Index: icu46/source/common/normalizer2impl.cpp |
=================================================================== |
--- icu46/source/common/normalizer2impl.cpp (revision 0) |
+++ icu46/source/common/normalizer2impl.cpp (revision 0) |
@@ -0,0 +1,2011 @@ |
+/* |
+******************************************************************************* |
+* |
+* Copyright (C) 2009-2010, International Business Machines |
+* Corporation and others. All Rights Reserved. |
+* |
+******************************************************************************* |
+* file name: normalizer2impl.cpp |
+* encoding: US-ASCII |
+* tab size: 8 (not used) |
+* indentation:4 |
+* |
+* created on: 2009nov22 |
+* created by: Markus W. Scherer |
+*/ |
+ |
+#include "unicode/utypes.h" |
+ |
+#if !UCONFIG_NO_NORMALIZATION |
+ |
+#include "unicode/normalizer2.h" |
+#include "unicode/udata.h" |
+#include "unicode/ustring.h" |
+#include "cmemory.h" |
+#include "mutex.h" |
+#include "normalizer2impl.h" |
+#include "uassert.h" |
+#include "uhash.h" |
+#include "uset_imp.h" |
+#include "utrie2.h" |
+#include "uvector.h" |
+ |
+U_NAMESPACE_BEGIN |
+ |
+// ReorderingBuffer -------------------------------------------------------- *** |
+ |
+UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { |
+ int32_t length=str.length(); |
+ start=str.getBuffer(destCapacity); |
+ if(start==NULL) { |
+ // getBuffer() already did str.setToBogus() |
+ errorCode=U_MEMORY_ALLOCATION_ERROR; |
+ return FALSE; |
+ } |
+ limit=start+length; |
+ remainingCapacity=str.getCapacity()-length; |
+ reorderStart=start; |
+ if(start==limit) { |
+ lastCC=0; |
+ } else { |
+ setIterator(); |
+ lastCC=previousCC(); |
+ // Set reorderStart after the last code point with cc<=1 if there is one. |
+ if(lastCC>1) { |
+ while(previousCC()>1) {} |
+ } |
+ reorderStart=codePointLimit; |
+ } |
+ return TRUE; |
+} |
+ |
+UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit) const { |
+ int32_t length=(int32_t)(limit-start); |
+ return |
+ length==(int32_t)(otherLimit-otherStart) && |
+ 0==u_memcmp(start, otherStart, length); |
+} |
+ |
+UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &errorCode) { |
+ if(remainingCapacity<2 && !resize(2, errorCode)) { |
+ return FALSE; |
+ } |
+ if(lastCC<=cc || cc==0) { |
+ limit[0]=U16_LEAD(c); |
+ limit[1]=U16_TRAIL(c); |
+ limit+=2; |
+ lastCC=cc; |
+ if(cc<=1) { |
+ reorderStart=limit; |
+ } |
+ } else { |
+ insert(c, cc); |
+ } |
+ remainingCapacity-=2; |
+ return TRUE; |
+} |
+ |
+UBool ReorderingBuffer::append(const UChar *s, int32_t length, |
+ uint8_t leadCC, uint8_t trailCC, |
+ UErrorCode &errorCode) { |
+ if(length==0) { |
+ return TRUE; |
+ } |
+ if(remainingCapacity<length && !resize(length, errorCode)) { |
+ return FALSE; |
+ } |
+ remainingCapacity-=length; |
+ if(lastCC<=leadCC || leadCC==0) { |
+ if(trailCC<=1) { |
+ reorderStart=limit+length; |
+ } else if(leadCC<=1) { |
+ reorderStart=limit+1; // Ok if not a code point boundary. |
+ } |
+ const UChar *sLimit=s+length; |
+ do { *limit++=*s++; } while(s!=sLimit); |
+ lastCC=trailCC; |
+ } else { |
+ int32_t i=0; |
+ UChar32 c; |
+ U16_NEXT(s, i, length, c); |
+ insert(c, leadCC); // insert first code point |
+ while(i<length) { |
+ U16_NEXT(s, i, length, c); |
+ if(i<length) { |
+ // s must be in NFD, otherwise we need to use getCC(). |
+ leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); |
+ } else { |
+ leadCC=trailCC; |
+ } |
+ append(c, leadCC, errorCode); |
+ } |
+ } |
+ return TRUE; |
+} |
+ |
+UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { |
+ int32_t cpLength=U16_LENGTH(c); |
+ if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { |
+ return FALSE; |
+ } |
+ remainingCapacity-=cpLength; |
+ if(cpLength==1) { |
+ *limit++=(UChar)c; |
+ } else { |
+ limit[0]=U16_LEAD(c); |
+ limit[1]=U16_TRAIL(c); |
+ limit+=2; |
+ } |
+ lastCC=0; |
+ reorderStart=limit; |
+ return TRUE; |
+} |
+ |
+UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UErrorCode &errorCode) { |
+ if(s==sLimit) { |
+ return TRUE; |
+ } |
+ int32_t length=(int32_t)(sLimit-s); |
+ if(remainingCapacity<length && !resize(length, errorCode)) { |
+ return FALSE; |
+ } |
+ u_memcpy(limit, s, length); |
+ limit+=length; |
+ remainingCapacity-=length; |
+ lastCC=0; |
+ reorderStart=limit; |
+ return TRUE; |
+} |
+ |
+void ReorderingBuffer::remove() { |
+ reorderStart=limit=start; |
+ remainingCapacity=str.getCapacity(); |
+ lastCC=0; |
+} |
+ |
+void ReorderingBuffer::removeSuffix(int32_t suffixLength) { |
+ if(suffixLength<(limit-start)) { |
+ limit-=suffixLength; |
+ remainingCapacity+=suffixLength; |
+ } else { |
+ limit=start; |
+ remainingCapacity=str.getCapacity(); |
+ } |
+ lastCC=0; |
+ reorderStart=limit; |
+} |
+ |
+UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { |
+ int32_t reorderStartIndex=(int32_t)(reorderStart-start); |
+ int32_t length=(int32_t)(limit-start); |
+ str.releaseBuffer(length); |
+ int32_t newCapacity=length+appendLength; |
+ int32_t doubleCapacity=2*str.getCapacity(); |
+ if(newCapacity<doubleCapacity) { |
+ newCapacity=doubleCapacity; |
+ } |
+ if(newCapacity<256) { |
+ newCapacity=256; |
+ } |
+ start=str.getBuffer(newCapacity); |
+ if(start==NULL) { |
+ // getBuffer() already did str.setToBogus() |
+ errorCode=U_MEMORY_ALLOCATION_ERROR; |
+ return FALSE; |
+ } |
+ reorderStart=start+reorderStartIndex; |
+ limit=start+length; |
+ remainingCapacity=str.getCapacity()-length; |
+ return TRUE; |
+} |
+ |
+void ReorderingBuffer::skipPrevious() { |
+ codePointLimit=codePointStart; |
+ UChar c=*--codePointStart; |
+ if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1))) { |
+ --codePointStart; |
+ } |
+} |
+ |
+uint8_t ReorderingBuffer::previousCC() { |
+ codePointLimit=codePointStart; |
+ if(reorderStart>=codePointStart) { |
+ return 0; |
+ } |
+ UChar32 c=*--codePointStart; |
+ if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) { |
+ return 0; |
+ } |
+ |
+ UChar c2; |
+ if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStart-1))) { |
+ --codePointStart; |
+ c=U16_GET_SUPPLEMENTARY(c2, c); |
+ } |
+ return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); |
+} |
+ |
+// Inserts c somewhere before the last character. |
+// Requires 0<cc<lastCC which implies reorderStart<limit. |
+void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { |
+ for(setIterator(), skipPrevious(); previousCC()>cc;) {} |
+ // insert c at codePointLimit, after the character with prevCC<=cc |
+ UChar *q=limit; |
+ UChar *r=limit+=U16_LENGTH(c); |
+ do { |
+ *--r=*--q; |
+ } while(codePointLimit!=q); |
+ writeCodePoint(q, c); |
+ if(cc<=1) { |
+ reorderStart=r; |
+ } |
+} |
+ |
+// Normalizer2Impl --------------------------------------------------------- *** |
+ |
+struct CanonIterData : public UMemory { |
+ CanonIterData(UErrorCode &errorCode); |
+ ~CanonIterData(); |
+ void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode); |
+ UTrie2 *trie; |
+ UVector canonStartSets; // contains UnicodeSet * |
+}; |
+ |
+Normalizer2Impl::~Normalizer2Impl() { |
+ udata_close(memory); |
+ utrie2_close(normTrie); |
+ UTrie2Singleton(fcdTrieSingleton).deleteInstance(); |
+ delete (CanonIterData *)canonIterDataSingleton.fInstance; |
+} |
+ |
+UBool U_CALLCONV |
+Normalizer2Impl::isAcceptable(void *context, |
+ const char * /* type */, const char * /*name*/, |
+ const UDataInfo *pInfo) { |
+ if( |
+ pInfo->size>=20 && |
+ pInfo->isBigEndian==U_IS_BIG_ENDIAN && |
+ pInfo->charsetFamily==U_CHARSET_FAMILY && |
+ pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
+ pInfo->dataFormat[1]==0x72 && |
+ pInfo->dataFormat[2]==0x6d && |
+ pInfo->dataFormat[3]==0x32 && |
+ pInfo->formatVersion[0]==1 |
+ ) { |
+ Normalizer2Impl *me=(Normalizer2Impl *)context; |
+ uprv_memcpy(me->dataVersion, pInfo->dataVersion, 4); |
+ return TRUE; |
+ } else { |
+ return FALSE; |
+ } |
+} |
+ |
+void |
+Normalizer2Impl::load(const char *packageName, const char *name, UErrorCode &errorCode) { |
+ if(U_FAILURE(errorCode)) { |
+ return; |
+ } |
+ memory=udata_openChoice(packageName, "nrm", name, isAcceptable, this, &errorCode); |
+ if(U_FAILURE(errorCode)) { |
+ return; |
+ } |
+ const uint8_t *inBytes=(const uint8_t *)udata_getMemory(memory); |
+ const int32_t *inIndexes=(const int32_t *)inBytes; |
+ int32_t indexesLength=inIndexes[IX_NORM_TRIE_OFFSET]/4; |
+ if(indexesLength<=IX_MIN_MAYBE_YES) { |
+ errorCode=U_INVALID_FORMAT_ERROR; // Not enough indexes. |
+ return; |
+ } |
+ |
+ minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP]; |
+ minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP]; |
+ |
+ minYesNo=inIndexes[IX_MIN_YES_NO]; |
+ minNoNo=inIndexes[IX_MIN_NO_NO]; |
+ limitNoNo=inIndexes[IX_LIMIT_NO_NO]; |
+ minMaybeYes=inIndexes[IX_MIN_MAYBE_YES]; |
+ |
+ int32_t offset=inIndexes[IX_NORM_TRIE_OFFSET]; |
+ int32_t nextOffset=inIndexes[IX_EXTRA_DATA_OFFSET]; |
+ normTrie=utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, |
+ inBytes+offset, nextOffset-offset, NULL, |
+ &errorCode); |
+ if(U_FAILURE(errorCode)) { |
+ return; |
+ } |
+ |
+ offset=nextOffset; |
+ maybeYesCompositions=(const uint16_t *)(inBytes+offset); |
+ extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes); |
+} |
+ |
+uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, const UChar *cpLimit) const { |
+ UChar32 c; |
+ if(cpStart==(cpLimit-1)) { |
+ c=*cpStart; |
+ } else { |
+ c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]); |
+ } |
+ uint16_t prevNorm16=getNorm16(c); |
+ if(prevNorm16<=minYesNo) { |
+ return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0 |
+ } else { |
+ return (uint8_t)(*getMapping(prevNorm16)>>8); // tccc from yesNo |
+ } |
+} |
+ |
+U_CDECL_BEGIN |
+ |
+static UBool U_CALLCONV |
+enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uint32_t /*value*/) { |
+ /* add the start code point to the USet */ |
+ const USetAdder *sa=(const USetAdder *)context; |
+ sa->add(sa->set, start); |
+ return TRUE; |
+} |
+ |
+static uint32_t U_CALLCONV |
+segmentStarterMapper(const void * /*context*/, uint32_t value) { |
+ return value&CANON_NOT_SEGMENT_STARTER; |
+} |
+ |
+U_CDECL_END |
+ |
+void |
+Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode*/) const { |
+ /* add the start code point of each same-value range of each trie */ |
+ utrie2_enum(normTrie, NULL, enumPropertyStartsRange, sa); |
+ |
+ /* add Hangul LV syllables and LV+1 because of skippables */ |
+ for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_COUNT) { |
+ sa->add(sa->set, c); |
+ sa->add(sa->set, c+1); |
+ } |
+ sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with other properties */ |
+} |
+ |
+void |
+Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &errorCode) const { |
+ /* add the start code point of each same-value range of the canonical iterator data trie */ |
+ if(ensureCanonIterData(errorCode)) { |
+ // currently only used for the SEGMENT_STARTER property |
+ utrie2_enum(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, |
+ segmentStarterMapper, enumPropertyStartsRange, sa); |
+ } |
+} |
+ |
+const UChar * |
+Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, |
+ UChar32 minNeedDataCP, |
+ ReorderingBuffer *buffer, |
+ UErrorCode &errorCode) const { |
+ // Make some effort to support NUL-terminated strings reasonably. |
+ // Take the part of the fast quick check loop that does not look up |
+ // data and check the first part of the string. |
+ // After this prefix, determine the string length to simplify the rest |
+ // of the code. |
+ const UChar *prevSrc=src; |
+ UChar c; |
+ while((c=*src++)<minNeedDataCP && c!=0) {} |
+ // Back out the last character for full processing. |
+ // Copy this prefix. |
+ if(--src!=prevSrc) { |
+ if(buffer!=NULL) { |
+ buffer->appendZeroCC(prevSrc, src, errorCode); |
+ } |
+ } |
+ return src; |
+} |
+ |
+// Dual functionality: |
+// buffer!=NULL: normalize |
+// buffer==NULL: isNormalized/spanQuickCheckYes |
+const UChar * |
+Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
+ ReorderingBuffer *buffer, |
+ UErrorCode &errorCode) const { |
+ UChar32 minNoCP=minDecompNoCP; |
+ if(limit==NULL) { |
+ src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); |
+ if(U_FAILURE(errorCode)) { |
+ return src; |
+ } |
+ limit=u_strchr(src, 0); |
+ } |
+ |
+ const UChar *prevSrc; |
+ UChar32 c=0; |
+ uint16_t norm16=0; |
+ |
+ // only for quick check |
+ const UChar *prevBoundary=src; |
+ uint8_t prevCC=0; |
+ |
+ for(;;) { |
+ // count code units below the minimum or with irrelevant data for the quick check |
+ for(prevSrc=src; src!=limit;) { |
+ if( (c=*src)<minNoCP || |
+ isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
+ ) { |
+ ++src; |
+ } else if(!U16_IS_SURROGATE(c)) { |
+ break; |
+ } else { |
+ UChar c2; |
+ if(U16_IS_SURROGATE_LEAD(c)) { |
+ if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
+ c=U16_GET_SUPPLEMENTARY(c, c2); |
+ } |
+ } else /* trail surrogate */ { |
+ if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
+ --src; |
+ c=U16_GET_SUPPLEMENTARY(c2, c); |
+ } |
+ } |
+ if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) { |
+ src+=U16_LENGTH(c); |
+ } else { |
+ break; |
+ } |
+ } |
+ } |
+ // copy these code units all at once |
+ if(src!=prevSrc) { |
+ if(buffer!=NULL) { |
+ if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { |
+ break; |
+ } |
+ } else { |
+ prevCC=0; |
+ prevBoundary=src; |
+ } |
+ } |
+ if(src==limit) { |
+ break; |
+ } |
+ |
+ // Check one above-minimum, relevant code point. |
+ src+=U16_LENGTH(c); |
+ if(buffer!=NULL) { |
+ if(!decompose(c, norm16, *buffer, errorCode)) { |
+ break; |
+ } |
+ } else { |
+ if(isDecompYes(norm16)) { |
+ uint8_t cc=getCCFromYesOrMaybe(norm16); |
+ if(prevCC<=cc || cc==0) { |
+ prevCC=cc; |
+ if(cc<=1) { |
+ prevBoundary=src; |
+ } |
+ continue; |
+ } |
+ } |
+ return prevBoundary; // "no" or cc out of order |
+ } |
+ } |
+ return src; |
+} |
+ |
+// Decompose a short piece of text which is likely to contain characters that |
+// fail the quick check loop and/or where the quick check loop's overhead |
+// is unlikely to be amortized. |
+// Called by the compose() and makeFCD() implementations. |
+UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, |
+ ReorderingBuffer &buffer, |
+ UErrorCode &errorCode) const { |
+ while(src<limit) { |
+ UChar32 c; |
+ uint16_t norm16; |
+ UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16); |
+ if(!decompose(c, norm16, buffer, errorCode)) { |
+ return FALSE; |
+ } |
+ } |
+ return TRUE; |
+} |
+ |
+UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, |
+ ReorderingBuffer &buffer, |
+ UErrorCode &errorCode) const { |
+ // Only loops for 1:1 algorithmic mappings. |
+ for(;;) { |
+ // get the decomposition and the lead and trail cc's |
+ if(isDecompYes(norm16)) { |
+ // c does not decompose |
+ return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); |
+ } else if(isHangul(norm16)) { |
+ // Hangul syllable: decompose algorithmically |
+ UChar jamos[3]; |
+ return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos), errorCode); |
+ } else if(isDecompNoAlgorithmic(norm16)) { |
+ c=mapAlgorithmic(c, norm16); |
+ norm16=getNorm16(c); |
+ } else { |
+ // c decomposes, get everything from the variable-length extra data |
+ const uint16_t *mapping=getMapping(norm16); |
+ uint16_t firstUnit=*mapping++; |
+ int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
+ uint8_t leadCC, trailCC; |
+ trailCC=(uint8_t)(firstUnit>>8); |
+ if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
+ leadCC=(uint8_t)(*mapping++>>8); |
+ } else { |
+ leadCC=0; |
+ } |
+ return buffer.append((const UChar *)mapping, length, leadCC, trailCC, errorCode); |
+ } |
+ } |
+} |
+ |
+const UChar * |
+Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) const { |
+ const UChar *decomp=NULL; |
+ uint16_t norm16; |
+ for(;;) { |
+ if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { |
+ // c does not decompose |
+ return decomp; |
+ } else if(isHangul(norm16)) { |
+ // Hangul syllable: decompose algorithmically |
+ length=Hangul::decompose(c, buffer); |
+ return buffer; |
+ } else if(isDecompNoAlgorithmic(norm16)) { |
+ c=mapAlgorithmic(c, norm16); |
+ decomp=buffer; |
+ length=0; |
+ U16_APPEND_UNSAFE(buffer, length, c); |
+ } else { |
+ // c decomposes, get everything from the variable-length extra data |
+ const uint16_t *mapping=getMapping(norm16); |
+ uint16_t firstUnit=*mapping++; |
+ length=firstUnit&MAPPING_LENGTH_MASK; |
+ if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
+ ++mapping; |
+ } |
+ return (const UChar *)mapping; |
+ } |
+ } |
+} |
+ |
+void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, |
+ UBool doDecompose, |
+ ReorderingBuffer &buffer, |
+ UErrorCode &errorCode) const { |
+ if(doDecompose) { |
+ decompose(src, limit, &buffer, errorCode); |
+ return; |
+ } |
+ // Just merge the strings at the boundary. |
+ ForwardUTrie2StringIterator iter(normTrie, src, limit); |
+ uint8_t firstCC, prevCC, cc; |
+ firstCC=prevCC=cc=getCC(iter.next16()); |
+ while(cc!=0) { |
+ prevCC=cc; |
+ cc=getCC(iter.next16()); |
+ }; |
+ buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, errorCode) && |
+ buffer.appendZeroCC(iter.codePointStart, limit, errorCode); |
+} |
+ |
+// Note: hasDecompBoundary() could be implemented as aliases to |
+// hasFCDBoundaryBefore() and hasFCDBoundaryAfter() |
+// at the cost of building the FCD trie for a decomposition normalizer. |
+UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const { |
+ for(;;) { |
+ if(c<minDecompNoCP) { |
+ return TRUE; |
+ } |
+ uint16_t norm16=getNorm16(c); |
+ if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) { |
+ return TRUE; |
+ } else if(norm16>MIN_NORMAL_MAYBE_YES) { |
+ return FALSE; // ccc!=0 |
+ } else if(isDecompNoAlgorithmic(norm16)) { |
+ c=mapAlgorithmic(c, norm16); |
+ } else { |
+ // c decomposes, get everything from the variable-length extra data |
+ const uint16_t *mapping=getMapping(norm16); |
+ uint16_t firstUnit=*mapping++; |
+ if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
+ return FALSE; |
+ } |
+ if(!before) { |
+ // decomp after-boundary: same as hasFCDBoundaryAfter(), |
+ // fcd16<=1 || trailCC==0 |
+ if(firstUnit>0x1ff) { |
+ return FALSE; // trailCC>1 |
+ } |
+ if(firstUnit<=0xff) { |
+ return TRUE; // trailCC==0 |
+ } |
+ // if(trailCC==1) test leadCC==0, same as checking for before-boundary |
+ } |
+ // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
+ return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*mapping&0xff00)==0; |
+ } |
+ } |
+} |
+ |
+/* |
+ * Finds the recomposition result for |
+ * a forward-combining "lead" character, |
+ * specified with a pointer to its compositions list, |
+ * and a backward-combining "trail" character. |
+ * |
+ * If the lead and trail characters combine, then this function returns |
+ * the following "compositeAndFwd" value: |
+ * Bits 21..1 composite character |
+ * Bit 0 set if the composite is a forward-combining starter |
+ * otherwise it returns -1. |
+ * |
+ * The compositions list has (trail, compositeAndFwd) pair entries, |
+ * encoded as either pairs or triples of 16-bit units. |
+ * The last entry has the high bit of its first unit set. |
+ * |
+ * The list is sorted by ascending trail characters (there are no duplicates). |
+ * A linear search is used. |
+ * |
+ * See normalizer2impl.h for a more detailed description |
+ * of the compositions list format. |
+ */ |
+int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { |
+ uint16_t key1, firstUnit; |
+ if(trail<COMP_1_TRAIL_LIMIT) { |
+ // trail character is 0..33FF |
+ // result entry may have 2 or 3 units |
+ key1=(uint16_t)(trail<<1); |
+ while(key1>(firstUnit=*list)) { |
+ list+=2+(firstUnit&COMP_1_TRIPLE); |
+ } |
+ if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
+ if(firstUnit&COMP_1_TRIPLE) { |
+ return ((int32_t)list[1]<<16)|list[2]; |
+ } else { |
+ return list[1]; |
+ } |
+ } |
+ } else { |
+ // trail character is 3400..10FFFF |
+ // result entry has 3 units |
+ key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ |
+ (((trail>>COMP_1_TRAIL_SHIFT))& |
+ ~COMP_1_TRIPLE)); |
+ uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); |
+ uint16_t secondUnit; |
+ for(;;) { |
+ if(key1>(firstUnit=*list)) { |
+ list+=2+(firstUnit&COMP_1_TRIPLE); |
+ } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
+ if(key2>(secondUnit=list[1])) { |
+ if(firstUnit&COMP_1_LAST_TUPLE) { |
+ break; |
+ } else { |
+ list+=3; |
+ } |
+ } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { |
+ return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
+ } else { |
+ break; |
+ } |
+ } else { |
+ break; |
+ } |
+ } |
+ } |
+ return -1; |
+} |
+ |
+/** |
+ * @param list some character's compositions list |
+ * @param set recursively receives the composites from these compositions |
+ */ |
+void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const { |
+ uint16_t firstUnit; |
+ int32_t compositeAndFwd; |
+ do { |
+ firstUnit=*list; |
+ if((firstUnit&COMP_1_TRIPLE)==0) { |
+ compositeAndFwd=list[1]; |
+ list+=2; |
+ } else { |
+ compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
+ list+=3; |
+ } |
+ UChar32 composite=compositeAndFwd>>1; |
+ if((compositeAndFwd&1)!=0) { |
+ addComposites(getCompositionsListForComposite(getNorm16(composite)), set); |
+ } |
+ set.add(composite); |
+ } while((firstUnit&COMP_1_LAST_TUPLE)==0); |
+} |
+ |
+/* |
+ * Recomposes the buffer text starting at recomposeStartIndex |
+ * (which is in NFD - decomposed and canonically ordered), |
+ * and truncates the buffer contents. |
+ * |
+ * Note that recomposition never lengthens the text: |
+ * Any character consists of either one or two code units; |
+ * a composition may contain at most one more code unit than the original starter, |
+ * while the combining mark that is removed has at least one code unit. |
+ */ |
+void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStartIndex, |
+ UBool onlyContiguous) const { |
+ UChar *p=buffer.getStart()+recomposeStartIndex; |
+ UChar *limit=buffer.getLimit(); |
+ if(p==limit) { |
+ return; |
+ } |
+ |
+ UChar *starter, *pRemove, *q, *r; |
+ const uint16_t *compositionsList; |
+ UChar32 c, compositeAndFwd; |
+ uint16_t norm16; |
+ uint8_t cc, prevCC; |
+ UBool starterIsSupplementary; |
+ |
+ // Some of the following variables are not used until we have a forward-combining starter |
+ // and are only initialized now to avoid compiler warnings. |
+ compositionsList=NULL; // used as indicator for whether we have a forward-combining starter |
+ starter=NULL; |
+ starterIsSupplementary=FALSE; |
+ prevCC=0; |
+ |
+ for(;;) { |
+ UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16); |
+ cc=getCCFromYesOrMaybe(norm16); |
+ if( // this character combines backward and |
+ isMaybe(norm16) && |
+ // we have seen a starter that combines forward and |
+ compositionsList!=NULL && |
+ // the backward-combining character is not blocked |
+ (prevCC<cc || prevCC==0) |
+ ) { |
+ if(isJamoVT(norm16)) { |
+ // c is a Jamo V/T, see if we can compose it with the previous character. |
+ if(c<Hangul::JAMO_T_BASE) { |
+ // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. |
+ UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); |
+ if(prev<Hangul::JAMO_L_COUNT) { |
+ pRemove=p-1; |
+ UChar syllable=(UChar) |
+ (Hangul::HANGUL_BASE+ |
+ (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
+ Hangul::JAMO_T_COUNT); |
+ UChar t; |
+ if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { |
+ ++p; |
+ syllable+=t; // The next character was a Jamo T. |
+ } |
+ *starter=syllable; |
+ // remove the Jamo V/T |
+ q=pRemove; |
+ r=p; |
+ while(r<limit) { |
+ *q++=*r++; |
+ } |
+ limit=q; |
+ p=pRemove; |
+ } |
+ } |
+ /* |
+ * No "else" for Jamo T: |
+ * Since the input is in NFD, there are no Hangul LV syllables that |
+ * a Jamo T could combine with. |
+ * All Jamo Ts are combined above when handling Jamo Vs. |
+ */ |
+ if(p==limit) { |
+ break; |
+ } |
+ compositionsList=NULL; |
+ continue; |
+ } else if((compositeAndFwd=combine(compositionsList, c))>=0) { |
+ // The starter and the combining mark (c) do combine. |
+ UChar32 composite=compositeAndFwd>>1; |
+ |
+ // Replace the starter with the composite, remove the combining mark. |
+ pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the combining mark |
+ if(starterIsSupplementary) { |
+ if(U_IS_SUPPLEMENTARY(composite)) { |
+ // both are supplementary |
+ starter[0]=U16_LEAD(composite); |
+ starter[1]=U16_TRAIL(composite); |
+ } else { |
+ *starter=(UChar)composite; |
+ // The composite is shorter than the starter, |
+ // move the intermediate characters forward one. |
+ starterIsSupplementary=FALSE; |
+ q=starter+1; |
+ r=q+1; |
+ while(r<pRemove) { |
+ *q++=*r++; |
+ } |
+ --pRemove; |
+ } |
+ } else if(U_IS_SUPPLEMENTARY(composite)) { |
+ // The composite is longer than the starter, |
+ // move the intermediate characters back one. |
+ starterIsSupplementary=TRUE; |
+ ++starter; // temporarily increment for the loop boundary |
+ q=pRemove; |
+ r=++pRemove; |
+ while(starter<q) { |
+ *--r=*--q; |
+ } |
+ *starter=U16_TRAIL(composite); |
+ *--starter=U16_LEAD(composite); // undo the temporary increment |
+ } else { |
+ // both are on the BMP |
+ *starter=(UChar)composite; |
+ } |
+ |
+ /* remove the combining mark by moving the following text over it */ |
+ if(pRemove<p) { |
+ q=pRemove; |
+ r=p; |
+ while(r<limit) { |
+ *q++=*r++; |
+ } |
+ limit=q; |
+ p=pRemove; |
+ } |
+ // Keep prevCC because we removed the combining mark. |
+ |
+ if(p==limit) { |
+ break; |
+ } |
+ // Is the composite a starter that combines forward? |
+ if(compositeAndFwd&1) { |
+ compositionsList= |
+ getCompositionsListForComposite(getNorm16(composite)); |
+ } else { |
+ compositionsList=NULL; |
+ } |
+ |
+ // We combined; continue with looking for compositions. |
+ continue; |
+ } |
+ } |
+ |
+ // no combination this time |
+ prevCC=cc; |
+ if(p==limit) { |
+ break; |
+ } |
+ |
+ // If c did not combine, then check if it is a starter. |
+ if(cc==0) { |
+ // Found a new starter. |
+ if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL) { |
+ // It may combine with something, prepare for it. |
+ if(U_IS_BMP(c)) { |
+ starterIsSupplementary=FALSE; |
+ starter=p-1; |
+ } else { |
+ starterIsSupplementary=TRUE; |
+ starter=p-2; |
+ } |
+ } |
+ } else if(onlyContiguous) { |
+ // FCC: no discontiguous compositions; any intervening character blocks. |
+ compositionsList=NULL; |
+ } |
+ } |
+ buffer.setReorderingLimit(limit); |
+} |
+ |
+// Very similar to composeQuickCheck(): Make the same changes in both places if relevant. |
+// doCompose: normalize |
+// !doCompose: isNormalized (buffer must be empty and initialized) |
+UBool |
+Normalizer2Impl::compose(const UChar *src, const UChar *limit, |
+ UBool onlyContiguous, |
+ UBool doCompose, |
+ ReorderingBuffer &buffer, |
+ UErrorCode &errorCode) const { |
+ /* |
+ * prevBoundary points to the last character before the current one |
+ * that has a composition boundary before it with ccc==0 and quick check "yes". |
+ * Keeping track of prevBoundary saves us looking for a composition boundary |
+ * when we find a "no" or "maybe". |
+ * |
+ * When we back out from prevSrc back to prevBoundary, |
+ * then we also remove those same characters (which had been simply copied |
+ * or canonically-order-inserted) from the ReorderingBuffer. |
+ * Therefore, at all times, the [prevBoundary..prevSrc[ source units |
+ * must correspond 1:1 to destination units at the end of the destination buffer. |
+ */ |
+ const UChar *prevBoundary=src; |
+ UChar32 minNoMaybeCP=minCompNoMaybeCP; |
+ if(limit==NULL) { |
+ src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, |
+ doCompose ? &buffer : NULL, |
+ errorCode); |
+ if(U_FAILURE(errorCode)) { |
+ return FALSE; |
+ } |
+ if(prevBoundary<src) { |
+ // Set prevBoundary to the last character in the prefix. |
+ prevBoundary=src-1; |
+ } |
+ limit=u_strchr(src, 0); |
+ } |
+ |
+ const UChar *prevSrc; |
+ UChar32 c=0; |
+ uint16_t norm16=0; |
+ |
+ // only for isNormalized |
+ uint8_t prevCC=0; |
+ |
+ for(;;) { |
+ // count code units below the minimum or with irrelevant data for the quick check |
+ for(prevSrc=src; src!=limit;) { |
+ if( (c=*src)<minNoMaybeCP || |
+ isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
+ ) { |
+ ++src; |
+ } else if(!U16_IS_SURROGATE(c)) { |
+ break; |
+ } else { |
+ UChar c2; |
+ if(U16_IS_SURROGATE_LEAD(c)) { |
+ if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
+ c=U16_GET_SUPPLEMENTARY(c, c2); |
+ } |
+ } else /* trail surrogate */ { |
+ if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
+ --src; |
+ c=U16_GET_SUPPLEMENTARY(c2, c); |
+ } |
+ } |
+ if(isCompYesAndZeroCC(norm16=getNorm16(c))) { |
+ src+=U16_LENGTH(c); |
+ } else { |
+ break; |
+ } |
+ } |
+ } |
+ // copy these code units all at once |
+ if(src!=prevSrc) { |
+ if(doCompose) { |
+ if(!buffer.appendZeroCC(prevSrc, src, errorCode)) { |
+ break; |
+ } |
+ } else { |
+ prevCC=0; |
+ } |
+ if(src==limit) { |
+ break; |
+ } |
+ // Set prevBoundary to the last character in the quick check loop. |
+ prevBoundary=src-1; |
+ if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && |
+ U16_IS_LEAD(*(prevBoundary-1)) |
+ ) { |
+ --prevBoundary; |
+ } |
+ // The start of the current character (c). |
+ prevSrc=src; |
+ } else if(src==limit) { |
+ break; |
+ } |
+ |
+ src+=U16_LENGTH(c); |
+ /* |
+ * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
+ * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) |
+ * or has ccc!=0. |
+ * Check for Jamo V/T, then for regular characters. |
+ * c is not a Hangul syllable or Jamo L because those have "yes" properties. |
+ */ |
+ if(isJamoVT(norm16) && prevBoundary!=prevSrc) { |
+ UChar prev=*(prevSrc-1); |
+ UBool needToDecompose=FALSE; |
+ if(c<Hangul::JAMO_T_BASE) { |
+ // c is a Jamo Vowel, compose with previous Jamo L and following Jamo T. |
+ prev=(UChar)(prev-Hangul::JAMO_L_BASE); |
+ if(prev<Hangul::JAMO_L_COUNT) { |
+ if(!doCompose) { |
+ return FALSE; |
+ } |
+ UChar syllable=(UChar) |
+ (Hangul::HANGUL_BASE+ |
+ (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
+ Hangul::JAMO_T_COUNT); |
+ UChar t; |
+ if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangul::JAMO_T_COUNT) { |
+ ++src; |
+ syllable+=t; // The next character was a Jamo T. |
+ prevBoundary=src; |
+ buffer.setLastChar(syllable); |
+ continue; |
+ } |
+ // If we see L+V+x where x!=T then we drop to the slow path, |
+ // decompose and recompose. |
+ // This is to deal with NFKC finding normal L and V but a |
+ // compatibility variant of a T. We need to either fully compose that |
+ // combination here (which would complicate the code and may not work |
+ // with strange custom data) or use the slow path -- or else our replacing |
+ // two input characters (L+V) with one output character (LV syllable) |
+ // would violate the invariant that [prevBoundary..prevSrc[ has the same |
+ // length as what we appended to the buffer since prevBoundary. |
+ needToDecompose=TRUE; |
+ } |
+ } else if(Hangul::isHangulWithoutJamoT(prev)) { |
+ // c is a Jamo Trailing consonant, |
+ // compose with previous Hangul LV that does not contain a Jamo T. |
+ if(!doCompose) { |
+ return FALSE; |
+ } |
+ buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE)); |
+ prevBoundary=src; |
+ continue; |
+ } |
+ if(!needToDecompose) { |
+ // The Jamo V/T did not compose into a Hangul syllable. |
+ if(doCompose) { |
+ if(!buffer.appendBMP((UChar)c, 0, errorCode)) { |
+ break; |
+ } |
+ } else { |
+ prevCC=0; |
+ } |
+ continue; |
+ } |
+ } |
+ /* |
+ * Source buffer pointers: |
+ * |
+ * all done quick check current char not yet |
+ * "yes" but (c) processed |
+ * may combine |
+ * forward |
+ * [-------------[-------------[-------------[-------------[ |
+ * | | | | | |
+ * orig. src prevBoundary prevSrc src limit |
+ * |
+ * |
+ * Destination buffer pointers inside the ReorderingBuffer: |
+ * |
+ * all done might take not filled yet |
+ * characters for |
+ * reordering |
+ * [-------------[-------------[-------------[ |
+ * | | | | |
+ * start reorderStart limit | |
+ * +remainingCap.+ |
+ */ |
+ if(norm16>=MIN_YES_YES_WITH_CC) { |
+ uint8_t cc=(uint8_t)norm16; // cc!=0 |
+ if( onlyContiguous && // FCC |
+ (doCompose ? buffer.getLastCC() : prevCC)==0 && |
+ prevBoundary<prevSrc && |
+ // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that |
+ // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) |
+ // passed the quick check "yes && ccc==0" test. |
+ // Check whether the last character was a "yesYes" or a "yesNo". |
+ // If a "yesNo", then we get its trailing ccc from its |
+ // mapping and check for canonical order. |
+ // All other cases are ok. |
+ getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc |
+ ) { |
+ // Fails FCD test, need to decompose and contiguously recompose. |
+ if(!doCompose) { |
+ return FALSE; |
+ } |
+ } else if(doCompose) { |
+ if(!buffer.append(c, cc, errorCode)) { |
+ break; |
+ } |
+ continue; |
+ } else if(prevCC<=cc) { |
+ prevCC=cc; |
+ continue; |
+ } else { |
+ return FALSE; |
+ } |
+ } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) { |
+ return FALSE; |
+ } |
+ |
+ /* |
+ * Find appropriate boundaries around this character, |
+ * decompose the source text from between the boundaries, |
+ * and recompose it. |
+ * |
+ * We may need to remove the last few characters from the ReorderingBuffer |
+ * to account for source text that was copied or appended |
+ * but needs to take part in the recomposition. |
+ */ |
+ |
+ /* |
+ * Find the last composition boundary in [prevBoundary..src[. |
+ * It is either the decomposition of the current character (at prevSrc), |
+ * or prevBoundary. |
+ */ |
+ if(hasCompBoundaryBefore(c, norm16)) { |
+ prevBoundary=prevSrc; |
+ } else if(doCompose) { |
+ buffer.removeSuffix((int32_t)(prevSrc-prevBoundary)); |
+ } |
+ |
+ // Find the next composition boundary in [src..limit[ - |
+ // modifies src to point to the next starter. |
+ src=(UChar *)findNextCompBoundary(src, limit); |
+ |
+ // Decompose [prevBoundary..src[ into the buffer and then recompose that part of it. |
+ int32_t recomposeStartIndex=buffer.length(); |
+ if(!decomposeShort(prevBoundary, src, buffer, errorCode)) { |
+ break; |
+ } |
+ recompose(buffer, recomposeStartIndex, onlyContiguous); |
+ if(!doCompose) { |
+ if(!buffer.equals(prevBoundary, src)) { |
+ return FALSE; |
+ } |
+ buffer.remove(); |
+ prevCC=0; |
+ } |
+ |
+ // Move to the next starter. We never need to look back before this point again. |
+ prevBoundary=src; |
+ } |
+ return TRUE; |
+} |
+ |
+// Very similar to compose(): Make the same changes in both places if relevant. |
+// pQCResult==NULL: spanQuickCheckYes |
+// pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) |
+const UChar * |
+Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, |
+ UBool onlyContiguous, |
+ UNormalizationCheckResult *pQCResult) const { |
+ /* |
+ * prevBoundary points to the last character before the current one |
+ * that has a composition boundary before it with ccc==0 and quick check "yes". |
+ */ |
+ const UChar *prevBoundary=src; |
+ UChar32 minNoMaybeCP=minCompNoMaybeCP; |
+ if(limit==NULL) { |
+ UErrorCode errorCode=U_ZERO_ERROR; |
+ src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); |
+ if(prevBoundary<src) { |
+ // Set prevBoundary to the last character in the prefix. |
+ prevBoundary=src-1; |
+ } |
+ limit=u_strchr(src, 0); |
+ } |
+ |
+ const UChar *prevSrc; |
+ UChar32 c=0; |
+ uint16_t norm16=0; |
+ uint8_t prevCC=0; |
+ |
+ for(;;) { |
+ // count code units below the minimum or with irrelevant data for the quick check |
+ for(prevSrc=src;;) { |
+ if(src==limit) { |
+ return src; |
+ } |
+ if( (c=*src)<minNoMaybeCP || |
+ isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(normTrie, c)) |
+ ) { |
+ ++src; |
+ } else if(!U16_IS_SURROGATE(c)) { |
+ break; |
+ } else { |
+ UChar c2; |
+ if(U16_IS_SURROGATE_LEAD(c)) { |
+ if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
+ c=U16_GET_SUPPLEMENTARY(c, c2); |
+ } |
+ } else /* trail surrogate */ { |
+ if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
+ --src; |
+ c=U16_GET_SUPPLEMENTARY(c2, c); |
+ } |
+ } |
+ if(isCompYesAndZeroCC(norm16=getNorm16(c))) { |
+ src+=U16_LENGTH(c); |
+ } else { |
+ break; |
+ } |
+ } |
+ } |
+ if(src!=prevSrc) { |
+ // Set prevBoundary to the last character in the quick check loop. |
+ prevBoundary=src-1; |
+ if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && |
+ U16_IS_LEAD(*(prevBoundary-1)) |
+ ) { |
+ --prevBoundary; |
+ } |
+ prevCC=0; |
+ // The start of the current character (c). |
+ prevSrc=src; |
+ } |
+ |
+ src+=U16_LENGTH(c); |
+ /* |
+ * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
+ * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backward) |
+ * or has ccc!=0. |
+ */ |
+ if(isMaybeOrNonZeroCC(norm16)) { |
+ uint8_t cc=getCCFromYesOrMaybe(norm16); |
+ if( onlyContiguous && // FCC |
+ cc!=0 && |
+ prevCC==0 && |
+ prevBoundary<prevSrc && |
+ // prevCC==0 && prevBoundary<prevSrc tell us that |
+ // [prevBoundary..prevSrc[ (which is exactly one character under these conditions) |
+ // passed the quick check "yes && ccc==0" test. |
+ // Check whether the last character was a "yesYes" or a "yesNo". |
+ // If a "yesNo", then we get its trailing ccc from its |
+ // mapping and check for canonical order. |
+ // All other cases are ok. |
+ getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc |
+ ) { |
+ // Fails FCD test. |
+ } else if(prevCC<=cc || cc==0) { |
+ prevCC=cc; |
+ if(norm16<MIN_YES_YES_WITH_CC) { |
+ if(pQCResult!=NULL) { |
+ *pQCResult=UNORM_MAYBE; |
+ } else { |
+ return prevBoundary; |
+ } |
+ } |
+ continue; |
+ } |
+ } |
+ if(pQCResult!=NULL) { |
+ *pQCResult=UNORM_NO; |
+ } |
+ return prevBoundary; |
+ } |
+} |
+ |
+void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, |
+ UBool doCompose, |
+ UBool onlyContiguous, |
+ ReorderingBuffer &buffer, |
+ UErrorCode &errorCode) const { |
+ if(!buffer.isEmpty()) { |
+ const UChar *firstStarterInSrc=findNextCompBoundary(src, limit); |
+ if(src!=firstStarterInSrc) { |
+ const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getStart(), |
+ buffer.getLimit()); |
+ UnicodeString middle(lastStarterInDest, |
+ (int32_t)(buffer.getLimit()-lastStarterInDest)); |
+ buffer.removeSuffix((int32_t)(buffer.getLimit()-lastStarterInDest)); |
+ middle.append(src, (int32_t)(firstStarterInSrc-src)); |
+ const UChar *middleStart=middle.getBuffer(); |
+ compose(middleStart, middleStart+middle.length(), onlyContiguous, |
+ TRUE, buffer, errorCode); |
+ if(U_FAILURE(errorCode)) { |
+ return; |
+ } |
+ src=firstStarterInSrc; |
+ } |
+ } |
+ if(doCompose) { |
+ compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); |
+ } else { |
+ buffer.appendZeroCC(src, limit, errorCode); |
+ } |
+} |
+ |
+/** |
+ * Does c have a composition boundary before it? |
+ * True if its decomposition begins with a character that has |
+ * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()). |
+ * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes |
+ * (isCompYesAndZeroCC()) so we need not decompose. |
+ */ |
+UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const { |
+ for(;;) { |
+ if(isCompYesAndZeroCC(norm16)) { |
+ return TRUE; |
+ } else if(isMaybeOrNonZeroCC(norm16)) { |
+ return FALSE; |
+ } else if(isDecompNoAlgorithmic(norm16)) { |
+ c=mapAlgorithmic(c, norm16); |
+ norm16=getNorm16(c); |
+ } else { |
+ // c decomposes, get everything from the variable-length extra data |
+ const uint16_t *mapping=getMapping(norm16); |
+ uint16_t firstUnit=*mapping++; |
+ if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
+ return FALSE; |
+ } |
+ if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*mapping++&0xff00)) { |
+ return FALSE; // non-zero leadCC |
+ } |
+ int32_t i=0; |
+ UChar32 c; |
+ U16_NEXT_UNSAFE(mapping, i, c); |
+ return isCompYesAndZeroCC(getNorm16(c)); |
+ } |
+ } |
+} |
+ |
+UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBool testInert) const { |
+ for(;;) { |
+ uint16_t norm16=getNorm16(c); |
+ if(isInert(norm16)) { |
+ return TRUE; |
+ } else if(norm16<=minYesNo) { |
+ // Hangul LVT (==minYesNo) has a boundary after it. |
+ // Hangul LV and non-inert yesYes characters combine forward. |
+ return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c); |
+ } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) { |
+ return FALSE; |
+ } else if(isDecompNoAlgorithmic(norm16)) { |
+ c=mapAlgorithmic(c, norm16); |
+ } else { |
+ // c decomposes, get everything from the variable-length extra data. |
+ // If testInert, then c must be a yesNo character which has lccc=0, |
+ // otherwise it could be a noNo. |
+ const uint16_t *mapping=getMapping(norm16); |
+ uint16_t firstUnit=*mapping; |
+ // TRUE if |
+ // c is not deleted, and |
+ // it and its decomposition do not combine forward, and it has a starter, and |
+ // if FCC then trailCC<=1 |
+ return |
+ (firstUnit&MAPPING_LENGTH_MASK)!=0 && |
+ (firstUnit&(MAPPING_PLUS_COMPOSITION_LIST|MAPPING_NO_COMP_BOUNDARY_AFTER))==0 && |
+ (!onlyContiguous || firstUnit<=0x1ff); |
+ } |
+ } |
+} |
+ |
+const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const UChar *p) const { |
+ BackwardUTrie2StringIterator iter(normTrie, start, p); |
+ uint16_t norm16; |
+ do { |
+ norm16=iter.previous16(); |
+ } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); |
+ // We could also test hasCompBoundaryAfter() and return iter.codePointLimit, |
+ // but that's probably not worth the extra cost. |
+ return iter.codePointStart; |
+} |
+ |
+const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *limit) const { |
+ ForwardUTrie2StringIterator iter(normTrie, p, limit); |
+ uint16_t norm16; |
+ do { |
+ norm16=iter.next16(); |
+ } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); |
+ return iter.codePointStart; |
+} |
+ |
+class FCDTrieSingleton : public UTrie2Singleton { |
+public: |
+ FCDTrieSingleton(SimpleSingleton &s, Normalizer2Impl &ni, UErrorCode &ec) : |
+ UTrie2Singleton(s), impl(ni), errorCode(ec) {} |
+ UTrie2 *getInstance(UErrorCode &errorCode) { |
+ return UTrie2Singleton::getInstance(createInstance, this, errorCode); |
+ } |
+ static void *createInstance(const void *context, UErrorCode &errorCode); |
+ UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { |
+ if(value!=0) { |
+ impl.setFCD16FromNorm16(start, end, (uint16_t)value, newFCDTrie, errorCode); |
+ } |
+ return U_SUCCESS(errorCode); |
+ } |
+ |
+ Normalizer2Impl &impl; |
+ UTrie2 *newFCDTrie; |
+ UErrorCode &errorCode; |
+}; |
+ |
+U_CDECL_BEGIN |
+ |
+// Set the FCD value for a range of same-norm16 characters. |
+static UBool U_CALLCONV |
+enumRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
+ return ((FCDTrieSingleton *)context)->rangeHandler(start, end, value); |
+} |
+ |
+// Collect (OR together) the FCD values for a range of supplementary characters, |
+// for their lead surrogate code unit. |
+static UBool U_CALLCONV |
+enumRangeOrValue(const void *context, UChar32 /*start*/, UChar32 /*end*/, uint32_t value) { |
+ *((uint32_t *)context)|=value; |
+ return TRUE; |
+} |
+ |
+U_CDECL_END |
+ |
+void *FCDTrieSingleton::createInstance(const void *context, UErrorCode &errorCode) { |
+ FCDTrieSingleton *me=(FCDTrieSingleton *)context; |
+ me->newFCDTrie=utrie2_open(0, 0, &errorCode); |
+ if(U_SUCCESS(errorCode)) { |
+ utrie2_enum(me->impl.getNormTrie(), NULL, enumRangeHandler, me); |
+ for(UChar lead=0xd800; lead<0xdc00; ++lead) { |
+ uint32_t oredValue=utrie2_get32(me->newFCDTrie, lead); |
+ utrie2_enumForLeadSurrogate(me->newFCDTrie, lead, NULL, enumRangeOrValue, &oredValue); |
+ if(oredValue!=0) { |
+ // Set a "bad" value for makeFCD() to break the quick check loop |
+ // and look up the value for the supplementary code point. |
+ // If there is any lccc, then set the worst-case lccc of 1. |
+ // The ORed-together value's tccc is already the worst case. |
+ if(oredValue>0xff) { |
+ oredValue=0x100|(oredValue&0xff); |
+ } |
+ utrie2_set32ForLeadSurrogateCodeUnit(me->newFCDTrie, lead, oredValue, &errorCode); |
+ } |
+ } |
+ utrie2_freeze(me->newFCDTrie, UTRIE2_16_VALUE_BITS, &errorCode); |
+ if(U_SUCCESS(errorCode)) { |
+ return me->newFCDTrie; |
+ } |
+ } |
+ utrie2_close(me->newFCDTrie); |
+ return NULL; |
+} |
+ |
+void Normalizer2Impl::setFCD16FromNorm16(UChar32 start, UChar32 end, uint16_t norm16, |
+ UTrie2 *newFCDTrie, UErrorCode &errorCode) const { |
+ // Only loops for 1:1 algorithmic mappings. |
+ for(;;) { |
+ if(norm16>=MIN_NORMAL_MAYBE_YES) { |
+ norm16&=0xff; |
+ norm16|=norm16<<8; |
+ } else if(norm16<=minYesNo || minMaybeYes<=norm16) { |
+ // no decomposition or Hangul syllable, all zeros |
+ break; |
+ } else if(limitNoNo<=norm16) { |
+ int32_t delta=norm16-(minMaybeYes-MAX_DELTA-1); |
+ if(start==end) { |
+ start+=delta; |
+ norm16=getNorm16(start); |
+ } else { |
+ // the same delta leads from different original characters to different mappings |
+ do { |
+ UChar32 c=start+delta; |
+ setFCD16FromNorm16(c, c, getNorm16(c), newFCDTrie, errorCode); |
+ } while(++start<=end); |
+ break; |
+ } |
+ } else { |
+ // c decomposes, get everything from the variable-length extra data |
+ const uint16_t *mapping=getMapping(norm16); |
+ uint16_t firstUnit=*mapping; |
+ if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
+ // A character that is deleted (maps to an empty string) must |
+ // get the worst-case lccc and tccc values because arbitrary |
+ // characters on both sides will become adjacent. |
+ norm16=0x1ff; |
+ } else { |
+ if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
+ norm16=mapping[1]&0xff00; // lccc |
+ } else { |
+ norm16=0; |
+ } |
+ norm16|=firstUnit>>8; // tccc |
+ } |
+ } |
+ utrie2_setRange32(newFCDTrie, start, end, norm16, TRUE, &errorCode); |
+ break; |
+ } |
+} |
+ |
+const UTrie2 *Normalizer2Impl::getFCDTrie(UErrorCode &errorCode) const { |
+ // Logically const: Synchronized instantiation. |
+ Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); |
+ return FCDTrieSingleton(me->fcdTrieSingleton, *me, errorCode).getInstance(errorCode); |
+} |
+ |
+// Dual functionality: |
+// buffer!=NULL: normalize |
+// buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes |
+const UChar * |
+Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, |
+ ReorderingBuffer *buffer, |
+ UErrorCode &errorCode) const { |
+ // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordered tccc<=1. |
+ // Similar to the prevBoundary in the compose() implementation. |
+ const UChar *prevBoundary=src; |
+ int32_t prevFCD16=0; |
+ if(limit==NULL) { |
+ src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCode); |
+ if(U_FAILURE(errorCode)) { |
+ return src; |
+ } |
+ if(prevBoundary<src) { |
+ prevBoundary=src; |
+ // We know that the previous character's lccc==0. |
+ // Fetching the fcd16 value was deferred for this below-U+0300 code point. |
+ prevFCD16=getFCD16FromSingleLead(*(src-1)); |
+ if(prevFCD16>1) { |
+ --prevBoundary; |
+ } |
+ } |
+ limit=u_strchr(src, 0); |
+ } |
+ |
+ // Note: In this function we use buffer->appendZeroCC() because we track |
+ // the lead and trail combining classes here, rather than leaving it to |
+ // the ReorderingBuffer. |
+ // The exception is the call to decomposeShort() which uses the buffer |
+ // in the normal way. |
+ |
+ const UTrie2 *trie=fcdTrie(); |
+ |
+ const UChar *prevSrc; |
+ UChar32 c=0; |
+ uint16_t fcd16=0; |
+ |
+ for(;;) { |
+ // count code units with lccc==0 |
+ for(prevSrc=src; src!=limit;) { |
+ if((c=*src)<MIN_CCC_LCCC_CP) { |
+ prevFCD16=~c; |
+ ++src; |
+ } else if((fcd16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(trie, c))<=0xff) { |
+ prevFCD16=fcd16; |
+ ++src; |
+ } else if(!U16_IS_SURROGATE(c)) { |
+ break; |
+ } else { |
+ UChar c2; |
+ if(U16_IS_SURROGATE_LEAD(c)) { |
+ if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
+ c=U16_GET_SUPPLEMENTARY(c, c2); |
+ } |
+ } else /* trail surrogate */ { |
+ if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
+ --src; |
+ c=U16_GET_SUPPLEMENTARY(c2, c); |
+ } |
+ } |
+ if((fcd16=getFCD16(c))<=0xff) { |
+ prevFCD16=fcd16; |
+ src+=U16_LENGTH(c); |
+ } else { |
+ break; |
+ } |
+ } |
+ } |
+ // copy these code units all at once |
+ if(src!=prevSrc) { |
+ if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { |
+ break; |
+ } |
+ if(src==limit) { |
+ break; |
+ } |
+ prevBoundary=src; |
+ // We know that the previous character's lccc==0. |
+ if(prevFCD16<0) { |
+ // Fetching the fcd16 value was deferred for this below-U+0300 code point. |
+ prevFCD16=getFCD16FromSingleLead((UChar)~prevFCD16); |
+ if(prevFCD16>1) { |
+ --prevBoundary; |
+ } |
+ } else { |
+ const UChar *p=src-1; |
+ if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { |
+ --p; |
+ // Need to fetch the previous character's FCD value because |
+ // prevFCD16 was just for the trail surrogate code point. |
+ prevFCD16=getFCD16FromSurrogatePair(p[0], p[1]); |
+ // Still known to have lccc==0 because its lead surrogate unit had lccc==0. |
+ } |
+ if(prevFCD16>1) { |
+ prevBoundary=p; |
+ } |
+ } |
+ // The start of the current character (c). |
+ prevSrc=src; |
+ } else if(src==limit) { |
+ break; |
+ } |
+ |
+ src+=U16_LENGTH(c); |
+ // The current character (c) at [prevSrc..src[ has a non-zero lead combining class. |
+ // Check for proper order, and decompose locally if necessary. |
+ if((prevFCD16&0xff)<=(fcd16>>8)) { |
+ // proper order: prev tccc <= current lccc |
+ if((fcd16&0xff)<=1) { |
+ prevBoundary=src; |
+ } |
+ if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { |
+ break; |
+ } |
+ prevFCD16=fcd16; |
+ continue; |
+ } else if(buffer==NULL) { |
+ return prevBoundary; // quick check "no" |
+ } else { |
+ /* |
+ * Back out the part of the source that we copied or appended |
+ * already but is now going to be decomposed. |
+ * prevSrc is set to after what was copied/appended. |
+ */ |
+ buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); |
+ /* |
+ * Find the part of the source that needs to be decomposed, |
+ * up to the next safe boundary. |
+ */ |
+ src=findNextFCDBoundary(src, limit); |
+ /* |
+ * The source text does not fulfill the conditions for FCD. |
+ * Decompose and reorder a limited piece of the text. |
+ */ |
+ if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) { |
+ break; |
+ } |
+ prevBoundary=src; |
+ prevFCD16=0; |
+ } |
+ } |
+ return src; |
+} |
+ |
+void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, |
+ UBool doMakeFCD, |
+ ReorderingBuffer &buffer, |
+ UErrorCode &errorCode) const { |
+ if(!buffer.isEmpty()) { |
+ const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); |
+ if(src!=firstBoundaryInSrc) { |
+ const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getStart(), |
+ buffer.getLimit()); |
+ UnicodeString middle(lastBoundaryInDest, |
+ (int32_t)(buffer.getLimit()-lastBoundaryInDest)); |
+ buffer.removeSuffix((int32_t)(buffer.getLimit()-lastBoundaryInDest)); |
+ middle.append(src, (int32_t)(firstBoundaryInSrc-src)); |
+ const UChar *middleStart=middle.getBuffer(); |
+ makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode); |
+ if(U_FAILURE(errorCode)) { |
+ return; |
+ } |
+ src=firstBoundaryInSrc; |
+ } |
+ } |
+ if(doMakeFCD) { |
+ makeFCD(src, limit, &buffer, errorCode); |
+ } else { |
+ buffer.appendZeroCC(src, limit, errorCode); |
+ } |
+} |
+ |
+const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const UChar *p) const { |
+ BackwardUTrie2StringIterator iter(fcdTrie(), start, p); |
+ uint16_t fcd16; |
+ do { |
+ fcd16=iter.previous16(); |
+ } while(fcd16>0xff); |
+ return iter.codePointStart; |
+} |
+ |
+const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *limit) const { |
+ ForwardUTrie2StringIterator iter(fcdTrie(), p, limit); |
+ uint16_t fcd16; |
+ do { |
+ fcd16=iter.next16(); |
+ } while(fcd16>0xff); |
+ return iter.codePointStart; |
+} |
+ |
+// CanonicalIterator data -------------------------------------------------- *** |
+ |
+CanonIterData::CanonIterData(UErrorCode &errorCode) : |
+ trie(utrie2_open(0, 0, &errorCode)), |
+ canonStartSets(uhash_deleteUObject, NULL, errorCode) {} |
+ |
+CanonIterData::~CanonIterData() { |
+ utrie2_close(trie); |
+} |
+ |
+void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode) { |
+ uint32_t canonValue=utrie2_get32(trie, decompLead); |
+ if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { |
+ // origin is the first character whose decomposition starts with |
+ // the character for which we are setting the value. |
+ utrie2_set32(trie, decompLead, canonValue|origin, &errorCode); |
+ } else { |
+ // origin is not the first character, or it is U+0000. |
+ UnicodeSet *set; |
+ if((canonValue&CANON_HAS_SET)==0) { |
+ set=new UnicodeSet; |
+ if(set==NULL) { |
+ errorCode=U_MEMORY_ALLOCATION_ERROR; |
+ return; |
+ } |
+ UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); |
+ canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)canonStartSets.size(); |
+ utrie2_set32(trie, decompLead, canonValue, &errorCode); |
+ canonStartSets.addElement(set, errorCode); |
+ if(firstOrigin!=0) { |
+ set->add(firstOrigin); |
+ } |
+ } else { |
+ set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MASK)]; |
+ } |
+ set->add(origin); |
+ } |
+} |
+ |
+class CanonIterDataSingleton { |
+public: |
+ CanonIterDataSingleton(SimpleSingleton &s, Normalizer2Impl &ni, UErrorCode &ec) : |
+ singleton(s), impl(ni), errorCode(ec) {} |
+ CanonIterData *getInstance(UErrorCode &errorCode) { |
+ void *duplicate; |
+ CanonIterData *instance= |
+ (CanonIterData *)singleton.getInstance(createInstance, this, duplicate, errorCode); |
+ delete (CanonIterData *)duplicate; |
+ return instance; |
+ } |
+ static void *createInstance(const void *context, UErrorCode &errorCode); |
+ UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { |
+ if(value!=0) { |
+ impl.makeCanonIterDataFromNorm16(start, end, (uint16_t)value, *newData, errorCode); |
+ } |
+ return U_SUCCESS(errorCode); |
+ } |
+ |
+private: |
+ SimpleSingleton &singleton; |
+ Normalizer2Impl &impl; |
+ CanonIterData *newData; |
+ UErrorCode &errorCode; |
+}; |
+ |
+U_CDECL_BEGIN |
+ |
+// Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm16 characters. |
+static UBool U_CALLCONV |
+enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value) { |
+ return ((CanonIterDataSingleton *)context)->rangeHandler(start, end, value); |
+} |
+ |
+U_CDECL_END |
+ |
+void *CanonIterDataSingleton::createInstance(const void *context, UErrorCode &errorCode) { |
+ CanonIterDataSingleton *me=(CanonIterDataSingleton *)context; |
+ me->newData=new CanonIterData(errorCode); |
+ if(me->newData==NULL) { |
+ errorCode=U_MEMORY_ALLOCATION_ERROR; |
+ return NULL; |
+ } |
+ if(U_SUCCESS(errorCode)) { |
+ utrie2_enum(me->impl.getNormTrie(), NULL, enumCIDRangeHandler, me); |
+ utrie2_freeze(me->newData->trie, UTRIE2_32_VALUE_BITS, &errorCode); |
+ if(U_SUCCESS(errorCode)) { |
+ return me->newData; |
+ } |
+ } |
+ delete me->newData; |
+ return NULL; |
+} |
+ |
+void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, uint16_t norm16, |
+ CanonIterData &newData, |
+ UErrorCode &errorCode) const { |
+ if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) { |
+ // Inert, or 2-way mapping (including Hangul syllable). |
+ // We do not write a canonStartSet for any yesNo character. |
+ // Composites from 2-way mappings are added at runtime from the |
+ // starter's compositions list, and the other characters in |
+ // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are |
+ // "maybe" characters. |
+ return; |
+ } |
+ for(UChar32 c=start; c<=end; ++c) { |
+ uint32_t oldValue=utrie2_get32(newData.trie, c); |
+ uint32_t newValue=oldValue; |
+ if(norm16>=minMaybeYes) { |
+ // not a segment starter if it occurs in a decomposition or has cc!=0 |
+ newValue|=CANON_NOT_SEGMENT_STARTER; |
+ if(norm16<MIN_NORMAL_MAYBE_YES) { |
+ newValue|=CANON_HAS_COMPOSITIONS; |
+ } |
+ } else if(norm16<minYesNo) { |
+ newValue|=CANON_HAS_COMPOSITIONS; |
+ } else { |
+ // c has a one-way decomposition |
+ UChar32 c2=c; |
+ uint16_t norm16_2=norm16; |
+ while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) { |
+ c2=mapAlgorithmic(c2, norm16_2); |
+ norm16_2=getNorm16(c2); |
+ } |
+ if(minYesNo<=norm16_2 && norm16_2<limitNoNo) { |
+ // c decomposes, get everything from the variable-length extra data |
+ const uint16_t *mapping=getMapping(norm16_2); |
+ uint16_t firstUnit=*mapping++; |
+ int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
+ if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { |
+ if(c==c2 && (*mapping&0xff)!=0) { |
+ newValue|=CANON_NOT_SEGMENT_STARTER; // original c has cc!=0 |
+ } |
+ ++mapping; |
+ } |
+ // Skip empty mappings (no characters in the decomposition). |
+ if(length!=0) { |
+ // add c to first code point's start set |
+ int32_t i=0; |
+ U16_NEXT_UNSAFE(mapping, i, c2); |
+ newData.addToStartSet(c, c2, errorCode); |
+ // Set CANON_NOT_SEGMENT_STARTER for each remaining code point of a |
+ // one-way mapping. A 2-way mapping is possible here after |
+ // intermediate algorithmic mapping. |
+ if(norm16_2>=minNoNo) { |
+ while(i<length) { |
+ U16_NEXT_UNSAFE(mapping, i, c2); |
+ uint32_t c2Value=utrie2_get32(newData.trie, c2); |
+ if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { |
+ utrie2_set32(newData.trie, c2, c2Value|CANON_NOT_SEGMENT_STARTER, |
+ &errorCode); |
+ } |
+ } |
+ } |
+ } |
+ } else { |
+ // c decomposed to c2 algorithmically; c has cc==0 |
+ newData.addToStartSet(c, c2, errorCode); |
+ } |
+ } |
+ if(newValue!=oldValue) { |
+ utrie2_set32(newData.trie, c, newValue, &errorCode); |
+ } |
+ } |
+} |
+ |
+UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { |
+ // Logically const: Synchronized instantiation. |
+ Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); |
+ CanonIterDataSingleton(me->canonIterDataSingleton, *me, errorCode).getInstance(errorCode); |
+ return U_SUCCESS(errorCode); |
+} |
+ |
+int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { |
+ return (int32_t)utrie2_get32(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, c); |
+} |
+ |
+const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { |
+ return *(const UnicodeSet *)( |
+ ((CanonIterData *)canonIterDataSingleton.fInstance)->canonStartSets[n]); |
+} |
+ |
+UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { |
+ return getCanonValue(c)>=0; |
+} |
+ |
+UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { |
+ int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; |
+ if(canonValue==0) { |
+ return FALSE; |
+ } |
+ set.clear(); |
+ int32_t value=canonValue&CANON_VALUE_MASK; |
+ if((canonValue&CANON_HAS_SET)!=0) { |
+ set.addAll(getCanonStartSet(value)); |
+ } else if(value!=0) { |
+ set.add(value); |
+ } |
+ if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { |
+ uint16_t norm16=getNorm16(c); |
+ if(norm16==JAMO_L) { |
+ UChar32 syllable= |
+ (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JAMO_VT_COUNT); |
+ set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); |
+ } else { |
+ addComposites(getCompositionsList(norm16), set); |
+ } |
+ } |
+ return TRUE; |
+} |
+ |
+U_NAMESPACE_END |
+ |
+// Normalizer2 data swapping ----------------------------------------------- *** |
+ |
+U_NAMESPACE_USE |
+ |
+U_CAPI int32_t U_EXPORT2 |
+unorm2_swap(const UDataSwapper *ds, |
+ const void *inData, int32_t length, void *outData, |
+ UErrorCode *pErrorCode) { |
+ const UDataInfo *pInfo; |
+ int32_t headerSize; |
+ |
+ const uint8_t *inBytes; |
+ uint8_t *outBytes; |
+ |
+ const int32_t *inIndexes; |
+ int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1]; |
+ |
+ int32_t i, offset, nextOffset, size; |
+ |
+ /* udata_swapDataHeader checks the arguments */ |
+ headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); |
+ if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
+ return 0; |
+ } |
+ |
+ /* check data format and format version */ |
+ pInfo=(const UDataInfo *)((const char *)inData+4); |
+ if(!( |
+ pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
+ pInfo->dataFormat[1]==0x72 && |
+ pInfo->dataFormat[2]==0x6d && |
+ pInfo->dataFormat[3]==0x32 && |
+ pInfo->formatVersion[0]==1 |
+ )) { |
+ udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (format version %02x) is not recognized as Normalizer2 data\n", |
+ pInfo->dataFormat[0], pInfo->dataFormat[1], |
+ pInfo->dataFormat[2], pInfo->dataFormat[3], |
+ pInfo->formatVersion[0]); |
+ *pErrorCode=U_UNSUPPORTED_ERROR; |
+ return 0; |
+ } |
+ |
+ inBytes=(const uint8_t *)inData+headerSize; |
+ outBytes=(uint8_t *)outData+headerSize; |
+ |
+ inIndexes=(const int32_t *)inBytes; |
+ |
+ if(length>=0) { |
+ length-=headerSize; |
+ if(length<(int32_t)sizeof(indexes)) { |
+ udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for Normalizer2 data\n", |
+ length); |
+ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
+ return 0; |
+ } |
+ } |
+ |
+ /* read the first few indexes */ |
+ for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) { |
+ indexes[i]=udata_readInt32(ds, inIndexes[i]); |
+ } |
+ |
+ /* get the total length of the data */ |
+ size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; |
+ |
+ if(length>=0) { |
+ if(length<size) { |
+ udata_printError(ds, "unorm2_swap(): too few bytes (%d after header) for all of Normalizer2 data\n", |
+ length); |
+ *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
+ return 0; |
+ } |
+ |
+ /* copy the data for inaccessible bytes */ |
+ if(inBytes!=outBytes) { |
+ uprv_memcpy(outBytes, inBytes, size); |
+ } |
+ |
+ offset=0; |
+ |
+ /* swap the int32_t indexes[] */ |
+ nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]; |
+ ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode); |
+ offset=nextOffset; |
+ |
+ /* swap the UTrie2 */ |
+ nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]; |
+ utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
+ offset=nextOffset; |
+ |
+ /* swap the uint16_t extraData[] */ |
+ nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET+1]; |
+ ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErrorCode); |
+ offset=nextOffset; |
+ |
+ U_ASSERT(offset==size); |
+ } |
+ |
+ return headerSize+size; |
+} |
+ |
+#endif // !UCONFIG_NO_NORMALIZATION |
Property changes on: icu46/source/common/normalizer2impl.cpp |
___________________________________________________________________ |
Added: svn:eol-style |
+ LF |