - result. |
227 __ eor(result_reg, result_reg, Operand(scratch_high, ASR, 31)); | 229 __ srawi(r0, scratch_high, 31); |
228 __ add(result_reg, result_reg, Operand(scratch_high, LSR, 31)); | 230 #if V8_TARGET_ARCH_PPC64 |
231 __ srdi(r0, r0, Operand(32)); | |
232 #endif | |
233 __ xor_(result_reg, result_reg, r0); | |
234 __ srwi(r0, scratch_high, Operand(31)); | |
235 __ add(result_reg, result_reg, r0); | |
229 | 236 |
230 __ bind(&done); | 237 __ bind(&done); |
238 __ Pop(scratch_high, scratch_low); | |
231 | 239 |
232 __ Pop(scratch_high, scratch_low, scratch); | 240 __ bind(&fastpath_done); |
241 __ pop(scratch); | |
242 | |
233 __ Ret(); | 243 __ Ret(); |
234 } | 244 } |
235 | 245 |
236 | 246 |
247 #if 0 // more unused code, kept for easy compare to ARM | |
237 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime( | 248 void WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime( |
238 Isolate* isolate) { | 249 Isolate* isolate) { |
239 WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2); | 250 WriteInt32ToHeapNumberStub stub1(isolate, r1, r0, r2); |
240 WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3); | 251 WriteInt32ToHeapNumberStub stub2(isolate, r2, r0, r3); |
241 stub1.GetCode(); | 252 stub1.GetCode(); |
242 stub2.GetCode(); | 253 stub2.GetCode(); |
243 } | 254 } |
244 | 255 |
245 | 256 |
246 // See comment for class. | 257 // See comment for class. |
(...skipping 33 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... | |
280 // a double because it uses a sign bit instead of using two's complement. | 291 // a double because it uses a sign bit instead of using two's complement. |
281 // The actual mantissa bits stored are all 0 because the implicit most | 292 // The actual mantissa bits stored are all 0 because the implicit most |
282 // significant 1 bit is not stored. | 293 // significant 1 bit is not stored. |
283 non_smi_exponent += 1 << HeapNumber::kExponentShift; | 294 non_smi_exponent += 1 << HeapNumber::kExponentShift; |
284 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); | 295 __ mov(ip, Operand(HeapNumber::kSignMask | non_smi_exponent)); |
285 __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset)); | 296 __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kExponentOffset)); |
286 __ mov(ip, Operand::Zero()); | 297 __ mov(ip, Operand::Zero()); |
287 __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset)); | 298 __ str(ip, FieldMemOperand(the_heap_number(), HeapNumber::kMantissaOffset)); |
288 __ Ret(); | 299 __ Ret(); |
289 } | 300 } |
290 | 301 #endif // roohack |
danno
2014/10/20 08:28:43
Do you still want the block above in the code?
andrew_low
2014/11/07 18:03:17
No, removed.
| |
291 | 302 |
292 // Handle the case where the lhs and rhs are the same object. | 303 // Handle the case where the lhs and rhs are the same object. |
293 // Equality is almost reflexive (everything but NaN), so this is a test | 304 // Equality is almost reflexive (everything but NaN), so this is a test |
294 // for "identity and not NaN". | 305 // for "identity and not NaN". |
295 static void EmitIdenticalObjectComparison(MacroAssembler* masm, | 306 static void EmitIdenticalObjectComparison(MacroAssembler* masm, Label* slow, |
296 Label* slow, | |
297 Condition cond) { | 307 Condition cond) { |
298 Label not_identical; | 308 Label not_identical; |
299 Label heap_number, return_equal; | 309 Label heap_number, return_equal; |
300 __ cmp(r0, r1); | 310 __ cmp(r3, r4); |
301 __ b(ne, ¬_identical); | 311 __ bne(¬_identical); |
302 | 312 |
303 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), | 313 // Test for NaN. Sadly, we can't just compare to Factory::nan_value(), |
304 // so we do the second best thing - test it ourselves. | 314 // so we do the second best thing - test it ourselves. |
305 // They are both equal and they are not both Smis so both of them are not | 315 // They are both equal and they are not both Smis so both of them are not |
306 // Smis. If it's not a heap number, then return equal. | 316 // Smis. If it's not a heap number, then return equal. |
307 if (cond == lt || cond == gt) { | 317 if (cond == lt || cond == gt) { |
308 __ CompareObjectType(r0, r4, r4, FIRST_SPEC_OBJECT_TYPE); | 318 __ CompareObjectType(r3, r7, r7, FIRST_SPEC_OBJECT_TYPE); |
309 __ b(ge, slow); | 319 __ bge(slow); |
310 } else { | 320 } else { |
311 __ CompareObjectType(r0, r4, r4, HEAP_NUMBER_TYPE); | 321 __ CompareObjectType(r3, r7, r7, HEAP_NUMBER_TYPE); |
312 __ b(eq, &heap_number); | 322 __ beq(&heap_number); |
313 // Comparing JS objects with <=, >= is complicated. | 323 // Comparing JS objects with <=, >= is complicated. |
314 if (cond != eq) { | 324 if (cond != eq) { |
315 __ cmp(r4, Operand(FIRST_SPEC_OBJECT_TYPE)); | 325 __ cmpi(r7, Operand(FIRST_SPEC_OBJECT_TYPE)); |
316 __ b(ge, slow); | 326 __ bge(slow); |
317 // Normally here we fall through to return_equal, but undefined is | 327 // Normally here we fall through to return_equal, but undefined is |
318 // special: (undefined == undefined) == true, but | 328 // special: (undefined == undefined) == true, but |
319 // (undefined <= undefined) == false! See ECMAScript 11.8.5. | 329 // (undefined <= undefined) == false! See ECMAScript 11.8.5. |
320 if (cond == le || cond == ge) { | 330 if (cond == le || cond == ge) { |
321 __ cmp(r4, Operand(ODDBALL_TYPE)); | 331 __ cmpi(r7, Operand(ODDBALL_TYPE)); |
322 __ b(ne, &return_equal); | 332 __ bne(&return_equal); |
323 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); | 333 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
324 __ cmp(r0, r2); | 334 __ cmp(r3, r5); |
325 __ b(ne, &return_equal); | 335 __ bne(&return_equal); |
326 if (cond == le) { | 336 if (cond == le) { |
327 // undefined <= undefined should fail. | 337 // undefined <= undefined should fail. |
328 __ mov(r0, Operand(GREATER)); | 338 __ li(r3, Operand(GREATER)); |
329 } else { | 339 } else { |
330 // undefined >= undefined should fail. | 340 // undefined >= undefined should fail. |
331 __ mov(r0, Operand(LESS)); | 341 __ li(r3, Operand(LESS)); |
332 } | 342 } |
333 __ Ret(); | 343 __ Ret(); |
334 } | 344 } |
335 } | 345 } |
336 } | 346 } |
337 | 347 |
338 __ bind(&return_equal); | 348 __ bind(&return_equal); |
339 if (cond == lt) { | 349 if (cond == lt) { |
340 __ mov(r0, Operand(GREATER)); // Things aren't less than themselves. | 350 __ li(r3, Operand(GREATER)); // Things aren't less than themselves. |
341 } else if (cond == gt) { | 351 } else if (cond == gt) { |
342 __ mov(r0, Operand(LESS)); // Things aren't greater than themselves. | 352 __ li(r3, Operand(LESS)); // Things aren't greater than themselves. |
343 } else { | 353 } else { |
344 __ mov(r0, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. | 354 __ li(r3, Operand(EQUAL)); // Things are <=, >=, ==, === themselves. |
345 } | 355 } |
346 __ Ret(); | 356 __ Ret(); |
347 | 357 |
348 // For less and greater we don't have to check for NaN since the result of | 358 // For less and greater we don't have to check for NaN since the result of |
349 // x < x is false regardless. For the others here is some code to check | 359 // x < x is false regardless. For the others here is some code to check |
350 // for NaN. | 360 // for NaN. |
351 if (cond != lt && cond != gt) { | 361 if (cond != lt && cond != gt) { |
352 __ bind(&heap_number); | 362 __ bind(&heap_number); |
353 // It is a heap number, so return non-equal if it's NaN and equal if it's | 363 // It is a heap number, so return non-equal if it's NaN and equal if it's |
354 // not NaN. | 364 // not NaN. |
355 | 365 |
356 // The representation of NaN values has all exponent bits (52..62) set, | 366 // The representation of NaN values has all exponent bits (52..62) set, |
357 // and not all mantissa bits (0..51) clear. | 367 // and not all mantissa bits (0..51) clear. |
358 // Read top bits of double representation (second word of value). | 368 // Read top bits of double representation (second word of value). |
359 __ ldr(r2, FieldMemOperand(r0, HeapNumber::kExponentOffset)); | 369 __ lwz(r5, FieldMemOperand(r3, HeapNumber::kExponentOffset)); |
360 // Test that exponent bits are all set. | 370 // Test that exponent bits are all set. |
361 __ Sbfx(r3, r2, HeapNumber::kExponentShift, HeapNumber::kExponentBits); | 371 STATIC_ASSERT(HeapNumber::kExponentMask == 0x7ff00000u); |
362 // NaNs have all-one exponents so they sign extend to -1. | 372 __ ExtractBitMask(r6, r5, HeapNumber::kExponentMask); |
363 __ cmp(r3, Operand(-1)); | 373 __ cmpli(r6, Operand(0x7ff)); |
364 __ b(ne, &return_equal); | 374 __ bne(&return_equal); |
365 | 375 |
366 // Shift out flag and all exponent bits, retaining only mantissa. | 376 // Shift out flag and all exponent bits, retaining only mantissa. |
367 __ mov(r2, Operand(r2, LSL, HeapNumber::kNonMantissaBitsInTopWord)); | 377 __ slwi(r5, r5, Operand(HeapNumber::kNonMantissaBitsInTopWord)); |
368 // Or with all low-bits of mantissa. | 378 // Or with all low-bits of mantissa. |
369 __ ldr(r3, FieldMemOperand(r0, HeapNumber::kMantissaOffset)); | 379 __ lwz(r6, FieldMemOperand(r3, HeapNumber::kMantissaOffset)); |
370 __ orr(r0, r3, Operand(r2), SetCC); | 380 __ orx(r3, r6, r5); |
371 // For equal we already have the right value in r0: Return zero (equal) | 381 __ cmpi(r3, Operand::Zero()); |
382 // For equal we already have the right value in r3: Return zero (equal) | |
372 // if all bits in mantissa are zero (it's an Infinity) and non-zero if | 383 // if all bits in mantissa are zero (it's an Infinity) and non-zero if |
373 // not (it's a NaN). For <= and >= we need to load r0 with the failing | 384 // not (it's a NaN). For <= and >= we need to load r0 with the failing |
374 // value if it's a NaN. | 385 // value if it's a NaN. |
375 if (cond != eq) { | 386 if (cond != eq) { |
387 Label not_equal; | |
388 __ bne(¬_equal); | |
376 // All-zero means Infinity means equal. | 389 // All-zero means Infinity means equal. |
377 __ Ret(eq); | 390 __ Ret(); |
391 __ bind(¬_equal); | |
378 if (cond == le) { | 392 if (cond == le) { |
379 __ mov(r0, Operand(GREATER)); // NaN <= NaN should fail. | 393 __ li(r3, Operand(GREATER)); // NaN <= NaN should fail. |
380 } else { | 394 } else { |
381 __ mov(r0, Operand(LESS)); // NaN >= NaN should fail. | 395 __ li(r3, Operand(LESS)); // NaN >= NaN should fail. |
382 } | 396 } |
383 } | 397 } |
384 __ Ret(); | 398 __ Ret(); |
385 } | 399 } |
386 // No fall through here. | 400 // No fall through here. |
387 | 401 |
388 __ bind(¬_identical); | 402 __ bind(¬_identical); |
389 } | 403 } |
390 | 404 |
391 | 405 |
392 // See comment at call site. | 406 // See comment at call site. |
393 static void EmitSmiNonsmiComparison(MacroAssembler* masm, | 407 static void EmitSmiNonsmiComparison(MacroAssembler* masm, Register lhs, |
394 Register lhs, | 408 Register rhs, Label* lhs_not_nan, |
395 Register rhs, | 409 Label* slow, bool strict) { |
396 Label* lhs_not_nan, | 410 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); |
397 Label* slow, | |
398 bool strict) { | |
399 DCHECK((lhs.is(r0) && rhs.is(r1)) || | |
400 (lhs.is(r1) && rhs.is(r0))); | |
401 | 411 |
402 Label rhs_is_smi; | 412 Label rhs_is_smi; |
403 __ JumpIfSmi(rhs, &rhs_is_smi); | 413 __ JumpIfSmi(rhs, &rhs_is_smi); |
404 | 414 |
405 // Lhs is a Smi. Check whether the rhs is a heap number. | 415 // Lhs is a Smi. Check whether the rhs is a heap number. |
406 __ CompareObjectType(rhs, r4, r4, HEAP_NUMBER_TYPE); | 416 __ CompareObjectType(rhs, r6, r7, HEAP_NUMBER_TYPE); |
407 if (strict) { | 417 if (strict) { |
408 // If rhs is not a number and lhs is a Smi then strict equality cannot | 418 // If rhs is not a number and lhs is a Smi then strict equality cannot |
409 // succeed. Return non-equal | 419 // succeed. Return non-equal |
410 // If rhs is r0 then there is already a non zero value in it. | 420 // If rhs is r3 then there is already a non zero value in it. |
411 if (!rhs.is(r0)) { | 421 Label skip; |
412 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); | 422 __ beq(&skip); |
423 if (!rhs.is(r3)) { | |
424 __ mov(r3, Operand(NOT_EQUAL)); | |
413 } | 425 } |
414 __ Ret(ne); | 426 __ Ret(); |
427 __ bind(&skip); | |
415 } else { | 428 } else { |
416 // Smi compared non-strictly with a non-Smi non-heap-number. Call | 429 // Smi compared non-strictly with a non-Smi non-heap-number. Call |
417 // the runtime. | 430 // the runtime. |
418 __ b(ne, slow); | 431 __ bne(slow); |
419 } | 432 } |
420 | 433 |
421 // Lhs is a smi, rhs is a number. | 434 // Lhs is a smi, rhs is a number. |
422 // Convert lhs to a double in d7. | 435 // Convert lhs to a double in d7. |
423 __ SmiToDouble(d7, lhs); | 436 __ SmiToDouble(d7, lhs); |
424 // Load the double from rhs, tagged HeapNumber r0, to d6. | 437 // Load the double from rhs, tagged HeapNumber r3, to d6. |
425 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); | 438 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
426 | 439 |
427 // We now have both loaded as doubles but we can skip the lhs nan check | 440 // We now have both loaded as doubles but we can skip the lhs nan check |
428 // since it's a smi. | 441 // since it's a smi. |
429 __ jmp(lhs_not_nan); | 442 __ b(lhs_not_nan); |
430 | 443 |
431 __ bind(&rhs_is_smi); | 444 __ bind(&rhs_is_smi); |
432 // Rhs is a smi. Check whether the non-smi lhs is a heap number. | 445 // Rhs is a smi. Check whether the non-smi lhs is a heap number. |
433 __ CompareObjectType(lhs, r4, r4, HEAP_NUMBER_TYPE); | 446 __ CompareObjectType(lhs, r7, r7, HEAP_NUMBER_TYPE); |
434 if (strict) { | 447 if (strict) { |
435 // If lhs is not a number and rhs is a smi then strict equality cannot | 448 // If lhs is not a number and rhs is a smi then strict equality cannot |
436 // succeed. Return non-equal. | 449 // succeed. Return non-equal. |
437 // If lhs is r0 then there is already a non zero value in it. | 450 // If lhs is r3 then there is already a non zero value in it. |
438 if (!lhs.is(r0)) { | 451 Label skip; |
439 __ mov(r0, Operand(NOT_EQUAL), LeaveCC, ne); | 452 __ beq(&skip); |
453 if (!lhs.is(r3)) { | |
454 __ mov(r3, Operand(NOT_EQUAL)); | |
440 } | 455 } |
441 __ Ret(ne); | 456 __ Ret(); |
457 __ bind(&skip); | |
442 } else { | 458 } else { |
443 // Smi compared non-strictly with a non-smi non-heap-number. Call | 459 // Smi compared non-strictly with a non-smi non-heap-number. Call |
444 // the runtime. | 460 // the runtime. |
445 __ b(ne, slow); | 461 __ bne(slow); |
446 } | 462 } |
447 | 463 |
448 // Rhs is a smi, lhs is a heap number. | 464 // Rhs is a smi, lhs is a heap number. |
449 // Load the double from lhs, tagged HeapNumber r1, to d7. | 465 // Load the double from lhs, tagged HeapNumber r4, to d7. |
450 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); | 466 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
451 // Convert rhs to a double in d6 . | 467 // Convert rhs to a double in d6. |
452 __ SmiToDouble(d6, rhs); | 468 __ SmiToDouble(d6, rhs); |
453 // Fall through to both_loaded_as_doubles. | 469 // Fall through to both_loaded_as_doubles. |
454 } | 470 } |
455 | 471 |
456 | 472 |
457 // See comment at call site. | 473 // See comment at call site. |
458 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, | 474 static void EmitStrictTwoHeapObjectCompare(MacroAssembler* masm, Register lhs, |
459 Register lhs, | |
460 Register rhs) { | 475 Register rhs) { |
461 DCHECK((lhs.is(r0) && rhs.is(r1)) || | 476 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); |
462 (lhs.is(r1) && rhs.is(r0))); | |
463 | 477 |
464 // If either operand is a JS object or an oddball value, then they are | 478 // If either operand is a JS object or an oddball value, then they are |
465 // not equal since their pointers are different. | 479 // not equal since their pointers are different. |
466 // There is no test for undetectability in strict equality. | 480 // There is no test for undetectability in strict equality. |
467 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); | 481 STATIC_ASSERT(LAST_TYPE == LAST_SPEC_OBJECT_TYPE); |
468 Label first_non_object; | 482 Label first_non_object; |
469 // Get the type of the first operand into r2 and compare it with | 483 // Get the type of the first operand into r5 and compare it with |
470 // FIRST_SPEC_OBJECT_TYPE. | 484 // FIRST_SPEC_OBJECT_TYPE. |
471 __ CompareObjectType(rhs, r2, r2, FIRST_SPEC_OBJECT_TYPE); | 485 __ CompareObjectType(rhs, r5, r5, FIRST_SPEC_OBJECT_TYPE); |
472 __ b(lt, &first_non_object); | 486 __ blt(&first_non_object); |
473 | 487 |
474 // Return non-zero (r0 is not zero) | 488 // Return non-zero (r3 is not zero) |
475 Label return_not_equal; | 489 Label return_not_equal; |
476 __ bind(&return_not_equal); | 490 __ bind(&return_not_equal); |
477 __ Ret(); | 491 __ Ret(); |
478 | 492 |
479 __ bind(&first_non_object); | 493 __ bind(&first_non_object); |
480 // Check for oddballs: true, false, null, undefined. | 494 // Check for oddballs: true, false, null, undefined. |
481 __ cmp(r2, Operand(ODDBALL_TYPE)); | 495 __ cmpi(r5, Operand(ODDBALL_TYPE)); |
482 __ b(eq, &return_not_equal); | 496 __ beq(&return_not_equal); |
483 | 497 |
484 __ CompareObjectType(lhs, r3, r3, FIRST_SPEC_OBJECT_TYPE); | 498 __ CompareObjectType(lhs, r6, r6, FIRST_SPEC_OBJECT_TYPE); |
485 __ b(ge, &return_not_equal); | 499 __ bge(&return_not_equal); |
486 | 500 |
487 // Check for oddballs: true, false, null, undefined. | 501 // Check for oddballs: true, false, null, undefined. |
488 __ cmp(r3, Operand(ODDBALL_TYPE)); | 502 __ cmpi(r6, Operand(ODDBALL_TYPE)); |
489 __ b(eq, &return_not_equal); | 503 __ beq(&return_not_equal); |
490 | 504 |
491 // Now that we have the types we might as well check for | 505 // Now that we have the types we might as well check for |
492 // internalized-internalized. | 506 // internalized-internalized. |
493 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); | 507 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); |
494 __ orr(r2, r2, Operand(r3)); | 508 __ orx(r5, r5, r6); |
495 __ tst(r2, Operand(kIsNotStringMask | kIsNotInternalizedMask)); | 509 __ andi(r0, r5, Operand(kIsNotStringMask | kIsNotInternalizedMask)); |
496 __ b(eq, &return_not_equal); | 510 __ beq(&return_not_equal, cr0); |
497 } | 511 } |
498 | 512 |
499 | 513 |
500 // See comment at call site. | 514 // See comment at call site. |
501 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, | 515 static void EmitCheckForTwoHeapNumbers(MacroAssembler* masm, Register lhs, |
502 Register lhs, | |
503 Register rhs, | 516 Register rhs, |
504 Label* both_loaded_as_doubles, | 517 Label* both_loaded_as_doubles, |
505 Label* not_heap_numbers, | 518 Label* not_heap_numbers, Label* slow) { |
506 Label* slow) { | 519 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); |
507 DCHECK((lhs.is(r0) && rhs.is(r1)) || | |
508 (lhs.is(r1) && rhs.is(r0))); | |
509 | 520 |
510 __ CompareObjectType(rhs, r3, r2, HEAP_NUMBER_TYPE); | 521 __ CompareObjectType(rhs, r6, r5, HEAP_NUMBER_TYPE); |
511 __ b(ne, not_heap_numbers); | 522 __ bne(not_heap_numbers); |
512 __ ldr(r2, FieldMemOperand(lhs, HeapObject::kMapOffset)); | 523 __ LoadP(r5, FieldMemOperand(lhs, HeapObject::kMapOffset)); |
513 __ cmp(r2, r3); | 524 __ cmp(r5, r6); |
514 __ b(ne, slow); // First was a heap number, second wasn't. Go slow case. | 525 __ bne(slow); // First was a heap number, second wasn't. Go slow case. |
515 | 526 |
516 // Both are heap numbers. Load them up then jump to the code we have | 527 // Both are heap numbers. Load them up then jump to the code we have |
517 // for that. | 528 // for that. |
518 __ vldr(d6, rhs, HeapNumber::kValueOffset - kHeapObjectTag); | 529 __ lfd(d6, FieldMemOperand(rhs, HeapNumber::kValueOffset)); |
519 __ vldr(d7, lhs, HeapNumber::kValueOffset - kHeapObjectTag); | 530 __ lfd(d7, FieldMemOperand(lhs, HeapNumber::kValueOffset)); |
520 __ jmp(both_loaded_as_doubles); | 531 |
532 __ b(both_loaded_as_doubles); | |
521 } | 533 } |
522 | 534 |
523 | 535 |
524 // Fast negative check for internalized-to-internalized equality. | 536 // Fast negative check for internalized-to-internalized equality. |
525 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, | 537 static void EmitCheckForInternalizedStringsOrObjects(MacroAssembler* masm, |
526 Register lhs, | 538 Register lhs, Register rhs, |
527 Register rhs, | |
528 Label* possible_strings, | 539 Label* possible_strings, |
529 Label* not_both_strings) { | 540 Label* not_both_strings) { |
530 DCHECK((lhs.is(r0) && rhs.is(r1)) || | 541 DCHECK((lhs.is(r3) && rhs.is(r4)) || (lhs.is(r4) && rhs.is(r3))); |
531 (lhs.is(r1) && rhs.is(r0))); | |
532 | 542 |
533 // r2 is object type of rhs. | 543 // r5 is object type of rhs. |
534 Label object_test; | 544 Label object_test; |
535 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); | 545 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); |
536 __ tst(r2, Operand(kIsNotStringMask)); | 546 __ andi(r0, r5, Operand(kIsNotStringMask)); |
537 __ b(ne, &object_test); | 547 __ bne(&object_test, cr0); |
538 __ tst(r2, Operand(kIsNotInternalizedMask)); | 548 __ andi(r0, r5, Operand(kIsNotInternalizedMask)); |
539 __ b(ne, possible_strings); | 549 __ bne(possible_strings, cr0); |
540 __ CompareObjectType(lhs, r3, r3, FIRST_NONSTRING_TYPE); | 550 __ CompareObjectType(lhs, r6, r6, FIRST_NONSTRING_TYPE); |
541 __ b(ge, not_both_strings); | 551 __ bge(not_both_strings); |
542 __ tst(r3, Operand(kIsNotInternalizedMask)); | 552 __ andi(r0, r6, Operand(kIsNotInternalizedMask)); |
543 __ b(ne, possible_strings); | 553 __ bne(possible_strings, cr0); |
544 | 554 |
545 // Both are internalized. We already checked they weren't the same pointer | 555 // Both are internalized. We already checked they weren't the same pointer |
546 // so they are not equal. | 556 // so they are not equal. |
547 __ mov(r0, Operand(NOT_EQUAL)); | 557 __ li(r3, Operand(NOT_EQUAL)); |
548 __ Ret(); | 558 __ Ret(); |
549 | 559 |
550 __ bind(&object_test); | 560 __ bind(&object_test); |
551 __ cmp(r2, Operand(FIRST_SPEC_OBJECT_TYPE)); | 561 __ cmpi(r5, Operand(FIRST_SPEC_OBJECT_TYPE)); |
552 __ b(lt, not_both_strings); | 562 __ blt(not_both_strings); |
553 __ CompareObjectType(lhs, r2, r3, FIRST_SPEC_OBJECT_TYPE); | 563 __ CompareObjectType(lhs, r5, r6, FIRST_SPEC_OBJECT_TYPE); |
554 __ b(lt, not_both_strings); | 564 __ blt(not_both_strings); |
555 // If both objects are undetectable, they are equal. Otherwise, they | 565 // If both objects are undetectable, they are equal. Otherwise, they |
556 // are not equal, since they are different objects and an object is not | 566 // are not equal, since they are different objects and an object is not |
557 // equal to undefined. | 567 // equal to undefined. |
558 __ ldr(r3, FieldMemOperand(rhs, HeapObject::kMapOffset)); | 568 __ LoadP(r6, FieldMemOperand(rhs, HeapObject::kMapOffset)); |
559 __ ldrb(r2, FieldMemOperand(r2, Map::kBitFieldOffset)); | 569 __ lbz(r5, FieldMemOperand(r5, Map::kBitFieldOffset)); |
560 __ ldrb(r3, FieldMemOperand(r3, Map::kBitFieldOffset)); | 570 __ lbz(r6, FieldMemOperand(r6, Map::kBitFieldOffset)); |
561 __ and_(r0, r2, Operand(r3)); | 571 __ and_(r3, r5, r6); |
562 __ and_(r0, r0, Operand(1 << Map::kIsUndetectable)); | 572 __ andi(r3, r3, Operand(1 << Map::kIsUndetectable)); |
563 __ eor(r0, r0, Operand(1 << Map::kIsUndetectable)); | 573 __ xori(r3, r3, Operand(1 << Map::kIsUndetectable)); |
564 __ Ret(); | 574 __ Ret(); |
565 } | 575 } |
566 | 576 |
567 | 577 |
568 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input, | 578 static void CompareICStub_CheckInputType(MacroAssembler* masm, Register input, |
569 Register scratch, | 579 Register scratch, |
570 CompareICState::State expected, | 580 CompareICState::State expected, |
571 Label* fail) { | 581 Label* fail) { |
572 Label ok; | 582 Label ok; |
573 if (expected == CompareICState::SMI) { | 583 if (expected == CompareICState::SMI) { |
574 __ JumpIfNotSmi(input, fail); | 584 __ JumpIfNotSmi(input, fail); |
575 } else if (expected == CompareICState::NUMBER) { | 585 } else if (expected == CompareICState::NUMBER) { |
576 __ JumpIfSmi(input, &ok); | 586 __ JumpIfSmi(input, &ok); |
577 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, | 587 __ CheckMap(input, scratch, Heap::kHeapNumberMapRootIndex, fail, |
578 DONT_DO_SMI_CHECK); | 588 DONT_DO_SMI_CHECK); |
579 } | 589 } |
580 // We could be strict about internalized/non-internalized here, but as long as | 590 // We could be strict about internalized/non-internalized here, but as long as |
581 // hydrogen doesn't care, the stub doesn't have to care either. | 591 // hydrogen doesn't care, the stub doesn't have to care either. |
582 __ bind(&ok); | 592 __ bind(&ok); |
583 } | 593 } |
584 | 594 |
585 | 595 |
586 // On entry r1 and r2 are the values to be compared. | 596 // On entry r4 and r5 are the values to be compared. |
587 // On exit r0 is 0, positive or negative to indicate the result of | 597 // On exit r3 is 0, positive or negative to indicate the result of |
588 // the comparison. | 598 // the comparison. |
589 void CompareICStub::GenerateGeneric(MacroAssembler* masm) { | 599 void CompareICStub::GenerateGeneric(MacroAssembler* masm) { |
590 Register lhs = r1; | 600 Register lhs = r4; |
591 Register rhs = r0; | 601 Register rhs = r3; |
592 Condition cc = GetCondition(); | 602 Condition cc = GetCondition(); |
593 | 603 |
594 Label miss; | 604 Label miss; |
595 CompareICStub_CheckInputType(masm, lhs, r2, left(), &miss); | 605 CompareICStub_CheckInputType(masm, lhs, r5, left(), &miss); |
596 CompareICStub_CheckInputType(masm, rhs, r3, right(), &miss); | 606 CompareICStub_CheckInputType(masm, rhs, r6, right(), &miss); |
597 | 607 |
598 Label slow; // Call builtin. | 608 Label slow; // Call builtin. |
599 Label not_smis, both_loaded_as_doubles, lhs_not_nan; | 609 Label not_smis, both_loaded_as_doubles, lhs_not_nan; |
600 | 610 |
601 Label not_two_smis, smi_done; | 611 Label not_two_smis, smi_done; |
602 __ orr(r2, r1, r0); | 612 __ orx(r5, r4, r3); |
603 __ JumpIfNotSmi(r2, ¬_two_smis); | 613 __ JumpIfNotSmi(r5, ¬_two_smis); |
604 __ mov(r1, Operand(r1, ASR, 1)); | 614 __ SmiUntag(r4); |
605 __ sub(r0, r1, Operand(r0, ASR, 1)); | 615 __ SmiUntag(r3); |
616 __ sub(r3, r4, r3); | |
606 __ Ret(); | 617 __ Ret(); |
607 __ bind(¬_two_smis); | 618 __ bind(¬_two_smis); |
608 | 619 |
609 // NOTICE! This code is only reached after a smi-fast-case check, so | 620 // NOTICE! This code is only reached after a smi-fast-case check, so |
610 // it is certain that at least one operand isn't a smi. | 621 // it is certain that at least one operand isn't a smi. |
611 | 622 |
612 // Handle the case where the objects are identical. Either returns the answer | 623 // Handle the case where the objects are identical. Either returns the answer |
613 // or goes to slow. Only falls through if the objects were not identical. | 624 // or goes to slow. Only falls through if the objects were not identical. |
614 EmitIdenticalObjectComparison(masm, &slow, cc); | 625 EmitIdenticalObjectComparison(masm, &slow, cc); |
615 | 626 |
616 // If either is a Smi (we know that not both are), then they can only | 627 // If either is a Smi (we know that not both are), then they can only |
617 // be strictly equal if the other is a HeapNumber. | 628 // be strictly equal if the other is a HeapNumber. |
618 STATIC_ASSERT(kSmiTag == 0); | 629 STATIC_ASSERT(kSmiTag == 0); |
619 DCHECK_EQ(0, Smi::FromInt(0)); | 630 DCHECK_EQ(0, Smi::FromInt(0)); |
620 __ and_(r2, lhs, Operand(rhs)); | 631 __ and_(r5, lhs, rhs); |
621 __ JumpIfNotSmi(r2, ¬_smis); | 632 __ JumpIfNotSmi(r5, ¬_smis); |
622 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: | 633 // One operand is a smi. EmitSmiNonsmiComparison generates code that can: |
623 // 1) Return the answer. | 634 // 1) Return the answer. |
624 // 2) Go to slow. | 635 // 2) Go to slow. |
625 // 3) Fall through to both_loaded_as_doubles. | 636 // 3) Fall through to both_loaded_as_doubles. |
626 // 4) Jump to lhs_not_nan. | 637 // 4) Jump to lhs_not_nan. |
627 // In cases 3 and 4 we have found out we were dealing with a number-number | 638 // In cases 3 and 4 we have found out we were dealing with a number-number |
628 // comparison. If VFP3 is supported the double values of the numbers have | 639 // comparison. The double values of the numbers have been loaded |
629 // been loaded into d7 and d6. Otherwise, the double values have been loaded | 640 // into d7 and d6. |
630 // into r0, r1, r2, and r3. | |
631 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); | 641 EmitSmiNonsmiComparison(masm, lhs, rhs, &lhs_not_nan, &slow, strict()); |
632 | 642 |
633 __ bind(&both_loaded_as_doubles); | 643 __ bind(&both_loaded_as_doubles); |
634 // The arguments have been converted to doubles and stored in d6 and d7, if | 644 // The arguments have been converted to doubles and stored in d6 and d7 |
635 // VFP3 is supported, or in r0, r1, r2, and r3. | |
636 __ bind(&lhs_not_nan); | 645 __ bind(&lhs_not_nan); |
637 Label no_nan; | 646 Label no_nan; |
638 // ARMv7 VFP3 instructions to implement double precision comparison. | 647 __ fcmpu(d7, d6); |
639 __ VFPCompareAndSetFlags(d7, d6); | 648 |
640 Label nan; | 649 Label nan, equal, less_than; |
641 __ b(vs, &nan); | 650 __ bunordered(&nan); |
642 __ mov(r0, Operand(EQUAL), LeaveCC, eq); | 651 __ beq(&equal); |
643 __ mov(r0, Operand(LESS), LeaveCC, lt); | 652 __ blt(&less_than); |
644 __ mov(r0, Operand(GREATER), LeaveCC, gt); | 653 __ li(r3, Operand(GREATER)); |
654 __ Ret(); | |
655 __ bind(&equal); | |
656 __ li(r3, Operand(EQUAL)); | |
657 __ Ret(); | |
658 __ bind(&less_than); | |
659 __ li(r3, Operand(LESS)); | |
645 __ Ret(); | 660 __ Ret(); |
646 | 661 |
647 __ bind(&nan); | 662 __ bind(&nan); |
648 // If one of the sides was a NaN then the v flag is set. Load r0 with | 663 // If one of the sides was a NaN then the v flag is set. Load r3 with |
649 // whatever it takes to make the comparison fail, since comparisons with NaN | 664 // whatever it takes to make the comparison fail, since comparisons with NaN |
650 // always fail. | 665 // always fail. |
651 if (cc == lt || cc == le) { | 666 if (cc == lt || cc == le) { |
652 __ mov(r0, Operand(GREATER)); | 667 __ li(r3, Operand(GREATER)); |
653 } else { | 668 } else { |
654 __ mov(r0, Operand(LESS)); | 669 __ li(r3, Operand(LESS)); |
655 } | 670 } |
656 __ Ret(); | 671 __ Ret(); |
657 | 672 |
658 __ bind(¬_smis); | 673 __ bind(¬_smis); |
659 // At this point we know we are dealing with two different objects, | 674 // At this point we know we are dealing with two different objects, |
660 // and neither of them is a Smi. The objects are in rhs_ and lhs_. | 675 // and neither of them is a Smi. The objects are in rhs_ and lhs_. |
661 if (strict()) { | 676 if (strict()) { |
662 // This returns non-equal for some object types, or falls through if it | 677 // This returns non-equal for some object types, or falls through if it |
663 // was not lucky. | 678 // was not lucky. |
664 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); | 679 EmitStrictTwoHeapObjectCompare(masm, lhs, rhs); |
665 } | 680 } |
666 | 681 |
667 Label check_for_internalized_strings; | 682 Label check_for_internalized_strings; |
668 Label flat_string_check; | 683 Label flat_string_check; |
669 // Check for heap-number-heap-number comparison. Can jump to slow case, | 684 // Check for heap-number-heap-number comparison. Can jump to slow case, |
670 // or load both doubles into r0, r1, r2, r3 and jump to the code that handles | 685 // or load both doubles into r3, r4, r5, r6 and jump to the code that handles |
671 // that case. If the inputs are not doubles then jumps to | 686 // that case. If the inputs are not doubles then jumps to |
672 // check_for_internalized_strings. | 687 // check_for_internalized_strings. |
673 // In this case r2 will contain the type of rhs_. Never falls through. | 688 // In this case r5 will contain the type of rhs_. Never falls through. |
674 EmitCheckForTwoHeapNumbers(masm, | 689 EmitCheckForTwoHeapNumbers(masm, lhs, rhs, &both_loaded_as_doubles, |
675 lhs, | |
676 rhs, | |
677 &both_loaded_as_doubles, | |
678 &check_for_internalized_strings, | 690 &check_for_internalized_strings, |
679 &flat_string_check); | 691 &flat_string_check); |
680 | 692 |
681 __ bind(&check_for_internalized_strings); | 693 __ bind(&check_for_internalized_strings); |
682 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of | 694 // In the strict case the EmitStrictTwoHeapObjectCompare already took care of |
683 // internalized strings. | 695 // internalized strings. |
684 if (cc == eq && !strict()) { | 696 if (cc == eq && !strict()) { |
685 // Returns an answer for two internalized strings or two detectable objects. | 697 // Returns an answer for two internalized strings or two detectable objects. |
686 // Otherwise jumps to string case or not both strings case. | 698 // Otherwise jumps to string case or not both strings case. |
687 // Assumes that r2 is the type of rhs_ on entry. | 699 // Assumes that r5 is the type of rhs_ on entry. |
688 EmitCheckForInternalizedStringsOrObjects( | 700 EmitCheckForInternalizedStringsOrObjects(masm, lhs, rhs, &flat_string_check, |
689 masm, lhs, rhs, &flat_string_check, &slow); | 701 &slow); |
690 } | 702 } |
691 | 703 |
692 // Check for both being sequential one-byte strings, | 704 // Check for both being sequential one-byte strings, |
693 // and inline if that is the case. | 705 // and inline if that is the case. |
694 __ bind(&flat_string_check); | 706 __ bind(&flat_string_check); |
695 | 707 |
696 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r2, r3, &slow); | 708 __ JumpIfNonSmisNotBothSequentialOneByteStrings(lhs, rhs, r5, r6, &slow); |
697 | 709 |
698 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r2, | 710 __ IncrementCounter(isolate()->counters()->string_compare_native(), 1, r5, |
699 r3); | 711 r6); |
700 if (cc == eq) { | 712 if (cc == eq) { |
701 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r2, r3, r4); | 713 StringHelper::GenerateFlatOneByteStringEquals(masm, lhs, rhs, r5, r6); |
702 } else { | 714 } else { |
703 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r2, r3, r4, | 715 StringHelper::GenerateCompareFlatOneByteStrings(masm, lhs, rhs, r5, r6, r7); |
704 r5); | |
705 } | 716 } |
706 // Never falls through to here. | 717 // Never falls through to here. |
707 | 718 |
708 __ bind(&slow); | 719 __ bind(&slow); |
709 | 720 |
710 __ Push(lhs, rhs); | 721 __ Push(lhs, rhs); |
711 // Figure out which native to call and setup the arguments. | 722 // Figure out which native to call and setup the arguments. |
712 Builtins::JavaScript native; | 723 Builtins::JavaScript native; |
713 if (cc == eq) { | 724 if (cc == eq) { |
714 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; | 725 native = strict() ? Builtins::STRICT_EQUALS : Builtins::EQUALS; |
715 } else { | 726 } else { |
716 native = Builtins::COMPARE; | 727 native = Builtins::COMPARE; |
717 int ncr; // NaN compare result | 728 int ncr; // NaN compare result |
718 if (cc == lt || cc == le) { | 729 if (cc == lt || cc == le) { |
719 ncr = GREATER; | 730 ncr = GREATER; |
720 } else { | 731 } else { |
721 DCHECK(cc == gt || cc == ge); // remaining cases | 732 DCHECK(cc == gt || cc == ge); // remaining cases |
722 ncr = LESS; | 733 ncr = LESS; |
723 } | 734 } |
724 __ mov(r0, Operand(Smi::FromInt(ncr))); | 735 __ LoadSmiLiteral(r3, Smi::FromInt(ncr)); |
725 __ push(r0); | 736 __ push(r3); |
726 } | 737 } |
727 | 738 |
728 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) | 739 // Call the native; it returns -1 (less), 0 (equal), or 1 (greater) |
729 // tagged as a small integer. | 740 // tagged as a small integer. |
730 __ InvokeBuiltin(native, JUMP_FUNCTION); | 741 __ InvokeBuiltin(native, JUMP_FUNCTION); |
731 | 742 |
732 __ bind(&miss); | 743 __ bind(&miss); |
733 GenerateMiss(masm); | 744 GenerateMiss(masm); |
734 } | 745 } |
735 | 746 |
736 | 747 |
737 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { | 748 void StoreBufferOverflowStub::Generate(MacroAssembler* masm) { |
738 // We don't allow a GC during a store buffer overflow so there is no need to | 749 // We don't allow a GC during a store buffer overflow so there is no need to |
739 // store the registers in any particular way, but we do have to store and | 750 // store the registers in any particular way, but we do have to store and |
740 // restore them. | 751 // restore them. |
741 __ stm(db_w, sp, kCallerSaved | lr.bit()); | 752 __ mflr(r0); |
742 | 753 __ MultiPush(kJSCallerSaved | r0.bit()); |
743 const Register scratch = r1; | |
744 | |
745 if (save_doubles()) { | 754 if (save_doubles()) { |
746 __ SaveFPRegs(sp, scratch); | 755 __ SaveFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters); |
747 } | 756 } |
748 const int argument_count = 1; | 757 const int argument_count = 1; |
749 const int fp_argument_count = 0; | 758 const int fp_argument_count = 0; |
759 const Register scratch = r4; | |
750 | 760 |
751 AllowExternalCallThatCantCauseGC scope(masm); | 761 AllowExternalCallThatCantCauseGC scope(masm); |
752 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); | 762 __ PrepareCallCFunction(argument_count, fp_argument_count, scratch); |
753 __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); | 763 __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); |
754 __ CallCFunction( | 764 __ CallCFunction(ExternalReference::store_buffer_overflow_function(isolate()), |
755 ExternalReference::store_buffer_overflow_function(isolate()), | 765 argument_count); |
756 argument_count); | |
757 if (save_doubles()) { | 766 if (save_doubles()) { |
758 __ RestoreFPRegs(sp, scratch); | 767 __ RestoreFPRegs(sp, 0, DoubleRegister::kNumVolatileRegisters); |
759 } | 768 } |
760 __ ldm(ia_w, sp, kCallerSaved | pc.bit()); // Also pop pc to get Ret(0). | 769 __ MultiPop(kJSCallerSaved | r0.bit()); |
770 __ mtlr(r0); | |
771 __ Ret(); | |
761 } | 772 } |
762 | 773 |
763 | 774 |
764 void MathPowStub::Generate(MacroAssembler* masm) { | 775 void MathPowStub::Generate(MacroAssembler* masm) { |
765 const Register base = r1; | 776 const Register base = r4; |
766 const Register exponent = MathPowTaggedDescriptor::exponent(); | 777 const Register exponent = MathPowTaggedDescriptor::exponent(); |
767 DCHECK(exponent.is(r2)); | 778 DCHECK(exponent.is(r5)); |
768 const Register heapnumbermap = r5; | 779 const Register heapnumbermap = r8; |
769 const Register heapnumber = r0; | 780 const Register heapnumber = r3; |
770 const DwVfpRegister double_base = d0; | 781 const DoubleRegister double_base = d1; |
771 const DwVfpRegister double_exponent = d1; | 782 const DoubleRegister double_exponent = d2; |
772 const DwVfpRegister double_result = d2; | 783 const DoubleRegister double_result = d3; |
773 const DwVfpRegister double_scratch = d3; | 784 const DoubleRegister double_scratch = d0; |
774 const SwVfpRegister single_scratch = s6; | 785 const Register scratch = r11; |
775 const Register scratch = r9; | 786 const Register scratch2 = r10; |
776 const Register scratch2 = r4; | |
777 | 787 |
778 Label call_runtime, done, int_exponent; | 788 Label call_runtime, done, int_exponent; |
779 if (exponent_type() == ON_STACK) { | 789 if (exponent_type() == ON_STACK) { |
780 Label base_is_smi, unpack_exponent; | 790 Label base_is_smi, unpack_exponent; |
781 // The exponent and base are supplied as arguments on the stack. | 791 // The exponent and base are supplied as arguments on the stack. |
782 // This can only happen if the stub is called from non-optimized code. | 792 // This can only happen if the stub is called from non-optimized code. |
783 // Load input parameters from stack to double registers. | 793 // Load input parameters from stack to double registers. |
784 __ ldr(base, MemOperand(sp, 1 * kPointerSize)); | 794 __ LoadP(base, MemOperand(sp, 1 * kPointerSize)); |
785 __ ldr(exponent, MemOperand(sp, 0 * kPointerSize)); | 795 __ LoadP(exponent, MemOperand(sp, 0 * kPointerSize)); |
786 | 796 |
787 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); | 797 __ LoadRoot(heapnumbermap, Heap::kHeapNumberMapRootIndex); |
788 | 798 |
789 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); | 799 __ UntagAndJumpIfSmi(scratch, base, &base_is_smi); |
790 __ ldr(scratch, FieldMemOperand(base, JSObject::kMapOffset)); | 800 __ LoadP(scratch, FieldMemOperand(base, JSObject::kMapOffset)); |
791 __ cmp(scratch, heapnumbermap); | 801 __ cmp(scratch, heapnumbermap); |
792 __ b(ne, &call_runtime); | 802 __ bne(&call_runtime); |
793 | 803 |
794 __ vldr(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); | 804 __ lfd(double_base, FieldMemOperand(base, HeapNumber::kValueOffset)); |
795 __ jmp(&unpack_exponent); | 805 __ b(&unpack_exponent); |
796 | 806 |
797 __ bind(&base_is_smi); | 807 __ bind(&base_is_smi); |
798 __ vmov(single_scratch, scratch); | 808 __ ConvertIntToDouble(scratch, double_base); |
799 __ vcvt_f64_s32(double_base, single_scratch); | |
800 __ bind(&unpack_exponent); | 809 __ bind(&unpack_exponent); |
801 | 810 |
802 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); | 811 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); |
812 __ LoadP(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); | |
813 __ cmp(scratch, heapnumbermap); | |
814 __ bne(&call_runtime); | |
803 | 815 |
804 __ ldr(scratch, FieldMemOperand(exponent, JSObject::kMapOffset)); | 816 __ lfd(double_exponent, |
805 __ cmp(scratch, heapnumbermap); | 817 FieldMemOperand(exponent, HeapNumber::kValueOffset)); |
806 __ b(ne, &call_runtime); | |
807 __ vldr(double_exponent, | |
808 FieldMemOperand(exponent, HeapNumber::kValueOffset)); | |
809 } else if (exponent_type() == TAGGED) { | 818 } else if (exponent_type() == TAGGED) { |
810 // Base is already in double_base. | 819 // Base is already in double_base. |
811 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); | 820 __ UntagAndJumpIfSmi(scratch, exponent, &int_exponent); |
812 | 821 |
813 __ vldr(double_exponent, | 822 __ lfd(double_exponent, |
814 FieldMemOperand(exponent, HeapNumber::kValueOffset)); | 823 FieldMemOperand(exponent, HeapNumber::kValueOffset)); |
815 } | 824 } |
816 | 825 |
817 if (exponent_type() != INTEGER) { | 826 if (exponent_type() != INTEGER) { |
818 Label int_exponent_convert; | |
819 // Detect integer exponents stored as double. | 827 // Detect integer exponents stored as double. |
820 __ vcvt_u32_f64(single_scratch, double_exponent); | 828 __ TryDoubleToInt32Exact(scratch, double_exponent, scratch2, |
821 // We do not check for NaN or Infinity here because comparing numbers on | 829 double_scratch); |
822 // ARM correctly distinguishes NaNs. We end up calling the built-in. | 830 __ beq(&int_exponent); |
823 __ vcvt_f64_u32(double_scratch, single_scratch); | |
824 __ VFPCompareAndSetFlags(double_scratch, double_exponent); | |
825 __ b(eq, &int_exponent_convert); | |
826 | 831 |
827 if (exponent_type() == ON_STACK) { | 832 if (exponent_type() == ON_STACK) { |
828 // Detect square root case. Crankshaft detects constant +/-0.5 at | 833 // Detect square root case. Crankshaft detects constant +/-0.5 at |
829 // compile time and uses DoMathPowHalf instead. We then skip this check | 834 // compile time and uses DoMathPowHalf instead. We then skip this check |
830 // for non-constant cases of +/-0.5 as these hardly occur. | 835 // for non-constant cases of +/-0.5 as these hardly occur. |
831 Label not_plus_half; | 836 Label not_plus_half, not_minus_inf1, not_minus_inf2; |
832 | 837 |
833 // Test for 0.5. | 838 // Test for 0.5. |
834 __ vmov(double_scratch, 0.5, scratch); | 839 __ LoadDoubleLiteral(double_scratch, 0.5, scratch); |
835 __ VFPCompareAndSetFlags(double_exponent, double_scratch); | 840 __ fcmpu(double_exponent, double_scratch); |
836 __ b(ne, ¬_plus_half); | 841 __ bne(¬_plus_half); |
837 | 842 |
838 // Calculates square root of base. Check for the special case of | 843 // Calculates square root of base. Check for the special case of |
839 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). | 844 // Math.pow(-Infinity, 0.5) == Infinity (ECMA spec, 15.8.2.13). |
840 __ vmov(double_scratch, -V8_INFINITY, scratch); | 845 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch); |
841 __ VFPCompareAndSetFlags(double_base, double_scratch); | 846 __ fcmpu(double_base, double_scratch); |
842 __ vneg(double_result, double_scratch, eq); | 847 __ bne(¬_minus_inf1); |
843 __ b(eq, &done); | 848 __ fneg(double_result, double_scratch); |
849 __ b(&done); | |
850 __ bind(¬_minus_inf1); | |
844 | 851 |
845 // Add +0 to convert -0 to +0. | 852 // Add +0 to convert -0 to +0. |
846 __ vadd(double_scratch, double_base, kDoubleRegZero); | 853 __ fadd(double_scratch, double_base, kDoubleRegZero); |
847 __ vsqrt(double_result, double_scratch); | 854 __ fsqrt(double_result, double_scratch); |
848 __ jmp(&done); | 855 __ b(&done); |
849 | 856 |
850 __ bind(¬_plus_half); | 857 __ bind(¬_plus_half); |
851 __ vmov(double_scratch, -0.5, scratch); | 858 __ LoadDoubleLiteral(double_scratch, -0.5, scratch); |
852 __ VFPCompareAndSetFlags(double_exponent, double_scratch); | 859 __ fcmpu(double_exponent, double_scratch); |
853 __ b(ne, &call_runtime); | 860 __ bne(&call_runtime); |
854 | 861 |
855 // Calculates square root of base. Check for the special case of | 862 // Calculates square root of base. Check for the special case of |
856 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). | 863 // Math.pow(-Infinity, -0.5) == 0 (ECMA spec, 15.8.2.13). |
857 __ vmov(double_scratch, -V8_INFINITY, scratch); | 864 __ LoadDoubleLiteral(double_scratch, -V8_INFINITY, scratch); |
858 __ VFPCompareAndSetFlags(double_base, double_scratch); | 865 __ fcmpu(double_base, double_scratch); |
859 __ vmov(double_result, kDoubleRegZero, eq); | 866 __ bne(¬_minus_inf2); |
860 __ b(eq, &done); | 867 __ fmr(double_result, kDoubleRegZero); |
868 __ b(&done); | |
869 __ bind(¬_minus_inf2); | |
861 | 870 |
862 // Add +0 to convert -0 to +0. | 871 // Add +0 to convert -0 to +0. |
863 __ vadd(double_scratch, double_base, kDoubleRegZero); | 872 __ fadd(double_scratch, double_base, kDoubleRegZero); |
864 __ vmov(double_result, 1.0, scratch); | 873 __ LoadDoubleLiteral(double_result, 1.0, scratch); |
865 __ vsqrt(double_scratch, double_scratch); | 874 __ fsqrt(double_scratch, double_scratch); |
866 __ vdiv(double_result, double_result, double_scratch); | 875 __ fdiv(double_result, double_result, double_scratch); |
867 __ jmp(&done); | 876 __ b(&done); |
868 } | 877 } |
869 | 878 |
870 __ push(lr); | 879 __ mflr(r0); |
880 __ push(r0); | |
871 { | 881 { |
872 AllowExternalCallThatCantCauseGC scope(masm); | 882 AllowExternalCallThatCantCauseGC scope(masm); |
873 __ PrepareCallCFunction(0, 2, scratch); | 883 __ PrepareCallCFunction(0, 2, scratch); |
874 __ MovToFloatParameters(double_base, double_exponent); | 884 __ MovToFloatParameters(double_base, double_exponent); |
875 __ CallCFunction( | 885 __ CallCFunction( |
876 ExternalReference::power_double_double_function(isolate()), | 886 ExternalReference::power_double_double_function(isolate()), 0, 2); |
877 0, 2); | |
878 } | 887 } |
879 __ pop(lr); | 888 __ pop(r0); |
889 __ mtlr(r0); | |
880 __ MovFromFloatResult(double_result); | 890 __ MovFromFloatResult(double_result); |
881 __ jmp(&done); | 891 __ b(&done); |
882 | |
883 __ bind(&int_exponent_convert); | |
884 __ vcvt_u32_f64(single_scratch, double_exponent); | |
885 __ vmov(scratch, single_scratch); | |
886 } | 892 } |
887 | 893 |
888 // Calculate power with integer exponent. | 894 // Calculate power with integer exponent. |
889 __ bind(&int_exponent); | 895 __ bind(&int_exponent); |
890 | 896 |
891 // Get two copies of exponent in the registers scratch and exponent. | 897 // Get two copies of exponent in the registers scratch and exponent. |
892 if (exponent_type() == INTEGER) { | 898 if (exponent_type() == INTEGER) { |
893 __ mov(scratch, exponent); | 899 __ mr(scratch, exponent); |
894 } else { | 900 } else { |
895 // Exponent has previously been stored into scratch as untagged integer. | 901 // Exponent has previously been stored into scratch as untagged integer. |
896 __ mov(exponent, scratch); | 902 __ mr(exponent, scratch); |
897 } | 903 } |
898 __ vmov(double_scratch, double_base); // Back up base. | 904 __ fmr(double_scratch, double_base); // Back up base. |
899 __ vmov(double_result, 1.0, scratch2); | 905 __ li(scratch2, Operand(1)); |
906 __ ConvertIntToDouble(scratch2, double_result); | |
900 | 907 |
901 // Get absolute value of exponent. | 908 // Get absolute value of exponent. |
902 __ cmp(scratch, Operand::Zero()); | 909 Label positive_exponent; |
903 __ mov(scratch2, Operand::Zero(), LeaveCC, mi); | 910 __ cmpi(scratch, Operand::Zero()); |
904 __ sub(scratch, scratch2, scratch, LeaveCC, mi); | 911 __ bge(&positive_exponent); |
912 __ neg(scratch, scratch); | |
913 __ bind(&positive_exponent); | |
905 | 914 |
906 Label while_true; | 915 Label while_true, no_carry, loop_end; |
907 __ bind(&while_true); | 916 __ bind(&while_true); |
908 __ mov(scratch, Operand(scratch, ASR, 1), SetCC); | 917 __ andi(scratch2, scratch, Operand(1)); |
909 __ vmul(double_result, double_result, double_scratch, cs); | 918 __ beq(&no_carry, cr0); |
910 __ vmul(double_scratch, double_scratch, double_scratch, ne); | 919 __ fmul(double_result, double_result, double_scratch); |
911 __ b(ne, &while_true); | 920 __ bind(&no_carry); |
921 __ ShiftRightArithImm(scratch, scratch, 1, SetRC); | |
922 __ beq(&loop_end, cr0); | |
923 __ fmul(double_scratch, double_scratch, double_scratch); | |
924 __ b(&while_true); | |
925 __ bind(&loop_end); | |
912 | 926 |
913 __ cmp(exponent, Operand::Zero()); | 927 __ cmpi(exponent, Operand::Zero()); |
914 __ b(ge, &done); | 928 __ bge(&done); |
915 __ vmov(double_scratch, 1.0, scratch); | 929 |
916 __ vdiv(double_result, double_scratch, double_result); | 930 __ li(scratch2, Operand(1)); |
931 __ ConvertIntToDouble(scratch2, double_scratch); | |
932 __ fdiv(double_result, double_scratch, double_result); | |
917 // Test whether result is zero. Bail out to check for subnormal result. | 933 // Test whether result is zero. Bail out to check for subnormal result. |
918 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. | 934 // Due to subnormals, x^-y == (1/x)^y does not hold in all cases. |
919 __ VFPCompareAndSetFlags(double_result, 0.0); | 935 __ fcmpu(double_result, kDoubleRegZero); |
920 __ b(ne, &done); | 936 __ bne(&done); |
921 // double_exponent may not containe the exponent value if the input was a | 937 // double_exponent may not containe the exponent value if the input was a |
922 // smi. We set it with exponent value before bailing out. | 938 // smi. We set it with exponent value before bailing out. |
923 __ vmov(single_scratch, exponent); | 939 __ ConvertIntToDouble(exponent, double_exponent); |
924 __ vcvt_f64_s32(double_exponent, single_scratch); | |
925 | 940 |
926 // Returning or bailing out. | 941 // Returning or bailing out. |
927 Counters* counters = isolate()->counters(); | 942 Counters* counters = isolate()->counters(); |
928 if (exponent_type() == ON_STACK) { | 943 if (exponent_type() == ON_STACK) { |
929 // The arguments are still on the stack. | 944 // The arguments are still on the stack. |
930 __ bind(&call_runtime); | 945 __ bind(&call_runtime); |
931 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1); | 946 __ TailCallRuntime(Runtime::kMathPowRT, 2, 1); |
932 | 947 |
933 // The stub is called from non-optimized code, which expects the result | 948 // The stub is called from non-optimized code, which expects the result |
934 // as heap number in exponent. | 949 // as heap number in exponent. |
935 __ bind(&done); | 950 __ bind(&done); |
936 __ AllocateHeapNumber( | 951 __ AllocateHeapNumber(heapnumber, scratch, scratch2, heapnumbermap, |
937 heapnumber, scratch, scratch2, heapnumbermap, &call_runtime); | 952 &call_runtime); |
938 __ vstr(double_result, | 953 __ stfd(double_result, |
939 FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); | 954 FieldMemOperand(heapnumber, HeapNumber::kValueOffset)); |
940 DCHECK(heapnumber.is(r0)); | 955 DCHECK(heapnumber.is(r3)); |
941 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); | 956 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); |
942 __ Ret(2); | 957 __ Ret(2); |
943 } else { | 958 } else { |
944 __ push(lr); | 959 __ mflr(r0); |
960 __ push(r0); | |
945 { | 961 { |
946 AllowExternalCallThatCantCauseGC scope(masm); | 962 AllowExternalCallThatCantCauseGC scope(masm); |
947 __ PrepareCallCFunction(0, 2, scratch); | 963 __ PrepareCallCFunction(0, 2, scratch); |
948 __ MovToFloatParameters(double_base, double_exponent); | 964 __ MovToFloatParameters(double_base, double_exponent); |
949 __ CallCFunction( | 965 __ CallCFunction( |
950 ExternalReference::power_double_double_function(isolate()), | 966 ExternalReference::power_double_double_function(isolate()), 0, 2); |
951 0, 2); | |
952 } | 967 } |
953 __ pop(lr); | 968 __ pop(r0); |
969 __ mtlr(r0); | |
954 __ MovFromFloatResult(double_result); | 970 __ MovFromFloatResult(double_result); |
955 | 971 |
956 __ bind(&done); | 972 __ bind(&done); |
957 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); | 973 __ IncrementCounter(counters->math_pow(), 1, scratch, scratch2); |
958 __ Ret(); | 974 __ Ret(); |
959 } | 975 } |
960 } | 976 } |
961 | 977 |
962 | 978 |
963 bool CEntryStub::NeedsImmovableCode() { | 979 bool CEntryStub::NeedsImmovableCode() { return true; } |
964 return true; | |
965 } | |
966 | 980 |
967 | 981 |
968 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { | 982 void CodeStub::GenerateStubsAheadOfTime(Isolate* isolate) { |
969 CEntryStub::GenerateAheadOfTime(isolate); | 983 CEntryStub::GenerateAheadOfTime(isolate); |
970 WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate); | 984 // WriteInt32ToHeapNumberStub::GenerateFixedRegStubsAheadOfTime(isolate); |
danno
2014/10/20 08:28:43
Really delete this line?
andrew_low
2014/11/07 18:03:17
When we were doing this work originally including
andrew_low
2014/11/07 19:25:28
Hah. One of the guys here looked at it, and it app
| |
971 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); | 985 StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime(isolate); |
972 StubFailureTrampolineStub::GenerateAheadOfTime(isolate); | 986 StubFailureTrampolineStub::GenerateAheadOfTime(isolate); |
973 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); | 987 ArrayConstructorStubBase::GenerateStubsAheadOfTime(isolate); |
974 CreateAllocationSiteStub::GenerateAheadOfTime(isolate); | 988 CreateAllocationSiteStub::GenerateAheadOfTime(isolate); |
975 BinaryOpICStub::GenerateAheadOfTime(isolate); | 989 BinaryOpICStub::GenerateAheadOfTime(isolate); |
976 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); | 990 BinaryOpICWithAllocationSiteStub::GenerateAheadOfTime(isolate); |
977 } | 991 } |
978 | 992 |
979 | 993 |
980 void CodeStub::GenerateFPStubs(Isolate* isolate) { | 994 void CodeStub::GenerateFPStubs(Isolate* isolate) { |
981 // Generate if not already in cache. | 995 // Generate if not already in cache. |
982 SaveFPRegsMode mode = kSaveFPRegs; | 996 SaveFPRegsMode mode = kSaveFPRegs; |
983 CEntryStub(isolate, 1, mode).GetCode(); | 997 CEntryStub(isolate, 1, mode).GetCode(); |
984 StoreBufferOverflowStub(isolate, mode).GetCode(); | 998 StoreBufferOverflowStub(isolate, mode).GetCode(); |
985 isolate->set_fp_stubs_generated(true); | 999 isolate->set_fp_stubs_generated(true); |
986 } | 1000 } |
987 | 1001 |
988 | 1002 |
989 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { | 1003 void CEntryStub::GenerateAheadOfTime(Isolate* isolate) { |
990 CEntryStub stub(isolate, 1, kDontSaveFPRegs); | 1004 CEntryStub stub(isolate, 1, kDontSaveFPRegs); |
991 stub.GetCode(); | 1005 stub.GetCode(); |
992 } | 1006 } |
993 | 1007 |
994 | 1008 |
995 void CEntryStub::Generate(MacroAssembler* masm) { | 1009 void CEntryStub::Generate(MacroAssembler* masm) { |
996 // Called from JavaScript; parameters are on stack as if calling JS function. | 1010 // Called from JavaScript; parameters are on stack as if calling JS function. |
997 // r0: number of arguments including receiver | 1011 // r3: number of arguments including receiver |
998 // r1: pointer to builtin function | 1012 // r4: pointer to builtin function |
999 // fp: frame pointer (restored after C call) | 1013 // fp: frame pointer (restored after C call) |
1000 // sp: stack pointer (restored as callee's sp after C call) | 1014 // sp: stack pointer (restored as callee's sp after C call) |
1001 // cp: current context (C callee-saved) | 1015 // cp: current context (C callee-saved) |
1002 | 1016 |
1003 ProfileEntryHookStub::MaybeCallEntryHook(masm); | 1017 ProfileEntryHookStub::MaybeCallEntryHook(masm); |
1004 | 1018 |
1005 __ mov(r5, Operand(r1)); | 1019 __ mr(r15, r4); |
1006 | 1020 |
1007 // Compute the argv pointer in a callee-saved register. | 1021 // Compute the argv pointer. |
1008 __ add(r1, sp, Operand(r0, LSL, kPointerSizeLog2)); | 1022 __ ShiftLeftImm(r4, r3, Operand(kPointerSizeLog2)); |
1009 __ sub(r1, r1, Operand(kPointerSize)); | 1023 __ add(r4, r4, sp); |
1024 __ subi(r4, r4, Operand(kPointerSize)); | |
1010 | 1025 |
1011 // Enter the exit frame that transitions from JavaScript to C++. | 1026 // Enter the exit frame that transitions from JavaScript to C++. |
1012 FrameScope scope(masm, StackFrame::MANUAL); | 1027 FrameScope scope(masm, StackFrame::MANUAL); |
1013 __ EnterExitFrame(save_doubles()); | 1028 |
1029 // Need at least one extra slot for return address location. | |
1030 int arg_stack_space = 1; | |
1031 | |
1032 // PPC LINUX ABI: | |
1033 #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS | |
1034 // Pass buffer for return value on stack if necessary | |
1035 if (result_size() > 1) { | |
1036 DCHECK_EQ(2, result_size()); | |
1037 arg_stack_space += 2; | |
1038 } | |
1039 #endif | |
1040 | |
1041 __ EnterExitFrame(save_doubles(), arg_stack_space); | |
1014 | 1042 |
1015 // Store a copy of argc in callee-saved registers for later. | 1043 // Store a copy of argc in callee-saved registers for later. |
1016 __ mov(r4, Operand(r0)); | 1044 __ mr(r14, r3); |
1017 | 1045 |
1018 // r0, r4: number of arguments including receiver (C callee-saved) | 1046 // r3, r14: number of arguments including receiver (C callee-saved) |
1019 // r1: pointer to the first argument (C callee-saved) | 1047 // r4: pointer to the first argument |
1020 // r5: pointer to builtin function (C callee-saved) | 1048 // r15: pointer to builtin function (C callee-saved) |
1021 | 1049 |
1022 // Result returned in r0 or r0+r1 by default. | 1050 // Result returned in registers or stack, depending on result size and ABI. |
1023 | 1051 |
1024 #if V8_HOST_ARCH_ARM | 1052 Register isolate_reg = r5; |
1025 int frame_alignment = MacroAssembler::ActivationFrameAlignment(); | 1053 #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS |
1026 int frame_alignment_mask = frame_alignment - 1; | 1054 if (result_size() > 1) { |
1027 if (FLAG_debug_code) { | 1055 // The return value is 16-byte non-scalar value. |
1028 if (frame_alignment > kPointerSize) { | 1056 // Use frame storage reserved by calling function to pass return |
1029 Label alignment_as_expected; | 1057 // buffer as implicit first argument. |
1030 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); | 1058 __ mr(r5, r4); |
1031 __ tst(sp, Operand(frame_alignment_mask)); | 1059 __ mr(r4, r3); |
1032 __ b(eq, &alignment_as_expected); | 1060 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); |
1033 // Don't use Check here, as it will call Runtime_Abort re-entering here. | 1061 isolate_reg = r6; |
1034 __ stop("Unexpected alignment"); | |
1035 __ bind(&alignment_as_expected); | |
1036 } | |
1037 } | 1062 } |
1038 #endif | 1063 #endif |
1039 | 1064 |
1040 // Call C built-in. | 1065 // Call C built-in. |
1041 // r0 = argc, r1 = argv | 1066 __ mov(isolate_reg, Operand(ExternalReference::isolate_address(isolate()))); |
1042 __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); | 1067 |
1068 #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR) | |
1069 // Native AIX/PPC64 Linux use a function descriptor. | |
1070 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(r15, kPointerSize)); | |
1071 __ LoadP(ip, MemOperand(r15, 0)); // Instruction address | |
1072 Register target = ip; | |
1073 #elif ABI_TOC_ADDRESSABILITY_VIA_IP | |
1074 __ Move(ip, r15); | |
1075 Register target = ip; | |
1076 #else | |
1077 Register target = r15; | |
1078 #endif | |
1043 | 1079 |
1044 // To let the GC traverse the return address of the exit frames, we need to | 1080 // To let the GC traverse the return address of the exit frames, we need to |
1045 // know where the return address is. The CEntryStub is unmovable, so | 1081 // know where the return address is. The CEntryStub is unmovable, so |
1046 // we can store the address on the stack to be able to find it again and | 1082 // we can store the address on the stack to be able to find it again and |
1047 // we never have to restore it, because it will not change. | 1083 // we never have to restore it, because it will not change. |
1048 // Compute the return address in lr to return to after the jump below. Pc is | 1084 // Compute the return address in lr to return to after the jump below. Pc is |
1049 // already at '+ 8' from the current instruction but return is after three | 1085 // already at '+ 8' from the current instruction but return is after three |
1050 // instructions so add another 4 to pc to get the return address. | 1086 // instructions so add another 4 to pc to get the return address. |
1051 { | 1087 { |
1052 // Prevent literal pool emission before return address. | 1088 Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm); |
1053 Assembler::BlockConstPoolScope block_const_pool(masm); | 1089 Label here; |
1054 __ add(lr, pc, Operand(4)); | 1090 __ b(&here, SetLK); |
1055 __ str(lr, MemOperand(sp, 0)); | 1091 __ bind(&here); |
1056 __ Call(r5); | 1092 __ mflr(r8); |
1057 } | 1093 |
1058 | 1094 // Constant used below is dependent on size of Call() macro instructions |
1059 __ VFPEnsureFPSCRState(r2); | 1095 __ addi(r0, r8, Operand(20)); |
1096 | |
1097 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); | |
1098 __ Call(target); | |
1099 } | |
1100 | |
1101 // roohack - do we need to (re)set FPU state? | |
1102 | |
1103 #if V8_TARGET_ARCH_PPC64 && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS | |
1104 // If return value is on the stack, pop it to registers. | |
1105 if (result_size() > 1) { | |
1106 __ LoadP(r4, MemOperand(r3, kPointerSize)); | |
1107 __ LoadP(r3, MemOperand(r3)); | |
1108 } | |
1109 #endif | |
1060 | 1110 |
1061 // Runtime functions should not return 'the hole'. Allowing it to escape may | 1111 // Runtime functions should not return 'the hole'. Allowing it to escape may |
1062 // lead to crashes in the IC code later. | 1112 // lead to crashes in the IC code later. |
1063 if (FLAG_debug_code) { | 1113 if (FLAG_debug_code) { |
1064 Label okay; | 1114 Label okay; |
1065 __ CompareRoot(r0, Heap::kTheHoleValueRootIndex); | 1115 __ CompareRoot(r3, Heap::kTheHoleValueRootIndex); |
1066 __ b(ne, &okay); | 1116 __ bne(&okay); |
1067 __ stop("The hole escaped"); | 1117 __ stop("The hole escaped"); |
1068 __ bind(&okay); | 1118 __ bind(&okay); |
1069 } | 1119 } |
1070 | 1120 |
1071 // Check result for exception sentinel. | 1121 // Check result for exception sentinel. |
1072 Label exception_returned; | 1122 Label exception_returned; |
1073 __ CompareRoot(r0, Heap::kExceptionRootIndex); | 1123 __ CompareRoot(r3, Heap::kExceptionRootIndex); |
1074 __ b(eq, &exception_returned); | 1124 __ beq(&exception_returned); |
1075 | 1125 |
1076 ExternalReference pending_exception_address( | 1126 ExternalReference pending_exception_address(Isolate::kPendingExceptionAddress, |
1077 Isolate::kPendingExceptionAddress, isolate()); | 1127 isolate()); |
1078 | 1128 |
1079 // Check that there is no pending exception, otherwise we | 1129 // Check that there is no pending exception, otherwise we |
1080 // should have returned the exception sentinel. | 1130 // should have returned the exception sentinel. |
1081 if (FLAG_debug_code) { | 1131 if (FLAG_debug_code) { |
1082 Label okay; | 1132 Label okay; |
1083 __ mov(r2, Operand(pending_exception_address)); | 1133 __ mov(r5, Operand(pending_exception_address)); |
1084 __ ldr(r2, MemOperand(r2)); | 1134 __ LoadP(r5, MemOperand(r5)); |
1085 __ CompareRoot(r2, Heap::kTheHoleValueRootIndex); | 1135 __ CompareRoot(r5, Heap::kTheHoleValueRootIndex); |
1086 // Cannot use check here as it attempts to generate call into runtime. | 1136 // Cannot use check here as it attempts to generate call into runtime. |
1087 __ b(eq, &okay); | 1137 __ beq(&okay); |
1088 __ stop("Unexpected pending exception"); | 1138 __ stop("Unexpected pending exception"); |
1089 __ bind(&okay); | 1139 __ bind(&okay); |
1090 } | 1140 } |
1091 | 1141 |
1092 // Exit C frame and return. | 1142 // Exit C frame and return. |
1093 // r0:r1: result | 1143 // r3:r4: result |
1094 // sp: stack pointer | 1144 // sp: stack pointer |
1095 // fp: frame pointer | 1145 // fp: frame pointer |
1096 // Callee-saved register r4 still holds argc. | 1146 // r14: still holds argc (callee-saved). |
1097 __ LeaveExitFrame(save_doubles(), r4, true); | 1147 __ LeaveExitFrame(save_doubles(), r14, true); |
1098 __ mov(pc, lr); | 1148 __ blr(); |
1099 | 1149 |
1100 // Handling of exception. | 1150 // Handling of exception. |
1101 __ bind(&exception_returned); | 1151 __ bind(&exception_returned); |
1102 | 1152 |
1103 // Retrieve the pending exception. | 1153 // Retrieve the pending exception. |
1104 __ mov(r2, Operand(pending_exception_address)); | 1154 __ mov(r5, Operand(pending_exception_address)); |
1105 __ ldr(r0, MemOperand(r2)); | 1155 __ LoadP(r3, MemOperand(r5)); |
1106 | 1156 |
1107 // Clear the pending exception. | 1157 // Clear the pending exception. |
1108 __ LoadRoot(r3, Heap::kTheHoleValueRootIndex); | 1158 __ LoadRoot(r6, Heap::kTheHoleValueRootIndex); |
1109 __ str(r3, MemOperand(r2)); | 1159 __ StoreP(r6, MemOperand(r5)); |
1110 | 1160 |
1111 // Special handling of termination exceptions which are uncatchable | 1161 // Special handling of termination exceptions which are uncatchable |
1112 // by javascript code. | 1162 // by javascript code. |
1113 Label throw_termination_exception; | 1163 Label throw_termination_exception; |
1114 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex); | 1164 __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex); |
1115 __ b(eq, &throw_termination_exception); | 1165 __ beq(&throw_termination_exception); |
1116 | 1166 |
1117 // Handle normal exception. | 1167 // Handle normal exception. |
1118 __ Throw(r0); | 1168 __ Throw(r3); |
1119 | 1169 |
1120 __ bind(&throw_termination_exception); | 1170 __ bind(&throw_termination_exception); |
1121 __ ThrowUncatchable(r0); | 1171 __ ThrowUncatchable(r3); |
1122 } | 1172 } |
1123 | 1173 |
1124 | 1174 |
1125 void JSEntryStub::Generate(MacroAssembler* masm) { | 1175 void JSEntryStub::Generate(MacroAssembler* masm) { |
1126 // r0: code entry | 1176 // r3: code entry |
1127 // r1: function | 1177 // r4: function |
1128 // r2: receiver | 1178 // r5: receiver |
1129 // r3: argc | 1179 // r6: argc |
1130 // [sp+0]: argv | 1180 // [sp+0]: argv |
1131 | 1181 |
1132 Label invoke, handler_entry, exit; | 1182 Label invoke, handler_entry, exit; |
1133 | 1183 |
1184 // Called from C | |
1185 #if ABI_USES_FUNCTION_DESCRIPTORS | |
1186 __ function_descriptor(); | |
1187 #endif | |
1188 | |
1134 ProfileEntryHookStub::MaybeCallEntryHook(masm); | 1189 ProfileEntryHookStub::MaybeCallEntryHook(masm); |
1135 | 1190 |
1136 // Called from C, so do not pop argc and args on exit (preserve sp) | 1191 // PPC LINUX ABI: |
1137 // No need to save register-passed args | 1192 // preserve LR in pre-reserved slot in caller's frame |
1138 // Save callee-saved registers (incl. cp and fp), sp, and lr | 1193 __ mflr(r0); |
1139 __ stm(db_w, sp, kCalleeSaved | lr.bit()); | 1194 __ StoreP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize)); |
1140 | 1195 |
1141 // Save callee-saved vfp registers. | 1196 // Save callee saved registers on the stack. |
1142 __ vstm(db_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); | 1197 __ MultiPush(kCalleeSaved); |
1143 // Set up the reserved register for 0.0. | 1198 |
1144 __ vmov(kDoubleRegZero, 0.0); | 1199 // Floating point regs FPR0 - FRP13 are volatile |
1145 __ VFPEnsureFPSCRState(r4); | 1200 // FPR14-FPR31 are non-volatile, but sub-calls will save them for us |
1146 | 1201 |
1147 // Get address of argv, see stm above. | 1202 // int offset_to_argv = kPointerSize * 22; // matches (22*4) above |
1148 // r0: code entry | 1203 // __ lwz(r7, MemOperand(sp, offset_to_argv)); |
1149 // r1: function | |
1150 // r2: receiver | |
1151 // r3: argc | |
1152 | |
1153 // Set up argv in r4. | |
1154 int offset_to_argv = (kNumCalleeSaved + 1) * kPointerSize; | |
1155 offset_to_argv += kNumDoubleCalleeSaved * kDoubleSize; | |
1156 __ ldr(r4, MemOperand(sp, offset_to_argv)); | |
1157 | 1204 |
1158 // Push a frame with special values setup to mark it as an entry frame. | 1205 // Push a frame with special values setup to mark it as an entry frame. |
1159 // r0: code entry | 1206 // r3: code entry |
1160 // r1: function | 1207 // r4: function |
1161 // r2: receiver | 1208 // r5: receiver |
1162 // r3: argc | 1209 // r6: argc |
1163 // r4: argv | 1210 // r7: argv |
1211 __ li(r0, Operand(-1)); // Push a bad frame pointer to fail if it is used. | |
1212 __ push(r0); | |
1213 #if V8_OOL_CONSTANT_POOL | |
1214 __ mov(kConstantPoolRegister, | |
1215 Operand(isolate()->factory()->empty_constant_pool_array())); | |
1216 __ push(kConstantPoolRegister); | |
1217 #endif | |
1164 int marker = type(); | 1218 int marker = type(); |
1165 if (FLAG_enable_ool_constant_pool) { | 1219 __ LoadSmiLiteral(r0, Smi::FromInt(marker)); |
1166 __ mov(r8, Operand(isolate()->factory()->empty_constant_pool_array())); | 1220 __ push(r0); |
1167 } | 1221 __ push(r0); |
1168 __ mov(r7, Operand(Smi::FromInt(marker))); | 1222 // Save copies of the top frame descriptor on the stack. |
1169 __ mov(r6, Operand(Smi::FromInt(marker))); | 1223 __ mov(r8, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); |
1170 __ mov(r5, | 1224 __ LoadP(r0, MemOperand(r8)); |
1171 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); | 1225 __ push(r0); |
1172 __ ldr(r5, MemOperand(r5)); | |
1173 __ mov(ip, Operand(-1)); // Push a bad frame pointer to fail if it is used. | |
1174 __ stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | | |
1175 (FLAG_enable_ool_constant_pool ? r8.bit() : 0) | | |
1176 ip.bit()); | |
1177 | 1226 |
1178 // Set up frame pointer for the frame to be pushed. | 1227 // Set up frame pointer for the frame to be pushed. |
1179 __ add(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); | 1228 __ addi(fp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
1180 | 1229 |
1181 // If this is the outermost JS call, set js_entry_sp value. | 1230 // If this is the outermost JS call, set js_entry_sp value. |
1182 Label non_outermost_js; | 1231 Label non_outermost_js; |
1183 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); | 1232 ExternalReference js_entry_sp(Isolate::kJSEntrySPAddress, isolate()); |
1184 __ mov(r5, Operand(ExternalReference(js_entry_sp))); | 1233 __ mov(r8, Operand(ExternalReference(js_entry_sp))); |
1185 __ ldr(r6, MemOperand(r5)); | 1234 __ LoadP(r9, MemOperand(r8)); |
1186 __ cmp(r6, Operand::Zero()); | 1235 __ cmpi(r9, Operand::Zero()); |
1187 __ b(ne, &non_outermost_js); | 1236 __ bne(&non_outermost_js); |
1188 __ str(fp, MemOperand(r5)); | 1237 __ StoreP(fp, MemOperand(r8)); |
1189 __ mov(ip, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); | 1238 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME)); |
1190 Label cont; | 1239 Label cont; |
1191 __ b(&cont); | 1240 __ b(&cont); |
1192 __ bind(&non_outermost_js); | 1241 __ bind(&non_outermost_js); |
1193 __ mov(ip, Operand(Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME))); | 1242 __ LoadSmiLiteral(ip, Smi::FromInt(StackFrame::INNER_JSENTRY_FRAME)); |
1194 __ bind(&cont); | 1243 __ bind(&cont); |
1195 __ push(ip); | 1244 __ push(ip); // frame-type |
1196 | 1245 |
1197 // Jump to a faked try block that does the invoke, with a faked catch | 1246 // Jump to a faked try block that does the invoke, with a faked catch |
1198 // block that sets the pending exception. | 1247 // block that sets the pending exception. |
1199 __ jmp(&invoke); | 1248 __ b(&invoke); |
1200 | 1249 |
1201 // Block literal pool emission whilst taking the position of the handler | 1250 __ bind(&handler_entry); |
1202 // entry. This avoids making the assumption that literal pools are always | 1251 handler_offset_ = handler_entry.pos(); |
1203 // emitted after an instruction is emitted, rather than before. | 1252 // Caught exception: Store result (exception) in the pending exception |
1204 { | 1253 // field in the JSEnv and return a failure sentinel. Coming in here the |
1205 Assembler::BlockConstPoolScope block_const_pool(masm); | 1254 // fp will be invalid because the PushTryHandler below sets it to 0 to |
1206 __ bind(&handler_entry); | 1255 // signal the existence of the JSEntry frame. |
1207 handler_offset_ = handler_entry.pos(); | 1256 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
1208 // Caught exception: Store result (exception) in the pending exception | 1257 isolate()))); |
1209 // field in the JSEnv and return a failure sentinel. Coming in here the | 1258 |
1210 // fp will be invalid because the PushTryHandler below sets it to 0 to | 1259 __ StoreP(r3, MemOperand(ip)); |
1211 // signal the existence of the JSEntry frame. | 1260 __ LoadRoot(r3, Heap::kExceptionRootIndex); |
1212 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, | |
1213 isolate()))); | |
1214 } | |
1215 __ str(r0, MemOperand(ip)); | |
1216 __ LoadRoot(r0, Heap::kExceptionRootIndex); | |
1217 __ b(&exit); | 1261 __ b(&exit); |
1218 | 1262 |
1219 // Invoke: Link this frame into the handler chain. There's only one | 1263 // Invoke: Link this frame into the handler chain. There's only one |
1220 // handler block in this code object, so its index is 0. | 1264 // handler block in this code object, so its index is 0. |
1221 __ bind(&invoke); | 1265 __ bind(&invoke); |
1222 // Must preserve r0-r4, r5-r6 are available. | 1266 // Must preserve r0-r4, r5-r7 are available. (needs update for PPC) |
1223 __ PushTryHandler(StackHandler::JS_ENTRY, 0); | 1267 __ PushTryHandler(StackHandler::JS_ENTRY, 0); |
1224 // If an exception not caught by another handler occurs, this handler | 1268 // If an exception not caught by another handler occurs, this handler |
1225 // returns control to the code after the bl(&invoke) above, which | 1269 // returns control to the code after the b(&invoke) above, which |
1226 // restores all kCalleeSaved registers (including cp and fp) to their | 1270 // restores all kCalleeSaved registers (including cp and fp) to their |
1227 // saved values before returning a failure to C. | 1271 // saved values before returning a failure to C. |
1228 | 1272 |
1229 // Clear any pending exceptions. | 1273 // Clear any pending exceptions. |
1230 __ mov(r5, Operand(isolate()->factory()->the_hole_value())); | 1274 __ mov(r8, Operand(isolate()->factory()->the_hole_value())); |
1231 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, | 1275 __ mov(ip, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
1232 isolate()))); | 1276 isolate()))); |
1233 __ str(r5, MemOperand(ip)); | 1277 __ StoreP(r8, MemOperand(ip)); |
1234 | 1278 |
1235 // Invoke the function by calling through JS entry trampoline builtin. | 1279 // Invoke the function by calling through JS entry trampoline builtin. |
1236 // Notice that we cannot store a reference to the trampoline code directly in | 1280 // Notice that we cannot store a reference to the trampoline code directly in |
1237 // this stub, because runtime stubs are not traversed when doing GC. | 1281 // this stub, because runtime stubs are not traversed when doing GC. |
1238 | 1282 |
1239 // Expected registers by Builtins::JSEntryTrampoline | 1283 // Expected registers by Builtins::JSEntryTrampoline |
1240 // r0: code entry | 1284 // r3: code entry |
1241 // r1: function | 1285 // r4: function |
1242 // r2: receiver | 1286 // r5: receiver |
1243 // r3: argc | 1287 // r6: argc |
1244 // r4: argv | 1288 // r7: argv |
1245 if (type() == StackFrame::ENTRY_CONSTRUCT) { | 1289 if (type() == StackFrame::ENTRY_CONSTRUCT) { |
1246 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, | 1290 ExternalReference construct_entry(Builtins::kJSConstructEntryTrampoline, |
1247 isolate()); | 1291 isolate()); |
1248 __ mov(ip, Operand(construct_entry)); | 1292 __ mov(ip, Operand(construct_entry)); |
1249 } else { | 1293 } else { |
1250 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); | 1294 ExternalReference entry(Builtins::kJSEntryTrampoline, isolate()); |
1251 __ mov(ip, Operand(entry)); | 1295 __ mov(ip, Operand(entry)); |
1252 } | 1296 } |
1253 __ ldr(ip, MemOperand(ip)); // deref address | 1297 __ LoadP(ip, MemOperand(ip)); // deref address |
1254 __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); | |
1255 | 1298 |
1256 // Branch and link to JSEntryTrampoline. | 1299 // Branch and link to JSEntryTrampoline. |
1257 __ Call(ip); | 1300 // the address points to the start of the code object, skip the header |
1301 __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); | |
1302 __ mtctr(ip); | |
1303 __ bctrl(); // make the call | |
1258 | 1304 |
1259 // Unlink this frame from the handler chain. | 1305 // Unlink this frame from the handler chain. |
1260 __ PopTryHandler(); | 1306 __ PopTryHandler(); |
1261 | 1307 |
1262 __ bind(&exit); // r0 holds result | 1308 __ bind(&exit); // r3 holds result |
1263 // Check if the current stack frame is marked as the outermost JS frame. | 1309 // Check if the current stack frame is marked as the outermost JS frame. |
1264 Label non_outermost_js_2; | 1310 Label non_outermost_js_2; |
1265 __ pop(r5); | 1311 __ pop(r8); |
1266 __ cmp(r5, Operand(Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME))); | 1312 __ CmpSmiLiteral(r8, Smi::FromInt(StackFrame::OUTERMOST_JSENTRY_FRAME), r0); |
1267 __ b(ne, &non_outermost_js_2); | 1313 __ bne(&non_outermost_js_2); |
1268 __ mov(r6, Operand::Zero()); | 1314 __ mov(r9, Operand::Zero()); |
1269 __ mov(r5, Operand(ExternalReference(js_entry_sp))); | 1315 __ mov(r8, Operand(ExternalReference(js_entry_sp))); |
1270 __ str(r6, MemOperand(r5)); | 1316 __ StoreP(r9, MemOperand(r8)); |
1271 __ bind(&non_outermost_js_2); | 1317 __ bind(&non_outermost_js_2); |
1272 | 1318 |
1273 // Restore the top frame descriptors from the stack. | 1319 // Restore the top frame descriptors from the stack. |
1274 __ pop(r3); | 1320 __ pop(r6); |
1275 __ mov(ip, | 1321 __ mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); |
1276 Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); | 1322 __ StoreP(r6, MemOperand(ip)); |
1277 __ str(r3, MemOperand(ip)); | |
1278 | 1323 |
1279 // Reset the stack to the callee saved registers. | 1324 // Reset the stack to the callee saved registers. |
1280 __ add(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); | 1325 __ addi(sp, sp, Operand(-EntryFrameConstants::kCallerFPOffset)); |
1281 | 1326 |
1282 // Restore callee-saved registers and return. | 1327 // Restore callee-saved registers and return. |
1283 #ifdef DEBUG | 1328 #ifdef DEBUG |
1284 if (FLAG_debug_code) { | 1329 if (FLAG_debug_code) { |
1285 __ mov(lr, Operand(pc)); | 1330 Label here; |
1331 __ b(&here, SetLK); | |
1332 __ bind(&here); | |
1286 } | 1333 } |
1287 #endif | 1334 #endif |
1288 | 1335 |
1289 // Restore callee-saved vfp registers. | 1336 __ MultiPop(kCalleeSaved); |
1290 __ vldm(ia_w, sp, kFirstCalleeSavedDoubleReg, kLastCalleeSavedDoubleReg); | |
1291 | 1337 |
1292 __ ldm(ia_w, sp, kCalleeSaved | pc.bit()); | 1338 __ LoadP(r0, MemOperand(sp, kStackFrameLRSlot * kPointerSize)); |
1339 __ mtctr(r0); | |
1340 __ bctr(); | |
1293 } | 1341 } |
1294 | 1342 |
1295 | 1343 |
1296 // Uses registers r0 to r4. | 1344 // Uses registers r3 to r7. |
1297 // Expected input (depending on whether args are in registers or on the stack): | 1345 // Expected input (depending on whether args are in registers or on the stack): |
1298 // * object: r0 or at sp + 1 * kPointerSize. | 1346 // * object: r3 or at sp + 1 * kPointerSize. |
1299 // * function: r1 or at sp. | 1347 // * function: r4 or at sp. |
1300 // | 1348 // |
1301 // An inlined call site may have been generated before calling this stub. | 1349 // An inlined call site may have been generated before calling this stub. |
1302 // In this case the offset to the inline sites to patch are passed in r5 and r6. | 1350 // In this case the offset to the inline site to patch is passed in r8. |
1303 // (See LCodeGen::DoInstanceOfKnownGlobal) | 1351 // (See LCodeGen::DoInstanceOfKnownGlobal) |
1304 void InstanceofStub::Generate(MacroAssembler* masm) { | 1352 void InstanceofStub::Generate(MacroAssembler* masm) { |
1305 // Call site inlining and patching implies arguments in registers. | 1353 // Call site inlining and patching implies arguments in registers. |
1306 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck()); | 1354 DCHECK(HasArgsInRegisters() || !HasCallSiteInlineCheck()); |
1307 | 1355 |
1308 // Fixed register usage throughout the stub: | 1356 // Fixed register usage throughout the stub: |
1309 const Register object = r0; // Object (lhs). | 1357 const Register object = r3; // Object (lhs). |
1310 Register map = r3; // Map of the object. | 1358 Register map = r6; // Map of the object. |
1311 const Register function = r1; // Function (rhs). | 1359 const Register function = r4; // Function (rhs). |
1312 const Register prototype = r4; // Prototype of the function. | 1360 const Register prototype = r7; // Prototype of the function. |
1313 const Register scratch = r2; | 1361 const Register inline_site = r9; |
1362 const Register scratch = r5; | |
1363 Register scratch3 = no_reg; | |
1364 | |
1365 // delta = mov + unaligned LoadP + cmp + bne | |
1366 #if V8_TARGET_ARCH_PPC64 | |
1367 const int32_t kDeltaToLoadBoolResult = | |
1368 (Assembler::kMovInstructions + 4) * Assembler::kInstrSize; | |
1369 #else | |
1370 const int32_t kDeltaToLoadBoolResult = | |
1371 (Assembler::kMovInstructions + 3) * Assembler::kInstrSize; | |
1372 #endif | |
1314 | 1373 |
1315 Label slow, loop, is_instance, is_not_instance, not_js_object; | 1374 Label slow, loop, is_instance, is_not_instance, not_js_object; |
1316 | 1375 |
1317 if (!HasArgsInRegisters()) { | 1376 if (!HasArgsInRegisters()) { |
1318 __ ldr(object, MemOperand(sp, 1 * kPointerSize)); | 1377 __ LoadP(object, MemOperand(sp, 1 * kPointerSize)); |
1319 __ ldr(function, MemOperand(sp, 0)); | 1378 __ LoadP(function, MemOperand(sp, 0)); |
1320 } | 1379 } |
1321 | 1380 |
1322 // Check that the left hand is a JS object and load map. | 1381 // Check that the left hand is a JS object and load map. |
1323 __ JumpIfSmi(object, ¬_js_object); | 1382 __ JumpIfSmi(object, ¬_js_object); |
1324 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); | 1383 __ IsObjectJSObjectType(object, map, scratch, ¬_js_object); |
1325 | 1384 |
1326 // If there is a call site cache don't look in the global cache, but do the | 1385 // If there is a call site cache don't look in the global cache, but do the |
1327 // real lookup and update the call site cache. | 1386 // real lookup and update the call site cache. |
1328 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) { | 1387 if (!HasCallSiteInlineCheck() && !ReturnTrueFalseObject()) { |
1329 Label miss; | 1388 Label miss; |
1330 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex); | 1389 __ CompareRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
1331 __ b(ne, &miss); | 1390 __ bne(&miss); |
1332 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex); | 1391 __ CompareRoot(map, Heap::kInstanceofCacheMapRootIndex); |
1333 __ b(ne, &miss); | 1392 __ bne(&miss); |
1334 __ LoadRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); | 1393 __ LoadRoot(r3, Heap::kInstanceofCacheAnswerRootIndex); |
1335 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1394 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1336 | 1395 |
1337 __ bind(&miss); | 1396 __ bind(&miss); |
1338 } | 1397 } |
1339 | 1398 |
1340 // Get the prototype of the function. | 1399 // Get the prototype of the function. |
1341 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); | 1400 __ TryGetFunctionPrototype(function, prototype, scratch, &slow, true); |
1342 | 1401 |
1343 // Check that the function prototype is a JS object. | 1402 // Check that the function prototype is a JS object. |
1344 __ JumpIfSmi(prototype, &slow); | 1403 __ JumpIfSmi(prototype, &slow); |
1345 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); | 1404 __ IsObjectJSObjectType(prototype, scratch, scratch, &slow); |
1346 | 1405 |
1347 // Update the global instanceof or call site inlined cache with the current | 1406 // Update the global instanceof or call site inlined cache with the current |
1348 // map and function. The cached answer will be set when it is known below. | 1407 // map and function. The cached answer will be set when it is known below. |
1349 if (!HasCallSiteInlineCheck()) { | 1408 if (!HasCallSiteInlineCheck()) { |
1350 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); | 1409 __ StoreRoot(function, Heap::kInstanceofCacheFunctionRootIndex); |
1351 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); | 1410 __ StoreRoot(map, Heap::kInstanceofCacheMapRootIndex); |
1352 } else { | 1411 } else { |
1353 DCHECK(HasArgsInRegisters()); | 1412 DCHECK(HasArgsInRegisters()); |
1354 // Patch the (relocated) inlined map check. | 1413 // Patch the (relocated) inlined map check. |
1355 | 1414 |
1356 // The map_load_offset was stored in r5 | 1415 // The offset was stored in r8 |
1357 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). | 1416 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). |
1358 const Register map_load_offset = r5; | 1417 const Register offset = r8; |
1359 __ sub(r9, lr, map_load_offset); | 1418 __ mflr(inline_site); |
1360 // Get the map location in r5 and patch it. | 1419 __ sub(inline_site, inline_site, offset); |
1361 __ GetRelocatedValueLocation(r9, map_load_offset, scratch); | 1420 // Get the map location in r8 and patch it. |
1362 __ ldr(map_load_offset, MemOperand(map_load_offset)); | 1421 __ GetRelocatedValue(inline_site, offset, scratch); |
1363 __ str(map, FieldMemOperand(map_load_offset, Cell::kValueOffset)); | 1422 __ StoreP(map, FieldMemOperand(offset, Cell::kValueOffset), r0); |
1364 } | 1423 } |
1365 | 1424 |
1366 // Register mapping: r3 is object map and r4 is function prototype. | 1425 // Register mapping: r6 is object map and r7 is function prototype. |
1367 // Get prototype of object into r2. | 1426 // Get prototype of object into r5. |
1368 __ ldr(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); | 1427 __ LoadP(scratch, FieldMemOperand(map, Map::kPrototypeOffset)); |
1369 | 1428 |
1370 // We don't need map any more. Use it as a scratch register. | 1429 // We don't need map any more. Use it as a scratch register. |
1371 Register scratch2 = map; | 1430 scratch3 = map; |
1372 map = no_reg; | 1431 map = no_reg; |
1373 | 1432 |
1374 // Loop through the prototype chain looking for the function prototype. | 1433 // Loop through the prototype chain looking for the function prototype. |
1375 __ LoadRoot(scratch2, Heap::kNullValueRootIndex); | 1434 __ LoadRoot(scratch3, Heap::kNullValueRootIndex); |
1376 __ bind(&loop); | 1435 __ bind(&loop); |
1377 __ cmp(scratch, Operand(prototype)); | 1436 __ cmp(scratch, prototype); |
1378 __ b(eq, &is_instance); | 1437 __ beq(&is_instance); |
1379 __ cmp(scratch, scratch2); | 1438 __ cmp(scratch, scratch3); |
1380 __ b(eq, &is_not_instance); | 1439 __ beq(&is_not_instance); |
1381 __ ldr(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); | 1440 __ LoadP(scratch, FieldMemOperand(scratch, HeapObject::kMapOffset)); |
1382 __ ldr(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); | 1441 __ LoadP(scratch, FieldMemOperand(scratch, Map::kPrototypeOffset)); |
1383 __ jmp(&loop); | 1442 __ b(&loop); |
1384 Factory* factory = isolate()->factory(); | 1443 Factory* factory = isolate()->factory(); |
1385 | 1444 |
1386 __ bind(&is_instance); | 1445 __ bind(&is_instance); |
1387 if (!HasCallSiteInlineCheck()) { | 1446 if (!HasCallSiteInlineCheck()) { |
1388 __ mov(r0, Operand(Smi::FromInt(0))); | 1447 __ LoadSmiLiteral(r3, Smi::FromInt(0)); |
1389 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); | 1448 __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex); |
1390 if (ReturnTrueFalseObject()) { | 1449 if (ReturnTrueFalseObject()) { |
1391 __ Move(r0, factory->true_value()); | 1450 __ Move(r3, factory->true_value()); |
1392 } | 1451 } |
1393 } else { | 1452 } else { |
1394 // Patch the call site to return true. | 1453 // Patch the call site to return true. |
1395 __ LoadRoot(r0, Heap::kTrueValueRootIndex); | 1454 __ LoadRoot(r3, Heap::kTrueValueRootIndex); |
1396 // The bool_load_offset was stored in r6 | 1455 __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); |
1397 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). | |
1398 const Register bool_load_offset = r6; | |
1399 __ sub(r9, lr, bool_load_offset); | |
1400 // Get the boolean result location in scratch and patch it. | 1456 // Get the boolean result location in scratch and patch it. |
1401 __ GetRelocatedValueLocation(r9, scratch, scratch2); | 1457 __ SetRelocatedValue(inline_site, scratch, r3); |
1402 __ str(r0, MemOperand(scratch)); | |
1403 | 1458 |
1404 if (!ReturnTrueFalseObject()) { | 1459 if (!ReturnTrueFalseObject()) { |
1405 __ mov(r0, Operand(Smi::FromInt(0))); | 1460 __ LoadSmiLiteral(r3, Smi::FromInt(0)); |
1406 } | 1461 } |
1407 } | 1462 } |
1408 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1463 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1409 | 1464 |
1410 __ bind(&is_not_instance); | 1465 __ bind(&is_not_instance); |
1411 if (!HasCallSiteInlineCheck()) { | 1466 if (!HasCallSiteInlineCheck()) { |
1412 __ mov(r0, Operand(Smi::FromInt(1))); | 1467 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1413 __ StoreRoot(r0, Heap::kInstanceofCacheAnswerRootIndex); | 1468 __ StoreRoot(r3, Heap::kInstanceofCacheAnswerRootIndex); |
1414 if (ReturnTrueFalseObject()) { | 1469 if (ReturnTrueFalseObject()) { |
1415 __ Move(r0, factory->false_value()); | 1470 __ Move(r3, factory->false_value()); |
1416 } | 1471 } |
1417 } else { | 1472 } else { |
1418 // Patch the call site to return false. | 1473 // Patch the call site to return false. |
1419 __ LoadRoot(r0, Heap::kFalseValueRootIndex); | 1474 __ LoadRoot(r3, Heap::kFalseValueRootIndex); |
1420 // The bool_load_offset was stored in r6 | 1475 __ addi(inline_site, inline_site, Operand(kDeltaToLoadBoolResult)); |
1421 // (See LCodeGen::DoDeferredLInstanceOfKnownGlobal). | |
1422 const Register bool_load_offset = r6; | |
1423 __ sub(r9, lr, bool_load_offset); | |
1424 ; | |
1425 // Get the boolean result location in scratch and patch it. | 1476 // Get the boolean result location in scratch and patch it. |
1426 __ GetRelocatedValueLocation(r9, scratch, scratch2); | 1477 __ SetRelocatedValue(inline_site, scratch, r3); |
1427 __ str(r0, MemOperand(scratch)); | |
1428 | 1478 |
1429 if (!ReturnTrueFalseObject()) { | 1479 if (!ReturnTrueFalseObject()) { |
1430 __ mov(r0, Operand(Smi::FromInt(1))); | 1480 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1431 } | 1481 } |
1432 } | 1482 } |
1433 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1483 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1434 | 1484 |
1435 Label object_not_null, object_not_null_or_smi; | 1485 Label object_not_null, object_not_null_or_smi; |
1436 __ bind(¬_js_object); | 1486 __ bind(¬_js_object); |
1437 // Before null, smi and string value checks, check that the rhs is a function | 1487 // Before null, smi and string value checks, check that the rhs is a function |
1438 // as for a non-function rhs an exception needs to be thrown. | 1488 // as for a non-function rhs an exception needs to be thrown. |
1439 __ JumpIfSmi(function, &slow); | 1489 __ JumpIfSmi(function, &slow); |
1440 __ CompareObjectType(function, scratch2, scratch, JS_FUNCTION_TYPE); | 1490 __ CompareObjectType(function, scratch3, scratch, JS_FUNCTION_TYPE); |
1441 __ b(ne, &slow); | 1491 __ bne(&slow); |
1442 | 1492 |
1443 // Null is not instance of anything. | 1493 // Null is not instance of anything. |
1444 __ cmp(scratch, Operand(isolate()->factory()->null_value())); | 1494 __ Cmpi(scratch, Operand(isolate()->factory()->null_value()), r0); |
1445 __ b(ne, &object_not_null); | 1495 __ bne(&object_not_null); |
1446 if (ReturnTrueFalseObject()) { | 1496 if (ReturnTrueFalseObject()) { |
1447 __ Move(r0, factory->false_value()); | 1497 __ Move(r3, factory->false_value()); |
1448 } else { | 1498 } else { |
1449 __ mov(r0, Operand(Smi::FromInt(1))); | 1499 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1450 } | 1500 } |
1451 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1501 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1452 | 1502 |
1453 __ bind(&object_not_null); | 1503 __ bind(&object_not_null); |
1454 // Smi values are not instances of anything. | 1504 // Smi values are not instances of anything. |
1455 __ JumpIfNotSmi(object, &object_not_null_or_smi); | 1505 __ JumpIfNotSmi(object, &object_not_null_or_smi); |
1456 if (ReturnTrueFalseObject()) { | 1506 if (ReturnTrueFalseObject()) { |
1457 __ Move(r0, factory->false_value()); | 1507 __ Move(r3, factory->false_value()); |
1458 } else { | 1508 } else { |
1459 __ mov(r0, Operand(Smi::FromInt(1))); | 1509 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1460 } | 1510 } |
1461 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1511 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1462 | 1512 |
1463 __ bind(&object_not_null_or_smi); | 1513 __ bind(&object_not_null_or_smi); |
1464 // String values are not instances of anything. | 1514 // String values are not instances of anything. |
1465 __ IsObjectJSStringType(object, scratch, &slow); | 1515 __ IsObjectJSStringType(object, scratch, &slow); |
1466 if (ReturnTrueFalseObject()) { | 1516 if (ReturnTrueFalseObject()) { |
1467 __ Move(r0, factory->false_value()); | 1517 __ Move(r3, factory->false_value()); |
1468 } else { | 1518 } else { |
1469 __ mov(r0, Operand(Smi::FromInt(1))); | 1519 __ LoadSmiLiteral(r3, Smi::FromInt(1)); |
1470 } | 1520 } |
1471 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1521 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1472 | 1522 |
1473 // Slow-case. Tail call builtin. | 1523 // Slow-case. Tail call builtin. |
1474 __ bind(&slow); | 1524 __ bind(&slow); |
1475 if (!ReturnTrueFalseObject()) { | 1525 if (!ReturnTrueFalseObject()) { |
1476 if (HasArgsInRegisters()) { | 1526 if (HasArgsInRegisters()) { |
1477 __ Push(r0, r1); | 1527 __ Push(r3, r4); |
1478 } | 1528 } |
1479 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); | 1529 __ InvokeBuiltin(Builtins::INSTANCE_OF, JUMP_FUNCTION); |
1480 } else { | 1530 } else { |
1481 { | 1531 { |
1482 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 1532 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
1483 __ Push(r0, r1); | 1533 __ Push(r3, r4); |
1484 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); | 1534 __ InvokeBuiltin(Builtins::INSTANCE_OF, CALL_FUNCTION); |
1485 } | 1535 } |
1486 __ cmp(r0, Operand::Zero()); | 1536 Label true_value, done; |
1487 __ LoadRoot(r0, Heap::kTrueValueRootIndex, eq); | 1537 __ cmpi(r3, Operand::Zero()); |
1488 __ LoadRoot(r0, Heap::kFalseValueRootIndex, ne); | 1538 __ beq(&true_value); |
1539 | |
1540 __ LoadRoot(r3, Heap::kFalseValueRootIndex); | |
1541 __ b(&done); | |
1542 | |
1543 __ bind(&true_value); | |
1544 __ LoadRoot(r3, Heap::kTrueValueRootIndex); | |
1545 | |
1546 __ bind(&done); | |
1489 __ Ret(HasArgsInRegisters() ? 0 : 2); | 1547 __ Ret(HasArgsInRegisters() ? 0 : 2); |
1490 } | 1548 } |
1491 } | 1549 } |
1492 | 1550 |
1493 | 1551 |
1494 void FunctionPrototypeStub::Generate(MacroAssembler* masm) { | 1552 void FunctionPrototypeStub::Generate(MacroAssembler* masm) { |
1495 Label miss; | 1553 Label miss; |
1496 Register receiver = LoadDescriptor::ReceiverRegister(); | 1554 Register receiver = LoadDescriptor::ReceiverRegister(); |
1497 | 1555 |
1498 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r3, | 1556 NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(masm, receiver, r6, |
1499 r4, &miss); | 1557 r7, &miss); |
1500 __ bind(&miss); | 1558 __ bind(&miss); |
1501 PropertyAccessCompiler::TailCallBuiltin( | 1559 PropertyAccessCompiler::TailCallBuiltin( |
1502 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); | 1560 masm, PropertyAccessCompiler::MissBuiltin(Code::LOAD_IC)); |
1503 } | 1561 } |
1504 | 1562 |
1505 | 1563 |
1506 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { | 1564 void ArgumentsAccessStub::GenerateReadElement(MacroAssembler* masm) { |
1507 // The displacement is the offset of the last parameter (if any) | 1565 // The displacement is the offset of the last parameter (if any) |
1508 // relative to the frame pointer. | 1566 // relative to the frame pointer. |
1509 const int kDisplacement = | 1567 const int kDisplacement = |
1510 StandardFrameConstants::kCallerSPOffset - kPointerSize; | 1568 StandardFrameConstants::kCallerSPOffset - kPointerSize; |
1511 DCHECK(r1.is(ArgumentsAccessReadDescriptor::index())); | 1569 DCHECK(r4.is(ArgumentsAccessReadDescriptor::index())); |
1512 DCHECK(r0.is(ArgumentsAccessReadDescriptor::parameter_count())); | 1570 DCHECK(r3.is(ArgumentsAccessReadDescriptor::parameter_count())); |
1513 | 1571 |
1514 // Check that the key is a smi. | 1572 // Check that the key is a smi. |
1515 Label slow; | 1573 Label slow; |
1516 __ JumpIfNotSmi(r1, &slow); | 1574 __ JumpIfNotSmi(r4, &slow); |
1517 | 1575 |
1518 // Check if the calling frame is an arguments adaptor frame. | 1576 // Check if the calling frame is an arguments adaptor frame. |
1519 Label adaptor; | 1577 Label adaptor; |
1520 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 1578 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
1521 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); | 1579 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset)); |
1522 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 1580 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); |
1523 __ b(eq, &adaptor); | 1581 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); |
1582 __ beq(&adaptor); | |
1524 | 1583 |
1525 // Check index against formal parameters count limit passed in | 1584 // Check index against formal parameters count limit passed in |
1526 // through register r0. Use unsigned comparison to get negative | 1585 // through register r3. Use unsigned comparison to get negative |
1527 // check for free. | 1586 // check for free. |
1528 __ cmp(r1, r0); | 1587 __ cmpl(r4, r3); |
1529 __ b(hs, &slow); | 1588 __ bge(&slow); |
1530 | 1589 |
1531 // Read the argument from the stack and return it. | 1590 // Read the argument from the stack and return it. |
1532 __ sub(r3, r0, r1); | 1591 __ sub(r6, r3, r4); |
1533 __ add(r3, fp, Operand::PointerOffsetFromSmiKey(r3)); | 1592 __ SmiToPtrArrayOffset(r6, r6); |
1534 __ ldr(r0, MemOperand(r3, kDisplacement)); | 1593 __ add(r6, fp, r6); |
1535 __ Jump(lr); | 1594 __ LoadP(r3, MemOperand(r6, kDisplacement)); |
1595 __ blr(); | |
1536 | 1596 |
1537 // Arguments adaptor case: Check index against actual arguments | 1597 // Arguments adaptor case: Check index against actual arguments |
1538 // limit found in the arguments adaptor frame. Use unsigned | 1598 // limit found in the arguments adaptor frame. Use unsigned |
1539 // comparison to get negative check for free. | 1599 // comparison to get negative check for free. |
1540 __ bind(&adaptor); | 1600 __ bind(&adaptor); |
1541 __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 1601 __ LoadP(r3, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
1542 __ cmp(r1, r0); | 1602 __ cmpl(r4, r3); |
1543 __ b(cs, &slow); | 1603 __ bge(&slow); |
1544 | 1604 |
1545 // Read the argument from the adaptor frame and return it. | 1605 // Read the argument from the adaptor frame and return it. |
1546 __ sub(r3, r0, r1); | 1606 __ sub(r6, r3, r4); |
1547 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r3)); | 1607 __ SmiToPtrArrayOffset(r6, r6); |
1548 __ ldr(r0, MemOperand(r3, kDisplacement)); | 1608 __ add(r6, r5, r6); |
1549 __ Jump(lr); | 1609 __ LoadP(r3, MemOperand(r6, kDisplacement)); |
1610 __ blr(); | |
1550 | 1611 |
1551 // Slow-case: Handle non-smi or out-of-bounds access to arguments | 1612 // Slow-case: Handle non-smi or out-of-bounds access to arguments |
1552 // by calling the runtime system. | 1613 // by calling the runtime system. |
1553 __ bind(&slow); | 1614 __ bind(&slow); |
1554 __ push(r1); | 1615 __ push(r4); |
1555 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); | 1616 __ TailCallRuntime(Runtime::kGetArgumentsProperty, 1, 1); |
1556 } | 1617 } |
1557 | 1618 |
1558 | 1619 |
1559 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { | 1620 void ArgumentsAccessStub::GenerateNewSloppySlow(MacroAssembler* masm) { |
1560 // sp[0] : number of parameters | 1621 // sp[0] : number of parameters |
1561 // sp[4] : receiver displacement | 1622 // sp[1] : receiver displacement |
1562 // sp[8] : function | 1623 // sp[2] : function |
1563 | 1624 |
1564 // Check if the calling frame is an arguments adaptor frame. | 1625 // Check if the calling frame is an arguments adaptor frame. |
1565 Label runtime; | 1626 Label runtime; |
1566 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 1627 __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
1567 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); | 1628 __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset)); |
1568 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 1629 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); |
1569 __ b(ne, &runtime); | 1630 __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); |
1631 __ bne(&runtime); | |
1570 | 1632 |
1571 // Patch the arguments.length and the parameters pointer in the current frame. | 1633 // Patch the arguments.length and the parameters pointer in the current frame. |
1572 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 1634 __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
1573 __ str(r2, MemOperand(sp, 0 * kPointerSize)); | 1635 __ StoreP(r5, MemOperand(sp, 0 * kPointerSize)); |
1574 __ add(r3, r3, Operand(r2, LSL, 1)); | 1636 __ SmiToPtrArrayOffset(r5, r5); |
1575 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); | 1637 __ add(r6, r6, r5); |
1576 __ str(r3, MemOperand(sp, 1 * kPointerSize)); | 1638 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset)); |
1639 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize)); | |
1577 | 1640 |
1578 __ bind(&runtime); | 1641 __ bind(&runtime); |
1579 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); | 1642 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); |
1580 } | 1643 } |
1581 | 1644 |
1582 | 1645 |
1583 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { | 1646 void ArgumentsAccessStub::GenerateNewSloppyFast(MacroAssembler* masm) { |
1584 // Stack layout: | 1647 // Stack layout: |
1585 // sp[0] : number of parameters (tagged) | 1648 // sp[0] : number of parameters (tagged) |
1586 // sp[4] : address of receiver argument | 1649 // sp[1] : address of receiver argument |
1587 // sp[8] : function | 1650 // sp[2] : function |
1588 // Registers used over whole function: | 1651 // Registers used over whole function: |
1589 // r6 : allocated object (tagged) | 1652 // r9 : allocated object (tagged) |
1590 // r9 : mapped parameter count (tagged) | 1653 // r11 : mapped parameter count (tagged) |
1591 | 1654 |
1592 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); | 1655 __ LoadP(r4, MemOperand(sp, 0 * kPointerSize)); |
1593 // r1 = parameter count (tagged) | 1656 // r4 = parameter count (tagged) |
1594 | 1657 |
1595 // Check if the calling frame is an arguments adaptor frame. | 1658 // Check if the calling frame is an arguments adaptor frame. |
1596 Label runtime; | 1659 Label runtime; |
1597 Label adaptor_frame, try_allocate; | 1660 Label adaptor_frame, try_allocate; |
1598 __ ldr(r3, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 1661 __ LoadP(r6, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
1599 __ ldr(r2, MemOperand(r3, StandardFrameConstants::kContextOffset)); | 1662 __ LoadP(r5, MemOperand(r6, StandardFrameConstants::kContextOffset)); |
1600 __ cmp(r2, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 1663 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); |
1601 __ b(eq, &adaptor_frame); | 1664 __ CmpSmiLiteral(r5, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); |
1665 __ beq(&adaptor_frame); | |
1602 | 1666 |
1603 // No adaptor, parameter count = argument count. | 1667 // No adaptor, parameter count = argument count. |
1604 __ mov(r2, r1); | 1668 __ mr(r5, r4); |
1605 __ b(&try_allocate); | 1669 __ b(&try_allocate); |
1606 | 1670 |
1607 // We have an adaptor frame. Patch the parameters pointer. | 1671 // We have an adaptor frame. Patch the parameters pointer. |
1608 __ bind(&adaptor_frame); | 1672 __ bind(&adaptor_frame); |
1609 __ ldr(r2, MemOperand(r3, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 1673 __ LoadP(r5, MemOperand(r6, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
1610 __ add(r3, r3, Operand(r2, LSL, 1)); | 1674 __ SmiToPtrArrayOffset(r7, r5); |
1611 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); | 1675 __ add(r6, r6, r7); |
1612 __ str(r3, MemOperand(sp, 1 * kPointerSize)); | 1676 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset)); |
1677 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize)); | |
1613 | 1678 |
1614 // r1 = parameter count (tagged) | 1679 // r4 = parameter count (tagged) |
1615 // r2 = argument count (tagged) | 1680 // r5 = argument count (tagged) |
1616 // Compute the mapped parameter count = min(r1, r2) in r1. | 1681 // Compute the mapped parameter count = min(r4, r5) in r4. |
1617 __ cmp(r1, Operand(r2)); | 1682 Label skip; |
1618 __ mov(r1, Operand(r2), LeaveCC, gt); | 1683 __ cmp(r4, r5); |
1684 __ blt(&skip); | |
1685 __ mr(r4, r5); | |
1686 __ bind(&skip); | |
1619 | 1687 |
1620 __ bind(&try_allocate); | 1688 __ bind(&try_allocate); |
1621 | 1689 |
1622 // Compute the sizes of backing store, parameter map, and arguments object. | 1690 // Compute the sizes of backing store, parameter map, and arguments object. |
1623 // 1. Parameter map, has 2 extra words containing context and backing store. | 1691 // 1. Parameter map, has 2 extra words containing context and backing store. |
1624 const int kParameterMapHeaderSize = | 1692 const int kParameterMapHeaderSize = |
1625 FixedArray::kHeaderSize + 2 * kPointerSize; | 1693 FixedArray::kHeaderSize + 2 * kPointerSize; |
1626 // If there are no mapped parameters, we do not need the parameter_map. | 1694 // If there are no mapped parameters, we do not need the parameter_map. |
1627 __ cmp(r1, Operand(Smi::FromInt(0))); | 1695 Label skip2, skip3; |
1628 __ mov(r9, Operand::Zero(), LeaveCC, eq); | 1696 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0); |
1629 __ mov(r9, Operand(r1, LSL, 1), LeaveCC, ne); | 1697 __ bne(&skip2); |
1630 __ add(r9, r9, Operand(kParameterMapHeaderSize), LeaveCC, ne); | 1698 __ li(r11, Operand::Zero()); |
1699 __ b(&skip3); | |
1700 __ bind(&skip2); | |
1701 __ SmiToPtrArrayOffset(r11, r4); | |
1702 __ addi(r11, r11, Operand(kParameterMapHeaderSize)); | |
1703 __ bind(&skip3); | |
1631 | 1704 |
1632 // 2. Backing store. | 1705 // 2. Backing store. |
1633 __ add(r9, r9, Operand(r2, LSL, 1)); | 1706 __ SmiToPtrArrayOffset(r7, r5); |
1634 __ add(r9, r9, Operand(FixedArray::kHeaderSize)); | 1707 __ add(r11, r11, r7); |
1708 __ addi(r11, r11, Operand(FixedArray::kHeaderSize)); | |
1635 | 1709 |
1636 // 3. Arguments object. | 1710 // 3. Arguments object. |
1637 __ add(r9, r9, Operand(Heap::kSloppyArgumentsObjectSize)); | 1711 __ addi(r11, r11, Operand(Heap::kSloppyArgumentsObjectSize)); |
1638 | 1712 |
1639 // Do the allocation of all three objects in one go. | 1713 // Do the allocation of all three objects in one go. |
1640 __ Allocate(r9, r0, r3, r4, &runtime, TAG_OBJECT); | 1714 __ Allocate(r11, r3, r6, r7, &runtime, TAG_OBJECT); |
1641 | 1715 |
1642 // r0 = address of new object(s) (tagged) | 1716 // r3 = address of new object(s) (tagged) |
1643 // r2 = argument count (smi-tagged) | 1717 // r5 = argument count (smi-tagged) |
1644 // Get the arguments boilerplate from the current native context into r4. | 1718 // Get the arguments boilerplate from the current native context into r4. |
1645 const int kNormalOffset = | 1719 const int kNormalOffset = |
1646 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX); | 1720 Context::SlotOffset(Context::SLOPPY_ARGUMENTS_MAP_INDEX); |
1647 const int kAliasedOffset = | 1721 const int kAliasedOffset = |
1648 Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX); | 1722 Context::SlotOffset(Context::ALIASED_ARGUMENTS_MAP_INDEX); |
1649 | 1723 |
1650 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); | 1724 __ LoadP(r7, |
1651 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); | 1725 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); |
1652 __ cmp(r1, Operand::Zero()); | 1726 __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset)); |
1653 __ ldr(r4, MemOperand(r4, kNormalOffset), eq); | 1727 Label skip4, skip5; |
1654 __ ldr(r4, MemOperand(r4, kAliasedOffset), ne); | 1728 __ cmpi(r4, Operand::Zero()); |
1729 __ bne(&skip4); | |
1730 __ LoadP(r7, MemOperand(r7, kNormalOffset)); | |
1731 __ b(&skip5); | |
1732 __ bind(&skip4); | |
1733 __ LoadP(r7, MemOperand(r7, kAliasedOffset)); | |
1734 __ bind(&skip5); | |
1655 | 1735 |
1656 // r0 = address of new object (tagged) | 1736 // r3 = address of new object (tagged) |
1657 // r1 = mapped parameter count (tagged) | 1737 // r4 = mapped parameter count (tagged) |
1658 // r2 = argument count (smi-tagged) | 1738 // r5 = argument count (smi-tagged) |
1659 // r4 = address of arguments map (tagged) | 1739 // r7 = address of arguments map (tagged) |
1660 __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset)); | 1740 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0); |
1661 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); | 1741 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); |
1662 __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); | 1742 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0); |
1663 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); | 1743 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0); |
1664 | 1744 |
1665 // Set up the callee in-object property. | 1745 // Set up the callee in-object property. |
1666 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); | 1746 STATIC_ASSERT(Heap::kArgumentsCalleeIndex == 1); |
1667 __ ldr(r3, MemOperand(sp, 2 * kPointerSize)); | 1747 __ LoadP(r6, MemOperand(sp, 2 * kPointerSize)); |
1668 __ AssertNotSmi(r3); | 1748 __ AssertNotSmi(r6); |
1669 const int kCalleeOffset = JSObject::kHeaderSize + | 1749 const int kCalleeOffset = |
1670 Heap::kArgumentsCalleeIndex * kPointerSize; | 1750 JSObject::kHeaderSize + Heap::kArgumentsCalleeIndex * kPointerSize; |
1671 __ str(r3, FieldMemOperand(r0, kCalleeOffset)); | 1751 __ StoreP(r6, FieldMemOperand(r3, kCalleeOffset), r0); |
1672 | 1752 |
1673 // Use the length (smi tagged) and set that as an in-object property too. | 1753 // Use the length (smi tagged) and set that as an in-object property too. |
1674 __ AssertSmi(r2); | 1754 __ AssertSmi(r5); |
1675 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); | 1755 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
1676 const int kLengthOffset = JSObject::kHeaderSize + | 1756 const int kLengthOffset = |
1677 Heap::kArgumentsLengthIndex * kPointerSize; | 1757 JSObject::kHeaderSize + Heap::kArgumentsLengthIndex * kPointerSize; |
1678 __ str(r2, FieldMemOperand(r0, kLengthOffset)); | 1758 __ StoreP(r5, FieldMemOperand(r3, kLengthOffset), r0); |
1679 | 1759 |
1680 // Set up the elements pointer in the allocated arguments object. | 1760 // Set up the elements pointer in the allocated arguments object. |
1681 // If we allocated a parameter map, r4 will point there, otherwise | 1761 // If we allocated a parameter map, r7 will point there, otherwise |
1682 // it will point to the backing store. | 1762 // it will point to the backing store. |
1683 __ add(r4, r0, Operand(Heap::kSloppyArgumentsObjectSize)); | 1763 __ addi(r7, r3, Operand(Heap::kSloppyArgumentsObjectSize)); |
1684 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); | 1764 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0); |
1685 | 1765 |
1686 // r0 = address of new object (tagged) | 1766 // r3 = address of new object (tagged) |
1687 // r1 = mapped parameter count (tagged) | 1767 // r4 = mapped parameter count (tagged) |
1688 // r2 = argument count (tagged) | 1768 // r5 = argument count (tagged) |
1689 // r4 = address of parameter map or backing store (tagged) | 1769 // r7 = address of parameter map or backing store (tagged) |
1690 // Initialize parameter map. If there are no mapped arguments, we're done. | 1770 // Initialize parameter map. If there are no mapped arguments, we're done. |
1691 Label skip_parameter_map; | 1771 Label skip_parameter_map, skip6; |
1692 __ cmp(r1, Operand(Smi::FromInt(0))); | 1772 __ CmpSmiLiteral(r4, Smi::FromInt(0), r0); |
1693 // Move backing store address to r3, because it is | 1773 __ bne(&skip6); |
1774 // Move backing store address to r6, because it is | |
1694 // expected there when filling in the unmapped arguments. | 1775 // expected there when filling in the unmapped arguments. |
1695 __ mov(r3, r4, LeaveCC, eq); | 1776 __ mr(r6, r7); |
1696 __ b(eq, &skip_parameter_map); | 1777 __ b(&skip_parameter_map); |
1778 __ bind(&skip6); | |
1697 | 1779 |
1698 __ LoadRoot(r6, Heap::kSloppyArgumentsElementsMapRootIndex); | 1780 __ LoadRoot(r9, Heap::kSloppyArgumentsElementsMapRootIndex); |
1699 __ str(r6, FieldMemOperand(r4, FixedArray::kMapOffset)); | 1781 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kMapOffset), r0); |
1700 __ add(r6, r1, Operand(Smi::FromInt(2))); | 1782 __ AddSmiLiteral(r9, r4, Smi::FromInt(2), r0); |
1701 __ str(r6, FieldMemOperand(r4, FixedArray::kLengthOffset)); | 1783 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kLengthOffset), r0); |
1702 __ str(cp, FieldMemOperand(r4, FixedArray::kHeaderSize + 0 * kPointerSize)); | 1784 __ StoreP(cp, FieldMemOperand(r7, FixedArray::kHeaderSize + 0 * kPointerSize), |
1703 __ add(r6, r4, Operand(r1, LSL, 1)); | 1785 r0); |
1704 __ add(r6, r6, Operand(kParameterMapHeaderSize)); | 1786 __ SmiToPtrArrayOffset(r9, r4); |
1705 __ str(r6, FieldMemOperand(r4, FixedArray::kHeaderSize + 1 * kPointerSize)); | 1787 __ add(r9, r7, r9); |
1788 __ addi(r9, r9, Operand(kParameterMapHeaderSize)); | |
1789 __ StoreP(r9, FieldMemOperand(r7, FixedArray::kHeaderSize + 1 * kPointerSize), | |
1790 r0); | |
1706 | 1791 |
1707 // Copy the parameter slots and the holes in the arguments. | 1792 // Copy the parameter slots and the holes in the arguments. |
1708 // We need to fill in mapped_parameter_count slots. They index the context, | 1793 // We need to fill in mapped_parameter_count slots. They index the context, |
1709 // where parameters are stored in reverse order, at | 1794 // where parameters are stored in reverse order, at |
1710 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 | 1795 // MIN_CONTEXT_SLOTS .. MIN_CONTEXT_SLOTS+parameter_count-1 |
1711 // The mapped parameter thus need to get indices | 1796 // The mapped parameter thus need to get indices |
1712 // MIN_CONTEXT_SLOTS+parameter_count-1 .. | 1797 // MIN_CONTEXT_SLOTS+parameter_count-1 .. |
1713 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count | 1798 // MIN_CONTEXT_SLOTS+parameter_count-mapped_parameter_count |
1714 // We loop from right to left. | 1799 // We loop from right to left. |
1715 Label parameters_loop, parameters_test; | 1800 Label parameters_loop, parameters_test; |
1716 __ mov(r6, r1); | 1801 __ mr(r9, r4); |
1717 __ ldr(r9, MemOperand(sp, 0 * kPointerSize)); | 1802 __ LoadP(r11, MemOperand(sp, 0 * kPointerSize)); |
1718 __ add(r9, r9, Operand(Smi::FromInt(Context::MIN_CONTEXT_SLOTS))); | 1803 __ AddSmiLiteral(r11, r11, Smi::FromInt(Context::MIN_CONTEXT_SLOTS), r0); |
1719 __ sub(r9, r9, Operand(r1)); | 1804 __ sub(r11, r11, r4); |
1720 __ LoadRoot(r5, Heap::kTheHoleValueRootIndex); | 1805 __ LoadRoot(r10, Heap::kTheHoleValueRootIndex); |
1721 __ add(r3, r4, Operand(r6, LSL, 1)); | 1806 __ SmiToPtrArrayOffset(r6, r9); |
1722 __ add(r3, r3, Operand(kParameterMapHeaderSize)); | 1807 __ add(r6, r7, r6); |
1808 __ addi(r6, r6, Operand(kParameterMapHeaderSize)); | |
1723 | 1809 |
1724 // r6 = loop variable (tagged) | 1810 // r9 = loop variable (tagged) |
1725 // r1 = mapping index (tagged) | 1811 // r4 = mapping index (tagged) |
1726 // r3 = address of backing store (tagged) | 1812 // r6 = address of backing store (tagged) |
1727 // r4 = address of parameter map (tagged), which is also the address of new | 1813 // r7 = address of parameter map (tagged) |
1728 // object + Heap::kSloppyArgumentsObjectSize (tagged) | 1814 // r8 = temporary scratch (a.o., for address calculation) |
1729 // r0 = temporary scratch (a.o., for address calculation) | 1815 // r10 = the hole value |
1730 // r5 = the hole value | 1816 __ b(¶meters_test); |
1731 __ jmp(¶meters_test); | |
1732 | 1817 |
1733 __ bind(¶meters_loop); | 1818 __ bind(¶meters_loop); |
1734 __ sub(r6, r6, Operand(Smi::FromInt(1))); | 1819 __ SubSmiLiteral(r9, r9, Smi::FromInt(1), r0); |
1735 __ mov(r0, Operand(r6, LSL, 1)); | 1820 __ SmiToPtrArrayOffset(r8, r9); |
1736 __ add(r0, r0, Operand(kParameterMapHeaderSize - kHeapObjectTag)); | 1821 __ addi(r8, r8, Operand(kParameterMapHeaderSize - kHeapObjectTag)); |
1737 __ str(r9, MemOperand(r4, r0)); | 1822 __ StorePX(r11, MemOperand(r8, r7)); |
1738 __ sub(r0, r0, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); | 1823 __ subi(r8, r8, Operand(kParameterMapHeaderSize - FixedArray::kHeaderSize)); |
1739 __ str(r5, MemOperand(r3, r0)); | 1824 __ StorePX(r10, MemOperand(r8, r6)); |
1740 __ add(r9, r9, Operand(Smi::FromInt(1))); | 1825 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0); |
1741 __ bind(¶meters_test); | 1826 __ bind(¶meters_test); |
1742 __ cmp(r6, Operand(Smi::FromInt(0))); | 1827 __ CmpSmiLiteral(r9, Smi::FromInt(0), r0); |
1743 __ b(ne, ¶meters_loop); | 1828 __ bne(¶meters_loop); |
1744 | |
1745 // Restore r0 = new object (tagged) | |
1746 __ sub(r0, r4, Operand(Heap::kSloppyArgumentsObjectSize)); | |
1747 | 1829 |
1748 __ bind(&skip_parameter_map); | 1830 __ bind(&skip_parameter_map); |
1749 // r0 = address of new object (tagged) | 1831 // r5 = argument count (tagged) |
1750 // r2 = argument count (tagged) | 1832 // r6 = address of backing store (tagged) |
1751 // r3 = address of backing store (tagged) | 1833 // r8 = scratch |
1752 // r5 = scratch | |
1753 // Copy arguments header and remaining slots (if there are any). | 1834 // Copy arguments header and remaining slots (if there are any). |
1754 __ LoadRoot(r5, Heap::kFixedArrayMapRootIndex); | 1835 __ LoadRoot(r8, Heap::kFixedArrayMapRootIndex); |
1755 __ str(r5, FieldMemOperand(r3, FixedArray::kMapOffset)); | 1836 __ StoreP(r8, FieldMemOperand(r6, FixedArray::kMapOffset), r0); |
1756 __ str(r2, FieldMemOperand(r3, FixedArray::kLengthOffset)); | 1837 __ StoreP(r5, FieldMemOperand(r6, FixedArray::kLengthOffset), r0); |
1757 | 1838 |
1758 Label arguments_loop, arguments_test; | 1839 Label arguments_loop, arguments_test; |
1759 __ mov(r9, r1); | 1840 __ mr(r11, r4); |
1760 __ ldr(r4, MemOperand(sp, 1 * kPointerSize)); | 1841 __ LoadP(r7, MemOperand(sp, 1 * kPointerSize)); |
1761 __ sub(r4, r4, Operand(r9, LSL, 1)); | 1842 __ SmiToPtrArrayOffset(r8, r11); |
1762 __ jmp(&arguments_test); | 1843 __ sub(r7, r7, r8); |
1844 __ b(&arguments_test); | |
1763 | 1845 |
1764 __ bind(&arguments_loop); | 1846 __ bind(&arguments_loop); |
1765 __ sub(r4, r4, Operand(kPointerSize)); | 1847 __ subi(r7, r7, Operand(kPointerSize)); |
1766 __ ldr(r6, MemOperand(r4, 0)); | 1848 __ LoadP(r9, MemOperand(r7, 0)); |
1767 __ add(r5, r3, Operand(r9, LSL, 1)); | 1849 __ SmiToPtrArrayOffset(r8, r11); |
1768 __ str(r6, FieldMemOperand(r5, FixedArray::kHeaderSize)); | 1850 __ add(r8, r6, r8); |
1769 __ add(r9, r9, Operand(Smi::FromInt(1))); | 1851 __ StoreP(r9, FieldMemOperand(r8, FixedArray::kHeaderSize), r0); |
1852 __ AddSmiLiteral(r11, r11, Smi::FromInt(1), r0); | |
1770 | 1853 |
1771 __ bind(&arguments_test); | 1854 __ bind(&arguments_test); |
1772 __ cmp(r9, Operand(r2)); | 1855 __ cmp(r11, r5); |
1773 __ b(lt, &arguments_loop); | 1856 __ blt(&arguments_loop); |
1774 | 1857 |
1775 // Return and remove the on-stack parameters. | 1858 // Return and remove the on-stack parameters. |
1776 __ add(sp, sp, Operand(3 * kPointerSize)); | 1859 __ addi(sp, sp, Operand(3 * kPointerSize)); |
1777 __ Ret(); | 1860 __ Ret(); |
1778 | 1861 |
1779 // Do the runtime call to allocate the arguments object. | 1862 // Do the runtime call to allocate the arguments object. |
1780 // r0 = address of new object (tagged) | 1863 // r5 = argument count (tagged) |
1781 // r2 = argument count (tagged) | |
1782 __ bind(&runtime); | 1864 __ bind(&runtime); |
1783 __ str(r2, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. | 1865 __ StoreP(r5, MemOperand(sp, 0 * kPointerSize)); // Patch argument count. |
1784 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); | 1866 __ TailCallRuntime(Runtime::kNewSloppyArguments, 3, 1); |
1785 } | 1867 } |
1786 | 1868 |
1787 | 1869 |
1788 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) { | 1870 void LoadIndexedInterceptorStub::Generate(MacroAssembler* masm) { |
1789 // Return address is in lr. | 1871 // Return address is in lr. |
1790 Label slow; | 1872 Label slow; |
1791 | 1873 |
1792 Register receiver = LoadDescriptor::ReceiverRegister(); | 1874 Register receiver = LoadDescriptor::ReceiverRegister(); |
1793 Register key = LoadDescriptor::NameRegister(); | 1875 Register key = LoadDescriptor::NameRegister(); |
1794 | 1876 |
1795 // Check that the key is an array index, that is Uint32. | 1877 // Check that the key is an array index, that is Uint32. |
1796 __ NonNegativeSmiTst(key); | 1878 __ TestIfPositiveSmi(key, r0); |
1797 __ b(ne, &slow); | 1879 __ bne(&slow, cr0); |
1798 | 1880 |
1799 // Everything is fine, call runtime. | 1881 // Everything is fine, call runtime. |
1800 __ Push(receiver, key); // Receiver, key. | 1882 __ Push(receiver, key); // Receiver, key. |
1801 | 1883 |
1802 // Perform tail call to the entry. | 1884 // Perform tail call to the entry. |
1803 __ TailCallExternalReference( | 1885 __ TailCallExternalReference( |
1804 ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor), | 1886 ExternalReference(IC_Utility(IC::kLoadElementWithInterceptor), |
1805 masm->isolate()), | 1887 masm->isolate()), |
1806 2, 1); | 1888 2, 1); |
1807 | 1889 |
1808 __ bind(&slow); | 1890 __ bind(&slow); |
1809 PropertyAccessCompiler::TailCallBuiltin( | 1891 PropertyAccessCompiler::TailCallBuiltin( |
1810 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); | 1892 masm, PropertyAccessCompiler::MissBuiltin(Code::KEYED_LOAD_IC)); |
1811 } | 1893 } |
1812 | 1894 |
1813 | 1895 |
1814 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { | 1896 void ArgumentsAccessStub::GenerateNewStrict(MacroAssembler* masm) { |
1815 // sp[0] : number of parameters | 1897 // sp[0] : number of parameters |
1816 // sp[4] : receiver displacement | 1898 // sp[4] : receiver displacement |
1817 // sp[8] : function | 1899 // sp[8] : function |
1818 // Check if the calling frame is an arguments adaptor frame. | 1900 // Check if the calling frame is an arguments adaptor frame. |
1819 Label adaptor_frame, try_allocate, runtime; | 1901 Label adaptor_frame, try_allocate, runtime; |
1820 __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); | 1902 __ LoadP(r5, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); |
1821 __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); | 1903 __ LoadP(r6, MemOperand(r5, StandardFrameConstants::kContextOffset)); |
1822 __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); | 1904 STATIC_ASSERT(StackFrame::ARGUMENTS_ADAPTOR < 0x3fffu); |
1823 __ b(eq, &adaptor_frame); | 1905 __ CmpSmiLiteral(r6, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR), r0); |
1906 __ beq(&adaptor_frame); | |
1824 | 1907 |
1825 // Get the length from the frame. | 1908 // Get the length from the frame. |
1826 __ ldr(r1, MemOperand(sp, 0)); | 1909 __ LoadP(r4, MemOperand(sp, 0)); |
1827 __ b(&try_allocate); | 1910 __ b(&try_allocate); |
1828 | 1911 |
1829 // Patch the arguments.length and the parameters pointer. | 1912 // Patch the arguments.length and the parameters pointer. |
1830 __ bind(&adaptor_frame); | 1913 __ bind(&adaptor_frame); |
1831 __ ldr(r1, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); | 1914 __ LoadP(r4, MemOperand(r5, ArgumentsAdaptorFrameConstants::kLengthOffset)); |
1832 __ str(r1, MemOperand(sp, 0)); | 1915 __ StoreP(r4, MemOperand(sp, 0)); |
1833 __ add(r3, r2, Operand::PointerOffsetFromSmiKey(r1)); | 1916 __ SmiToPtrArrayOffset(r6, r4); |
1834 __ add(r3, r3, Operand(StandardFrameConstants::kCallerSPOffset)); | 1917 __ add(r6, r5, r6); |
1835 __ str(r3, MemOperand(sp, 1 * kPointerSize)); | 1918 __ addi(r6, r6, Operand(StandardFrameConstants::kCallerSPOffset)); |
1919 __ StoreP(r6, MemOperand(sp, 1 * kPointerSize)); | |
1836 | 1920 |
1837 // Try the new space allocation. Start out with computing the size | 1921 // Try the new space allocation. Start out with computing the size |
1838 // of the arguments object and the elements array in words. | 1922 // of the arguments object and the elements array in words. |
1839 Label add_arguments_object; | 1923 Label add_arguments_object; |
1840 __ bind(&try_allocate); | 1924 __ bind(&try_allocate); |
1841 __ SmiUntag(r1, SetCC); | 1925 __ cmpi(r4, Operand::Zero()); |
1842 __ b(eq, &add_arguments_object); | 1926 __ beq(&add_arguments_object); |
1843 __ add(r1, r1, Operand(FixedArray::kHeaderSize / kPointerSize)); | 1927 __ SmiUntag(r4); |
1928 __ addi(r4, r4, Operand(FixedArray::kHeaderSize / kPointerSize)); | |
1844 __ bind(&add_arguments_object); | 1929 __ bind(&add_arguments_object); |
1845 __ add(r1, r1, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize)); | 1930 __ addi(r4, r4, Operand(Heap::kStrictArgumentsObjectSize / kPointerSize)); |
1846 | 1931 |
1847 // Do the allocation of both objects in one go. | 1932 // Do the allocation of both objects in one go. |
1848 __ Allocate(r1, r0, r2, r3, &runtime, | 1933 __ Allocate(r4, r3, r5, r6, &runtime, |
1849 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); | 1934 static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS)); |
1850 | 1935 |
1851 // Get the arguments boilerplate from the current native context. | 1936 // Get the arguments boilerplate from the current native context. |
1852 __ ldr(r4, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); | 1937 __ LoadP(r7, |
1853 __ ldr(r4, FieldMemOperand(r4, GlobalObject::kNativeContextOffset)); | 1938 MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); |
1854 __ ldr(r4, MemOperand( | 1939 __ LoadP(r7, FieldMemOperand(r7, GlobalObject::kNativeContextOffset)); |
1855 r4, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX))); | 1940 __ LoadP( |
1941 r7, | |
1942 MemOperand(r7, Context::SlotOffset(Context::STRICT_ARGUMENTS_MAP_INDEX))); | |
1856 | 1943 |
1857 __ str(r4, FieldMemOperand(r0, JSObject::kMapOffset)); | 1944 __ StoreP(r7, FieldMemOperand(r3, JSObject::kMapOffset), r0); |
1858 __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); | 1945 __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); |
1859 __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); | 1946 __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0); |
1860 __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); | 1947 __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0); |
1861 | 1948 |
1862 // Get the length (smi tagged) and set that as an in-object property too. | 1949 // Get the length (smi tagged) and set that as an in-object property too. |
1863 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); | 1950 STATIC_ASSERT(Heap::kArgumentsLengthIndex == 0); |
1864 __ ldr(r1, MemOperand(sp, 0 * kPointerSize)); | 1951 __ LoadP(r4, MemOperand(sp, 0 * kPointerSize)); |
1865 __ AssertSmi(r1); | 1952 __ AssertSmi(r4); |
1866 __ str(r1, FieldMemOperand(r0, JSObject::kHeaderSize + | 1953 __ StoreP(r4, |
1867 Heap::kArgumentsLengthIndex * kPointerSize)); | 1954 FieldMemOperand(r3, JSObject::kHeaderSize + |
1955 Heap::kArgumentsLengthIndex * kPointerSize), | |
1956 r0); | |
1868 | 1957 |
1869 // If there are no actual arguments, we're done. | 1958 // If there are no actual arguments, we're done. |
1870 Label done; | 1959 Label done; |
1871 __ cmp(r1, Operand::Zero()); | 1960 __ cmpi(r4, Operand::Zero()); |
1872 __ b(eq, &done); | 1961 __ beq(&done); |
1873 | 1962 |
1874 // Get the parameters pointer from the stack. | 1963 // Get the parameters pointer from the stack. |
1875 __ ldr(r2, MemOperand(sp, 1 * kPointerSize)); | 1964 __ LoadP(r5, MemOperand(sp, 1 * kPointerSize)); |
1876 | 1965 |
1877 // Set up the elements pointer in the allocated arguments object and | 1966 // Set up the elements pointer in the allocated arguments object and |
1878 // initialize the header in the elements fixed array. | 1967 // initialize the header in the elements fixed array. |
1879 __ add(r4, r0, Operand(Heap::kStrictArgumentsObjectSize)); | 1968 __ addi(r7, r3, Operand(Heap::kStrictArgumentsObjectSize)); |
1880 __ str(r4, FieldMemOperand(r0, JSObject::kElementsOffset)); | 1969 __ StoreP(r7, FieldMemOperand(r3, JSObject::kElementsOffset), r0); |
1881 __ LoadRoot(r3, Heap::kFixedArrayMapRootIndex); | 1970 __ LoadRoot(r6, Heap::kFixedArrayMapRootIndex); |
1882 __ str(r3, FieldMemOperand(r4, FixedArray::kMapOffset)); | 1971 __ StoreP(r6, FieldMemOperand(r7, FixedArray::kMapOffset), r0); |
1883 __ str(r1, FieldMemOperand(r4, FixedArray::kLengthOffset)); | 1972 __ StoreP(r4, FieldMemOperand(r7, FixedArray::kLengthOffset), r0); |
1884 __ SmiUntag(r1); | 1973 // Untag the length for the loop. |
1974 __ SmiUntag(r4); | |
1885 | 1975 |
1886 // Copy the fixed array slots. | 1976 // Copy the fixed array slots. |
1887 Label loop; | 1977 Label loop; |
1888 // Set up r4 to point to the first array slot. | 1978 // Set up r7 to point just prior to the first array slot. |
1889 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 1979 __ addi(r7, r7, |
1980 Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize)); | |
1981 __ mtctr(r4); | |
1890 __ bind(&loop); | 1982 __ bind(&loop); |
1891 // Pre-decrement r2 with kPointerSize on each iteration. | 1983 // Pre-decrement r5 with kPointerSize on each iteration. |
1892 // Pre-decrement in order to skip receiver. | 1984 // Pre-decrement in order to skip receiver. |
1893 __ ldr(r3, MemOperand(r2, kPointerSize, NegPreIndex)); | 1985 __ LoadPU(r6, MemOperand(r5, -kPointerSize)); |
1894 // Post-increment r4 with kPointerSize on each iteration. | 1986 // Pre-increment r7 with kPointerSize on each iteration. |
1895 __ str(r3, MemOperand(r4, kPointerSize, PostIndex)); | 1987 __ StorePU(r6, MemOperand(r7, kPointerSize)); |
1896 __ sub(r1, r1, Operand(1)); | 1988 __ bdnz(&loop); |
1897 __ cmp(r1, Operand::Zero()); | |
1898 __ b(ne, &loop); | |
1899 | 1989 |
1900 // Return and remove the on-stack parameters. | 1990 // Return and remove the on-stack parameters. |
1901 __ bind(&done); | 1991 __ bind(&done); |
1902 __ add(sp, sp, Operand(3 * kPointerSize)); | 1992 __ addi(sp, sp, Operand(3 * kPointerSize)); |
1903 __ Ret(); | 1993 __ Ret(); |
1904 | 1994 |
1905 // Do the runtime call to allocate the arguments object. | 1995 // Do the runtime call to allocate the arguments object. |
1906 __ bind(&runtime); | 1996 __ bind(&runtime); |
1907 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1); | 1997 __ TailCallRuntime(Runtime::kNewStrictArguments, 3, 1); |
1908 } | 1998 } |
1909 | 1999 |
1910 | 2000 |
1911 void RegExpExecStub::Generate(MacroAssembler* masm) { | 2001 void RegExpExecStub::Generate(MacroAssembler* masm) { |
1912 // Just jump directly to runtime if native RegExp is not selected at compile | 2002 // Just jump directly to runtime if native RegExp is not selected at compile |
1913 // time or if regexp entry in generated code is turned off runtime switch or | 2003 // time or if regexp entry in generated code is turned off runtime switch or |
1914 // at compilation. | 2004 // at compilation. |
1915 #ifdef V8_INTERPRETED_REGEXP | 2005 #ifdef V8_INTERPRETED_REGEXP |
1916 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); | 2006 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); |
1917 #else // V8_INTERPRETED_REGEXP | 2007 #else // V8_INTERPRETED_REGEXP |
1918 | 2008 |
1919 // Stack frame on entry. | 2009 // Stack frame on entry. |
1920 // sp[0]: last_match_info (expected JSArray) | 2010 // sp[0]: last_match_info (expected JSArray) |
1921 // sp[4]: previous index | 2011 // sp[4]: previous index |
1922 // sp[8]: subject string | 2012 // sp[8]: subject string |
1923 // sp[12]: JSRegExp object | 2013 // sp[12]: JSRegExp object |
1924 | 2014 |
1925 const int kLastMatchInfoOffset = 0 * kPointerSize; | 2015 const int kLastMatchInfoOffset = 0 * kPointerSize; |
1926 const int kPreviousIndexOffset = 1 * kPointerSize; | 2016 const int kPreviousIndexOffset = 1 * kPointerSize; |
1927 const int kSubjectOffset = 2 * kPointerSize; | 2017 const int kSubjectOffset = 2 * kPointerSize; |
1928 const int kJSRegExpOffset = 3 * kPointerSize; | 2018 const int kJSRegExpOffset = 3 * kPointerSize; |
1929 | 2019 |
1930 Label runtime; | 2020 Label runtime, br_over, encoding_type_UC16; |
2021 | |
1931 // Allocation of registers for this function. These are in callee save | 2022 // Allocation of registers for this function. These are in callee save |
1932 // registers and will be preserved by the call to the native RegExp code, as | 2023 // registers and will be preserved by the call to the native RegExp code, as |
1933 // this code is called using the normal C calling convention. When calling | 2024 // this code is called using the normal C calling convention. When calling |
1934 // directly from generated code the native RegExp code will not do a GC and | 2025 // directly from generated code the native RegExp code will not do a GC and |
1935 // therefore the content of these registers are safe to use after the call. | 2026 // therefore the content of these registers are safe to use after the call. |
1936 Register subject = r4; | 2027 Register subject = r14; |
1937 Register regexp_data = r5; | 2028 Register regexp_data = r15; |
1938 Register last_match_info_elements = no_reg; // will be r6; | 2029 Register last_match_info_elements = r16; |
2030 Register code = r17; | |
2031 | |
2032 // Ensure register assigments are consistent with callee save masks | |
2033 DCHECK(subject.bit() & kCalleeSaved); | |
2034 DCHECK(regexp_data.bit() & kCalleeSaved); | |
2035 DCHECK(last_match_info_elements.bit() & kCalleeSaved); | |
2036 DCHECK(code.bit() & kCalleeSaved); | |
1939 | 2037 |
1940 // Ensure that a RegExp stack is allocated. | 2038 // Ensure that a RegExp stack is allocated. |
1941 ExternalReference address_of_regexp_stack_memory_address = | 2039 ExternalReference address_of_regexp_stack_memory_address = |
1942 ExternalReference::address_of_regexp_stack_memory_address(isolate()); | 2040 ExternalReference::address_of_regexp_stack_memory_address(isolate()); |
1943 ExternalReference address_of_regexp_stack_memory_size = | 2041 ExternalReference address_of_regexp_stack_memory_size = |
1944 ExternalReference::address_of_regexp_stack_memory_size(isolate()); | 2042 ExternalReference::address_of_regexp_stack_memory_size(isolate()); |
1945 __ mov(r0, Operand(address_of_regexp_stack_memory_size)); | 2043 __ mov(r3, Operand(address_of_regexp_stack_memory_size)); |
1946 __ ldr(r0, MemOperand(r0, 0)); | 2044 __ LoadP(r3, MemOperand(r3, 0)); |
1947 __ cmp(r0, Operand::Zero()); | 2045 __ cmpi(r3, Operand::Zero()); |
1948 __ b(eq, &runtime); | 2046 __ beq(&runtime); |
1949 | 2047 |
1950 // Check that the first argument is a JSRegExp object. | 2048 // Check that the first argument is a JSRegExp object. |
1951 __ ldr(r0, MemOperand(sp, kJSRegExpOffset)); | 2049 __ LoadP(r3, MemOperand(sp, kJSRegExpOffset)); |
1952 __ JumpIfSmi(r0, &runtime); | 2050 __ JumpIfSmi(r3, &runtime); |
1953 __ CompareObjectType(r0, r1, r1, JS_REGEXP_TYPE); | 2051 __ CompareObjectType(r3, r4, r4, JS_REGEXP_TYPE); |
1954 __ b(ne, &runtime); | 2052 __ bne(&runtime); |
1955 | 2053 |
1956 // Check that the RegExp has been compiled (data contains a fixed array). | 2054 // Check that the RegExp has been compiled (data contains a fixed array). |
1957 __ ldr(regexp_data, FieldMemOperand(r0, JSRegExp::kDataOffset)); | 2055 __ LoadP(regexp_data, FieldMemOperand(r3, JSRegExp::kDataOffset)); |
1958 if (FLAG_debug_code) { | 2056 if (FLAG_debug_code) { |
1959 __ SmiTst(regexp_data); | 2057 __ TestIfSmi(regexp_data, r0); |
1960 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected); | 2058 __ Check(ne, kUnexpectedTypeForRegExpDataFixedArrayExpected, cr0); |
1961 __ CompareObjectType(regexp_data, r0, r0, FIXED_ARRAY_TYPE); | 2059 __ CompareObjectType(regexp_data, r3, r3, FIXED_ARRAY_TYPE); |
1962 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); | 2060 __ Check(eq, kUnexpectedTypeForRegExpDataFixedArrayExpected); |
1963 } | 2061 } |
1964 | 2062 |
1965 // regexp_data: RegExp data (FixedArray) | 2063 // regexp_data: RegExp data (FixedArray) |
1966 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. | 2064 // Check the type of the RegExp. Only continue if type is JSRegExp::IRREGEXP. |
1967 __ ldr(r0, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); | 2065 __ LoadP(r3, FieldMemOperand(regexp_data, JSRegExp::kDataTagOffset)); |
1968 __ cmp(r0, Operand(Smi::FromInt(JSRegExp::IRREGEXP))); | 2066 // DCHECK(Smi::FromInt(JSRegExp::IRREGEXP) < (char *)0xffffu); |
1969 __ b(ne, &runtime); | 2067 __ CmpSmiLiteral(r3, Smi::FromInt(JSRegExp::IRREGEXP), r0); |
2068 __ bne(&runtime); | |
1970 | 2069 |
1971 // regexp_data: RegExp data (FixedArray) | 2070 // regexp_data: RegExp data (FixedArray) |
1972 // Check that the number of captures fit in the static offsets vector buffer. | 2071 // Check that the number of captures fit in the static offsets vector buffer. |
1973 __ ldr(r2, | 2072 __ LoadP(r5, |
1974 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); | 2073 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
1975 // Check (number_of_captures + 1) * 2 <= offsets vector size | 2074 // Check (number_of_captures + 1) * 2 <= offsets vector size |
1976 // Or number_of_captures * 2 <= offsets vector size - 2 | 2075 // Or number_of_captures * 2 <= offsets vector size - 2 |
1977 // Multiplying by 2 comes for free since r2 is smi-tagged. | 2076 // SmiToShortArrayOffset accomplishes the multiplication by 2 and |
1978 STATIC_ASSERT(kSmiTag == 0); | 2077 // SmiUntag (which is a nop for 32-bit). |
1979 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | 2078 __ SmiToShortArrayOffset(r5, r5); |
1980 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); | 2079 STATIC_ASSERT(Isolate::kJSRegexpStaticOffsetsVectorSize >= 2); |
1981 __ cmp(r2, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); | 2080 __ cmpli(r5, Operand(Isolate::kJSRegexpStaticOffsetsVectorSize - 2)); |
1982 __ b(hi, &runtime); | 2081 __ bgt(&runtime); |
1983 | 2082 |
1984 // Reset offset for possibly sliced string. | 2083 // Reset offset for possibly sliced string. |
1985 __ mov(r9, Operand::Zero()); | 2084 __ li(r11, Operand::Zero()); |
1986 __ ldr(subject, MemOperand(sp, kSubjectOffset)); | 2085 __ LoadP(subject, MemOperand(sp, kSubjectOffset)); |
1987 __ JumpIfSmi(subject, &runtime); | 2086 __ JumpIfSmi(subject, &runtime); |
1988 __ mov(r3, subject); // Make a copy of the original subject string. | 2087 __ mr(r6, subject); // Make a copy of the original subject string. |
1989 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); | 2088 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); |
1990 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); | 2089 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); |
1991 // subject: subject string | 2090 // subject: subject string |
1992 // r3: subject string | 2091 // r6: subject string |
1993 // r0: subject string instance type | 2092 // r3: subject string instance type |
1994 // regexp_data: RegExp data (FixedArray) | 2093 // regexp_data: RegExp data (FixedArray) |
1995 // Handle subject string according to its encoding and representation: | 2094 // Handle subject string according to its encoding and representation: |
1996 // (1) Sequential string? If yes, go to (5). | 2095 // (1) Sequential string? If yes, go to (5). |
1997 // (2) Anything but sequential or cons? If yes, go to (6). | 2096 // (2) Anything but sequential or cons? If yes, go to (6). |
1998 // (3) Cons string. If the string is flat, replace subject with first string. | 2097 // (3) Cons string. If the string is flat, replace subject with first string. |
1999 // Otherwise bailout. | 2098 // Otherwise bailout. |
2000 // (4) Is subject external? If yes, go to (7). | 2099 // (4) Is subject external? If yes, go to (7). |
2001 // (5) Sequential string. Load regexp code according to encoding. | 2100 // (5) Sequential string. Load regexp code according to encoding. |
2002 // (E) Carry on. | 2101 // (E) Carry on. |
2003 /// [...] | 2102 /// [...] |
2004 | 2103 |
2005 // Deferred code at the end of the stub: | 2104 // Deferred code at the end of the stub: |
2006 // (6) Not a long external string? If yes, go to (8). | 2105 // (6) Not a long external string? If yes, go to (8). |
2007 // (7) External string. Make it, offset-wise, look like a sequential string. | 2106 // (7) External string. Make it, offset-wise, look like a sequential string. |
2008 // Go to (5). | 2107 // Go to (5). |
2009 // (8) Short external string or not a string? If yes, bail out to runtime. | 2108 // (8) Short external string or not a string? If yes, bail out to runtime. |
2010 // (9) Sliced string. Replace subject with parent. Go to (4). | 2109 // (9) Sliced string. Replace subject with parent. Go to (4). |
2011 | 2110 |
2012 Label seq_string /* 5 */, external_string /* 7 */, | 2111 Label seq_string /* 5 */, external_string /* 7 */, check_underlying /* 4 */, |
2013 check_underlying /* 4 */, not_seq_nor_cons /* 6 */, | 2112 not_seq_nor_cons /* 6 */, not_long_external /* 8 */; |
2014 not_long_external /* 8 */; | |
2015 | 2113 |
2016 // (1) Sequential string? If yes, go to (5). | 2114 // (1) Sequential string? If yes, go to (5). |
2017 __ and_(r1, | 2115 STATIC_ASSERT((kIsNotStringMask | kStringRepresentationMask | |
2018 r0, | 2116 kShortExternalStringMask) == 0x93); |
2019 Operand(kIsNotStringMask | | 2117 __ andi(r4, r3, Operand(kIsNotStringMask | kStringRepresentationMask | |
2020 kStringRepresentationMask | | 2118 kShortExternalStringMask)); |
2021 kShortExternalStringMask), | |
2022 SetCC); | |
2023 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); | 2119 STATIC_ASSERT((kStringTag | kSeqStringTag) == 0); |
2024 __ b(eq, &seq_string); // Go to (5). | 2120 __ beq(&seq_string, cr0); // Go to (5). |
2025 | 2121 |
2026 // (2) Anything but sequential or cons? If yes, go to (6). | 2122 // (2) Anything but sequential or cons? If yes, go to (6). |
2027 STATIC_ASSERT(kConsStringTag < kExternalStringTag); | 2123 STATIC_ASSERT(kConsStringTag < kExternalStringTag); |
2028 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); | 2124 STATIC_ASSERT(kSlicedStringTag > kExternalStringTag); |
2029 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); | 2125 STATIC_ASSERT(kIsNotStringMask > kExternalStringTag); |
2030 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); | 2126 STATIC_ASSERT(kShortExternalStringTag > kExternalStringTag); |
2031 __ cmp(r1, Operand(kExternalStringTag)); | 2127 STATIC_ASSERT(kExternalStringTag < 0xffffu); |
2032 __ b(ge, ¬_seq_nor_cons); // Go to (6). | 2128 __ cmpi(r4, Operand(kExternalStringTag)); |
2129 __ bge(¬_seq_nor_cons); // Go to (6). | |
2033 | 2130 |
2034 // (3) Cons string. Check that it's flat. | 2131 // (3) Cons string. Check that it's flat. |
2035 // Replace subject with first string and reload instance type. | 2132 // Replace subject with first string and reload instance type. |
2036 __ ldr(r0, FieldMemOperand(subject, ConsString::kSecondOffset)); | 2133 __ LoadP(r3, FieldMemOperand(subject, ConsString::kSecondOffset)); |
2037 __ CompareRoot(r0, Heap::kempty_stringRootIndex); | 2134 __ CompareRoot(r3, Heap::kempty_stringRootIndex); |
2038 __ b(ne, &runtime); | 2135 __ bne(&runtime); |
2039 __ ldr(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); | 2136 __ LoadP(subject, FieldMemOperand(subject, ConsString::kFirstOffset)); |
2040 | 2137 |
2041 // (4) Is subject external? If yes, go to (7). | 2138 // (4) Is subject external? If yes, go to (7). |
2042 __ bind(&check_underlying); | 2139 __ bind(&check_underlying); |
2043 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); | 2140 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); |
2044 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); | 2141 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); |
2045 STATIC_ASSERT(kSeqStringTag == 0); | 2142 STATIC_ASSERT(kSeqStringTag == 0); |
2046 __ tst(r0, Operand(kStringRepresentationMask)); | 2143 STATIC_ASSERT(kStringRepresentationMask == 3); |
2144 __ andi(r0, r3, Operand(kStringRepresentationMask)); | |
2047 // The underlying external string is never a short external string. | 2145 // The underlying external string is never a short external string. |
2048 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); | 2146 STATIC_ASSERT(ExternalString::kMaxShortLength < ConsString::kMinLength); |
2049 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); | 2147 STATIC_ASSERT(ExternalString::kMaxShortLength < SlicedString::kMinLength); |
2050 __ b(ne, &external_string); // Go to (7). | 2148 __ bne(&external_string, cr0); // Go to (7). |
2051 | 2149 |
2052 // (5) Sequential string. Load regexp code according to encoding. | 2150 // (5) Sequential string. Load regexp code according to encoding. |
2053 __ bind(&seq_string); | 2151 __ bind(&seq_string); |
2054 // subject: sequential subject string (or look-alike, external string) | 2152 // subject: sequential subject string (or look-alike, external string) |
2055 // r3: original subject string | 2153 // r6: original subject string |
2056 // Load previous index and check range before r3 is overwritten. We have to | 2154 // Load previous index and check range before r6 is overwritten. We have to |
2057 // use r3 instead of subject here because subject might have been only made | 2155 // use r6 instead of subject here because subject might have been only made |
2058 // to look like a sequential string when it actually is an external string. | 2156 // to look like a sequential string when it actually is an external string. |
2059 __ ldr(r1, MemOperand(sp, kPreviousIndexOffset)); | 2157 __ LoadP(r4, MemOperand(sp, kPreviousIndexOffset)); |
2060 __ JumpIfNotSmi(r1, &runtime); | 2158 __ JumpIfNotSmi(r4, &runtime); |
2061 __ ldr(r3, FieldMemOperand(r3, String::kLengthOffset)); | 2159 __ LoadP(r6, FieldMemOperand(r6, String::kLengthOffset)); |
2062 __ cmp(r3, Operand(r1)); | 2160 __ cmpl(r6, r4); |
2063 __ b(ls, &runtime); | 2161 __ ble(&runtime); |
2064 __ SmiUntag(r1); | 2162 __ SmiUntag(r4); |
2065 | 2163 |
2066 STATIC_ASSERT(4 == kOneByteStringTag); | 2164 STATIC_ASSERT(4 == kOneByteStringTag); |
2067 STATIC_ASSERT(kTwoByteStringTag == 0); | 2165 STATIC_ASSERT(kTwoByteStringTag == 0); |
2068 __ and_(r0, r0, Operand(kStringEncodingMask)); | 2166 STATIC_ASSERT(kStringEncodingMask == 4); |
2069 __ mov(r3, Operand(r0, ASR, 2), SetCC); | 2167 __ ExtractBitMask(r6, r3, kStringEncodingMask, SetRC); |
2070 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset), | 2168 __ beq(&encoding_type_UC16, cr0); |
2071 ne); | 2169 __ LoadP(code, |
2072 __ ldr(r6, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset), eq); | 2170 FieldMemOperand(regexp_data, JSRegExp::kDataOneByteCodeOffset)); |
2171 __ b(&br_over); | |
2172 __ bind(&encoding_type_UC16); | |
2173 __ LoadP(code, FieldMemOperand(regexp_data, JSRegExp::kDataUC16CodeOffset)); | |
2174 __ bind(&br_over); | |
2073 | 2175 |
2074 // (E) Carry on. String handling is done. | 2176 // (E) Carry on. String handling is done. |
2075 // r6: irregexp code | 2177 // code: irregexp code |
2076 // Check that the irregexp code has been generated for the actual string | 2178 // Check that the irregexp code has been generated for the actual string |
2077 // encoding. If it has, the field contains a code object otherwise it contains | 2179 // encoding. If it has, the field contains a code object otherwise it contains |
2078 // a smi (code flushing support). | 2180 // a smi (code flushing support). |
2079 __ JumpIfSmi(r6, &runtime); | 2181 __ JumpIfSmi(code, &runtime); |
2080 | 2182 |
2081 // r1: previous index | 2183 // r4: previous index |
2082 // r3: encoding of subject string (1 if one_byte, 0 if two_byte); | 2184 // r6: encoding of subject string (1 if one_byte, 0 if two_byte); |
2083 // r6: code | 2185 // code: Address of generated regexp code |
2084 // subject: Subject string | 2186 // subject: Subject string |
2085 // regexp_data: RegExp data (FixedArray) | 2187 // regexp_data: RegExp data (FixedArray) |
2086 // All checks done. Now push arguments for native regexp code. | 2188 // All checks done. Now push arguments for native regexp code. |
2087 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r0, r2); | 2189 __ IncrementCounter(isolate()->counters()->regexp_entry_native(), 1, r3, r5); |
2088 | 2190 |
2089 // Isolates: note we add an additional parameter here (isolate pointer). | 2191 // Isolates: note we add an additional parameter here (isolate pointer). |
2090 const int kRegExpExecuteArguments = 9; | 2192 const int kRegExpExecuteArguments = 10; |
2091 const int kParameterRegisters = 4; | 2193 const int kParameterRegisters = 8; |
2092 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); | 2194 __ EnterExitFrame(false, kRegExpExecuteArguments - kParameterRegisters); |
2093 | 2195 |
2094 // Stack pointer now points to cell where return address is to be written. | 2196 // Stack pointer now points to cell where return address is to be written. |
2095 // Arguments are before that on the stack or in registers. | 2197 // Arguments are before that on the stack or in registers. |
2096 | 2198 |
2097 // Argument 9 (sp[20]): Pass current isolate address. | 2199 // Argument 10 (in stack parameter area): Pass current isolate address. |
2098 __ mov(r0, Operand(ExternalReference::isolate_address(isolate()))); | 2200 __ mov(r3, Operand(ExternalReference::isolate_address(isolate()))); |
2099 __ str(r0, MemOperand(sp, 5 * kPointerSize)); | 2201 __ StoreP(r3, MemOperand(sp, (kStackFrameExtraParamSlot + 1) * kPointerSize)); |
2100 | 2202 |
2101 // Argument 8 (sp[16]): Indicate that this is a direct call from JavaScript. | 2203 // Argument 9 is a dummy that reserves the space used for |
2102 __ mov(r0, Operand(1)); | 2204 // the return address added by the ExitFrame in native calls. |
2103 __ str(r0, MemOperand(sp, 4 * kPointerSize)); | 2205 |
2104 | 2206 // Argument 8 (r10): Indicate that this is a direct call from JavaScript. |
2105 // Argument 7 (sp[12]): Start (high end) of backtracking stack memory area. | 2207 __ li(r10, Operand(1)); |
2106 __ mov(r0, Operand(address_of_regexp_stack_memory_address)); | 2208 |
2107 __ ldr(r0, MemOperand(r0, 0)); | 2209 // Argument 7 (r9): Start (high end) of backtracking stack memory area. |
2108 __ mov(r2, Operand(address_of_regexp_stack_memory_size)); | 2210 __ mov(r3, Operand(address_of_regexp_stack_memory_address)); |
2109 __ ldr(r2, MemOperand(r2, 0)); | 2211 __ LoadP(r3, MemOperand(r3, 0)); |
2110 __ add(r0, r0, Operand(r2)); | 2212 __ mov(r5, Operand(address_of_regexp_stack_memory_size)); |
2111 __ str(r0, MemOperand(sp, 3 * kPointerSize)); | 2213 __ LoadP(r5, MemOperand(r5, 0)); |
2112 | 2214 __ add(r9, r3, r5); |
2113 // Argument 6: Set the number of capture registers to zero to force global | 2215 |
2114 // regexps to behave as non-global. This does not affect non-global regexps. | 2216 // Argument 6 (r8): Set the number of capture registers to zero to force |
2115 __ mov(r0, Operand::Zero()); | 2217 // global egexps to behave as non-global. This does not affect non-global |
2116 __ str(r0, MemOperand(sp, 2 * kPointerSize)); | 2218 // regexps. |
2117 | 2219 __ li(r8, Operand::Zero()); |
2118 // Argument 5 (sp[4]): static offsets vector buffer. | 2220 |
2119 __ mov(r0, | 2221 // Argument 5 (r7): static offsets vector buffer. |
2120 Operand(ExternalReference::address_of_static_offsets_vector( | 2222 __ mov( |
2121 isolate()))); | 2223 r7, |
2122 __ str(r0, MemOperand(sp, 1 * kPointerSize)); | 2224 Operand(ExternalReference::address_of_static_offsets_vector(isolate()))); |
2123 | 2225 |
2124 // For arguments 4 and 3 get string length, calculate start of string data and | 2226 // For arguments 4 (r6) and 3 (r5) get string length, calculate start of data |
2125 // calculate the shift of the index (0 for one-byte and 1 for two-byte). | 2227 // and calculate the shift of the index (0 for one-byte and 1 for two-byte). |
2126 __ add(r7, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); | 2228 __ addi(r18, subject, Operand(SeqString::kHeaderSize - kHeapObjectTag)); |
2127 __ eor(r3, r3, Operand(1)); | 2229 __ xori(r6, r6, Operand(1)); |
2128 // Load the length from the original subject string from the previous stack | 2230 // Load the length from the original subject string from the previous stack |
2129 // frame. Therefore we have to use fp, which points exactly to two pointer | 2231 // frame. Therefore we have to use fp, which points exactly to two pointer |
2130 // sizes below the previous sp. (Because creating a new stack frame pushes | 2232 // sizes below the previous sp. (Because creating a new stack frame pushes |
2131 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) | 2233 // the previous fp onto the stack and moves up sp by 2 * kPointerSize.) |
2132 __ ldr(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); | 2234 __ LoadP(subject, MemOperand(fp, kSubjectOffset + 2 * kPointerSize)); |
2133 // If slice offset is not 0, load the length from the original sliced string. | 2235 // If slice offset is not 0, load the length from the original sliced string. |
2134 // Argument 4, r3: End of string data | 2236 // Argument 4, r6: End of string data |
2135 // Argument 3, r2: Start of string data | 2237 // Argument 3, r5: Start of string data |
2136 // Prepare start and end index of the input. | 2238 // Prepare start and end index of the input. |
2137 __ add(r9, r7, Operand(r9, LSL, r3)); | 2239 __ ShiftLeft_(r11, r11, r6); |
2138 __ add(r2, r9, Operand(r1, LSL, r3)); | 2240 __ add(r11, r18, r11); |
2139 | 2241 __ ShiftLeft_(r5, r4, r6); |
2140 __ ldr(r7, FieldMemOperand(subject, String::kLengthOffset)); | 2242 __ add(r5, r11, r5); |
2141 __ SmiUntag(r7); | 2243 |
2142 __ add(r3, r9, Operand(r7, LSL, r3)); | 2244 __ LoadP(r18, FieldMemOperand(subject, String::kLengthOffset)); |
2143 | 2245 __ SmiUntag(r18); |
2144 // Argument 2 (r1): Previous index. | 2246 __ ShiftLeft_(r6, r18, r6); |
2247 __ add(r6, r11, r6); | |
2248 | |
2249 // Argument 2 (r4): Previous index. | |
2145 // Already there | 2250 // Already there |
2146 | 2251 |
2147 // Argument 1 (r0): Subject string. | 2252 // Argument 1 (r3): Subject string. |
2148 __ mov(r0, subject); | 2253 __ mr(r3, subject); |
2149 | 2254 |
2150 // Locate the code entry and call it. | 2255 // Locate the code entry and call it. |
2151 __ add(r6, r6, Operand(Code::kHeaderSize - kHeapObjectTag)); | 2256 __ addi(code, code, Operand(Code::kHeaderSize - kHeapObjectTag)); |
2257 | |
2258 | |
2259 #if ABI_USES_FUNCTION_DESCRIPTORS && defined(USE_SIMULATOR) | |
2260 // Even Simulated AIX/PPC64 Linux uses a function descriptor for the | |
2261 // RegExp routine. Extract the instruction address here since | |
2262 // DirectCEntryStub::GenerateCall will not do it for calls out to | |
2263 // what it thinks is C code compiled for the simulator/host | |
2264 // platform. | |
2265 __ LoadP(code, MemOperand(code, 0)); // Instruction address | |
2266 #endif | |
2267 | |
2152 DirectCEntryStub stub(isolate()); | 2268 DirectCEntryStub stub(isolate()); |
2153 stub.GenerateCall(masm, r6); | 2269 stub.GenerateCall(masm, code); |
2154 | 2270 |
2155 __ LeaveExitFrame(false, no_reg, true); | 2271 __ LeaveExitFrame(false, no_reg, true); |
2156 | 2272 |
2157 last_match_info_elements = r6; | 2273 // r3: result |
2158 | |
2159 // r0: result | |
2160 // subject: subject string (callee saved) | 2274 // subject: subject string (callee saved) |
2161 // regexp_data: RegExp data (callee saved) | 2275 // regexp_data: RegExp data (callee saved) |
2162 // last_match_info_elements: Last match info elements (callee saved) | 2276 // last_match_info_elements: Last match info elements (callee saved) |
2163 // Check the result. | 2277 // Check the result. |
2164 Label success; | 2278 Label success; |
2165 __ cmp(r0, Operand(1)); | 2279 __ cmpi(r3, Operand(1)); |
2166 // We expect exactly one result since we force the called regexp to behave | 2280 // We expect exactly one result since we force the called regexp to behave |
2167 // as non-global. | 2281 // as non-global. |
2168 __ b(eq, &success); | 2282 __ beq(&success); |
2169 Label failure; | 2283 Label failure; |
2170 __ cmp(r0, Operand(NativeRegExpMacroAssembler::FAILURE)); | 2284 __ cmpi(r3, Operand(NativeRegExpMacroAssembler::FAILURE)); |
2171 __ b(eq, &failure); | 2285 __ beq(&failure); |
2172 __ cmp(r0, Operand(NativeRegExpMacroAssembler::EXCEPTION)); | 2286 __ cmpi(r3, Operand(NativeRegExpMacroAssembler::EXCEPTION)); |
2173 // If not exception it can only be retry. Handle that in the runtime system. | 2287 // If not exception it can only be retry. Handle that in the runtime system. |
2174 __ b(ne, &runtime); | 2288 __ bne(&runtime); |
2175 // Result must now be exception. If there is no pending exception already a | 2289 // Result must now be exception. If there is no pending exception already a |
2176 // stack overflow (on the backtrack stack) was detected in RegExp code but | 2290 // stack overflow (on the backtrack stack) was detected in RegExp code but |
2177 // haven't created the exception yet. Handle that in the runtime system. | 2291 // haven't created the exception yet. Handle that in the runtime system. |
2178 // TODO(592): Rerunning the RegExp to get the stack overflow exception. | 2292 // TODO(592): Rerunning the RegExp to get the stack overflow exception. |
2179 __ mov(r1, Operand(isolate()->factory()->the_hole_value())); | 2293 __ mov(r4, Operand(isolate()->factory()->the_hole_value())); |
2180 __ mov(r2, Operand(ExternalReference(Isolate::kPendingExceptionAddress, | 2294 __ mov(r5, Operand(ExternalReference(Isolate::kPendingExceptionAddress, |
2181 isolate()))); | 2295 isolate()))); |
2182 __ ldr(r0, MemOperand(r2, 0)); | 2296 __ LoadP(r3, MemOperand(r5, 0)); |
2183 __ cmp(r0, r1); | 2297 __ cmp(r3, r4); |
2184 __ b(eq, &runtime); | 2298 __ beq(&runtime); |
2185 | 2299 |
2186 __ str(r1, MemOperand(r2, 0)); // Clear pending exception. | 2300 __ StoreP(r4, MemOperand(r5, 0)); // Clear pending exception. |
2187 | 2301 |
2188 // Check if the exception is a termination. If so, throw as uncatchable. | 2302 // Check if the exception is a termination. If so, throw as uncatchable. |
2189 __ CompareRoot(r0, Heap::kTerminationExceptionRootIndex); | 2303 __ CompareRoot(r3, Heap::kTerminationExceptionRootIndex); |
2190 | 2304 |
2191 Label termination_exception; | 2305 Label termination_exception; |
2192 __ b(eq, &termination_exception); | 2306 __ beq(&termination_exception); |
2193 | 2307 |
2194 __ Throw(r0); | 2308 __ Throw(r3); |
2195 | 2309 |
2196 __ bind(&termination_exception); | 2310 __ bind(&termination_exception); |
2197 __ ThrowUncatchable(r0); | 2311 __ ThrowUncatchable(r3); |
2198 | 2312 |
2199 __ bind(&failure); | 2313 __ bind(&failure); |
2200 // For failure and exception return null. | 2314 // For failure and exception return null. |
2201 __ mov(r0, Operand(isolate()->factory()->null_value())); | 2315 __ mov(r3, Operand(isolate()->factory()->null_value())); |
2202 __ add(sp, sp, Operand(4 * kPointerSize)); | 2316 __ addi(sp, sp, Operand(4 * kPointerSize)); |
2203 __ Ret(); | 2317 __ Ret(); |
2204 | 2318 |
2205 // Process the result from the native regexp code. | 2319 // Process the result from the native regexp code. |
2206 __ bind(&success); | 2320 __ bind(&success); |
2207 __ ldr(r1, | 2321 __ LoadP(r4, |
2208 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); | 2322 FieldMemOperand(regexp_data, JSRegExp::kIrregexpCaptureCountOffset)); |
2209 // Calculate number of capture registers (number_of_captures + 1) * 2. | 2323 // Calculate number of capture registers (number_of_captures + 1) * 2. |
2210 // Multiplying by 2 comes for free since r1 is smi-tagged. | 2324 // SmiToShortArrayOffset accomplishes the multiplication by 2 and |
2211 STATIC_ASSERT(kSmiTag == 0); | 2325 // SmiUntag (which is a nop for 32-bit). |
2212 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | 2326 __ SmiToShortArrayOffset(r4, r4); |
2213 __ add(r1, r1, Operand(2)); // r1 was a smi. | 2327 __ addi(r4, r4, Operand(2)); |
2214 | 2328 |
2215 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); | 2329 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset)); |
2216 __ JumpIfSmi(r0, &runtime); | 2330 __ JumpIfSmi(r3, &runtime); |
2217 __ CompareObjectType(r0, r2, r2, JS_ARRAY_TYPE); | 2331 __ CompareObjectType(r3, r5, r5, JS_ARRAY_TYPE); |
2218 __ b(ne, &runtime); | 2332 __ bne(&runtime); |
2219 // Check that the JSArray is in fast case. | 2333 // Check that the JSArray is in fast case. |
2220 __ ldr(last_match_info_elements, | 2334 __ LoadP(last_match_info_elements, |
2221 FieldMemOperand(r0, JSArray::kElementsOffset)); | 2335 FieldMemOperand(r3, JSArray::kElementsOffset)); |
2222 __ ldr(r0, FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); | 2336 __ LoadP(r3, |
2223 __ CompareRoot(r0, Heap::kFixedArrayMapRootIndex); | 2337 FieldMemOperand(last_match_info_elements, HeapObject::kMapOffset)); |
2224 __ b(ne, &runtime); | 2338 __ CompareRoot(r3, Heap::kFixedArrayMapRootIndex); |
2339 __ bne(&runtime); | |
2225 // Check that the last match info has space for the capture registers and the | 2340 // Check that the last match info has space for the capture registers and the |
2226 // additional information. | 2341 // additional information. |
2227 __ ldr(r0, | 2342 __ LoadP( |
2228 FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); | 2343 r3, FieldMemOperand(last_match_info_elements, FixedArray::kLengthOffset)); |
2229 __ add(r2, r1, Operand(RegExpImpl::kLastMatchOverhead)); | 2344 __ addi(r5, r4, Operand(RegExpImpl::kLastMatchOverhead)); |
2230 __ cmp(r2, Operand::SmiUntag(r0)); | 2345 __ SmiUntag(r0, r3); |
2231 __ b(gt, &runtime); | 2346 __ cmp(r5, r0); |
2232 | 2347 __ bgt(&runtime); |
2233 // r1: number of capture registers | 2348 |
2234 // r4: subject string | 2349 // r4: number of capture registers |
2350 // subject: subject string | |
2235 // Store the capture count. | 2351 // Store the capture count. |
2236 __ SmiTag(r2, r1); | 2352 __ SmiTag(r5, r4); |
2237 __ str(r2, FieldMemOperand(last_match_info_elements, | 2353 __ StoreP(r5, FieldMemOperand(last_match_info_elements, |
2238 RegExpImpl::kLastCaptureCountOffset)); | 2354 RegExpImpl::kLastCaptureCountOffset), |
2355 r0); | |
2239 // Store last subject and last input. | 2356 // Store last subject and last input. |
2240 __ str(subject, | 2357 __ StoreP(subject, FieldMemOperand(last_match_info_elements, |
2241 FieldMemOperand(last_match_info_elements, | 2358 RegExpImpl::kLastSubjectOffset), |
2242 RegExpImpl::kLastSubjectOffset)); | 2359 r0); |
2243 __ mov(r2, subject); | 2360 __ mr(r5, subject); |
2244 __ RecordWriteField(last_match_info_elements, | 2361 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastSubjectOffset, |
2245 RegExpImpl::kLastSubjectOffset, | 2362 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs); |
2246 subject, | 2363 __ mr(subject, r5); |
2247 r3, | 2364 __ StoreP(subject, FieldMemOperand(last_match_info_elements, |
2248 kLRHasNotBeenSaved, | 2365 RegExpImpl::kLastInputOffset), |
2249 kDontSaveFPRegs); | 2366 r0); |
2250 __ mov(subject, r2); | 2367 __ RecordWriteField(last_match_info_elements, RegExpImpl::kLastInputOffset, |
2251 __ str(subject, | 2368 subject, r10, kLRHasNotBeenSaved, kDontSaveFPRegs); |
2252 FieldMemOperand(last_match_info_elements, | |
2253 RegExpImpl::kLastInputOffset)); | |
2254 __ RecordWriteField(last_match_info_elements, | |
2255 RegExpImpl::kLastInputOffset, | |
2256 subject, | |
2257 r3, | |
2258 kLRHasNotBeenSaved, | |
2259 kDontSaveFPRegs); | |
2260 | 2369 |
2261 // Get the static offsets vector filled by the native regexp code. | 2370 // Get the static offsets vector filled by the native regexp code. |
2262 ExternalReference address_of_static_offsets_vector = | 2371 ExternalReference address_of_static_offsets_vector = |
2263 ExternalReference::address_of_static_offsets_vector(isolate()); | 2372 ExternalReference::address_of_static_offsets_vector(isolate()); |
2264 __ mov(r2, Operand(address_of_static_offsets_vector)); | 2373 __ mov(r5, Operand(address_of_static_offsets_vector)); |
2265 | 2374 |
2266 // r1: number of capture registers | 2375 // r4: number of capture registers |
2267 // r2: offsets vector | 2376 // r5: offsets vector |
2268 Label next_capture, done; | 2377 Label next_capture; |
2269 // Capture register counter starts from number of capture registers and | 2378 // Capture register counter starts from number of capture registers and |
2270 // counts down until wraping after zero. | 2379 // counts down until wraping after zero. |
2271 __ add(r0, | 2380 __ addi( |
2272 last_match_info_elements, | 2381 r3, last_match_info_elements, |
2273 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag)); | 2382 Operand(RegExpImpl::kFirstCaptureOffset - kHeapObjectTag - kPointerSize)); |
2383 __ addi(r5, r5, Operand(-kIntSize)); // bias down for lwzu | |
2384 __ mtctr(r4); | |
2274 __ bind(&next_capture); | 2385 __ bind(&next_capture); |
2275 __ sub(r1, r1, Operand(1), SetCC); | |
2276 __ b(mi, &done); | |
2277 // Read the value from the static offsets vector buffer. | 2386 // Read the value from the static offsets vector buffer. |
2278 __ ldr(r3, MemOperand(r2, kPointerSize, PostIndex)); | 2387 __ lwzu(r6, MemOperand(r5, kIntSize)); |
2279 // Store the smi value in the last match info. | 2388 // Store the smi value in the last match info. |
2280 __ SmiTag(r3); | 2389 __ SmiTag(r6); |
2281 __ str(r3, MemOperand(r0, kPointerSize, PostIndex)); | 2390 __ StorePU(r6, MemOperand(r3, kPointerSize)); |
2282 __ jmp(&next_capture); | 2391 __ bdnz(&next_capture); |
2283 __ bind(&done); | |
2284 | 2392 |
2285 // Return last match info. | 2393 // Return last match info. |
2286 __ ldr(r0, MemOperand(sp, kLastMatchInfoOffset)); | 2394 __ LoadP(r3, MemOperand(sp, kLastMatchInfoOffset)); |
2287 __ add(sp, sp, Operand(4 * kPointerSize)); | 2395 __ addi(sp, sp, Operand(4 * kPointerSize)); |
2288 __ Ret(); | 2396 __ Ret(); |
2289 | 2397 |
2290 // Do the runtime call to execute the regexp. | 2398 // Do the runtime call to execute the regexp. |
2291 __ bind(&runtime); | 2399 __ bind(&runtime); |
2292 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); | 2400 __ TailCallRuntime(Runtime::kRegExpExecRT, 4, 1); |
2293 | 2401 |
2294 // Deferred code for string handling. | 2402 // Deferred code for string handling. |
2295 // (6) Not a long external string? If yes, go to (8). | 2403 // (6) Not a long external string? If yes, go to (8). |
2296 __ bind(¬_seq_nor_cons); | 2404 __ bind(¬_seq_nor_cons); |
2297 // Compare flags are still set. | 2405 // Compare flags are still set. |
2298 __ b(gt, ¬_long_external); // Go to (8). | 2406 __ bgt(¬_long_external); // Go to (8). |
2299 | 2407 |
2300 // (7) External string. Make it, offset-wise, look like a sequential string. | 2408 // (7) External string. Make it, offset-wise, look like a sequential string. |
2301 __ bind(&external_string); | 2409 __ bind(&external_string); |
2302 __ ldr(r0, FieldMemOperand(subject, HeapObject::kMapOffset)); | 2410 __ LoadP(r3, FieldMemOperand(subject, HeapObject::kMapOffset)); |
2303 __ ldrb(r0, FieldMemOperand(r0, Map::kInstanceTypeOffset)); | 2411 __ lbz(r3, FieldMemOperand(r3, Map::kInstanceTypeOffset)); |
2304 if (FLAG_debug_code) { | 2412 if (FLAG_debug_code) { |
2305 // Assert that we do not have a cons or slice (indirect strings) here. | 2413 // Assert that we do not have a cons or slice (indirect strings) here. |
2306 // Sequential strings have already been ruled out. | 2414 // Sequential strings have already been ruled out. |
2307 __ tst(r0, Operand(kIsIndirectStringMask)); | 2415 STATIC_ASSERT(kIsIndirectStringMask == 1); |
2308 __ Assert(eq, kExternalStringExpectedButNotFound); | 2416 __ andi(r0, r3, Operand(kIsIndirectStringMask)); |
2417 __ Assert(eq, kExternalStringExpectedButNotFound, cr0); | |
2309 } | 2418 } |
2310 __ ldr(subject, | 2419 __ LoadP(subject, |
2311 FieldMemOperand(subject, ExternalString::kResourceDataOffset)); | 2420 FieldMemOperand(subject, ExternalString::kResourceDataOffset)); |
2312 // Move the pointer so that offset-wise, it looks like a sequential string. | 2421 // Move the pointer so that offset-wise, it looks like a sequential string. |
2313 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); | 2422 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
2314 __ sub(subject, | 2423 __ subi(subject, subject, |
2315 subject, | 2424 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
2316 Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | 2425 __ b(&seq_string); // Go to (5). |
2317 __ jmp(&seq_string); // Go to (5). | |
2318 | 2426 |
2319 // (8) Short external string or not a string? If yes, bail out to runtime. | 2427 // (8) Short external string or not a string? If yes, bail out to runtime. |
2320 __ bind(¬_long_external); | 2428 __ bind(¬_long_external); |
2321 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag !=0); | 2429 STATIC_ASSERT(kNotStringTag != 0 && kShortExternalStringTag != 0); |
2322 __ tst(r1, Operand(kIsNotStringMask | kShortExternalStringMask)); | 2430 __ andi(r0, r4, Operand(kIsNotStringMask | kShortExternalStringMask)); |
2323 __ b(ne, &runtime); | 2431 __ bne(&runtime, cr0); |
2324 | 2432 |
2325 // (9) Sliced string. Replace subject with parent. Go to (4). | 2433 // (9) Sliced string. Replace subject with parent. Go to (4). |
2326 // Load offset into r9 and replace subject string with parent. | 2434 // Load offset into r11 and replace subject string with parent. |
2327 __ ldr(r9, FieldMemOperand(subject, SlicedString::kOffsetOffset)); | 2435 __ LoadP(r11, FieldMemOperand(subject, SlicedString::kOffsetOffset)); |
2328 __ SmiUntag(r9); | 2436 __ SmiUntag(r11); |
2329 __ ldr(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); | 2437 __ LoadP(subject, FieldMemOperand(subject, SlicedString::kParentOffset)); |
2330 __ jmp(&check_underlying); // Go to (4). | 2438 __ b(&check_underlying); // Go to (4). |
2331 #endif // V8_INTERPRETED_REGEXP | 2439 #endif // V8_INTERPRETED_REGEXP |
2332 } | 2440 } |
2333 | 2441 |
2334 | 2442 |
2335 static void GenerateRecordCallTarget(MacroAssembler* masm) { | 2443 static void GenerateRecordCallTarget(MacroAssembler* masm) { |
2336 // Cache the called function in a feedback vector slot. Cache states | 2444 // Cache the called function in a feedback vector slot. Cache states |
2337 // are uninitialized, monomorphic (indicated by a JSFunction), and | 2445 // are uninitialized, monomorphic (indicated by a JSFunction), and |
2338 // megamorphic. | 2446 // megamorphic. |
2339 // r0 : number of arguments to the construct function | 2447 // r3 : number of arguments to the construct function |
2340 // r1 : the function to call | 2448 // r4 : the function to call |
2341 // r2 : Feedback vector | 2449 // r5 : Feedback vector |
2342 // r3 : slot in feedback vector (Smi) | 2450 // r6 : slot in feedback vector (Smi) |
2343 Label initialize, done, miss, megamorphic, not_array_function; | 2451 Label initialize, done, miss, megamorphic, not_array_function; |
2344 | 2452 |
2345 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()), | 2453 DCHECK_EQ(*TypeFeedbackVector::MegamorphicSentinel(masm->isolate()), |
2346 masm->isolate()->heap()->megamorphic_symbol()); | 2454 masm->isolate()->heap()->megamorphic_symbol()); |
2347 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()), | 2455 DCHECK_EQ(*TypeFeedbackVector::UninitializedSentinel(masm->isolate()), |
2348 masm->isolate()->heap()->uninitialized_symbol()); | 2456 masm->isolate()->heap()->uninitialized_symbol()); |
2349 | 2457 |
2350 // Load the cache state into r4. | 2458 // Load the cache state into r7. |
2351 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2459 __ SmiToPtrArrayOffset(r7, r6); |
2352 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 2460 __ add(r7, r5, r7); |
2461 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize)); | |
2353 | 2462 |
2354 // A monomorphic cache hit or an already megamorphic state: invoke the | 2463 // A monomorphic cache hit or an already megamorphic state: invoke the |
2355 // function without changing the state. | 2464 // function without changing the state. |
2356 __ cmp(r4, r1); | 2465 __ cmp(r7, r4); |
2357 __ b(eq, &done); | 2466 __ b(eq, &done); |
2358 | 2467 |
2359 if (!FLAG_pretenuring_call_new) { | 2468 if (!FLAG_pretenuring_call_new) { |
2360 // If we came here, we need to see if we are the array function. | 2469 // If we came here, we need to see if we are the array function. |
2361 // If we didn't have a matching function, and we didn't find the megamorph | 2470 // If we didn't have a matching function, and we didn't find the megamorph |
2362 // sentinel, then we have in the slot either some other function or an | 2471 // sentinel, then we have in the slot either some other function or an |
2363 // AllocationSite. Do a map check on the object in ecx. | 2472 // AllocationSite. Do a map check on the object in ecx. |
2364 __ ldr(r5, FieldMemOperand(r4, 0)); | 2473 __ LoadP(r8, FieldMemOperand(r7, 0)); |
2365 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); | 2474 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); |
2366 __ b(ne, &miss); | 2475 __ bne(&miss); |
2367 | 2476 |
2368 // Make sure the function is the Array() function | 2477 // Make sure the function is the Array() function |
2369 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); | 2478 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7); |
2370 __ cmp(r1, r4); | 2479 __ cmp(r4, r7); |
2371 __ b(ne, &megamorphic); | 2480 __ bne(&megamorphic); |
2372 __ jmp(&done); | 2481 __ b(&done); |
2373 } | 2482 } |
2374 | 2483 |
2375 __ bind(&miss); | 2484 __ bind(&miss); |
2376 | 2485 |
2377 // A monomorphic miss (i.e, here the cache is not uninitialized) goes | 2486 // A monomorphic miss (i.e, here the cache is not uninitialized) goes |
2378 // megamorphic. | 2487 // megamorphic. |
2379 __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex); | 2488 __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex); |
2380 __ b(eq, &initialize); | 2489 __ beq(&initialize); |
2381 // MegamorphicSentinel is an immortal immovable object (undefined) so no | 2490 // MegamorphicSentinel is an immortal immovable object (undefined) so no |
2382 // write-barrier is needed. | 2491 // write-barrier is needed. |
2383 __ bind(&megamorphic); | 2492 __ bind(&megamorphic); |
2384 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2493 __ SmiToPtrArrayOffset(r7, r6); |
2385 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); | 2494 __ add(r7, r5, r7); |
2386 __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 2495 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex); |
2496 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0); | |
2387 __ jmp(&done); | 2497 __ jmp(&done); |
2388 | 2498 |
2389 // An uninitialized cache is patched with the function | 2499 // An uninitialized cache is patched with the function |
2390 __ bind(&initialize); | 2500 __ bind(&initialize); |
2391 | 2501 |
2392 if (!FLAG_pretenuring_call_new) { | 2502 if (!FLAG_pretenuring_call_new) { |
2393 // Make sure the function is the Array() function | 2503 // Make sure the function is the Array() function. |
2394 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); | 2504 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7); |
2395 __ cmp(r1, r4); | 2505 __ cmp(r4, r7); |
2396 __ b(ne, ¬_array_function); | 2506 __ bne(¬_array_function); |
2397 | 2507 |
2398 // The target function is the Array constructor, | 2508 // The target function is the Array constructor, |
2399 // Create an AllocationSite if we don't already have it, store it in the | 2509 // Create an AllocationSite if we don't already have it, store it in the |
2400 // slot. | 2510 // slot. |
2401 { | 2511 { |
2402 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 2512 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
2403 | 2513 |
2404 // Arguments register must be smi-tagged to call out. | 2514 // Arguments register must be smi-tagged to call out. |
2405 __ SmiTag(r0); | 2515 __ SmiTag(r3); |
2406 __ Push(r3, r2, r1, r0); | 2516 __ Push(r6, r5, r4, r3); |
2407 | 2517 |
2408 CreateAllocationSiteStub create_stub(masm->isolate()); | 2518 CreateAllocationSiteStub create_stub(masm->isolate()); |
2409 __ CallStub(&create_stub); | 2519 __ CallStub(&create_stub); |
2410 | 2520 |
2411 __ Pop(r3, r2, r1, r0); | 2521 __ Pop(r6, r5, r4, r3); |
2412 __ SmiUntag(r0); | 2522 __ SmiUntag(r3); |
2413 } | 2523 } |
2414 __ b(&done); | 2524 __ b(&done); |
2415 | 2525 |
2416 __ bind(¬_array_function); | 2526 __ bind(¬_array_function); |
2417 } | 2527 } |
2418 | 2528 |
2419 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2529 __ SmiToPtrArrayOffset(r7, r6); |
2420 __ add(r4, r4, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 2530 __ add(r7, r5, r7); |
2421 __ str(r1, MemOperand(r4, 0)); | 2531 __ addi(r7, r7, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); |
2532 __ StoreP(r4, MemOperand(r7, 0)); | |
2422 | 2533 |
2423 __ Push(r4, r2, r1); | 2534 __ Push(r7, r5, r4); |
2424 __ RecordWrite(r2, r4, r1, kLRHasNotBeenSaved, kDontSaveFPRegs, | 2535 __ RecordWrite(r5, r7, r4, kLRHasNotBeenSaved, kDontSaveFPRegs, |
2425 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); | 2536 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
2426 __ Pop(r4, r2, r1); | 2537 __ Pop(r7, r5, r4); |
2427 | 2538 |
2428 __ bind(&done); | 2539 __ bind(&done); |
2429 } | 2540 } |
2430 | 2541 |
2431 | 2542 |
2432 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) { | 2543 static void EmitContinueIfStrictOrNative(MacroAssembler* masm, Label* cont) { |
2433 // Do not transform the receiver for strict mode functions. | 2544 // Do not transform the receiver for strict mode functions and natives. |
2434 __ ldr(r3, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); | 2545 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
2435 __ ldr(r4, FieldMemOperand(r3, SharedFunctionInfo::kCompilerHintsOffset)); | 2546 __ lwz(r7, FieldMemOperand(r6, SharedFunctionInfo::kCompilerHintsOffset)); |
2436 __ tst(r4, Operand(1 << (SharedFunctionInfo::kStrictModeFunction + | 2547 __ TestBit(r7, |
2437 kSmiTagSize))); | 2548 #if V8_TARGET_ARCH_PPC64 |
2438 __ b(ne, cont); | 2549 SharedFunctionInfo::kStrictModeFunction, |
2550 #else | |
2551 SharedFunctionInfo::kStrictModeFunction + kSmiTagSize, | |
2552 #endif | |
2553 r0); | |
2554 __ bne(cont, cr0); | |
2439 | 2555 |
2440 // Do not transform the receiver for native (Compilerhints already in r3). | 2556 // Do not transform the receiver for native. |
2441 __ tst(r4, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize))); | 2557 __ TestBit(r7, |
2442 __ b(ne, cont); | 2558 #if V8_TARGET_ARCH_PPC64 |
2559 SharedFunctionInfo::kNative, | |
2560 #else | |
2561 SharedFunctionInfo::kNative + kSmiTagSize, | |
2562 #endif | |
2563 r0); | |
2564 __ bne(cont, cr0); | |
2443 } | 2565 } |
2444 | 2566 |
2445 | 2567 |
2446 static void EmitSlowCase(MacroAssembler* masm, | 2568 static void EmitSlowCase(MacroAssembler* masm, int argc, Label* non_function) { |
2447 int argc, | |
2448 Label* non_function) { | |
2449 // Check for function proxy. | 2569 // Check for function proxy. |
2450 __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE)); | 2570 STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu); |
2451 __ b(ne, non_function); | 2571 __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE)); |
2452 __ push(r1); // put proxy as additional argument | 2572 __ bne(non_function); |
2453 __ mov(r0, Operand(argc + 1, RelocInfo::NONE32)); | 2573 __ push(r4); // put proxy as additional argument |
2454 __ mov(r2, Operand::Zero()); | 2574 __ li(r3, Operand(argc + 1)); |
2455 __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY); | 2575 __ li(r5, Operand::Zero()); |
2576 __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY); | |
2456 { | 2577 { |
2457 Handle<Code> adaptor = | 2578 Handle<Code> adaptor = |
2458 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); | 2579 masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(); |
2459 __ Jump(adaptor, RelocInfo::CODE_TARGET); | 2580 __ Jump(adaptor, RelocInfo::CODE_TARGET); |
2460 } | 2581 } |
2461 | 2582 |
2462 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead | 2583 // CALL_NON_FUNCTION expects the non-function callee as receiver (instead |
2463 // of the original receiver from the call site). | 2584 // of the original receiver from the call site). |
2464 __ bind(non_function); | 2585 __ bind(non_function); |
2465 __ str(r1, MemOperand(sp, argc * kPointerSize)); | 2586 __ StoreP(r4, MemOperand(sp, argc * kPointerSize), r0); |
2466 __ mov(r0, Operand(argc)); // Set up the number of arguments. | 2587 __ li(r3, Operand(argc)); // Set up the number of arguments. |
2467 __ mov(r2, Operand::Zero()); | 2588 __ li(r5, Operand::Zero()); |
2468 __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION); | 2589 __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION); |
2469 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), | 2590 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
2470 RelocInfo::CODE_TARGET); | 2591 RelocInfo::CODE_TARGET); |
2471 } | 2592 } |
2472 | 2593 |
2473 | 2594 |
2474 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) { | 2595 static void EmitWrapCase(MacroAssembler* masm, int argc, Label* cont) { |
2475 // Wrap the receiver and patch it back onto the stack. | 2596 // Wrap the receiver and patch it back onto the stack. |
2476 { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); | 2597 { |
2477 __ Push(r1, r3); | 2598 FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); |
2599 __ Push(r4, r6); | |
2478 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); | 2600 __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION); |
2479 __ pop(r1); | 2601 __ pop(r4); |
2480 } | 2602 } |
2481 __ str(r0, MemOperand(sp, argc * kPointerSize)); | 2603 __ StoreP(r3, MemOperand(sp, argc * kPointerSize), r0); |
2482 __ jmp(cont); | 2604 __ b(cont); |
2483 } | 2605 } |
2484 | 2606 |
2485 | 2607 |
2486 static void CallFunctionNoFeedback(MacroAssembler* masm, | 2608 static void CallFunctionNoFeedback(MacroAssembler* masm, int argc, |
2487 int argc, bool needs_checks, | 2609 bool needs_checks, bool call_as_method) { |
2488 bool call_as_method) { | 2610 // r4 : the function to call |
2489 // r1 : the function to call | |
2490 Label slow, non_function, wrap, cont; | 2611 Label slow, non_function, wrap, cont; |
2491 | 2612 |
2492 if (needs_checks) { | 2613 if (needs_checks) { |
2493 // Check that the function is really a JavaScript function. | 2614 // Check that the function is really a JavaScript function. |
2494 // r1: pushed function (to be verified) | 2615 // r4: pushed function (to be verified) |
2495 __ JumpIfSmi(r1, &non_function); | 2616 __ JumpIfSmi(r4, &non_function); |
2496 | 2617 |
2497 // Goto slow case if we do not have a function. | 2618 // Goto slow case if we do not have a function. |
2498 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); | 2619 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE); |
2499 __ b(ne, &slow); | 2620 __ bne(&slow); |
2500 } | 2621 } |
2501 | 2622 |
2502 // Fast-case: Invoke the function now. | 2623 // Fast-case: Invoke the function now. |
2503 // r1: pushed function | 2624 // r4: pushed function |
2504 ParameterCount actual(argc); | 2625 ParameterCount actual(argc); |
2505 | 2626 |
2506 if (call_as_method) { | 2627 if (call_as_method) { |
2507 if (needs_checks) { | 2628 if (needs_checks) { |
2508 EmitContinueIfStrictOrNative(masm, &cont); | 2629 EmitContinueIfStrictOrNative(masm, &cont); |
2509 } | 2630 } |
2510 | 2631 |
2511 // Compute the receiver in sloppy mode. | 2632 // Compute the receiver in sloppy mode. |
2512 __ ldr(r3, MemOperand(sp, argc * kPointerSize)); | 2633 __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0); |
2513 | 2634 |
2514 if (needs_checks) { | 2635 if (needs_checks) { |
2515 __ JumpIfSmi(r3, &wrap); | 2636 __ JumpIfSmi(r6, &wrap); |
2516 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE); | 2637 __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE); |
2517 __ b(lt, &wrap); | 2638 __ blt(&wrap); |
2518 } else { | 2639 } else { |
2519 __ jmp(&wrap); | 2640 __ b(&wrap); |
2520 } | 2641 } |
2521 | 2642 |
2522 __ bind(&cont); | 2643 __ bind(&cont); |
2523 } | 2644 } |
2524 | 2645 |
2525 __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper()); | 2646 __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper()); |
2526 | 2647 |
2527 if (needs_checks) { | 2648 if (needs_checks) { |
2528 // Slow-case: Non-function called. | 2649 // Slow-case: Non-function called. |
2529 __ bind(&slow); | 2650 __ bind(&slow); |
2530 EmitSlowCase(masm, argc, &non_function); | 2651 EmitSlowCase(masm, argc, &non_function); |
2531 } | 2652 } |
2532 | 2653 |
2533 if (call_as_method) { | 2654 if (call_as_method) { |
2534 __ bind(&wrap); | 2655 __ bind(&wrap); |
2535 EmitWrapCase(masm, argc, &cont); | 2656 EmitWrapCase(masm, argc, &cont); |
2536 } | 2657 } |
2537 } | 2658 } |
2538 | 2659 |
2539 | 2660 |
2540 void CallFunctionStub::Generate(MacroAssembler* masm) { | 2661 void CallFunctionStub::Generate(MacroAssembler* masm) { |
2541 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod()); | 2662 CallFunctionNoFeedback(masm, argc(), NeedsChecks(), CallAsMethod()); |
2542 } | 2663 } |
2543 | 2664 |
2544 | 2665 |
2545 void CallConstructStub::Generate(MacroAssembler* masm) { | 2666 void CallConstructStub::Generate(MacroAssembler* masm) { |
2546 // r0 : number of arguments | 2667 // r3 : number of arguments |
2547 // r1 : the function to call | 2668 // r4 : the function to call |
2548 // r2 : feedback vector | 2669 // r5 : feedback vector |
2549 // r3 : (only if r2 is not the megamorphic symbol) slot in feedback | 2670 // r6 : (only if r5 is not the megamorphic symbol) slot in feedback |
2550 // vector (Smi) | 2671 // vector (Smi) |
2551 Label slow, non_function_call; | 2672 Label slow, non_function_call; |
2552 | 2673 |
2553 // Check that the function is not a smi. | 2674 // Check that the function is not a smi. |
2554 __ JumpIfSmi(r1, &non_function_call); | 2675 __ JumpIfSmi(r4, &non_function_call); |
2555 // Check that the function is a JSFunction. | 2676 // Check that the function is a JSFunction. |
2556 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); | 2677 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE); |
2557 __ b(ne, &slow); | 2678 __ bne(&slow); |
2558 | 2679 |
2559 if (RecordCallTarget()) { | 2680 if (RecordCallTarget()) { |
2560 GenerateRecordCallTarget(masm); | 2681 GenerateRecordCallTarget(masm); |
2561 | 2682 |
2562 __ add(r5, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2683 __ SmiToPtrArrayOffset(r8, r6); |
2684 __ add(r8, r5, r8); | |
2563 if (FLAG_pretenuring_call_new) { | 2685 if (FLAG_pretenuring_call_new) { |
2564 // Put the AllocationSite from the feedback vector into r2. | 2686 // Put the AllocationSite from the feedback vector into r5. |
2565 // By adding kPointerSize we encode that we know the AllocationSite | 2687 // By adding kPointerSize we encode that we know the AllocationSite |
2566 // entry is at the feedback vector slot given by r3 + 1. | 2688 // entry is at the feedback vector slot given by r6 + 1. |
2567 __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize + kPointerSize)); | 2689 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize + kPointerSize)); |
2568 } else { | 2690 } else { |
2569 Label feedback_register_initialized; | 2691 Label feedback_register_initialized; |
2570 // Put the AllocationSite from the feedback vector into r2, or undefined. | 2692 // Put the AllocationSite from the feedback vector into r5, or undefined. |
2571 __ ldr(r2, FieldMemOperand(r5, FixedArray::kHeaderSize)); | 2693 __ LoadP(r5, FieldMemOperand(r8, FixedArray::kHeaderSize)); |
2572 __ ldr(r5, FieldMemOperand(r2, AllocationSite::kMapOffset)); | 2694 __ LoadP(r8, FieldMemOperand(r5, AllocationSite::kMapOffset)); |
2573 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); | 2695 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); |
2574 __ b(eq, &feedback_register_initialized); | 2696 __ beq(&feedback_register_initialized); |
2575 __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); | 2697 __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); |
2576 __ bind(&feedback_register_initialized); | 2698 __ bind(&feedback_register_initialized); |
2577 } | 2699 } |
2578 | 2700 |
2579 __ AssertUndefinedOrAllocationSite(r2, r5); | 2701 __ AssertUndefinedOrAllocationSite(r5, r8); |
2580 } | 2702 } |
2581 | 2703 |
2582 // Jump to the function-specific construct stub. | 2704 // Jump to the function-specific construct stub. |
2583 Register jmp_reg = r4; | 2705 Register jmp_reg = r7; |
2584 __ ldr(jmp_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); | 2706 __ LoadP(jmp_reg, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); |
2585 __ ldr(jmp_reg, FieldMemOperand(jmp_reg, | 2707 __ LoadP(jmp_reg, |
2586 SharedFunctionInfo::kConstructStubOffset)); | 2708 FieldMemOperand(jmp_reg, SharedFunctionInfo::kConstructStubOffset)); |
2587 __ add(pc, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); | 2709 __ addi(ip, jmp_reg, Operand(Code::kHeaderSize - kHeapObjectTag)); |
2710 __ JumpToJSEntry(ip); | |
2588 | 2711 |
2589 // r0: number of arguments | 2712 // r3: number of arguments |
2590 // r1: called object | 2713 // r4: called object |
2591 // r4: object type | 2714 // r7: object type |
2592 Label do_call; | 2715 Label do_call; |
2593 __ bind(&slow); | 2716 __ bind(&slow); |
2594 __ cmp(r4, Operand(JS_FUNCTION_PROXY_TYPE)); | 2717 STATIC_ASSERT(JS_FUNCTION_PROXY_TYPE < 0xffffu); |
2595 __ b(ne, &non_function_call); | 2718 __ cmpi(r7, Operand(JS_FUNCTION_PROXY_TYPE)); |
2596 __ GetBuiltinFunction(r1, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); | 2719 __ bne(&non_function_call); |
2597 __ jmp(&do_call); | 2720 __ GetBuiltinFunction(r4, Builtins::CALL_FUNCTION_PROXY_AS_CONSTRUCTOR); |
2721 __ b(&do_call); | |
2598 | 2722 |
2599 __ bind(&non_function_call); | 2723 __ bind(&non_function_call); |
2600 __ GetBuiltinFunction(r1, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); | 2724 __ GetBuiltinFunction(r4, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR); |
2601 __ bind(&do_call); | 2725 __ bind(&do_call); |
2602 // Set expected number of arguments to zero (not changing r0). | 2726 // Set expected number of arguments to zero (not changing r3). |
2603 __ mov(r2, Operand::Zero()); | 2727 __ li(r5, Operand::Zero()); |
2604 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), | 2728 __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(), |
2605 RelocInfo::CODE_TARGET); | 2729 RelocInfo::CODE_TARGET); |
2606 } | 2730 } |
2607 | 2731 |
2608 | 2732 |
2609 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) { | 2733 static void EmitLoadTypeFeedbackVector(MacroAssembler* masm, Register vector) { |
2610 __ ldr(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); | 2734 __ LoadP(vector, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
2611 __ ldr(vector, FieldMemOperand(vector, | 2735 __ LoadP(vector, |
2612 JSFunction::kSharedFunctionInfoOffset)); | 2736 FieldMemOperand(vector, JSFunction::kSharedFunctionInfoOffset)); |
2613 __ ldr(vector, FieldMemOperand(vector, | 2737 __ LoadP(vector, |
2614 SharedFunctionInfo::kFeedbackVectorOffset)); | 2738 FieldMemOperand(vector, SharedFunctionInfo::kFeedbackVectorOffset)); |
2615 } | 2739 } |
2616 | 2740 |
2617 | 2741 |
2618 void CallIC_ArrayStub::Generate(MacroAssembler* masm) { | 2742 void CallIC_ArrayStub::Generate(MacroAssembler* masm) { |
2619 // r1 - function | 2743 // r4 - function |
2620 // r3 - slot id | 2744 // r6 - slot id |
2621 Label miss; | 2745 Label miss; |
2622 int argc = arg_count(); | 2746 int argc = arg_count(); |
2623 ParameterCount actual(argc); | 2747 ParameterCount actual(argc); |
2624 | 2748 |
2625 EmitLoadTypeFeedbackVector(masm, r2); | 2749 EmitLoadTypeFeedbackVector(masm, r5); |
2626 | 2750 |
2627 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r4); | 2751 __ LoadGlobalFunction(Context::ARRAY_FUNCTION_INDEX, r7); |
2628 __ cmp(r1, r4); | 2752 __ cmp(r4, r7); |
2629 __ b(ne, &miss); | 2753 __ bne(&miss); |
2630 | 2754 |
2631 __ mov(r0, Operand(arg_count())); | 2755 __ mov(r3, Operand(arg_count())); |
2632 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2756 __ SmiToPtrArrayOffset(r7, r6); |
2633 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 2757 __ add(r7, r5, r7); |
2758 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize)); | |
2634 | 2759 |
2635 // Verify that r4 contains an AllocationSite | 2760 // Verify that r7 contains an AllocationSite |
2636 __ ldr(r5, FieldMemOperand(r4, HeapObject::kMapOffset)); | 2761 __ LoadP(r8, FieldMemOperand(r7, HeapObject::kMapOffset)); |
2637 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); | 2762 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); |
2638 __ b(ne, &miss); | 2763 __ bne(&miss); |
2639 | 2764 |
2640 __ mov(r2, r4); | 2765 __ mr(r5, r7); |
2641 ArrayConstructorStub stub(masm->isolate(), arg_count()); | 2766 ArrayConstructorStub stub(masm->isolate(), arg_count()); |
2642 __ TailCallStub(&stub); | 2767 __ TailCallStub(&stub); |
2643 | 2768 |
2644 __ bind(&miss); | 2769 __ bind(&miss); |
2645 GenerateMiss(masm); | 2770 GenerateMiss(masm); |
2646 | 2771 |
2647 // The slow case, we need this no matter what to complete a call after a miss. | 2772 // The slow case, we need this no matter what to complete a call after a miss. |
2648 CallFunctionNoFeedback(masm, | 2773 CallFunctionNoFeedback(masm, arg_count(), true, CallAsMethod()); |
2649 arg_count(), | |
2650 true, | |
2651 CallAsMethod()); | |
2652 | 2774 |
2653 // Unreachable. | 2775 // Unreachable. |
2654 __ stop("Unexpected code address"); | 2776 __ stop("Unexpected code address"); |
2655 } | 2777 } |
2656 | 2778 |
2657 | 2779 |
2658 void CallICStub::Generate(MacroAssembler* masm) { | 2780 void CallICStub::Generate(MacroAssembler* masm) { |
2659 // r1 - function | 2781 // r4 - function |
2660 // r3 - slot id (Smi) | 2782 // r6 - slot id (Smi) |
2661 Label extra_checks_or_miss, slow_start; | 2783 Label extra_checks_or_miss, slow_start; |
2662 Label slow, non_function, wrap, cont; | 2784 Label slow, non_function, wrap, cont; |
2663 Label have_js_function; | 2785 Label have_js_function; |
2664 int argc = arg_count(); | 2786 int argc = arg_count(); |
2665 ParameterCount actual(argc); | 2787 ParameterCount actual(argc); |
2666 | 2788 |
2667 EmitLoadTypeFeedbackVector(masm, r2); | 2789 EmitLoadTypeFeedbackVector(masm, r5); |
2668 | 2790 |
2669 // The checks. First, does r1 match the recorded monomorphic target? | 2791 // The checks. First, does r4 match the recorded monomorphic target? |
2670 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2792 __ SmiToPtrArrayOffset(r7, r6); |
2671 __ ldr(r4, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 2793 __ add(r7, r5, r7); |
2672 __ cmp(r1, r4); | 2794 __ LoadP(r7, FieldMemOperand(r7, FixedArray::kHeaderSize)); |
2673 __ b(ne, &extra_checks_or_miss); | 2795 __ cmp(r4, r7); |
2796 __ bne(&extra_checks_or_miss); | |
2674 | 2797 |
2675 __ bind(&have_js_function); | 2798 __ bind(&have_js_function); |
2676 if (CallAsMethod()) { | 2799 if (CallAsMethod()) { |
2677 EmitContinueIfStrictOrNative(masm, &cont); | 2800 EmitContinueIfStrictOrNative(masm, &cont); |
2678 // Compute the receiver in sloppy mode. | 2801 // Compute the receiver in sloppy mode. |
2679 __ ldr(r3, MemOperand(sp, argc * kPointerSize)); | 2802 __ LoadP(r6, MemOperand(sp, argc * kPointerSize), r0); |
2680 | 2803 |
2681 __ JumpIfSmi(r3, &wrap); | 2804 __ JumpIfSmi(r6, &wrap); |
2682 __ CompareObjectType(r3, r4, r4, FIRST_SPEC_OBJECT_TYPE); | 2805 __ CompareObjectType(r6, r7, r7, FIRST_SPEC_OBJECT_TYPE); |
2683 __ b(lt, &wrap); | 2806 __ blt(&wrap); |
2684 | 2807 |
2685 __ bind(&cont); | 2808 __ bind(&cont); |
2686 } | 2809 } |
2687 | 2810 |
2688 __ InvokeFunction(r1, actual, JUMP_FUNCTION, NullCallWrapper()); | 2811 __ InvokeFunction(r4, actual, JUMP_FUNCTION, NullCallWrapper()); |
2689 | 2812 |
2690 __ bind(&slow); | 2813 __ bind(&slow); |
2691 EmitSlowCase(masm, argc, &non_function); | 2814 EmitSlowCase(masm, argc, &non_function); |
2692 | 2815 |
2693 if (CallAsMethod()) { | 2816 if (CallAsMethod()) { |
2694 __ bind(&wrap); | 2817 __ bind(&wrap); |
2695 EmitWrapCase(masm, argc, &cont); | 2818 EmitWrapCase(masm, argc, &cont); |
2696 } | 2819 } |
2697 | 2820 |
2698 __ bind(&extra_checks_or_miss); | 2821 __ bind(&extra_checks_or_miss); |
2699 Label miss; | 2822 Label miss; |
2700 | 2823 |
2701 __ CompareRoot(r4, Heap::kMegamorphicSymbolRootIndex); | 2824 __ CompareRoot(r7, Heap::kmegamorphic_symbolRootIndex); |
2702 __ b(eq, &slow_start); | 2825 __ beq(&slow_start); |
2703 __ CompareRoot(r4, Heap::kUninitializedSymbolRootIndex); | 2826 __ CompareRoot(r7, Heap::kuninitialized_symbolRootIndex); |
2704 __ b(eq, &miss); | 2827 __ beq(&miss); |
2705 | 2828 |
2706 if (!FLAG_trace_ic) { | 2829 if (!FLAG_trace_ic) { |
2707 // We are going megamorphic. If the feedback is a JSFunction, it is fine | 2830 // We are going megamorphic. If the feedback is a JSFunction, it is fine |
2708 // to handle it here. More complex cases are dealt with in the runtime. | 2831 // to handle it here. More complex cases are dealt with in the runtime. |
2709 __ AssertNotSmi(r4); | 2832 __ AssertNotSmi(r7); |
2710 __ CompareObjectType(r4, r5, r5, JS_FUNCTION_TYPE); | 2833 __ CompareObjectType(r7, r8, r8, JS_FUNCTION_TYPE); |
2711 __ b(ne, &miss); | 2834 __ bne(&miss); |
2712 __ add(r4, r2, Operand::PointerOffsetFromSmiKey(r3)); | 2835 __ SmiToPtrArrayOffset(r7, r6); |
2713 __ LoadRoot(ip, Heap::kMegamorphicSymbolRootIndex); | 2836 __ add(r7, r5, r7); |
2714 __ str(ip, FieldMemOperand(r4, FixedArray::kHeaderSize)); | 2837 __ LoadRoot(ip, Heap::kmegamorphic_symbolRootIndex); |
2838 __ StoreP(ip, FieldMemOperand(r7, FixedArray::kHeaderSize), r0); | |
2715 __ jmp(&slow_start); | 2839 __ jmp(&slow_start); |
2716 } | 2840 } |
2717 | 2841 |
2718 // We are here because tracing is on or we are going monomorphic. | 2842 // We are here because tracing is on or we are going monomorphic. |
2719 __ bind(&miss); | 2843 __ bind(&miss); |
2720 GenerateMiss(masm); | 2844 GenerateMiss(masm); |
2721 | 2845 |
2722 // the slow case | 2846 // the slow case |
2723 __ bind(&slow_start); | 2847 __ bind(&slow_start); |
2724 // Check that the function is really a JavaScript function. | 2848 // Check that the function is really a JavaScript function. |
2725 // r1: pushed function (to be verified) | 2849 // r4: pushed function (to be verified) |
2726 __ JumpIfSmi(r1, &non_function); | 2850 __ JumpIfSmi(r4, &non_function); |
2727 | 2851 |
2728 // Goto slow case if we do not have a function. | 2852 // Goto slow case if we do not have a function. |
2729 __ CompareObjectType(r1, r4, r4, JS_FUNCTION_TYPE); | 2853 __ CompareObjectType(r4, r7, r7, JS_FUNCTION_TYPE); |
2730 __ b(ne, &slow); | 2854 __ bne(&slow); |
2731 __ jmp(&have_js_function); | 2855 __ b(&have_js_function); |
2732 } | 2856 } |
2733 | 2857 |
2734 | 2858 |
2735 void CallICStub::GenerateMiss(MacroAssembler* masm) { | 2859 void CallICStub::GenerateMiss(MacroAssembler* masm) { |
2736 // Get the receiver of the function from the stack; 1 ~ return address. | 2860 // Get the receiver of the function from the stack; 1 ~ return address. |
2737 __ ldr(r4, MemOperand(sp, (arg_count() + 1) * kPointerSize)); | 2861 __ LoadP(r7, MemOperand(sp, (arg_count() + 1) * kPointerSize), r0); |
2738 | 2862 |
2739 { | 2863 { |
2740 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 2864 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
2741 | 2865 |
2742 // Push the receiver and the function and feedback info. | 2866 // Push the receiver and the function and feedback info. |
2743 __ Push(r4, r1, r2, r3); | 2867 __ Push(r7, r4, r5, r6); |
2744 | 2868 |
2745 // Call the entry. | 2869 // Call the entry. |
2746 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss | 2870 IC::UtilityId id = GetICState() == DEFAULT ? IC::kCallIC_Miss |
2747 : IC::kCallIC_Customization_Miss; | 2871 : IC::kCallIC_Customization_Miss; |
2748 | 2872 |
2749 ExternalReference miss = ExternalReference(IC_Utility(id), | 2873 ExternalReference miss = ExternalReference(IC_Utility(id), masm->isolate()); |
2750 masm->isolate()); | |
2751 __ CallExternalReference(miss, 4); | 2874 __ CallExternalReference(miss, 4); |
2752 | 2875 |
2753 // Move result to edi and exit the internal frame. | 2876 // Move result to r4 and exit the internal frame. |
2754 __ mov(r1, r0); | 2877 __ mr(r4, r3); |
2755 } | 2878 } |
2756 } | 2879 } |
2757 | 2880 |
2758 | 2881 |
2759 // StringCharCodeAtGenerator | 2882 // StringCharCodeAtGenerator |
2760 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { | 2883 void StringCharCodeAtGenerator::GenerateFast(MacroAssembler* masm) { |
2761 // If the receiver is a smi trigger the non-string case. | 2884 // If the receiver is a smi trigger the non-string case. |
2762 __ JumpIfSmi(object_, receiver_not_string_); | 2885 __ JumpIfSmi(object_, receiver_not_string_); |
2763 | 2886 |
2764 // Fetch the instance type of the receiver into result register. | 2887 // Fetch the instance type of the receiver into result register. |
2765 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); | 2888 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
2766 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); | 2889 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
2767 // If the receiver is not a string trigger the non-string case. | 2890 // If the receiver is not a string trigger the non-string case. |
2768 __ tst(result_, Operand(kIsNotStringMask)); | 2891 __ andi(r0, result_, Operand(kIsNotStringMask)); |
2769 __ b(ne, receiver_not_string_); | 2892 __ bne(receiver_not_string_, cr0); |
2770 | 2893 |
2771 // If the index is non-smi trigger the non-smi case. | 2894 // If the index is non-smi trigger the non-smi case. |
2772 __ JumpIfNotSmi(index_, &index_not_smi_); | 2895 __ JumpIfNotSmi(index_, &index_not_smi_); |
2773 __ bind(&got_smi_index_); | 2896 __ bind(&got_smi_index_); |
2774 | 2897 |
2775 // Check for index out of range. | 2898 // Check for index out of range. |
2776 __ ldr(ip, FieldMemOperand(object_, String::kLengthOffset)); | 2899 __ LoadP(ip, FieldMemOperand(object_, String::kLengthOffset)); |
2777 __ cmp(ip, Operand(index_)); | 2900 __ cmpl(ip, index_); |
2778 __ b(ls, index_out_of_range_); | 2901 __ ble(index_out_of_range_); |
2779 | 2902 |
2780 __ SmiUntag(index_); | 2903 __ SmiUntag(index_); |
2781 | 2904 |
2782 StringCharLoadGenerator::Generate(masm, | 2905 StringCharLoadGenerator::Generate(masm, object_, index_, result_, |
2783 object_, | |
2784 index_, | |
2785 result_, | |
2786 &call_runtime_); | 2906 &call_runtime_); |
2787 | 2907 |
2788 __ SmiTag(result_); | 2908 __ SmiTag(result_); |
2789 __ bind(&exit_); | 2909 __ bind(&exit_); |
2790 } | 2910 } |
2791 | 2911 |
2792 | 2912 |
2793 void StringCharCodeAtGenerator::GenerateSlow( | 2913 void StringCharCodeAtGenerator::GenerateSlow( |
2794 MacroAssembler* masm, | 2914 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
2795 const RuntimeCallHelper& call_helper) { | |
2796 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); | 2915 __ Abort(kUnexpectedFallthroughToCharCodeAtSlowCase); |
2797 | 2916 |
2798 // Index is not a smi. | 2917 // Index is not a smi. |
2799 __ bind(&index_not_smi_); | 2918 __ bind(&index_not_smi_); |
2800 // If index is a heap number, try converting it to an integer. | 2919 // If index is a heap number, try converting it to an integer. |
2801 __ CheckMap(index_, | 2920 __ CheckMap(index_, result_, Heap::kHeapNumberMapRootIndex, index_not_number_, |
2802 result_, | |
2803 Heap::kHeapNumberMapRootIndex, | |
2804 index_not_number_, | |
2805 DONT_DO_SMI_CHECK); | 2921 DONT_DO_SMI_CHECK); |
2806 call_helper.BeforeCall(masm); | 2922 call_helper.BeforeCall(masm); |
2807 __ push(object_); | 2923 __ push(object_); |
2808 __ push(index_); // Consumed by runtime conversion function. | 2924 __ push(index_); // Consumed by runtime conversion function. |
2809 if (index_flags_ == STRING_INDEX_IS_NUMBER) { | 2925 if (index_flags_ == STRING_INDEX_IS_NUMBER) { |
2810 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); | 2926 __ CallRuntime(Runtime::kNumberToIntegerMapMinusZero, 1); |
2811 } else { | 2927 } else { |
2812 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); | 2928 DCHECK(index_flags_ == STRING_INDEX_IS_ARRAY_INDEX); |
2813 // NumberToSmi discards numbers that are not exact integers. | 2929 // NumberToSmi discards numbers that are not exact integers. |
2814 __ CallRuntime(Runtime::kNumberToSmi, 1); | 2930 __ CallRuntime(Runtime::kNumberToSmi, 1); |
2815 } | 2931 } |
2816 // Save the conversion result before the pop instructions below | 2932 // Save the conversion result before the pop instructions below |
2817 // have a chance to overwrite it. | 2933 // have a chance to overwrite it. |
2818 __ Move(index_, r0); | 2934 __ Move(index_, r3); |
2819 __ pop(object_); | 2935 __ pop(object_); |
2820 // Reload the instance type. | 2936 // Reload the instance type. |
2821 __ ldr(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); | 2937 __ LoadP(result_, FieldMemOperand(object_, HeapObject::kMapOffset)); |
2822 __ ldrb(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); | 2938 __ lbz(result_, FieldMemOperand(result_, Map::kInstanceTypeOffset)); |
2823 call_helper.AfterCall(masm); | 2939 call_helper.AfterCall(masm); |
2824 // If index is still not a smi, it must be out of range. | 2940 // If index is still not a smi, it must be out of range. |
2825 __ JumpIfNotSmi(index_, index_out_of_range_); | 2941 __ JumpIfNotSmi(index_, index_out_of_range_); |
2826 // Otherwise, return to the fast path. | 2942 // Otherwise, return to the fast path. |
2827 __ jmp(&got_smi_index_); | 2943 __ b(&got_smi_index_); |
2828 | 2944 |
2829 // Call runtime. We get here when the receiver is a string and the | 2945 // Call runtime. We get here when the receiver is a string and the |
2830 // index is a number, but the code of getting the actual character | 2946 // index is a number, but the code of getting the actual character |
2831 // is too complex (e.g., when the string needs to be flattened). | 2947 // is too complex (e.g., when the string needs to be flattened). |
2832 __ bind(&call_runtime_); | 2948 __ bind(&call_runtime_); |
2833 call_helper.BeforeCall(masm); | 2949 call_helper.BeforeCall(masm); |
2834 __ SmiTag(index_); | 2950 __ SmiTag(index_); |
2835 __ Push(object_, index_); | 2951 __ Push(object_, index_); |
2836 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2); | 2952 __ CallRuntime(Runtime::kStringCharCodeAtRT, 2); |
2837 __ Move(result_, r0); | 2953 __ Move(result_, r3); |
2838 call_helper.AfterCall(masm); | 2954 call_helper.AfterCall(masm); |
2839 __ jmp(&exit_); | 2955 __ b(&exit_); |
2840 | 2956 |
2841 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); | 2957 __ Abort(kUnexpectedFallthroughFromCharCodeAtSlowCase); |
2842 } | 2958 } |
2843 | 2959 |
2844 | 2960 |
2845 // ------------------------------------------------------------------------- | 2961 // ------------------------------------------------------------------------- |
2846 // StringCharFromCodeGenerator | 2962 // StringCharFromCodeGenerator |
2847 | 2963 |
2848 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { | 2964 void StringCharFromCodeGenerator::GenerateFast(MacroAssembler* masm) { |
2849 // Fast case of Heap::LookupSingleCharacterStringFromCode. | 2965 // Fast case of Heap::LookupSingleCharacterStringFromCode. |
2850 STATIC_ASSERT(kSmiTag == 0); | |
2851 STATIC_ASSERT(kSmiShiftSize == 0); | |
2852 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1)); | 2966 DCHECK(base::bits::IsPowerOfTwo32(String::kMaxOneByteCharCode + 1)); |
2853 __ tst(code_, | 2967 __ LoadSmiLiteral(r0, Smi::FromInt(~String::kMaxOneByteCharCode)); |
2854 Operand(kSmiTagMask | | 2968 __ ori(r0, r0, Operand(kSmiTagMask)); |
2855 ((~String::kMaxOneByteCharCode) << kSmiTagSize))); | 2969 __ and_(r0, code_, r0); |
2856 __ b(ne, &slow_case_); | 2970 __ cmpi(r0, Operand::Zero()); |
2971 __ bne(&slow_case_); | |
2857 | 2972 |
2858 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); | 2973 __ LoadRoot(result_, Heap::kSingleCharacterStringCacheRootIndex); |
2859 // At this point code register contains smi tagged one-byte char code. | 2974 // At this point code register contains smi tagged one-byte char code. |
2860 __ add(result_, result_, Operand::PointerOffsetFromSmiKey(code_)); | 2975 __ mr(r0, code_); |
2861 __ ldr(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); | 2976 __ SmiToPtrArrayOffset(code_, code_); |
2977 __ add(result_, result_, code_); | |
2978 __ mr(code_, r0); | |
2979 __ LoadP(result_, FieldMemOperand(result_, FixedArray::kHeaderSize)); | |
2862 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); | 2980 __ CompareRoot(result_, Heap::kUndefinedValueRootIndex); |
2863 __ b(eq, &slow_case_); | 2981 __ beq(&slow_case_); |
2864 __ bind(&exit_); | 2982 __ bind(&exit_); |
2865 } | 2983 } |
2866 | 2984 |
2867 | 2985 |
2868 void StringCharFromCodeGenerator::GenerateSlow( | 2986 void StringCharFromCodeGenerator::GenerateSlow( |
2869 MacroAssembler* masm, | 2987 MacroAssembler* masm, const RuntimeCallHelper& call_helper) { |
2870 const RuntimeCallHelper& call_helper) { | |
2871 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); | 2988 __ Abort(kUnexpectedFallthroughToCharFromCodeSlowCase); |
2872 | 2989 |
2873 __ bind(&slow_case_); | 2990 __ bind(&slow_case_); |
2874 call_helper.BeforeCall(masm); | 2991 call_helper.BeforeCall(masm); |
2875 __ push(code_); | 2992 __ push(code_); |
2876 __ CallRuntime(Runtime::kCharFromCode, 1); | 2993 __ CallRuntime(Runtime::kCharFromCode, 1); |
2877 __ Move(result_, r0); | 2994 __ Move(result_, r3); |
2878 call_helper.AfterCall(masm); | 2995 call_helper.AfterCall(masm); |
2879 __ jmp(&exit_); | 2996 __ b(&exit_); |
2880 | 2997 |
2881 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); | 2998 __ Abort(kUnexpectedFallthroughFromCharFromCodeSlowCase); |
2882 } | 2999 } |
2883 | 3000 |
2884 | 3001 |
2885 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 }; | 3002 enum CopyCharactersFlags { COPY_ONE_BYTE = 1, DEST_ALWAYS_ALIGNED = 2 }; |
2886 | 3003 |
2887 | 3004 |
2888 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, | 3005 void StringHelper::GenerateCopyCharacters(MacroAssembler* masm, Register dest, |
2889 Register dest, | 3006 Register src, Register count, |
2890 Register src, | |
2891 Register count, | |
2892 Register scratch, | 3007 Register scratch, |
2893 String::Encoding encoding) { | 3008 String::Encoding encoding) { |
2894 if (FLAG_debug_code) { | 3009 if (FLAG_debug_code) { |
2895 // Check that destination is word aligned. | 3010 // Check that destination is word aligned. |
2896 __ tst(dest, Operand(kPointerAlignmentMask)); | 3011 __ andi(r0, dest, Operand(kPointerAlignmentMask)); |
2897 __ Check(eq, kDestinationOfCopyNotAligned); | 3012 __ Check(eq, kDestinationOfCopyNotAligned, cr0); |
2898 } | 3013 } |
2899 | 3014 |
2900 // Assumes word reads and writes are little endian. | |
2901 // Nothing to do for zero characters. | 3015 // Nothing to do for zero characters. |
2902 Label done; | 3016 Label done; |
2903 if (encoding == String::TWO_BYTE_ENCODING) { | 3017 if (encoding == String::TWO_BYTE_ENCODING) { |
2904 __ add(count, count, Operand(count), SetCC); | 3018 // double the length |
3019 __ add(count, count, count, LeaveOE, SetRC); | |
3020 __ beq(&done, cr0); | |
3021 } else { | |
3022 __ cmpi(count, Operand::Zero()); | |
3023 __ beq(&done); | |
2905 } | 3024 } |
2906 | 3025 |
2907 Register limit = count; // Read until dest equals this. | 3026 // Copy count bytes from src to dst. |
2908 __ add(limit, dest, Operand(count)); | 3027 Label byte_loop; |
2909 | 3028 __ mtctr(count); |
2910 Label loop_entry, loop; | 3029 __ bind(&byte_loop); |
2911 // Copy bytes from src to dest until dest hits limit. | 3030 __ lbz(scratch, MemOperand(src)); |
2912 __ b(&loop_entry); | 3031 __ addi(src, src, Operand(1)); |
2913 __ bind(&loop); | 3032 __ stb(scratch, MemOperand(dest)); |
2914 __ ldrb(scratch, MemOperand(src, 1, PostIndex), lt); | 3033 __ addi(dest, dest, Operand(1)); |
2915 __ strb(scratch, MemOperand(dest, 1, PostIndex)); | 3034 __ bdnz(&byte_loop); |
2916 __ bind(&loop_entry); | |
2917 __ cmp(dest, Operand(limit)); | |
2918 __ b(lt, &loop); | |
2919 | 3035 |
2920 __ bind(&done); | 3036 __ bind(&done); |
2921 } | 3037 } |
2922 | 3038 |
2923 | 3039 |
2924 void SubStringStub::Generate(MacroAssembler* masm) { | 3040 void SubStringStub::Generate(MacroAssembler* masm) { |
2925 Label runtime; | 3041 Label runtime; |
2926 | 3042 |
2927 // Stack frame on entry. | 3043 // Stack frame on entry. |
2928 // lr: return address | 3044 // lr: return address |
2929 // sp[0]: to | 3045 // sp[0]: to |
2930 // sp[4]: from | 3046 // sp[4]: from |
2931 // sp[8]: string | 3047 // sp[8]: string |
2932 | 3048 |
2933 // This stub is called from the native-call %_SubString(...), so | 3049 // This stub is called from the native-call %_SubString(...), so |
2934 // nothing can be assumed about the arguments. It is tested that: | 3050 // nothing can be assumed about the arguments. It is tested that: |
2935 // "string" is a sequential string, | 3051 // "string" is a sequential string, |
2936 // both "from" and "to" are smis, and | 3052 // both "from" and "to" are smis, and |
2937 // 0 <= from <= to <= string.length. | 3053 // 0 <= from <= to <= string.length. |
2938 // If any of these assumptions fail, we call the runtime system. | 3054 // If any of these assumptions fail, we call the runtime system. |
2939 | 3055 |
2940 const int kToOffset = 0 * kPointerSize; | 3056 const int kToOffset = 0 * kPointerSize; |
2941 const int kFromOffset = 1 * kPointerSize; | 3057 const int kFromOffset = 1 * kPointerSize; |
2942 const int kStringOffset = 2 * kPointerSize; | 3058 const int kStringOffset = 2 * kPointerSize; |
2943 | 3059 |
2944 __ Ldrd(r2, r3, MemOperand(sp, kToOffset)); | 3060 __ LoadP(r5, MemOperand(sp, kToOffset)); |
2945 STATIC_ASSERT(kFromOffset == kToOffset + 4); | 3061 __ LoadP(r6, MemOperand(sp, kFromOffset)); |
2946 STATIC_ASSERT(kSmiTag == 0); | |
2947 STATIC_ASSERT(kSmiTagSize + kSmiShiftSize == 1); | |
2948 | 3062 |
2949 // Arithmetic shift right by one un-smi-tags. In this case we rotate right | 3063 // If either to or from had the smi tag bit set, then fail to generic runtime |
2950 // instead because we bail out on non-smi values: ROR and ASR are equivalent | 3064 __ JumpIfNotSmi(r5, &runtime); |
2951 // for smis but they set the flags in a way that's easier to optimize. | 3065 __ JumpIfNotSmi(r6, &runtime); |
2952 __ mov(r2, Operand(r2, ROR, 1), SetCC); | 3066 __ SmiUntag(r5); |
2953 __ mov(r3, Operand(r3, ROR, 1), SetCC, cc); | 3067 __ SmiUntag(r6, SetRC); |
2954 // If either to or from had the smi tag bit set, then C is set now, and N | 3068 // Both r5 and r6 are untagged integers. |
2955 // has the same value: we rotated by 1, so the bottom bit is now the top bit. | 3069 |
2956 // We want to bailout to runtime here if From is negative. In that case, the | 3070 // We want to bailout to runtime here if From is negative. |
2957 // next instruction is not executed and we fall through to bailing out to | 3071 __ blt(&runtime, cr0); // From < 0. |
2958 // runtime. | 3072 |
2959 // Executed if both r2 and r3 are untagged integers. | 3073 __ cmpl(r6, r5); |
2960 __ sub(r2, r2, Operand(r3), SetCC, cc); | 3074 __ bgt(&runtime); // Fail if from > to. |
2961 // One of the above un-smis or the above SUB could have set N==1. | 3075 __ sub(r5, r5, r6); |
2962 __ b(mi, &runtime); // Either "from" or "to" is not an smi, or from > to. | |
2963 | 3076 |
2964 // Make sure first argument is a string. | 3077 // Make sure first argument is a string. |
2965 __ ldr(r0, MemOperand(sp, kStringOffset)); | 3078 __ LoadP(r3, MemOperand(sp, kStringOffset)); |
2966 __ JumpIfSmi(r0, &runtime); | 3079 __ JumpIfSmi(r3, &runtime); |
2967 Condition is_string = masm->IsObjectStringType(r0, r1); | 3080 Condition is_string = masm->IsObjectStringType(r3, r4); |
2968 __ b(NegateCondition(is_string), &runtime); | 3081 __ b(NegateCondition(is_string), &runtime, cr0); |
2969 | 3082 |
2970 Label single_char; | 3083 Label single_char; |
2971 __ cmp(r2, Operand(1)); | 3084 __ cmpi(r5, Operand(1)); |
2972 __ b(eq, &single_char); | 3085 __ b(eq, &single_char); |
2973 | 3086 |
2974 // Short-cut for the case of trivial substring. | 3087 // Short-cut for the case of trivial substring. |
2975 Label return_r0; | 3088 Label return_r3; |
2976 // r0: original string | 3089 // r3: original string |
2977 // r2: result string length | 3090 // r5: result string length |
2978 __ ldr(r4, FieldMemOperand(r0, String::kLengthOffset)); | 3091 __ LoadP(r7, FieldMemOperand(r3, String::kLengthOffset)); |
2979 __ cmp(r2, Operand(r4, ASR, 1)); | 3092 __ SmiUntag(r0, r7); |
3093 __ cmpl(r5, r0); | |
2980 // Return original string. | 3094 // Return original string. |
2981 __ b(eq, &return_r0); | 3095 __ beq(&return_r3); |
2982 // Longer than original string's length or negative: unsafe arguments. | 3096 // Longer than original string's length or negative: unsafe arguments. |
2983 __ b(hi, &runtime); | 3097 __ bgt(&runtime); |
2984 // Shorter than original string's length: an actual substring. | 3098 // Shorter than original string's length: an actual substring. |
2985 | 3099 |
2986 // Deal with different string types: update the index if necessary | 3100 // Deal with different string types: update the index if necessary |
2987 // and put the underlying string into r5. | 3101 // and put the underlying string into r8. |
2988 // r0: original string | 3102 // r3: original string |
2989 // r1: instance type | 3103 // r4: instance type |
2990 // r2: length | 3104 // r5: length |
2991 // r3: from index (untagged) | 3105 // r6: from index (untagged) |
2992 Label underlying_unpacked, sliced_string, seq_or_external_string; | 3106 Label underlying_unpacked, sliced_string, seq_or_external_string; |
2993 // If the string is not indirect, it can only be sequential or external. | 3107 // If the string is not indirect, it can only be sequential or external. |
2994 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); | 3108 STATIC_ASSERT(kIsIndirectStringMask == (kSlicedStringTag & kConsStringTag)); |
2995 STATIC_ASSERT(kIsIndirectStringMask != 0); | 3109 STATIC_ASSERT(kIsIndirectStringMask != 0); |
2996 __ tst(r1, Operand(kIsIndirectStringMask)); | 3110 __ andi(r0, r4, Operand(kIsIndirectStringMask)); |
2997 __ b(eq, &seq_or_external_string); | 3111 __ beq(&seq_or_external_string, cr0); |
2998 | 3112 |
2999 __ tst(r1, Operand(kSlicedNotConsMask)); | 3113 __ andi(r0, r4, Operand(kSlicedNotConsMask)); |
3000 __ b(ne, &sliced_string); | 3114 __ bne(&sliced_string, cr0); |
3001 // Cons string. Check whether it is flat, then fetch first part. | 3115 // Cons string. Check whether it is flat, then fetch first part. |
3002 __ ldr(r5, FieldMemOperand(r0, ConsString::kSecondOffset)); | 3116 __ LoadP(r8, FieldMemOperand(r3, ConsString::kSecondOffset)); |
3003 __ CompareRoot(r5, Heap::kempty_stringRootIndex); | 3117 __ CompareRoot(r8, Heap::kempty_stringRootIndex); |
3004 __ b(ne, &runtime); | 3118 __ bne(&runtime); |
3005 __ ldr(r5, FieldMemOperand(r0, ConsString::kFirstOffset)); | 3119 __ LoadP(r8, FieldMemOperand(r3, ConsString::kFirstOffset)); |
3006 // Update instance type. | 3120 // Update instance type. |
3007 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); | 3121 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset)); |
3008 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); | 3122 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
3009 __ jmp(&underlying_unpacked); | 3123 __ b(&underlying_unpacked); |
3010 | 3124 |
3011 __ bind(&sliced_string); | 3125 __ bind(&sliced_string); |
3012 // Sliced string. Fetch parent and correct start index by offset. | 3126 // Sliced string. Fetch parent and correct start index by offset. |
3013 __ ldr(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); | 3127 __ LoadP(r8, FieldMemOperand(r3, SlicedString::kParentOffset)); |
3014 __ ldr(r4, FieldMemOperand(r0, SlicedString::kOffsetOffset)); | 3128 __ LoadP(r7, FieldMemOperand(r3, SlicedString::kOffsetOffset)); |
3015 __ add(r3, r3, Operand(r4, ASR, 1)); // Add offset to index. | 3129 __ SmiUntag(r4, r7); |
3130 __ add(r6, r6, r4); // Add offset to index. | |
3016 // Update instance type. | 3131 // Update instance type. |
3017 __ ldr(r1, FieldMemOperand(r5, HeapObject::kMapOffset)); | 3132 __ LoadP(r4, FieldMemOperand(r8, HeapObject::kMapOffset)); |
3018 __ ldrb(r1, FieldMemOperand(r1, Map::kInstanceTypeOffset)); | 3133 __ lbz(r4, FieldMemOperand(r4, Map::kInstanceTypeOffset)); |
3019 __ jmp(&underlying_unpacked); | 3134 __ b(&underlying_unpacked); |
3020 | 3135 |
3021 __ bind(&seq_or_external_string); | 3136 __ bind(&seq_or_external_string); |
3022 // Sequential or external string. Just move string to the expected register. | 3137 // Sequential or external string. Just move string to the expected register. |
3023 __ mov(r5, r0); | 3138 __ mr(r8, r3); |
3024 | 3139 |
3025 __ bind(&underlying_unpacked); | 3140 __ bind(&underlying_unpacked); |
3026 | 3141 |
3027 if (FLAG_string_slices) { | 3142 if (FLAG_string_slices) { |
3028 Label copy_routine; | 3143 Label copy_routine; |
3029 // r5: underlying subject string | 3144 // r8: underlying subject string |
3030 // r1: instance type of underlying subject string | 3145 // r4: instance type of underlying subject string |
3031 // r2: length | 3146 // r5: length |
3032 // r3: adjusted start index (untagged) | 3147 // r6: adjusted start index (untagged) |
3033 __ cmp(r2, Operand(SlicedString::kMinLength)); | 3148 __ cmpi(r5, Operand(SlicedString::kMinLength)); |
3034 // Short slice. Copy instead of slicing. | 3149 // Short slice. Copy instead of slicing. |
3035 __ b(lt, ©_routine); | 3150 __ blt(©_routine); |
3036 // Allocate new sliced string. At this point we do not reload the instance | 3151 // Allocate new sliced string. At this point we do not reload the instance |
3037 // type including the string encoding because we simply rely on the info | 3152 // type including the string encoding because we simply rely on the info |
3038 // provided by the original string. It does not matter if the original | 3153 // provided by the original string. It does not matter if the original |
3039 // string's encoding is wrong because we always have to recheck encoding of | 3154 // string's encoding is wrong because we always have to recheck encoding of |
3040 // the newly created string's parent anyways due to externalized strings. | 3155 // the newly created string's parent anyways due to externalized strings. |
3041 Label two_byte_slice, set_slice_header; | 3156 Label two_byte_slice, set_slice_header; |
3042 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); | 3157 STATIC_ASSERT((kStringEncodingMask & kOneByteStringTag) != 0); |
3043 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); | 3158 STATIC_ASSERT((kStringEncodingMask & kTwoByteStringTag) == 0); |
3044 __ tst(r1, Operand(kStringEncodingMask)); | 3159 __ andi(r0, r4, Operand(kStringEncodingMask)); |
3045 __ b(eq, &two_byte_slice); | 3160 __ beq(&two_byte_slice, cr0); |
3046 __ AllocateOneByteSlicedString(r0, r2, r6, r4, &runtime); | 3161 __ AllocateOneByteSlicedString(r3, r5, r9, r10, &runtime); |
3047 __ jmp(&set_slice_header); | 3162 __ b(&set_slice_header); |
3048 __ bind(&two_byte_slice); | 3163 __ bind(&two_byte_slice); |
3049 __ AllocateTwoByteSlicedString(r0, r2, r6, r4, &runtime); | 3164 __ AllocateTwoByteSlicedString(r3, r5, r9, r10, &runtime); |
3050 __ bind(&set_slice_header); | 3165 __ bind(&set_slice_header); |
3051 __ mov(r3, Operand(r3, LSL, 1)); | 3166 __ SmiTag(r6); |
3052 __ str(r5, FieldMemOperand(r0, SlicedString::kParentOffset)); | 3167 __ StoreP(r8, FieldMemOperand(r3, SlicedString::kParentOffset), r0); |
3053 __ str(r3, FieldMemOperand(r0, SlicedString::kOffsetOffset)); | 3168 __ StoreP(r6, FieldMemOperand(r3, SlicedString::kOffsetOffset), r0); |
3054 __ jmp(&return_r0); | 3169 __ b(&return_r3); |
3055 | 3170 |
3056 __ bind(©_routine); | 3171 __ bind(©_routine); |
3057 } | 3172 } |
3058 | 3173 |
3059 // r5: underlying subject string | 3174 // r8: underlying subject string |
3060 // r1: instance type of underlying subject string | 3175 // r4: instance type of underlying subject string |
3061 // r2: length | 3176 // r5: length |
3062 // r3: adjusted start index (untagged) | 3177 // r6: adjusted start index (untagged) |
3063 Label two_byte_sequential, sequential_string, allocate_result; | 3178 Label two_byte_sequential, sequential_string, allocate_result; |
3064 STATIC_ASSERT(kExternalStringTag != 0); | 3179 STATIC_ASSERT(kExternalStringTag != 0); |
3065 STATIC_ASSERT(kSeqStringTag == 0); | 3180 STATIC_ASSERT(kSeqStringTag == 0); |
3066 __ tst(r1, Operand(kExternalStringTag)); | 3181 __ andi(r0, r4, Operand(kExternalStringTag)); |
3067 __ b(eq, &sequential_string); | 3182 __ beq(&sequential_string, cr0); |
3068 | 3183 |
3069 // Handle external string. | 3184 // Handle external string. |
3070 // Rule out short external strings. | 3185 // Rule out short external strings. |
3071 STATIC_ASSERT(kShortExternalStringTag != 0); | 3186 STATIC_ASSERT(kShortExternalStringTag != 0); |
3072 __ tst(r1, Operand(kShortExternalStringTag)); | 3187 __ andi(r0, r4, Operand(kShortExternalStringTag)); |
3073 __ b(ne, &runtime); | 3188 __ bne(&runtime, cr0); |
3074 __ ldr(r5, FieldMemOperand(r5, ExternalString::kResourceDataOffset)); | 3189 __ LoadP(r8, FieldMemOperand(r8, ExternalString::kResourceDataOffset)); |
3075 // r5 already points to the first character of underlying string. | 3190 // r8 already points to the first character of underlying string. |
3076 __ jmp(&allocate_result); | 3191 __ b(&allocate_result); |
3077 | 3192 |
3078 __ bind(&sequential_string); | 3193 __ bind(&sequential_string); |
3079 // Locate first character of underlying subject string. | 3194 // Locate first character of underlying subject string. |
3080 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); | 3195 STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize); |
3081 __ add(r5, r5, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); | 3196 __ addi(r8, r8, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); |
3082 | 3197 |
3083 __ bind(&allocate_result); | 3198 __ bind(&allocate_result); |
3084 // Sequential acii string. Allocate the result. | 3199 // Sequential acii string. Allocate the result. |
3085 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); | 3200 STATIC_ASSERT((kOneByteStringTag & kStringEncodingMask) != 0); |
3086 __ tst(r1, Operand(kStringEncodingMask)); | 3201 __ andi(r0, r4, Operand(kStringEncodingMask)); |
3087 __ b(eq, &two_byte_sequential); | 3202 __ beq(&two_byte_sequential, cr0); |
3088 | 3203 |
3089 // Allocate and copy the resulting one-byte string. | 3204 // Allocate and copy the resulting one-byte string. |
3090 __ AllocateOneByteString(r0, r2, r4, r6, r1, &runtime); | 3205 __ AllocateOneByteString(r3, r5, r7, r9, r10, &runtime); |
3091 | 3206 |
3092 // Locate first character of substring to copy. | 3207 // Locate first character of substring to copy. |
3093 __ add(r5, r5, r3); | 3208 __ add(r8, r8, r6); |
3094 // Locate first character of result. | 3209 // Locate first character of result. |
3095 __ add(r1, r0, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); | 3210 __ addi(r4, r3, Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); |
3096 | 3211 |
3097 // r0: result string | 3212 // r3: result string |
3098 // r1: first character of result string | 3213 // r4: first character of result string |
3099 // r2: result string length | 3214 // r5: result string length |
3100 // r5: first character of substring to copy | 3215 // r8: first character of substring to copy |
3101 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); | 3216 STATIC_ASSERT((SeqOneByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
3102 StringHelper::GenerateCopyCharacters( | 3217 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6, |
3103 masm, r1, r5, r2, r3, String::ONE_BYTE_ENCODING); | 3218 String::ONE_BYTE_ENCODING); |
3104 __ jmp(&return_r0); | 3219 __ b(&return_r3); |
3105 | 3220 |
3106 // Allocate and copy the resulting two-byte string. | 3221 // Allocate and copy the resulting two-byte string. |
3107 __ bind(&two_byte_sequential); | 3222 __ bind(&two_byte_sequential); |
3108 __ AllocateTwoByteString(r0, r2, r4, r6, r1, &runtime); | 3223 __ AllocateTwoByteString(r3, r5, r7, r9, r10, &runtime); |
3109 | 3224 |
3110 // Locate first character of substring to copy. | 3225 // Locate first character of substring to copy. |
3111 STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); | 3226 __ ShiftLeftImm(r4, r6, Operand(1)); |
3112 __ add(r5, r5, Operand(r3, LSL, 1)); | 3227 __ add(r8, r8, r4); |
3113 // Locate first character of result. | 3228 // Locate first character of result. |
3114 __ add(r1, r0, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); | 3229 __ addi(r4, r3, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); |
3115 | 3230 |
3116 // r0: result string. | 3231 // r3: result string. |
3117 // r1: first character of result. | 3232 // r4: first character of result. |
3118 // r2: result length. | 3233 // r5: result length. |
3119 // r5: first character of substring to copy. | 3234 // r8: first character of substring to copy. |
3120 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); | 3235 STATIC_ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); |
3121 StringHelper::GenerateCopyCharacters( | 3236 StringHelper::GenerateCopyCharacters(masm, r4, r8, r5, r6, |
3122 masm, r1, r5, r2, r3, String::TWO_BYTE_ENCODING); | 3237 String::TWO_BYTE_ENCODING); |
3123 | 3238 |
3124 __ bind(&return_r0); | 3239 __ bind(&return_r3); |
3125 Counters* counters = isolate()->counters(); | 3240 Counters* counters = isolate()->counters(); |
3126 __ IncrementCounter(counters->sub_string_native(), 1, r3, r4); | 3241 __ IncrementCounter(counters->sub_string_native(), 1, r6, r7); |
3127 __ Drop(3); | 3242 __ Drop(3); |
3128 __ Ret(); | 3243 __ Ret(); |
3129 | 3244 |
3130 // Just jump to runtime to create the sub string. | 3245 // Just jump to runtime to create the sub string. |
3131 __ bind(&runtime); | 3246 __ bind(&runtime); |
3132 __ TailCallRuntime(Runtime::kSubString, 3, 1); | 3247 __ TailCallRuntime(Runtime::kSubString, 3, 1); |
3133 | 3248 |
3134 __ bind(&single_char); | 3249 __ bind(&single_char); |
3135 // r0: original string | 3250 // r3: original string |
3136 // r1: instance type | 3251 // r4: instance type |
3137 // r2: length | 3252 // r5: length |
3138 // r3: from index (untagged) | 3253 // r6: from index (untagged) |
3139 __ SmiTag(r3, r3); | 3254 __ SmiTag(r6, r6); |
3140 StringCharAtGenerator generator( | 3255 StringCharAtGenerator generator(r3, r6, r5, r3, &runtime, &runtime, &runtime, |
3141 r0, r3, r2, r0, &runtime, &runtime, &runtime, STRING_INDEX_IS_NUMBER); | 3256 STRING_INDEX_IS_NUMBER); |
3142 generator.GenerateFast(masm); | 3257 generator.GenerateFast(masm); |
3143 __ Drop(3); | 3258 __ Drop(3); |
3144 __ Ret(); | 3259 __ Ret(); |
3145 generator.SkipSlow(masm, &runtime); | 3260 generator.SkipSlow(masm, &runtime); |
3146 } | 3261 } |
3147 | 3262 |
3148 | 3263 |
3149 void StringHelper::GenerateFlatOneByteStringEquals( | 3264 void StringHelper::GenerateFlatOneByteStringEquals(MacroAssembler* masm, |
3150 MacroAssembler* masm, Register left, Register right, Register scratch1, | 3265 Register left, |
3151 Register scratch2, Register scratch3) { | 3266 Register right, |
3267 Register scratch1, | |
3268 Register scratch2) { | |
3152 Register length = scratch1; | 3269 Register length = scratch1; |
3153 | 3270 |
3154 // Compare lengths. | 3271 // Compare lengths. |
3155 Label strings_not_equal, check_zero_length; | 3272 Label strings_not_equal, check_zero_length; |
3156 __ ldr(length, FieldMemOperand(left, String::kLengthOffset)); | 3273 __ LoadP(length, FieldMemOperand(left, String::kLengthOffset)); |
3157 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); | 3274 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
3158 __ cmp(length, scratch2); | 3275 __ cmp(length, scratch2); |
3159 __ b(eq, &check_zero_length); | 3276 __ beq(&check_zero_length); |
3160 __ bind(&strings_not_equal); | 3277 __ bind(&strings_not_equal); |
3161 __ mov(r0, Operand(Smi::FromInt(NOT_EQUAL))); | 3278 __ LoadSmiLiteral(r3, Smi::FromInt(NOT_EQUAL)); |
3162 __ Ret(); | 3279 __ Ret(); |
3163 | 3280 |
3164 // Check if the length is zero. | 3281 // Check if the length is zero. |
3165 Label compare_chars; | 3282 Label compare_chars; |
3166 __ bind(&check_zero_length); | 3283 __ bind(&check_zero_length); |
3167 STATIC_ASSERT(kSmiTag == 0); | 3284 STATIC_ASSERT(kSmiTag == 0); |
3168 __ cmp(length, Operand::Zero()); | 3285 __ cmpi(length, Operand::Zero()); |
3169 __ b(ne, &compare_chars); | 3286 __ bne(&compare_chars); |
3170 __ mov(r0, Operand(Smi::FromInt(EQUAL))); | 3287 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3171 __ Ret(); | 3288 __ Ret(); |
3172 | 3289 |
3173 // Compare characters. | 3290 // Compare characters. |
3174 __ bind(&compare_chars); | 3291 __ bind(&compare_chars); |
3175 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, scratch3, | 3292 GenerateOneByteCharsCompareLoop(masm, left, right, length, scratch2, |
3176 &strings_not_equal); | 3293 &strings_not_equal); |
3177 | 3294 |
3178 // Characters are equal. | 3295 // Characters are equal. |
3179 __ mov(r0, Operand(Smi::FromInt(EQUAL))); | 3296 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3180 __ Ret(); | 3297 __ Ret(); |
3181 } | 3298 } |
3182 | 3299 |
3183 | 3300 |
3184 void StringHelper::GenerateCompareFlatOneByteStrings( | 3301 void StringHelper::GenerateCompareFlatOneByteStrings( |
3185 MacroAssembler* masm, Register left, Register right, Register scratch1, | 3302 MacroAssembler* masm, Register left, Register right, Register scratch1, |
3186 Register scratch2, Register scratch3, Register scratch4) { | 3303 Register scratch2, Register scratch3) { |
3187 Label result_not_equal, compare_lengths; | 3304 Label skip, result_not_equal, compare_lengths; |
3188 // Find minimum length and length difference. | 3305 // Find minimum length and length difference. |
3189 __ ldr(scratch1, FieldMemOperand(left, String::kLengthOffset)); | 3306 __ LoadP(scratch1, FieldMemOperand(left, String::kLengthOffset)); |
3190 __ ldr(scratch2, FieldMemOperand(right, String::kLengthOffset)); | 3307 __ LoadP(scratch2, FieldMemOperand(right, String::kLengthOffset)); |
3191 __ sub(scratch3, scratch1, Operand(scratch2), SetCC); | 3308 __ sub(scratch3, scratch1, scratch2, LeaveOE, SetRC); |
3192 Register length_delta = scratch3; | 3309 Register length_delta = scratch3; |
3193 __ mov(scratch1, scratch2, LeaveCC, gt); | 3310 __ ble(&skip, cr0); |
3311 __ mr(scratch1, scratch2); | |
3312 __ bind(&skip); | |
3194 Register min_length = scratch1; | 3313 Register min_length = scratch1; |
3195 STATIC_ASSERT(kSmiTag == 0); | 3314 STATIC_ASSERT(kSmiTag == 0); |
3196 __ cmp(min_length, Operand::Zero()); | 3315 __ cmpi(min_length, Operand::Zero()); |
3197 __ b(eq, &compare_lengths); | 3316 __ beq(&compare_lengths); |
3198 | 3317 |
3199 // Compare loop. | 3318 // Compare loop. |
3200 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, | 3319 GenerateOneByteCharsCompareLoop(masm, left, right, min_length, scratch2, |
3201 scratch4, &result_not_equal); | 3320 &result_not_equal); |
3202 | 3321 |
3203 // Compare lengths - strings up to min-length are equal. | 3322 // Compare lengths - strings up to min-length are equal. |
3204 __ bind(&compare_lengths); | 3323 __ bind(&compare_lengths); |
3205 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); | 3324 DCHECK(Smi::FromInt(EQUAL) == static_cast<Smi*>(0)); |
3206 // Use length_delta as result if it's zero. | 3325 // Use length_delta as result if it's zero. |
3207 __ mov(r0, Operand(length_delta), SetCC); | 3326 __ mr(r3, length_delta); |
3327 __ cmpi(r3, Operand::Zero()); | |
3208 __ bind(&result_not_equal); | 3328 __ bind(&result_not_equal); |
3209 // Conditionally update the result based either on length_delta or | 3329 // Conditionally update the result based either on length_delta or |
3210 // the last comparion performed in the loop above. | 3330 // the last comparion performed in the loop above. |
3211 __ mov(r0, Operand(Smi::FromInt(GREATER)), LeaveCC, gt); | 3331 Label less_equal, equal; |
3212 __ mov(r0, Operand(Smi::FromInt(LESS)), LeaveCC, lt); | 3332 __ ble(&less_equal); |
3333 __ LoadSmiLiteral(r3, Smi::FromInt(GREATER)); | |
3334 __ Ret(); | |
3335 __ bind(&less_equal); | |
3336 __ beq(&equal); | |
3337 __ LoadSmiLiteral(r3, Smi::FromInt(LESS)); | |
3338 __ bind(&equal); | |
3213 __ Ret(); | 3339 __ Ret(); |
3214 } | 3340 } |
3215 | 3341 |
3216 | 3342 |
3217 void StringHelper::GenerateOneByteCharsCompareLoop( | 3343 void StringHelper::GenerateOneByteCharsCompareLoop( |
3218 MacroAssembler* masm, Register left, Register right, Register length, | 3344 MacroAssembler* masm, Register left, Register right, Register length, |
3219 Register scratch1, Register scratch2, Label* chars_not_equal) { | 3345 Register scratch1, Label* chars_not_equal) { |
3220 // Change index to run from -length to -1 by adding length to string | 3346 // Change index to run from -length to -1 by adding length to string |
3221 // start. This means that loop ends when index reaches zero, which | 3347 // start. This means that loop ends when index reaches zero, which |
3222 // doesn't need an additional compare. | 3348 // doesn't need an additional compare. |
3223 __ SmiUntag(length); | 3349 __ SmiUntag(length); |
3224 __ add(scratch1, length, | 3350 __ addi(scratch1, length, |
3225 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); | 3351 Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); |
3226 __ add(left, left, Operand(scratch1)); | 3352 __ add(left, left, scratch1); |
3227 __ add(right, right, Operand(scratch1)); | 3353 __ add(right, right, scratch1); |
3228 __ rsb(length, length, Operand::Zero()); | 3354 __ subfic(length, length, Operand::Zero()); |
3229 Register index = length; // index = -length; | 3355 Register index = length; // index = -length; |
3230 | 3356 |
3231 // Compare loop. | 3357 // Compare loop. |
3232 Label loop; | 3358 Label loop; |
3233 __ bind(&loop); | 3359 __ bind(&loop); |
3234 __ ldrb(scratch1, MemOperand(left, index)); | 3360 __ lbzx(scratch1, MemOperand(left, index)); |
3235 __ ldrb(scratch2, MemOperand(right, index)); | 3361 __ lbzx(r0, MemOperand(right, index)); |
3236 __ cmp(scratch1, scratch2); | 3362 __ cmp(scratch1, r0); |
3237 __ b(ne, chars_not_equal); | 3363 __ bne(chars_not_equal); |
3238 __ add(index, index, Operand(1), SetCC); | 3364 __ addi(index, index, Operand(1)); |
3239 __ b(ne, &loop); | 3365 __ cmpi(index, Operand::Zero()); |
3366 __ bne(&loop); | |
3240 } | 3367 } |
3241 | 3368 |
3242 | 3369 |
3243 void StringCompareStub::Generate(MacroAssembler* masm) { | 3370 void StringCompareStub::Generate(MacroAssembler* masm) { |
3244 Label runtime; | 3371 Label runtime; |
3245 | 3372 |
3246 Counters* counters = isolate()->counters(); | 3373 Counters* counters = isolate()->counters(); |
3247 | 3374 |
3248 // Stack frame on entry. | 3375 // Stack frame on entry. |
3249 // sp[0]: right string | 3376 // sp[0]: right string |
3250 // sp[4]: left string | 3377 // sp[4]: left string |
3251 __ Ldrd(r0 , r1, MemOperand(sp)); // Load right in r0, left in r1. | 3378 __ LoadP(r3, MemOperand(sp)); // Load right in r3, left in r4. |
3379 __ LoadP(r4, MemOperand(sp, kPointerSize)); | |
3252 | 3380 |
3253 Label not_same; | 3381 Label not_same; |
3254 __ cmp(r0, r1); | 3382 __ cmp(r3, r4); |
3255 __ b(ne, ¬_same); | 3383 __ bne(¬_same); |
3256 STATIC_ASSERT(EQUAL == 0); | 3384 STATIC_ASSERT(EQUAL == 0); |
3257 STATIC_ASSERT(kSmiTag == 0); | 3385 STATIC_ASSERT(kSmiTag == 0); |
3258 __ mov(r0, Operand(Smi::FromInt(EQUAL))); | 3386 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3259 __ IncrementCounter(counters->string_compare_native(), 1, r1, r2); | 3387 __ IncrementCounter(counters->string_compare_native(), 1, r4, r5); |
3260 __ add(sp, sp, Operand(2 * kPointerSize)); | 3388 __ addi(sp, sp, Operand(2 * kPointerSize)); |
3261 __ Ret(); | 3389 __ Ret(); |
3262 | 3390 |
3263 __ bind(¬_same); | 3391 __ bind(¬_same); |
3264 | 3392 |
3265 // Check that both objects are sequential one-byte strings. | 3393 // Check that both objects are sequential one-byte strings. |
3266 __ JumpIfNotBothSequentialOneByteStrings(r1, r0, r2, r3, &runtime); | 3394 __ JumpIfNotBothSequentialOneByteStrings(r4, r3, r5, r6, &runtime); |
3267 | 3395 |
3268 // Compare flat one-byte strings natively. Remove arguments from stack first. | 3396 // Compare flat one-byte strings natively. Remove arguments from stack first. |
3269 __ IncrementCounter(counters->string_compare_native(), 1, r2, r3); | 3397 __ IncrementCounter(counters->string_compare_native(), 1, r5, r6); |
3270 __ add(sp, sp, Operand(2 * kPointerSize)); | 3398 __ addi(sp, sp, Operand(2 * kPointerSize)); |
3271 StringHelper::GenerateCompareFlatOneByteStrings(masm, r1, r0, r2, r3, r4, r5); | 3399 StringHelper::GenerateCompareFlatOneByteStrings(masm, r4, r3, r5, r6, r7); |
3272 | 3400 |
3273 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) | 3401 // Call the runtime; it returns -1 (less), 0 (equal), or 1 (greater) |
3274 // tagged as a small integer. | 3402 // tagged as a small integer. |
3275 __ bind(&runtime); | 3403 __ bind(&runtime); |
3276 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); | 3404 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
3277 } | 3405 } |
3278 | 3406 |
3279 | 3407 |
3280 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { | 3408 void BinaryOpICWithAllocationSiteStub::Generate(MacroAssembler* masm) { |
3281 // ----------- S t a t e ------------- | 3409 // ----------- S t a t e ------------- |
3282 // -- r1 : left | 3410 // -- r4 : left |
3283 // -- r0 : right | 3411 // -- r3 : right |
3284 // -- lr : return address | 3412 // -- lr : return address |
3285 // ----------------------------------- | 3413 // ----------------------------------- |
3286 | 3414 |
3287 // Load r2 with the allocation site. We stick an undefined dummy value here | 3415 // Load r5 with the allocation site. We stick an undefined dummy value here |
3288 // and replace it with the real allocation site later when we instantiate this | 3416 // and replace it with the real allocation site later when we instantiate this |
3289 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). | 3417 // stub in BinaryOpICWithAllocationSiteStub::GetCodeCopyFromTemplate(). |
3290 __ Move(r2, handle(isolate()->heap()->undefined_value())); | 3418 __ Move(r5, handle(isolate()->heap()->undefined_value())); |
3291 | 3419 |
3292 // Make sure that we actually patched the allocation site. | 3420 // Make sure that we actually patched the allocation site. |
3293 if (FLAG_debug_code) { | 3421 if (FLAG_debug_code) { |
3294 __ tst(r2, Operand(kSmiTagMask)); | 3422 __ TestIfSmi(r5, r0); |
3295 __ Assert(ne, kExpectedAllocationSite); | 3423 __ Assert(ne, kExpectedAllocationSite, cr0); |
3296 __ push(r2); | 3424 __ push(r5); |
3297 __ ldr(r2, FieldMemOperand(r2, HeapObject::kMapOffset)); | 3425 __ LoadP(r5, FieldMemOperand(r5, HeapObject::kMapOffset)); |
3298 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex); | 3426 __ LoadRoot(ip, Heap::kAllocationSiteMapRootIndex); |
3299 __ cmp(r2, ip); | 3427 __ cmp(r5, ip); |
3300 __ pop(r2); | 3428 __ pop(r5); |
3301 __ Assert(eq, kExpectedAllocationSite); | 3429 __ Assert(eq, kExpectedAllocationSite); |
3302 } | 3430 } |
3303 | 3431 |
3304 // Tail call into the stub that handles binary operations with allocation | 3432 // Tail call into the stub that handles binary operations with allocation |
3305 // sites. | 3433 // sites. |
3306 BinaryOpWithAllocationSiteStub stub(isolate(), state()); | 3434 BinaryOpWithAllocationSiteStub stub(isolate(), state()); |
3307 __ TailCallStub(&stub); | 3435 __ TailCallStub(&stub); |
3308 } | 3436 } |
3309 | 3437 |
3310 | 3438 |
3311 void CompareICStub::GenerateSmis(MacroAssembler* masm) { | 3439 void CompareICStub::GenerateSmis(MacroAssembler* masm) { |
3312 DCHECK(state() == CompareICState::SMI); | 3440 DCHECK(state() == CompareICState::SMI); |
3313 Label miss; | 3441 Label miss; |
3314 __ orr(r2, r1, r0); | 3442 __ orx(r5, r4, r3); |
3315 __ JumpIfNotSmi(r2, &miss); | 3443 __ JumpIfNotSmi(r5, &miss); |
3316 | 3444 |
3317 if (GetCondition() == eq) { | 3445 if (GetCondition() == eq) { |
3318 // For equality we do not care about the sign of the result. | 3446 // For equality we do not care about the sign of the result. |
3319 __ sub(r0, r0, r1, SetCC); | 3447 // __ sub(r3, r3, r4, SetCC); |
3448 __ sub(r3, r3, r4); | |
3320 } else { | 3449 } else { |
3321 // Untag before subtracting to avoid handling overflow. | 3450 // Untag before subtracting to avoid handling overflow. |
3322 __ SmiUntag(r1); | 3451 __ SmiUntag(r4); |
3323 __ sub(r0, r1, Operand::SmiUntag(r0)); | 3452 __ SmiUntag(r3); |
3453 __ sub(r3, r4, r3); | |
3324 } | 3454 } |
3325 __ Ret(); | 3455 __ Ret(); |
3326 | 3456 |
3327 __ bind(&miss); | 3457 __ bind(&miss); |
3328 GenerateMiss(masm); | 3458 GenerateMiss(masm); |
3329 } | 3459 } |
3330 | 3460 |
3331 | 3461 |
3332 void CompareICStub::GenerateNumbers(MacroAssembler* masm) { | 3462 void CompareICStub::GenerateNumbers(MacroAssembler* masm) { |
3333 DCHECK(state() == CompareICState::NUMBER); | 3463 DCHECK(state() == CompareICState::NUMBER); |
3334 | 3464 |
3335 Label generic_stub; | 3465 Label generic_stub; |
3336 Label unordered, maybe_undefined1, maybe_undefined2; | 3466 Label unordered, maybe_undefined1, maybe_undefined2; |
3337 Label miss; | 3467 Label miss; |
3468 Label equal, less_than; | |
3338 | 3469 |
3339 if (left() == CompareICState::SMI) { | 3470 if (left() == CompareICState::SMI) { |
3340 __ JumpIfNotSmi(r1, &miss); | 3471 __ JumpIfNotSmi(r4, &miss); |
3341 } | 3472 } |
3342 if (right() == CompareICState::SMI) { | 3473 if (right() == CompareICState::SMI) { |
3343 __ JumpIfNotSmi(r0, &miss); | 3474 __ JumpIfNotSmi(r3, &miss); |
3344 } | 3475 } |
3345 | 3476 |
3346 // Inlining the double comparison and falling back to the general compare | 3477 // Inlining the double comparison and falling back to the general compare |
3347 // stub if NaN is involved. | 3478 // stub if NaN is involved. |
3348 // Load left and right operand. | 3479 // Load left and right operand. |
3349 Label done, left, left_smi, right_smi; | 3480 Label done, left, left_smi, right_smi; |
3350 __ JumpIfSmi(r0, &right_smi); | 3481 __ JumpIfSmi(r3, &right_smi); |
3351 __ CheckMap(r0, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, | 3482 __ CheckMap(r3, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined1, |
3352 DONT_DO_SMI_CHECK); | 3483 DONT_DO_SMI_CHECK); |
3353 __ sub(r2, r0, Operand(kHeapObjectTag)); | 3484 __ lfd(d1, FieldMemOperand(r3, HeapNumber::kValueOffset)); |
3354 __ vldr(d1, r2, HeapNumber::kValueOffset); | |
3355 __ b(&left); | 3485 __ b(&left); |
3356 __ bind(&right_smi); | 3486 __ bind(&right_smi); |
3357 __ SmiToDouble(d1, r0); | 3487 __ SmiToDouble(d1, r3); |
3358 | 3488 |
3359 __ bind(&left); | 3489 __ bind(&left); |
3360 __ JumpIfSmi(r1, &left_smi); | 3490 __ JumpIfSmi(r4, &left_smi); |
3361 __ CheckMap(r1, r2, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, | 3491 __ CheckMap(r4, r5, Heap::kHeapNumberMapRootIndex, &maybe_undefined2, |
3362 DONT_DO_SMI_CHECK); | 3492 DONT_DO_SMI_CHECK); |
3363 __ sub(r2, r1, Operand(kHeapObjectTag)); | 3493 __ lfd(d0, FieldMemOperand(r4, HeapNumber::kValueOffset)); |
3364 __ vldr(d0, r2, HeapNumber::kValueOffset); | |
3365 __ b(&done); | 3494 __ b(&done); |
3366 __ bind(&left_smi); | 3495 __ bind(&left_smi); |
3367 __ SmiToDouble(d0, r1); | 3496 __ SmiToDouble(d0, r4); |
3368 | 3497 |
3369 __ bind(&done); | 3498 __ bind(&done); |
3370 // Compare operands. | 3499 |
3371 __ VFPCompareAndSetFlags(d0, d1); | 3500 // Compare operands |
3501 __ fcmpu(d0, d1); | |
3372 | 3502 |
3373 // Don't base result on status bits when a NaN is involved. | 3503 // Don't base result on status bits when a NaN is involved. |
3374 __ b(vs, &unordered); | 3504 __ bunordered(&unordered); |
3375 | 3505 |
3376 // Return a result of -1, 0, or 1, based on status bits. | 3506 // Return a result of -1, 0, or 1, based on status bits. |
3377 __ mov(r0, Operand(EQUAL), LeaveCC, eq); | 3507 __ beq(&equal); |
3378 __ mov(r0, Operand(LESS), LeaveCC, lt); | 3508 __ blt(&less_than); |
3379 __ mov(r0, Operand(GREATER), LeaveCC, gt); | 3509 // assume greater than |
3510 __ li(r3, Operand(GREATER)); | |
3511 __ Ret(); | |
3512 __ bind(&equal); | |
3513 __ li(r3, Operand(EQUAL)); | |
3514 __ Ret(); | |
3515 __ bind(&less_than); | |
3516 __ li(r3, Operand(LESS)); | |
3380 __ Ret(); | 3517 __ Ret(); |
3381 | 3518 |
3382 __ bind(&unordered); | 3519 __ bind(&unordered); |
3383 __ bind(&generic_stub); | 3520 __ bind(&generic_stub); |
3384 CompareICStub stub(isolate(), op(), CompareICState::GENERIC, | 3521 CompareICStub stub(isolate(), op(), CompareICState::GENERIC, |
3385 CompareICState::GENERIC, CompareICState::GENERIC); | 3522 CompareICState::GENERIC, CompareICState::GENERIC); |
3386 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); | 3523 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
3387 | 3524 |
3388 __ bind(&maybe_undefined1); | 3525 __ bind(&maybe_undefined1); |
3389 if (Token::IsOrderedRelationalCompareOp(op())) { | 3526 if (Token::IsOrderedRelationalCompareOp(op())) { |
3390 __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); | 3527 __ CompareRoot(r3, Heap::kUndefinedValueRootIndex); |
3391 __ b(ne, &miss); | 3528 __ bne(&miss); |
3392 __ JumpIfSmi(r1, &unordered); | 3529 __ JumpIfSmi(r4, &unordered); |
3393 __ CompareObjectType(r1, r2, r2, HEAP_NUMBER_TYPE); | 3530 __ CompareObjectType(r4, r5, r5, HEAP_NUMBER_TYPE); |
3394 __ b(ne, &maybe_undefined2); | 3531 __ bne(&maybe_undefined2); |
3395 __ jmp(&unordered); | 3532 __ b(&unordered); |
3396 } | 3533 } |
3397 | 3534 |
3398 __ bind(&maybe_undefined2); | 3535 __ bind(&maybe_undefined2); |
3399 if (Token::IsOrderedRelationalCompareOp(op())) { | 3536 if (Token::IsOrderedRelationalCompareOp(op())) { |
3400 __ CompareRoot(r1, Heap::kUndefinedValueRootIndex); | 3537 __ CompareRoot(r4, Heap::kUndefinedValueRootIndex); |
3401 __ b(eq, &unordered); | 3538 __ beq(&unordered); |
3402 } | 3539 } |
3403 | 3540 |
3404 __ bind(&miss); | 3541 __ bind(&miss); |
3405 GenerateMiss(masm); | 3542 GenerateMiss(masm); |
3406 } | 3543 } |
3407 | 3544 |
3408 | 3545 |
3409 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { | 3546 void CompareICStub::GenerateInternalizedStrings(MacroAssembler* masm) { |
3410 DCHECK(state() == CompareICState::INTERNALIZED_STRING); | 3547 DCHECK(state() == CompareICState::INTERNALIZED_STRING); |
3411 Label miss; | 3548 Label miss, not_equal; |
3412 | 3549 |
3413 // Registers containing left and right operands respectively. | 3550 // Registers containing left and right operands respectively. |
3414 Register left = r1; | 3551 Register left = r4; |
3415 Register right = r0; | 3552 Register right = r3; |
3416 Register tmp1 = r2; | 3553 Register tmp1 = r5; |
3417 Register tmp2 = r3; | 3554 Register tmp2 = r6; |
3418 | 3555 |
3419 // Check that both operands are heap objects. | 3556 // Check that both operands are heap objects. |
3420 __ JumpIfEitherSmi(left, right, &miss); | 3557 __ JumpIfEitherSmi(left, right, &miss); |
3421 | 3558 |
3422 // Check that both operands are internalized strings. | 3559 // Check that both operands are symbols. |
3423 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); | 3560 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
3424 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); | 3561 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
3425 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); | 3562 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
3426 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); | 3563 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
3427 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); | 3564 STATIC_ASSERT(kInternalizedTag == 0 && kStringTag == 0); |
3428 __ orr(tmp1, tmp1, Operand(tmp2)); | 3565 __ orx(tmp1, tmp1, tmp2); |
3429 __ tst(tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); | 3566 __ andi(r0, tmp1, Operand(kIsNotStringMask | kIsNotInternalizedMask)); |
3430 __ b(ne, &miss); | 3567 __ bne(&miss, cr0); |
3431 | 3568 |
3432 // Internalized strings are compared by identity. | 3569 // Internalized strings are compared by identity. |
3433 __ cmp(left, right); | 3570 __ cmp(left, right); |
3434 // Make sure r0 is non-zero. At this point input operands are | 3571 __ bne(¬_equal); |
3572 // Make sure r3 is non-zero. At this point input operands are | |
3435 // guaranteed to be non-zero. | 3573 // guaranteed to be non-zero. |
3436 DCHECK(right.is(r0)); | 3574 DCHECK(right.is(r3)); |
3437 STATIC_ASSERT(EQUAL == 0); | 3575 STATIC_ASSERT(EQUAL == 0); |
3438 STATIC_ASSERT(kSmiTag == 0); | 3576 STATIC_ASSERT(kSmiTag == 0); |
3439 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); | 3577 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3578 __ bind(¬_equal); | |
3440 __ Ret(); | 3579 __ Ret(); |
3441 | 3580 |
3442 __ bind(&miss); | 3581 __ bind(&miss); |
3443 GenerateMiss(masm); | 3582 GenerateMiss(masm); |
3444 } | 3583 } |
3445 | 3584 |
3446 | 3585 |
3447 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { | 3586 void CompareICStub::GenerateUniqueNames(MacroAssembler* masm) { |
3448 DCHECK(state() == CompareICState::UNIQUE_NAME); | 3587 DCHECK(state() == CompareICState::UNIQUE_NAME); |
3449 DCHECK(GetCondition() == eq); | 3588 DCHECK(GetCondition() == eq); |
3450 Label miss; | 3589 Label miss; |
3451 | 3590 |
3452 // Registers containing left and right operands respectively. | 3591 // Registers containing left and right operands respectively. |
3453 Register left = r1; | 3592 Register left = r4; |
3454 Register right = r0; | 3593 Register right = r3; |
3455 Register tmp1 = r2; | 3594 Register tmp1 = r5; |
3456 Register tmp2 = r3; | 3595 Register tmp2 = r6; |
3457 | 3596 |
3458 // Check that both operands are heap objects. | 3597 // Check that both operands are heap objects. |
3459 __ JumpIfEitherSmi(left, right, &miss); | 3598 __ JumpIfEitherSmi(left, right, &miss); |
3460 | 3599 |
3461 // Check that both operands are unique names. This leaves the instance | 3600 // Check that both operands are unique names. This leaves the instance |
3462 // types loaded in tmp1 and tmp2. | 3601 // types loaded in tmp1 and tmp2. |
3463 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); | 3602 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
3464 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); | 3603 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
3465 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); | 3604 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
3466 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); | 3605 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
3467 | 3606 |
3468 __ JumpIfNotUniqueName(tmp1, &miss); | 3607 __ JumpIfNotUniqueNameInstanceType(tmp1, &miss); |
3469 __ JumpIfNotUniqueName(tmp2, &miss); | 3608 __ JumpIfNotUniqueNameInstanceType(tmp2, &miss); |
3470 | 3609 |
3471 // Unique names are compared by identity. | 3610 // Unique names are compared by identity. |
3472 __ cmp(left, right); | 3611 __ cmp(left, right); |
3473 // Make sure r0 is non-zero. At this point input operands are | 3612 __ bne(&miss); |
3613 // Make sure r3 is non-zero. At this point input operands are | |
3474 // guaranteed to be non-zero. | 3614 // guaranteed to be non-zero. |
3475 DCHECK(right.is(r0)); | 3615 DCHECK(right.is(r3)); |
3476 STATIC_ASSERT(EQUAL == 0); | 3616 STATIC_ASSERT(EQUAL == 0); |
3477 STATIC_ASSERT(kSmiTag == 0); | 3617 STATIC_ASSERT(kSmiTag == 0); |
3478 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); | 3618 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3479 __ Ret(); | 3619 __ Ret(); |
3480 | 3620 |
3481 __ bind(&miss); | 3621 __ bind(&miss); |
3482 GenerateMiss(masm); | 3622 GenerateMiss(masm); |
3483 } | 3623 } |
3484 | 3624 |
3485 | 3625 |
3486 void CompareICStub::GenerateStrings(MacroAssembler* masm) { | 3626 void CompareICStub::GenerateStrings(MacroAssembler* masm) { |
3487 DCHECK(state() == CompareICState::STRING); | 3627 DCHECK(state() == CompareICState::STRING); |
3488 Label miss; | 3628 Label miss, not_identical, is_symbol; |
3489 | 3629 |
3490 bool equality = Token::IsEqualityOp(op()); | 3630 bool equality = Token::IsEqualityOp(op()); |
3491 | 3631 |
3492 // Registers containing left and right operands respectively. | 3632 // Registers containing left and right operands respectively. |
3493 Register left = r1; | 3633 Register left = r4; |
3494 Register right = r0; | 3634 Register right = r3; |
3495 Register tmp1 = r2; | 3635 Register tmp1 = r5; |
3496 Register tmp2 = r3; | 3636 Register tmp2 = r6; |
3497 Register tmp3 = r4; | 3637 Register tmp3 = r7; |
3498 Register tmp4 = r5; | 3638 Register tmp4 = r8; |
3499 | 3639 |
3500 // Check that both operands are heap objects. | 3640 // Check that both operands are heap objects. |
3501 __ JumpIfEitherSmi(left, right, &miss); | 3641 __ JumpIfEitherSmi(left, right, &miss); |
3502 | 3642 |
3503 // Check that both operands are strings. This leaves the instance | 3643 // Check that both operands are strings. This leaves the instance |
3504 // types loaded in tmp1 and tmp2. | 3644 // types loaded in tmp1 and tmp2. |
3505 __ ldr(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); | 3645 __ LoadP(tmp1, FieldMemOperand(left, HeapObject::kMapOffset)); |
3506 __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); | 3646 __ LoadP(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); |
3507 __ ldrb(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); | 3647 __ lbz(tmp1, FieldMemOperand(tmp1, Map::kInstanceTypeOffset)); |
3508 __ ldrb(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); | 3648 __ lbz(tmp2, FieldMemOperand(tmp2, Map::kInstanceTypeOffset)); |
3509 STATIC_ASSERT(kNotStringTag != 0); | 3649 STATIC_ASSERT(kNotStringTag != 0); |
3510 __ orr(tmp3, tmp1, tmp2); | 3650 __ orx(tmp3, tmp1, tmp2); |
3511 __ tst(tmp3, Operand(kIsNotStringMask)); | 3651 __ andi(r0, tmp3, Operand(kIsNotStringMask)); |
3512 __ b(ne, &miss); | 3652 __ bne(&miss, cr0); |
3513 | 3653 |
3514 // Fast check for identical strings. | 3654 // Fast check for identical strings. |
3515 __ cmp(left, right); | 3655 __ cmp(left, right); |
3516 STATIC_ASSERT(EQUAL == 0); | 3656 STATIC_ASSERT(EQUAL == 0); |
3517 STATIC_ASSERT(kSmiTag == 0); | 3657 STATIC_ASSERT(kSmiTag == 0); |
3518 __ mov(r0, Operand(Smi::FromInt(EQUAL)), LeaveCC, eq); | 3658 __ bne(¬_identical); |
3519 __ Ret(eq); | 3659 __ LoadSmiLiteral(r3, Smi::FromInt(EQUAL)); |
3660 __ Ret(); | |
3661 __ bind(¬_identical); | |
3520 | 3662 |
3521 // Handle not identical strings. | 3663 // Handle not identical strings. |
3522 | 3664 |
3523 // Check that both strings are internalized strings. If they are, we're done | 3665 // Check that both strings are internalized strings. If they are, we're done |
3524 // because we already know they are not identical. We know they are both | 3666 // because we already know they are not identical. We know they are both |
3525 // strings. | 3667 // strings. |
3526 if (equality) { | 3668 if (equality) { |
3527 DCHECK(GetCondition() == eq); | 3669 DCHECK(GetCondition() == eq); |
3528 STATIC_ASSERT(kInternalizedTag == 0); | 3670 STATIC_ASSERT(kInternalizedTag == 0); |
3529 __ orr(tmp3, tmp1, Operand(tmp2)); | 3671 __ orx(tmp3, tmp1, tmp2); |
3530 __ tst(tmp3, Operand(kIsNotInternalizedMask)); | 3672 __ andi(r0, tmp3, Operand(kIsNotInternalizedMask)); |
3531 // Make sure r0 is non-zero. At this point input operands are | 3673 __ bne(&is_symbol, cr0); |
3674 // Make sure r3 is non-zero. At this point input operands are | |
3532 // guaranteed to be non-zero. | 3675 // guaranteed to be non-zero. |
3533 DCHECK(right.is(r0)); | 3676 DCHECK(right.is(r3)); |
3534 __ Ret(eq); | 3677 __ Ret(); |
3678 __ bind(&is_symbol); | |
3535 } | 3679 } |
3536 | 3680 |
3537 // Check that both strings are sequential one-byte. | 3681 // Check that both strings are sequential one-byte. |
3538 Label runtime; | 3682 Label runtime; |
3539 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4, | 3683 __ JumpIfBothInstanceTypesAreNotSequentialOneByte(tmp1, tmp2, tmp3, tmp4, |
3540 &runtime); | 3684 &runtime); |
3541 | 3685 |
3542 // Compare flat one-byte strings. Returns when done. | 3686 // Compare flat one-byte strings. Returns when done. |
3543 if (equality) { | 3687 if (equality) { |
3544 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, tmp2, | 3688 StringHelper::GenerateFlatOneByteStringEquals(masm, left, right, tmp1, |
3545 tmp3); | 3689 tmp2); |
3546 } else { | 3690 } else { |
3547 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, | 3691 StringHelper::GenerateCompareFlatOneByteStrings(masm, left, right, tmp1, |
3548 tmp2, tmp3, tmp4); | 3692 tmp2, tmp3); |
3549 } | 3693 } |
3550 | 3694 |
3551 // Handle more complex cases in runtime. | 3695 // Handle more complex cases in runtime. |
3552 __ bind(&runtime); | 3696 __ bind(&runtime); |
3553 __ Push(left, right); | 3697 __ Push(left, right); |
3554 if (equality) { | 3698 if (equality) { |
3555 __ TailCallRuntime(Runtime::kStringEquals, 2, 1); | 3699 __ TailCallRuntime(Runtime::kStringEquals, 2, 1); |
3556 } else { | 3700 } else { |
3557 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); | 3701 __ TailCallRuntime(Runtime::kStringCompare, 2, 1); |
3558 } | 3702 } |
3559 | 3703 |
3560 __ bind(&miss); | 3704 __ bind(&miss); |
3561 GenerateMiss(masm); | 3705 GenerateMiss(masm); |
3562 } | 3706 } |
3563 | 3707 |
3564 | 3708 |
3565 void CompareICStub::GenerateObjects(MacroAssembler* masm) { | 3709 void CompareICStub::GenerateObjects(MacroAssembler* masm) { |
3566 DCHECK(state() == CompareICState::OBJECT); | 3710 DCHECK(state() == CompareICState::OBJECT); |
3567 Label miss; | 3711 Label miss; |
3568 __ and_(r2, r1, Operand(r0)); | 3712 __ and_(r5, r4, r3); |
3569 __ JumpIfSmi(r2, &miss); | 3713 __ JumpIfSmi(r5, &miss); |
3570 | 3714 |
3571 __ CompareObjectType(r0, r2, r2, JS_OBJECT_TYPE); | 3715 __ CompareObjectType(r3, r5, r5, JS_OBJECT_TYPE); |
3572 __ b(ne, &miss); | 3716 __ bne(&miss); |
3573 __ CompareObjectType(r1, r2, r2, JS_OBJECT_TYPE); | 3717 __ CompareObjectType(r4, r5, r5, JS_OBJECT_TYPE); |
3574 __ b(ne, &miss); | 3718 __ bne(&miss); |
3575 | 3719 |
3576 DCHECK(GetCondition() == eq); | 3720 DCHECK(GetCondition() == eq); |
3577 __ sub(r0, r0, Operand(r1)); | 3721 __ sub(r3, r3, r4); |
3578 __ Ret(); | 3722 __ Ret(); |
3579 | 3723 |
3580 __ bind(&miss); | 3724 __ bind(&miss); |
3581 GenerateMiss(masm); | 3725 GenerateMiss(masm); |
3582 } | 3726 } |
3583 | 3727 |
3584 | 3728 |
3585 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) { | 3729 void CompareICStub::GenerateKnownObjects(MacroAssembler* masm) { |
3586 Label miss; | 3730 Label miss; |
3587 __ and_(r2, r1, Operand(r0)); | 3731 __ and_(r5, r4, r3); |
3588 __ JumpIfSmi(r2, &miss); | 3732 __ JumpIfSmi(r5, &miss); |
3589 __ ldr(r2, FieldMemOperand(r0, HeapObject::kMapOffset)); | 3733 __ LoadP(r5, FieldMemOperand(r3, HeapObject::kMapOffset)); |
3590 __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); | 3734 __ LoadP(r6, FieldMemOperand(r4, HeapObject::kMapOffset)); |
3591 __ cmp(r2, Operand(known_map_)); | 3735 __ Cmpi(r5, Operand(known_map_), r0); |
3592 __ b(ne, &miss); | 3736 __ bne(&miss); |
3593 __ cmp(r3, Operand(known_map_)); | 3737 __ Cmpi(r6, Operand(known_map_), r0); |
3594 __ b(ne, &miss); | 3738 __ bne(&miss); |
3595 | 3739 |
3596 __ sub(r0, r0, Operand(r1)); | 3740 __ sub(r3, r3, r4); |
3597 __ Ret(); | 3741 __ Ret(); |
3598 | 3742 |
3599 __ bind(&miss); | 3743 __ bind(&miss); |
3600 GenerateMiss(masm); | 3744 GenerateMiss(masm); |
3601 } | 3745 } |
3602 | 3746 |
3603 | 3747 |
3604 void CompareICStub::GenerateMiss(MacroAssembler* masm) { | 3748 void CompareICStub::GenerateMiss(MacroAssembler* masm) { |
3605 { | 3749 { |
3606 // Call the runtime system in a fresh internal frame. | 3750 // Call the runtime system in a fresh internal frame. |
3607 ExternalReference miss = | 3751 ExternalReference miss = |
3608 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate()); | 3752 ExternalReference(IC_Utility(IC::kCompareIC_Miss), isolate()); |
3609 | 3753 |
3610 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); | 3754 FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); |
3611 __ Push(r1, r0); | 3755 __ Push(r4, r3); |
3612 __ Push(lr, r1, r0); | 3756 __ Push(r4, r3); |
3613 __ mov(ip, Operand(Smi::FromInt(op()))); | 3757 __ LoadSmiLiteral(r0, Smi::FromInt(op())); |
3614 __ push(ip); | 3758 __ push(r0); |
3615 __ CallExternalReference(miss, 3); | 3759 __ CallExternalReference(miss, 3); |
3616 // Compute the entry point of the rewritten stub. | 3760 // Compute the entry point of the rewritten stub. |
3617 __ add(r2, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); | 3761 __ addi(r5, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); |
3618 // Restore registers. | 3762 // Restore registers. |
3619 __ pop(lr); | 3763 __ Pop(r4, r3); |
3620 __ Pop(r1, r0); | |
3621 } | 3764 } |
3622 | 3765 |
3623 __ Jump(r2); | 3766 __ JumpToJSEntry(r5); |
3624 } | 3767 } |
3625 | 3768 |
3626 | 3769 |
3770 // This stub is paired with DirectCEntryStub::GenerateCall | |
3627 void DirectCEntryStub::Generate(MacroAssembler* masm) { | 3771 void DirectCEntryStub::Generate(MacroAssembler* masm) { |
3628 // Place the return address on the stack, making the call | 3772 // Place the return address on the stack, making the call |
3629 // GC safe. The RegExp backend also relies on this. | 3773 // GC safe. The RegExp backend also relies on this. |
3630 __ str(lr, MemOperand(sp, 0)); | 3774 __ mflr(r0); |
3631 __ blx(ip); // Call the C++ function. | 3775 __ StoreP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); |
3632 __ VFPEnsureFPSCRState(r2); | 3776 __ Call(ip); // Call the C++ function. |
3633 __ ldr(pc, MemOperand(sp, 0)); | 3777 __ LoadP(r0, MemOperand(sp, kStackFrameExtraParamSlot * kPointerSize)); |
3778 __ mtlr(r0); | |
3779 __ blr(); | |
3634 } | 3780 } |
3635 | 3781 |
3636 | 3782 |
3637 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, | 3783 void DirectCEntryStub::GenerateCall(MacroAssembler* masm, Register target) { |
3638 Register target) { | 3784 #if ABI_USES_FUNCTION_DESCRIPTORS && !defined(USE_SIMULATOR) |
3639 intptr_t code = | 3785 // Native AIX/PPC64 Linux use a function descriptor. |
3640 reinterpret_cast<intptr_t>(GetCode().location()); | 3786 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(target, kPointerSize)); |
3787 __ LoadP(ip, MemOperand(target, 0)); // Instruction address | |
3788 #else | |
3789 // ip needs to be set for DirectCEentryStub::Generate, and also | |
3790 // for ABI_TOC_ADDRESSABILITY_VIA_IP. | |
3641 __ Move(ip, target); | 3791 __ Move(ip, target); |
3642 __ mov(lr, Operand(code, RelocInfo::CODE_TARGET)); | 3792 #endif |
3643 __ blx(lr); // Call the stub. | 3793 |
3794 intptr_t code = reinterpret_cast<intptr_t>(GetCode().location()); | |
3795 __ mov(r0, Operand(code, RelocInfo::CODE_TARGET)); | |
3796 __ Call(r0); // Call the stub. | |
3644 } | 3797 } |
3645 | 3798 |
3646 | 3799 |
3647 void NameDictionaryLookupStub::GenerateNegativeLookup(MacroAssembler* masm, | 3800 void NameDictionaryLookupStub::GenerateNegativeLookup( |
3648 Label* miss, | 3801 MacroAssembler* masm, Label* miss, Label* done, Register receiver, |
3649 Label* done, | 3802 Register properties, Handle<Name> name, Register scratch0) { |
3650 Register receiver, | |
3651 Register properties, | |
3652 Handle<Name> name, | |
3653 Register scratch0) { | |
3654 DCHECK(name->IsUniqueName()); | 3803 DCHECK(name->IsUniqueName()); |
3655 // If names of slots in range from 1 to kProbes - 1 for the hash value are | 3804 // If names of slots in range from 1 to kProbes - 1 for the hash value are |
3656 // not equal to the name and kProbes-th slot is not used (its name is the | 3805 // not equal to the name and kProbes-th slot is not used (its name is the |
3657 // undefined value), it guarantees the hash table doesn't contain the | 3806 // undefined value), it guarantees the hash table doesn't contain the |
3658 // property. It's true even if some slots represent deleted properties | 3807 // property. It's true even if some slots represent deleted properties |
3659 // (their names are the hole value). | 3808 // (their names are the hole value). |
3660 for (int i = 0; i < kInlinedProbes; i++) { | 3809 for (int i = 0; i < kInlinedProbes; i++) { |
3661 // scratch0 points to properties hash. | 3810 // scratch0 points to properties hash. |
3662 // Compute the masked index: (hash + i + i * i) & mask. | 3811 // Compute the masked index: (hash + i + i * i) & mask. |
3663 Register index = scratch0; | 3812 Register index = scratch0; |
3664 // Capacity is smi 2^n. | 3813 // Capacity is smi 2^n. |
3665 __ ldr(index, FieldMemOperand(properties, kCapacityOffset)); | 3814 __ LoadP(index, FieldMemOperand(properties, kCapacityOffset)); |
3666 __ sub(index, index, Operand(1)); | 3815 __ subi(index, index, Operand(1)); |
3667 __ and_(index, index, Operand( | 3816 __ LoadSmiLiteral( |
3668 Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i)))); | 3817 ip, Smi::FromInt(name->Hash() + NameDictionary::GetProbeOffset(i))); |
3818 __ and_(index, index, ip); | |
3669 | 3819 |
3670 // Scale the index by multiplying by the entry size. | 3820 // Scale the index by multiplying by the entry size. |
3671 DCHECK(NameDictionary::kEntrySize == 3); | 3821 DCHECK(NameDictionary::kEntrySize == 3); |
3672 __ add(index, index, Operand(index, LSL, 1)); // index *= 3. | 3822 __ ShiftLeftImm(ip, index, Operand(1)); |
3823 __ add(index, index, ip); // index *= 3. | |
3673 | 3824 |
3674 Register entity_name = scratch0; | 3825 Register entity_name = scratch0; |
3675 // Having undefined at this place means the name is not contained. | 3826 // Having undefined at this place means the name is not contained. |
3676 DCHECK_EQ(kSmiTagSize, 1); | |
3677 Register tmp = properties; | 3827 Register tmp = properties; |
3678 __ add(tmp, properties, Operand(index, LSL, 1)); | 3828 __ SmiToPtrArrayOffset(ip, index); |
3679 __ ldr(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); | 3829 __ add(tmp, properties, ip); |
3830 __ LoadP(entity_name, FieldMemOperand(tmp, kElementsStartOffset)); | |
3680 | 3831 |
3681 DCHECK(!tmp.is(entity_name)); | 3832 DCHECK(!tmp.is(entity_name)); |
3682 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); | 3833 __ LoadRoot(tmp, Heap::kUndefinedValueRootIndex); |
3683 __ cmp(entity_name, tmp); | 3834 __ cmp(entity_name, tmp); |
3684 __ b(eq, done); | 3835 __ beq(done); |
3685 | 3836 |
3686 // Load the hole ready for use below: | 3837 // Load the hole ready for use below: |
3687 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); | 3838 __ LoadRoot(tmp, Heap::kTheHoleValueRootIndex); |
3688 | 3839 |
3689 // Stop if found the property. | 3840 // Stop if found the property. |
3690 __ cmp(entity_name, Operand(Handle<Name>(name))); | 3841 __ Cmpi(entity_name, Operand(Handle<Name>(name)), r0); |
3691 __ b(eq, miss); | 3842 __ beq(miss); |
3692 | 3843 |
3693 Label good; | 3844 Label good; |
3694 __ cmp(entity_name, tmp); | 3845 __ cmp(entity_name, tmp); |
3695 __ b(eq, &good); | 3846 __ beq(&good); |
3696 | 3847 |
3697 // Check if the entry name is not a unique name. | 3848 // Check if the entry name is not a unique name. |
3698 __ ldr(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); | 3849 __ LoadP(entity_name, FieldMemOperand(entity_name, HeapObject::kMapOffset)); |
3699 __ ldrb(entity_name, | 3850 __ lbz(entity_name, FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); |
3700 FieldMemOperand(entity_name, Map::kInstanceTypeOffset)); | 3851 __ JumpIfNotUniqueNameInstanceType(entity_name, miss); |
3701 __ JumpIfNotUniqueName(entity_name, miss); | |
3702 __ bind(&good); | 3852 __ bind(&good); |
3703 | 3853 |
3704 // Restore the properties. | 3854 // Restore the properties. |
3705 __ ldr(properties, | 3855 __ LoadP(properties, |
3706 FieldMemOperand(receiver, JSObject::kPropertiesOffset)); | 3856 FieldMemOperand(receiver, JSObject::kPropertiesOffset)); |
3707 } | 3857 } |
3708 | 3858 |
3709 const int spill_mask = | 3859 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() | |
3710 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | r3.bit() | | 3860 r5.bit() | r4.bit() | r3.bit()); |
3711 r2.bit() | r1.bit() | r0.bit()); | |
3712 | 3861 |
3713 __ stm(db_w, sp, spill_mask); | 3862 __ mflr(r0); |
3714 __ ldr(r0, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); | 3863 __ MultiPush(spill_mask); |
3715 __ mov(r1, Operand(Handle<Name>(name))); | 3864 |
3865 __ LoadP(r3, FieldMemOperand(receiver, JSObject::kPropertiesOffset)); | |
3866 __ mov(r4, Operand(Handle<Name>(name))); | |
3716 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); | 3867 NameDictionaryLookupStub stub(masm->isolate(), NEGATIVE_LOOKUP); |
3717 __ CallStub(&stub); | 3868 __ CallStub(&stub); |
3718 __ cmp(r0, Operand::Zero()); | 3869 __ cmpi(r3, Operand::Zero()); |
3719 __ ldm(ia_w, sp, spill_mask); | |
3720 | 3870 |
3721 __ b(eq, done); | 3871 __ MultiPop(spill_mask); // MultiPop does not touch condition flags |
3722 __ b(ne, miss); | 3872 __ mtlr(r0); |
3873 | |
3874 __ beq(done); | |
3875 __ bne(miss); | |
3723 } | 3876 } |
3724 | 3877 |
3725 | 3878 |
3726 // Probe the name dictionary in the |elements| register. Jump to the | 3879 // Probe the name dictionary in the |elements| register. Jump to the |
3727 // |done| label if a property with the given name is found. Jump to | 3880 // |done| label if a property with the given name is found. Jump to |
3728 // the |miss| label otherwise. | 3881 // the |miss| label otherwise. |
3729 // If lookup was successful |scratch2| will be equal to elements + 4 * index. | 3882 // If lookup was successful |scratch2| will be equal to elements + 4 * index. |
3730 void NameDictionaryLookupStub::GeneratePositiveLookup(MacroAssembler* masm, | 3883 void NameDictionaryLookupStub::GeneratePositiveLookup( |
3731 Label* miss, | 3884 MacroAssembler* masm, Label* miss, Label* done, Register elements, |
3732 Label* done, | 3885 Register name, Register scratch1, Register scratch2) { |
3733 Register elements, | |
3734 Register name, | |
3735 Register scratch1, | |
3736 Register scratch2) { | |
3737 DCHECK(!elements.is(scratch1)); | 3886 DCHECK(!elements.is(scratch1)); |
3738 DCHECK(!elements.is(scratch2)); | 3887 DCHECK(!elements.is(scratch2)); |
3739 DCHECK(!name.is(scratch1)); | 3888 DCHECK(!name.is(scratch1)); |
3740 DCHECK(!name.is(scratch2)); | 3889 DCHECK(!name.is(scratch2)); |
3741 | 3890 |
3742 __ AssertName(name); | 3891 __ AssertName(name); |
3743 | 3892 |
3744 // Compute the capacity mask. | 3893 // Compute the capacity mask. |
3745 __ ldr(scratch1, FieldMemOperand(elements, kCapacityOffset)); | 3894 __ LoadP(scratch1, FieldMemOperand(elements, kCapacityOffset)); |
3746 __ SmiUntag(scratch1); | 3895 __ SmiUntag(scratch1); // convert smi to int |
3747 __ sub(scratch1, scratch1, Operand(1)); | 3896 __ subi(scratch1, scratch1, Operand(1)); |
3748 | 3897 |
3749 // Generate an unrolled loop that performs a few probes before | 3898 // Generate an unrolled loop that performs a few probes before |
3750 // giving up. Measurements done on Gmail indicate that 2 probes | 3899 // giving up. Measurements done on Gmail indicate that 2 probes |
3751 // cover ~93% of loads from dictionaries. | 3900 // cover ~93% of loads from dictionaries. |
3752 for (int i = 0; i < kInlinedProbes; i++) { | 3901 for (int i = 0; i < kInlinedProbes; i++) { |
3753 // Compute the masked index: (hash + i + i * i) & mask. | 3902 // Compute the masked index: (hash + i + i * i) & mask. |
3754 __ ldr(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); | 3903 __ lwz(scratch2, FieldMemOperand(name, Name::kHashFieldOffset)); |
3755 if (i > 0) { | 3904 if (i > 0) { |
3756 // Add the probe offset (i + i * i) left shifted to avoid right shifting | 3905 // Add the probe offset (i + i * i) left shifted to avoid right shifting |
3757 // the hash in a separate instruction. The value hash + i + i * i is right | 3906 // the hash in a separate instruction. The value hash + i + i * i is right |
3758 // shifted in the following and instruction. | 3907 // shifted in the following and instruction. |
3759 DCHECK(NameDictionary::GetProbeOffset(i) < | 3908 DCHECK(NameDictionary::GetProbeOffset(i) < |
3760 1 << (32 - Name::kHashFieldOffset)); | 3909 1 << (32 - Name::kHashFieldOffset)); |
3761 __ add(scratch2, scratch2, Operand( | 3910 __ addi(scratch2, scratch2, |
3762 NameDictionary::GetProbeOffset(i) << Name::kHashShift)); | 3911 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift)); |
3763 } | 3912 } |
3764 __ and_(scratch2, scratch1, Operand(scratch2, LSR, Name::kHashShift)); | 3913 __ srwi(scratch2, scratch2, Operand(Name::kHashShift)); |
3914 __ and_(scratch2, scratch1, scratch2); | |
3765 | 3915 |
3766 // Scale the index by multiplying by the element size. | 3916 // Scale the index by multiplying by the element size. |
3767 DCHECK(NameDictionary::kEntrySize == 3); | 3917 DCHECK(NameDictionary::kEntrySize == 3); |
3768 // scratch2 = scratch2 * 3. | 3918 // scratch2 = scratch2 * 3. |
3769 __ add(scratch2, scratch2, Operand(scratch2, LSL, 1)); | 3919 __ ShiftLeftImm(ip, scratch2, Operand(1)); |
3920 __ add(scratch2, scratch2, ip); | |
3770 | 3921 |
3771 // Check if the key is identical to the name. | 3922 // Check if the key is identical to the name. |
3772 __ add(scratch2, elements, Operand(scratch2, LSL, 2)); | 3923 __ ShiftLeftImm(ip, scratch2, Operand(kPointerSizeLog2)); |
3773 __ ldr(ip, FieldMemOperand(scratch2, kElementsStartOffset)); | 3924 __ add(scratch2, elements, ip); |
3774 __ cmp(name, Operand(ip)); | 3925 __ LoadP(ip, FieldMemOperand(scratch2, kElementsStartOffset)); |
3775 __ b(eq, done); | 3926 __ cmp(name, ip); |
3927 __ beq(done); | |
3776 } | 3928 } |
3777 | 3929 |
3778 const int spill_mask = | 3930 const int spill_mask = (r0.bit() | r9.bit() | r8.bit() | r7.bit() | r6.bit() | |
3779 (lr.bit() | r6.bit() | r5.bit() | r4.bit() | | 3931 r5.bit() | r4.bit() | r3.bit()) & |
3780 r3.bit() | r2.bit() | r1.bit() | r0.bit()) & | 3932 ~(scratch1.bit() | scratch2.bit()); |
3781 ~(scratch1.bit() | scratch2.bit()); | |
3782 | 3933 |
3783 __ stm(db_w, sp, spill_mask); | 3934 __ mflr(r0); |
3784 if (name.is(r0)) { | 3935 __ MultiPush(spill_mask); |
3785 DCHECK(!elements.is(r1)); | 3936 if (name.is(r3)) { |
3786 __ Move(r1, name); | 3937 DCHECK(!elements.is(r4)); |
3787 __ Move(r0, elements); | 3938 __ mr(r4, name); |
3939 __ mr(r3, elements); | |
3788 } else { | 3940 } else { |
3789 __ Move(r0, elements); | 3941 __ mr(r3, elements); |
3790 __ Move(r1, name); | 3942 __ mr(r4, name); |
3791 } | 3943 } |
3792 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); | 3944 NameDictionaryLookupStub stub(masm->isolate(), POSITIVE_LOOKUP); |
3793 __ CallStub(&stub); | 3945 __ CallStub(&stub); |
3794 __ cmp(r0, Operand::Zero()); | 3946 __ cmpi(r3, Operand::Zero()); |
3795 __ mov(scratch2, Operand(r2)); | 3947 __ mr(scratch2, r5); |
3796 __ ldm(ia_w, sp, spill_mask); | 3948 __ MultiPop(spill_mask); |
3949 __ mtlr(r0); | |
3797 | 3950 |
3798 __ b(ne, done); | 3951 __ bne(done); |
3799 __ b(eq, miss); | 3952 __ beq(miss); |
3800 } | 3953 } |
3801 | 3954 |
3802 | 3955 |
3803 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { | 3956 void NameDictionaryLookupStub::Generate(MacroAssembler* masm) { |
3804 // This stub overrides SometimesSetsUpAFrame() to return false. That means | 3957 // This stub overrides SometimesSetsUpAFrame() to return false. That means |
3805 // we cannot call anything that could cause a GC from this stub. | 3958 // we cannot call anything that could cause a GC from this stub. |
3806 // Registers: | 3959 // Registers: |
3807 // result: NameDictionary to probe | 3960 // result: NameDictionary to probe |
3808 // r1: key | 3961 // r4: key |
3809 // dictionary: NameDictionary to probe. | 3962 // dictionary: NameDictionary to probe. |
3810 // index: will hold an index of entry if lookup is successful. | 3963 // index: will hold an index of entry if lookup is successful. |
3811 // might alias with result_. | 3964 // might alias with result_. |
3812 // Returns: | 3965 // Returns: |
3813 // result_ is zero if lookup failed, non zero otherwise. | 3966 // result_ is zero if lookup failed, non zero otherwise. |
3814 | 3967 |
3815 Register result = r0; | 3968 Register result = r3; |
3816 Register dictionary = r0; | 3969 Register dictionary = r3; |
3817 Register key = r1; | 3970 Register key = r4; |
3818 Register index = r2; | 3971 Register index = r5; |
3819 Register mask = r3; | 3972 Register mask = r6; |
3820 Register hash = r4; | 3973 Register hash = r7; |
3821 Register undefined = r5; | 3974 Register undefined = r8; |
3822 Register entry_key = r6; | 3975 Register entry_key = r9; |
3976 Register scratch = r9; | |
3823 | 3977 |
3824 Label in_dictionary, maybe_in_dictionary, not_in_dictionary; | 3978 Label in_dictionary, maybe_in_dictionary, not_in_dictionary; |
3825 | 3979 |
3826 __ ldr(mask, FieldMemOperand(dictionary, kCapacityOffset)); | 3980 __ LoadP(mask, FieldMemOperand(dictionary, kCapacityOffset)); |
3827 __ SmiUntag(mask); | 3981 __ SmiUntag(mask); |
3828 __ sub(mask, mask, Operand(1)); | 3982 __ subi(mask, mask, Operand(1)); |
3829 | 3983 |
3830 __ ldr(hash, FieldMemOperand(key, Name::kHashFieldOffset)); | 3984 __ lwz(hash, FieldMemOperand(key, Name::kHashFieldOffset)); |
3831 | 3985 |
3832 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); | 3986 __ LoadRoot(undefined, Heap::kUndefinedValueRootIndex); |
3833 | 3987 |
3834 for (int i = kInlinedProbes; i < kTotalProbes; i++) { | 3988 for (int i = kInlinedProbes; i < kTotalProbes; i++) { |
3835 // Compute the masked index: (hash + i + i * i) & mask. | 3989 // Compute the masked index: (hash + i + i * i) & mask. |
3836 // Capacity is smi 2^n. | 3990 // Capacity is smi 2^n. |
3837 if (i > 0) { | 3991 if (i > 0) { |
3838 // Add the probe offset (i + i * i) left shifted to avoid right shifting | 3992 // Add the probe offset (i + i * i) left shifted to avoid right shifting |
3839 // the hash in a separate instruction. The value hash + i + i * i is right | 3993 // the hash in a separate instruction. The value hash + i + i * i is right |
3840 // shifted in the following and instruction. | 3994 // shifted in the following and instruction. |
3841 DCHECK(NameDictionary::GetProbeOffset(i) < | 3995 DCHECK(NameDictionary::GetProbeOffset(i) < |
3842 1 << (32 - Name::kHashFieldOffset)); | 3996 1 << (32 - Name::kHashFieldOffset)); |
3843 __ add(index, hash, Operand( | 3997 __ addi(index, hash, |
3844 NameDictionary::GetProbeOffset(i) << Name::kHashShift)); | 3998 Operand(NameDictionary::GetProbeOffset(i) << Name::kHashShift)); |
3845 } else { | 3999 } else { |
3846 __ mov(index, Operand(hash)); | 4000 __ mr(index, hash); |
3847 } | 4001 } |
3848 __ and_(index, mask, Operand(index, LSR, Name::kHashShift)); | 4002 __ srwi(r0, index, Operand(Name::kHashShift)); |
4003 __ and_(index, mask, r0); | |
3849 | 4004 |
3850 // Scale the index by multiplying by the entry size. | 4005 // Scale the index by multiplying by the entry size. |
3851 DCHECK(NameDictionary::kEntrySize == 3); | 4006 DCHECK(NameDictionary::kEntrySize == 3); |
3852 __ add(index, index, Operand(index, LSL, 1)); // index *= 3. | 4007 __ ShiftLeftImm(scratch, index, Operand(1)); |
4008 __ add(index, index, scratch); // index *= 3. | |
3853 | 4009 |
3854 DCHECK_EQ(kSmiTagSize, 1); | 4010 DCHECK_EQ(kSmiTagSize, 1); |
3855 __ add(index, dictionary, Operand(index, LSL, 2)); | 4011 __ ShiftLeftImm(scratch, index, Operand(kPointerSizeLog2)); |
3856 __ ldr(entry_key, FieldMemOperand(index, kElementsStartOffset)); | 4012 __ add(index, dictionary, scratch); |
4013 __ LoadP(entry_key, FieldMemOperand(index, kElementsStartOffset)); | |
3857 | 4014 |
3858 // Having undefined at this place means the name is not contained. | 4015 // Having undefined at this place means the name is not contained. |
3859 __ cmp(entry_key, Operand(undefined)); | 4016 __ cmp(entry_key, undefined); |
3860 __ b(eq, ¬_in_dictionary); | 4017 __ beq(¬_in_dictionary); |
3861 | 4018 |
3862 // Stop if found the property. | 4019 // Stop if found the property. |
3863 __ cmp(entry_key, Operand(key)); | 4020 __ cmp(entry_key, key); |
3864 __ b(eq, &in_dictionary); | 4021 __ beq(&in_dictionary); |
3865 | 4022 |
3866 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { | 4023 if (i != kTotalProbes - 1 && mode() == NEGATIVE_LOOKUP) { |
3867 // Check if the entry name is not a unique name. | 4024 // Check if the entry name is not a unique name. |
3868 __ ldr(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); | 4025 __ LoadP(entry_key, FieldMemOperand(entry_key, HeapObject::kMapOffset)); |
3869 __ ldrb(entry_key, | 4026 __ lbz(entry_key, FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); |
3870 FieldMemOperand(entry_key, Map::kInstanceTypeOffset)); | 4027 __ JumpIfNotUniqueNameInstanceType(entry_key, &maybe_in_dictionary); |
3871 __ JumpIfNotUniqueName(entry_key, &maybe_in_dictionary); | |
3872 } | 4028 } |
3873 } | 4029 } |
3874 | 4030 |
3875 __ bind(&maybe_in_dictionary); | 4031 __ bind(&maybe_in_dictionary); |
3876 // If we are doing negative lookup then probing failure should be | 4032 // If we are doing negative lookup then probing failure should be |
3877 // treated as a lookup success. For positive lookup probing failure | 4033 // treated as a lookup success. For positive lookup probing failure |
3878 // should be treated as lookup failure. | 4034 // should be treated as lookup failure. |
3879 if (mode() == POSITIVE_LOOKUP) { | 4035 if (mode() == POSITIVE_LOOKUP) { |
3880 __ mov(result, Operand::Zero()); | 4036 __ li(result, Operand::Zero()); |
3881 __ Ret(); | 4037 __ Ret(); |
3882 } | 4038 } |
3883 | 4039 |
3884 __ bind(&in_dictionary); | 4040 __ bind(&in_dictionary); |
3885 __ mov(result, Operand(1)); | 4041 __ li(result, Operand(1)); |
3886 __ Ret(); | 4042 __ Ret(); |
3887 | 4043 |
3888 __ bind(¬_in_dictionary); | 4044 __ bind(¬_in_dictionary); |
3889 __ mov(result, Operand::Zero()); | 4045 __ li(result, Operand::Zero()); |
3890 __ Ret(); | 4046 __ Ret(); |
3891 } | 4047 } |
3892 | 4048 |
3893 | 4049 |
3894 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( | 4050 void StoreBufferOverflowStub::GenerateFixedRegStubsAheadOfTime( |
3895 Isolate* isolate) { | 4051 Isolate* isolate) { |
3896 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); | 4052 StoreBufferOverflowStub stub1(isolate, kDontSaveFPRegs); |
3897 stub1.GetCode(); | 4053 stub1.GetCode(); |
3898 // Hydrogen code stubs need stub2 at snapshot time. | 4054 // Hydrogen code stubs need stub2 at snapshot time. |
3899 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); | 4055 StoreBufferOverflowStub stub2(isolate, kSaveFPRegs); |
3900 stub2.GetCode(); | 4056 stub2.GetCode(); |
3901 } | 4057 } |
3902 | 4058 |
3903 | 4059 |
3904 // Takes the input in 3 registers: address_ value_ and object_. A pointer to | 4060 // Takes the input in 3 registers: address_ value_ and object_. A pointer to |
3905 // the value has just been written into the object, now this stub makes sure | 4061 // the value has just been written into the object, now this stub makes sure |
3906 // we keep the GC informed. The word in the object where the value has been | 4062 // we keep the GC informed. The word in the object where the value has been |
3907 // written is in the address register. | 4063 // written is in the address register. |
3908 void RecordWriteStub::Generate(MacroAssembler* masm) { | 4064 void RecordWriteStub::Generate(MacroAssembler* masm) { |
3909 Label skip_to_incremental_noncompacting; | 4065 Label skip_to_incremental_noncompacting; |
3910 Label skip_to_incremental_compacting; | 4066 Label skip_to_incremental_compacting; |
3911 | 4067 |
3912 // The first two instructions are generated with labels so as to get the | 4068 // The first two branch instructions are generated with labels so as to |
3913 // offset fixed up correctly by the bind(Label*) call. We patch it back and | 4069 // get the offset fixed up correctly by the bind(Label*) call. We patch |
3914 // forth between a compare instructions (a nop in this position) and the | 4070 // it back and forth between branch condition True and False |
3915 // real branch when we start and stop incremental heap marking. | 4071 // when we start and stop incremental heap marking. |
3916 // See RecordWriteStub::Patch for details. | 4072 // See RecordWriteStub::Patch for details. |
3917 { | 4073 |
3918 // Block literal pool emission, as the position of these two instructions | 4074 // Clear the bit, branch on True for NOP action initially |
3919 // is assumed by the patching code. | 4075 __ crclr(Assembler::encode_crbit(cr2, CR_LT)); |
3920 Assembler::BlockConstPoolScope block_const_pool(masm); | 4076 __ blt(&skip_to_incremental_noncompacting, cr2); |
3921 __ b(&skip_to_incremental_noncompacting); | 4077 __ blt(&skip_to_incremental_compacting, cr2); |
3922 __ b(&skip_to_incremental_compacting); | |
3923 } | |
3924 | 4078 |
3925 if (remembered_set_action() == EMIT_REMEMBERED_SET) { | 4079 if (remembered_set_action() == EMIT_REMEMBERED_SET) { |
3926 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), | 4080 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), |
3927 MacroAssembler::kReturnAtEnd); | 4081 MacroAssembler::kReturnAtEnd); |
3928 } | 4082 } |
3929 __ Ret(); | 4083 __ Ret(); |
3930 | 4084 |
3931 __ bind(&skip_to_incremental_noncompacting); | 4085 __ bind(&skip_to_incremental_noncompacting); |
3932 GenerateIncremental(masm, INCREMENTAL); | 4086 GenerateIncremental(masm, INCREMENTAL); |
3933 | 4087 |
3934 __ bind(&skip_to_incremental_compacting); | 4088 __ bind(&skip_to_incremental_compacting); |
3935 GenerateIncremental(masm, INCREMENTAL_COMPACTION); | 4089 GenerateIncremental(masm, INCREMENTAL_COMPACTION); |
3936 | 4090 |
3937 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. | 4091 // Initial mode of the stub is expected to be STORE_BUFFER_ONLY. |
3938 // Will be checked in IncrementalMarking::ActivateGeneratedStub. | 4092 // Will be checked in IncrementalMarking::ActivateGeneratedStub. |
3939 DCHECK(Assembler::GetBranchOffset(masm->instr_at(0)) < (1 << 12)); | 4093 // patching not required on PPC as the initial path is effectively NOP |
3940 DCHECK(Assembler::GetBranchOffset(masm->instr_at(4)) < (1 << 12)); | |
3941 PatchBranchIntoNop(masm, 0); | |
3942 PatchBranchIntoNop(masm, Assembler::kInstrSize); | |
3943 } | 4094 } |
3944 | 4095 |
3945 | 4096 |
3946 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { | 4097 void RecordWriteStub::GenerateIncremental(MacroAssembler* masm, Mode mode) { |
3947 regs_.Save(masm); | 4098 regs_.Save(masm); |
3948 | 4099 |
3949 if (remembered_set_action() == EMIT_REMEMBERED_SET) { | 4100 if (remembered_set_action() == EMIT_REMEMBERED_SET) { |
3950 Label dont_need_remembered_set; | 4101 Label dont_need_remembered_set; |
3951 | 4102 |
3952 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); | 4103 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0)); |
3953 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. | 4104 __ JumpIfNotInNewSpace(regs_.scratch0(), // Value. |
3954 regs_.scratch0(), | 4105 regs_.scratch0(), &dont_need_remembered_set); |
3955 &dont_need_remembered_set); | |
3956 | 4106 |
3957 __ CheckPageFlag(regs_.object(), | 4107 __ CheckPageFlag(regs_.object(), regs_.scratch0(), |
3958 regs_.scratch0(), | 4108 1 << MemoryChunk::SCAN_ON_SCAVENGE, ne, |
3959 1 << MemoryChunk::SCAN_ON_SCAVENGE, | |
3960 ne, | |
3961 &dont_need_remembered_set); | 4109 &dont_need_remembered_set); |
3962 | 4110 |
3963 // First notify the incremental marker if necessary, then update the | 4111 // First notify the incremental marker if necessary, then update the |
3964 // remembered set. | 4112 // remembered set. |
3965 CheckNeedsToInformIncrementalMarker( | 4113 CheckNeedsToInformIncrementalMarker( |
3966 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); | 4114 masm, kUpdateRememberedSetOnNoNeedToInformIncrementalMarker, mode); |
3967 InformIncrementalMarker(masm); | 4115 InformIncrementalMarker(masm); |
3968 regs_.Restore(masm); | 4116 regs_.Restore(masm); |
3969 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), | 4117 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), |
3970 MacroAssembler::kReturnAtEnd); | 4118 MacroAssembler::kReturnAtEnd); |
3971 | 4119 |
3972 __ bind(&dont_need_remembered_set); | 4120 __ bind(&dont_need_remembered_set); |
3973 } | 4121 } |
3974 | 4122 |
3975 CheckNeedsToInformIncrementalMarker( | 4123 CheckNeedsToInformIncrementalMarker( |
3976 masm, kReturnOnNoNeedToInformIncrementalMarker, mode); | 4124 masm, kReturnOnNoNeedToInformIncrementalMarker, mode); |
3977 InformIncrementalMarker(masm); | 4125 InformIncrementalMarker(masm); |
3978 regs_.Restore(masm); | 4126 regs_.Restore(masm); |
3979 __ Ret(); | 4127 __ Ret(); |
3980 } | 4128 } |
3981 | 4129 |
3982 | 4130 |
3983 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { | 4131 void RecordWriteStub::InformIncrementalMarker(MacroAssembler* masm) { |
3984 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); | 4132 regs_.SaveCallerSaveRegisters(masm, save_fp_regs_mode()); |
3985 int argument_count = 3; | 4133 int argument_count = 3; |
3986 __ PrepareCallCFunction(argument_count, regs_.scratch0()); | 4134 __ PrepareCallCFunction(argument_count, regs_.scratch0()); |
3987 Register address = | 4135 Register address = |
3988 r0.is(regs_.address()) ? regs_.scratch0() : regs_.address(); | 4136 r3.is(regs_.address()) ? regs_.scratch0() : regs_.address(); |
3989 DCHECK(!address.is(regs_.object())); | 4137 DCHECK(!address.is(regs_.object())); |
3990 DCHECK(!address.is(r0)); | 4138 DCHECK(!address.is(r3)); |
3991 __ Move(address, regs_.address()); | 4139 __ mr(address, regs_.address()); |
3992 __ Move(r0, regs_.object()); | 4140 __ mr(r3, regs_.object()); |
3993 __ Move(r1, address); | 4141 __ mr(r4, address); |
3994 __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); | 4142 __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); |
3995 | 4143 |
3996 AllowExternalCallThatCantCauseGC scope(masm); | 4144 AllowExternalCallThatCantCauseGC scope(masm); |
3997 __ CallCFunction( | 4145 __ CallCFunction( |
3998 ExternalReference::incremental_marking_record_write_function(isolate()), | 4146 ExternalReference::incremental_marking_record_write_function(isolate()), |
3999 argument_count); | 4147 argument_count); |
4000 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); | 4148 regs_.RestoreCallerSaveRegisters(masm, save_fp_regs_mode()); |
4001 } | 4149 } |
4002 | 4150 |
4003 | 4151 |
4004 void RecordWriteStub::CheckNeedsToInformIncrementalMarker( | 4152 void RecordWriteStub::CheckNeedsToInformIncrementalMarker( |
4005 MacroAssembler* masm, | 4153 MacroAssembler* masm, OnNoNeedToInformIncrementalMarker on_no_need, |
4006 OnNoNeedToInformIncrementalMarker on_no_need, | |
4007 Mode mode) { | 4154 Mode mode) { |
4008 Label on_black; | 4155 Label on_black; |
4009 Label need_incremental; | 4156 Label need_incremental; |
4010 Label need_incremental_pop_scratch; | 4157 Label need_incremental_pop_scratch; |
4011 | 4158 |
4012 __ and_(regs_.scratch0(), regs_.object(), Operand(~Page::kPageAlignmentMask)); | 4159 DCHECK((~Page::kPageAlignmentMask & 0xffff) == 0); |
4013 __ ldr(regs_.scratch1(), | 4160 __ lis(r0, Operand((~Page::kPageAlignmentMask >> 16))); |
4014 MemOperand(regs_.scratch0(), | 4161 __ and_(regs_.scratch0(), regs_.object(), r0); |
4015 MemoryChunk::kWriteBarrierCounterOffset)); | 4162 __ LoadP( |
4016 __ sub(regs_.scratch1(), regs_.scratch1(), Operand(1), SetCC); | 4163 regs_.scratch1(), |
4017 __ str(regs_.scratch1(), | 4164 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); |
4018 MemOperand(regs_.scratch0(), | 4165 __ subi(regs_.scratch1(), regs_.scratch1(), Operand(1)); |
4019 MemoryChunk::kWriteBarrierCounterOffset)); | 4166 __ StoreP( |
4020 __ b(mi, &need_incremental); | 4167 regs_.scratch1(), |
4168 MemOperand(regs_.scratch0(), MemoryChunk::kWriteBarrierCounterOffset)); | |
4169 __ cmpi(regs_.scratch1(), Operand::Zero()); // PPC, we could do better here | |
4170 __ blt(&need_incremental); | |
4021 | 4171 |
4022 // Let's look at the color of the object: If it is not black we don't have | 4172 // Let's look at the color of the object: If it is not black we don't have |
4023 // to inform the incremental marker. | 4173 // to inform the incremental marker. |
4024 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); | 4174 __ JumpIfBlack(regs_.object(), regs_.scratch0(), regs_.scratch1(), &on_black); |
4025 | 4175 |
4026 regs_.Restore(masm); | 4176 regs_.Restore(masm); |
4027 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { | 4177 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
4028 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), | 4178 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), |
4029 MacroAssembler::kReturnAtEnd); | 4179 MacroAssembler::kReturnAtEnd); |
4030 } else { | 4180 } else { |
4031 __ Ret(); | 4181 __ Ret(); |
4032 } | 4182 } |
4033 | 4183 |
4034 __ bind(&on_black); | 4184 __ bind(&on_black); |
4035 | 4185 |
4036 // Get the value from the slot. | 4186 // Get the value from the slot. |
4037 __ ldr(regs_.scratch0(), MemOperand(regs_.address(), 0)); | 4187 __ LoadP(regs_.scratch0(), MemOperand(regs_.address(), 0)); |
4038 | 4188 |
4039 if (mode == INCREMENTAL_COMPACTION) { | 4189 if (mode == INCREMENTAL_COMPACTION) { |
4040 Label ensure_not_white; | 4190 Label ensure_not_white; |
4041 | 4191 |
4042 __ CheckPageFlag(regs_.scratch0(), // Contains value. | 4192 __ CheckPageFlag(regs_.scratch0(), // Contains value. |
4043 regs_.scratch1(), // Scratch. | 4193 regs_.scratch1(), // Scratch. |
4044 MemoryChunk::kEvacuationCandidateMask, | 4194 MemoryChunk::kEvacuationCandidateMask, eq, |
4045 eq, | |
4046 &ensure_not_white); | 4195 &ensure_not_white); |
4047 | 4196 |
4048 __ CheckPageFlag(regs_.object(), | 4197 __ CheckPageFlag(regs_.object(), |
4049 regs_.scratch1(), // Scratch. | 4198 regs_.scratch1(), // Scratch. |
4050 MemoryChunk::kSkipEvacuationSlotsRecordingMask, | 4199 MemoryChunk::kSkipEvacuationSlotsRecordingMask, eq, |
4051 eq, | |
4052 &need_incremental); | 4200 &need_incremental); |
4053 | 4201 |
4054 __ bind(&ensure_not_white); | 4202 __ bind(&ensure_not_white); |
4055 } | 4203 } |
4056 | 4204 |
4057 // We need extra registers for this, so we push the object and the address | 4205 // We need extra registers for this, so we push the object and the address |
4058 // register temporarily. | 4206 // register temporarily. |
4059 __ Push(regs_.object(), regs_.address()); | 4207 __ Push(regs_.object(), regs_.address()); |
4060 __ EnsureNotWhite(regs_.scratch0(), // The value. | 4208 __ EnsureNotWhite(regs_.scratch0(), // The value. |
4061 regs_.scratch1(), // Scratch. | 4209 regs_.scratch1(), // Scratch. |
4062 regs_.object(), // Scratch. | 4210 regs_.object(), // Scratch. |
4063 regs_.address(), // Scratch. | 4211 regs_.address(), // Scratch. |
4064 &need_incremental_pop_scratch); | 4212 &need_incremental_pop_scratch); |
4065 __ Pop(regs_.object(), regs_.address()); | 4213 __ Pop(regs_.object(), regs_.address()); |
4066 | 4214 |
4067 regs_.Restore(masm); | 4215 regs_.Restore(masm); |
4068 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { | 4216 if (on_no_need == kUpdateRememberedSetOnNoNeedToInformIncrementalMarker) { |
4069 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), | 4217 __ RememberedSetHelper(object(), address(), value(), save_fp_regs_mode(), |
4070 MacroAssembler::kReturnAtEnd); | 4218 MacroAssembler::kReturnAtEnd); |
4071 } else { | 4219 } else { |
4072 __ Ret(); | 4220 __ Ret(); |
4073 } | 4221 } |
4074 | 4222 |
4075 __ bind(&need_incremental_pop_scratch); | 4223 __ bind(&need_incremental_pop_scratch); |
4076 __ Pop(regs_.object(), regs_.address()); | 4224 __ Pop(regs_.object(), regs_.address()); |
4077 | 4225 |
4078 __ bind(&need_incremental); | 4226 __ bind(&need_incremental); |
4079 | 4227 |
4080 // Fall through when we need to inform the incremental marker. | 4228 // Fall through when we need to inform the incremental marker. |
4081 } | 4229 } |
4082 | 4230 |
4083 | 4231 |
4084 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { | 4232 void StoreArrayLiteralElementStub::Generate(MacroAssembler* masm) { |
4085 // ----------- S t a t e ------------- | 4233 // ----------- S t a t e ------------- |
4086 // -- r0 : element value to store | 4234 // -- r3 : element value to store |
4087 // -- r3 : element index as smi | 4235 // -- r6 : element index as smi |
4088 // -- sp[0] : array literal index in function as smi | 4236 // -- sp[0] : array literal index in function as smi |
4089 // -- sp[4] : array literal | 4237 // -- sp[4] : array literal |
4090 // clobbers r1, r2, r4 | 4238 // clobbers r3, r5, r7 |
4091 // ----------------------------------- | 4239 // ----------------------------------- |
4092 | 4240 |
4093 Label element_done; | 4241 Label element_done; |
4094 Label double_elements; | 4242 Label double_elements; |
4095 Label smi_element; | 4243 Label smi_element; |
4096 Label slow_elements; | 4244 Label slow_elements; |
4097 Label fast_elements; | 4245 Label fast_elements; |
4098 | 4246 |
4099 // Get array literal index, array literal and its map. | 4247 // Get array literal index, array literal and its map. |
4100 __ ldr(r4, MemOperand(sp, 0 * kPointerSize)); | 4248 __ LoadP(r7, MemOperand(sp, 0 * kPointerSize)); |
4101 __ ldr(r1, MemOperand(sp, 1 * kPointerSize)); | 4249 __ LoadP(r4, MemOperand(sp, 1 * kPointerSize)); |
4102 __ ldr(r2, FieldMemOperand(r1, JSObject::kMapOffset)); | 4250 __ LoadP(r5, FieldMemOperand(r4, JSObject::kMapOffset)); |
4103 | 4251 |
4104 __ CheckFastElements(r2, r5, &double_elements); | 4252 __ CheckFastElements(r5, r8, &double_elements); |
4105 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS | 4253 // FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS |
4106 __ JumpIfSmi(r0, &smi_element); | 4254 __ JumpIfSmi(r3, &smi_element); |
4107 __ CheckFastSmiElements(r2, r5, &fast_elements); | 4255 __ CheckFastSmiElements(r5, r8, &fast_elements); |
4108 | 4256 |
4109 // Store into the array literal requires a elements transition. Call into | 4257 // Store into the array literal requires a elements transition. Call into |
4110 // the runtime. | 4258 // the runtime. |
4111 __ bind(&slow_elements); | 4259 __ bind(&slow_elements); |
4112 // call. | 4260 // call. |
4113 __ Push(r1, r3, r0); | 4261 __ Push(r4, r6, r3); |
4114 __ ldr(r5, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); | 4262 __ LoadP(r8, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); |
4115 __ ldr(r5, FieldMemOperand(r5, JSFunction::kLiteralsOffset)); | 4263 __ LoadP(r8, FieldMemOperand(r8, JSFunction::kLiteralsOffset)); |
4116 __ Push(r5, r4); | 4264 __ Push(r8, r7); |
4117 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); | 4265 __ TailCallRuntime(Runtime::kStoreArrayLiteralElement, 5, 1); |
4118 | 4266 |
4119 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. | 4267 // Array literal has ElementsKind of FAST_*_ELEMENTS and value is an object. |
4120 __ bind(&fast_elements); | 4268 __ bind(&fast_elements); |
4121 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); | 4269 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset)); |
4122 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3)); | 4270 __ SmiToPtrArrayOffset(r9, r6); |
4123 __ add(r6, r6, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | 4271 __ add(r9, r8, r9); |
4124 __ str(r0, MemOperand(r6, 0)); | 4272 #if V8_TARGET_ARCH_PPC64 |
4273 // add due to offset alignment requirements of StorePU | |
4274 __ addi(r9, r9, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); | |
4275 __ StoreP(r3, MemOperand(r9)); | |
4276 #else | |
4277 __ StorePU(r3, MemOperand(r9, FixedArray::kHeaderSize - kHeapObjectTag)); | |
4278 #endif | |
4125 // Update the write barrier for the array store. | 4279 // Update the write barrier for the array store. |
4126 __ RecordWrite(r5, r6, r0, kLRHasNotBeenSaved, kDontSaveFPRegs, | 4280 __ RecordWrite(r8, r9, r3, kLRHasNotBeenSaved, kDontSaveFPRegs, |
4127 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); | 4281 EMIT_REMEMBERED_SET, OMIT_SMI_CHECK); |
4128 __ Ret(); | 4282 __ Ret(); |
4129 | 4283 |
4130 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, | 4284 // Array literal has ElementsKind of FAST_*_SMI_ELEMENTS or FAST_*_ELEMENTS, |
4131 // and value is Smi. | 4285 // and value is Smi. |
4132 __ bind(&smi_element); | 4286 __ bind(&smi_element); |
4133 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); | 4287 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset)); |
4134 __ add(r6, r5, Operand::PointerOffsetFromSmiKey(r3)); | 4288 __ SmiToPtrArrayOffset(r9, r6); |
4135 __ str(r0, FieldMemOperand(r6, FixedArray::kHeaderSize)); | 4289 __ add(r9, r8, r9); |
4290 __ StoreP(r3, FieldMemOperand(r9, FixedArray::kHeaderSize), r0); | |
4136 __ Ret(); | 4291 __ Ret(); |
4137 | 4292 |
4138 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. | 4293 // Array literal has ElementsKind of FAST_DOUBLE_ELEMENTS. |
4139 __ bind(&double_elements); | 4294 __ bind(&double_elements); |
4140 __ ldr(r5, FieldMemOperand(r1, JSObject::kElementsOffset)); | 4295 __ LoadP(r8, FieldMemOperand(r4, JSObject::kElementsOffset)); |
4141 __ StoreNumberToDoubleElements(r0, r3, r5, r6, d0, &slow_elements); | 4296 __ StoreNumberToDoubleElements(r3, r6, r8, r9, d0, &slow_elements); |
4142 __ Ret(); | 4297 __ Ret(); |
4143 } | 4298 } |
4144 | 4299 |
4145 | 4300 |
4146 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { | 4301 void StubFailureTrampolineStub::Generate(MacroAssembler* masm) { |
4147 CEntryStub ces(isolate(), 1, kSaveFPRegs); | 4302 CEntryStub ces(isolate(), 1, kSaveFPRegs); |
4148 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); | 4303 __ Call(ces.GetCode(), RelocInfo::CODE_TARGET); |
4149 int parameter_count_offset = | 4304 int parameter_count_offset = |
4150 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; | 4305 StubFailureTrampolineFrame::kCallerStackParameterCountFrameOffset; |
4151 __ ldr(r1, MemOperand(fp, parameter_count_offset)); | 4306 __ LoadP(r4, MemOperand(fp, parameter_count_offset)); |
4152 if (function_mode() == JS_FUNCTION_STUB_MODE) { | 4307 if (function_mode() == JS_FUNCTION_STUB_MODE) { |
4153 __ add(r1, r1, Operand(1)); | 4308 __ addi(r4, r4, Operand(1)); |
4154 } | 4309 } |
4155 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); | 4310 masm->LeaveFrame(StackFrame::STUB_FAILURE_TRAMPOLINE); |
4156 __ mov(r1, Operand(r1, LSL, kPointerSizeLog2)); | 4311 __ slwi(r4, r4, Operand(kPointerSizeLog2)); |
4157 __ add(sp, sp, r1); | 4312 __ add(sp, sp, r4); |
4158 __ Ret(); | 4313 __ Ret(); |
4159 } | 4314 } |
4160 | 4315 |
4161 | 4316 |
4162 void LoadICTrampolineStub::Generate(MacroAssembler* masm) { | 4317 void LoadICTrampolineStub::Generate(MacroAssembler* masm) { |
4163 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); | 4318 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); |
4164 VectorLoadStub stub(isolate(), state()); | 4319 VectorLoadStub stub(isolate(), state()); |
4165 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); | 4320 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
4166 } | 4321 } |
4167 | 4322 |
4168 | 4323 |
4169 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) { | 4324 void KeyedLoadICTrampolineStub::Generate(MacroAssembler* masm) { |
4170 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); | 4325 EmitLoadTypeFeedbackVector(masm, VectorLoadICDescriptor::VectorRegister()); |
4171 VectorKeyedLoadStub stub(isolate()); | 4326 VectorKeyedLoadStub stub(isolate()); |
4172 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); | 4327 __ Jump(stub.GetCode(), RelocInfo::CODE_TARGET); |
4173 } | 4328 } |
4174 | 4329 |
4175 | 4330 |
4176 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { | 4331 void ProfileEntryHookStub::MaybeCallEntryHook(MacroAssembler* masm) { |
4177 if (masm->isolate()->function_entry_hook() != NULL) { | 4332 if (masm->isolate()->function_entry_hook() != NULL) { |
4333 PredictableCodeSizeScope predictable(masm, | |
4334 #if V8_TARGET_ARCH_PPC64 | |
4335 14 * Assembler::kInstrSize); | |
4336 #else | |
4337 11 * Assembler::kInstrSize); | |
4338 #endif | |
4178 ProfileEntryHookStub stub(masm->isolate()); | 4339 ProfileEntryHookStub stub(masm->isolate()); |
4179 int code_size = masm->CallStubSize(&stub) + 2 * Assembler::kInstrSize; | 4340 __ mflr(r0); |
4180 PredictableCodeSizeScope predictable(masm, code_size); | 4341 __ Push(r0, ip); |
4181 __ push(lr); | |
4182 __ CallStub(&stub); | 4342 __ CallStub(&stub); |
4183 __ pop(lr); | 4343 __ Pop(r0, ip); |
4344 __ mtlr(r0); | |
4184 } | 4345 } |
4185 } | 4346 } |
4186 | 4347 |
4187 | 4348 |
4188 void ProfileEntryHookStub::Generate(MacroAssembler* masm) { | 4349 void ProfileEntryHookStub::Generate(MacroAssembler* masm) { |
4189 // The entry hook is a "push lr" instruction, followed by a call. | 4350 // The entry hook is a "push lr, ip" instruction, followed by a call. |
4190 const int32_t kReturnAddressDistanceFromFunctionStart = | 4351 const int32_t kReturnAddressDistanceFromFunctionStart = |
4191 3 * Assembler::kInstrSize; | 4352 Assembler::kCallTargetAddressOffset + 3 * Assembler::kInstrSize; |
4192 | 4353 |
4193 // This should contain all kCallerSaved registers. | 4354 // This should contain all kJSCallerSaved registers. |
4194 const RegList kSavedRegs = | 4355 const RegList kSavedRegs = kJSCallerSaved | // Caller saved registers. |
4195 1 << 0 | // r0 | 4356 r15.bit(); // Saved stack pointer. |
4196 1 << 1 | // r1 | 4357 |
4197 1 << 2 | // r2 | |
4198 1 << 3 | // r3 | |
4199 1 << 5 | // r5 | |
4200 1 << 9; // r9 | |
4201 // We also save lr, so the count here is one higher than the mask indicates. | 4358 // We also save lr, so the count here is one higher than the mask indicates. |
4202 const int32_t kNumSavedRegs = 7; | 4359 const int32_t kNumSavedRegs = kNumJSCallerSaved + 2; |
4203 | |
4204 DCHECK((kCallerSaved & kSavedRegs) == kCallerSaved); | |
4205 | 4360 |
4206 // Save all caller-save registers as this may be called from anywhere. | 4361 // Save all caller-save registers as this may be called from anywhere. |
4207 __ stm(db_w, sp, kSavedRegs | lr.bit()); | 4362 __ mflr(ip); |
4363 __ MultiPush(kSavedRegs | ip.bit()); | |
4208 | 4364 |
4209 // Compute the function's address for the first argument. | 4365 // Compute the function's address for the first argument. |
4210 __ sub(r0, lr, Operand(kReturnAddressDistanceFromFunctionStart)); | 4366 __ subi(r3, ip, Operand(kReturnAddressDistanceFromFunctionStart)); |
4211 | 4367 |
4212 // The caller's return address is above the saved temporaries. | 4368 // The caller's return address is two slots above the saved temporaries. |
4213 // Grab that for the second argument to the hook. | 4369 // Grab that for the second argument to the hook. |
4214 __ add(r1, sp, Operand(kNumSavedRegs * kPointerSize)); | 4370 __ addi(r4, sp, Operand((kNumSavedRegs + 1) * kPointerSize)); |
4215 | 4371 |
4216 // Align the stack if necessary. | 4372 // Align the stack if necessary. |
4217 int frame_alignment = masm->ActivationFrameAlignment(); | 4373 int frame_alignment = masm->ActivationFrameAlignment(); |
4218 if (frame_alignment > kPointerSize) { | 4374 if (frame_alignment > kPointerSize) { |
4219 __ mov(r5, sp); | 4375 __ mr(r15, sp); |
4220 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); | 4376 DCHECK(base::bits::IsPowerOfTwo32(frame_alignment)); |
4221 __ and_(sp, sp, Operand(-frame_alignment)); | 4377 __ ClearRightImm(sp, sp, Operand(WhichPowerOf2(frame_alignment))); |
4222 } | 4378 } |
4223 | 4379 |
4224 #if V8_HOST_ARCH_ARM | 4380 #if !defined(USE_SIMULATOR) |
4225 int32_t entry_hook = | 4381 uintptr_t entry_hook = |
4226 reinterpret_cast<int32_t>(isolate()->function_entry_hook()); | 4382 reinterpret_cast<uintptr_t>(isolate()->function_entry_hook()); |
4227 __ mov(ip, Operand(entry_hook)); | 4383 __ mov(ip, Operand(entry_hook)); |
4384 | |
4385 #if ABI_USES_FUNCTION_DESCRIPTORS | |
danno
2014/10/20 08:28:43
Is it possible to use just an "if" and not "#if"?
andrew_low
2014/11/07 18:03:17
Yes, but I've got the same comment as before. Yes,
| |
4386 // Function descriptor | |
4387 __ LoadP(ToRegister(ABI_TOC_REGISTER), MemOperand(ip, kPointerSize)); | |
4388 __ LoadP(ip, MemOperand(ip, 0)); | |
4389 #elif ABI_TOC_ADDRESSABILITY_VIA_IP | |
4390 // ip set above, so nothing to do. | |
4391 #endif | |
4392 | |
4393 // PPC LINUX ABI: | |
4394 __ li(r0, Operand::Zero()); | |
4395 __ StorePU(r0, MemOperand(sp, -kNumRequiredStackFrameSlots * kPointerSize)); | |
4228 #else | 4396 #else |
4229 // Under the simulator we need to indirect the entry hook through a | 4397 // Under the simulator we need to indirect the entry hook through a |
4230 // trampoline function at a known address. | 4398 // trampoline function at a known address. |
4231 // It additionally takes an isolate as a third parameter | 4399 // It additionally takes an isolate as a third parameter |
4232 __ mov(r2, Operand(ExternalReference::isolate_address(isolate()))); | 4400 __ mov(r5, Operand(ExternalReference::isolate_address(isolate()))); |
4233 | 4401 |
4234 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); | 4402 ApiFunction dispatcher(FUNCTION_ADDR(EntryHookTrampoline)); |
4235 __ mov(ip, Operand(ExternalReference(&dispatcher, | 4403 __ mov(ip, Operand(ExternalReference( |
4236 ExternalReference::BUILTIN_CALL, | 4404 &dispatcher, ExternalReference::BUILTIN_CALL, isolate()))); |
4237 isolate()))); | |
4238 #endif | 4405 #endif |
4239 __ Call(ip); | 4406 __ Call(ip); |
4240 | 4407 |
4408 #if !defined(USE_SIMULATOR) | |
4409 __ addi(sp, sp, Operand(kNumRequiredStackFrameSlots * kPointerSize)); | |
4410 #endif | |
4411 | |
4241 // Restore the stack pointer if needed. | 4412 // Restore the stack pointer if needed. |
4242 if (frame_alignment > kPointerSize) { | 4413 if (frame_alignment > kPointerSize) { |
4243 __ mov(sp, r5); | 4414 __ mr(sp, r15); |
4244 } | 4415 } |
4245 | 4416 |
4246 // Also pop pc to get Ret(0). | 4417 // Also pop lr to get Ret(0). |
4247 __ ldm(ia_w, sp, kSavedRegs | pc.bit()); | 4418 __ MultiPop(kSavedRegs | ip.bit()); |
4419 __ mtlr(ip); | |
4420 __ Ret(); | |
4248 } | 4421 } |
4249 | 4422 |
4250 | 4423 |
4251 template<class T> | 4424 template <class T> |
4252 static void CreateArrayDispatch(MacroAssembler* masm, | 4425 static void CreateArrayDispatch(MacroAssembler* masm, |
4253 AllocationSiteOverrideMode mode) { | 4426 AllocationSiteOverrideMode mode) { |
4254 if (mode == DISABLE_ALLOCATION_SITES) { | 4427 if (mode == DISABLE_ALLOCATION_SITES) { |
4255 T stub(masm->isolate(), GetInitialFastElementsKind(), mode); | 4428 T stub(masm->isolate(), GetInitialFastElementsKind(), mode); |
4256 __ TailCallStub(&stub); | 4429 __ TailCallStub(&stub); |
4257 } else if (mode == DONT_OVERRIDE) { | 4430 } else if (mode == DONT_OVERRIDE) { |
4258 int last_index = GetSequenceIndexFromFastElementsKind( | 4431 int last_index = |
4259 TERMINAL_FAST_ELEMENTS_KIND); | 4432 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
4260 for (int i = 0; i <= last_index; ++i) { | 4433 for (int i = 0; i <= last_index; ++i) { |
4261 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); | 4434 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
4262 __ cmp(r3, Operand(kind)); | 4435 __ Cmpi(r6, Operand(kind), r0); |
4263 T stub(masm->isolate(), kind); | 4436 T stub(masm->isolate(), kind); |
4264 __ TailCallStub(&stub, eq); | 4437 __ TailCallStub(&stub, eq); |
4265 } | 4438 } |
4266 | 4439 |
4267 // If we reached this point there is a problem. | 4440 // If we reached this point there is a problem. |
4268 __ Abort(kUnexpectedElementsKindInArrayConstructor); | 4441 __ Abort(kUnexpectedElementsKindInArrayConstructor); |
4269 } else { | 4442 } else { |
4270 UNREACHABLE(); | 4443 UNREACHABLE(); |
4271 } | 4444 } |
4272 } | 4445 } |
4273 | 4446 |
4274 | 4447 |
4275 static void CreateArrayDispatchOneArgument(MacroAssembler* masm, | 4448 static void CreateArrayDispatchOneArgument(MacroAssembler* masm, |
4276 AllocationSiteOverrideMode mode) { | 4449 AllocationSiteOverrideMode mode) { |
4277 // r2 - allocation site (if mode != DISABLE_ALLOCATION_SITES) | 4450 // r5 - allocation site (if mode != DISABLE_ALLOCATION_SITES) |
4278 // r3 - kind (if mode != DISABLE_ALLOCATION_SITES) | 4451 // r6 - kind (if mode != DISABLE_ALLOCATION_SITES) |
4279 // r0 - number of arguments | 4452 // r3 - number of arguments |
4280 // r1 - constructor? | 4453 // r4 - constructor? |
4281 // sp[0] - last argument | 4454 // sp[0] - last argument |
4282 Label normal_sequence; | 4455 Label normal_sequence; |
4283 if (mode == DONT_OVERRIDE) { | 4456 if (mode == DONT_OVERRIDE) { |
4284 DCHECK(FAST_SMI_ELEMENTS == 0); | 4457 DCHECK(FAST_SMI_ELEMENTS == 0); |
4285 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1); | 4458 DCHECK(FAST_HOLEY_SMI_ELEMENTS == 1); |
4286 DCHECK(FAST_ELEMENTS == 2); | 4459 DCHECK(FAST_ELEMENTS == 2); |
4287 DCHECK(FAST_HOLEY_ELEMENTS == 3); | 4460 DCHECK(FAST_HOLEY_ELEMENTS == 3); |
4288 DCHECK(FAST_DOUBLE_ELEMENTS == 4); | 4461 DCHECK(FAST_DOUBLE_ELEMENTS == 4); |
4289 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5); | 4462 DCHECK(FAST_HOLEY_DOUBLE_ELEMENTS == 5); |
4290 | 4463 |
4291 // is the low bit set? If so, we are holey and that is good. | 4464 // is the low bit set? If so, we are holey and that is good. |
4292 __ tst(r3, Operand(1)); | 4465 __ andi(r0, r6, Operand(1)); |
4293 __ b(ne, &normal_sequence); | 4466 __ bne(&normal_sequence, cr0); |
4294 } | 4467 } |
4295 | 4468 |
4296 // look at the first argument | 4469 // look at the first argument |
4297 __ ldr(r5, MemOperand(sp, 0)); | 4470 __ LoadP(r8, MemOperand(sp, 0)); |
4298 __ cmp(r5, Operand::Zero()); | 4471 __ cmpi(r8, Operand::Zero()); |
4299 __ b(eq, &normal_sequence); | 4472 __ beq(&normal_sequence); |
4300 | 4473 |
4301 if (mode == DISABLE_ALLOCATION_SITES) { | 4474 if (mode == DISABLE_ALLOCATION_SITES) { |
4302 ElementsKind initial = GetInitialFastElementsKind(); | 4475 ElementsKind initial = GetInitialFastElementsKind(); |
4303 ElementsKind holey_initial = GetHoleyElementsKind(initial); | 4476 ElementsKind holey_initial = GetHoleyElementsKind(initial); |
4304 | 4477 |
4305 ArraySingleArgumentConstructorStub stub_holey(masm->isolate(), | 4478 ArraySingleArgumentConstructorStub stub_holey( |
4306 holey_initial, | 4479 masm->isolate(), holey_initial, DISABLE_ALLOCATION_SITES); |
4307 DISABLE_ALLOCATION_SITES); | |
4308 __ TailCallStub(&stub_holey); | 4480 __ TailCallStub(&stub_holey); |
4309 | 4481 |
4310 __ bind(&normal_sequence); | 4482 __ bind(&normal_sequence); |
4311 ArraySingleArgumentConstructorStub stub(masm->isolate(), | 4483 ArraySingleArgumentConstructorStub stub(masm->isolate(), initial, |
4312 initial, | |
4313 DISABLE_ALLOCATION_SITES); | 4484 DISABLE_ALLOCATION_SITES); |
4314 __ TailCallStub(&stub); | 4485 __ TailCallStub(&stub); |
4315 } else if (mode == DONT_OVERRIDE) { | 4486 } else if (mode == DONT_OVERRIDE) { |
4316 // We are going to create a holey array, but our kind is non-holey. | 4487 // We are going to create a holey array, but our kind is non-holey. |
4317 // Fix kind and retry (only if we have an allocation site in the slot). | 4488 // Fix kind and retry (only if we have an allocation site in the slot). |
4318 __ add(r3, r3, Operand(1)); | 4489 __ addi(r6, r6, Operand(1)); |
4319 | 4490 |
4320 if (FLAG_debug_code) { | 4491 if (FLAG_debug_code) { |
4321 __ ldr(r5, FieldMemOperand(r2, 0)); | 4492 __ LoadP(r8, FieldMemOperand(r5, 0)); |
4322 __ CompareRoot(r5, Heap::kAllocationSiteMapRootIndex); | 4493 __ CompareRoot(r8, Heap::kAllocationSiteMapRootIndex); |
4323 __ Assert(eq, kExpectedAllocationSite); | 4494 __ Assert(eq, kExpectedAllocationSite); |
4324 } | 4495 } |
4325 | 4496 |
4326 // Save the resulting elements kind in type info. We can't just store r3 | 4497 // Save the resulting elements kind in type info. We can't just store r6 |
4327 // in the AllocationSite::transition_info field because elements kind is | 4498 // in the AllocationSite::transition_info field because elements kind is |
4328 // restricted to a portion of the field...upper bits need to be left alone. | 4499 // restricted to a portion of the field...upper bits need to be left alone. |
4329 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); | 4500 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
4330 __ ldr(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); | 4501 __ LoadP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset)); |
4331 __ add(r4, r4, Operand(Smi::FromInt(kFastElementsKindPackedToHoley))); | 4502 __ AddSmiLiteral(r7, r7, Smi::FromInt(kFastElementsKindPackedToHoley), r0); |
4332 __ str(r4, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); | 4503 __ StoreP(r7, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset), |
4504 r0); | |
4333 | 4505 |
4334 __ bind(&normal_sequence); | 4506 __ bind(&normal_sequence); |
4335 int last_index = GetSequenceIndexFromFastElementsKind( | 4507 int last_index = |
4336 TERMINAL_FAST_ELEMENTS_KIND); | 4508 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
4337 for (int i = 0; i <= last_index; ++i) { | 4509 for (int i = 0; i <= last_index; ++i) { |
4338 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); | 4510 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
4339 __ cmp(r3, Operand(kind)); | 4511 __ mov(r0, Operand(kind)); |
4512 __ cmp(r6, r0); | |
4340 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); | 4513 ArraySingleArgumentConstructorStub stub(masm->isolate(), kind); |
4341 __ TailCallStub(&stub, eq); | 4514 __ TailCallStub(&stub, eq); |
4342 } | 4515 } |
4343 | 4516 |
4344 // If we reached this point there is a problem. | 4517 // If we reached this point there is a problem. |
4345 __ Abort(kUnexpectedElementsKindInArrayConstructor); | 4518 __ Abort(kUnexpectedElementsKindInArrayConstructor); |
4346 } else { | 4519 } else { |
4347 UNREACHABLE(); | 4520 UNREACHABLE(); |
4348 } | 4521 } |
4349 } | 4522 } |
4350 | 4523 |
4351 | 4524 |
4352 template<class T> | 4525 template <class T> |
4353 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { | 4526 static void ArrayConstructorStubAheadOfTimeHelper(Isolate* isolate) { |
4354 int to_index = GetSequenceIndexFromFastElementsKind( | 4527 int to_index = |
4355 TERMINAL_FAST_ELEMENTS_KIND); | 4528 GetSequenceIndexFromFastElementsKind(TERMINAL_FAST_ELEMENTS_KIND); |
4356 for (int i = 0; i <= to_index; ++i) { | 4529 for (int i = 0; i <= to_index; ++i) { |
4357 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); | 4530 ElementsKind kind = GetFastElementsKindFromSequenceIndex(i); |
4358 T stub(isolate, kind); | 4531 T stub(isolate, kind); |
4359 stub.GetCode(); | 4532 stub.GetCode(); |
4360 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { | 4533 if (AllocationSite::GetMode(kind) != DONT_TRACK_ALLOCATION_SITE) { |
4361 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); | 4534 T stub1(isolate, kind, DISABLE_ALLOCATION_SITES); |
4362 stub1.GetCode(); | 4535 stub1.GetCode(); |
4363 } | 4536 } |
4364 } | 4537 } |
4365 } | 4538 } |
4366 | 4539 |
4367 | 4540 |
4368 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { | 4541 void ArrayConstructorStubBase::GenerateStubsAheadOfTime(Isolate* isolate) { |
4369 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( | 4542 ArrayConstructorStubAheadOfTimeHelper<ArrayNoArgumentConstructorStub>( |
4370 isolate); | 4543 isolate); |
4371 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( | 4544 ArrayConstructorStubAheadOfTimeHelper<ArraySingleArgumentConstructorStub>( |
4372 isolate); | 4545 isolate); |
4373 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( | 4546 ArrayConstructorStubAheadOfTimeHelper<ArrayNArgumentsConstructorStub>( |
4374 isolate); | 4547 isolate); |
4375 } | 4548 } |
4376 | 4549 |
4377 | 4550 |
4378 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( | 4551 void InternalArrayConstructorStubBase::GenerateStubsAheadOfTime( |
4379 Isolate* isolate) { | 4552 Isolate* isolate) { |
4380 ElementsKind kinds[2] = { FAST_ELEMENTS, FAST_HOLEY_ELEMENTS }; | 4553 ElementsKind kinds[2] = {FAST_ELEMENTS, FAST_HOLEY_ELEMENTS}; |
4381 for (int i = 0; i < 2; i++) { | 4554 for (int i = 0; i < 2; i++) { |
4382 // For internal arrays we only need a few things | 4555 // For internal arrays we only need a few things |
4383 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); | 4556 InternalArrayNoArgumentConstructorStub stubh1(isolate, kinds[i]); |
4384 stubh1.GetCode(); | 4557 stubh1.GetCode(); |
4385 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); | 4558 InternalArraySingleArgumentConstructorStub stubh2(isolate, kinds[i]); |
4386 stubh2.GetCode(); | 4559 stubh2.GetCode(); |
4387 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]); | 4560 InternalArrayNArgumentsConstructorStub stubh3(isolate, kinds[i]); |
4388 stubh3.GetCode(); | 4561 stubh3.GetCode(); |
4389 } | 4562 } |
4390 } | 4563 } |
4391 | 4564 |
4392 | 4565 |
4393 void ArrayConstructorStub::GenerateDispatchToArrayStub( | 4566 void ArrayConstructorStub::GenerateDispatchToArrayStub( |
4394 MacroAssembler* masm, | 4567 MacroAssembler* masm, AllocationSiteOverrideMode mode) { |
4395 AllocationSiteOverrideMode mode) { | |
4396 if (argument_count() == ANY) { | 4568 if (argument_count() == ANY) { |
4397 Label not_zero_case, not_one_case; | 4569 Label not_zero_case, not_one_case; |
4398 __ tst(r0, r0); | 4570 __ cmpi(r3, Operand::Zero()); |
4399 __ b(ne, ¬_zero_case); | 4571 __ bne(¬_zero_case); |
4400 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); | 4572 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
4401 | 4573 |
4402 __ bind(¬_zero_case); | 4574 __ bind(¬_zero_case); |
4403 __ cmp(r0, Operand(1)); | 4575 __ cmpi(r3, Operand(1)); |
4404 __ b(gt, ¬_one_case); | 4576 __ bgt(¬_one_case); |
4405 CreateArrayDispatchOneArgument(masm, mode); | 4577 CreateArrayDispatchOneArgument(masm, mode); |
4406 | 4578 |
4407 __ bind(¬_one_case); | 4579 __ bind(¬_one_case); |
4408 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); | 4580 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
4409 } else if (argument_count() == NONE) { | 4581 } else if (argument_count() == NONE) { |
4410 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); | 4582 CreateArrayDispatch<ArrayNoArgumentConstructorStub>(masm, mode); |
4411 } else if (argument_count() == ONE) { | 4583 } else if (argument_count() == ONE) { |
4412 CreateArrayDispatchOneArgument(masm, mode); | 4584 CreateArrayDispatchOneArgument(masm, mode); |
4413 } else if (argument_count() == MORE_THAN_ONE) { | 4585 } else if (argument_count() == MORE_THAN_ONE) { |
4414 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); | 4586 CreateArrayDispatch<ArrayNArgumentsConstructorStub>(masm, mode); |
4415 } else { | 4587 } else { |
4416 UNREACHABLE(); | 4588 UNREACHABLE(); |
4417 } | 4589 } |
4418 } | 4590 } |
4419 | 4591 |
4420 | 4592 |
4421 void ArrayConstructorStub::Generate(MacroAssembler* masm) { | 4593 void ArrayConstructorStub::Generate(MacroAssembler* masm) { |
4422 // ----------- S t a t e ------------- | 4594 // ----------- S t a t e ------------- |
4423 // -- r0 : argc (only if argument_count() == ANY) | 4595 // -- r3 : argc (only if argument_count() == ANY) |
4424 // -- r1 : constructor | 4596 // -- r4 : constructor |
4425 // -- r2 : AllocationSite or undefined | 4597 // -- r5 : AllocationSite or undefined |
4426 // -- sp[0] : return address | 4598 // -- sp[0] : return address |
4427 // -- sp[4] : last argument | 4599 // -- sp[4] : last argument |
4428 // ----------------------------------- | 4600 // ----------------------------------- |
4429 | 4601 |
4430 if (FLAG_debug_code) { | 4602 if (FLAG_debug_code) { |
4431 // The array construct code is only set for the global and natives | 4603 // The array construct code is only set for the global and natives |
4432 // builtin Array functions which always have maps. | 4604 // builtin Array functions which always have maps. |
4433 | 4605 |
4434 // Initial map for the builtin Array function should be a map. | 4606 // Initial map for the builtin Array function should be a map. |
4435 __ ldr(r4, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); | 4607 __ LoadP(r7, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); |
4436 // Will both indicate a NULL and a Smi. | 4608 // Will both indicate a NULL and a Smi. |
4437 __ tst(r4, Operand(kSmiTagMask)); | 4609 __ TestIfSmi(r7, r0); |
4438 __ Assert(ne, kUnexpectedInitialMapForArrayFunction); | 4610 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); |
4439 __ CompareObjectType(r4, r4, r5, MAP_TYPE); | 4611 __ CompareObjectType(r7, r7, r8, MAP_TYPE); |
4440 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); | 4612 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); |
4441 | 4613 |
4442 // We should either have undefined in r2 or a valid AllocationSite | 4614 // We should either have undefined in r5 or a valid AllocationSite |
4443 __ AssertUndefinedOrAllocationSite(r2, r4); | 4615 __ AssertUndefinedOrAllocationSite(r5, r7); |
4444 } | 4616 } |
4445 | 4617 |
4446 Label no_info; | 4618 Label no_info; |
4447 // Get the elements kind and case on that. | 4619 // Get the elements kind and case on that. |
4448 __ CompareRoot(r2, Heap::kUndefinedValueRootIndex); | 4620 __ CompareRoot(r5, Heap::kUndefinedValueRootIndex); |
4449 __ b(eq, &no_info); | 4621 __ beq(&no_info); |
4450 | 4622 |
4451 __ ldr(r3, FieldMemOperand(r2, AllocationSite::kTransitionInfoOffset)); | 4623 __ LoadP(r6, FieldMemOperand(r5, AllocationSite::kTransitionInfoOffset)); |
4452 __ SmiUntag(r3); | 4624 __ SmiUntag(r6); |
4453 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); | 4625 STATIC_ASSERT(AllocationSite::ElementsKindBits::kShift == 0); |
4454 __ and_(r3, r3, Operand(AllocationSite::ElementsKindBits::kMask)); | 4626 __ And(r6, r6, Operand(AllocationSite::ElementsKindBits::kMask)); |
4455 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); | 4627 GenerateDispatchToArrayStub(masm, DONT_OVERRIDE); |
4456 | 4628 |
4457 __ bind(&no_info); | 4629 __ bind(&no_info); |
4458 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); | 4630 GenerateDispatchToArrayStub(masm, DISABLE_ALLOCATION_SITES); |
4459 } | 4631 } |
4460 | 4632 |
4461 | 4633 |
4462 void InternalArrayConstructorStub::GenerateCase( | 4634 void InternalArrayConstructorStub::GenerateCase(MacroAssembler* masm, |
4463 MacroAssembler* masm, ElementsKind kind) { | 4635 ElementsKind kind) { |
4464 __ cmp(r0, Operand(1)); | 4636 __ cmpli(r3, Operand(1)); |
4465 | 4637 |
4466 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); | 4638 InternalArrayNoArgumentConstructorStub stub0(isolate(), kind); |
4467 __ TailCallStub(&stub0, lo); | 4639 __ TailCallStub(&stub0, lt); |
4468 | 4640 |
4469 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); | 4641 InternalArrayNArgumentsConstructorStub stubN(isolate(), kind); |
4470 __ TailCallStub(&stubN, hi); | 4642 __ TailCallStub(&stubN, gt); |
4471 | 4643 |
4472 if (IsFastPackedElementsKind(kind)) { | 4644 if (IsFastPackedElementsKind(kind)) { |
4473 // We might need to create a holey array | 4645 // We might need to create a holey array |
4474 // look at the first argument | 4646 // look at the first argument |
4475 __ ldr(r3, MemOperand(sp, 0)); | 4647 __ LoadP(r6, MemOperand(sp, 0)); |
4476 __ cmp(r3, Operand::Zero()); | 4648 __ cmpi(r6, Operand::Zero()); |
4477 | 4649 |
4478 InternalArraySingleArgumentConstructorStub | 4650 InternalArraySingleArgumentConstructorStub stub1_holey( |
4479 stub1_holey(isolate(), GetHoleyElementsKind(kind)); | 4651 isolate(), GetHoleyElementsKind(kind)); |
4480 __ TailCallStub(&stub1_holey, ne); | 4652 __ TailCallStub(&stub1_holey, ne); |
4481 } | 4653 } |
4482 | 4654 |
4483 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); | 4655 InternalArraySingleArgumentConstructorStub stub1(isolate(), kind); |
4484 __ TailCallStub(&stub1); | 4656 __ TailCallStub(&stub1); |
4485 } | 4657 } |
4486 | 4658 |
4487 | 4659 |
4488 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { | 4660 void InternalArrayConstructorStub::Generate(MacroAssembler* masm) { |
4489 // ----------- S t a t e ------------- | 4661 // ----------- S t a t e ------------- |
4490 // -- r0 : argc | 4662 // -- r3 : argc |
4491 // -- r1 : constructor | 4663 // -- r4 : constructor |
4492 // -- sp[0] : return address | 4664 // -- sp[0] : return address |
4493 // -- sp[4] : last argument | 4665 // -- sp[4] : last argument |
4494 // ----------------------------------- | 4666 // ----------------------------------- |
4495 | 4667 |
4496 if (FLAG_debug_code) { | 4668 if (FLAG_debug_code) { |
4497 // The array construct code is only set for the global and natives | 4669 // The array construct code is only set for the global and natives |
4498 // builtin Array functions which always have maps. | 4670 // builtin Array functions which always have maps. |
4499 | 4671 |
4500 // Initial map for the builtin Array function should be a map. | 4672 // Initial map for the builtin Array function should be a map. |
4501 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); | 4673 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); |
4502 // Will both indicate a NULL and a Smi. | 4674 // Will both indicate a NULL and a Smi. |
4503 __ tst(r3, Operand(kSmiTagMask)); | 4675 __ TestIfSmi(r6, r0); |
4504 __ Assert(ne, kUnexpectedInitialMapForArrayFunction); | 4676 __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); |
4505 __ CompareObjectType(r3, r3, r4, MAP_TYPE); | 4677 __ CompareObjectType(r6, r6, r7, MAP_TYPE); |
4506 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); | 4678 __ Assert(eq, kUnexpectedInitialMapForArrayFunction); |
4507 } | 4679 } |
4508 | 4680 |
4509 // Figure out the right elements kind | 4681 // Figure out the right elements kind |
4510 __ ldr(r3, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); | 4682 __ LoadP(r6, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); |
4511 // Load the map's "bit field 2" into |result|. We only need the first byte, | 4683 // Load the map's "bit field 2" into |result|. |
4512 // but the following bit field extraction takes care of that anyway. | 4684 __ lbz(r6, FieldMemOperand(r6, Map::kBitField2Offset)); |
4513 __ ldr(r3, FieldMemOperand(r3, Map::kBitField2Offset)); | |
4514 // Retrieve elements_kind from bit field 2. | 4685 // Retrieve elements_kind from bit field 2. |
4515 __ DecodeField<Map::ElementsKindBits>(r3); | 4686 __ DecodeField<Map::ElementsKindBits>(r6); |
4516 | 4687 |
4517 if (FLAG_debug_code) { | 4688 if (FLAG_debug_code) { |
4518 Label done; | 4689 Label done; |
4519 __ cmp(r3, Operand(FAST_ELEMENTS)); | 4690 __ cmpi(r6, Operand(FAST_ELEMENTS)); |
4520 __ b(eq, &done); | 4691 __ beq(&done); |
4521 __ cmp(r3, Operand(FAST_HOLEY_ELEMENTS)); | 4692 __ cmpi(r6, Operand(FAST_HOLEY_ELEMENTS)); |
4522 __ Assert(eq, | 4693 __ Assert(eq, kInvalidElementsKindForInternalArrayOrInternalPackedArray); |
4523 kInvalidElementsKindForInternalArrayOrInternalPackedArray); | |
4524 __ bind(&done); | 4694 __ bind(&done); |
4525 } | 4695 } |
4526 | 4696 |
4527 Label fast_elements_case; | 4697 Label fast_elements_case; |
4528 __ cmp(r3, Operand(FAST_ELEMENTS)); | 4698 __ cmpi(r6, Operand(FAST_ELEMENTS)); |
4529 __ b(eq, &fast_elements_case); | 4699 __ beq(&fast_elements_case); |
4530 GenerateCase(masm, FAST_HOLEY_ELEMENTS); | 4700 GenerateCase(masm, FAST_HOLEY_ELEMENTS); |
4531 | 4701 |
4532 __ bind(&fast_elements_case); | 4702 __ bind(&fast_elements_case); |
4533 GenerateCase(masm, FAST_ELEMENTS); | 4703 GenerateCase(masm, FAST_ELEMENTS); |
4534 } | 4704 } |
4535 | 4705 |
4536 | 4706 |
4537 void CallApiFunctionStub::Generate(MacroAssembler* masm) { | 4707 void CallApiFunctionStub::Generate(MacroAssembler* masm) { |
4538 // ----------- S t a t e ------------- | 4708 // ----------- S t a t e ------------- |
4539 // -- r0 : callee | 4709 // -- r3 : callee |
4540 // -- r4 : call_data | 4710 // -- r7 : call_data |
4541 // -- r2 : holder | 4711 // -- r5 : holder |
4542 // -- r1 : api_function_address | 4712 // -- r4 : api_function_address |
4543 // -- cp : context | 4713 // -- cp : context |
4544 // -- | 4714 // -- |
4545 // -- sp[0] : last argument | 4715 // -- sp[0] : last argument |
4546 // -- ... | 4716 // -- ... |
4547 // -- sp[(argc - 1)* 4] : first argument | 4717 // -- sp[(argc - 1)* 4] : first argument |
4548 // -- sp[argc * 4] : receiver | 4718 // -- sp[argc * 4] : receiver |
4549 // ----------------------------------- | 4719 // ----------------------------------- |
4550 | 4720 |
4551 Register callee = r0; | 4721 Register callee = r3; |
4552 Register call_data = r4; | 4722 Register call_data = r7; |
4553 Register holder = r2; | 4723 Register holder = r5; |
4554 Register api_function_address = r1; | 4724 Register api_function_address = r4; |
4555 Register context = cp; | 4725 Register context = cp; |
4556 | 4726 |
4557 int argc = this->argc(); | 4727 int argc = this->argc(); |
4558 bool is_store = this->is_store(); | 4728 bool is_store = this->is_store(); |
4559 bool call_data_undefined = this->call_data_undefined(); | 4729 bool call_data_undefined = this->call_data_undefined(); |
4560 | 4730 |
4561 typedef FunctionCallbackArguments FCA; | 4731 typedef FunctionCallbackArguments FCA; |
4562 | 4732 |
4563 STATIC_ASSERT(FCA::kContextSaveIndex == 6); | 4733 STATIC_ASSERT(FCA::kContextSaveIndex == 6); |
4564 STATIC_ASSERT(FCA::kCalleeIndex == 5); | 4734 STATIC_ASSERT(FCA::kCalleeIndex == 5); |
4565 STATIC_ASSERT(FCA::kDataIndex == 4); | 4735 STATIC_ASSERT(FCA::kDataIndex == 4); |
4566 STATIC_ASSERT(FCA::kReturnValueOffset == 3); | 4736 STATIC_ASSERT(FCA::kReturnValueOffset == 3); |
4567 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); | 4737 STATIC_ASSERT(FCA::kReturnValueDefaultValueIndex == 2); |
4568 STATIC_ASSERT(FCA::kIsolateIndex == 1); | 4738 STATIC_ASSERT(FCA::kIsolateIndex == 1); |
4569 STATIC_ASSERT(FCA::kHolderIndex == 0); | 4739 STATIC_ASSERT(FCA::kHolderIndex == 0); |
4570 STATIC_ASSERT(FCA::kArgsLength == 7); | 4740 STATIC_ASSERT(FCA::kArgsLength == 7); |
4571 | 4741 |
4572 // context save | 4742 // context save |
4573 __ push(context); | 4743 __ push(context); |
4574 // load context from callee | 4744 // load context from callee |
4575 __ ldr(context, FieldMemOperand(callee, JSFunction::kContextOffset)); | 4745 __ LoadP(context, FieldMemOperand(callee, JSFunction::kContextOffset)); |
4576 | 4746 |
4577 // callee | 4747 // callee |
4578 __ push(callee); | 4748 __ push(callee); |
4579 | 4749 |
4580 // call data | 4750 // call data |
4581 __ push(call_data); | 4751 __ push(call_data); |
4582 | 4752 |
4583 Register scratch = call_data; | 4753 Register scratch = call_data; |
4584 if (!call_data_undefined) { | 4754 if (!call_data_undefined) { |
4585 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); | 4755 __ LoadRoot(scratch, Heap::kUndefinedValueRootIndex); |
4586 } | 4756 } |
4587 // return value | 4757 // return value |
4588 __ push(scratch); | 4758 __ push(scratch); |
4589 // return value default | 4759 // return value default |
4590 __ push(scratch); | 4760 __ push(scratch); |
4591 // isolate | 4761 // isolate |
4592 __ mov(scratch, | 4762 __ mov(scratch, Operand(ExternalReference::isolate_address(isolate()))); |
4593 Operand(ExternalReference::isolate_address(isolate()))); | |
4594 __ push(scratch); | 4763 __ push(scratch); |
4595 // holder | 4764 // holder |
4596 __ push(holder); | 4765 __ push(holder); |
4597 | 4766 |
4598 // Prepare arguments. | 4767 // Prepare arguments. |
4599 __ mov(scratch, sp); | 4768 __ mr(scratch, sp); |
4600 | 4769 |
4601 // Allocate the v8::Arguments structure in the arguments' space since | 4770 // Allocate the v8::Arguments structure in the arguments' space since |
4602 // it's not controlled by GC. | 4771 // it's not controlled by GC. |
4603 const int kApiStackSpace = 4; | 4772 // PPC LINUX ABI: |
4773 // | |
4774 // Create 5 extra slots on stack: | |
4775 // [0] space for DirectCEntryStub's LR save | |
4776 // [1-4] FunctionCallbackInfo | |
4777 const int kApiStackSpace = 5; | |
4604 | 4778 |
4605 FrameScope frame_scope(masm, StackFrame::MANUAL); | 4779 FrameScope frame_scope(masm, StackFrame::MANUAL); |
4606 __ EnterExitFrame(false, kApiStackSpace); | 4780 __ EnterExitFrame(false, kApiStackSpace); |
4607 | 4781 |
4608 DCHECK(!api_function_address.is(r0) && !scratch.is(r0)); | 4782 DCHECK(!api_function_address.is(r3) && !scratch.is(r3)); |
4609 // r0 = FunctionCallbackInfo& | 4783 // r3 = FunctionCallbackInfo& |
4610 // Arguments is after the return address. | 4784 // Arguments is after the return address. |
4611 __ add(r0, sp, Operand(1 * kPointerSize)); | 4785 __ addi(r3, sp, Operand((kStackFrameExtraParamSlot + 1) * kPointerSize)); |
4612 // FunctionCallbackInfo::implicit_args_ | 4786 // FunctionCallbackInfo::implicit_args_ |
4613 __ str(scratch, MemOperand(r0, 0 * kPointerSize)); | 4787 __ StoreP(scratch, MemOperand(r3, 0 * kPointerSize)); |
4614 // FunctionCallbackInfo::values_ | 4788 // FunctionCallbackInfo::values_ |
4615 __ add(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); | 4789 __ addi(ip, scratch, Operand((FCA::kArgsLength - 1 + argc) * kPointerSize)); |
4616 __ str(ip, MemOperand(r0, 1 * kPointerSize)); | 4790 __ StoreP(ip, MemOperand(r3, 1 * kPointerSize)); |
4617 // FunctionCallbackInfo::length_ = argc | 4791 // FunctionCallbackInfo::length_ = argc |
4618 __ mov(ip, Operand(argc)); | 4792 __ li(ip, Operand(argc)); |
4619 __ str(ip, MemOperand(r0, 2 * kPointerSize)); | 4793 __ stw(ip, MemOperand(r3, 2 * kPointerSize)); |
4620 // FunctionCallbackInfo::is_construct_call = 0 | 4794 // FunctionCallbackInfo::is_construct_call = 0 |
4621 __ mov(ip, Operand::Zero()); | 4795 __ li(ip, Operand::Zero()); |
4622 __ str(ip, MemOperand(r0, 3 * kPointerSize)); | 4796 __ stw(ip, MemOperand(r3, 2 * kPointerSize + kIntSize)); |
4623 | 4797 |
4624 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; | 4798 const int kStackUnwindSpace = argc + FCA::kArgsLength + 1; |
4625 ExternalReference thunk_ref = | 4799 ExternalReference thunk_ref = |
4626 ExternalReference::invoke_function_callback(isolate()); | 4800 ExternalReference::invoke_function_callback(isolate()); |
4627 | 4801 |
4628 AllowExternalCallThatCantCauseGC scope(masm); | 4802 AllowExternalCallThatCantCauseGC scope(masm); |
4629 MemOperand context_restore_operand( | 4803 MemOperand context_restore_operand( |
4630 fp, (2 + FCA::kContextSaveIndex) * kPointerSize); | 4804 fp, (2 + FCA::kContextSaveIndex) * kPointerSize); |
4631 // Stores return the first js argument | 4805 // Stores return the first js argument |
4632 int return_value_offset = 0; | 4806 int return_value_offset = 0; |
4633 if (is_store) { | 4807 if (is_store) { |
4634 return_value_offset = 2 + FCA::kArgsLength; | 4808 return_value_offset = 2 + FCA::kArgsLength; |
4635 } else { | 4809 } else { |
4636 return_value_offset = 2 + FCA::kReturnValueOffset; | 4810 return_value_offset = 2 + FCA::kReturnValueOffset; |
4637 } | 4811 } |
4638 MemOperand return_value_operand(fp, return_value_offset * kPointerSize); | 4812 MemOperand return_value_operand(fp, return_value_offset * kPointerSize); |
4639 | 4813 |
4640 __ CallApiFunctionAndReturn(api_function_address, | 4814 __ CallApiFunctionAndReturn(api_function_address, thunk_ref, |
4641 thunk_ref, | 4815 kStackUnwindSpace, return_value_operand, |
4642 kStackUnwindSpace, | |
4643 return_value_operand, | |
4644 &context_restore_operand); | 4816 &context_restore_operand); |
4645 } | 4817 } |
4646 | 4818 |
4647 | 4819 |
4648 void CallApiGetterStub::Generate(MacroAssembler* masm) { | 4820 void CallApiGetterStub::Generate(MacroAssembler* masm) { |
4649 // ----------- S t a t e ------------- | 4821 // ----------- S t a t e ------------- |
4650 // -- sp[0] : name | 4822 // -- sp[0] : name |
4651 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object | 4823 // -- sp[4 - kArgsLength*4] : PropertyCallbackArguments object |
4652 // -- ... | 4824 // -- ... |
4653 // -- r2 : api_function_address | 4825 // -- r5 : api_function_address |
4654 // ----------------------------------- | 4826 // ----------------------------------- |
4655 | 4827 |
4656 Register api_function_address = ApiGetterDescriptor::function_address(); | 4828 Register api_function_address = ApiGetterDescriptor::function_address(); |
4657 DCHECK(api_function_address.is(r2)); | 4829 DCHECK(api_function_address.is(r5)); |
4658 | 4830 |
4659 __ mov(r0, sp); // r0 = Handle<Name> | 4831 __ mr(r3, sp); // r0 = Handle<Name> |
4660 __ add(r1, r0, Operand(1 * kPointerSize)); // r1 = PCA | 4832 __ addi(r4, r3, Operand(1 * kPointerSize)); // r4 = PCA |
4661 | 4833 |
4662 const int kApiStackSpace = 1; | 4834 // If ABI passes Handles (pointer-sized struct) in a register: |
4835 // | |
4836 // Create 2 extra slots on stack: | |
4837 // [0] space for DirectCEntryStub's LR save | |
4838 // [1] AccessorInfo& | |
4839 // | |
4840 // Otherwise: | |
4841 // | |
4842 // Create 3 extra slots on stack: | |
4843 // [0] space for DirectCEntryStub's LR save | |
4844 // [1] copy of Handle (first arg) | |
4845 // [2] AccessorInfo& | |
4846 #if ABI_PASSES_HANDLES_IN_REGS | |
4847 const int kAccessorInfoSlot = kStackFrameExtraParamSlot + 1; | |
4848 const int kApiStackSpace = 2; | |
4849 #else | |
4850 const int kArg0Slot = kStackFrameExtraParamSlot + 1; | |
4851 const int kAccessorInfoSlot = kArg0Slot + 1; | |
4852 const int kApiStackSpace = 3; | |
4853 #endif | |
4854 | |
4663 FrameScope frame_scope(masm, StackFrame::MANUAL); | 4855 FrameScope frame_scope(masm, StackFrame::MANUAL); |
4664 __ EnterExitFrame(false, kApiStackSpace); | 4856 __ EnterExitFrame(false, kApiStackSpace); |
4665 | 4857 |
4858 #if !ABI_PASSES_HANDLES_IN_REGS | |
4859 // pass 1st arg by reference | |
4860 __ StoreP(r3, MemOperand(sp, kArg0Slot * kPointerSize)); | |
4861 __ addi(r3, sp, Operand(kArg0Slot * kPointerSize)); | |
4862 #endif | |
4863 | |
4666 // Create PropertyAccessorInfo instance on the stack above the exit frame with | 4864 // Create PropertyAccessorInfo instance on the stack above the exit frame with |
4667 // r1 (internal::Object** args_) as the data. | 4865 // r4 (internal::Object** args_) as the data. |
4668 __ str(r1, MemOperand(sp, 1 * kPointerSize)); | 4866 __ StoreP(r4, MemOperand(sp, kAccessorInfoSlot * kPointerSize)); |
4669 __ add(r1, sp, Operand(1 * kPointerSize)); // r1 = AccessorInfo& | 4867 // r4 = AccessorInfo& |
4868 __ addi(r4, sp, Operand(kAccessorInfoSlot * kPointerSize)); | |
4670 | 4869 |
4671 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; | 4870 const int kStackUnwindSpace = PropertyCallbackArguments::kArgsLength + 1; |
4672 | 4871 |
4673 ExternalReference thunk_ref = | 4872 ExternalReference thunk_ref = |
4674 ExternalReference::invoke_accessor_getter_callback(isolate()); | 4873 ExternalReference::invoke_accessor_getter_callback(isolate()); |
4675 __ CallApiFunctionAndReturn(api_function_address, | 4874 __ CallApiFunctionAndReturn(api_function_address, thunk_ref, |
4676 thunk_ref, | |
4677 kStackUnwindSpace, | 4875 kStackUnwindSpace, |
4678 MemOperand(fp, 6 * kPointerSize), | 4876 MemOperand(fp, 6 * kPointerSize), NULL); |
4679 NULL); | |
4680 } | 4877 } |
4681 | 4878 |
4682 | 4879 |
4683 #undef __ | 4880 #undef __ |
4881 } | |
4882 } // namespace v8::internal | |
4684 | 4883 |
4685 } } // namespace v8::internal | 4884 #endif // V8_TARGET_ARCH_PPC |
4686 | |
4687 #endif // V8_TARGET_ARCH_ARM | |
OLD | NEW |