OLD | NEW |
(Empty) | |
| 1 /* |
| 2 ******************************************************************************* |
| 3 * |
| 4 * Copyright (C) 2009-2010, International Business Machines |
| 5 * Corporation and others. All Rights Reserved. |
| 6 * |
| 7 ******************************************************************************* |
| 8 * file name: normalizer2impl.cpp |
| 9 * encoding: US-ASCII |
| 10 * tab size: 8 (not used) |
| 11 * indentation:4 |
| 12 * |
| 13 * created on: 2009nov22 |
| 14 * created by: Markus W. Scherer |
| 15 */ |
| 16 |
| 17 #include "unicode/utypes.h" |
| 18 |
| 19 #if !UCONFIG_NO_NORMALIZATION |
| 20 |
| 21 #include "unicode/normalizer2.h" |
| 22 #include "unicode/udata.h" |
| 23 #include "unicode/ustring.h" |
| 24 #include "cmemory.h" |
| 25 #include "mutex.h" |
| 26 #include "normalizer2impl.h" |
| 27 #include "uassert.h" |
| 28 #include "uhash.h" |
| 29 #include "uset_imp.h" |
| 30 #include "utrie2.h" |
| 31 #include "uvector.h" |
| 32 |
| 33 U_NAMESPACE_BEGIN |
| 34 |
| 35 // ReorderingBuffer -------------------------------------------------------- *** |
| 36 |
| 37 UBool ReorderingBuffer::init(int32_t destCapacity, UErrorCode &errorCode) { |
| 38 int32_t length=str.length(); |
| 39 start=str.getBuffer(destCapacity); |
| 40 if(start==NULL) { |
| 41 // getBuffer() already did str.setToBogus() |
| 42 errorCode=U_MEMORY_ALLOCATION_ERROR; |
| 43 return FALSE; |
| 44 } |
| 45 limit=start+length; |
| 46 remainingCapacity=str.getCapacity()-length; |
| 47 reorderStart=start; |
| 48 if(start==limit) { |
| 49 lastCC=0; |
| 50 } else { |
| 51 setIterator(); |
| 52 lastCC=previousCC(); |
| 53 // Set reorderStart after the last code point with cc<=1 if there is one
. |
| 54 if(lastCC>1) { |
| 55 while(previousCC()>1) {} |
| 56 } |
| 57 reorderStart=codePointLimit; |
| 58 } |
| 59 return TRUE; |
| 60 } |
| 61 |
| 62 UBool ReorderingBuffer::equals(const UChar *otherStart, const UChar *otherLimit)
const { |
| 63 int32_t length=(int32_t)(limit-start); |
| 64 return |
| 65 length==(int32_t)(otherLimit-otherStart) && |
| 66 0==u_memcmp(start, otherStart, length); |
| 67 } |
| 68 |
| 69 UBool ReorderingBuffer::appendSupplementary(UChar32 c, uint8_t cc, UErrorCode &e
rrorCode) { |
| 70 if(remainingCapacity<2 && !resize(2, errorCode)) { |
| 71 return FALSE; |
| 72 } |
| 73 if(lastCC<=cc || cc==0) { |
| 74 limit[0]=U16_LEAD(c); |
| 75 limit[1]=U16_TRAIL(c); |
| 76 limit+=2; |
| 77 lastCC=cc; |
| 78 if(cc<=1) { |
| 79 reorderStart=limit; |
| 80 } |
| 81 } else { |
| 82 insert(c, cc); |
| 83 } |
| 84 remainingCapacity-=2; |
| 85 return TRUE; |
| 86 } |
| 87 |
| 88 UBool ReorderingBuffer::append(const UChar *s, int32_t length, |
| 89 uint8_t leadCC, uint8_t trailCC, |
| 90 UErrorCode &errorCode) { |
| 91 if(length==0) { |
| 92 return TRUE; |
| 93 } |
| 94 if(remainingCapacity<length && !resize(length, errorCode)) { |
| 95 return FALSE; |
| 96 } |
| 97 remainingCapacity-=length; |
| 98 if(lastCC<=leadCC || leadCC==0) { |
| 99 if(trailCC<=1) { |
| 100 reorderStart=limit+length; |
| 101 } else if(leadCC<=1) { |
| 102 reorderStart=limit+1; // Ok if not a code point boundary. |
| 103 } |
| 104 const UChar *sLimit=s+length; |
| 105 do { *limit++=*s++; } while(s!=sLimit); |
| 106 lastCC=trailCC; |
| 107 } else { |
| 108 int32_t i=0; |
| 109 UChar32 c; |
| 110 U16_NEXT(s, i, length, c); |
| 111 insert(c, leadCC); // insert first code point |
| 112 while(i<length) { |
| 113 U16_NEXT(s, i, length, c); |
| 114 if(i<length) { |
| 115 // s must be in NFD, otherwise we need to use getCC(). |
| 116 leadCC=Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); |
| 117 } else { |
| 118 leadCC=trailCC; |
| 119 } |
| 120 append(c, leadCC, errorCode); |
| 121 } |
| 122 } |
| 123 return TRUE; |
| 124 } |
| 125 |
| 126 UBool ReorderingBuffer::appendZeroCC(UChar32 c, UErrorCode &errorCode) { |
| 127 int32_t cpLength=U16_LENGTH(c); |
| 128 if(remainingCapacity<cpLength && !resize(cpLength, errorCode)) { |
| 129 return FALSE; |
| 130 } |
| 131 remainingCapacity-=cpLength; |
| 132 if(cpLength==1) { |
| 133 *limit++=(UChar)c; |
| 134 } else { |
| 135 limit[0]=U16_LEAD(c); |
| 136 limit[1]=U16_TRAIL(c); |
| 137 limit+=2; |
| 138 } |
| 139 lastCC=0; |
| 140 reorderStart=limit; |
| 141 return TRUE; |
| 142 } |
| 143 |
| 144 UBool ReorderingBuffer::appendZeroCC(const UChar *s, const UChar *sLimit, UError
Code &errorCode) { |
| 145 if(s==sLimit) { |
| 146 return TRUE; |
| 147 } |
| 148 int32_t length=(int32_t)(sLimit-s); |
| 149 if(remainingCapacity<length && !resize(length, errorCode)) { |
| 150 return FALSE; |
| 151 } |
| 152 u_memcpy(limit, s, length); |
| 153 limit+=length; |
| 154 remainingCapacity-=length; |
| 155 lastCC=0; |
| 156 reorderStart=limit; |
| 157 return TRUE; |
| 158 } |
| 159 |
| 160 void ReorderingBuffer::remove() { |
| 161 reorderStart=limit=start; |
| 162 remainingCapacity=str.getCapacity(); |
| 163 lastCC=0; |
| 164 } |
| 165 |
| 166 void ReorderingBuffer::removeSuffix(int32_t suffixLength) { |
| 167 if(suffixLength<(limit-start)) { |
| 168 limit-=suffixLength; |
| 169 remainingCapacity+=suffixLength; |
| 170 } else { |
| 171 limit=start; |
| 172 remainingCapacity=str.getCapacity(); |
| 173 } |
| 174 lastCC=0; |
| 175 reorderStart=limit; |
| 176 } |
| 177 |
| 178 UBool ReorderingBuffer::resize(int32_t appendLength, UErrorCode &errorCode) { |
| 179 int32_t reorderStartIndex=(int32_t)(reorderStart-start); |
| 180 int32_t length=(int32_t)(limit-start); |
| 181 str.releaseBuffer(length); |
| 182 int32_t newCapacity=length+appendLength; |
| 183 int32_t doubleCapacity=2*str.getCapacity(); |
| 184 if(newCapacity<doubleCapacity) { |
| 185 newCapacity=doubleCapacity; |
| 186 } |
| 187 if(newCapacity<256) { |
| 188 newCapacity=256; |
| 189 } |
| 190 start=str.getBuffer(newCapacity); |
| 191 if(start==NULL) { |
| 192 // getBuffer() already did str.setToBogus() |
| 193 errorCode=U_MEMORY_ALLOCATION_ERROR; |
| 194 return FALSE; |
| 195 } |
| 196 reorderStart=start+reorderStartIndex; |
| 197 limit=start+length; |
| 198 remainingCapacity=str.getCapacity()-length; |
| 199 return TRUE; |
| 200 } |
| 201 |
| 202 void ReorderingBuffer::skipPrevious() { |
| 203 codePointLimit=codePointStart; |
| 204 UChar c=*--codePointStart; |
| 205 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(*(codePointStart-1
))) { |
| 206 --codePointStart; |
| 207 } |
| 208 } |
| 209 |
| 210 uint8_t ReorderingBuffer::previousCC() { |
| 211 codePointLimit=codePointStart; |
| 212 if(reorderStart>=codePointStart) { |
| 213 return 0; |
| 214 } |
| 215 UChar32 c=*--codePointStart; |
| 216 if(c<Normalizer2Impl::MIN_CCC_LCCC_CP) { |
| 217 return 0; |
| 218 } |
| 219 |
| 220 UChar c2; |
| 221 if(U16_IS_TRAIL(c) && start<codePointStart && U16_IS_LEAD(c2=*(codePointStar
t-1))) { |
| 222 --codePointStart; |
| 223 c=U16_GET_SUPPLEMENTARY(c2, c); |
| 224 } |
| 225 return Normalizer2Impl::getCCFromYesOrMaybe(impl.getNorm16(c)); |
| 226 } |
| 227 |
| 228 // Inserts c somewhere before the last character. |
| 229 // Requires 0<cc<lastCC which implies reorderStart<limit. |
| 230 void ReorderingBuffer::insert(UChar32 c, uint8_t cc) { |
| 231 for(setIterator(), skipPrevious(); previousCC()>cc;) {} |
| 232 // insert c at codePointLimit, after the character with prevCC<=cc |
| 233 UChar *q=limit; |
| 234 UChar *r=limit+=U16_LENGTH(c); |
| 235 do { |
| 236 *--r=*--q; |
| 237 } while(codePointLimit!=q); |
| 238 writeCodePoint(q, c); |
| 239 if(cc<=1) { |
| 240 reorderStart=r; |
| 241 } |
| 242 } |
| 243 |
| 244 // Normalizer2Impl --------------------------------------------------------- *** |
| 245 |
| 246 struct CanonIterData : public UMemory { |
| 247 CanonIterData(UErrorCode &errorCode); |
| 248 ~CanonIterData(); |
| 249 void addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode &errorCode
); |
| 250 UTrie2 *trie; |
| 251 UVector canonStartSets; // contains UnicodeSet * |
| 252 }; |
| 253 |
| 254 Normalizer2Impl::~Normalizer2Impl() { |
| 255 udata_close(memory); |
| 256 utrie2_close(normTrie); |
| 257 UTrie2Singleton(fcdTrieSingleton).deleteInstance(); |
| 258 delete (CanonIterData *)canonIterDataSingleton.fInstance; |
| 259 } |
| 260 |
| 261 UBool U_CALLCONV |
| 262 Normalizer2Impl::isAcceptable(void *context, |
| 263 const char * /* type */, const char * /*name*/, |
| 264 const UDataInfo *pInfo) { |
| 265 if( |
| 266 pInfo->size>=20 && |
| 267 pInfo->isBigEndian==U_IS_BIG_ENDIAN && |
| 268 pInfo->charsetFamily==U_CHARSET_FAMILY && |
| 269 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
| 270 pInfo->dataFormat[1]==0x72 && |
| 271 pInfo->dataFormat[2]==0x6d && |
| 272 pInfo->dataFormat[3]==0x32 && |
| 273 pInfo->formatVersion[0]==1 |
| 274 ) { |
| 275 Normalizer2Impl *me=(Normalizer2Impl *)context; |
| 276 uprv_memcpy(me->dataVersion, pInfo->dataVersion, 4); |
| 277 return TRUE; |
| 278 } else { |
| 279 return FALSE; |
| 280 } |
| 281 } |
| 282 |
| 283 void |
| 284 Normalizer2Impl::load(const char *packageName, const char *name, UErrorCode &err
orCode) { |
| 285 if(U_FAILURE(errorCode)) { |
| 286 return; |
| 287 } |
| 288 memory=udata_openChoice(packageName, "nrm", name, isAcceptable, this, &error
Code); |
| 289 if(U_FAILURE(errorCode)) { |
| 290 return; |
| 291 } |
| 292 const uint8_t *inBytes=(const uint8_t *)udata_getMemory(memory); |
| 293 const int32_t *inIndexes=(const int32_t *)inBytes; |
| 294 int32_t indexesLength=inIndexes[IX_NORM_TRIE_OFFSET]/4; |
| 295 if(indexesLength<=IX_MIN_MAYBE_YES) { |
| 296 errorCode=U_INVALID_FORMAT_ERROR; // Not enough indexes. |
| 297 return; |
| 298 } |
| 299 |
| 300 minDecompNoCP=inIndexes[IX_MIN_DECOMP_NO_CP]; |
| 301 minCompNoMaybeCP=inIndexes[IX_MIN_COMP_NO_MAYBE_CP]; |
| 302 |
| 303 minYesNo=inIndexes[IX_MIN_YES_NO]; |
| 304 minNoNo=inIndexes[IX_MIN_NO_NO]; |
| 305 limitNoNo=inIndexes[IX_LIMIT_NO_NO]; |
| 306 minMaybeYes=inIndexes[IX_MIN_MAYBE_YES]; |
| 307 |
| 308 int32_t offset=inIndexes[IX_NORM_TRIE_OFFSET]; |
| 309 int32_t nextOffset=inIndexes[IX_EXTRA_DATA_OFFSET]; |
| 310 normTrie=utrie2_openFromSerialized(UTRIE2_16_VALUE_BITS, |
| 311 inBytes+offset, nextOffset-offset, NULL, |
| 312 &errorCode); |
| 313 if(U_FAILURE(errorCode)) { |
| 314 return; |
| 315 } |
| 316 |
| 317 offset=nextOffset; |
| 318 maybeYesCompositions=(const uint16_t *)(inBytes+offset); |
| 319 extraData=maybeYesCompositions+(MIN_NORMAL_MAYBE_YES-minMaybeYes); |
| 320 } |
| 321 |
| 322 uint8_t Normalizer2Impl::getTrailCCFromCompYesAndZeroCC(const UChar *cpStart, co
nst UChar *cpLimit) const { |
| 323 UChar32 c; |
| 324 if(cpStart==(cpLimit-1)) { |
| 325 c=*cpStart; |
| 326 } else { |
| 327 c=U16_GET_SUPPLEMENTARY(cpStart[0], cpStart[1]); |
| 328 } |
| 329 uint16_t prevNorm16=getNorm16(c); |
| 330 if(prevNorm16<=minYesNo) { |
| 331 return 0; // yesYes and Hangul LV/LVT have ccc=tccc=0 |
| 332 } else { |
| 333 return (uint8_t)(*getMapping(prevNorm16)>>8); // tccc from yesNo |
| 334 } |
| 335 } |
| 336 |
| 337 U_CDECL_BEGIN |
| 338 |
| 339 static UBool U_CALLCONV |
| 340 enumPropertyStartsRange(const void *context, UChar32 start, UChar32 /*end*/, uin
t32_t /*value*/) { |
| 341 /* add the start code point to the USet */ |
| 342 const USetAdder *sa=(const USetAdder *)context; |
| 343 sa->add(sa->set, start); |
| 344 return TRUE; |
| 345 } |
| 346 |
| 347 static uint32_t U_CALLCONV |
| 348 segmentStarterMapper(const void * /*context*/, uint32_t value) { |
| 349 return value&CANON_NOT_SEGMENT_STARTER; |
| 350 } |
| 351 |
| 352 U_CDECL_END |
| 353 |
| 354 void |
| 355 Normalizer2Impl::addPropertyStarts(const USetAdder *sa, UErrorCode & /*errorCode
*/) const { |
| 356 /* add the start code point of each same-value range of each trie */ |
| 357 utrie2_enum(normTrie, NULL, enumPropertyStartsRange, sa); |
| 358 |
| 359 /* add Hangul LV syllables and LV+1 because of skippables */ |
| 360 for(UChar c=Hangul::HANGUL_BASE; c<Hangul::HANGUL_LIMIT; c+=Hangul::JAMO_T_C
OUNT) { |
| 361 sa->add(sa->set, c); |
| 362 sa->add(sa->set, c+1); |
| 363 } |
| 364 sa->add(sa->set, Hangul::HANGUL_LIMIT); /* add Hangul+1 to continue with oth
er properties */ |
| 365 } |
| 366 |
| 367 void |
| 368 Normalizer2Impl::addCanonIterPropertyStarts(const USetAdder *sa, UErrorCode &err
orCode) const { |
| 369 /* add the start code point of each same-value range of the canonical iterat
or data trie */ |
| 370 if(ensureCanonIterData(errorCode)) { |
| 371 // currently only used for the SEGMENT_STARTER property |
| 372 utrie2_enum(((CanonIterData *)canonIterDataSingleton.fInstance)->trie, |
| 373 segmentStarterMapper, enumPropertyStartsRange, sa); |
| 374 } |
| 375 } |
| 376 |
| 377 const UChar * |
| 378 Normalizer2Impl::copyLowPrefixFromNulTerminated(const UChar *src, |
| 379 UChar32 minNeedDataCP, |
| 380 ReorderingBuffer *buffer, |
| 381 UErrorCode &errorCode) const { |
| 382 // Make some effort to support NUL-terminated strings reasonably. |
| 383 // Take the part of the fast quick check loop that does not look up |
| 384 // data and check the first part of the string. |
| 385 // After this prefix, determine the string length to simplify the rest |
| 386 // of the code. |
| 387 const UChar *prevSrc=src; |
| 388 UChar c; |
| 389 while((c=*src++)<minNeedDataCP && c!=0) {} |
| 390 // Back out the last character for full processing. |
| 391 // Copy this prefix. |
| 392 if(--src!=prevSrc) { |
| 393 if(buffer!=NULL) { |
| 394 buffer->appendZeroCC(prevSrc, src, errorCode); |
| 395 } |
| 396 } |
| 397 return src; |
| 398 } |
| 399 |
| 400 // Dual functionality: |
| 401 // buffer!=NULL: normalize |
| 402 // buffer==NULL: isNormalized/spanQuickCheckYes |
| 403 const UChar * |
| 404 Normalizer2Impl::decompose(const UChar *src, const UChar *limit, |
| 405 ReorderingBuffer *buffer, |
| 406 UErrorCode &errorCode) const { |
| 407 UChar32 minNoCP=minDecompNoCP; |
| 408 if(limit==NULL) { |
| 409 src=copyLowPrefixFromNulTerminated(src, minNoCP, buffer, errorCode); |
| 410 if(U_FAILURE(errorCode)) { |
| 411 return src; |
| 412 } |
| 413 limit=u_strchr(src, 0); |
| 414 } |
| 415 |
| 416 const UChar *prevSrc; |
| 417 UChar32 c=0; |
| 418 uint16_t norm16=0; |
| 419 |
| 420 // only for quick check |
| 421 const UChar *prevBoundary=src; |
| 422 uint8_t prevCC=0; |
| 423 |
| 424 for(;;) { |
| 425 // count code units below the minimum or with irrelevant data for the qu
ick check |
| 426 for(prevSrc=src; src!=limit;) { |
| 427 if( (c=*src)<minNoCP || |
| 428 isMostDecompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEA
D(normTrie, c)) |
| 429 ) { |
| 430 ++src; |
| 431 } else if(!U16_IS_SURROGATE(c)) { |
| 432 break; |
| 433 } else { |
| 434 UChar c2; |
| 435 if(U16_IS_SURROGATE_LEAD(c)) { |
| 436 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| 437 c=U16_GET_SUPPLEMENTARY(c, c2); |
| 438 } |
| 439 } else /* trail surrogate */ { |
| 440 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
| 441 --src; |
| 442 c=U16_GET_SUPPLEMENTARY(c2, c); |
| 443 } |
| 444 } |
| 445 if(isMostDecompYesAndZeroCC(norm16=getNorm16(c))) { |
| 446 src+=U16_LENGTH(c); |
| 447 } else { |
| 448 break; |
| 449 } |
| 450 } |
| 451 } |
| 452 // copy these code units all at once |
| 453 if(src!=prevSrc) { |
| 454 if(buffer!=NULL) { |
| 455 if(!buffer->appendZeroCC(prevSrc, src, errorCode)) { |
| 456 break; |
| 457 } |
| 458 } else { |
| 459 prevCC=0; |
| 460 prevBoundary=src; |
| 461 } |
| 462 } |
| 463 if(src==limit) { |
| 464 break; |
| 465 } |
| 466 |
| 467 // Check one above-minimum, relevant code point. |
| 468 src+=U16_LENGTH(c); |
| 469 if(buffer!=NULL) { |
| 470 if(!decompose(c, norm16, *buffer, errorCode)) { |
| 471 break; |
| 472 } |
| 473 } else { |
| 474 if(isDecompYes(norm16)) { |
| 475 uint8_t cc=getCCFromYesOrMaybe(norm16); |
| 476 if(prevCC<=cc || cc==0) { |
| 477 prevCC=cc; |
| 478 if(cc<=1) { |
| 479 prevBoundary=src; |
| 480 } |
| 481 continue; |
| 482 } |
| 483 } |
| 484 return prevBoundary; // "no" or cc out of order |
| 485 } |
| 486 } |
| 487 return src; |
| 488 } |
| 489 |
| 490 // Decompose a short piece of text which is likely to contain characters that |
| 491 // fail the quick check loop and/or where the quick check loop's overhead |
| 492 // is unlikely to be amortized. |
| 493 // Called by the compose() and makeFCD() implementations. |
| 494 UBool Normalizer2Impl::decomposeShort(const UChar *src, const UChar *limit, |
| 495 ReorderingBuffer &buffer, |
| 496 UErrorCode &errorCode) const { |
| 497 while(src<limit) { |
| 498 UChar32 c; |
| 499 uint16_t norm16; |
| 500 UTRIE2_U16_NEXT16(normTrie, src, limit, c, norm16); |
| 501 if(!decompose(c, norm16, buffer, errorCode)) { |
| 502 return FALSE; |
| 503 } |
| 504 } |
| 505 return TRUE; |
| 506 } |
| 507 |
| 508 UBool Normalizer2Impl::decompose(UChar32 c, uint16_t norm16, |
| 509 ReorderingBuffer &buffer, |
| 510 UErrorCode &errorCode) const { |
| 511 // Only loops for 1:1 algorithmic mappings. |
| 512 for(;;) { |
| 513 // get the decomposition and the lead and trail cc's |
| 514 if(isDecompYes(norm16)) { |
| 515 // c does not decompose |
| 516 return buffer.append(c, getCCFromYesOrMaybe(norm16), errorCode); |
| 517 } else if(isHangul(norm16)) { |
| 518 // Hangul syllable: decompose algorithmically |
| 519 UChar jamos[3]; |
| 520 return buffer.appendZeroCC(jamos, jamos+Hangul::decompose(c, jamos),
errorCode); |
| 521 } else if(isDecompNoAlgorithmic(norm16)) { |
| 522 c=mapAlgorithmic(c, norm16); |
| 523 norm16=getNorm16(c); |
| 524 } else { |
| 525 // c decomposes, get everything from the variable-length extra data |
| 526 const uint16_t *mapping=getMapping(norm16); |
| 527 uint16_t firstUnit=*mapping++; |
| 528 int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
| 529 uint8_t leadCC, trailCC; |
| 530 trailCC=(uint8_t)(firstUnit>>8); |
| 531 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
| 532 leadCC=(uint8_t)(*mapping++>>8); |
| 533 } else { |
| 534 leadCC=0; |
| 535 } |
| 536 return buffer.append((const UChar *)mapping, length, leadCC, trailCC
, errorCode); |
| 537 } |
| 538 } |
| 539 } |
| 540 |
| 541 const UChar * |
| 542 Normalizer2Impl::getDecomposition(UChar32 c, UChar buffer[4], int32_t &length) c
onst { |
| 543 const UChar *decomp=NULL; |
| 544 uint16_t norm16; |
| 545 for(;;) { |
| 546 if(c<minDecompNoCP || isDecompYes(norm16=getNorm16(c))) { |
| 547 // c does not decompose |
| 548 return decomp; |
| 549 } else if(isHangul(norm16)) { |
| 550 // Hangul syllable: decompose algorithmically |
| 551 length=Hangul::decompose(c, buffer); |
| 552 return buffer; |
| 553 } else if(isDecompNoAlgorithmic(norm16)) { |
| 554 c=mapAlgorithmic(c, norm16); |
| 555 decomp=buffer; |
| 556 length=0; |
| 557 U16_APPEND_UNSAFE(buffer, length, c); |
| 558 } else { |
| 559 // c decomposes, get everything from the variable-length extra data |
| 560 const uint16_t *mapping=getMapping(norm16); |
| 561 uint16_t firstUnit=*mapping++; |
| 562 length=firstUnit&MAPPING_LENGTH_MASK; |
| 563 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
| 564 ++mapping; |
| 565 } |
| 566 return (const UChar *)mapping; |
| 567 } |
| 568 } |
| 569 } |
| 570 |
| 571 void Normalizer2Impl::decomposeAndAppend(const UChar *src, const UChar *limit, |
| 572 UBool doDecompose, |
| 573 ReorderingBuffer &buffer, |
| 574 UErrorCode &errorCode) const { |
| 575 if(doDecompose) { |
| 576 decompose(src, limit, &buffer, errorCode); |
| 577 return; |
| 578 } |
| 579 // Just merge the strings at the boundary. |
| 580 ForwardUTrie2StringIterator iter(normTrie, src, limit); |
| 581 uint8_t firstCC, prevCC, cc; |
| 582 firstCC=prevCC=cc=getCC(iter.next16()); |
| 583 while(cc!=0) { |
| 584 prevCC=cc; |
| 585 cc=getCC(iter.next16()); |
| 586 }; |
| 587 buffer.append(src, (int32_t)(iter.codePointStart-src), firstCC, prevCC, erro
rCode) && |
| 588 buffer.appendZeroCC(iter.codePointStart, limit, errorCode); |
| 589 } |
| 590 |
| 591 // Note: hasDecompBoundary() could be implemented as aliases to |
| 592 // hasFCDBoundaryBefore() and hasFCDBoundaryAfter() |
| 593 // at the cost of building the FCD trie for a decomposition normalizer. |
| 594 UBool Normalizer2Impl::hasDecompBoundary(UChar32 c, UBool before) const { |
| 595 for(;;) { |
| 596 if(c<minDecompNoCP) { |
| 597 return TRUE; |
| 598 } |
| 599 uint16_t norm16=getNorm16(c); |
| 600 if(isHangul(norm16) || isDecompYesAndZeroCC(norm16)) { |
| 601 return TRUE; |
| 602 } else if(norm16>MIN_NORMAL_MAYBE_YES) { |
| 603 return FALSE; // ccc!=0 |
| 604 } else if(isDecompNoAlgorithmic(norm16)) { |
| 605 c=mapAlgorithmic(c, norm16); |
| 606 } else { |
| 607 // c decomposes, get everything from the variable-length extra data |
| 608 const uint16_t *mapping=getMapping(norm16); |
| 609 uint16_t firstUnit=*mapping++; |
| 610 if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
| 611 return FALSE; |
| 612 } |
| 613 if(!before) { |
| 614 // decomp after-boundary: same as hasFCDBoundaryAfter(), |
| 615 // fcd16<=1 || trailCC==0 |
| 616 if(firstUnit>0x1ff) { |
| 617 return FALSE; // trailCC>1 |
| 618 } |
| 619 if(firstUnit<=0xff) { |
| 620 return TRUE; // trailCC==0 |
| 621 } |
| 622 // if(trailCC==1) test leadCC==0, same as checking for before-bo
undary |
| 623 } |
| 624 // TRUE if leadCC==0 (hasFCDBoundaryBefore()) |
| 625 return (firstUnit&MAPPING_HAS_CCC_LCCC_WORD)==0 || (*mapping&0xff00)
==0; |
| 626 } |
| 627 } |
| 628 } |
| 629 |
| 630 /* |
| 631 * Finds the recomposition result for |
| 632 * a forward-combining "lead" character, |
| 633 * specified with a pointer to its compositions list, |
| 634 * and a backward-combining "trail" character. |
| 635 * |
| 636 * If the lead and trail characters combine, then this function returns |
| 637 * the following "compositeAndFwd" value: |
| 638 * Bits 21..1 composite character |
| 639 * Bit 0 set if the composite is a forward-combining starter |
| 640 * otherwise it returns -1. |
| 641 * |
| 642 * The compositions list has (trail, compositeAndFwd) pair entries, |
| 643 * encoded as either pairs or triples of 16-bit units. |
| 644 * The last entry has the high bit of its first unit set. |
| 645 * |
| 646 * The list is sorted by ascending trail characters (there are no duplicates). |
| 647 * A linear search is used. |
| 648 * |
| 649 * See normalizer2impl.h for a more detailed description |
| 650 * of the compositions list format. |
| 651 */ |
| 652 int32_t Normalizer2Impl::combine(const uint16_t *list, UChar32 trail) { |
| 653 uint16_t key1, firstUnit; |
| 654 if(trail<COMP_1_TRAIL_LIMIT) { |
| 655 // trail character is 0..33FF |
| 656 // result entry may have 2 or 3 units |
| 657 key1=(uint16_t)(trail<<1); |
| 658 while(key1>(firstUnit=*list)) { |
| 659 list+=2+(firstUnit&COMP_1_TRIPLE); |
| 660 } |
| 661 if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
| 662 if(firstUnit&COMP_1_TRIPLE) { |
| 663 return ((int32_t)list[1]<<16)|list[2]; |
| 664 } else { |
| 665 return list[1]; |
| 666 } |
| 667 } |
| 668 } else { |
| 669 // trail character is 3400..10FFFF |
| 670 // result entry has 3 units |
| 671 key1=(uint16_t)(COMP_1_TRAIL_LIMIT+ |
| 672 (((trail>>COMP_1_TRAIL_SHIFT))& |
| 673 ~COMP_1_TRIPLE)); |
| 674 uint16_t key2=(uint16_t)(trail<<COMP_2_TRAIL_SHIFT); |
| 675 uint16_t secondUnit; |
| 676 for(;;) { |
| 677 if(key1>(firstUnit=*list)) { |
| 678 list+=2+(firstUnit&COMP_1_TRIPLE); |
| 679 } else if(key1==(firstUnit&COMP_1_TRAIL_MASK)) { |
| 680 if(key2>(secondUnit=list[1])) { |
| 681 if(firstUnit&COMP_1_LAST_TUPLE) { |
| 682 break; |
| 683 } else { |
| 684 list+=3; |
| 685 } |
| 686 } else if(key2==(secondUnit&COMP_2_TRAIL_MASK)) { |
| 687 return ((int32_t)(secondUnit&~COMP_2_TRAIL_MASK)<<16)|list[2
]; |
| 688 } else { |
| 689 break; |
| 690 } |
| 691 } else { |
| 692 break; |
| 693 } |
| 694 } |
| 695 } |
| 696 return -1; |
| 697 } |
| 698 |
| 699 /** |
| 700 * @param list some character's compositions list |
| 701 * @param set recursively receives the composites from these compositions |
| 702 */ |
| 703 void Normalizer2Impl::addComposites(const uint16_t *list, UnicodeSet &set) const
{ |
| 704 uint16_t firstUnit; |
| 705 int32_t compositeAndFwd; |
| 706 do { |
| 707 firstUnit=*list; |
| 708 if((firstUnit&COMP_1_TRIPLE)==0) { |
| 709 compositeAndFwd=list[1]; |
| 710 list+=2; |
| 711 } else { |
| 712 compositeAndFwd=(((int32_t)list[1]&~COMP_2_TRAIL_MASK)<<16)|list[2]; |
| 713 list+=3; |
| 714 } |
| 715 UChar32 composite=compositeAndFwd>>1; |
| 716 if((compositeAndFwd&1)!=0) { |
| 717 addComposites(getCompositionsListForComposite(getNorm16(composite)),
set); |
| 718 } |
| 719 set.add(composite); |
| 720 } while((firstUnit&COMP_1_LAST_TUPLE)==0); |
| 721 } |
| 722 |
| 723 /* |
| 724 * Recomposes the buffer text starting at recomposeStartIndex |
| 725 * (which is in NFD - decomposed and canonically ordered), |
| 726 * and truncates the buffer contents. |
| 727 * |
| 728 * Note that recomposition never lengthens the text: |
| 729 * Any character consists of either one or two code units; |
| 730 * a composition may contain at most one more code unit than the original starte
r, |
| 731 * while the combining mark that is removed has at least one code unit. |
| 732 */ |
| 733 void Normalizer2Impl::recompose(ReorderingBuffer &buffer, int32_t recomposeStart
Index, |
| 734 UBool onlyContiguous) const { |
| 735 UChar *p=buffer.getStart()+recomposeStartIndex; |
| 736 UChar *limit=buffer.getLimit(); |
| 737 if(p==limit) { |
| 738 return; |
| 739 } |
| 740 |
| 741 UChar *starter, *pRemove, *q, *r; |
| 742 const uint16_t *compositionsList; |
| 743 UChar32 c, compositeAndFwd; |
| 744 uint16_t norm16; |
| 745 uint8_t cc, prevCC; |
| 746 UBool starterIsSupplementary; |
| 747 |
| 748 // Some of the following variables are not used until we have a forward-comb
ining starter |
| 749 // and are only initialized now to avoid compiler warnings. |
| 750 compositionsList=NULL; // used as indicator for whether we have a forward-c
ombining starter |
| 751 starter=NULL; |
| 752 starterIsSupplementary=FALSE; |
| 753 prevCC=0; |
| 754 |
| 755 for(;;) { |
| 756 UTRIE2_U16_NEXT16(normTrie, p, limit, c, norm16); |
| 757 cc=getCCFromYesOrMaybe(norm16); |
| 758 if( // this character combines backward and |
| 759 isMaybe(norm16) && |
| 760 // we have seen a starter that combines forward and |
| 761 compositionsList!=NULL && |
| 762 // the backward-combining character is not blocked |
| 763 (prevCC<cc || prevCC==0) |
| 764 ) { |
| 765 if(isJamoVT(norm16)) { |
| 766 // c is a Jamo V/T, see if we can compose it with the previous c
haracter. |
| 767 if(c<Hangul::JAMO_T_BASE) { |
| 768 // c is a Jamo Vowel, compose with previous Jamo L and follo
wing Jamo T. |
| 769 UChar prev=(UChar)(*starter-Hangul::JAMO_L_BASE); |
| 770 if(prev<Hangul::JAMO_L_COUNT) { |
| 771 pRemove=p-1; |
| 772 UChar syllable=(UChar) |
| 773 (Hangul::HANGUL_BASE+ |
| 774 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))
* |
| 775 Hangul::JAMO_T_COUNT); |
| 776 UChar t; |
| 777 if(p!=limit && (t=(UChar)(*p-Hangul::JAMO_T_BASE))<Hangu
l::JAMO_T_COUNT) { |
| 778 ++p; |
| 779 syllable+=t; // The next character was a Jamo T. |
| 780 } |
| 781 *starter=syllable; |
| 782 // remove the Jamo V/T |
| 783 q=pRemove; |
| 784 r=p; |
| 785 while(r<limit) { |
| 786 *q++=*r++; |
| 787 } |
| 788 limit=q; |
| 789 p=pRemove; |
| 790 } |
| 791 } |
| 792 /* |
| 793 * No "else" for Jamo T: |
| 794 * Since the input is in NFD, there are no Hangul LV syllables t
hat |
| 795 * a Jamo T could combine with. |
| 796 * All Jamo Ts are combined above when handling Jamo Vs. |
| 797 */ |
| 798 if(p==limit) { |
| 799 break; |
| 800 } |
| 801 compositionsList=NULL; |
| 802 continue; |
| 803 } else if((compositeAndFwd=combine(compositionsList, c))>=0) { |
| 804 // The starter and the combining mark (c) do combine. |
| 805 UChar32 composite=compositeAndFwd>>1; |
| 806 |
| 807 // Replace the starter with the composite, remove the combining
mark. |
| 808 pRemove=p-U16_LENGTH(c); // pRemove & p: start & limit of the c
ombining mark |
| 809 if(starterIsSupplementary) { |
| 810 if(U_IS_SUPPLEMENTARY(composite)) { |
| 811 // both are supplementary |
| 812 starter[0]=U16_LEAD(composite); |
| 813 starter[1]=U16_TRAIL(composite); |
| 814 } else { |
| 815 *starter=(UChar)composite; |
| 816 // The composite is shorter than the starter, |
| 817 // move the intermediate characters forward one. |
| 818 starterIsSupplementary=FALSE; |
| 819 q=starter+1; |
| 820 r=q+1; |
| 821 while(r<pRemove) { |
| 822 *q++=*r++; |
| 823 } |
| 824 --pRemove; |
| 825 } |
| 826 } else if(U_IS_SUPPLEMENTARY(composite)) { |
| 827 // The composite is longer than the starter, |
| 828 // move the intermediate characters back one. |
| 829 starterIsSupplementary=TRUE; |
| 830 ++starter; // temporarily increment for the loop boundary |
| 831 q=pRemove; |
| 832 r=++pRemove; |
| 833 while(starter<q) { |
| 834 *--r=*--q; |
| 835 } |
| 836 *starter=U16_TRAIL(composite); |
| 837 *--starter=U16_LEAD(composite); // undo the temporary incre
ment |
| 838 } else { |
| 839 // both are on the BMP |
| 840 *starter=(UChar)composite; |
| 841 } |
| 842 |
| 843 /* remove the combining mark by moving the following text over i
t */ |
| 844 if(pRemove<p) { |
| 845 q=pRemove; |
| 846 r=p; |
| 847 while(r<limit) { |
| 848 *q++=*r++; |
| 849 } |
| 850 limit=q; |
| 851 p=pRemove; |
| 852 } |
| 853 // Keep prevCC because we removed the combining mark. |
| 854 |
| 855 if(p==limit) { |
| 856 break; |
| 857 } |
| 858 // Is the composite a starter that combines forward? |
| 859 if(compositeAndFwd&1) { |
| 860 compositionsList= |
| 861 getCompositionsListForComposite(getNorm16(composite)); |
| 862 } else { |
| 863 compositionsList=NULL; |
| 864 } |
| 865 |
| 866 // We combined; continue with looking for compositions. |
| 867 continue; |
| 868 } |
| 869 } |
| 870 |
| 871 // no combination this time |
| 872 prevCC=cc; |
| 873 if(p==limit) { |
| 874 break; |
| 875 } |
| 876 |
| 877 // If c did not combine, then check if it is a starter. |
| 878 if(cc==0) { |
| 879 // Found a new starter. |
| 880 if((compositionsList=getCompositionsListForDecompYes(norm16))!=NULL)
{ |
| 881 // It may combine with something, prepare for it. |
| 882 if(U_IS_BMP(c)) { |
| 883 starterIsSupplementary=FALSE; |
| 884 starter=p-1; |
| 885 } else { |
| 886 starterIsSupplementary=TRUE; |
| 887 starter=p-2; |
| 888 } |
| 889 } |
| 890 } else if(onlyContiguous) { |
| 891 // FCC: no discontiguous compositions; any intervening character blo
cks. |
| 892 compositionsList=NULL; |
| 893 } |
| 894 } |
| 895 buffer.setReorderingLimit(limit); |
| 896 } |
| 897 |
| 898 // Very similar to composeQuickCheck(): Make the same changes in both places if
relevant. |
| 899 // doCompose: normalize |
| 900 // !doCompose: isNormalized (buffer must be empty and initialized) |
| 901 UBool |
| 902 Normalizer2Impl::compose(const UChar *src, const UChar *limit, |
| 903 UBool onlyContiguous, |
| 904 UBool doCompose, |
| 905 ReorderingBuffer &buffer, |
| 906 UErrorCode &errorCode) const { |
| 907 /* |
| 908 * prevBoundary points to the last character before the current one |
| 909 * that has a composition boundary before it with ccc==0 and quick check "ye
s". |
| 910 * Keeping track of prevBoundary saves us looking for a composition boundary |
| 911 * when we find a "no" or "maybe". |
| 912 * |
| 913 * When we back out from prevSrc back to prevBoundary, |
| 914 * then we also remove those same characters (which had been simply copied |
| 915 * or canonically-order-inserted) from the ReorderingBuffer. |
| 916 * Therefore, at all times, the [prevBoundary..prevSrc[ source units |
| 917 * must correspond 1:1 to destination units at the end of the destination bu
ffer. |
| 918 */ |
| 919 const UChar *prevBoundary=src; |
| 920 UChar32 minNoMaybeCP=minCompNoMaybeCP; |
| 921 if(limit==NULL) { |
| 922 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, |
| 923 doCompose ? &buffer : NULL, |
| 924 errorCode); |
| 925 if(U_FAILURE(errorCode)) { |
| 926 return FALSE; |
| 927 } |
| 928 if(prevBoundary<src) { |
| 929 // Set prevBoundary to the last character in the prefix. |
| 930 prevBoundary=src-1; |
| 931 } |
| 932 limit=u_strchr(src, 0); |
| 933 } |
| 934 |
| 935 const UChar *prevSrc; |
| 936 UChar32 c=0; |
| 937 uint16_t norm16=0; |
| 938 |
| 939 // only for isNormalized |
| 940 uint8_t prevCC=0; |
| 941 |
| 942 for(;;) { |
| 943 // count code units below the minimum or with irrelevant data for the qu
ick check |
| 944 for(prevSrc=src; src!=limit;) { |
| 945 if( (c=*src)<minNoMaybeCP || |
| 946 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(norm
Trie, c)) |
| 947 ) { |
| 948 ++src; |
| 949 } else if(!U16_IS_SURROGATE(c)) { |
| 950 break; |
| 951 } else { |
| 952 UChar c2; |
| 953 if(U16_IS_SURROGATE_LEAD(c)) { |
| 954 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| 955 c=U16_GET_SUPPLEMENTARY(c, c2); |
| 956 } |
| 957 } else /* trail surrogate */ { |
| 958 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
| 959 --src; |
| 960 c=U16_GET_SUPPLEMENTARY(c2, c); |
| 961 } |
| 962 } |
| 963 if(isCompYesAndZeroCC(norm16=getNorm16(c))) { |
| 964 src+=U16_LENGTH(c); |
| 965 } else { |
| 966 break; |
| 967 } |
| 968 } |
| 969 } |
| 970 // copy these code units all at once |
| 971 if(src!=prevSrc) { |
| 972 if(doCompose) { |
| 973 if(!buffer.appendZeroCC(prevSrc, src, errorCode)) { |
| 974 break; |
| 975 } |
| 976 } else { |
| 977 prevCC=0; |
| 978 } |
| 979 if(src==limit) { |
| 980 break; |
| 981 } |
| 982 // Set prevBoundary to the last character in the quick check loop. |
| 983 prevBoundary=src-1; |
| 984 if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && |
| 985 U16_IS_LEAD(*(prevBoundary-1)) |
| 986 ) { |
| 987 --prevBoundary; |
| 988 } |
| 989 // The start of the current character (c). |
| 990 prevSrc=src; |
| 991 } else if(src==limit) { |
| 992 break; |
| 993 } |
| 994 |
| 995 src+=U16_LENGTH(c); |
| 996 /* |
| 997 * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
| 998 * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backwa
rd) |
| 999 * or has ccc!=0. |
| 1000 * Check for Jamo V/T, then for regular characters. |
| 1001 * c is not a Hangul syllable or Jamo L because those have "yes" propert
ies. |
| 1002 */ |
| 1003 if(isJamoVT(norm16) && prevBoundary!=prevSrc) { |
| 1004 UChar prev=*(prevSrc-1); |
| 1005 UBool needToDecompose=FALSE; |
| 1006 if(c<Hangul::JAMO_T_BASE) { |
| 1007 // c is a Jamo Vowel, compose with previous Jamo L and following
Jamo T. |
| 1008 prev=(UChar)(prev-Hangul::JAMO_L_BASE); |
| 1009 if(prev<Hangul::JAMO_L_COUNT) { |
| 1010 if(!doCompose) { |
| 1011 return FALSE; |
| 1012 } |
| 1013 UChar syllable=(UChar) |
| 1014 (Hangul::HANGUL_BASE+ |
| 1015 (prev*Hangul::JAMO_V_COUNT+(c-Hangul::JAMO_V_BASE))* |
| 1016 Hangul::JAMO_T_COUNT); |
| 1017 UChar t; |
| 1018 if(src!=limit && (t=(UChar)(*src-Hangul::JAMO_T_BASE))<Hangu
l::JAMO_T_COUNT) { |
| 1019 ++src; |
| 1020 syllable+=t; // The next character was a Jamo T. |
| 1021 prevBoundary=src; |
| 1022 buffer.setLastChar(syllable); |
| 1023 continue; |
| 1024 } |
| 1025 // If we see L+V+x where x!=T then we drop to the slow path, |
| 1026 // decompose and recompose. |
| 1027 // This is to deal with NFKC finding normal L and V but a |
| 1028 // compatibility variant of a T. We need to either fully com
pose that |
| 1029 // combination here (which would complicate the code and may
not work |
| 1030 // with strange custom data) or use the slow path -- or else
our replacing |
| 1031 // two input characters (L+V) with one output character (LV
syllable) |
| 1032 // would violate the invariant that [prevBoundary..prevSrc[
has the same |
| 1033 // length as what we appended to the buffer since prevBounda
ry. |
| 1034 needToDecompose=TRUE; |
| 1035 } |
| 1036 } else if(Hangul::isHangulWithoutJamoT(prev)) { |
| 1037 // c is a Jamo Trailing consonant, |
| 1038 // compose with previous Hangul LV that does not contain a Jamo
T. |
| 1039 if(!doCompose) { |
| 1040 return FALSE; |
| 1041 } |
| 1042 buffer.setLastChar((UChar)(prev+c-Hangul::JAMO_T_BASE)); |
| 1043 prevBoundary=src; |
| 1044 continue; |
| 1045 } |
| 1046 if(!needToDecompose) { |
| 1047 // The Jamo V/T did not compose into a Hangul syllable. |
| 1048 if(doCompose) { |
| 1049 if(!buffer.appendBMP((UChar)c, 0, errorCode)) { |
| 1050 break; |
| 1051 } |
| 1052 } else { |
| 1053 prevCC=0; |
| 1054 } |
| 1055 continue; |
| 1056 } |
| 1057 } |
| 1058 /* |
| 1059 * Source buffer pointers: |
| 1060 * |
| 1061 * all done quick check current char not yet |
| 1062 * "yes" but (c) processed |
| 1063 * may combine |
| 1064 * forward |
| 1065 * [-------------[-------------[-------------[-------------[ |
| 1066 * | | | | | |
| 1067 * orig. src prevBoundary prevSrc src limit |
| 1068 * |
| 1069 * |
| 1070 * Destination buffer pointers inside the ReorderingBuffer: |
| 1071 * |
| 1072 * all done might take not filled yet |
| 1073 * characters for |
| 1074 * reordering |
| 1075 * [-------------[-------------[-------------[ |
| 1076 * | | | | |
| 1077 * start reorderStart limit | |
| 1078 * +remainingCap.+ |
| 1079 */ |
| 1080 if(norm16>=MIN_YES_YES_WITH_CC) { |
| 1081 uint8_t cc=(uint8_t)norm16; // cc!=0 |
| 1082 if( onlyContiguous && // FCC |
| 1083 (doCompose ? buffer.getLastCC() : prevCC)==0 && |
| 1084 prevBoundary<prevSrc && |
| 1085 // buffer.getLastCC()==0 && prevBoundary<prevSrc tell us that |
| 1086 // [prevBoundary..prevSrc[ (which is exactly one character under
these conditions) |
| 1087 // passed the quick check "yes && ccc==0" test. |
| 1088 // Check whether the last character was a "yesYes" or a "yesNo". |
| 1089 // If a "yesNo", then we get its trailing ccc from its |
| 1090 // mapping and check for canonical order. |
| 1091 // All other cases are ok. |
| 1092 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc |
| 1093 ) { |
| 1094 // Fails FCD test, need to decompose and contiguously recompose. |
| 1095 if(!doCompose) { |
| 1096 return FALSE; |
| 1097 } |
| 1098 } else if(doCompose) { |
| 1099 if(!buffer.append(c, cc, errorCode)) { |
| 1100 break; |
| 1101 } |
| 1102 continue; |
| 1103 } else if(prevCC<=cc) { |
| 1104 prevCC=cc; |
| 1105 continue; |
| 1106 } else { |
| 1107 return FALSE; |
| 1108 } |
| 1109 } else if(!doCompose && !isMaybeOrNonZeroCC(norm16)) { |
| 1110 return FALSE; |
| 1111 } |
| 1112 |
| 1113 /* |
| 1114 * Find appropriate boundaries around this character, |
| 1115 * decompose the source text from between the boundaries, |
| 1116 * and recompose it. |
| 1117 * |
| 1118 * We may need to remove the last few characters from the ReorderingBuff
er |
| 1119 * to account for source text that was copied or appended |
| 1120 * but needs to take part in the recomposition. |
| 1121 */ |
| 1122 |
| 1123 /* |
| 1124 * Find the last composition boundary in [prevBoundary..src[. |
| 1125 * It is either the decomposition of the current character (at prevSrc), |
| 1126 * or prevBoundary. |
| 1127 */ |
| 1128 if(hasCompBoundaryBefore(c, norm16)) { |
| 1129 prevBoundary=prevSrc; |
| 1130 } else if(doCompose) { |
| 1131 buffer.removeSuffix((int32_t)(prevSrc-prevBoundary)); |
| 1132 } |
| 1133 |
| 1134 // Find the next composition boundary in [src..limit[ - |
| 1135 // modifies src to point to the next starter. |
| 1136 src=(UChar *)findNextCompBoundary(src, limit); |
| 1137 |
| 1138 // Decompose [prevBoundary..src[ into the buffer and then recompose that
part of it. |
| 1139 int32_t recomposeStartIndex=buffer.length(); |
| 1140 if(!decomposeShort(prevBoundary, src, buffer, errorCode)) { |
| 1141 break; |
| 1142 } |
| 1143 recompose(buffer, recomposeStartIndex, onlyContiguous); |
| 1144 if(!doCompose) { |
| 1145 if(!buffer.equals(prevBoundary, src)) { |
| 1146 return FALSE; |
| 1147 } |
| 1148 buffer.remove(); |
| 1149 prevCC=0; |
| 1150 } |
| 1151 |
| 1152 // Move to the next starter. We never need to look back before this poin
t again. |
| 1153 prevBoundary=src; |
| 1154 } |
| 1155 return TRUE; |
| 1156 } |
| 1157 |
| 1158 // Very similar to compose(): Make the same changes in both places if relevant. |
| 1159 // pQCResult==NULL: spanQuickCheckYes |
| 1160 // pQCResult!=NULL: quickCheck (*pQCResult must be UNORM_YES) |
| 1161 const UChar * |
| 1162 Normalizer2Impl::composeQuickCheck(const UChar *src, const UChar *limit, |
| 1163 UBool onlyContiguous, |
| 1164 UNormalizationCheckResult *pQCResult) const { |
| 1165 /* |
| 1166 * prevBoundary points to the last character before the current one |
| 1167 * that has a composition boundary before it with ccc==0 and quick check "ye
s". |
| 1168 */ |
| 1169 const UChar *prevBoundary=src; |
| 1170 UChar32 minNoMaybeCP=minCompNoMaybeCP; |
| 1171 if(limit==NULL) { |
| 1172 UErrorCode errorCode=U_ZERO_ERROR; |
| 1173 src=copyLowPrefixFromNulTerminated(src, minNoMaybeCP, NULL, errorCode); |
| 1174 if(prevBoundary<src) { |
| 1175 // Set prevBoundary to the last character in the prefix. |
| 1176 prevBoundary=src-1; |
| 1177 } |
| 1178 limit=u_strchr(src, 0); |
| 1179 } |
| 1180 |
| 1181 const UChar *prevSrc; |
| 1182 UChar32 c=0; |
| 1183 uint16_t norm16=0; |
| 1184 uint8_t prevCC=0; |
| 1185 |
| 1186 for(;;) { |
| 1187 // count code units below the minimum or with irrelevant data for the qu
ick check |
| 1188 for(prevSrc=src;;) { |
| 1189 if(src==limit) { |
| 1190 return src; |
| 1191 } |
| 1192 if( (c=*src)<minNoMaybeCP || |
| 1193 isCompYesAndZeroCC(norm16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(norm
Trie, c)) |
| 1194 ) { |
| 1195 ++src; |
| 1196 } else if(!U16_IS_SURROGATE(c)) { |
| 1197 break; |
| 1198 } else { |
| 1199 UChar c2; |
| 1200 if(U16_IS_SURROGATE_LEAD(c)) { |
| 1201 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| 1202 c=U16_GET_SUPPLEMENTARY(c, c2); |
| 1203 } |
| 1204 } else /* trail surrogate */ { |
| 1205 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
| 1206 --src; |
| 1207 c=U16_GET_SUPPLEMENTARY(c2, c); |
| 1208 } |
| 1209 } |
| 1210 if(isCompYesAndZeroCC(norm16=getNorm16(c))) { |
| 1211 src+=U16_LENGTH(c); |
| 1212 } else { |
| 1213 break; |
| 1214 } |
| 1215 } |
| 1216 } |
| 1217 if(src!=prevSrc) { |
| 1218 // Set prevBoundary to the last character in the quick check loop. |
| 1219 prevBoundary=src-1; |
| 1220 if( U16_IS_TRAIL(*prevBoundary) && prevSrc<prevBoundary && |
| 1221 U16_IS_LEAD(*(prevBoundary-1)) |
| 1222 ) { |
| 1223 --prevBoundary; |
| 1224 } |
| 1225 prevCC=0; |
| 1226 // The start of the current character (c). |
| 1227 prevSrc=src; |
| 1228 } |
| 1229 |
| 1230 src+=U16_LENGTH(c); |
| 1231 /* |
| 1232 * isCompYesAndZeroCC(norm16) is false, that is, norm16>=minNoNo. |
| 1233 * c is either a "noNo" (has a mapping) or a "maybeYes" (combines backwa
rd) |
| 1234 * or has ccc!=0. |
| 1235 */ |
| 1236 if(isMaybeOrNonZeroCC(norm16)) { |
| 1237 uint8_t cc=getCCFromYesOrMaybe(norm16); |
| 1238 if( onlyContiguous && // FCC |
| 1239 cc!=0 && |
| 1240 prevCC==0 && |
| 1241 prevBoundary<prevSrc && |
| 1242 // prevCC==0 && prevBoundary<prevSrc tell us that |
| 1243 // [prevBoundary..prevSrc[ (which is exactly one character under
these conditions) |
| 1244 // passed the quick check "yes && ccc==0" test. |
| 1245 // Check whether the last character was a "yesYes" or a "yesNo". |
| 1246 // If a "yesNo", then we get its trailing ccc from its |
| 1247 // mapping and check for canonical order. |
| 1248 // All other cases are ok. |
| 1249 getTrailCCFromCompYesAndZeroCC(prevBoundary, prevSrc)>cc |
| 1250 ) { |
| 1251 // Fails FCD test. |
| 1252 } else if(prevCC<=cc || cc==0) { |
| 1253 prevCC=cc; |
| 1254 if(norm16<MIN_YES_YES_WITH_CC) { |
| 1255 if(pQCResult!=NULL) { |
| 1256 *pQCResult=UNORM_MAYBE; |
| 1257 } else { |
| 1258 return prevBoundary; |
| 1259 } |
| 1260 } |
| 1261 continue; |
| 1262 } |
| 1263 } |
| 1264 if(pQCResult!=NULL) { |
| 1265 *pQCResult=UNORM_NO; |
| 1266 } |
| 1267 return prevBoundary; |
| 1268 } |
| 1269 } |
| 1270 |
| 1271 void Normalizer2Impl::composeAndAppend(const UChar *src, const UChar *limit, |
| 1272 UBool doCompose, |
| 1273 UBool onlyContiguous, |
| 1274 ReorderingBuffer &buffer, |
| 1275 UErrorCode &errorCode) const { |
| 1276 if(!buffer.isEmpty()) { |
| 1277 const UChar *firstStarterInSrc=findNextCompBoundary(src, limit); |
| 1278 if(src!=firstStarterInSrc) { |
| 1279 const UChar *lastStarterInDest=findPreviousCompBoundary(buffer.getSt
art(), |
| 1280 buffer.getLi
mit()); |
| 1281 UnicodeString middle(lastStarterInDest, |
| 1282 (int32_t)(buffer.getLimit()-lastStarterInDest))
; |
| 1283 buffer.removeSuffix((int32_t)(buffer.getLimit()-lastStarterInDest)); |
| 1284 middle.append(src, (int32_t)(firstStarterInSrc-src)); |
| 1285 const UChar *middleStart=middle.getBuffer(); |
| 1286 compose(middleStart, middleStart+middle.length(), onlyContiguous, |
| 1287 TRUE, buffer, errorCode); |
| 1288 if(U_FAILURE(errorCode)) { |
| 1289 return; |
| 1290 } |
| 1291 src=firstStarterInSrc; |
| 1292 } |
| 1293 } |
| 1294 if(doCompose) { |
| 1295 compose(src, limit, onlyContiguous, TRUE, buffer, errorCode); |
| 1296 } else { |
| 1297 buffer.appendZeroCC(src, limit, errorCode); |
| 1298 } |
| 1299 } |
| 1300 |
| 1301 /** |
| 1302 * Does c have a composition boundary before it? |
| 1303 * True if its decomposition begins with a character that has |
| 1304 * ccc=0 && NFC_QC=Yes (isCompYesAndZeroCC()). |
| 1305 * As a shortcut, this is true if c itself has ccc=0 && NFC_QC=Yes |
| 1306 * (isCompYesAndZeroCC()) so we need not decompose. |
| 1307 */ |
| 1308 UBool Normalizer2Impl::hasCompBoundaryBefore(UChar32 c, uint16_t norm16) const { |
| 1309 for(;;) { |
| 1310 if(isCompYesAndZeroCC(norm16)) { |
| 1311 return TRUE; |
| 1312 } else if(isMaybeOrNonZeroCC(norm16)) { |
| 1313 return FALSE; |
| 1314 } else if(isDecompNoAlgorithmic(norm16)) { |
| 1315 c=mapAlgorithmic(c, norm16); |
| 1316 norm16=getNorm16(c); |
| 1317 } else { |
| 1318 // c decomposes, get everything from the variable-length extra data |
| 1319 const uint16_t *mapping=getMapping(norm16); |
| 1320 uint16_t firstUnit=*mapping++; |
| 1321 if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
| 1322 return FALSE; |
| 1323 } |
| 1324 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD) && (*mapping++&0xff00)) { |
| 1325 return FALSE; // non-zero leadCC |
| 1326 } |
| 1327 int32_t i=0; |
| 1328 UChar32 c; |
| 1329 U16_NEXT_UNSAFE(mapping, i, c); |
| 1330 return isCompYesAndZeroCC(getNorm16(c)); |
| 1331 } |
| 1332 } |
| 1333 } |
| 1334 |
| 1335 UBool Normalizer2Impl::hasCompBoundaryAfter(UChar32 c, UBool onlyContiguous, UBo
ol testInert) const { |
| 1336 for(;;) { |
| 1337 uint16_t norm16=getNorm16(c); |
| 1338 if(isInert(norm16)) { |
| 1339 return TRUE; |
| 1340 } else if(norm16<=minYesNo) { |
| 1341 // Hangul LVT (==minYesNo) has a boundary after it. |
| 1342 // Hangul LV and non-inert yesYes characters combine forward. |
| 1343 return isHangul(norm16) && !Hangul::isHangulWithoutJamoT((UChar)c); |
| 1344 } else if(norm16>= (testInert ? minNoNo : minMaybeYes)) { |
| 1345 return FALSE; |
| 1346 } else if(isDecompNoAlgorithmic(norm16)) { |
| 1347 c=mapAlgorithmic(c, norm16); |
| 1348 } else { |
| 1349 // c decomposes, get everything from the variable-length extra data. |
| 1350 // If testInert, then c must be a yesNo character which has lccc=0, |
| 1351 // otherwise it could be a noNo. |
| 1352 const uint16_t *mapping=getMapping(norm16); |
| 1353 uint16_t firstUnit=*mapping; |
| 1354 // TRUE if |
| 1355 // c is not deleted, and |
| 1356 // it and its decomposition do not combine forward, and it has
a starter, and |
| 1357 // if FCC then trailCC<=1 |
| 1358 return |
| 1359 (firstUnit&MAPPING_LENGTH_MASK)!=0 && |
| 1360 (firstUnit&(MAPPING_PLUS_COMPOSITION_LIST|MAPPING_NO_COMP_BOUNDA
RY_AFTER))==0 && |
| 1361 (!onlyContiguous || firstUnit<=0x1ff); |
| 1362 } |
| 1363 } |
| 1364 } |
| 1365 |
| 1366 const UChar *Normalizer2Impl::findPreviousCompBoundary(const UChar *start, const
UChar *p) const { |
| 1367 BackwardUTrie2StringIterator iter(normTrie, start, p); |
| 1368 uint16_t norm16; |
| 1369 do { |
| 1370 norm16=iter.previous16(); |
| 1371 } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); |
| 1372 // We could also test hasCompBoundaryAfter() and return iter.codePointLimit, |
| 1373 // but that's probably not worth the extra cost. |
| 1374 return iter.codePointStart; |
| 1375 } |
| 1376 |
| 1377 const UChar *Normalizer2Impl::findNextCompBoundary(const UChar *p, const UChar *
limit) const { |
| 1378 ForwardUTrie2StringIterator iter(normTrie, p, limit); |
| 1379 uint16_t norm16; |
| 1380 do { |
| 1381 norm16=iter.next16(); |
| 1382 } while(!hasCompBoundaryBefore(iter.codePoint, norm16)); |
| 1383 return iter.codePointStart; |
| 1384 } |
| 1385 |
| 1386 class FCDTrieSingleton : public UTrie2Singleton { |
| 1387 public: |
| 1388 FCDTrieSingleton(SimpleSingleton &s, Normalizer2Impl &ni, UErrorCode &ec) : |
| 1389 UTrie2Singleton(s), impl(ni), errorCode(ec) {} |
| 1390 UTrie2 *getInstance(UErrorCode &errorCode) { |
| 1391 return UTrie2Singleton::getInstance(createInstance, this, errorCode); |
| 1392 } |
| 1393 static void *createInstance(const void *context, UErrorCode &errorCode); |
| 1394 UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { |
| 1395 if(value!=0) { |
| 1396 impl.setFCD16FromNorm16(start, end, (uint16_t)value, newFCDTrie, err
orCode); |
| 1397 } |
| 1398 return U_SUCCESS(errorCode); |
| 1399 } |
| 1400 |
| 1401 Normalizer2Impl &impl; |
| 1402 UTrie2 *newFCDTrie; |
| 1403 UErrorCode &errorCode; |
| 1404 }; |
| 1405 |
| 1406 U_CDECL_BEGIN |
| 1407 |
| 1408 // Set the FCD value for a range of same-norm16 characters. |
| 1409 static UBool U_CALLCONV |
| 1410 enumRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t value
) { |
| 1411 return ((FCDTrieSingleton *)context)->rangeHandler(start, end, value); |
| 1412 } |
| 1413 |
| 1414 // Collect (OR together) the FCD values for a range of supplementary characters, |
| 1415 // for their lead surrogate code unit. |
| 1416 static UBool U_CALLCONV |
| 1417 enumRangeOrValue(const void *context, UChar32 /*start*/, UChar32 /*end*/, uint32
_t value) { |
| 1418 *((uint32_t *)context)|=value; |
| 1419 return TRUE; |
| 1420 } |
| 1421 |
| 1422 U_CDECL_END |
| 1423 |
| 1424 void *FCDTrieSingleton::createInstance(const void *context, UErrorCode &errorCod
e) { |
| 1425 FCDTrieSingleton *me=(FCDTrieSingleton *)context; |
| 1426 me->newFCDTrie=utrie2_open(0, 0, &errorCode); |
| 1427 if(U_SUCCESS(errorCode)) { |
| 1428 utrie2_enum(me->impl.getNormTrie(), NULL, enumRangeHandler, me); |
| 1429 for(UChar lead=0xd800; lead<0xdc00; ++lead) { |
| 1430 uint32_t oredValue=utrie2_get32(me->newFCDTrie, lead); |
| 1431 utrie2_enumForLeadSurrogate(me->newFCDTrie, lead, NULL, enumRangeOrV
alue, &oredValue); |
| 1432 if(oredValue!=0) { |
| 1433 // Set a "bad" value for makeFCD() to break the quick check loop |
| 1434 // and look up the value for the supplementary code point. |
| 1435 // If there is any lccc, then set the worst-case lccc of 1. |
| 1436 // The ORed-together value's tccc is already the worst case. |
| 1437 if(oredValue>0xff) { |
| 1438 oredValue=0x100|(oredValue&0xff); |
| 1439 } |
| 1440 utrie2_set32ForLeadSurrogateCodeUnit(me->newFCDTrie, lead, oredV
alue, &errorCode); |
| 1441 } |
| 1442 } |
| 1443 utrie2_freeze(me->newFCDTrie, UTRIE2_16_VALUE_BITS, &errorCode); |
| 1444 if(U_SUCCESS(errorCode)) { |
| 1445 return me->newFCDTrie; |
| 1446 } |
| 1447 } |
| 1448 utrie2_close(me->newFCDTrie); |
| 1449 return NULL; |
| 1450 } |
| 1451 |
| 1452 void Normalizer2Impl::setFCD16FromNorm16(UChar32 start, UChar32 end, uint16_t no
rm16, |
| 1453 UTrie2 *newFCDTrie, UErrorCode &errorCo
de) const { |
| 1454 // Only loops for 1:1 algorithmic mappings. |
| 1455 for(;;) { |
| 1456 if(norm16>=MIN_NORMAL_MAYBE_YES) { |
| 1457 norm16&=0xff; |
| 1458 norm16|=norm16<<8; |
| 1459 } else if(norm16<=minYesNo || minMaybeYes<=norm16) { |
| 1460 // no decomposition or Hangul syllable, all zeros |
| 1461 break; |
| 1462 } else if(limitNoNo<=norm16) { |
| 1463 int32_t delta=norm16-(minMaybeYes-MAX_DELTA-1); |
| 1464 if(start==end) { |
| 1465 start+=delta; |
| 1466 norm16=getNorm16(start); |
| 1467 } else { |
| 1468 // the same delta leads from different original characters to di
fferent mappings |
| 1469 do { |
| 1470 UChar32 c=start+delta; |
| 1471 setFCD16FromNorm16(c, c, getNorm16(c), newFCDTrie, errorCode
); |
| 1472 } while(++start<=end); |
| 1473 break; |
| 1474 } |
| 1475 } else { |
| 1476 // c decomposes, get everything from the variable-length extra data |
| 1477 const uint16_t *mapping=getMapping(norm16); |
| 1478 uint16_t firstUnit=*mapping; |
| 1479 if((firstUnit&MAPPING_LENGTH_MASK)==0) { |
| 1480 // A character that is deleted (maps to an empty string) must |
| 1481 // get the worst-case lccc and tccc values because arbitrary |
| 1482 // characters on both sides will become adjacent. |
| 1483 norm16=0x1ff; |
| 1484 } else { |
| 1485 if(firstUnit&MAPPING_HAS_CCC_LCCC_WORD) { |
| 1486 norm16=mapping[1]&0xff00; // lccc |
| 1487 } else { |
| 1488 norm16=0; |
| 1489 } |
| 1490 norm16|=firstUnit>>8; // tccc |
| 1491 } |
| 1492 } |
| 1493 utrie2_setRange32(newFCDTrie, start, end, norm16, TRUE, &errorCode); |
| 1494 break; |
| 1495 } |
| 1496 } |
| 1497 |
| 1498 const UTrie2 *Normalizer2Impl::getFCDTrie(UErrorCode &errorCode) const { |
| 1499 // Logically const: Synchronized instantiation. |
| 1500 Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); |
| 1501 return FCDTrieSingleton(me->fcdTrieSingleton, *me, errorCode).getInstance(er
rorCode); |
| 1502 } |
| 1503 |
| 1504 // Dual functionality: |
| 1505 // buffer!=NULL: normalize |
| 1506 // buffer==NULL: isNormalized/quickCheck/spanQuickCheckYes |
| 1507 const UChar * |
| 1508 Normalizer2Impl::makeFCD(const UChar *src, const UChar *limit, |
| 1509 ReorderingBuffer *buffer, |
| 1510 UErrorCode &errorCode) const { |
| 1511 // Tracks the last FCD-safe boundary, before lccc=0 or after properly-ordere
d tccc<=1. |
| 1512 // Similar to the prevBoundary in the compose() implementation. |
| 1513 const UChar *prevBoundary=src; |
| 1514 int32_t prevFCD16=0; |
| 1515 if(limit==NULL) { |
| 1516 src=copyLowPrefixFromNulTerminated(src, MIN_CCC_LCCC_CP, buffer, errorCo
de); |
| 1517 if(U_FAILURE(errorCode)) { |
| 1518 return src; |
| 1519 } |
| 1520 if(prevBoundary<src) { |
| 1521 prevBoundary=src; |
| 1522 // We know that the previous character's lccc==0. |
| 1523 // Fetching the fcd16 value was deferred for this below-U+0300 code
point. |
| 1524 prevFCD16=getFCD16FromSingleLead(*(src-1)); |
| 1525 if(prevFCD16>1) { |
| 1526 --prevBoundary; |
| 1527 } |
| 1528 } |
| 1529 limit=u_strchr(src, 0); |
| 1530 } |
| 1531 |
| 1532 // Note: In this function we use buffer->appendZeroCC() because we track |
| 1533 // the lead and trail combining classes here, rather than leaving it to |
| 1534 // the ReorderingBuffer. |
| 1535 // The exception is the call to decomposeShort() which uses the buffer |
| 1536 // in the normal way. |
| 1537 |
| 1538 const UTrie2 *trie=fcdTrie(); |
| 1539 |
| 1540 const UChar *prevSrc; |
| 1541 UChar32 c=0; |
| 1542 uint16_t fcd16=0; |
| 1543 |
| 1544 for(;;) { |
| 1545 // count code units with lccc==0 |
| 1546 for(prevSrc=src; src!=limit;) { |
| 1547 if((c=*src)<MIN_CCC_LCCC_CP) { |
| 1548 prevFCD16=~c; |
| 1549 ++src; |
| 1550 } else if((fcd16=UTRIE2_GET16_FROM_U16_SINGLE_LEAD(trie, c))<=0xff)
{ |
| 1551 prevFCD16=fcd16; |
| 1552 ++src; |
| 1553 } else if(!U16_IS_SURROGATE(c)) { |
| 1554 break; |
| 1555 } else { |
| 1556 UChar c2; |
| 1557 if(U16_IS_SURROGATE_LEAD(c)) { |
| 1558 if((src+1)!=limit && U16_IS_TRAIL(c2=src[1])) { |
| 1559 c=U16_GET_SUPPLEMENTARY(c, c2); |
| 1560 } |
| 1561 } else /* trail surrogate */ { |
| 1562 if(prevSrc<src && U16_IS_LEAD(c2=*(src-1))) { |
| 1563 --src; |
| 1564 c=U16_GET_SUPPLEMENTARY(c2, c); |
| 1565 } |
| 1566 } |
| 1567 if((fcd16=getFCD16(c))<=0xff) { |
| 1568 prevFCD16=fcd16; |
| 1569 src+=U16_LENGTH(c); |
| 1570 } else { |
| 1571 break; |
| 1572 } |
| 1573 } |
| 1574 } |
| 1575 // copy these code units all at once |
| 1576 if(src!=prevSrc) { |
| 1577 if(buffer!=NULL && !buffer->appendZeroCC(prevSrc, src, errorCode)) { |
| 1578 break; |
| 1579 } |
| 1580 if(src==limit) { |
| 1581 break; |
| 1582 } |
| 1583 prevBoundary=src; |
| 1584 // We know that the previous character's lccc==0. |
| 1585 if(prevFCD16<0) { |
| 1586 // Fetching the fcd16 value was deferred for this below-U+0300 c
ode point. |
| 1587 prevFCD16=getFCD16FromSingleLead((UChar)~prevFCD16); |
| 1588 if(prevFCD16>1) { |
| 1589 --prevBoundary; |
| 1590 } |
| 1591 } else { |
| 1592 const UChar *p=src-1; |
| 1593 if(U16_IS_TRAIL(*p) && prevSrc<p && U16_IS_LEAD(*(p-1))) { |
| 1594 --p; |
| 1595 // Need to fetch the previous character's FCD value because |
| 1596 // prevFCD16 was just for the trail surrogate code point. |
| 1597 prevFCD16=getFCD16FromSurrogatePair(p[0], p[1]); |
| 1598 // Still known to have lccc==0 because its lead surrogate un
it had lccc==0. |
| 1599 } |
| 1600 if(prevFCD16>1) { |
| 1601 prevBoundary=p; |
| 1602 } |
| 1603 } |
| 1604 // The start of the current character (c). |
| 1605 prevSrc=src; |
| 1606 } else if(src==limit) { |
| 1607 break; |
| 1608 } |
| 1609 |
| 1610 src+=U16_LENGTH(c); |
| 1611 // The current character (c) at [prevSrc..src[ has a non-zero lead combi
ning class. |
| 1612 // Check for proper order, and decompose locally if necessary. |
| 1613 if((prevFCD16&0xff)<=(fcd16>>8)) { |
| 1614 // proper order: prev tccc <= current lccc |
| 1615 if((fcd16&0xff)<=1) { |
| 1616 prevBoundary=src; |
| 1617 } |
| 1618 if(buffer!=NULL && !buffer->appendZeroCC(c, errorCode)) { |
| 1619 break; |
| 1620 } |
| 1621 prevFCD16=fcd16; |
| 1622 continue; |
| 1623 } else if(buffer==NULL) { |
| 1624 return prevBoundary; // quick check "no" |
| 1625 } else { |
| 1626 /* |
| 1627 * Back out the part of the source that we copied or appended |
| 1628 * already but is now going to be decomposed. |
| 1629 * prevSrc is set to after what was copied/appended. |
| 1630 */ |
| 1631 buffer->removeSuffix((int32_t)(prevSrc-prevBoundary)); |
| 1632 /* |
| 1633 * Find the part of the source that needs to be decomposed, |
| 1634 * up to the next safe boundary. |
| 1635 */ |
| 1636 src=findNextFCDBoundary(src, limit); |
| 1637 /* |
| 1638 * The source text does not fulfill the conditions for FCD. |
| 1639 * Decompose and reorder a limited piece of the text. |
| 1640 */ |
| 1641 if(!decomposeShort(prevBoundary, src, *buffer, errorCode)) { |
| 1642 break; |
| 1643 } |
| 1644 prevBoundary=src; |
| 1645 prevFCD16=0; |
| 1646 } |
| 1647 } |
| 1648 return src; |
| 1649 } |
| 1650 |
| 1651 void Normalizer2Impl::makeFCDAndAppend(const UChar *src, const UChar *limit, |
| 1652 UBool doMakeFCD, |
| 1653 ReorderingBuffer &buffer, |
| 1654 UErrorCode &errorCode) const { |
| 1655 if(!buffer.isEmpty()) { |
| 1656 const UChar *firstBoundaryInSrc=findNextFCDBoundary(src, limit); |
| 1657 if(src!=firstBoundaryInSrc) { |
| 1658 const UChar *lastBoundaryInDest=findPreviousFCDBoundary(buffer.getSt
art(), |
| 1659 buffer.getLi
mit()); |
| 1660 UnicodeString middle(lastBoundaryInDest, |
| 1661 (int32_t)(buffer.getLimit()-lastBoundaryInDest)
); |
| 1662 buffer.removeSuffix((int32_t)(buffer.getLimit()-lastBoundaryInDest))
; |
| 1663 middle.append(src, (int32_t)(firstBoundaryInSrc-src)); |
| 1664 const UChar *middleStart=middle.getBuffer(); |
| 1665 makeFCD(middleStart, middleStart+middle.length(), &buffer, errorCode
); |
| 1666 if(U_FAILURE(errorCode)) { |
| 1667 return; |
| 1668 } |
| 1669 src=firstBoundaryInSrc; |
| 1670 } |
| 1671 } |
| 1672 if(doMakeFCD) { |
| 1673 makeFCD(src, limit, &buffer, errorCode); |
| 1674 } else { |
| 1675 buffer.appendZeroCC(src, limit, errorCode); |
| 1676 } |
| 1677 } |
| 1678 |
| 1679 const UChar *Normalizer2Impl::findPreviousFCDBoundary(const UChar *start, const
UChar *p) const { |
| 1680 BackwardUTrie2StringIterator iter(fcdTrie(), start, p); |
| 1681 uint16_t fcd16; |
| 1682 do { |
| 1683 fcd16=iter.previous16(); |
| 1684 } while(fcd16>0xff); |
| 1685 return iter.codePointStart; |
| 1686 } |
| 1687 |
| 1688 const UChar *Normalizer2Impl::findNextFCDBoundary(const UChar *p, const UChar *l
imit) const { |
| 1689 ForwardUTrie2StringIterator iter(fcdTrie(), p, limit); |
| 1690 uint16_t fcd16; |
| 1691 do { |
| 1692 fcd16=iter.next16(); |
| 1693 } while(fcd16>0xff); |
| 1694 return iter.codePointStart; |
| 1695 } |
| 1696 |
| 1697 // CanonicalIterator data -------------------------------------------------- *** |
| 1698 |
| 1699 CanonIterData::CanonIterData(UErrorCode &errorCode) : |
| 1700 trie(utrie2_open(0, 0, &errorCode)), |
| 1701 canonStartSets(uhash_deleteUObject, NULL, errorCode) {} |
| 1702 |
| 1703 CanonIterData::~CanonIterData() { |
| 1704 utrie2_close(trie); |
| 1705 } |
| 1706 |
| 1707 void CanonIterData::addToStartSet(UChar32 origin, UChar32 decompLead, UErrorCode
&errorCode) { |
| 1708 uint32_t canonValue=utrie2_get32(trie, decompLead); |
| 1709 if((canonValue&(CANON_HAS_SET|CANON_VALUE_MASK))==0 && origin!=0) { |
| 1710 // origin is the first character whose decomposition starts with |
| 1711 // the character for which we are setting the value. |
| 1712 utrie2_set32(trie, decompLead, canonValue|origin, &errorCode); |
| 1713 } else { |
| 1714 // origin is not the first character, or it is U+0000. |
| 1715 UnicodeSet *set; |
| 1716 if((canonValue&CANON_HAS_SET)==0) { |
| 1717 set=new UnicodeSet; |
| 1718 if(set==NULL) { |
| 1719 errorCode=U_MEMORY_ALLOCATION_ERROR; |
| 1720 return; |
| 1721 } |
| 1722 UChar32 firstOrigin=(UChar32)(canonValue&CANON_VALUE_MASK); |
| 1723 canonValue=(canonValue&~CANON_VALUE_MASK)|CANON_HAS_SET|(uint32_t)ca
nonStartSets.size(); |
| 1724 utrie2_set32(trie, decompLead, canonValue, &errorCode); |
| 1725 canonStartSets.addElement(set, errorCode); |
| 1726 if(firstOrigin!=0) { |
| 1727 set->add(firstOrigin); |
| 1728 } |
| 1729 } else { |
| 1730 set=(UnicodeSet *)canonStartSets[(int32_t)(canonValue&CANON_VALUE_MA
SK)]; |
| 1731 } |
| 1732 set->add(origin); |
| 1733 } |
| 1734 } |
| 1735 |
| 1736 class CanonIterDataSingleton { |
| 1737 public: |
| 1738 CanonIterDataSingleton(SimpleSingleton &s, Normalizer2Impl &ni, UErrorCode &
ec) : |
| 1739 singleton(s), impl(ni), errorCode(ec) {} |
| 1740 CanonIterData *getInstance(UErrorCode &errorCode) { |
| 1741 void *duplicate; |
| 1742 CanonIterData *instance= |
| 1743 (CanonIterData *)singleton.getInstance(createInstance, this, duplica
te, errorCode); |
| 1744 delete (CanonIterData *)duplicate; |
| 1745 return instance; |
| 1746 } |
| 1747 static void *createInstance(const void *context, UErrorCode &errorCode); |
| 1748 UBool rangeHandler(UChar32 start, UChar32 end, uint32_t value) { |
| 1749 if(value!=0) { |
| 1750 impl.makeCanonIterDataFromNorm16(start, end, (uint16_t)value, *newDa
ta, errorCode); |
| 1751 } |
| 1752 return U_SUCCESS(errorCode); |
| 1753 } |
| 1754 |
| 1755 private: |
| 1756 SimpleSingleton &singleton; |
| 1757 Normalizer2Impl &impl; |
| 1758 CanonIterData *newData; |
| 1759 UErrorCode &errorCode; |
| 1760 }; |
| 1761 |
| 1762 U_CDECL_BEGIN |
| 1763 |
| 1764 // Call Normalizer2Impl::makeCanonIterDataFromNorm16() for a range of same-norm1
6 characters. |
| 1765 static UBool U_CALLCONV |
| 1766 enumCIDRangeHandler(const void *context, UChar32 start, UChar32 end, uint32_t va
lue) { |
| 1767 return ((CanonIterDataSingleton *)context)->rangeHandler(start, end, value); |
| 1768 } |
| 1769 |
| 1770 U_CDECL_END |
| 1771 |
| 1772 void *CanonIterDataSingleton::createInstance(const void *context, UErrorCode &er
rorCode) { |
| 1773 CanonIterDataSingleton *me=(CanonIterDataSingleton *)context; |
| 1774 me->newData=new CanonIterData(errorCode); |
| 1775 if(me->newData==NULL) { |
| 1776 errorCode=U_MEMORY_ALLOCATION_ERROR; |
| 1777 return NULL; |
| 1778 } |
| 1779 if(U_SUCCESS(errorCode)) { |
| 1780 utrie2_enum(me->impl.getNormTrie(), NULL, enumCIDRangeHandler, me); |
| 1781 utrie2_freeze(me->newData->trie, UTRIE2_32_VALUE_BITS, &errorCode); |
| 1782 if(U_SUCCESS(errorCode)) { |
| 1783 return me->newData; |
| 1784 } |
| 1785 } |
| 1786 delete me->newData; |
| 1787 return NULL; |
| 1788 } |
| 1789 |
| 1790 void Normalizer2Impl::makeCanonIterDataFromNorm16(UChar32 start, UChar32 end, ui
nt16_t norm16, |
| 1791 CanonIterData &newData, |
| 1792 UErrorCode &errorCode) const { |
| 1793 if(norm16==0 || (minYesNo<=norm16 && norm16<minNoNo)) { |
| 1794 // Inert, or 2-way mapping (including Hangul syllable). |
| 1795 // We do not write a canonStartSet for any yesNo character. |
| 1796 // Composites from 2-way mappings are added at runtime from the |
| 1797 // starter's compositions list, and the other characters in |
| 1798 // 2-way mappings get CANON_NOT_SEGMENT_STARTER set because they are |
| 1799 // "maybe" characters. |
| 1800 return; |
| 1801 } |
| 1802 for(UChar32 c=start; c<=end; ++c) { |
| 1803 uint32_t oldValue=utrie2_get32(newData.trie, c); |
| 1804 uint32_t newValue=oldValue; |
| 1805 if(norm16>=minMaybeYes) { |
| 1806 // not a segment starter if it occurs in a decomposition or has cc!=
0 |
| 1807 newValue|=CANON_NOT_SEGMENT_STARTER; |
| 1808 if(norm16<MIN_NORMAL_MAYBE_YES) { |
| 1809 newValue|=CANON_HAS_COMPOSITIONS; |
| 1810 } |
| 1811 } else if(norm16<minYesNo) { |
| 1812 newValue|=CANON_HAS_COMPOSITIONS; |
| 1813 } else { |
| 1814 // c has a one-way decomposition |
| 1815 UChar32 c2=c; |
| 1816 uint16_t norm16_2=norm16; |
| 1817 while(limitNoNo<=norm16_2 && norm16_2<minMaybeYes) { |
| 1818 c2=mapAlgorithmic(c2, norm16_2); |
| 1819 norm16_2=getNorm16(c2); |
| 1820 } |
| 1821 if(minYesNo<=norm16_2 && norm16_2<limitNoNo) { |
| 1822 // c decomposes, get everything from the variable-length extra d
ata |
| 1823 const uint16_t *mapping=getMapping(norm16_2); |
| 1824 uint16_t firstUnit=*mapping++; |
| 1825 int32_t length=firstUnit&MAPPING_LENGTH_MASK; |
| 1826 if((firstUnit&MAPPING_HAS_CCC_LCCC_WORD)!=0) { |
| 1827 if(c==c2 && (*mapping&0xff)!=0) { |
| 1828 newValue|=CANON_NOT_SEGMENT_STARTER; // original c has
cc!=0 |
| 1829 } |
| 1830 ++mapping; |
| 1831 } |
| 1832 // Skip empty mappings (no characters in the decomposition). |
| 1833 if(length!=0) { |
| 1834 // add c to first code point's start set |
| 1835 int32_t i=0; |
| 1836 U16_NEXT_UNSAFE(mapping, i, c2); |
| 1837 newData.addToStartSet(c, c2, errorCode); |
| 1838 // Set CANON_NOT_SEGMENT_STARTER for each remaining code poi
nt of a |
| 1839 // one-way mapping. A 2-way mapping is possible here after |
| 1840 // intermediate algorithmic mapping. |
| 1841 if(norm16_2>=minNoNo) { |
| 1842 while(i<length) { |
| 1843 U16_NEXT_UNSAFE(mapping, i, c2); |
| 1844 uint32_t c2Value=utrie2_get32(newData.trie, c2); |
| 1845 if((c2Value&CANON_NOT_SEGMENT_STARTER)==0) { |
| 1846 utrie2_set32(newData.trie, c2, c2Value|CANON_NOT
_SEGMENT_STARTER, |
| 1847 &errorCode); |
| 1848 } |
| 1849 } |
| 1850 } |
| 1851 } |
| 1852 } else { |
| 1853 // c decomposed to c2 algorithmically; c has cc==0 |
| 1854 newData.addToStartSet(c, c2, errorCode); |
| 1855 } |
| 1856 } |
| 1857 if(newValue!=oldValue) { |
| 1858 utrie2_set32(newData.trie, c, newValue, &errorCode); |
| 1859 } |
| 1860 } |
| 1861 } |
| 1862 |
| 1863 UBool Normalizer2Impl::ensureCanonIterData(UErrorCode &errorCode) const { |
| 1864 // Logically const: Synchronized instantiation. |
| 1865 Normalizer2Impl *me=const_cast<Normalizer2Impl *>(this); |
| 1866 CanonIterDataSingleton(me->canonIterDataSingleton, *me, errorCode).getInstan
ce(errorCode); |
| 1867 return U_SUCCESS(errorCode); |
| 1868 } |
| 1869 |
| 1870 int32_t Normalizer2Impl::getCanonValue(UChar32 c) const { |
| 1871 return (int32_t)utrie2_get32(((CanonIterData *)canonIterDataSingleton.fInsta
nce)->trie, c); |
| 1872 } |
| 1873 |
| 1874 const UnicodeSet &Normalizer2Impl::getCanonStartSet(int32_t n) const { |
| 1875 return *(const UnicodeSet *)( |
| 1876 ((CanonIterData *)canonIterDataSingleton.fInstance)->canonStartSets[n]); |
| 1877 } |
| 1878 |
| 1879 UBool Normalizer2Impl::isCanonSegmentStarter(UChar32 c) const { |
| 1880 return getCanonValue(c)>=0; |
| 1881 } |
| 1882 |
| 1883 UBool Normalizer2Impl::getCanonStartSet(UChar32 c, UnicodeSet &set) const { |
| 1884 int32_t canonValue=getCanonValue(c)&~CANON_NOT_SEGMENT_STARTER; |
| 1885 if(canonValue==0) { |
| 1886 return FALSE; |
| 1887 } |
| 1888 set.clear(); |
| 1889 int32_t value=canonValue&CANON_VALUE_MASK; |
| 1890 if((canonValue&CANON_HAS_SET)!=0) { |
| 1891 set.addAll(getCanonStartSet(value)); |
| 1892 } else if(value!=0) { |
| 1893 set.add(value); |
| 1894 } |
| 1895 if((canonValue&CANON_HAS_COMPOSITIONS)!=0) { |
| 1896 uint16_t norm16=getNorm16(c); |
| 1897 if(norm16==JAMO_L) { |
| 1898 UChar32 syllable= |
| 1899 (UChar32)(Hangul::HANGUL_BASE+(c-Hangul::JAMO_L_BASE)*Hangul::JA
MO_VT_COUNT); |
| 1900 set.add(syllable, syllable+Hangul::JAMO_VT_COUNT-1); |
| 1901 } else { |
| 1902 addComposites(getCompositionsList(norm16), set); |
| 1903 } |
| 1904 } |
| 1905 return TRUE; |
| 1906 } |
| 1907 |
| 1908 U_NAMESPACE_END |
| 1909 |
| 1910 // Normalizer2 data swapping ----------------------------------------------- *** |
| 1911 |
| 1912 U_NAMESPACE_USE |
| 1913 |
| 1914 U_CAPI int32_t U_EXPORT2 |
| 1915 unorm2_swap(const UDataSwapper *ds, |
| 1916 const void *inData, int32_t length, void *outData, |
| 1917 UErrorCode *pErrorCode) { |
| 1918 const UDataInfo *pInfo; |
| 1919 int32_t headerSize; |
| 1920 |
| 1921 const uint8_t *inBytes; |
| 1922 uint8_t *outBytes; |
| 1923 |
| 1924 const int32_t *inIndexes; |
| 1925 int32_t indexes[Normalizer2Impl::IX_MIN_MAYBE_YES+1]; |
| 1926 |
| 1927 int32_t i, offset, nextOffset, size; |
| 1928 |
| 1929 /* udata_swapDataHeader checks the arguments */ |
| 1930 headerSize=udata_swapDataHeader(ds, inData, length, outData, pErrorCode); |
| 1931 if(pErrorCode==NULL || U_FAILURE(*pErrorCode)) { |
| 1932 return 0; |
| 1933 } |
| 1934 |
| 1935 /* check data format and format version */ |
| 1936 pInfo=(const UDataInfo *)((const char *)inData+4); |
| 1937 if(!( |
| 1938 pInfo->dataFormat[0]==0x4e && /* dataFormat="Nrm2" */ |
| 1939 pInfo->dataFormat[1]==0x72 && |
| 1940 pInfo->dataFormat[2]==0x6d && |
| 1941 pInfo->dataFormat[3]==0x32 && |
| 1942 pInfo->formatVersion[0]==1 |
| 1943 )) { |
| 1944 udata_printError(ds, "unorm2_swap(): data format %02x.%02x.%02x.%02x (fo
rmat version %02x) is not recognized as Normalizer2 data\n", |
| 1945 pInfo->dataFormat[0], pInfo->dataFormat[1], |
| 1946 pInfo->dataFormat[2], pInfo->dataFormat[3], |
| 1947 pInfo->formatVersion[0]); |
| 1948 *pErrorCode=U_UNSUPPORTED_ERROR; |
| 1949 return 0; |
| 1950 } |
| 1951 |
| 1952 inBytes=(const uint8_t *)inData+headerSize; |
| 1953 outBytes=(uint8_t *)outData+headerSize; |
| 1954 |
| 1955 inIndexes=(const int32_t *)inBytes; |
| 1956 |
| 1957 if(length>=0) { |
| 1958 length-=headerSize; |
| 1959 if(length<(int32_t)sizeof(indexes)) { |
| 1960 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header)
for Normalizer2 data\n", |
| 1961 length); |
| 1962 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 1963 return 0; |
| 1964 } |
| 1965 } |
| 1966 |
| 1967 /* read the first few indexes */ |
| 1968 for(i=0; i<=Normalizer2Impl::IX_MIN_MAYBE_YES; ++i) { |
| 1969 indexes[i]=udata_readInt32(ds, inIndexes[i]); |
| 1970 } |
| 1971 |
| 1972 /* get the total length of the data */ |
| 1973 size=indexes[Normalizer2Impl::IX_TOTAL_SIZE]; |
| 1974 |
| 1975 if(length>=0) { |
| 1976 if(length<size) { |
| 1977 udata_printError(ds, "unorm2_swap(): too few bytes (%d after header)
for all of Normalizer2 data\n", |
| 1978 length); |
| 1979 *pErrorCode=U_INDEX_OUTOFBOUNDS_ERROR; |
| 1980 return 0; |
| 1981 } |
| 1982 |
| 1983 /* copy the data for inaccessible bytes */ |
| 1984 if(inBytes!=outBytes) { |
| 1985 uprv_memcpy(outBytes, inBytes, size); |
| 1986 } |
| 1987 |
| 1988 offset=0; |
| 1989 |
| 1990 /* swap the int32_t indexes[] */ |
| 1991 nextOffset=indexes[Normalizer2Impl::IX_NORM_TRIE_OFFSET]; |
| 1992 ds->swapArray32(ds, inBytes, nextOffset-offset, outBytes, pErrorCode); |
| 1993 offset=nextOffset; |
| 1994 |
| 1995 /* swap the UTrie2 */ |
| 1996 nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET]; |
| 1997 utrie2_swap(ds, inBytes+offset, nextOffset-offset, outBytes+offset, pErr
orCode); |
| 1998 offset=nextOffset; |
| 1999 |
| 2000 /* swap the uint16_t extraData[] */ |
| 2001 nextOffset=indexes[Normalizer2Impl::IX_EXTRA_DATA_OFFSET+1]; |
| 2002 ds->swapArray16(ds, inBytes+offset, nextOffset-offset, outBytes+offset,
pErrorCode); |
| 2003 offset=nextOffset; |
| 2004 |
| 2005 U_ASSERT(offset==size); |
| 2006 } |
| 2007 |
| 2008 return headerSize+size; |
| 2009 } |
| 2010 |
| 2011 #endif // !UCONFIG_NO_NORMALIZATION |
OLD | NEW |