| Index: sdch/open_vcdiff/depot/opensource/open-vcdiff/src/adler32.c
|
| ===================================================================
|
| --- sdch/open_vcdiff/depot/opensource/open-vcdiff/src/adler32.c (revision 2678)
|
| +++ sdch/open_vcdiff/depot/opensource/open-vcdiff/src/adler32.c (working copy)
|
| @@ -1,189 +0,0 @@
|
| -/* adler32.c -- compute the Adler-32 checksum of a data stream
|
| - * Copyright (C) 1995-2004 Mark Adler
|
| - * For conditions of distribution and use, see copyright notice in zlib.h
|
| - */
|
| -
|
| -/* @(#) $Id$ */
|
| -
|
| -#define ZLIB_INTERNAL
|
| -#include "zlib.h"
|
| -
|
| -#define BASE 65521UL /* largest prime smaller than 65536 */
|
| -#define NMAX 5552
|
| -/* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */
|
| -
|
| -#define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;}
|
| -#define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);
|
| -#define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);
|
| -#define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);
|
| -#define DO16(buf) DO8(buf,0); DO8(buf,8);
|
| -
|
| -/* use NO_DIVIDE if your processor does not do division in hardware */
|
| -#ifdef NO_DIVIDE
|
| -# define MOD(a) \
|
| - do { \
|
| - if (a >= (BASE << 16)) a -= (BASE << 16); \
|
| - if (a >= (BASE << 15)) a -= (BASE << 15); \
|
| - if (a >= (BASE << 14)) a -= (BASE << 14); \
|
| - if (a >= (BASE << 13)) a -= (BASE << 13); \
|
| - if (a >= (BASE << 12)) a -= (BASE << 12); \
|
| - if (a >= (BASE << 11)) a -= (BASE << 11); \
|
| - if (a >= (BASE << 10)) a -= (BASE << 10); \
|
| - if (a >= (BASE << 9)) a -= (BASE << 9); \
|
| - if (a >= (BASE << 8)) a -= (BASE << 8); \
|
| - if (a >= (BASE << 7)) a -= (BASE << 7); \
|
| - if (a >= (BASE << 6)) a -= (BASE << 6); \
|
| - if (a >= (BASE << 5)) a -= (BASE << 5); \
|
| - if (a >= (BASE << 4)) a -= (BASE << 4); \
|
| - if (a >= (BASE << 3)) a -= (BASE << 3); \
|
| - if (a >= (BASE << 2)) a -= (BASE << 2); \
|
| - if (a >= (BASE << 1)) a -= (BASE << 1); \
|
| - if (a >= BASE) a -= BASE; \
|
| - } while (0)
|
| -# define MOD4(a) \
|
| - do { \
|
| - if (a >= (BASE << 4)) a -= (BASE << 4); \
|
| - if (a >= (BASE << 3)) a -= (BASE << 3); \
|
| - if (a >= (BASE << 2)) a -= (BASE << 2); \
|
| - if (a >= (BASE << 1)) a -= (BASE << 1); \
|
| - if (a >= BASE) a -= BASE; \
|
| - } while (0)
|
| -#else
|
| -# define MOD(a) a %= BASE
|
| -# define MOD4(a) a %= BASE
|
| -#endif
|
| -
|
| -/* ========================================================================= */
|
| -
|
| -/*
|
| - The adler32 code below computes, in effect,
|
| -
|
| - uLong high = 0;
|
| - uLong low = 1;
|
| - for (j = 0; j < len; j++) {
|
| - low = (low + buf[j]) % BASE;
|
| - high = (high + low) % BASE;
|
| - }
|
| - checksum = (high << 16) | low;
|
| -
|
| - Both 16-bit halves of the checksum are between 0 and BASE-1 (inclusive).
|
| - Hence, the minimum possible checksum value is 0, and the maximum is
|
| - ((BASE-1) << 16) | (BASE-1). Applications may have reserved values
|
| - outside this range to carry special meanings.
|
| -
|
| - NOTE: If adler32() is changed in ANY way, be absolutely sure that the
|
| - change will NOT cause checksums previously stored to not match the data
|
| - they were originally intended to match, or expand the range in such a
|
| - way that values reserved by applications to carry special meanings now
|
| - become checksums of valid data. Also, be sure to change adler32_range()
|
| - accordingly.
|
| -
|
| - This explanation and adler32_range() are not part of original software
|
| - distribution. They are added at Google (2006) in accordance with the
|
| - copyright notice in zlib.h, which permits alteration and redistribution
|
| - of the original software provided, among other things, that altered
|
| - source versions must be plainly marked as such and not misrepresented as
|
| - being the original software.
|
| -*/
|
| -
|
| -void ZEXPORT adler32_range(min, max)
|
| - uLong *min;
|
| - uLong *max;
|
| -{
|
| - *min = 0L;
|
| - *max = ((BASE-1) << 16) | (BASE-1);
|
| -}
|
| -
|
| -uLong ZEXPORT adler32(adler, buf, len)
|
| - uLong adler;
|
| - const Bytef *buf;
|
| - uInt len;
|
| -{
|
| - unsigned long sum2;
|
| - unsigned n;
|
| -
|
| - /* split Adler-32 into component sums */
|
| - sum2 = (adler >> 16) & 0xffff;
|
| - adler &= 0xffff;
|
| -
|
| - /* in case user likes doing a byte at a time, keep it fast */
|
| - if (len == 1) {
|
| - adler += buf[0];
|
| - if (adler >= BASE)
|
| - adler -= BASE;
|
| - sum2 += adler;
|
| - if (sum2 >= BASE)
|
| - sum2 -= BASE;
|
| - return adler | (sum2 << 16);
|
| - }
|
| -
|
| - /* initial Adler-32 value (deferred check for len == 1 speed) */
|
| - if (buf == Z_NULL)
|
| - return 1L;
|
| -
|
| - /* in case short lengths are provided, keep it somewhat fast */
|
| - if (len < 16) {
|
| - while (len--) {
|
| - adler += *buf++;
|
| - sum2 += adler;
|
| - }
|
| - if (adler >= BASE)
|
| - adler -= BASE;
|
| - MOD4(sum2); /* only added so many BASE's */
|
| - return adler | (sum2 << 16);
|
| - }
|
| -
|
| - /* do length NMAX blocks -- requires just one modulo operation */
|
| - while (len >= NMAX) {
|
| - len -= NMAX;
|
| - n = NMAX / 16; /* NMAX is divisible by 16 */
|
| - do {
|
| - DO16(buf); /* 16 sums unrolled */
|
| - buf += 16;
|
| - } while (--n);
|
| - MOD(adler);
|
| - MOD(sum2);
|
| - }
|
| -
|
| - /* do remaining bytes (less than NMAX, still just one modulo) */
|
| - if (len) { /* avoid modulos if none remaining */
|
| - while (len >= 16) {
|
| - len -= 16;
|
| - DO16(buf);
|
| - buf += 16;
|
| - }
|
| - while (len--) {
|
| - adler += *buf++;
|
| - sum2 += adler;
|
| - }
|
| - MOD(adler);
|
| - MOD(sum2);
|
| - }
|
| -
|
| - /* return recombined sums */
|
| - return adler | (sum2 << 16);
|
| -}
|
| -
|
| -/* ========================================================================= */
|
| -uLong ZEXPORT adler32_combine(adler1, adler2, len2)
|
| - uLong adler1;
|
| - uLong adler2;
|
| - z_off_t len2;
|
| -{
|
| - unsigned long sum1;
|
| - unsigned long sum2;
|
| - unsigned rem;
|
| -
|
| - /* the derivation of this formula is left as an exercise for the reader */
|
| - rem = (unsigned)(len2 % BASE);
|
| - sum1 = adler1 & 0xffff;
|
| - sum2 = rem * sum1;
|
| - MOD(sum2);
|
| - sum1 += (adler2 & 0xffff) + BASE - 1;
|
| - sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem;
|
| - if (sum1 >= BASE) sum1 -= BASE;
|
| - if (sum1 >= BASE) sum1 -= BASE;
|
| - if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1);
|
| - if (sum2 >= BASE) sum2 -= BASE;
|
| - return sum1 | (sum2 << 16);
|
| -}
|
|
|