OLD | NEW |
| (Empty) |
1 /* adler32.c -- compute the Adler-32 checksum of a data stream | |
2 * Copyright (C) 1995-2004 Mark Adler | |
3 * For conditions of distribution and use, see copyright notice in zlib.h | |
4 */ | |
5 | |
6 /* @(#) $Id$ */ | |
7 | |
8 #define ZLIB_INTERNAL | |
9 #include "zlib.h" | |
10 | |
11 #define BASE 65521UL /* largest prime smaller than 65536 */ | |
12 #define NMAX 5552 | |
13 /* NMAX is the largest n such that 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1 */ | |
14 | |
15 #define DO1(buf,i) {adler += (buf)[i]; sum2 += adler;} | |
16 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1); | |
17 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2); | |
18 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4); | |
19 #define DO16(buf) DO8(buf,0); DO8(buf,8); | |
20 | |
21 /* use NO_DIVIDE if your processor does not do division in hardware */ | |
22 #ifdef NO_DIVIDE | |
23 # define MOD(a) \ | |
24 do { \ | |
25 if (a >= (BASE << 16)) a -= (BASE << 16); \ | |
26 if (a >= (BASE << 15)) a -= (BASE << 15); \ | |
27 if (a >= (BASE << 14)) a -= (BASE << 14); \ | |
28 if (a >= (BASE << 13)) a -= (BASE << 13); \ | |
29 if (a >= (BASE << 12)) a -= (BASE << 12); \ | |
30 if (a >= (BASE << 11)) a -= (BASE << 11); \ | |
31 if (a >= (BASE << 10)) a -= (BASE << 10); \ | |
32 if (a >= (BASE << 9)) a -= (BASE << 9); \ | |
33 if (a >= (BASE << 8)) a -= (BASE << 8); \ | |
34 if (a >= (BASE << 7)) a -= (BASE << 7); \ | |
35 if (a >= (BASE << 6)) a -= (BASE << 6); \ | |
36 if (a >= (BASE << 5)) a -= (BASE << 5); \ | |
37 if (a >= (BASE << 4)) a -= (BASE << 4); \ | |
38 if (a >= (BASE << 3)) a -= (BASE << 3); \ | |
39 if (a >= (BASE << 2)) a -= (BASE << 2); \ | |
40 if (a >= (BASE << 1)) a -= (BASE << 1); \ | |
41 if (a >= BASE) a -= BASE; \ | |
42 } while (0) | |
43 # define MOD4(a) \ | |
44 do { \ | |
45 if (a >= (BASE << 4)) a -= (BASE << 4); \ | |
46 if (a >= (BASE << 3)) a -= (BASE << 3); \ | |
47 if (a >= (BASE << 2)) a -= (BASE << 2); \ | |
48 if (a >= (BASE << 1)) a -= (BASE << 1); \ | |
49 if (a >= BASE) a -= BASE; \ | |
50 } while (0) | |
51 #else | |
52 # define MOD(a) a %= BASE | |
53 # define MOD4(a) a %= BASE | |
54 #endif | |
55 | |
56 /* ========================================================================= */ | |
57 | |
58 /* | |
59 The adler32 code below computes, in effect, | |
60 | |
61 uLong high = 0; | |
62 uLong low = 1; | |
63 for (j = 0; j < len; j++) { | |
64 low = (low + buf[j]) % BASE; | |
65 high = (high + low) % BASE; | |
66 } | |
67 checksum = (high << 16) | low; | |
68 | |
69 Both 16-bit halves of the checksum are between 0 and BASE-1 (inclusive). | |
70 Hence, the minimum possible checksum value is 0, and the maximum is | |
71 ((BASE-1) << 16) | (BASE-1). Applications may have reserved values | |
72 outside this range to carry special meanings. | |
73 | |
74 NOTE: If adler32() is changed in ANY way, be absolutely sure that the | |
75 change will NOT cause checksums previously stored to not match the data | |
76 they were originally intended to match, or expand the range in such a | |
77 way that values reserved by applications to carry special meanings now | |
78 become checksums of valid data. Also, be sure to change adler32_range() | |
79 accordingly. | |
80 | |
81 This explanation and adler32_range() are not part of original software | |
82 distribution. They are added at Google (2006) in accordance with the | |
83 copyright notice in zlib.h, which permits alteration and redistribution | |
84 of the original software provided, among other things, that altered | |
85 source versions must be plainly marked as such and not misrepresented as | |
86 being the original software. | |
87 */ | |
88 | |
89 void ZEXPORT adler32_range(min, max) | |
90 uLong *min; | |
91 uLong *max; | |
92 { | |
93 *min = 0L; | |
94 *max = ((BASE-1) << 16) | (BASE-1); | |
95 } | |
96 | |
97 uLong ZEXPORT adler32(adler, buf, len) | |
98 uLong adler; | |
99 const Bytef *buf; | |
100 uInt len; | |
101 { | |
102 unsigned long sum2; | |
103 unsigned n; | |
104 | |
105 /* split Adler-32 into component sums */ | |
106 sum2 = (adler >> 16) & 0xffff; | |
107 adler &= 0xffff; | |
108 | |
109 /* in case user likes doing a byte at a time, keep it fast */ | |
110 if (len == 1) { | |
111 adler += buf[0]; | |
112 if (adler >= BASE) | |
113 adler -= BASE; | |
114 sum2 += adler; | |
115 if (sum2 >= BASE) | |
116 sum2 -= BASE; | |
117 return adler | (sum2 << 16); | |
118 } | |
119 | |
120 /* initial Adler-32 value (deferred check for len == 1 speed) */ | |
121 if (buf == Z_NULL) | |
122 return 1L; | |
123 | |
124 /* in case short lengths are provided, keep it somewhat fast */ | |
125 if (len < 16) { | |
126 while (len--) { | |
127 adler += *buf++; | |
128 sum2 += adler; | |
129 } | |
130 if (adler >= BASE) | |
131 adler -= BASE; | |
132 MOD4(sum2); /* only added so many BASE's */ | |
133 return adler | (sum2 << 16); | |
134 } | |
135 | |
136 /* do length NMAX blocks -- requires just one modulo operation */ | |
137 while (len >= NMAX) { | |
138 len -= NMAX; | |
139 n = NMAX / 16; /* NMAX is divisible by 16 */ | |
140 do { | |
141 DO16(buf); /* 16 sums unrolled */ | |
142 buf += 16; | |
143 } while (--n); | |
144 MOD(adler); | |
145 MOD(sum2); | |
146 } | |
147 | |
148 /* do remaining bytes (less than NMAX, still just one modulo) */ | |
149 if (len) { /* avoid modulos if none remaining */ | |
150 while (len >= 16) { | |
151 len -= 16; | |
152 DO16(buf); | |
153 buf += 16; | |
154 } | |
155 while (len--) { | |
156 adler += *buf++; | |
157 sum2 += adler; | |
158 } | |
159 MOD(adler); | |
160 MOD(sum2); | |
161 } | |
162 | |
163 /* return recombined sums */ | |
164 return adler | (sum2 << 16); | |
165 } | |
166 | |
167 /* ========================================================================= */ | |
168 uLong ZEXPORT adler32_combine(adler1, adler2, len2) | |
169 uLong adler1; | |
170 uLong adler2; | |
171 z_off_t len2; | |
172 { | |
173 unsigned long sum1; | |
174 unsigned long sum2; | |
175 unsigned rem; | |
176 | |
177 /* the derivation of this formula is left as an exercise for the reader */ | |
178 rem = (unsigned)(len2 % BASE); | |
179 sum1 = adler1 & 0xffff; | |
180 sum2 = rem * sum1; | |
181 MOD(sum2); | |
182 sum1 += (adler2 & 0xffff) + BASE - 1; | |
183 sum2 += ((adler1 >> 16) & 0xffff) + ((adler2 >> 16) & 0xffff) + BASE - rem; | |
184 if (sum1 >= BASE) sum1 -= BASE; | |
185 if (sum1 >= BASE) sum1 -= BASE; | |
186 if (sum2 >= (BASE << 1)) sum2 -= (BASE << 1); | |
187 if (sum2 >= BASE) sum2 -= BASE; | |
188 return sum1 | (sum2 << 16); | |
189 } | |
OLD | NEW |