| Index: pkg/math/lib/math.dart
|
| diff --git a/pkg/math/lib/math.dart b/pkg/math/lib/math.dart
|
| index 9958bec52ba1800eb71959658cd887967d62e4f5..323bcf7b4d66da6bab47b94ed916e0269343adf1 100644
|
| --- a/pkg/math/lib/math.dart
|
| +++ b/pkg/math/lib/math.dart
|
| @@ -4,4 +4,151 @@
|
|
|
| library dart.pkg.math;
|
|
|
| -// Placeholder library, reserved for future extension.
|
| +/**
|
| + * Computes the greatest common divisor between [a] and [b].
|
| + *
|
| + * The result is always positive even if either `a` or `b` is negative.
|
| + */
|
| +int gcd(int a, int b) {
|
| + if (a == null) throw new ArgumentError(a);
|
| + if (b == null) throw new ArgumentError(b);
|
| + a = a.abs();
|
| + b = b.abs();
|
| +
|
| + // Iterative Binary GCD algorithm.
|
| + if (a == 0) return b;
|
| + if (b == 0) return a;
|
| + int powerOfTwo = 1;
|
| + while (((a | b) & 1) == 0) {
|
| + powerOfTwo *= 2;
|
| + a ~/= 2;
|
| + b ~/= 2;
|
| + }
|
| +
|
| + while (a.isEven) a ~/= 2;
|
| +
|
| + do {
|
| + while (b.isEven) b ~/= 2;
|
| + if (a > b) {
|
| + int temp = b;
|
| + b = a;
|
| + a = temp;
|
| + }
|
| + b -= a;
|
| + } while (b != 0);
|
| +
|
| + return a * powerOfTwo;
|
| +}
|
| +
|
| +/**
|
| + * Computes the greatest common divisor between [a] and [b], as well as [x] and
|
| + * [y] such that `ax+by == gcd(a,b)`.
|
| + *
|
| + * The return value is a List of three ints: the greatest common divisor, `x`,
|
| + * and `y`, in that order.
|
| + */
|
| +List<int> gcdext(int a, int b) {
|
| + if (a == null) throw new ArgumentError(a);
|
| + if (b == null) throw new ArgumentError(b);
|
| +
|
| + if (a < 0) {
|
| + List<int> result = gcdext(-a, b);
|
| + result[1] = -result[1];
|
| + return result;
|
| + }
|
| + if (b < 0) {
|
| + List<int> result = gcdext(a, -b);
|
| + result[2] = -result[2];
|
| + return result;
|
| + }
|
| +
|
| + int r0 = a;
|
| + int r1 = b;
|
| + int x0, x1, y0, y1;
|
| + x0 = y1 = 1;
|
| + x1 = y0 = 0;
|
| +
|
| + while (r1 != 0) {
|
| + int q = r0 ~/ r1;
|
| + int tmp = r0;
|
| + r0 = r1;
|
| + r1 = tmp - q*r1;
|
| +
|
| + tmp = x0;
|
| + x0 = x1;
|
| + x1 = tmp - q*x1;
|
| +
|
| + tmp = y0;
|
| + y0 = y1;
|
| + y1 = tmp - q*y1;
|
| + }
|
| +
|
| + return new List<int>(3)
|
| + ..[0] = r0
|
| + ..[1] = x0
|
| + ..[2] = y0;
|
| +}
|
| +
|
| +/**
|
| + * Computes the inverse of [a] modulo [m].
|
| + *
|
| + * Throws an [IntegerDivisionByZeroException] if `a` has no inverse modulo `m`:
|
| + *
|
| + * invert(4, 7); // 2
|
| + * invert(4, 10); // throws IntegerDivisionByZeroException
|
| + */
|
| +int invert(int a, int m) {
|
| + List<int> results = gcdext(a, m);
|
| + int g = results[0];
|
| + int x = results[1];
|
| + if (g != 1) {
|
| + throw new IntegerDivisionByZeroException();
|
| + }
|
| + return x % m;
|
| +}
|
| +
|
| +/**
|
| + * Computes the least common multiple between [a] and [b].
|
| + */
|
| +int lcm(int a, int b) {
|
| + if (a == null) throw new ArgumentError(a);
|
| + if (b == null) throw new ArgumentError(b);
|
| + if (a == 0 && b == 0) return 0;
|
| +
|
| + return a.abs() ~/ gcd(a, b) * b.abs();
|
| +}
|
| +
|
| +/**
|
| + * Computes [base] raised to [exp] modulo [mod].
|
| + *
|
| + * The result is always positive, in keeping with the behavior of modulus
|
| + * operator (`%`).
|
| + *
|
| + * Throws an [IntegerDivisionByZeroException] if `exp` is negative and `base`
|
| + * has no inverse modulo `mod`.
|
| + */
|
| +int powmod(int base, int exp, int mod) {
|
| + if (base == null) throw new ArgumentError(base);
|
| + if (exp == null) throw new ArgumentError(exp);
|
| + if (mod == null) throw new ArgumentError(mod);
|
| +
|
| + // Right-to-left binary method of modular exponentiation.
|
| + if (exp < 0) {
|
| + base = invert(base, mod);
|
| + exp = -exp;
|
| + }
|
| + if (exp == 0) { return 1; }
|
| +
|
| + int result = 1;
|
| + base = base % mod;
|
| + while (true) {
|
| + if (exp.isOdd) {
|
| + result = (result * base) % mod;
|
| + }
|
| + exp ~/= 2;
|
| + if (exp == 0) {
|
| + return result;
|
| + }
|
| + base = (base * base) % mod;
|
| + }
|
| +}
|
|
|