OLD | NEW |
(Empty) | |
| 1 // Copyright (c) 2014, the Dart project authors. Please see the AUTHORS file |
| 2 // for details. All rights reserved. Use of this source code is governed by a |
| 3 // BSD-style license that can be found in the LICENSE file. |
| 4 |
| 5 library math_test; |
| 6 import "package:expect/expect.dart"; |
| 7 import 'dart:math'; |
| 8 import 'package:math/math.dart'; |
| 9 |
| 10 // See gcd_test.dart first. This file contains only the tests that need Bigint |
| 11 // or would fail in dart2js compatibility mode. |
| 12 |
| 13 class BigintTest { |
| 14 // 8 random primes less within [2^60, 2^64] |
| 15 final int p1 = 6714601027348841563; |
| 16 final int p2 = 13464639003769154407; |
| 17 final int p3 = 9519493673324441563; |
| 18 final int p4 = 7064784879742017229; |
| 19 final int p5 = 18364232533526122157; |
| 20 final int p6 = 2099437422495963203; |
| 21 final int p7 = 10166792634765954647; |
| 22 final int p8 = 2745073355742392083; |
| 23 |
| 24 void testGcdWithBigints() { |
| 25 Expect.equals(pow(2, 63)*3, gcd(pow(2, 64)*3*5, pow(2, 63)*3*7)); |
| 26 // 595056260442243647 is the first prime after 2**64 / 31. |
| 27 Expect.equals(595056260442243647, |
| 28 gcd(31*595056260442243647, 37*595056260442243647)); |
| 29 Expect.equals(p2, gcd(p1*p2, p2*p3)); |
| 30 Expect.equals(1, gcd(p1*p2, p3*p4)); |
| 31 |
| 32 // Negatives |
| 33 Expect.equals(pow(2, 63)*3, gcd(-pow(2, 64)*3*5, pow(2, 63)*3*7)); |
| 34 Expect.equals(pow(2, 63)*3, gcd(pow(2, 64)*3*5, -pow(2, 63)*3*7)); |
| 35 Expect.equals(pow(2, 63)*3, gcd(-pow(2, 64)*3*5, -pow(2, 63)*3*7)); |
| 36 Expect.equals(1, gcd(-p1, p2)); |
| 37 Expect.equals(1, gcd(p1, -p2)); |
| 38 Expect.equals(1, gcd(-p1, -p2)); |
| 39 } |
| 40 |
| 41 void testGcdextWithBigints() { |
| 42 Expect.listEquals([pow(2, 63)*3, -2, 3], |
| 43 gcdext(pow(2, 64)*3*5, pow(2, 63)*3*7)); |
| 44 // 595056260442243647 is the first prime after 2**64 / 31. |
| 45 Expect.listEquals([595056260442243647, 6, -5], |
| 46 gcdext(31*595056260442243647, 37*595056260442243647)); |
| 47 Expect.listEquals([1, 970881267037344823, -970881267037344822], |
| 48 gcdext(73786976294838206473, 73786976294838206549)); |
| 49 Expect.listEquals([1, 796993873408264695, -397448151389712212], |
| 50 gcdext(p1, p2)); |
| 51 Expect.listEquals([1, -397448151389712212, 796993873408264695], |
| 52 gcdext(p2, p1)); |
| 53 |
| 54 // Negatives |
| 55 Expect.listEquals([1, -796993873408264695, -397448151389712212], |
| 56 gcdext(-p1, p2)); |
| 57 Expect.listEquals([1, 796993873408264695, 397448151389712212], |
| 58 gcdext(p1, -p2)); |
| 59 Expect.listEquals([1, -796993873408264695, 397448151389712212], |
| 60 gcdext(-p1, -p2)); |
| 61 } |
| 62 |
| 63 void testInvertWithBigints() { |
| 64 // 9223372036854775837 is the first prime after 2^63. |
| 65 Expect.equals(2093705452366034115, invert(1000, 9223372036854775837)); |
| 66 Expect.equals(970547769322117497, invert(1000000, 9223372036854775837)); |
| 67 |
| 68 Expect.equals(796993873408264695, invert(p1, p2)); |
| 69 Expect.equals(2302612976619580647501352961102487476, invert(p3*p4, p5*p6)); |
| 70 |
| 71 Expect.throws(() => invert(p1 * p2, p2 * p3), |
| 72 (e) => e is IntegerDivisionByZeroException); |
| 73 |
| 74 // Negatives |
| 75 Expect.equals(12667645130360889712, invert(-p1, p2)); |
| 76 Expect.equals(796993873408264695, invert(p1, -p2)); |
| 77 Expect.equals(12667645130360889712, invert(-p1, -p2)); |
| 78 } |
| 79 |
| 80 void testLcmWithBigints() { |
| 81 Expect.equals(pow(2, 64)*3*5*7, lcm(pow(2, 64)*3*5, pow(2,63)*3*7)); |
| 82 // 595056260442243647 is the first prime after 2**64 / 31. |
| 83 Expect.equals(31*37*595056260442243647, |
| 84 lcm(31*595056260442243647, 37*595056260442243647)); |
| 85 |
| 86 Expect.equals(p1 * p2, lcm(p1, p2)); |
| 87 Expect.equals(p1 * p2 * p3, lcm(p1 * p2, p2 * p3)); |
| 88 Expect.equals(p4 * p5, lcm(p4 * p5, p4)); |
| 89 |
| 90 // Negative |
| 91 Expect.equals(p1 * p2, lcm(-p1, p2)); |
| 92 Expect.equals(p1 * p2, lcm(p1, -p2)); |
| 93 Expect.equals(p1 * p2, lcm(-p1, -p2)); |
| 94 } |
| 95 |
| 96 void testPowmodWithBigints() { |
| 97 // A modulus value greater than 94906265 can result in an intermediate step |
| 98 // evaluating to a bigint (base * base). |
| 99 // 9079837958533 is the first prime after 2**48 / 31. |
| 100 Expect.equals(1073741824, powmod(pow(2, 30), 1, 9079837958533)); |
| 101 Expect.equals(9079822119301, powmod(pow(2, 30), 2, 9079837958533)); |
| 102 Expect.equals(8370475851674, powmod(pow(2, 30), 3, 9079837958533)); |
| 103 Expect.equals(5725645469433, powmod(pow(2, 30), 4, 9079837958533)); |
| 104 |
| 105 // bigint base |
| 106 Expect.equals(10435682577172878912, powmod(p1, 31, p2)); |
| 107 Expect.equals(2171334335785523204, powmod(p1 * p2, 5, p3)); |
| 108 Expect.equals(2075559997960884603, powmod(p1 * 120, 8, p2)); |
| 109 |
| 110 // bigint exponent |
| 111 Expect.equals(236325130834703514, powmod(pow(2, 64), p1, p4)); |
| 112 Expect.equals(1733635560285390571, powmod(1000000, p5, p6)); |
| 113 |
| 114 // bigint modulus |
| 115 Expect.equals(4740839599282053976, powmod(p7, p8, p1)); |
| 116 Expect.equals(13037487407831899228197227177643459429, |
| 117 powmod(p2, p3, p4 * p5)); |
| 118 |
| 119 // Negative |
| 120 Expect.equals(3028956426596275495, powmod(-p1, 31, p2)); |
| 121 Expect.equals(5719988737977477486, powmod(p1, -31, p2)); |
| 122 Expect.equals(10435682577172878912, powmod(p1, 31, -p2)); |
| 123 Expect.equals(7744650265791676921, powmod(-p1, -31, p2)); |
| 124 Expect.equals(3028956426596275495, powmod(-p1, 31, -p2)); |
| 125 Expect.equals(5719988737977477486, powmod(p1, -31, -p2)); |
| 126 Expect.equals(7744650265791676921, powmod(-p1, -31, -p2)); |
| 127 } |
| 128 |
| 129 testMain() { |
| 130 // Source for expected values is Wolfram Alpha (presumably just GMP). |
| 131 testGcdWithBigints(); |
| 132 testGcdextWithBigints(); |
| 133 testInvertWithBigints(); |
| 134 testLcmWithBigints(); |
| 135 testPowmodWithBigints(); |
| 136 } |
| 137 } |
| 138 |
| 139 main() { |
| 140 new BigintTest().testMain(); |
| 141 } |
OLD | NEW |