Index: pkg/math/test/bigint_test.dart |
diff --git a/pkg/math/test/bigint_test.dart b/pkg/math/test/bigint_test.dart |
new file mode 100644 |
index 0000000000000000000000000000000000000000..8de74761debb843028baa7efbba0f50cda2d2f0d |
--- /dev/null |
+++ b/pkg/math/test/bigint_test.dart |
@@ -0,0 +1,141 @@ |
+// Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
+// for details. All rights reserved. Use of this source code is governed by a |
+// BSD-style license that can be found in the LICENSE file. |
+ |
+library math_test; |
+import "package:expect/expect.dart"; |
+import 'dart:math'; |
+import 'package:math/math.dart'; |
+ |
+// See gcd_test.dart first. This file contains only the tests that need Bigint |
+// or would fail in dart2js compatibility mode. |
+ |
+class BigintTest { |
+ // 8 random primes less within [2^60, 2^64] |
+ final int p1 = 6714601027348841563; |
+ final int p2 = 13464639003769154407; |
+ final int p3 = 9519493673324441563; |
+ final int p4 = 7064784879742017229; |
+ final int p5 = 18364232533526122157; |
+ final int p6 = 2099437422495963203; |
+ final int p7 = 10166792634765954647; |
+ final int p8 = 2745073355742392083; |
+ |
+ void testGcdWithBigints() { |
+ Expect.equals(pow(2, 63)*3, gcd(pow(2, 64)*3*5, pow(2, 63)*3*7)); |
+ // 595056260442243647 is the first prime after 2**64 / 31. |
+ Expect.equals(595056260442243647, |
+ gcd(31*595056260442243647, 37*595056260442243647)); |
+ Expect.equals(p2, gcd(p1*p2, p2*p3)); |
+ Expect.equals(1, gcd(p1*p2, p3*p4)); |
+ |
+ // Negatives |
+ Expect.equals(pow(2, 63)*3, gcd(-pow(2, 64)*3*5, pow(2, 63)*3*7)); |
+ Expect.equals(pow(2, 63)*3, gcd(pow(2, 64)*3*5, -pow(2, 63)*3*7)); |
+ Expect.equals(pow(2, 63)*3, gcd(-pow(2, 64)*3*5, -pow(2, 63)*3*7)); |
+ Expect.equals(1, gcd(-p1, p2)); |
+ Expect.equals(1, gcd(p1, -p2)); |
+ Expect.equals(1, gcd(-p1, -p2)); |
+ } |
+ |
+ void testGcdextWithBigints() { |
+ Expect.listEquals([pow(2, 63)*3, -2, 3], |
+ gcdext(pow(2, 64)*3*5, pow(2, 63)*3*7)); |
+ // 595056260442243647 is the first prime after 2**64 / 31. |
+ Expect.listEquals([595056260442243647, 6, -5], |
+ gcdext(31*595056260442243647, 37*595056260442243647)); |
+ Expect.listEquals([1, 970881267037344823, -970881267037344822], |
+ gcdext(73786976294838206473, 73786976294838206549)); |
+ Expect.listEquals([1, 796993873408264695, -397448151389712212], |
+ gcdext(p1, p2)); |
+ Expect.listEquals([1, -397448151389712212, 796993873408264695], |
+ gcdext(p2, p1)); |
+ |
+ // Negatives |
+ Expect.listEquals([1, -796993873408264695, -397448151389712212], |
+ gcdext(-p1, p2)); |
+ Expect.listEquals([1, 796993873408264695, 397448151389712212], |
+ gcdext(p1, -p2)); |
+ Expect.listEquals([1, -796993873408264695, 397448151389712212], |
+ gcdext(-p1, -p2)); |
+ } |
+ |
+ void testInvertWithBigints() { |
+ // 9223372036854775837 is the first prime after 2^63. |
+ Expect.equals(2093705452366034115, invert(1000, 9223372036854775837)); |
+ Expect.equals(970547769322117497, invert(1000000, 9223372036854775837)); |
+ |
+ Expect.equals(796993873408264695, invert(p1, p2)); |
+ Expect.equals(2302612976619580647501352961102487476, invert(p3*p4, p5*p6)); |
+ |
+ Expect.throws(() => invert(p1 * p2, p2 * p3), |
+ (e) => e is IntegerDivisionByZeroException); |
+ |
+ // Negatives |
+ Expect.equals(12667645130360889712, invert(-p1, p2)); |
+ Expect.equals(796993873408264695, invert(p1, -p2)); |
+ Expect.equals(12667645130360889712, invert(-p1, -p2)); |
+ } |
+ |
+ void testLcmWithBigints() { |
+ Expect.equals(pow(2, 64)*3*5*7, lcm(pow(2, 64)*3*5, pow(2,63)*3*7)); |
+ // 595056260442243647 is the first prime after 2**64 / 31. |
+ Expect.equals(31*37*595056260442243647, |
+ lcm(31*595056260442243647, 37*595056260442243647)); |
+ |
+ Expect.equals(p1 * p2, lcm(p1, p2)); |
+ Expect.equals(p1 * p2 * p3, lcm(p1 * p2, p2 * p3)); |
+ Expect.equals(p4 * p5, lcm(p4 * p5, p4)); |
+ |
+ // Negative |
+ Expect.equals(p1 * p2, lcm(-p1, p2)); |
+ Expect.equals(p1 * p2, lcm(p1, -p2)); |
+ Expect.equals(p1 * p2, lcm(-p1, -p2)); |
+ } |
+ |
+ void testPowmodWithBigints() { |
+ // A modulus value greater than 94906265 can result in an intermediate step |
+ // evaluating to a bigint (base * base). |
+ // 9079837958533 is the first prime after 2**48 / 31. |
+ Expect.equals(1073741824, powmod(pow(2, 30), 1, 9079837958533)); |
+ Expect.equals(9079822119301, powmod(pow(2, 30), 2, 9079837958533)); |
+ Expect.equals(8370475851674, powmod(pow(2, 30), 3, 9079837958533)); |
+ Expect.equals(5725645469433, powmod(pow(2, 30), 4, 9079837958533)); |
+ |
+ // bigint base |
+ Expect.equals(10435682577172878912, powmod(p1, 31, p2)); |
+ Expect.equals(2171334335785523204, powmod(p1 * p2, 5, p3)); |
+ Expect.equals(2075559997960884603, powmod(p1 * 120, 8, p2)); |
+ |
+ // bigint exponent |
+ Expect.equals(236325130834703514, powmod(pow(2, 64), p1, p4)); |
+ Expect.equals(1733635560285390571, powmod(1000000, p5, p6)); |
+ |
+ // bigint modulus |
+ Expect.equals(4740839599282053976, powmod(p7, p8, p1)); |
+ Expect.equals(13037487407831899228197227177643459429, |
+ powmod(p2, p3, p4 * p5)); |
+ |
+ // Negative |
+ Expect.equals(3028956426596275495, powmod(-p1, 31, p2)); |
+ Expect.equals(5719988737977477486, powmod(p1, -31, p2)); |
+ Expect.equals(10435682577172878912, powmod(p1, 31, -p2)); |
+ Expect.equals(7744650265791676921, powmod(-p1, -31, p2)); |
+ Expect.equals(3028956426596275495, powmod(-p1, 31, -p2)); |
+ Expect.equals(5719988737977477486, powmod(p1, -31, -p2)); |
+ Expect.equals(7744650265791676921, powmod(-p1, -31, -p2)); |
+ } |
+ |
+ testMain() { |
+ // Source for expected values is Wolfram Alpha (presumably just GMP). |
+ testGcdWithBigints(); |
+ testGcdextWithBigints(); |
+ testInvertWithBigints(); |
+ testLcmWithBigints(); |
+ testPowmodWithBigints(); |
+ } |
+} |
+ |
+main() { |
+ new BigintTest().testMain(); |
+} |